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Abstract

In this thesis, I examine a protocol that is designed to provide reliable IP multicast. I
evaluate the efficiency and reliability of the protocol in a friendly environment and in
the face of several different types of malicious attacks. These attacks include general
attacks on the network, which hamper any type of communication, as well as attacks
aimed at specific weaknesses of the protocol. The protocol was evaluated to see how
reliability and efficiency degrade in the face of such attacks.
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Chapter 1

Introduction

Multicast is an extension to the regular protocol for sending messages between host

nodes on the internet. Multicast describes the sending of messages from one node

to a group of nodes. The sender may or may not know all of the recipients of the

messages. Although mechanisms for reliably sending messages to one node or to a very

small number of nodes are robust and well understood, mechanisms for multicasting

messages are much newer and there are no commonly accepted standards for reliable

multicast.

In this thesis, I will discuss several protocols which have been proposed and imple-

mented to attempt to provide reliable multicast communications. I will also present

attacks designed to interfere with these protocols. Then I will show measurements of

the performance of these protocols, both with and without attacks and analyze the

reliability of these protocols.

1.1 Motivations for developing reliable multicast

The effects of multicasting messages can be achieved by simply sending separate

messages to each node in the group. This requires the sending node to send out a

distinct message for each node that it's trying to send to. However, this often uses

much more network bandwidth than is necessary, especially if many of the recipients

of the message are on the same subnet. The traffic generated by this is shown in



Figure 1-1: Network traffic with unicast communications.

figure 1-1.

This also requires the sending node to know in advance all of the nodes to which

it is sending. For these reasons, protocols have been designed specifically for multi-

casting messages.

1.2 Unicast Communications

Reliable point to point communication over the internet is usually accomplished

through the use of two standard protocols. The IP, or Internet Protocol[3], spec-

ifies how communication packets are routed. The TCP, or Transmission Control

Protocol[4], ensures reliable delivery of packets.

The Internet Protocol specifies an addressing scheme for computers and a mecha-

nism for fragmenting message packets that are too large to be sent over the network.

It also defines a standard format for packet headers. It does nothing to ensure the

delivery of packets.

The Transmission Control Protocol specifies a sequence of packets to be ex-



changed, via the Internet Protocol, between the sender and the receiver of the data.

The TCP ensures that the receiver has received the data and the sender knows that

the receiver has the data. This protocol will work, even if a significant fraction of the

packets that are sent never arrive at their destination.

The Transmission Control Protocol also provides for flow control. The sender of

the data gets feedback about how many of the packets it sends are never reaching their

destination. Assuming that packet loss is due to network congestion, the sender can

adjust the rate at which it sends packets to make full use of the available bandwidth

while avoiding network congestion.

1.3 IP Multicast

Figure 1-2: Network traffic with multicast communications.

The Internet Protocol has been extended to allow multicasting[1]. The extension

specifies multicast group addresses. Hosts can subscribe to multicast groups, and

senders can send to a group address rather than to an individual node. When a

router receives a message addressed to a multicast group, it forwards it to a subnet if



and only if it knows of any nodes on the subnet subscribed to that group. This saves

a lot of traffic, as shown in figure 1-2.

This protocol greatly reduces the communication complexity of sending a single

message to multiple hosts. Under the original protocol, the number of packets sent

would have had to equal the number of hosts receiving the message. The multicast

extension guarantees that for each message packet sent to a multicast group, only one

copy of the packet traverses each link of the network.

1.3.1 Difficulties in Achieving Reliability

The Internet Protocol extension does the same for multicast as the original IP did

for unicast. However, there is no equivalent to TCP for multicast. Several protocols

have been proposed and developed, but none is accepted as a standard for reliable

multicast.

Figure 1-3: Acknowledgement implosion.

The method used in TCP would be impractical to transfer to multicast. In TCP,

the receiver of the data sends an acknowledgement to the sender upon receipt of the

data, and the sender resends the data if it fails to receive an acknowledgement. If



every subscriber to a multicast group were to send an acknowledgement packet to the

sender, the efficiency benefits gained by the multicast protocol would be completely

undone. This is called the ACK implosion problem, and is shown in figure 1-3.

Also, the sender would need to know every subscriber to the multicast group,

or else it would have no way of knowing if all of the subscribers had sent acknowl-

edgements. A way is needed to ensure delivery to all receivers without drastically

increasing network traffic.



Chapter 2

Existing Reliable Multicast

Protocols

There are several general strategies that have been proposed for ensuring reliable

delivery of multicast messages. However, there is no protocol which is widely used

and accepted as standard.

For this project, I am only going to look at one reliable multicast protocol. This

protocols was chosen because source code for it was available, making modifications

possible, and because it is sufficiently developed to be in a marketable form. This

protocol is the Reliable Multicast Protocol, or RMP[5].

2.1 Classes of protocols

The existing reliable multicast protocols can be divided into three basic types. There

are ring based protocols, tree based protocols and cloud based protocols[2].

Ring based protocols typically assign all of the multicast group members a place

in a virtual ring. A token is held by one member of the ring and passed periodically.

Typically the passing of the token is used to ensure delivery of all messages. When a

host receives the token, it is guaranteed that every host has received all of the data

sent before the last time the host received the token.

Tree based protocols divide the multicast group into a virtual tree. Each tree



node is responsible for making sure that all of its descendents have received all of the

messages.

Cloud based protocols do not have any structure for assuring that all messages

are delivered. Any node that does not receive a message simply requests the retrans-

mission of that message until it receives it. This sort of negative acknowledgement

system is generally less reliable but more efficient than a positive acknowledgement

system.

2.2 RMP

The Reliable Multicast Protocol is a ring based protocol. There is a token which

is passed around the ring. When a message is sent, the token holder sends an ac-

knowledgement message to the sender. The acknowledgement includes the sequence

number of the original message. The sender continues to resend each message until

it receives an acknowledgement for that message from the token holder. Other nodes

look for gaps in the sequence numbers of the messages they have received. Gaps

indicate missing messages. If another node realizes it has not received a message, it

requests a retransmission of the message.

Reliability is ensured through the passing of the token. Before the token holder

passes the token to the next member in the group, it makes sure that that member

has received every message up to that point. If the token is passed often enough,

every group member is kept reasonably up to date.

Occasionally, network failures make the delivery of some messages impossible for a

period of time. If some members of the group are unreachable for too long, the group

dissolves and attempts to reform itself so that it contains only the members of the

group that are actually reachable through the network. Processes in the group initi-

ate successive reformations until one succeeds. A reformation is considered to have

succeeded when all of the reachable group members agree upon the new membership

list of the group.

The Reliable Multicast Protocol is reliable and reasonably efficient. However,



because of the ring configuration, scalability is limited. It also imposes the restriction,

which is not present in IP multicast, that all the members of a multicast group are

known at all times.



Chapter 3

Attacks

The intent of this project is to examine the chosen multicast protocol for performance.

Two aspects of performance are efficiency and robustness. Multicasting a message

to a large number of nodes should be considerably faster and require many fewer

messages to be sent than sending the identical message to each node individually

would be. The data that each receiver gets should be the same as what the sender

sent. The sender should know if the receivers do not get all of the data for any reason.

The performance of a protocol can be measured on an unloaded network in optimal

conditions. However, this will not give a very accurate impression of its performance

in other types of conditions. To be useful practically, a protocol must be able to

operate effectively over heavily loaded networks, unreliable network connections or

environments which may include misconfigured or malicious hosts.

The purpose of evaluating the performance of protocols in the face of malicious

attacks is to see how the protocols perform over a wide range of conditions, rather

than just optimal conditions.

Some attacks affect performance. They may cause packets to be lost or delayed in

transmission. The performance of a protocol in the face of such an attack should be

similar to the performance of the protocol on a slow or lossy network. If a significant

percentage of the traffic is still getting through, the protocol should still operate

correctly. However, the rate at which the protocol degrades in performance under

such an attack is an indication of how well the protocol is designed.



Other attacks involve transmitting packets specifically intended to disrupt the

workings of the protocol. With the technology I am using in this thesis, which does

not include encryption and verification of senders, it is impossible to guarantee that

a protocol will behave correctly in the face of any attack. However, a well defined

protocol should be able to still function in the face of some simple attacks.

3.1 Flooding Attacks

Flooding attacks are a very simple class of attacks which do not target any particular

protocol. These attacks simply send extraneous packets at a very great rate to the

multicast address that the protocol is using. The packets can contain anything, since

the value of the attack lies in the volume of packets sent, not the contents of the

packets.

The resulting network traffic can cause many packets to be delayed or to be lost

completely due to network congestion. Some slowdown in the rate at which data is

transfered is expected in the face of this attack.

A simple version of this attack was implemented for this thesis. The rate at which

flood packets are sent in this attack is dependent only on the speed of the machine on

which the attack is being run. The data that was sent in the packets was generated

by simply allocating a memory buffer and sending its uninitialized contents.

3.2 Replay Attacks

Replay attacks are another general class of attacks. They involve listening to traffic

on a network and sending exact duplicates of some or all of the packets sent over that

network.

This sort of attack can also be used against protocols which employ encryption.

Although the attacker cannot decrypt the packets, it can replay encrypted packets

which the receivers can decrypt. Authentication techniques can provide protection

against this attack at the cost of additional overhead in sending and receiving.



The implementation of this attack used for this thesis was a simple program

which listened to the IP multicast address that the reliable multicast protocol used

and replayed all packets sent to that address, except ones from the attacking node.

3.3 Dropped Packet Attacks

Dropped packet attacks are a very simple type of insider attacks. This type of attack

requires the attacker to be able to pose as one of the receivers within the multicast

protocol.

In the RMP protocol, each receiver must explicitly join the group of receivers.

Each receiver must request permission to join, but in the implementation that was

used for this thesis, there is no provision for excluding a receiver. If the membership

of the group is limited in a secure way, this attack might become infeasible.

In this type of attack, the attacker intentionally drops some or all of the data

packets received. This causes the attacker to request retransmissions of the dropped

data, which increases the network traffic and delays the sending of new data packets.

This attack is also similar to the case where a sender is multicasting to a group

of receivers, one of whom is on the other end of a slow, congested network link. In

either case, one of the receivers is not getting all of the packets and must request

retransmissions. The difference between this case and the implementation of the

dropped packet attack that was used is that the attacking host only dropped data

packets, whereas a host on a unreliable network would lose all types of packets with

equal probability.

The algorithm used to determine which packets to drop involved two states. The

network could either be "down", in which case packets were dropped, or "up". After

each packet arrives, the network may or may not change states according to the packet

loss parameter. The state diagram used to determine the network state is shown in

figure /refdrop:figl.

The algorithm I used had a scaling factor of one half. This means that if packets

are dropped with overal probability P and the network is currently up, the probability
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Figure 3-1: Simple state diagram for dropped packets.

of the network going down is one half of P.

3.4 RMP Token Attack

Ring based protocols such as RMP depend on a token being passed in order to

guarantee delivery to all of the receiving hosts. Therefore, a type of attack which is

specific to ring based protocols is an attack on the token.

This type of attack does not prevent the sender from sending data or the receivers

from receiving it. However, it removes the guarantee that all of the receivers have

received all of the data. This sort of attack would probably be most effective in

conjunction with another attack which prevents receivers from receiving data.

In one type of token attack, one receiver takes the token when it is passed to them.

However, the receiver keeps the token, rather than passing it on. Like the dropped

packet attack, this is another insider attack.



Chapter 4

Testing Procedure

All of the attacks described in chapter 3 were tested against an implementation of the

RMP protocol. The implementation used was version 1.3 Beta of the implementation

written by Todd Montgomer, Brian Whetten and John R. Callahan and available at

ftp://research.ivv.nasa.gov/pub/src/RMP/.

An isolated network setup was used, to insure that outside traffic did not interfere

with the measurements. This made the results obtained less representative of general

use conditions. However, it decreased the variation in the network due to outside

factors, making the results obtained more accurate and repeatable.

4.1 Network

The network used consisted of four computers connected via a single ethernet hub

as shown in figure 4-1. All four computers used were running Solaris version 2.5.1.

However, MASON and NOMAD have Sun Sparc processors and LEWIS and CLARK

have Intel based x86 processors.

A simple file transfer program was used which took a file as input, joined the

specified RMP group and sent the data in the file to the group via the RMP protocol.

As soon as it had received confirmation that all of the group members had received

the data, the program exited. The sending program did not know the identity of the

intended receivers. It simply sent to all of the members of the RMP group at the
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Figure 4-1: Test network configuration.
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time it joined the group.

The receiver program that was used joined the specified RMP group at startup.

It recorded everything sent to the RMP group while it was a member and printed it

to a file. The receiver programs were all run before the sending program so that the

sending program would see the correct group membership when it started.

In order to simulate a larger network and a larger group of receivers, multiple

receive programs were run on each host. For the measurements done in this thesis,

one host would run a send program and a receiver. The other hosts would run two

receivers apiece. The attacking program was run on one of the machines with two

receivers.

4.2 Gathering Data

Measurements on network traffic were collected using the snoop program. One of the

hosts running two receiver programs also snooped all of the traffic on the network

and recorded it for later analysis.

Snoop was chosen to gather data because it does not require statistics to be

collected by the RMP protocol. Having the protocol keep statistics might have altered

the results. The disadvantage of using snoop is that there is the possibility that snoop

might not get all of the packets. To reduce this risk, MASON, which is the fastest of

the four machines used, was used to collect the data.

The RMP send and receive programs were first run with no attacks against them

and their performance was measured. This was done to provide a baseline with which

to compare all subsequent test results.

The same send and receive programs were then run again with the flood attack,

the replay attack and the dropped packet attack. The dropped packet attack was

performed with 4 different levels of packet loss, as well as the baseline 0 percent loss.

The levels measured were 25 percent, 50 percent, 75 percent and 95 percent packet

loss on a single receiver.

For the purpose of all of the measurements described, a single 908 kilobyte data



file was multicast to the seven receivers in each test. The base configuration and each

attack configuration was run ten times in order to find a range of possible performance

responses as well as the average response.

The token attack was not tested. When this was implemented with the version of

RMP used, the protocol detected the failure of the token pass. The response of RMP

to a failure detection is to force a reformation of the group. However, in the version

of RMP that was used for these experiments, the reformation function hasn't been

implemented yet, so the process simply exited with an error. Therefore, no useful

data could be gathered.



Chapter 5

Test Results

5.1 Measurements

The RMP file transfer program was run ten times with no attacks and ten times with

each attack. A 908 kilobyte file was sent in each trial. The trace recorded from each

trial was used to calculate a number of things, including the total time from when the

sender first attempted to join the group until it left the group, the time actually spent

transferring the data, the total number of data sent, both in terms of IP datagrams

sent and in the total number of data packets sent. A single datagram could consist of

multiple data packets if the datagram had to be broken down into a size that could

be transmitted over the network.

In the cases where the file transfer did not complete succesfully, I measured the

amount of data sent successfully to each receiver. I also verified whether the data

that was received was correct and uncorrupted.

5.1.1 Base Case

First I ran file transfer program and took measurements with no attack running. This

provided a base case with which to compare the performance of the protocol in the

face of attacks.

In the trials run with no attacks, all of the data was successfully transmitted to



all of the receivers. The average amount of time for the data to be sent once the

sender had joined the RMP group was 46.76 seconds. The average time it took the

sender to send data, including the time from when it first attempted to join the group

until it left was 82.44 seconds. More detailed numbers on all of the tests are given in

appendix A.

5.1.2 Flooding Attack

For the flooding attack, the attacking machine flooded the network with garbage

packets as fast as possible.

When a host joins an RMP group, it sends out a join message to the group address

and waits for a response back. If it doesn't receive a response back within a certain

period of time, it forms its own group.

The flooding attack caused many packets that hosts tried to send on the test

network to be delayed or to not be sent. As a result, sometimes a host attempting

to join an already existing RMP group would decide that the group didn't exist and

form its own group with the same name and address.

When this occurred, there would be two or more distinct sets of hosts claiming to

be the same group. Any hosts attempting to join the same RMP group subsequently

would either end up joining one of the two groups or forming their own.

When this occured, the sender would join one of the groups, and only the receivers

actually in that group would receive any data.

In six of the trials, all of the receivers got the data. However, in one trial the

sender only sent to 4 hosts and in another trial it only sent to 2 hosts. In one trial

the sender formed a group by itself and didn't send to any of the receivers.

In all of the these cases, all of the data was correctly transmitted to all of the

receivers who got any data. The other receivers got no data and in some cases detected

an error and exited. The sending program believed it had successfully transmitted

the data to all of the receivers in the RMP group. However, the receivers it believed

to be in the RMP group included only those receivers who actually got the data.

In one trial a failure was detected and the program exited before sending all of



the data. In this case, two of the receivers got 522.5 kilobytes of data before the error

was detected. The rest of the receivers didn't receive any data.

In the trials where all of the receivers received all of the data, it took an average

of 53.4 seconds to transfer the data, with a standard deviation of 6.9. The average

time for the sender to join the group, send the data and leave the group was 80.9

seconds with a standard deviation of 12.

These times represent a slightly longer time to send data than the base case.

However, this is not reflected in a correspondingly longer connect time.

In the trials where data was sent to only a subset of the receivers, the sending

times were shorter.

5.1.3 Replay Attack

For this attack, a program on the host MASON listened to the multicast address and

port being used for the multicast file transfer program. Whenever a packet that didn't

come from the attacking program was sent to that address, the attacking program

sent a packet with the exact same contents to the same address.

In nine of the ten trials, the sending program joined the group, sent the file and

exited without detecting any error. In one of the trials the sender detected an error

and exited after only 106 kilobytes had been sent.

In the nine trials that completed, the two receiving programs running on the

machine MASON and the receiver running on the machine NOMAD received all of

the data successfully. In one of the nine trials, the receivers running on the machine

LEWIS received all of the data successfully.

In eight of the trials, the receivers on LEWIS received the same quantity of data

as was sent. However, there were errors in the data received. Most of the file was the

same as the file sent. However, some bytes differed. In the nine trials that completed,

the same behavior was seen by the receivers on the machine CLARK.

The data received was not corrupted in the same way in different trials. Nor did

different receivers necessarily have the same corrupted data on the same trial.

In the trials where the send completed, it took an average of 55.2 seconds to
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Figure 5-1: Packet drop rate vs. Number of Trials Which Failed to Complete

transfer the data, with a standard deviation of 6.1. The average time for the sender

to join the group, send the data and leave the group was 83.6 seconds with a standard

deviation of 13.9.

These times represent an increase in sending time over the base case. They are

also slightly higher than the times obtained from the flood attack.

5.1.4 Dropped Packet Attack

I ran the dropped packet attack with packet drop rates from 25 percent to 95 percent.

The results from these tests were compared against the baseline results.

As the the percentage of dropped packets increases, so does the likeihood that the

send will fail to complete due to an error. This relationship is shown in figure 5-1.



The baseline results had a 0 percent failure rate, whereas none of the trials at the

95 percent packet drop rate completed successfully. Failures occurred when a group

member perceived an error.

In this test, the apparent high packet loss rate to the attacking host made it

appear as if the network was temporarily unreachable. The response that should

result from detection of an error of that sort is to force a reformation. However, since

the reformation code hadn't been implemented in the version of RMP used for these

experiments, the host detecting the problem exited with an error instead.

In addition to happening more frequently, failure occurred sooner as the per-

centage of dropped packets increased. The relationship between the rate of packets

dropped and the amount of data sent before a failure is detected is shown in figure 5-2.

If a failure did not occur at any time during a trial, the amount of data successfully

sent was 908 kilobytes.

In the trials where no error was detected and the send completed successfully, the

amount of time required to send the data varied. As the rate of dropped packets

increased, more retransmissions became necessary, slowing down the rate at which

new data was sent.

The relationship between the percentage of packets dropped and the amount of

time it took the sender to join the RMP group, send the data and leave the group is

shown in figure 5-3.

The relationship between the percentage of packets dropped and the amount of

time it took the sender to send the data, once the sender was already in the group,

is shown in figure 5-4.

5.2 Interpretation

All of the attacks appeared to increase the time to send data by some amount. In

addition, most of them caused other problems to appear as well.
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5.2.1 Failures

Since the version of RMP that was used does not have reformations implemented, it

is hard to guage how much failures detected in transmission would affect the transfer

if reformations were an option in the face of failures.

It is probable that most if not all of the failures which caused the termination

of the data transfer would have only caused a reformation to begin if that were

implemented. In this case, if a successful reformation occurred such failures would

cause a significant increase in transmission time, but not necessarily a fatal error.

As long as some data is successfully sent before a reformation occurs, progress

is made. If the RMP group is always able to reform itself then the transfer will

eventually complete. In all of the attacks that were implemented and tested, some

data was sent at least some of the time before a failure occurred. Therefore, these

attacks would delay transmission of data but not prevent it indefinitely if the group

always successfully reformed itself.

There is the possibility that the group might fail to reform itself or that it might

not include all of the original group members in the reformed group. If this were to

happen, some or all of the receivers might not get the data. It is unknown what affect

these attacks would have on the reformation process.

5.2.2 Incorrect Data

A more serious consequence of these attacks was incorrect data being received by

some of the receivers without any of the group members detecting an error.

Both of the receivers who got incorrect data had Intel type processors running

Solaris. It is unclear why only these two machines were affected. However, the

problem appears to be spacific to that type of machine. If this is the case, it might

be a problem with the specific implementation of the protocol on that platform and

not a conceptual problem with the protocol.



Chapter 6

Conclusion

The results of the experiments described in this document show that the implemen-

tation of the Reliable Multicast Protocol which was used for these tests is vulnerable

to attacks.

These attacks reliably slow down the rate at which data is sent or prevent the

data from being transmitted altogether. In some circumstances these attacks can

cause intended receivers to fail to be able to join the receiving group or data that

was transmitted to be received incorrectly without either the sender or the receiver

detecting the error.

However, the vulnerability of an implementation of a particular protocol to attacks

does not necessarily imply that the protocol is vulnerable to those attacks. Such

vulnerabilities can either be the fault of the protocol or of the implementation.

It is fairly clear that most if not all of the failures to transmit the data are a result

of the particular implementation. The data corruption which was observed in the

test of the replay attack also appears to be an artifact of this implementation.

On the other hand, the slowdown in the rate that data was sent to the receivers

that was observed in response to several of the attacks is almost certainly a result of

the protocol. The slowdown rate that was observed is also quite likely artificially low,

since the rate was only calculated from the test trials which completed successfully.

However, the trials upon which the attack had the greatest impact were the most

likely to fail.



In addition to the observed slowdown, the protocol is particularly vulnerable to

attacks that are aimed at reducing the speed at which data is transmitted because of

the method the protocol uses to deal with errors.

If each of the failures observed represents a situation where a complete imple-

mentation of the protocol would initiate a reformation, then each of those failures

represents a significant increase in the total time to transfer data. The sooner the

transfer program detected an error and exited in the tests, the more times the at-

tacker would have forced a reformation if the transfer program ran to completion. If

a lot of reformations occur, this could represent a very significant slowdown.

The failure of some receivers to join the multicast group in the face of the flooding

attack is also most likely a result of the protocol and not the particular implementation

used. The protocol requires all receivers in the RMP protocol to explicitly join the

RMP group and be acknowledged by the current group members.

The reliance of the protocol on knowing the group membership at all times is

a point of failure. Any attack which prevents a receiver from communicating with

the RMP group for a sufficient length of time can cause different receivers to have

inconsistent views of the group membership.

6.1 Future Work

There are several areas where further research is called for. Experimenting with

other implementations of the same protocol would provide more insight into what

the limitations of the protocol are, and what are the limitations of this particular

implementation. Also, there are many other attacks against RMP which could be

implemented and tested.

Group reformations are processes which are particular to this protocol which would

be particularly valuable to explore further. Experimenting with implementations

which include reformations would provide many more opportunities to examine the

response of this protocol to various attacks.

In addition, the existence of reformations provide a target for a whole class of



attacks. One can envision a class of attacks which seeks to prevent a reformation from

ever successfully completing, thereby halting the transmission of data indefinitely once

a reformation is forced. Some of these threats could be countered through the use of

authentication to create a trusted group, but not all.



Appendix A

Test Results

Kbytes Sent IP Data Total Data Transfer
Successfully Datagrams Packets Time Time

1 908 280 1833 91.34 56.31
2 908 225 1497 120.55 39.04
3 908 266 1761 75.04 49.04
4 908 251 1633 83.54 48.12
5 908 246 1620 73.90 46.94
6 908 254 1711 73.08 46.17
7 908 226 1501 67.43 40.48
8 908 248 1651 76.43 50.17
9 908 263 1720 75.95 50.59
10 908 253 1664 87.13 40.76

Avg. 908 251 1659 82.44 46.76
St.Dev 0 16.9 105.72 15.18 5.38

Table A.1: RMP File Transfer Without Attacks



Kbytes Sent Successful IP Data Total Data Transfer
Successfully Receivers Datagrams Packets Time Time

1 908 7 229 1607 98.05 58.71
2 908 4 195 1388 82.54 43.89
3 908 2 238 1656 75.38 43.55
4 908 7 237 1645 85.52 55.85
5 908 7 213 1475 61.05 39.93
6 908 7 209 1464 83.80 54.22
7 908 7 234 1563 78.15 53.81
8 908 7 231 1625 78.90 57.66
9 0 0 0 0 N/A N/A

10 522.5 2 266 1822 110.03 62.49
Avg. 778.66 5 205.2 1424.5 83.71 52.23

St.Dev 299.21 2.75 74.63 515.06 13.87 7.85

Table A.2: RMP File Transfer With Flood Attack

Kbytes Sent Successful Total Data Transfer
Successfully Receivers Time Time

1 908 3 83.76 62.08
2 908 3 110.93 59.69
3 908 3 79.27 58.31
4 908 3 67.21 42.48
5 908 3 76.04 54.42
6 106 3 82.58 54.04
7 908 3 73.52 49.76
8 908 3 78.47 52.43
9 908 3 101.48 58.91

10 908 5 81.76 59.01
Avg. 827.8 3.2 83.5 55.11

St.Dev 253.61 0.63 13.09 5.83

Table A.3: RMP File Transfer With Replay Attack



Kbytes Sent IP Data Total Data Transfer
Successfully Datagrams Packets Time Time

1 908 310 2021 73.58 47.14
2 908 325 2126 89.25 59.0
3 908 354 2259 73.27 47.96
4 908 279 1840 86.79 45.82
5 604 303 2059 84.30 40.93
6 580 271 1841 121.03 38.82
7 908 325 2086 74.27 51.45
8 908 327 2132 81.95 56.81
9 0 109 755 113.73 15.7

10 0 51 354 60.24 31.83
Avg. 663.2 265.4 1747.3 85.84 43.55

St.Dev 372.63 101.54 648.36 18.69 12.72
Successful Avg. 908 320 2077.3 79.85 51.36

Successful St.Dev 0 24.64 139.95 7.14 5.44

Table A.4: RMP File Transfer With 25% Packet Drop Rate

Kbytes Sent IP Data Total Data Transfer
Successfully Datagrams Packets Time Time

1 139 123 804 83.70 15.35
2 164 323 2138 99.41 49.85
3 908 485 3129 99.58 77.49
4 204 165 1109 72.76 33.23
5 220 161 1052 88.23 61.90
6 908 490 3230 95.94 71.29
7 908 427 2692 93.36 62.74
8 908 442 2834 93.00 65.69
9 908 428 2731 103.44 63.93

10 473.5 288 1871 109.41 41.15
Avg. 574.05 333.2 2159 93.88 54.26

St.Dev 363.23 142.02 906.90 10.45 19.24
Successful Avg. 908 454.4 2923.2 97.06 68.23

Successful St.Dev 0 30.84 242.30 4.43 6.13

Table A.5: RMP File Transfer With 50% Packet Drop Rate



Kbytes Sent IP Data Total Data Transfer
Successfully Datagrams Packets Time Time

1 908 567 3611 87.01 61.28
2 180 206 1392 75.72 24.91
3 908 629 3955 91.31 61.06
4 8 120 814 58.44 13.88
5 694 555 3604 124.61 70.37
6 908 599 3791 110.24 74.02
7 908 539 3533 98.99 65.33
8 114 161 1032 85.27 31.34
9 490 414 2653 105.46 67.79
10 286 258 1726 77.79 29.10

Avg. 540.4 404.8 2611.1 91.48 49.91
St.Dev 369.16 199.04 1248.5 19.11 22.39

Successful Avg. 908 583.5 3722.5 96.89 65.42
Successful St.Dev 0 39 188.94 10.19 6.06

Table A.6: RMP File Transfer With 75% Packet Drop Rate

Kbytes Sent IP Data Total Data Transfer
Successfully Datagrams Packets Time Time

1 24.5 215 1369 78.14 18.16
2 57 151 1014 74.29 15.42
3 8 128 822 56.05 15.12
4 41 193 1269 55.10 15.94
5 24.5 125 832 50.63 12.93
6 0 126 810 45.49 10.98
7 16 160 1021 65.07 13.33
8 16 116 787 49.5 9.76
9 8 107 714 46.18 8.68
10 90 206 1357 54.91 17.68

Avg. 28.5 152.7 999.5 57.54 13.8
St.Dev 27.38 39.34 249.39 11.37 3.24

Table A.7: RMP File Transfer With 95% Packet Drop Rate
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