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Abstract

This thesis presents a treatise on some topics of the problem of parameter identifica-
tion in systems whose behavior is governed by nonlinearly parameterized functions.
The emphasis of the thesis is on the analytical treatment of stability and parame-
ter convergence issues. The thesis examines two cases of nonlinear parameterization:
convex/concave and monotonic, and their corresponding estimation algorithms. In
the case of the convex/concave parameterization, the conditions for parameter con-
vergence are derived for a recently developed min-max estimator. In linearly pa-
rameterized systems, parameter convergence conditions impose requirements solely
on the outside input to the system of interest. However, it is shown that with the
convex/concave functions and the min-max algorithm the system governing function
must satisfy certain prerequisites if the unknown parameter value is to be identified
precisely. Several examples of functions and corresponding inputs which both satisfy
and do not satisfy the prescribed conditions are given. In the case of monotonic
parameterizations, two types of systems are considered: one where only the filtered
function output is available for measurement, and one where that output is directly
measurable. In the first case, since the function output is not known exactly at each
instant of time, it is shown that instability can result with the gradient parameter
update law. The second case deals with nonlinear parameterization by a specific kind
of monotonic function, the sigmoidal function. The sigmoidal function is often uti-
lized in neural network applications. For a reduced order neural network, it is shown
how parameter convergence can be analytically guaranteed with the local gradient
update law.
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Chapter 1

Introduction

1.1 Motivation and Previous Work

Through the careful use of conservation laws, constitutive relations and geometric

compatibility constraints, algebraic models can be derived which accurately capture

and predict future behavior of the observed system. Regularly, such models are

generic in the sense that they are applicable to a whole class of the systems simi-

lar to the one observed. What sets the particular observed system apart from the

rest of its family is the value of the certain constant quantities. These constant

quantities are called the system parameters. In modeling complex systems, it is of-

ten found that these parameters enter the system nonlinearly. Examples of such

nonlinearly parameterized systems are models for describing low-velocity friction [3],

magnetic bearings [2], chemical reactors [5], combustion models [7, 24], and various

Hammerstein-Uryson representations [6]. Complex nonlinearly parameterized mod-

els, like neural networks [20], can represent many systems for which only the input

and output quantities are available with no knowledge of the underlying physical

interactions.

The values of the physical system parameters are a very important characteristic

of the system. They often portray the state of the system, and provide invaluable

information for tasks such as fault detection and diagnosis. Many powerful techniques

for control of nonlinear systems exist [13, 12] if the values of the parameters are known.



In the case that the values of the parameters are unknown, there are available control

techniques if the system depends linearly on its parameters [19, 14, 15]. The control

strategy in this case is often coupled with a methodology for estimating the values

of the unknown parameters. The so-called "persistent excitation" requirements [19]

state under what conditions the values of the linear parameters can be obtained

precisely. In the case that the parameters enter the system nonlinearly, brute force

methods for control exist [27] if the bounds on the values of the parameters are known.

In the case that the nonlinear parameters are unknown, few analytical results

for obtaining their values are available. In [29] a strategy was proposed that uses

neural networks for estimating the values of the nonlinear parameters in dynamical

systems of interest. However, neural networks require that their internal nonlinear

parameters be determined for the task at hand. The presented strategy, like all

other neural network training methodologies, relies on the numerical calculation of

the neural network parameters . The approach used in [8] suffices for stabilization in

a limited class of nonlinear parameterizations, but is inadequate for tracking. In the

presence of general nonlinear parameterization a novel approach through a min-max

strategy for designing an adaptive controller was presented in [16]. However, this

approach does not address the issues of parameter convergence.

1.2 Contribution of the thesis

Arguably, due to the plethora of nonlinear functions which are encountered in different

systems, no single design scheme can attempt to solve the problem of precise param-

eter estimation for all nonlinear parameterizations. Rather, a case by case approach

seems more feasible. This thesis takes that approach as it examines two different cases

of nonlinear parameterization: the convex/concave and monotonic parameterization.

The thesis builds on the results found in [1, 16, 26]. These results pertain to the

problem of adaptively controlling nonlinear systems with convex/concave or general

nonlinear parameterization. In the first part of the thesis, parameter convergence con-

ditions of the proposed controllers for convex/concave parameterization are derived.



Unlike their linear counterparts, it is shown that these conditions impose requirements

not only on the outside input, but also on the type of convex/concave nonlinearity.

Parameter convergence results are displayed for nonlinearities that satisfy the de-

rived conditions. A type of nonlinearity which does not satisfy these conditions is

also presented.

In the second part of the thesis, monotonic parameterization is addressed. The

use of the local gradients in parameter estimation is investigated. It is shown how

for some type of systems, this method can lead to instability and divergence. For the

case of neural network models, a new methodology for examining system behavior is

introduced. The demand that a Lyapunov-like energy function be always nonincreas-

ing is relaxed. Rather, the asymptotic behavior of the system is examined. With this

approach, it is shown how local gradients can lead to global stability by examining a

low order system.

1.3 Notation

The thesis follows the notation used in many of the similar works on adaptive control.

The unknown parameters are denoted by 0. Depending on the number of unknown

parameters present in the system, 0 can be a scalar or a vector, in which case it will

consist of N components 0i, i = 1, ..., N. In the case 0 is a vector, it will represent

a point in a N-dimensional space with coordinate axes specified by unit vectors ii,

i = 1, ..., N. An estimate of 0 at a time instant t is denoted by 0(t). Accordingly,

the value of a function f(t, 0) is estimated as f(t, ), and the error between the

estimate and the actual value is denoted as f (t, 0(t)) = f - f. Assuming a given

constant 0, the function f is a function of two time-varying variables, 0(t) and 0(t).

Hence, 1f(t 1 , t2) represents f evaluated at the point €(tl) and 0(t 2 ). f(t 1 ) is used as

a shorthand form of f (tl, tl).



1.4 Organization of the thesis

The organization of the thesis is as follows. Chapter 2 summarizes the min-max

controller for convex/concave functions and derives conditions on the system input

and the present nonlinearity for guaranteeing parameter convergence. Chapter 3

discusses the possible instability which can occur with the gradient algorithm in

monotonically parameterized systems where the function output is not immediately

available for measurement. In Chapter 4 the applicability of the gradient algorithm

on certain classes of systems parameterized by sigmoidal nonlinearities is investigated.

A necessary and a sufficient condition for parameter convergence in a low order neural

network are given. Concluding remarks are offered in Chapter 5.



Chapter 2

Convex/Concave Parameterization

2.1 Introduction

Based on observation and physical laws, for many systems of interest the general form

of the function which can adequately represent observed behavior is known. However,

for a specific case, the known general function can depend on one or several constant

parameters, whose exact values cannot be determined precisely. The question then

arises how such classes of systems can be controlled to behave in a desired fashion,

and whether in doing so, it is possible to gain an accurate estimate of the values

of the underlying unknown parameters. The field of adaptive control and estimation

has addressed these issues. Currently, many powerful techniques have been developed

for the aforementioned problems (for example, see [19, 9]). In all of these results,

the common feature is a fundamental assumption that the unknown parameters in

the system occur linearly. Furthermore, this assumption is required to hold for both

linear and nonlinear systems (see [19, 27, 14]).

The requirement for linear parametrization constrains the applicability of adaptive

control, since many of the dynamical systems in nature exhibit such behavior which

can only be accurately captured and represented by nonlinearly parametrized models.

These nonlinear models can, perhaps, be converted to linearly parametrized ones by a



suitable transformation. However, deriving such a transformation can be a nontrivial

task, and may introduce further inaccuracies into the model. Hence, in order to

accurately model complex systems, nonlinear parametrization seems unavoidable.

This chapter examines a recently developed algorithm [1, 16, 26] for control of

a class of nonlinearly parametrized systems. The chapter is restricted only to the

discussion of systems where the parameterization is convex or concave, and a single

unknown parameter is present. An outline of the algorithm is given and proof of global

stability summarized in section 2.2.2 The proof establishes the global convergence

of the tracking error. Since the convergence of the tracking error does not imply

the convergence of the parameter error, a separate analysis of the behavior of the

algorithm with respect to the parameter error is warranted. The main results of the

chapter are presented in sections 2.3 and sec 2.4. The former carries out a phase

plane analysis of the min-max algorithm, while the latter one states the necessary

conditions for accurate parameter estimation, similar to the persistent excitation

conditions for linearly parameterized systems. Finally, the discussion and obtained

results are illustrated by several numerical simulations in section 2.5.

2.2 The min-max adaptive algorithm

2.2.1 Properties of convex/concave functions

Many of the methods in adaptive control have their roots in the area of functional

minimization. Namely, the adaptive control task of obtaining the correct parameter

values can be viewed as a problem of finding the minimum of a certain cost function.

The cost function is defined in terms of the difference of the observed system behavior

and the behavior predicted from the current estimates of the unknown parameters.

Therefore, the cost function is dependent upon the parameter estimates, and the

process of its minimization is a search for such values of the parameter estimates

which best fit the observed behavior. If the system is linearly parametrized, then

the cost function is quadratic in the parameter error, and hence one is guaranteed



of reaching the global minimum by calculating the gradient of the cost function with

respect to the parameter error at our current parameter estimate, and then moving in

the negative direction of the gradient. If the system is nonlinearly parametrized, the

cost function no longer is quadratic in the parameters, and hence it is questionable

whether the use of the local gradient will result in parameter convergence and overall

closed-loop stability of the system and the adaptive controller. In this section, a

summary of the recently developed min-max adaptive strategy is presented. Only the

case of convex/concave nonlinear scalar parametrization is given here. The restriction

to the scalar case is made for the sake of simplicity in analyzing the behavior of the

parameter error of the min-max adaptive controller. For the controller in the case of

a general nonlinearity see [16].

The min-max algorithm has two distinctive properties. Realizing that the pa-

rameter update along the local gradient can no longer guarantee global stability in

nonlinear systems, the algorithm introduces a sensitivity function for determining

parameter updates. This sensitivity function is equal to the local gradient only at

certain instances. The second distinct feature of the algorithm is the use of a tuning

function in the adaptive control input. These two functions are computed on-line by

the algorithm based on available system measurements and a-priori knowledge of the

convexity or concavity of the system parametrization. The algorithm ensures overall

global stabilization and tracking to within a desired precision e.

Since convexity/concavity properties of a function play an important role in the

min-max adaptive controller, they are stated in the following definition.

Definition 2.1 Given a set e, a function f(O) is (i) convex on E if it satisfies the

inequality

f(A0 1 + (1 - A)02) _ Af(0 1)+ (1 - A)f(0 2 ) V 1 , 82 E 0 (2.1)

and (ii) concave on 0 if it satisfies the inequality

f(AO1 + (1 - A)02) 1 Af(0 1)+ (I - A)f(02) V 1, 82 E 0 (2.2)



where 0 < A < 1.

Convex/concave functions have specific geometric properties, which can be easily

derived from the above definitions. Letting 03 = A01 + (1 - A)02 = 02 - A(02 -

01), it follows that 03 E [01, 02], since 0 < A < 1. Thus, the left hand side of the

above inequalities represents the value of the function f(0) at some point 03 on the

interval bounded by 01 and 02. In the same manner, the right hand side of the above

inequalities can be rewritten as f (02) - A(f(0 2) - f(0)). Clearly, this represents the

value of a linear function g(0) defined by points (01, f(01)) and (02, f(02)) at at 0 = 03.

Thus, a function f is convex on a bounded set if on the set it lies below the line which

connects the value of the function at the set end-points. Conversely, a function f is

convex if it lies above the line connecting its values at the set end-points.

Another important property of these functions is their relation with respect to the

gradient. When f (0) is convex on E, then it can be shown that

f(0) - f(Oo) > Vfoo (0 - o) VO, 0o e E (2.3)

and when f(0) is concave on 6, then

f(0) - f(Oo) < Vfoo(O - 0o) VO, 0o E E (2.4)

where V foo = 0 Io.-

Before the min-max controller is stated, the following definition and lemma are

required

Definition 2.2 The saturation function, sat(.), is defined as

1 yl

sat(y) = jy ly < 1

-1 y < -1



Lemma 2.1 Let E be a compact set specified by O = [,-]. For a given 0 E O, let

J(w, 9) = p [f (, ) - f (, 0) - w( - 0)] (2.5)

ao = min max J(w, ) (2.6)
wEIR O8EO

Wo = arg min max J(w, ) (2.7)
wEIR 0EO

where 3 and 0 are known quantities independent of 0, and f is either convex or

concave in 0. Then

Oif Of is convex on E

ao = 1 (2.8)

P m- fm9n o if f is concave on Ef -min - - (0-) o
V fW if /Of is convex on E

= (2.9)
S= fm - fm  if f is concave on E

-0

where f= f (, 0), fma = f (, 0), and fmin = f (, 0).

Proof : See [1]. U

Based on Definition 2.1 and eq. (2.6), the range of possible values of ao is examined.

In particular, the possible values of ao in the case when the product 3f is a concave

function is investigated, since in the converse case of convex 3f a0o is set to zero.

First, the possible combinations of properties of P and f which give a concave /3f

are noted. They are: (a) positive P and concave f and (b) negative / and convex

f. Second, the expression in parenthesis is rewritten as: f - [fmin - A(fmin - fmax)],
9-0

with A = 1 - . Since e [0, ], then 0 < A < 1. In case (a) f is concave, and it
0-0

follows from Definition 2.1 that the expression in the parenthesis is positive. In this

case / is positive, and thus ao is positive as well. In case (b) because f is convex, the

expression in the parenthesis is negative. Since in this case /3 is also negative, ao again



obtains a positive value. Thus it can be concluded that, whether f is convex/concave,

ao > 0 V P. (2.10)

Another crucial relationship between the values of f, ao and wo is stated in the

following lemma.

Lemma 2.2 Let a, e be arbitrary positive quantities, and let amax > a. For a

given 0 E E, and all 0 E E, let ao and wo be chosen as in eqs. (2.6)- (2.7) with

/ = amaxsign(x). The following is then true, whether f is concave or convex:

Ice - f - (O_ - O)wo - aosat - I< 0 Vz ,E (2.11)

Proof: From eq. 2.10 we have that ao > 0. Then, from eq. (2.6) and from the choice

of 0, it follows that

ao > amaxsign(x) [f- f - wo( - 0)] asign(x) [- f - wo(- 0)] (2.12)

Therefore, for x > e, by multiplying both sides of eq. 2.12 by sat (") = sign(x) = 1

it follows that

aosat f - f - wo( - )] (2.13)

and hence eq. (2.11) holds. For x < -E, sat () = sign(x) = -1. Thus, in this case

aosato(x) a[f- f-wo - 0)] (2.14)

and hence, again, eq. (2.11) holds.

2.2.2 The min-max globally stable estimator

Having defined in the previous section the necessary mathematical preliminaries, this

section gives a summary of the recently developed min-max estimator strategy (see



[1, 25]). The min-max estimator is developed for the following class of dynamical

system models:

(2.15)

where y is the measurable system output, 0 E IR is an unknown parameter, € is a

scalar function of time and f is a scalar function that is nonlinear both in ¢ and 0.

Further developments are based on the following assumptions about the above

system:

(Al) 0 E E, where e = [0, 9] is a known compact set defined by its lower (0) and

upper (0) bounds.

(A2) 0(t) is a measurable and bounded function of time.

(A3) For any 0(t), only one of the following is true

(i) f is concave for all 8 e O

(ii) f is convex for all 9 C O

(A5) f is a known smooth and bounded function of its arguments.

The goal of the estimator is to closely track the output of the system and, in doing

so, provide estimates of the value of the unknown parameter 8. To accomplish that

task, the following estimator has been proposed:

y -ke, + f (, ) -asat(

= -ew

a min max sign(ec) [f((t), ) - f ((t), 9) - w(9- 0)]
WER 0EO

w = arg min max sign(ec) [f(1)) -f((t), 0) -w(- 8)]
wER 0es

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

y= f ((t), 0)



where ec is the tracking error defined as ec = - y, E is an arbitrary positive constant

and 9 represents an estimate of 0. The stability feature of this estimator is stated in

the following theorem.

Theorem 2.1 For the system in eq. (2.15), under the assumptions (Al)- (A4), the

estimator given in eqs. (2.16)- (2.19), assures that all signals in the closed-loop system

are globally bounded and that lec(t) I -+ e as t -+ co, provided that O(t) E E for t > to.

Proof:By subtracting eq. (2.15) from eq. (2.16), the following closed-loop dynamics

are obtained:

= -ke, + f( - f (, 0) - asat () (2.21)

0 = -ew (2.22)

where 0 = 9- 0. Adding and subtracting the term Ow to the right- hand side of

eq. (2.21) yields the overall adaptive system dynamics as:

ec = -ke, + Ow+ [f(0, 0) - f (, 0) - asat () - w] (2.23)

0 = -ew (2.24)

This structure is reminiscent of the structure of linear adaptive systems, with the

only difference being the presence of [f(, ) - f(, 0)- asat () - w] nonlinear

term in eq. (2.23). If this term was absent, the resulting system would be identical

to a linear adaptive system with an adaptation deadzone, for which stability and

convergence results are well established. Thus, it must be shown that the extra term

does not have a destabilizing effect on the whole system. In particular, since the

nonlinear term appears only in the first equation of the system, its influence on the

dynamics of ec needs to be examined. This is done by noting the choice of a and w

and applying Lemma 2.2 to obtain that

ec [f (0 ) - f (¢, 0) - asat () - w < 0.([ E



Thus, the nonlinear term has a stabilizing effect on ec, and hence the overall adaptive

system is stable. This conclusion can be further verified by choosing a Lyapunov

function as V = (e + 2). In a straightforward manner it can be confirmed that

the time derivative of V along the system trajectories is indeed nonpositive, indicating

system stability. This implies that all of the system signals are bounded, and hence

Barbalat's Lemma can be invoked to show that le. --+ E as t - 00. *

The stability of the proposed estimator is based on the assumption that both 0

and 9(t) are in the set E during the course of estimation. In order to ensure that

9(t) E O for all t > to, 9(to) can be chosen to be in (, and the update of 0 can

be turned off whenever it leaves E. Alternatively, the following projection strategy

suggested in [4] can be coupled with the presented parameter estimation laws:

oo = -e-w-(OC-0) >O

-- 0 O > 0 (2.25)

0 OC <0.

By replacing eq. (2.17) with eq. (2.25) global boundedness is ensured if "(to) E E.

2.3 Phase-plane analysis

In the previous section, the stability and convergence of the tracking error was estab-

lished. In the linear scalar parameter case, this was sufficient to establish the conver-

gence of the parameter error as well. Based on demonstrated similarities between the

linear adaptive estimator and the min-max estimator, initially it can be hypothesized

that the same sufficiency holds for the min-max case with nonlinear parametrization.

This section examines the validity of such a hypothesis by examining the behavior of

the min-max estimator in the phase plane.



For the sake of simplicity, the following dynamical system is considered:

y = e-(t)o (2.26)

Without loss of generality, we assume that the set E = [0, 0], 0 E E, is a subset

of the positive real axis.

Definition 2.1 states that the function f (q(t), 0) = e- €(t)O is a convex function in

0 for all 0(t). This implies that the required structure of the min-max estimator is as

follows:

= -ke + f( , )-asat( c

- -eEw

0

- [- fmn - s( - )]

w = {W-u(t)e-u(t)O
WS

where w, is the global slope defined by

f max - fmin
ws - -0

From eqs. (2.26)- (2.30), the closed-loop model and estimator error dynamics are

derived as:

ec = -ke, + f

0 =-e. (-O(t)e(t)(
ec > 0

0> e, > -E

(2.32)

(2.33)=0[fmn+ws(-)-

0

(2.27)

(2.28)

(2.29)ec <O0
ec < 0

ec > 0

ec < 0
(2.30)

(2.31)

a =



C = -ke, + fmin + s(O- ) - f
ec < -e (2.34)

0 = -ew,

Before proceeding to analyze the behavior of the above closed loop system in the

phase plane defined by the states ec and 0, another characteristic of the nonlinearity

f = e- (t)9 is observed. As stated above, f retains its convexity with respect to 0 for

all values of q. However, the sign of q determines another important property of f.

In the case that 4 is positive, f is a decreasing convex function with respect to 0 E E.

In the case that / is negative, f is an increasing convex function. This characteristic

is important in the system analysis, since it correlates the sign of f = f - f and the

sign of 0. In the case of an increasing function, the signs of the two terms are the

same. In the case of a decreasing function, the signs are reversed. For that reason,

the system analysis is partitioned into two separate cases depending on the sign of ¢.

The first case to be considered is the case when 0(t) > 0.

The behavior of the system in eqs. (2.32)- (2.34), is now examined in three distinct

regions of the phase-plane (er, 0) where different type of system motion can occur.

These regions are defined as: (a) e, > e, (b) ecI < E, and (c) lec| < -E. The reason

for choosing these three regions is that the first and the last differ in the way of

calculating a, while in the second region differs from the other two because leI < E

implies that e, = 0. For the choice of f as in eq. (2.26), the following observations

and definitions about the system motion are noted:

case (a) e, > c

(a-i) The gradient is negative, and thus w < 0. Since e, is positive, in this case

O> 0.

(a-ii) Let O1 = 1- log (kee + 1), and let the curve L 1 be the set

LI = { (e, 9) I ec E, 0 = 06(ec) }. (2.35)

From the choice of f and definition of e, in eq. (2.32), it follows that for

any point above the curve L 1, e,< 0. Conversely, ,c> 0 for any point below



the curve, with the equal sign applying to the points on the curve.

case (b) ec < -E

(b-i) The global slope w, and ec are negative, implying that 0< 0.

1 k
(b-ii) Let ' = (f - fm in) + 0- 0, and define 02 = -e + 0'. Let the curve

L 2 be the set

L 2 =(e, ) I ec -, = 2(ec)}. (2.36)

It then follows that for any point above the curve L 2, ec< 0. Conversely,

6'c> 0 for any point below the curve, with the equal sign applying to the

points on the curve.

case (c) |ej < E

(c-i) e, = 0 and thus 0= 0. Hence, all system equilibrium points must lie in the

set leci < E.

(c-ii) Let

L3 = {(e,, 6) 10 ec < c, 0 = 0)}. (2.37)

On this set, 0 = 0 implies f = 0. Thus, it can be concluded that the L3

represents a set of equilibrium points.

(c-iii) Let e 3 = - - . From eq. (2.33), it follows that
Imin + Ws(0 + 0 - 0) - f

e'= 0 when ec = ec3 . For given values of u(t) and 0, eC3 is a function of

0. Hence, in order to find the set of possible equilibrium points, the range

of values of 0 for which -E < ec3 (9) < 0 must be calculated. From the

definition of ec3, it follows that

e ) 0 -1< 0. (2.38)
fmin + ws(0+ 0 - ) -

Since the quantity fmi, + ws (9 + 0 - 0) - f is positive due to convexity of

f, the inequality in eq. (2.38) can be rewritten as:

f - fmin - ws(0 + 0 - 0) < f < 0. (2.39)
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Figure 2-1 Phase-plane adaptive system motion for the case when > 0. The arrows

represent the direction of the velocity vector, and the thick line is used to represent

sets L a-L4, respectively.

It can be verified that this inequality holds when 0 < < . Hence theset L4

is a set of equilibrium points as well.BasFigure 2-1: Phase-plane adaptinve system modefinitions, for the moticase when of> . The arrowssystem in thereprease-plant the direction grapof the velocity vector, and the thick line is used to represent(2-1).The stabiity result of Theorem 2.1 establishes that thise system inequality holds when '. Hence the32)-

(2.34) tends toward the adaptation dead-zone defined by ecl < E. From Fig. 2-1

and above calculations it is observed that the set of equilibrium points Le in the

dead-zone consists of the sets L3 and L 4 , that is Le = L3 U L 4. On the set L 3, 0 is

zero, and thus the parameter estimate 0 converges to the true value of the unknown

parameter 0. However, on the set L4 , 9 : 0. This is due to a couple of factors. First,

once the system enters the dead-zone, the adjustment of 0 is turned off. Therefore,



ec= 0 suffices for the adaptive system to have an equilibrium point in the dead-zone

even if 9 is different from zero. Second, it is noted that eq. (2.33) represents a first

order filter on the quantity f. From classic linear systems theory, it is known that

first-order systems attain equilibrium values for non-zero inputs. Hence, for a range

of values of f different from zero the system will settle to an equilibrium point. The

maximum value of I61 for which the system will achieve an equilibrium is '.

The case when 0(t) < 0 is now considered. The only difference between this and

the prior case is that the sign of the gradient is changed. The change of the gradient

sign implies the reversal of the sign of 0. The change in the gradient further implies

the change in the relation between the sign of f and 9. Practically, this has the same

effect as changing the orientation of the 9-axis in Fig. 2-1, as can be evidenced from

Fig. 2-1 which depicts the phase-plane behavior of the system in this case. Curves

which correspond to the sets L 1, L 2, L 3 , and L4 of the previous case are denoted

by M1 , M2, M3 , and M4 , respectively. Similarily, the equilibrium set Me consists of

Me = M 3 U M4 .

By comparing Figs. (2-1) and (2-2), it can be observed that L 3 = M 3. More

importantly, the equilibrium set E, when u switches between positive and negative

values consists of the intersection of equilibrium sets for the two general cases, re-

spectively:

E = Len Me = (L3 U L 4) n(M 3 U M4) = L3 U M3 = L3 .

On the set L 3, 0 = 0, and thus parameter convergence can be obtained if u switches

between positive and negative values. The requirements on the nonlinearity f and

on the values of u which ensure parameter convergence is achieved are further inves-

tigated in the following section.



Figure 2-2: Phase-plane adaptive system motion for the case when ¢ < 0. The arrows
represent the direction of the velocity vector, and the thick line is used to represent
sets L 1-L 4, respectively.

2.4 Parameter Convergence

The stability of the proposed adaptive algorithm was established in Section 2.2.2. As

is known from linear adaptive control, stability and tracking do not necessarily imply

the convergence of unknown parameters to their true values. This section investi-

gates the problem of parameter convergence for the min-max adaptive algorithm. A

sufficient condition for ensuring parameter convergence is derived.

2.4.1 Preliminaries

For the sake of clarity, we restate the adaptive system dynamics below:

S-kee - asat + f (241)

0 = eEw



where f = f ((t), )-f ( (t), 0), and the quantities e, a, w were defined in eqs. (2.18)-

(2.20). By inspecting the above system, it follows that all its equilibrium points are

contained within the region where e, = 0. In this region, IecjI e. The system

dynamics in this region are:

6c = -a -+ (2.42)

0= 0

When a = 0, the only equilibrium set is reduced to the case when f = 0, implying

satisfactory parameter convergence. In the case when a :A 0, eq. (2.42) implies the

existence of equilibrium points where f : 0, so that parameter convergence is not

achieved. From eq. (2.18) and Lemma 2.1 a = 0 when the function P f = sign(ec) f

is concave. For a given function f, let p* denote the value of sign(ec) when a 0 0.

Thus, the allowed values for /* are (i) 0* = -1 if f is convex, and (ii) P* = 1 when

f is concave. The solutions of the differential equation in eq. (2.42) are such that e,

will always tend towards ec,,,, where e,,, is given by:

ec,, = - (2.43)
a

Eq. (2.42) is only valid while both sign(ec) = 0* and lecI < E hold. The first condition

implies that 0* sign(ec) > 0. It has been established that a > 0 , and since E > 0, the

first condition translates into:

P* f> 0 (2.44)

Meanwhile, the second condition is satisfied if Ifli/al _ 1. Using eq. (2.44) it is

obtained that

1> - (2.45)
lal a a



The two conditions can be combined as:

0 < * f a (2.46)

Hence, as long as eq. (2.46) holds, the system has an equilibrium point for which

f #0.

To assist with further study of parameter convergence, several new concepts and

definitions are introduced. In standard adaptive control literature (see [19]), the

concept of attractiveness of a single point, usually the origin, is defined. The same

idea of attractiveness, when applied to a set which contains at least one point leads

to the inauguration of the concept of uniform attractiveness. That concept is stated

in the following definition.

Definition 2.3 A set Bp(x) = {x I jxl| < p} is uniformly attractive (u.a.t.t.) if for

some e1 > 0 and every E2 > p there exists a T(61, 62) > 0 such that if IIx(to)ll < f1,

then IIx(t; o, to)II < 2 for all t > to + T.

Several other quantities are now specified. When referring to a time interval, it

is understood that the time interval in question is contiguous. That is, let T be a

time interval specified by lower and upper bounds, tmin and tmax, respectively. The

notation T = [tmin, tmax] will be used for representing this. The length of an interval

is given by tmax - tmin. If for a specific t, tmin < t < tm,, is true, then t E T.

Similarily, an unbounded interval is one which has a lower bound only. For example,

let Tu be an unbounded interval specified by the lower bound tmin. Then all t such

that t _ tmin are elements of T,.

For the motion of the system in Eq. (2.41), define the set -D as the set of all time

such that:

QD = {t I Ilecll E (2.47)

Thus, QD represents the time that the systems spends in the "dead-zone" in which

the parameter update signal is turned off. The set QD can be empty, or can consist

of several distinct intervals. Hence, QD can be expressed as D = Ui TD where



TDi = [tDi,tD is a sequence of intervals, with TD, = TD, if i 4 j. Each of the

intervals TDo, is such that (a) if tDi < t < toD then Ilec(t)l < c and (b) Ilec(t)I = E at

t = tDi, tDi.

The set QD can consist of two subsets QL and QRD defined as:

QL  = { t I lei E and sign(ec) f(t) is concave} (2.48)

R = { t I ej < and sign(ec) f(t) is convex } (2.49)

In an attempt to justify the notation in the previous equations, it is noted that for

the case of a convex f, if t E QL then ec < 0, indicating that the system is in the

left half of the phase plane. Likewise, if t c QD then the system is in the right hand

plane.

Similarily, each TD, can consist of two subsets TLi and TR:

TD =TDi L ; T =TDin Q R  (2.50)

Next, let the set Qp represent the time for which the system is outside the dead-

zone. Thus, Qp = MCD. In an analogous manner to TD,, the intervals Tp can be

defined as: Tpi = (tpi, ip) where Ilec(t)I] > e Vt E Tp'. Hence, p = Ui Tp.

Two properties of the function f (q(t), 0) that are useful in establishing parameter

convergence are now defined. In stating these properties it is useful to note that for a

specific function f (0, 0), 0* as defined above is a function of the values of q, since there

exist functions which can switch between convexity and concavity in 0 depending on

the value of ¢. Therefore, for two distinct 1 -# 0 2 let the corresponding P* be denoted

by 0* and 0*, respectively. Forthwith, the properties can be stated.

(P1) The set of values of 0 for which, given Ee > 0, there doesn't exist an EF

such that if 1Ill > co then II|f((t), )II > EF is finite. The set of all possible values of

¢ E IR is infinite.

(P2) A function f(¢(t), 0) satisfies the property (Pl) if, for a given €1 E IR, any



01 E E and all 02 E E, 02 : 01, such that

0 3ip (f(' 1 , 02) - f( 1, 01))

there exists 02 5 q1 and EF > 0 such that

3 (f(, 92) - f(1l, 01)) < -_ F

Property (P1) is an identifiability property which states that f and q must be

such that a difference in 0 arguments of f must produce an observable difference in

the function values. If (P1) is not satisfied, then the unknown parameter cannot be

identified since other parameter values provide the same function output. Specifically,

(P1) states that the number of possible values of 0 when the parameter is unidenti-

fiable is small compared to all the possible values of 0. In many practical functions

of interest, the set referred to by (P1) contains only one element. The property (P1)

is a fundamental property, and it can be seen that property (P2) implicitly implies

that (P1) is satisfied.

Property (P2) states the conditions on f so that an 0(t) can be chosen which will

enable the system to exit from the adaptation deadzone. Since the system will stay

in the deadzone as long as eq. (2.46) holds. Examining that inequality, it can be

stipulated that the only degree of freedom is to attempt to change the quantity /* f,

since a is an inherent feature of the min-max algorithm and the present nonlinearity.

There are four possible courses of action to take in order to change the value of 3* f.

Using the notation of (P2), and letting f(4) = f (0, 02) - f(, 081), the four options

are to choose 02 such that

(C1) the sign of f is reversed, while preserving the convexity/concavity of f. Thus,

sign (J(0 2)) : sign (f(01)) and /3 = *.



(C2) the convexity/concavity is reversed, while preserving the sign of f.

sign (( 2 )) = sign f(0 1)) and # - P3.

(C3) both convexity/concavity and the sign of f are retained, and f is increased.

sign (f (0 2 ) = sign (f(0 1)) and 13 = 3;.

(C4) both convexity/concavity and the sign of f are reversed.

sign (f(0 2 )) : sign (f(01)) and 13; 4 $ .

From the aspect of the problem of parameter convergence, the worthwhile choices

are only (Cl) and (C2). It is these two choices that are allowed when the property

(P2) is satisfied. Since, by assumption, f and 0(t) are bounded, there is a limit as

to how much f can be increased. By the mean value theorem (see [23]), it can be

written that f = B(0 2 - 81), where B is the value of gradient of f with respect to

0 at some point between 02 and 01. Since B is bounded, there is a lower limit on

02 -81 which will produce an f such that eq. (2.46) holds. The existence of this lower

limit is undesirable in establishing parameter convergence. It is easy to verify that

choice (C4) reduces to (C3), and thus is also undesirable. Whether a given function f

satisfies (P2) can be determined by an analytical examination of the specific function.

For LP-systems, since f is linear in 0, (P1) is satisfied by changing the sign of 4.

2.4.2 A Condition for Parameter Convergence

Before stating the sufficient conditions for parameter convergence, the following no-

tation is introduced. Let

f(x, y) = f ((), 0(y) - f (0(x), 0(y)).



Let f(x) be a short form of representing f(x, x). Let

dc(t, 01) = f (q(t), ) + ws (01 -6) - f (O(t), 01),

where w, is the global slope defined in eq. (2.31).

The sufficient conditions for parameter convergence are stated in the following

theorem.

Theorem 2.2 Let E, co and to > 0 be given, and let f, 0(t), t > to satisfy properties

(P1) and (P2). For the system in Eq. (2.41), the set Bp(x), p = C2 + , is uniformly

attractive if there exists a 60 and q, 5o, 7 > 0 such that

_>j f(7, t) dT > 7 and j d(T, 9) + w r(7) (t) dT > 77 (2.51)

Proof: The proof consists of two parts. In the first part, it will be shown that the

amount of time that the systems spends in the deadzone introduced by the adaptive

algorithm is finite if the parameter error is large. Having shown this, the proof then

follows a the proof of a similar theorem for linear systems given in [18, 17, 19].

The first part of the proof states that in the deadzone, the system will have a large

velocity in the e, direction in the phase plane, provided that the parameter estimate

is far away from the true value. This implies that the system will exit the deadzone

in finite time with a large velocity. Since the system exited the deadzone with a large

velocity, Ilell must be large if the system is to turn around and head back towards

the deadzone. The magnitude of decrease of the Lyapunov function, and thus the

decrease in the magnitude of the state vector, is directly proportional to Ilee l. Hence,

the Lyapunov function will decrease by a finite amount when the system is not n

the deadzone, thus establishing uatt of a given ball around the phase-plane origin is

shown.

Let x denote the state vector, x = [e, 6]T. Without loss of generality, it is

assumed that II (to)ll > p. For if IIx(to)ll 5 p, Theorem 2.1 implies that that IIx(t)ll <

p V t > to, and hence Theorem 2.2 follows.
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A Lyapunov function for the system in eq. (2.41) is chosen as V = (e2 + 2).

Then, V along the system trajectories is

-= -ke +e,[f + w - a sat ec <-ke (2.52)

It will be established that over every interval [t, t + To], V(t) decreases by a nonzero

value. Since 1 (t) = 0 Vt E QD, the behavior of the trajectories in QD (Q i and QR )

is examined. For t E QD, the system dynamics are given by eq. (2.43). It is noted

that for t E QD the assumption IIx(to)lI > p implies that 11011 > Ec, since Ilec(t)ll < E.

By the property (P1) it further implies that If 11> F.

First, the motion of the system on an interval TDR is examined. Suppose that

there exists an TD~ which is unbounded. By definition of TD, this implies that 0 on

TDR is such that convexity/concavity of f is not changed. This further implies that

for all t 1, t 2 E TR, max(le (ti) - ec(t 2) ) = e. The system dynamics on any TDR are

given by:

C = f

0 = 0. (2.53)

Since f and q are assumed to be continuous, by integrating the above equation,

starting with any to E TDR, it is obtained that lec(t) - e (to)l > Ef (t - to). Hence,

there exists a t* > to + /epF such that lec(t*) - e,(to)l > c. Thus, the system exists

T R after an interval of length A tL = t* - to, and hence the assumption that TR is

unbounded does not hold. Since TD was arbitrary, all TDR are bounded intervals.

Now suppose that there exists an interval TDL which is unbounded. Suppose,

further, that, while in TD , eq. (2.46) does not hold. Since q is bounded, there exists

amax such that a < amax on TLA. Then, starting at to and integrating eq. (2.42), it

can be obtained that 3tL,

amaxtL > to + - log 1 +amax 
E F



such that lec(t*) - ec(to)| > E. Thus, the assumption that T , is unbounded is

contradicted if eq. (2.46) does not hold over a finite interval A t = t* - to. Now,

suppose that eq. (2.46) does hold over an interval of length of at least A tL. Then,

property (P2) is invoked to obtain that there exists values of 0 which will make

eq. (2.46) not hold over an interval of length A tL. Then, once again, it is obtained

that the interval T L, is finite. Since TAL was arbitrary, all TLi can be made bounded

by the appropriate choice of ¢.

Therefore, if q is

(i) continuous,

(ii) preserves concavity/convexity off for an interval of length at least Ac = AL +

AR, and

(iii) periodically is changed as to satisfy property (P2)

then each interval To, is bounded. Thus, the system will spend only a finite amount

of time to cross the dead-zone.

Having shown that the time intervals over which V does not decrease are bounded,

it will be demonstrated that outside these time intervals V decreases by a finite

amount. It will be shown that V decreases over each interval Tp,. This part of

the proof follows the same steps as its the linear case counterpart, which is given in

[18, 17, 19].

Since all the system signals are bounded, there must exist a 6o such that the

interval [t, t + 60] E Tpi. Suppose that e, always stays small in Tp,, that is 3c,

O < c < 1 such that Ile,(t)1 < cI|x(t)|1 Vt E [t,t + 60]. This implies that |0|(t)| >

(1 - c) Ix(t)|| Vt E [t, t + 6o].

From the system dynamics, it follows:

ft+Jo||e(t+6o)| = e,(t) + ] -ke,(T) + f( ) + a(T) dT11

SI +T Ie t+k> -f°(-) + a(T) dT|| - IeI(t) + k e(T) d11



>f l f'(r) + a(r) drTI - leE(at)I - k I e,(r) drI (2.54)

Since the time intervals in Qp on which sign(e,)f changes from concave to convex,

or vice versa, are separated by an interval in fD, two separate cases for the values of

a(r) can be considered:

(aO) a(T) = 0 Vr E Tpi

(al) a(r) = d (T, 0(r)) VT E Tp,.

It will be assumed that 7 represents any time instant on the interval [t, t + 6o], and that

0 represents any element on the set O = [0, 0]. First, consider case (aO). Calculate

I+J fo(T) dTr I II ( f(, t) dT - ] f(T, t) - f(7, 7) drT

Slith j fr(T, t)d dr - f(, T) - f(, 7) dxre (2.55)

The second integral on the right hand side of eq. (2.55) can be expressed as:

I t+60 (, t) -

+f(7, 1-
t

f(7, T) drTI

f (T, ) drII

t+jo< + If (7, t) - f (7, 7) 11 dr

< _ - IIM(T) (6(t) - 0(7)) 11 dr

< 60 Mm sup II(t) - ()II+

< JoMm- 110(r) II d

< MmMo llwe, Il dr

_ 6MmMosup IIeE()II
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S c 6MmMoXll (tj . (2.56)

where Mo = max Vof(T) is the maximum gradient with respect to 0 of the curve
7,O

f(0, 0), and Mm = maxM(T), with M(T) such that

(rT, t) - f(T, T) = M(T) (0(t) - 0(r)).



The quantity M(r) is well defined, since f is continuous, and 0(t) = 0(T) implies that

(T7, t) = f(7, 7). Since f is bounded because all the system signals are bounded, M0

and Mm exist.

On the other hand, from eq. (2.51),

t+io
j(7, t) dr|| > > |IIx(t)7 I l

Il (W> I
(2.57)

since 110(-)11 IIx(-r)ll.

Substituting eqs. (2.57), (2.56) into eq. (2.55), and observing that 1I0j11 IIx(to), it

follows

11+ f (T) dT1 (2.58)7 Il (t)I - c 6MmMollz(t)l .IIx(t)ll

In case (al) 1(7) + a(7) = d,(T, 9) + Ws(r)O(T). Thus,

i +f (0 ) + a(+d oa(r) d-r|| = 11 d,(T, 9) + w,(T)0(t) - w, () ( (t) - 0(T)) dTlI

By using eq. (2.51), and noting that w, = Vofl , E O, following a similar procedure

to the one for case (aO) yields:

IIft-+ °
f(T) dT11 > x(t)( II() - cj5 M0 |x(t)l .

Il (W> I

Letting K = max(Mo, Mm), both cases (aO) and (al) can be compactly expressed as

1t+6o f(7) dr| IIx (t)II - j 6 K21Z(t)I .
Il (W> 

0

Substituting eq. (2.59) into eq. (2.54)

Ie, (t + 6o)11 > 1(t) I - c6 K2 I(t) II . - cx(t)I - k6ocllx(t)IIIIx(t)II

(2.59)

(2.60)



Since II6(t)ll V1 - cllx(t)j,

I (t + 60) - c ( 6K2K x(t) . + 1 + k6o)} Ix(t)
I o 11 Ix

(2.61)

Let band b2 = K 26 + ko + 1.Let bl- 1 I an t= ,

If c2  b then
bl 2 + (b2 + 1)2

(2.62)

since II (t)II II (t+ 6o)11. Hence, the assumption that ec stays small is contradicted.

Eq. (2.62) implies that there exists an interval t E [ti, t1 + T] such that

0(t)2 < (1 - c2)IIx(tl)112 < V(tl)(1 - c2)

Calculating the change of V over the interval [tl, tl + T]:

V(tl) - V(tj + 60) > k ee(-r)2 dT
11

For any t > tl we have

5 iee(t) - eE(tl)I

f ttI - ke() + f () + a(T) dT11

k ix(ti)||(t - t) + f jIB(T)0(r ) drI +
1j

Ila(r) d-1p.67)

where, by the mean value theorem, f(r) = B(-r)O(T). By the definition |B(r)II Mo

VT E [tl, t]. Let Am = max a(r) - . Thus,rE[ti,t] IIx(ti)l

Ile,(tl)ll - le,(t)lI : (k + Meo + Am)llx(t)ll(t - tl)

(2.63)

(2.64)

(2.65)

(2.66)

Ie6(t+ Jo)11 cllx(t)ll : c||x(t+ 6o)11

||e,(t)jl - I|e,(t)||



For some t 2 = tl + C1, Cl1 > 0

Ile,(t2) ll le (tl)|I - cl(k + Mo)llx(tj)jj

OV(t,) (1 - c2) - cl(k + Mo + Am) Ov(t)

[V - cl (k + MO + Am)] v(t)
d V(t)

where d = 1 -c 2 - cl(k + M + Am).

Hence,

+Te(T) d > cl V(t1 ) d2.
tL'

Thus

V(tl + T) _ (1 - cid2)V(tl),

which establishes the theorem.

The persistent excitation conditions for the min-max algorithm in eq. (2.51) are

similar the one for linearly parameterized systems. Since this discussion treats only

the case of a single unknown parameter, this condition can be satisfied if 0(t) is a

piecewise constant, or slowly varying signal.

2.5 Numerical examples

This section presents two numerical examples which highlight the discussed issues of

parameter convergence with the min-max algorithm. Three examples are presented

which emphasize the crucial role the property (P2) plays in establishing parameter

convergence. The first example numerically demonstrates the behavior of the system

discussed in Section 2.3. The second example shows another type of parametric

nonlinearity which satisfies (P2). In the third example, the function is such that

(2.68)

(2.69)

(2.70)

(2.71)



property (P2) cannot be satisfied. Thus, min-max algorithm is capable of tracking

the system output, but it cannot be guaranteed apriori that the value of the unknown

parameter will be estimated precisely.

2.5.1 Example A

The system in this example has the same parametric nonlinearity as the one discussed

in Section (2.3). The function f used in Section 2.3 is

= -A y + f ( , 0) = -A y + e- 0  (2.72)

It is assumed that the set E = [0, #] is known, and that 0 < 0 _ 9. From

eqs. (2.16)- (2.20), the min-max estimator is constructed as:

S= -esw

( 0, eeO

0-e ,  eec 0

f m ax -f mi

fmax - min <0

e = ec-csat( )

If and only if € = 0, f = 0 for all values of 9. Hence, the property (P1) is satisfied.

The function f is such that it is convex in 0 for all values of 0. However, it can be

noticed that f is monotonically decreasing when ¢(t) > 0, and that f is monotonically

increasing when 0(t) < 0. Hence, any given sign of f = f(0, 0) - f(, 0) can be

reversed by letting O(t) sequentially take on positive and negative values. Therefore,
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Figure 2-3: Simulation results for example A.

Top panel: Tracking and parameter error. Solid line represents the parameter error,
0, while the tracking error, ec, is given by the dashed line.
Middle panel: Input. The value of q used in the simulation run.1-
Bottom panel: Lyapunov function V = (e +2).

property (P2) can be satisfied, and precise estimation of the unknown parameter is

possible. For the simulation run, the following set of values were used:

S= .5 0(0) = 4.0 -(0)

= 6 9 = 1.5 y(O)

=3 A = 1

= 5 k = 0.1

2.5.2 Example B

For this example, the following system is chosen:

/= -A y + f (, 9) = -Ay+ (0 - 0) 2 tan

E = 0.01

Q)

0

1-

S0-

-1 -

8)2) (2.73)
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Figure 2-4: Phase plane diagram for example
0 axis is vertical.

A. The ec axis is horizontal, while the



It can be verified that the function f is convex with respect to 0 for all 0, q E JR. It is

assumed that the set E = [, #] is known and that 0 < 0 < 9. From eqs. (2.16)- (2.20),

the min-max estimator is constructed as:

)2)asat ( )

= -ew

{,

a + fmax- fmin (0
fmin 0 f

ec 0

ec < 0

-2 (s - )

fmax - fmin

0-0

tan ( O - )2) +180 co-s2

180 cos 2

e, = ec - e sat -

By inspecting the function f it can be noticed that f is monotonically decreasing on

the interval O when ¢(t) = , and that f is monotonically increasing on the interval

E when q(t) = 0. Hence, any given sign of f = f(, 0) - f (¢, 0) can be reversed by

letting ¢(t) sequentially take on values of 0 and 9, respectively. Therefore, property

(P2) can be satisfied, and precise estimation of the unknown parameter is possible.

For the simulation run, the following set of values were used:

0 = 1 0(0) = 9.5 y(0) = 3

0 = 5.5 y(0) = 5

A = 1

k = 0.1

Sec>O0

ec <0

E = 0.01

-Ay - ke, + (0 _ )2 tan (- (0

I

= 10
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0 2 4 6 8 10 12 14 16 18
t

Figure 2-5: Simulation results for example B.

Top panel: Tracking and parameter error. Solid line represents the
0, while the tracking error, ec, is given by the dashed line.
Middle panel: Input. The value of 0 used in the simulation run.

Bottom panel: Lyapunov function V = 2 e + 62

parameter error,
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Figure 2-6: Phase plane diagram for example
0 axis is vertical.

B. The ec axis is horizontal, while the



2.5.3 Example C

In this example, the system of interest is

y= -A y + f (, 0) = -A y + sign () e-2 0

The min-max estimator is constructed by using eqs. (2.16)- (2.20):

= -Ay - ke + sign () e- 2 0 a sat ()

0 = -ew

- sign(ec) [fmin +
fmax - fmin

sign(¢ ec) > 0

sign(¢ ec) < 0

_2 sign(q) e-C 2

fmax - fmin

, sign(¢ ec) > 0

sign(¢ ec) < 0

e, = ec - sat ()

The function f is, depending on the sign of O(t), either a convex decreasing or

a concave increasing function with respect to 0. For a positive value of 0, f is a

convex decreasing function in 0. For a negative value of 4, f is a concave increasing

function of 0. Thus, switching ¢ between positive and negative values changes the

sign of any f. However, in doing so, the convexity/concavity of f is also changed.

Hence, property (P2) cannot be satisfied, and satisfactory parameter estimation is

not guaranteed with this algorithm. This is illustrated in the simulation run with the

(2.74)
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Figure 2-7: Simulation results for example C. The top panel gives the tracking error,
the middle one the parameter error, and the bottom panel gives the value of q used.

following set of values:

0 = 0.5 e(0) = 5.8 -(0) = 3 A = 1
E = 0.01

= 6 0 = 2 y(0) = 5 k = 0.1

Even though the parametric nonlinearity is an exponential form similar to the one

in example A, the same strategy of switching the signs of ¢ does not yield satisfactory

convergence of the parameter error. In fact, there exists a nonzero lower bound for

the guaranteed decrease in the parameter error. The lower bound is given by the

quantity 0' defined in Section 2.3 as 0' = (f - fmin) + 0 - 0. For the values used

in this example, 0' = 2.7903. Thus, if the adaptive system enters the deadzone with 9

such that 0 < 9 < 2.7903, it will not be able to leave the deadzone again. One possible

remedy to this obstacle is to increase the value of ¢, rendering the exponential curve
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essentially flat. Thus, for large values of ¢ the curve becomes almost linear, implying

that (f - fmin) -+ 0 - 0, and hence 9' would decrease.
Ws



Chapter 3

Monotonic Parameterization - Part

I

3.1 Introduction

The previous chapter addressed the problem of parameter estimation and convergence

in convex/concave functions. This chapter is concerned with the problem of parameter

estimation in another specific class of nonlinearly parameterized systems. The class

of systems of interest in this chapter is characterized by the presence of a nonlinearity

which is monotonic in the unknown parameter.

It was seen in the last chapter that the use of the gradient parameter update law

was not always sufficient to guarantee stability. Intuitively, one of the reasons why the

gradient does not suffice may stem from the fact that the gradient with respect to the

unknown parameter in convex/concave functions may change signs on the interval of

interest. The sign of the gradient is important, because it relates the observed error in

the function with the parameter error, and thereby provides a means for determining

in which direction the parameter estimate should be adjusted. Monotonic functions

remove the possibility of gradient changing signs, since their gradient, by definition,

is always of the same sign. In fact, using this viewpoint, linearly parameterized

systems can be considered as a special case within the monotonic class of functions.



The group of linear parameterized systems differ from the general monotonic class

of functions because they provide an additional, albeit crucial, benefit in the task of

parameter estimation. In linear parameterization, not only is the gradient of the same

sign, but its value is the same everywhere. General monotonic functions considered

in this chapter do not provide that luxury. As a result, it is possible for instability

to occur in the case of general monotonic parameterization which cannot occur with

linear parameterization. This chapter investigates under what conditions instability

in monotonic parameterizations may occur.

For the sake of easier mathematical tractability, only the case of a single unknown

parameter is examined in this chapter. In that case, the closed-loop adaptive system

dynamics are of the second order. This allows for a direct analogy with the mass-

spring-damper mechanical system. This analogy is used to gain a clearer insight into

the problem of stability. It will be shown that the equivalent mechanical system has

time-varying coefficients. The relationship between these coefficients, their relative

rate of change and implications on stability are discussed. In particular, it will be

shown that these relationships in the linear case are such that stability is guaranteed.

In contrast, in the monotonic nonlinear case, it will be shown that only a part of

the corresponding linear case relationships hold, thus allowing for the possibility of

instability in the system. Section 3.2 starts the discussion with a proof of a simple

and useful Lemma. In Section 3.3, the issue of stability of an adaptive system with a

monotonic nonlinearity is treated by utilizing the mechanical system analogy and by

comparing the monotonic and linear case. Finally, Section 3.4 provides a numerical

example that illustrates the kind of issues addressed in the sections that precede it.

3.2 Preliminaries

Lemma 3.1 Let f (t) be an everywhere differentiable function of time such that

f(t) > 0. Let to be such that f(to) = 0. Then

lim = -00
t-+to f(t)



Proof: Since min f(t) = 0, then f'(to) = 0. Thus, it can be suspected that the ratio

f'(to) is either zero or undefined. However, it will be shown that it is not the case.
f(to)
The difference f(t) - f(to) can be written as:

f (t) - f(to)

f(t)

f (t) - f (to)
t - to

f (t) - f (to)
t - to

(t - to)

(t - to) + f (to)

Because f(to) = 0, then

f(t) f (t) - f (to)
t - to

(t - to)

Substituting this into the ratio and taking the limit it follows that:

lim f'(t)
t-*to f (t)

= lim f'(t)
t-to lim f(t) - f(to)

t-+to t - t o

1
= f'(to) f'(to)

1
lim t - to
t-to

1
lim t - to
t-+to

= lim -
E-+o+ -e

= -00

3.3 A simple mechanical system analogy

Consider the following system

S+ (a- i +kx = 0

Assume that the system satisfies the following:

50

(3.1)



(i) 0 < a&in < a < amax

(ii) 0 < k(t) < M, k(t) is differentiable

(iii) 3To, 60, o, t2 E [t, t + To] such that

t1 2+60
S kdt >co Vt > to (3.2)

The origin of x = [x, i]T is then uniformly asymptotically stable. Take V(x, t) =
.2 2

+ -. Then
2k 2

1 1
V(x, t)> 2 2 - X12

V(xt) 2(M+1) (12 +x2) 2(M+1)

Thus, V is positive definite and I1x112 < 2(M + 1) V(x, t). Taking the time derivative

of V along the system trajectories it follows that

.2
- X k+xV (x, t) = k k+x

k 2k 2

-2 .2

a- x - c +x k
k 2k 2k 2

a .2 a .2

k - M

Therefore, the origin of x is stable. To show that the origin is asymptotically stable,

an approach similar to the previous section and given by [18, 17, 19] is used. For a

detailed discussion, the reader is reffered to those references. The condition in (iii)

implies that there exist a t3 , E, E2 such that 0 < E2 < l1 E0 and

1 3+Jo

f k dt > 1 Vt > to (3.3)

with k(t 3) > EK > 0. Assume that 3c < 1 such that I I 5 cllxll Vt [to, to + To].



The following is true:

k(r)x(r) dr
Ik)x(t 3 )dT+- JO

lk('F) X(t3)|Idr - 1> 
3

|k(r) (x(t3) - x(r)) I dr

> l To Ix(t3) - M cI x(t3)I

Eq. (3.4) is now employed to obtain:

I i (t3 + S0 )I = L (t3) +

S t3+Jo0
t 3

It3+ 5 0

t3
a -

k(r)x(7r) dr - i (t 3 ) +

S(f 1ToIx(t 3) - MIc|illx(t3)i)

S -(c amax6oc - clog
k(t 3 + o0))x(t 3

> ~1To x(t 3)1 - M0 cILx(t 3) - (amax6oC + Kc + c) I x(t3)|

where K = log M. Noting that, by the initial assumption, Ix(t 3)l > 1 - c2 IIx(t 3)11,

and letting pi = M62 + ama,6o + K + 1, it is obtained that:

1j (t3 + 60)1 S(1To1-- - - P c) IIx(t 3 + 6o)11

Thus, if

2 202CT T+ ( 1) 2

then,

I; (t 3 + 6o0 ) cllx(t 3 + 6o)11

Hence, the initial assumption that 1i (t3 + 6o) I always remains small is incorrect.

Because V is negative definite, and since its magnitude depends on the magnitude of

3J +o

(3.4)

, (7) dr +
t3 +

-k)
2k)

dT)

; (r) dT
J t3

+6
t3



|i (t 3 + 6o) , it can be shown that

V(x, t3 + Jo) < ( - 60 c2d2) V(x, t3)

where d = IE,(1- c2) - 260 (K + M)(M + 1). Thus, V(x,t) decreases by a fi-

nite amount, implying lim V(x, t) = 0. Since jIIxI < 2(M + 1)V, it follows that
t-+oo

lim |Ix(t)I = 0. U
t-+0oo

Eq. (3.1) describes the motion of a second-order unforced oscillatory system. The

damping coefficient given by ( = a -k and the spring constant, k, are time-

varying functions. The two quantities are not arbitrary and independent of each

other. Rather, the value of the spring constant and its rate of change influence the

damping coefficient through negative feedback. Thus, when the spring constant de-

creases, indicating a decrease in the force which tends to restore the system to the

origin, the damping is increased. Increased damping means that the system will find

more resistance in moving away from the origin. By applying Lemma 3.1, it follows

that when k -+ 0, the damping coefficient becomes very large, ( -+ oo. Hence, with

a zero restoration force from the spring, the system will stop its motion because the

resistive force will be infinitely large. On the other hand, when the restoring force is

increasing due to an increase in the spring constant, the resisting force is decreased.

It is interesting to compare the ratio of 7r = ( for this case.

_ a

k k 2k"

Then, ~ > 1 if

k< 2k (a - k). (3.5)

Since k> 0 for this case, r > 1 only while k < a. However, for all cases when 77 > 1

it follows that ( > k > 0, implying that the system is dissipating energy due to the

resistance force. For some time intervals where a very rapid exponential increase in k

occurs ( may become negative, indicating that energy is being added to the system.



However, when ( < 0, r < 1, indicating that the restoring force is dominant.

Consider now the standard form for the closed loop dynamics of a linear adaptive

system with one unknown parameter:

Xl (t) = -axl+ u(t) x2

2 (t) = -F u(t) (3.6)

where F > 0 is a constant gain. By differentiating the second equation with respect

to time, it is obtained that

2 = -r it x 1 - rU 1 .

Also, from the same equation xl - .-- Thus,

uru

' 2= - 2-X -7u2x 2

which can be put into the form of a second-order unforced oscillatory system as:

2 + a + u 2 
= 0. (3.7)

By letting k = r u2 , eq. (3.7) takes the form of eq. (3.1). It can be seen that the

adaptation gain r has a direct influence only on the spring constant of the system.

The fact that the spring constant is directly proportional to F explains the observed

increase in oscillatory behavior with higher values of F.

An adaptive system with a monotonically parameterized nonlinearity is of the

form:

I1 (t) = -axz + f (u(t), x 2 )

12(t) = -rF(t) X (3.8)



where f(u, x2) = f(u, x2 + ) - f(u, 9), 0 is a constant unknown parameter, and w(t)

is the tuning signal. By using the mean value theorem [23],

f (u, 2) = f (u, x2 + 0) - f (u, 9) = b(t) x 2

where b(t) is the value of the gradient of f with respect to x 2 at some point ( on the

interval [x2 , x 2 + 0]. The system of eq. (3.8) is rewritten as:

ii (t) = -axl + b(t) x 2

2 (t= -Fw(t)xl (3.9)

Because the function is monotonic, the sign of b(t) is known, and is equal to the sign

of for any value of x2. Since the sum x2 + 0, which represents the estimate of
OX2

0, is known, let w = Then, the sign of w(t) is always equal to the sign of
aX 2 X2+0

b(t). By using the similar methodology as in the linear case, the adaptive system of

eq. (3.8) can be reduced to the following second order system

2 +2 + F w b x2 = 0 (3.10)

The above system has the following equivalent mechanical properties: the damping

coefficient = a- ), and a spring constant k = w b > 0. The time derivative

of the spring constant is given by k= F (w b + w b). Therefore,

k b
-=--

2k 2w 2b

Hence, by comparing eq. (3.1) and eq. (3.8) it can be observed that for the latter

system there is no full information feedback about the rate of change of the spring

constant into the damping coefficient, as is the case in the former system. Thus, the

stability guarantees for the system in eq. (3.1) do not directly apply to the system in

eq. (3.8). Since it is assumed that u and the function f are such that both w and b
.2 2

are bounded, the function V(x, t) = x + , where x = [x1, x2]T, is positive definite.
2k 2



Then, the time derivative of V along system trajectories of eq. (3.8) is given by:

S(x, t) = + x
k 2k2

= wba-- 2Fw2b2 (b+wb +x x

Fwb a- -2 +
= a--+

Let y = . Then, - =---. Thus,
b w b

-2

Hence, when

a-- <0 -+ 1V> 0

indicating that instability can occur. In practical applications, b is unknown and

the above condition cannot be a-priori checked. Because b is unknown, the damping

coefficient C receives only partial information about the rate of change of the spring

constant. In some instances, like the case when w decreases and b increases, this

partial information is sufficient to ensure that the system is stable. Likewise, there

may exist other cases when the partial information is insufficient and may result in the

instability of the system. One such case is demonstrated in the numerical examples

section.

Thus, stability for the process of parameter identification on a monotonic nonlin-

earity by using the local gradient method cannot be guaranteed. It can be conjectured

that the local or other purely gradient method cannot guarantee stability or conver-

gence of the parameter estimates. To see why this is the case, consider the following



energy function:

1 1
V(xl, 2) 2 + 2 2

which for the adaptive system in eq. (3.9) yields a time derivative

S= -ax + X1 2 (b -w)

Although b is unknown, the bounds on b can be obtained. Therefore, by appropriately

choosing w, the term b - w can always be made to be of a desired sign. However, the

sign of x 2 is unknown, making any choice of w futile in guaranteeing stability for the

said system. The system equations imply that xl is the output of a first order filter

with the input of bx 2 . Thus, the sign of xl is not equal to the sign of b x 2 at every

instant of time. Because the system relies on the sign of xl to adjust the parameter

estimate error, x2 , this implies that the system is induced to adjust the parameter

estimate in the wrong direction whenever sign(xi) # sign(b x 2). For the linear case,

this problem is avoided because then b = w. However, when there is noise in the

system b - w is no longer zero, and instability can occur (see [22, 19]).

3.4 Numerical example

To highlight the kind of problems that may be encountered in adaptive systems with a

monotonic nonlinearity, the following numerical case is presented. The system under

consideration is given by:

l = -axl + (t) x 2  (3.11)

2 = -w(t) z (3.12)

The values of q and w are chosen such that sign(ow) = 1 always. Even though the

above system represents a linearly parameterized system, from the graphs it can be

seen that the particular values of q and w chosen in the simulation lead to instability.
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Chapter 4

Monotonic Parameterization - Part

II

4.1 Introduction

Monotonic nonlinear parameterizations are present in many systems of interest. Be-

cause linear functions are a special case of a general monotonic function, it can be

expected that parameter estimation in linearly parametrized and and systems with

monotonic nonlinear parametrization should have certain similarities. One important

similarity is the fact that in both of these cases the correlation between the parameter

error and observed error in the function value is of known sign. Knowing the sign of

this correlation implies that the direction in which the parameter estimates should

be adjusted is known. However in certain systems knowing this direction is not suffi-

cient to ensure stability and convergence of parameter estimates. One such case was

discussed in the previous chapter, where it was demonstrated that a gradient-based

estimation technique on a monotonic nonlinearity can lead to instability when the

function is present in a simple dynamic system. It was hypothesized that the prin-

cipal reason the gradient-based estimation technique failed was due to the fact that

direct measurements of the error in function value were not available at each instant of

time. Rather, due to the dynamics and present inertia of the system, these measure-



ments were delayed and distorted thereby allowing for the possibility of the system to

become out of phase and diverge. This chapter deals with the problem of estimating

the parameters in a monotonic function when there are no dynamics present between

the nonlinearity and system measurements, thereby allowing the error in the function

value to be directly observed at each instant of time.

This chapter limits the discussion of parameter estimation to a particular choice

of the nonlinear monotonic parameterization: the sigmoidal function. The generic

case of a sigmoidal function f(.) is

1 - e-x
f(x) = e

1 + e-

Specifically, the sigmoidal function is discussed in the context of its application in

the "neural network" models. Neural network, in a fundamental form, is a a parallel

system which consists of a number of processing subunits, called nodes. Each of

these nodes processes the system input simultaneously, and by a superposition of the

individual node outputs, the system output is formed. A node calculates its output

by performing an input-output mapping through a nonlinearly parametrized function

called the activation function. Based on the type of activation function used, there

are many different types of neural networks. In this work, only such types of neural

networks which have the sigmoidal nonlinearity as the activation function are treated.

It has been shown that neural network architectures possess powerful representa-

tion and approximation capabilities (see [11, 21]). The approximation capabilities

are such that a neural network can approximate, up to a desired degree of accu-

racy, any sufficiently smooth function. The representation capabilities stem from the

fact that a single, generic, neural network architecture can, through a process called

network training, be made to approximate a desired function. The process of the

neural network training consists of finding the correct values of the adjustable neural

network parameters, such that the neural network can perform the desired function.

Hence, the task of neural network training is a nonlinear parameter identification

problem and in that context it is examined in this chapter. The classical approach,



as with many similar nonlinear identification problems, is to use a gradient-based

technique. Thus, the use of local gradient information for parameter updates is the

basis of many of the popular neural network training methods: backpropagation [28],

dynamic backpropagation [20]. For further neural network discussions, see [10]. In

many various case studies, these techniques have been shown to exhibit satisfactory

behavior and have enabled the neural networks to be applied to many different appli-

cations. However, because neural networks are nonlinearly parametrized, no global

stability results exist. That is, in spite of the good results that have been obtained,

there exist no a priori guarantees that for a particular task, the training method

will converge. It is the goal of this chapter to, based on a reduced and simplified

neural network model, present a methodology for establishing global convergence of

gradient-based methods in neural network training.

4.2 Preliminaries

Before proceeding to the treatment of the problem, several definitions and a couple

of useful Lemma are stated. Using the standard Eucledean geometry axioms of a line

and length in a IRn space, the following concept of a vector quantity is introduced

through the following definition

Definition 4.1 A quantity is called a vector quantity if it has the following three

properties:

(i) Direction. Direction is represented by a line along which the vector lies

(ii) Orientation. A line has no orientation. Along any line, there are only two

possible orientations.

(iii) Magnitude. A scalar quantity, which graphically represents the length of the

vector.

Based on this definition, two vector quantities are said to be equal if and only if

all three of their properties are identical. This will be used later in distinguishing two



vectors which lie along the same direction, but have different orientations.

For the next definition, the following notation is used: S represents a bounded

set, sl, S2 E S are any two elements of the set, d(x, y) is the distance function between

two points x and y, and p(S) = max d(si, s 2)

Definition 4.2

E, O < E < p(S),

Definition 4.3

al and a 2 if

(i) a a2,

(ii) for any ta

and

A bounded set S is called contiguous if for any point s E S and every

the set B,(s) = {t I t E S, d(t, s) < E} is nonempty.

A time varying function a(t) is called a switching sequence between

such that a(ta) = al, there exists a tb, tb > ta such that a(tb) = a 2

(iii) for any t1 such that a(tl) = a 2, there exists a t,, tm > tl such that a(tm) = al.

(iv) for each tl,t 2 such that a(tl) = al, a(t 2 ) = a 2 there exists a p such that for all

E, O < c < p, the sets Bi = {t I It - ti 5 e, a(t) = ai}, i = 1, 2 are nonempty.

Definition 4.4 A sigmoidal function defined as:

1 - e - x
f(x) =

1 + e-x

has the following properties

(i) lim f(x) = -1, lim f(x) =Th f(-x) =-f().
X-+-00 Z-+00

(ii)

2e-x
f'(x) = (+ e- 2 > 0

(1 + e-")
Vx E IR.



2 (e-x) (e-x - 1)
(1 + e-x)2

Lemma 4.1 Let x, y be two positive real numbers

the following inequality holds:

x (1 + y) 2

y (1 + x)2

such that 0 < y < x < 1. Then

Proof:Pick a x and y which satisfy the conditions of the lemma. Suppose that for

this choice of x, y the inequality does not hold, implying that:

x(1 + )2- y(l + x) 2 < 0.

Then:

0 > x+2xy + xy 2 - y - 2yx - y 2

> x - y + xy 2 - 2

> (x- y)(1 - xy)

Since x > y and (1 - xy) > 0 because x, y < 1, the last line of the equation represents

a contradiction. Due to the fact that x, y are arbitrary, Lemma 4.1 is established for

any pair of x, y which satisfy the prescribed initial condition. M

Lemma 4.2 Let x, y, u, and w be positive real numbers and let the function 1(u, w, x, y)

be defined as:

1(u, w, , y) =
yu (1 + w) 2 (1+) 2

xw (1 + y) 2 (1+ ) 2

If the following hold,

(i) O<y<u<

(iii)

f"(x) < 0,

f"(x) > 0,

f"(x) = 0,

x > 0
x<O

x=0

(4.1)



(ii) y <X <u, y <w <u

(iii)
xw

<1

then

1(u, w, x, y) < 1

Proof:First, examine the

(4.2)

function (1 + x) 2 on the interval of interest, x E [0, 1]. Its
x

first derivative is:

(1 + Z)2) 2x(1+x) - (1 + x) 2

Therefore, the function (1 + x) 2 is monotonically
a;

(1 + w)2
is also monotonically decreasing on

decreasing on [0,1]. Similarily,

[0, 1]. Therefore, 1(u, w, z, y) is maxi-
XW

mized when both x and w are minimized. However, because - > 1, it follows that
yu

xw > yu, implying that x > yu. So, for arbitrary y, u, the maximums of
w

(1 + x) 2 (1+w)2

k(x, w)
X w

are given by

max k(x, w)
(1 + a) 2

- max max
(1+ w) 2

W

yu
and they lie along the line x = -. Along this line,w

(1 + x)2 (1 + w) 2
1+ 2 + W) 2

yu-- w
W

d
dx

x2 -1
x 2
xI

Vx E [0, 1]

km(w) = k(x,w) yu
W

(1 + )2 (1 +W) 2

yu



The extremums of km(w) can be obtained by examining when its first derivative, km,

is equal to zero.

k = 1+ U 2 (1 +w) + (1 +w)2 2 1+ -yu

(+2 (1+ w)yu
= 2

Thus, k (w) = 0 when

yu
1 -- 0 -+ w = V/-u

When w > /-, 1 - 2 > 0, implying that km > 0. For w < V/Y-, 1- 2 < 0,

implying that k' < 0. Hence, the point w = V/ is the minimum point of km(w).

Therefore, the function k(x, w) is maximized at the ends of the allowed interval for

(x, w). Because xw > yu, the two limit points of the interval are: (x = y, w = u)

and (x = u, w = y). It can be easily verified that at these limit points the value of

the function k is equal, k(y, u) = k(u, y). Therefore,

(1 + u)2 )(1 + y)2
max k(x, w), < k(y, u) = k(u, y) =X,w yu

Since

1
(u, w, , y) = U +) 2 ( + y)2 k (x, w)

it follows that for an arbitrary y, u, the maximum of 1(u, w, x, y) is when k(x, w) is

maximum. Thus, the maximum of 1(u, w, x, y) is

1
maxl(u,w,x,y) = U max k(x, w)

(1 + U)2 2+ )2

1 (1 + U)2 (I + y)2
< yu

(1 + u)2 (l+y)2  yu

< 1. (4.3)



Hence, 1(u, w, , y) < 1 on (x, w) E [y, u]. Since y, u were arbitrary, this holds for

any y and u. •

4.3 Stability in a two-node network

The system of interest is:
N.

y = g(u(t), Oi) (4.4)
i=1

where u is a scalar function of time, Oi, i = 1, ..., N, are scalar parameters with

unknown values, and g(u, 0) is a sigmoidal function given by:

1 - e- °

g(u, 9) = 1
1 + e-UO*

The general form of the system in eq. (4.4) satisfies the following assumptions:

(Al) u > 0 Vt

(A2) Oi > 0 for all i = 1, ... , Nn-.

(A3) The system output y is available for measurement at each instant of time.

The goal is to design an estimator which will allow the identification of the un-

known parameter values in a stable manner such that the input-output behavior of

the estimator is matched to that of the system for all possible choices of system input.

The following estimator is proposed for such a task:

S= g(u,O) +g(u,2) (4.5)

Oi = -y V-g(u,O) i = 1,...,Nn (4.6)

where y = y- y is the observed output error, and Oi are the estimates, respectively,

of Oi, i = 1, .. , Nn.

For the sake of mathematical tractability, only the N, = 2 is considered in this

chapter. In order to gain a better understanding of the behavior of the estimator



in eqs. (4.5)- (4.6), the linear parametrization case when g(u, 9) = uO is considered.

Then the estimator can be written as:

S= u(01 - 1 + j2 - 2)

01 = -u (4.7)

02 = -9u

Clearly, for a given pair of parameters (01, 02), g is a function of 01, 02. For a particular

choice of u, let L 1 = {(, ,0) I (o, ) = 0}. Thus, L 1 is the set of all parameter

values for which which the estimator output is identical to that of the system. It is

easy to verify that the set L 1 is

(i) independent of u

(ii) in (91, 02) space represented by a straight line which passes through the point

(01, 02) and has a slope of -1. That is:

2 = 1+ 02 - .

Thus, for any values of (01, 02) which are in the set L 1, the estimator output would be

indistinguishable from the system output for all u. In terms of parameter estimation,

this means that there is an infinite number of points 01, 2 which produce the same

input-output behavior for all possible choices of u. Therefore, in the general case,

it cannot be expected of the estimator to be able to determine the specific values of

01, 92.

The convergence properties of the linear estimator are now determined by show-

ing that the set L 1 is a globally attractive equilibrium region of the estimator for

all allowed choices of u. Let 7r denote the region of 01, 02 coordinate space under

consideration. That is,

r= (1,>2) I >0, > 0}



Let il and i2 represent the unit vectors along the 91 and 92 axis. Then, let the change

of the vector = [1, 2]T be denoted by v =01 i1 + 02 i2 . From eq. (4.7) 81=02

and it follows that the direction of v at a given point P = (81, 82) is independent of

the choice u and lies along the line which passes through P with a slope of 1. The

orientation of the vector v depends on the signs of 01 and 82. They can be examined

by rewriting eq. (4.7) to obtain:

01=02= -U2h 1(011 2)

with h1(0 1, 92) = (01-81+82-82). Since u2 is always positive, sign( 1) and sign ( 82 )

depend solely on the coordinates of the adaptive system (81, 82) in the plane ,. There-

fore, the orientation of v at a given point in ir is always the same as long as u - 0.

To simplify further calculations, u is now chosen as a constant function u(t) = const.

It then follows that the time derivative of the positive quantity J = 1y2 is:
2

J y 1 + 2 2 2 < 0.

So, along the system trajectories J always decreases, implying that the vector v is

oriented in a way which minimizes J. Since J has only a global minimum at # = 0,

it follows that the vector v always points towards the line L 1.

The fact that v is oriented towards L 1 implies that on any possible direction in r,

there are at least two points with different orientations. Thus, L 1 divides the plane 7

into two distinct regions, with the distinguishing characteristic of each region being

the orientation of v. Since the orientation is determined by the sign(hi), the two

regions, S+ and S-, are defined as

S+ = (1,2) sign [h 1( 1, 2 )]> 0}

S-= ( 1,) I sign [hi( 1, 2)] < 0 .

(4.8)
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Figure 4-1: Phase plot for a linearly parameterized system. The set L1 is given by
the thick solid line, and the circle gives the location of the point (01, 02).

Therefore,

Ir = S+U S- ULi

as is shown in Fig. (4-1).

Lemma 4.3 For the linear version of the system in eq. (4.4) where g(u, 0) = uO,

which satisfies the assumptions (A1)-(A3), and the estimator in eq. (4.7), the set L1

is a globally attractive equilibrium set.

Proof: In proving the lemma, two elements need to be established: (a) L1 is an

invariant set and (b) outside of L 1, all system trajectories tend towards L i . Case (a)

is readily established, since on L 1, by definition, = 0 and thus the magnitude of v is

equal to zero. Hence, once in the set L 1, the system will always remain in the set L 1.

Noting that 7r - Li = S+ U S-, it has been established that for case (b) v is always

f/0
Mr

N '

/

[f



oriented towards L 1, thus implying that 0 always tends towards L 1. Therefore, the

lemma holds. M

This concludes the analysis of the linear case. Following the same procedure,

the discussion now turns to the parameter estimation problem in the system with

sigmoidal parametrization in eq. (4.4). Let A = (01, 92) and B = (02, 81) be two

points in 7r. Define the set L as:

L = {A, B}.

The conditions under which L is a globally attractive equilibrium for the adaptive

system are stated in the following theorem.

Theorem 4.1 For the system in eq. (4.4) which satisfies the assumptions (A1)-(A3),

and the estimator in eqs. (4.5)- (4.6), the set L is a globally attractive equilibrium set

if (a) 01(to) 0)2(to) and (b) u(t) is a switching sequence between ul and u2, where

U 1 < U2 .

Proof: By combining eqs. (4.4)- (4.6) the closed-loop adaptive system is obtained

as:

= g(u, 01) + g(u, 02) - g(u, 01) + g(u, 02) (4.9)

2 e - ui O,
i = -yVg(u,O) = - 2 eZ-) 2  i = 1,...,2 (4.10)

u (1 + e-u)

If the condition (a) were not satisfied, then 01(to) = 2 (to) would imply that

VWg(u, 01) = V-g(u, 02) for all t. Let

F = {(01, 2) 01 = 2} (4.11)

Hence, the direction of 0 would always be along the line defined by F. This would

not hinder the possibility of convergence to L in the case that 01 = 02, but would rule



out convergence for any 01 # 02. Since in practice the probability of 01 = 02 is zero,

condition (a) is necessary.

For the rest of the discussion, it will be assumed that condition (b) is satisfied.

In that case, it will be shown that convergence follows, thus making (b) a sufficient

condition.

First, pick any 01 > 0, 02 > 0. Now, the sets M1 and M 2 in ir on which the

estimator and system output are identical are given by:

M = {(01,2) #1 (1,2, ul) = 0

M2 = {( 1 , 2 ) I y(, 02, u 2 ) = 0

The solution of the nonlinear equation

g(O , u) + g(02 , u) = g(01, U) + 9(02, u) (4.12)

for 02 in terms of 01 and any value of u is obtained as:

1 In (1 + g(01,u) + g(02 , U)) - 9g( U) (4.13)
u (1 - g(01, u) - g(02, U)) + g(O1, u)

Since # = 0 if and only if eq. (4.12) is satisfied, the sets M1 and M2 represent curves

in the r plane which are obtained by substituting ul and u2 for u, respectively, in

eq. (4.13). The characteristics of the curve 2o for a particular value of u are now

analyzed by examining the first and second derivatives of the curve. To simplify the

calculations, eq. (4.13) is rewritten using the following notation

Sl( 1 +a - a (4.14)2 - 1-a+h

where a = 9(01, u) + g(02, u), h = g(O, u). Using these definitions, from eq. (4.12)

and Definition 4.4 it follows that 0 < (a - h) < 1. The first derivative of the curve in



eq. (4.14) can be calculated by the chain rule as:

0 d h'
dOl dh

Definition 4.4 states that h' > 0, and since

d9°  1 1-a+h (1-a+h)(-l)-(l+a-h) _ 1 -2

dh u l+a-h (1 - a + h)2  -u 1-(a-h)2

it follows that < 0 V< and thus the curve ° (01) is monotonically decreasing.
d0l

The curvature is analyzed by examining the second derivative:

d 2  
_ d d9,' dd ,, 2 d+ 0) h' + h" (h' h"

d 2 - d -dhJ dh dh2  dh

Definition 4.4 states that h" < 0, 2 < 0 from eq. (4.15), and since
dh

d2 ° -1 a-h
d2 = (-2)2 (-2) (a -h) (-1)=4 ((-h)2)2 > 0 V h

dh2 (1 - (a - h)2)2 (I- (a - h)2)2

d2 0
it follows that 2 > 0 A 1 . Because the value for u in the above calculations was

an arbitrary positive quantity, it follows that for any ul, u2 > 0 the corresponding

curves Mi, M2 are monotonically decreasing convex functions. This implies that they

can intersect on at most two points in the 7r plane. It is easily obtained that

M n M2 = L (4.16)

since in the case when 9 = A or 0 = B, eq. (4.12) is identically satisfied for all possible

choices of u. Thus, L is an equilibrium set for both when u = ul and u = U2 . The

two curves are shown in Fig. 4-2.

Having defined the characteristics of M1 and M2, the trajectory of the parameter

estimate vector 0 with respect to these curves is now investigated. First, let T be an

arbitrary time interval such that T = {t I u(t) = ul}. Define J as J = 2 . Then,



on the interval T 1,

2 2 2

1 = 0 iV(,g(u,) ,i = -#2 [Vi g(ui,)] 2  < 0 (4.17)
i=1 i=1

As in the linear case, the negative derivative of J1 implies that at every time instant

t, t E T1, the velocity vector v, v =9, of the system is oriented towards the curve M1 .

From eq. (4.10) it follows that:

sign(91) = sign(02) = -Sg - .

Therefore, the curve M1 divides the plane 7r into two distinct regions which can be

defined as:

1( 1, 2, 0)102

S = (12) sign(Y(V1, 02U1) < 0 (4.18)

Thus, 7 = S' U S- U M1 . Similar analysis can be carried on for an arbitrary time
12

interval T2 such that T2 = {t I u(t) = u2}. On T2 it can be obtained that J2 , J2 = 1Y2

is decreasing, implying that M2 divides the 7 plane into the following two distinct

regions:

S2+ = (1, 2) sign > 0

S2 (, 92) sign (Y(91 iU2) < 0 . (4.19)

Likewise, 7r = S+ U S- U M2.

Now define:

SE = (S+ns ) U (si n s) (4.20)

SD = {(S-ns +) U (S+ s)} U M1 U M2 (4.21)



These sets are depicted in Fig. 4-2. Let PE be any point in the set SE, PE E SE.

According to eqs. (4.18)- (4.20), the orientation of v at the point PE would be the

same for all time. On the contrary, for any point PD, PD E SD, the orientation of v

would be the opposite during time intervals T and T2.

Starting at any point P, the system would move towards M1 during a time interval

T 1, and move towards M2 during a time interval T 2 . While the system is in the set

SE, the directions during these two time intervals are equal, meaning that the system

would converge to a set that contains both M1 and M 2 . That is, starting at any point

in SE the system would converge to SD since SD contains both M1 and M 2 . Because

u is a switching sequence, the system enters SD in a finite time.

Before examining the behavior of the system in SD, another feature of the sys-

tem is noted. Namely, the system behavior is symmetric with respect to the line

F of eq. (4.11). This is because the nonlinearities in the system governing equa-

tion, eq. (4.12) appear additively. Since the operands of addition are commutable, it

makes no difference if 9 and 92 exchange places, indicating symmetry of the problem.

Therefore, without loss of generality, system motion is only examined on the set S',

S h = {(91,92) I ( E,) E SD, 91 < 2} (4.22)

Also, it is taken that the point A is in the set Sh, A E S.

It can be shown that the set SD, and therefore SD are time invariant sets for

the system dynamics. This is shown by contradiction. Suppose that SD was not

time invariant. Without loss of generality, this supposition implies that the system,

starting in SD at the beginning of a time interval T 1, was not in SD for some time

instant t*. It has been established that the system during T would tend towards M 1.

So if the system is outside of the set SD at time t*, it implies that it must have at

some time t o < t, t o0 E T crossed the curve M1 with a non-zero velocity vector

v. However, this is impossible, since by definition v = 0 on M 1 . This contradiction

establishes the claim that SD is time invariant.

All that is now left to do in establishing the global attractiveness of L is to establish



that for any point in Sh , the point A is attractive. A very useful insight into the

behavior of the system dynamics on S h can be gained by examining what happens

to the value of the angle that the direction of the velocity vector makes with the 01

axis, ie. the direction of il, when the input value u changes from ul to u2 . Let 0(t)

be such an angle at time t given by

p(t) (4.23)0- (- (t), (t), (t))
= arctan 2 (t, 2 ,u)

Ol (Jlt), 2 (t), u(t))

For a particular point P = (01, 02), let

= arctan 02 (01, 02, u1)

81 (01, 2 , U1)

/32 arctan 02 (1, 02, 2 )

91 (01, 92, U2 )
(4.24)

Thus,

V- 9(02, U1)
/1 = arctan g(02 u

V7 g(01, ul)

V2 g(92, u2)
/2 = arctan ( 2

V- g(91, u2 )

e
= arctan

e-u

= arctan

2e-"u12
U1 (1+e-u102)2

= arctan
_ 2e-u01

UL (1+e-u10 1)2

- 2e
-

u2
0 2

U2 (1e-u22)2

= arctan
_ 2e-201

U2 (1+e-u2
0

1 )2

102 (1+ e - 1O1 ) 2

10 (1 + e- u l 0 2 ) 2

e - 202 (1 +e- 21) 2

e - u 2 (1+e-22) 2

(4.25)

(4.26)



Letting

x = e- u1 y e-U102 (4.27)

it follows that 0 < y < x < 1 on S'. Then, by Lemma 4.1, it follows that 01, 02 < 450

everywhere on Sh . From the aspect of establishing convergence, a more interesting

quantity is the ratio of 2 for any point on Sh . The relative magnitude of this ratio

can be determined by examining the following ratio:

e- ulul e -u2 (1 + eL2~1)2 (1 + e-U2) 2

Y =(4.28)
e -02 - 20 1 (1 + e-uj10 ) 2 (1 + e-22)2  (4.28)

By letting

s = e - u i y = e - 202 x eu21 w -eu2 (4.29)

eq. (4.28) takes the same form as eq. (4.1):

ys (1 + w) 2 (1+ ) 2  (4.30)
xw (1 + y) 2 (1 + ) 2

The following can also be concluded about the quantities s, y, x, w of eq. (4.29) on

the set SD:

(i) 0 < u1 01 < u202 < 1, implying that 0 < y < s < 1.

(ii) u 2 0 2 > u 2 0 1 > u 1 1 , implying that y < x < s. Also, u 2 2 > u162 > Ul0 1 ,

implying that y < w < s.

(iii) Let r be such that:

e--l e-U202

er = U1 eU (4.31)
e-u102 e-u281

Thus,

r = -u 1 - U2 2 U 10 2 U 2 0 1



S(u 1 - U2) + 01 (U2 - U1)

= ( - e1) (U - U2)

< 0. (4.32)

Hence, < 1.
xw

Therefore, by applying Lemma 4.2, it follows that y < 1, implying that P1 > 02. This

relationship holds for any point in S'.

It will be now demonstrated how 01 > 02 on SD, together with the fact that u

us a switching sequence, imply convergence. A new quantity which will facilitate the

proof of convergence is now defined. Suppose that, starting at a given time instant

at a certain point in S", the input value u was kept constant at either ul or u2 from

that time instant onwards. Then, the system would converge to a point either in M,

or M2 . This convergence point can be calculated by integrating forward in time the

system dynamics equations (eq. (4.10)) which govern the change of 0. Thus, given a

starting point denoted by 0(t), let

N 1 (t) = lim 0 (m ; 0(t); ul)

N2 (t) = lim 0 (T; 0 (t); U2) (4.33)

where N(t) = [ 211(t) 2 1 (t)]T, N 2(t) = [012 (t) 022 (t)]T represent the limit points of

the vector 0 = [01 9 2]T, starting with the initial condition 0(t) and with u = ul,

u = u2 respectively. Let each set in the sequence of sets Cl (t) and C2(t) represent the

trajectory along which the system would converge to each distinct Nil(t) and N2 (t),

respectively. Thus,

C(t) = P I P SD, lim (T; P; ul) = N (t)}

C2 (t) = {P IPE SD, lim (; P; 2) = N2(t)} (4.34)

Now consider the following two cases:



01

Figure 4-2: Phase plot for a two-parameter system with sigmoidal parameterization
using two different values of u.

(a) The system is in the set Sh- , where Sh- is defined as:

S = (01 2) sign [ (61 2, U1) = sign 12 (g1, 2u1)] = -1)

(b) The system is in the set Sh- , where Sh- is defined as:

S = (01 02) 1 sign [1 (01, 02,u)] = sign 02 (1,, 62, =1)

The following is then also true: Sh = Sh- U Sh+ U M1 U M 2 and Sh- N Sh+ = 0. Also

the point A is a limit point for both sets.

In case (a), it will be shown that 021 (t) and 022(t) are decreasing functions of time.

Suppose the system is starting its motion at time to at some point O(to) for which

the condition of case (a) is satisfied. With the point 9(to) are associated the points

N (to) E M and N 2(t0) E M2 , and the corresponding trajectories Cl(to) and C2(to),



respectively, as defined in eqs. (4.33)- (4.34). Suppose further that to is contained

in a contiguous interval T2 on which u(t) = u2, t E T2. Then, the system moves

along the trajectory C2(t 0). Since for all t, t E T2, sign(01) = sign(82) = 1 and since

0 < 2 < 01 < 450 for any point in S h , the curve representing the trajectory C2(to)

remains always bounded from above by the curve representing trajectory Cl(to) and

from below by the line which passes through the point 9(to) and is parallel to the 01

axis and its unit vector il.

Because the system is moving on C2(t 0) on T 2 , 822 (t) is constant on T2. Meanwhile,

suppose that there exists a time instant t* such that 821 (t*) > 021(to). Because of the

relative position of C (to) and C2(to), this supposition implies that the curve of the

trajectory Cl(t*) would have to cross the curve of the trajectory Ci(to). Let K be

the point at which they cross. The fact that they cross means that at K, the velocity

vector v would have two different values for the same coordinates and the same value

of u, which is impossible. Thus, the two trajectories cannot cross, and hence t* does

not exist. Therefore, on T2, 021 is strictly decreasing. In the case that to is contained

in a contiguous interval T on which u(t) = u, it would follow that 921 (t) is constant

on T1, and an argument similar to the one above can be made to show that 0 22(t) is

decreasing on T 1. By Definition 4.3 of a switching sequence, each interval on which

u = U1 is followed by an interval on which u = u2, and vice versa. Therefore, both

021 and 822 decrease with time.

In case (b), it will be shown that 021(t) and 022 (t) are increasing functions of

time by a similar kind of argument as was applied in case (a). The difference in

the two cases is the fact that in case (b), sign l (0, ul)) = sign (2 (8, u)) 1,

implying that sign1 (, u2 )) = sign (2 (, 2)) = -1. Therefore, the curve of

the trajectory C2(t 0) is bounded from above by the line parallel to the direction of

il, and bounded from below by the curve of the trajectory Cl(to). Thus, if on Ti

there existed a t* such that 0 22(t*) < 822 (t0), it would imply that the curve of the

trajectory C2(t*) would have to cross the curve of the trajectory C2(to). Since this

cannot happen, 022 is always increasing on T1. Likewise, 021 is always increasing on

T2 . Since u is a switching sequence, the functions 021(t) and 022 (t) are increasing



functions of time.

It is interesting to note that, because the set Sh is invariant and bounded, 11 and

012 remain bounded in both cases (a) and (b). Based on the proven behavior above,

it follows that in case (a), the system swings between heading towards M1 and M2 .

The swings are oriented in such a way that the system 02 coordinate decreases with

time. In case (b), the 02 coordinate is increasing with time. Since

02 = minP(01,02 ) VP E SD
02

and

02 = max P(,,6 2 ) VP Sh +

02

it then follows that when u is a switching sequence, the system will converge to the

point A starting from anywhere in the set ShD.

Hence, for any starting point in SE, the system converges in finite time to SDo.

Starting from any point in SD, the system converges asymptotically to either point

A or B. Thus, the theorem is established. U

An interesting comparison can be made between the proof of Theorem 4.1 and

the proof of its linear counterpart given in Lemma 4.3. The proof of stability for the

linear system utilizes the standard approach currently taken in adaptive control, and

control of nonlinear systems in general. The standard approach consists of taking the

distance of 0 from 0 as a measure of the parameter error, and then showing that the

measure is always nonincreasing. Such an approach is not beneficial for demonstrating

stability in the nonlinear case. First, there is a problem in how to define the point

from which the distance is measured to the current estimate 0. From the proof of the

Theorem, it follows that the point of convergence depends upon the initial estimate.

If the initial estimate is such that 02(t0) > 01 (to), the system converges to point A,

and if 02(to) < 1 (to), the system converges to point B. If the distance for measuring

the parameter error was, say, point A, it could be observed that the measure would



be increasing during the course of adaptation if 02(t0) < 0 (to). Suppose now that

this problem of picking the originating point for the measure of parameter error was

solved so that it was picked according to the initial condition. Then, if it was adhered

to the strict notion of having the measure be nonincreasing, a second problem would

appear. As can be seen from the geometry of the problem, on certain intervals of time,

the measure of the parameter error can actually be increasing. Therefore, in order to

prove Theorem 4.1, the strict condition that the measure is nonincreasing has to be

relaxed. Rather, the asymptotic behavior is examined, implying that despite the fact

that the measure may sometimes increase on bounded intervals of time, the overall

behavior is such that it is decreasing. These remarks are illustrated in a numerical

example in the next section.

4.4 Numerical Example

This section presents a numerical example which demonstrates the kind of system

behavior discussed in the previous section. For the sake of clarity, the overall estimator

dynamics are restated here.

= g(u, 91) + g(u, 9 2 ) - g(u, 1 ) + g(u, 02) (4.35)

2 e- uioi
S= - Vg(u, i) = - i = 1, ..., 2 (4.36)

u (1 + e-uioi)

The example consists of simulation runs of the above adaptive system with four

different initial conditions, corresponding to four different sets of estimates of 0. The

following set values are used in the simulation runs.

= [1.7813,4.9298]T

) {4 0.53
0(to) = 1) 2) 3) 4)

4.5 6.0 1 3
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different initial conditions. The sets on which = 0 are given by the dashed line.
For reference, the line K on which lie all points with equal values of the coordinates

is given by the dotted line.

The input u was a switching sequence between ul = 0.3 and u2 = 0.8. The sim-

ulation results are given in Figs. 4-3, 4-4. It can be seen that for all initial con-

ditions, the system does converge to either point A = [1.7813,4.9298] or to point

B = [4.9298,1.7813]. Fig. 4-4 shows the behavior of the measure of the parameter

error defined as J = 11 - *112, where 0* = A, or 0* = B, depending on the initial

condition. It can be seen that even with such a choice of 0*, J is, as expected, in-

creasing on certain intervals of time. However, the asymptotic behavior is such that

J -+ 0 as t -+ oc.
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Figure 4-4: The measure of the parameter error defined as J = e- e0* 1 for four

different initial conditions. 0* is chosen according to the initial estimate 0(to).



Chapter 5

Conclusions

The problem of linear adaptive control has been extensively studied for a number

of years, and powerful results can be found in the present literature. In contrast,

few results exist in the field of nonlinear adaptive control, especially adaptive control

of systems with nonlinear parameterization. The approaches to modify and linearly

reparameterize nonlinearly parameterized systems are, for majority of the cases, suc-

cessful only at achieving local results. However, these approaches have a serious

drawback because they introduce a large number of virtual parameters which have no

physical meaning. Thus, if the goal is to acquire information about the state of the

system by learning the values of its physical parameters, linear reparameterization is

inadequate. Hence, if adequate global performance is to be achieved, the problem of

nonlinear parameterization must be addressed.

This thesis attempted to address the problem of parameter convergence in systems

with two types of nonlinear parameterization, (i) convex/concave and (ii) monotonic

parameterization. For certain convex/concave parameterizations, it was shown under

what conditions and external inputs globally stable control and identification of the

nonlinear parameter are achievable. The results were presented for a single parameter

case. The conditions for parameter convergence apply to corresponding systems with

more than one parameter, as well. However, the choice of external inputs that will

satisfy these conditions for n-dimensional parameterization is still under investigation.



The second class of nonlinearly parameterized systems that is addressed in this

thesis is characterized by the presence of a nonlinearity which is monotonic in the

parameters. The min-max algorithm [1] that was used for the control and estimation

of convexly/concavely parameterized systems differs from other methods in adaptive

control in that it does not solely rely on the local gradient information for generating

parameter estimates. It was demonstrated in [1] that, for nonmonotonic parameteri-

zations, the use of local gradients can lead to instability. However, for monotonically

parameterized systems, the local gradient update law seems applicable. Two types

of results were derived for such systems. For the first, it was shown that for certain

types of systems, gradient laws can lead to instability due to the type of the system in

which the nonlinearity is present. The second result, on the other hand, showed that

local gradients are sufficient for the task of estimating the parameters in monotoni-

cally parameterized neural networks during the training procedure. This was shown

using a low order neural network model by introducing a methodology whereby only

the asymptotic behavior of the adaptive system is examined. Currently, efforts are

being taken to extend this result to the full n-dimensional case. Preliminary studies

indicate that the presented methodology does allow for this extension. All the results

derived are complemented with numerical simulations which graphically illustrate the

issues discussed.
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