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ABSTRACT

This thesis develops and evaluates a set of utterance verification (UV) techniques as part
of a large vocabulary spoken language understanding (SLU) system. The motivations are
to detect out-of-domain utterances, disfluencies, and noises, and also to facilitate
confirmation and rejection strategy in dialog control. A two-pass UV procedure is
developed. First, speech utterances are decoded by a continuous speech recognizer. Then,
a second stage UV mechanism assigns each decoded word a likelihood ratio (LR) based
confidence measure computed from subword level LR scores using a set of subword
specific hidden Markov models (HMM) dedicated for UV. A discriminative training
procedure based on a gradient descent algorithm is developed to estimate the UV model
parameters to optimize a cost function that is directly related to the LR criterion used in
UV. The verification and the training techniques are evaluated on utterances collected
from a highly unconstrained large vocabulary spoken language understanding task
performed over the public telephone network. The UV performance is evaluated in terms
of the system's ability to accept correctly decoded words while rejecting incorrectly
decoded ones.
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1. Introduction

Over the last several decades, advances in automatic speech recognition (ASR)

research and advances in computing technology have resulted in ASR systems that are

capable of handling highly complex spoken language tasks. Current research has

emphasized the development of systems that can accept naturally spoken utterances and

that are robust against speaker and environmental variability. Speech recognition

technology has also extended beyond research laboratories and stepped into the lives of

the general public through applications in areas such as telecommunications and education.

Despite the advances in speech recognition technology, in the presence of ill-formed

utterances and unexplained corrupting influences, many systems still fail to perform

recognition accurately. Therefore, it is necessary to have a mechanism for effectively

verifying the accuracy of portions of the recognition hypothesis. The goal of this thesis is

to investigate the potential role of utterance verification (UV) procedures as a means for

dealing with these failure modes for large vocabulary continuous speech recognition

(CSR) and spoken language understanding (SLU) systems.

This chapter first describes these issues in more detail to motivate the need for

utterance verification, and then proposes a means for its implementation. At the end of this

chapter, an outline for the thesis is provided.
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1.1 Problem Description

Utterance verification is motivated by several problems that arise in speech

recognition and spoken language understanding tasks designed to be used by untrained

users in unpredictable acoustic environments. These problems include out-of-domain

speech utterances, signal degradation, and variability associated with spontaneous speech.

The first problem is the tendency for untrained users to speak utterances that are out

of the domain for which the speech recognizer was configured. There are many examples

of out of domain utterances. First, a sentence could be semantically out-of-domain with

respect to the set of tasks the recognizer is trained to handle. Second, a sentence could be

syntactically ill-formed, which may imply a sentence structure that was not expected by

the system. Third, a sentence could contain out-of-vocabulary words which were not

placed in the recognizer's vocabulary during training. In any of the above cases, the

sentence is considered to be out of domain. When such a sentence is being decoded, the

recognizer could only search through its pre-stored vocabulary and sentence formation

rules to form a hypothesized word string that best matches the spoken utterance. Since the

sentence is out of domain, unfamiliar to the recognizer, the hypothesized result often

turns out incorrect.

The second problem is signal degradation caused by unpredictable acoustic

environments and channel distortion. Noisy background in acoustic environments interacts

with the speech signal in an additive manner, while channel distortion, such as one

associated with a telephone channel, interacts with the speech signal in a convolutional
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manner. These signal degradation problems often lead to performance degradation in

various kinds of recognition tasks.

The third problem is the variability in spontaneous speech. First, utterances spoken

spontaneously tend to have varying speaking rates. Second, spontaneous speech often

contains disfluencies such as false starts and filled pauses (e.g., uh). It is often difficult to

establish models for these sources of variability. For example, it is very difficult to

automatically detect where any disfluency has occurred in the middle of a sentence. As a

result, these disfluencies may be interpreted by the recognizer as vocabulary words.

The above problems of out of domain utterances, signal degradation, and variability in

spontaneous speech often result in many recognition errors. In a spoken language

understanding system, where utterances are interpreted, these recognition errors often

cause misinterpretation of the utterances, which sometimes leads to the SLU commanding

wrong actions to be taken.

This thesis develops an utterance verification technique to effectively verify the

accuracy of portions of the recognition hypothesis by assigning confidence measures to

each decoded word. Being able to identify recognition errors is the first step towards

reducing the consequences of the errors. Error detection could provide extra information

to the interpretation process in the SLU system. Instead of blindly assuming all words are

decoded with equal confidence, the SLU system can incorporate knowledge of word level

confidence measures provided by UV in the process of interpreting the utterance, which

may lead to improvement in the overall SLU performance.
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1.2 Proposed Solution

The goal of this thesis is to develop an utterance verification produce which can

determine whether each word in the recognition hypothesis is correct or incorrect. UV is

often considered as a hypothesis testing problem. In this thesis, we will investigate the

potential of a UV procedure based on a likelihood ratio (LR) criterion, which is often

used in hypothesis testing. In this section, we introduce the notion of LR based UV and

discuss the issue of identifying the acoustic models necessary for performing such test.

This thesis implements a two-pass UV procedure. First, an input utterance is passed

through a continuous speech recognizer to produce a hypothesized word string. The

resulting word string together with the speech sequence are then passed through the UV

unit in which confidence measures are computed for each decoded word. Each word level

confidence measure is then compared to a threshold to determine whether to accept or

reject the hypothesis that the given word was correctly decoded. The confidence measures

can also be used by the SLU system as additional information for interpreting the

utterance.

When considering UV as a hypothesis testing problem, the event of a decoded word

being correctly decoded corresponds to the null hypothesis, and the event of a decoded

word being incorrectly decoded corresponds to the alternative hypothesis. In a LR based

UV procedure, the confidence measure assigned to each hypothesized word is calculated

from the ratio of the likelihood of the word being correctly decoded with respect to the

likelihood of the word being incorrectly decoded. To estimate these two likelihoods, two

sets of probabilistic models are used, the null hypothesis, or "target" models, and the
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alternative hypothesis models. It is assumed that correctly decoded words are acoustically

modeled by target models and incorrectly decoded words are acoustically modeled by

alternative models. To calculate a confidence measure for a segment of speech, the

speech segment is first compared against each set of models separately, yielding the two

likelihoods. The ratio is then taken and converted to a confidence measure. In the LR

based UV procedure investigated in this thesis, it is this likelihood ratio based confidence

measure that is assigned to each word.

In this thesis, we will also investigate the training of the target and alternative models,

which are needed for the UV procedure. The commonly used procedure for training

acoustic models in most speech recognition tasks is the maximum likelihood (ML) training

procedure. Using a ML criterion to train the target and alternative models may yield

reasonably good UV performance. However, it is not directly related to the LR criterion

that is used in UV. In this thesis, we investigate a discriminative training procedure based

on a gradient decent algorithm. The goal is to increase the separation in the likelihood

ratios obtained for correctly and incorrectly decoded words. In this algorithm, a cost

function that is related to this separation is defined. Target and alternative model

parameters are then re-estimated to optimize this cost function.

In this thesis, the testing and training procedures described above are implemented

and evaluated. The measure used to evaluate the UV performance is the percentage error

for classification of the hypothesized words being correct or incorrect, which are derived

from the confidence measure distributions of the two classes. We experimented with using

both ML and discriminative training procedures to train the target and alternative models.
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1.3 Thesis Outline

The body of the thesis includes background materials, a description of the theoretical

development of the UV algorithms, a description of the experimental study performed to

evaluate these algorithms, and conclusions. There are six major chapters:

Chapter 2 provides some of the background knowledge necessary for further

discussion of the LR based UV algorithm. First, hidden Markov model (HMM) based

maximum likelihood CSR procedure is outlined, introducing notations that will be used

throughout this thesis. Next, a review of previous works related to UV is presented.

Chapter 3 presents the theory behind the LR based UV algorithm. First, the testing

algorithm is described, providing formulations for calculating the LR based confidence

measures. Next, the discriminative training procedure based on the gradient decent

algorithm for training both the target and alternative acoustic models is presented. Last, a

brief discussion is given on the integration of the utterance verification procedures with

statistical language modeling and spoken language understanding.

The next three chapters are dedicated to the description of the experiments and the

discussion of the results. In Chapter 4, first, the speech recognition and understanding

task, the speech corpus, and the recognition model and performance are described. Next,

testing and training procedures are outlined followed by a description of the baseline

experiments and a discussion of their results. In the baseline experiments, the target and

alternative models are trained using the ML training procedure. These baseline

experiments are considered as phase I of the experimental study.
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Chapter 5 covers phase II of the experimental study, which employs the usage of

discriminative training. The modified training procedure is first described, followed by the

presentation and discussion of the experimental results. Next, the rate of convergence of

the training procedure is examined. At the end, a discussion of various issues related to the

training and testing procedures for UV is given.

Chapter 6 describes three additional experiments related to further applications of

acoustic confidence measures. The first experiment investigates using sentence level

confidence measures for rejecting utterances that contain only background, noise, silence

or non-speech utterances. The second experiment investigates using phrase level

confidence measures for utterance verification and compares the result to word level UV.

The last experiment implements a method for converting LR based confidence measures to

a posterior probabilities of each word being correctly decoded given its confidence

measure.

Chapter 7 concludes this thesis with a summary and a discussion of possible future

work. It is important to review what we have learned from this thesis and to look ahead

for where its result may lead us to.
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2. Background

This chapter provides some of the background knowledge for further discussion of

the likelihood ratio based confidence measure calculation and model training procedures

that will be described in detail in Chapter 3. First, hidden Markov model (HMM) based

maximum likelihood (ML) continuous speech recognizer (CSR) procedure is outlined. The

structure of a typical HMM model is described and notation that will be used throughout

this thesis are introduced. Most of the material covered in Section 2.1 and more thorough

descriptions of HMM based CSR technology can be found in tutorial references (e.g., [1]).

The next three sections are dedicated to a review of previous work on topics including

HMM based keyword spotting, various techniques for computing confidence measures,

and discriminative training procedures for adjusting model parameters to optimize

verification performance.

2.1 HMM Based CSR

A typical HMM based continuous speech recognition system generally consists of

three major components. The first component is the front-end analysis which reduces a

sampled speech waveform to a sequence of feature vectors, Y = Y l,'-, YT. Each feature

vector, Yt, is computed from a 10-30 ms interval of speech over which the speech signal

is assumed to be approximately short-time stationary. The feature vectors provide a

representation of the smoothed spectral envelope of the speech. In this work, the features
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actually correspond to the cepstrum which is obtained from a linear transformation of the

log of a non-uniform filter bank as described in [la].

The second component of HMM based CSR is the acoustic match between the

feature vectors and the acoustic models which are in the form of hidden Markov models,

which will be described in Section 2.1.1. The third component of HMM based CSR is the

search of optimum word string under the constraint of a statistical language model, which

will be described in Section 2.1.2.

2.1.1 Hidden Markov Models

In continuous speech recognition applications, the vocabulary size can be anywhere

from several words to 100,000 words. Since it would be impractical to build one statistical

model for each word, subword acoustic units are defined so that each word, w, is

represented by a concatenation of subword acoustic units, ul, i.e., w = ulU2...u L . The

rule for this composition is described in the lexicon. There are many possible definitions of

these subword units [lb]. A unit can correspond to a phoneme, a syllable, or some other

unit. The set of subword units used in this work will be described in Chapter 4. In this

work, one HMM model is trained for each subword unit and is denoted by Xu. The set of

all HMM models for all subword units is denoted by A.

The underlying goal of HMM is to statistically model both the values of the features

vectors and their evolution in time. Each HMM model consists of two major components

- a discrete Markov chain with J states, s1 ,- - .,s J , and observation feature vector

distributions associated with each state, bsj(y) j= 1,...,J. The Markov chain is

described by a set of transition probabilities, ai i, j = 1,..., J, and a set of initial state
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probabilities, irj = aoj, The feature vector distribution, bs (yt)= P(ytlqt = sj), is the

probability of emitting feature vector y t when occupying state sj at time t. Here, we use

qt to denote the state association at time t. The feature vector distributions can be

modeled in many ways. In our work, each feature vector distribution is modeled as a

continuous mixture of M Gaussian pdfs:

M

bs, (y) = CcjmN(Y; j m,r jm). (2.1)
m=1

In Equation (2.1), cjm denotes the mixture weight of the mth Gaussian pdf of state sj.

M

The mixture weights of each state must sum to unity, i.e., Cjm = 1. The mth Gaussian
m=1

pdf is represented as N(y; g jm, I jm) with mean vector I jm and covariance matrix I jm,

which is assumed to be diagonal in our work. In summary, the set of parameters,

{Ij,aUi,cjmjm,Zjm}, i,j= 1,...,J, m= 1,...,M, defines a J state,MmixtureHMM

model. In this work, all acoustic models used are HMM models.

2.1.2 Maximum Likelihood Recognition Method

In maximum likelihood decoding, the goal is to find the most probable word string

given the acoustic observations. The objective is to maximize P(WIY), where

W= wl,.--,wK denotes a word string, and Y = yl,-,yT denotes the observed sequence

of feature vectors. Using Baye's rule, this criterion can be rewritten as

arg max P(WIY) = arg max P(YIW)P(W). (2.2)
W W
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In Equation (2.2), P(W) represents the match with the statistical language model and

P(YIW) represents the match with the acoustic HMM models.

The acoustic match for each word, P(Yk IWk) is estimated by matching the sequence

of feature vectors corresponding to the kth word, Yk, with the HMM models of the

sequence of subwords contained in that word. If we assume the Markov chain occupies

state sj at time t, i.e., qt = sj , then according to the definition of HMM model,

T

P(Yk,Qlwk)= P(y1 ,,"-,yT,q, -- ,qTIAk)= faqtlqtbqt (yt), (2.3)
t=1

where Q=ql,-"',qT is the state sequence information. It is often referred to as

segmentation and is in most cases hidden or can not be obtained directly. In order to

obtain a reasonable estimation of the segmentation, the Viterbi algorithm [ic] is used to

search through all possible state sequences to find the one that would yield the maximum

value for the likelihood function, that is,

T

Q* = arg max P(Yk ,lwk ) = arg max f aqt 1lqt bqt (Yt). (2.4)
Q ql"'qT t=1

Given the segmentation Q*, the probability P(Yk Wk) can then be approximated as

P(Yk Q* Ik )

The second factor in Equation (2.2), P(W)= P(wl,w 2 , .. WK), is estimated from

the language model, which provides a probabilistic description of the syntax of the

language. In an n-gram language model, the sequence of words, W, is assumed to be

Markovian, so that

P(wk IWk-1,...,l) = P(k lWk-l,...,Wk-n+l) . (2.5)
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The order of the model, n, is typically limited to two (bigram) or three (trigram). For

example, in the bigram case, the probability of a word string can be expressed as

P(W) = P(w1 ,W2 , .,Wk) = P(wl). P(w2 1wl)"P(wK IWK-1). (2.6)

The language model complexity is measured by perplexity, which is the exponential of the

average word entropy at a decision point in the grammar, 2 H(w) [id].

The problem of training or estimating the parameters of the HMM models from

speech data will not be discussed here in detail. The goal in speech recognition is to

determine the word sequence W that maximizes P(WIY, A). In the ML training

procedure, the word sequence W is known, and the goal is to determine the model

parameters, A = {7 j,aij,cjm,gjm, jm , which maximize P(YIW,A). The reader is

referred to published tutorial references for discussion of the Baum-Welch algorithm and

the segmental k-means algorithm which are used for HMM model training [1-2].

2.2 Keyword Spotting

Many speech recognition systems rely on extracting partial information from

unconstrained speech utterances. These utterances could be ill-formed and contain out-of-

vocabulary (OOV) words. One approach which has been studied intensively is keyword

spotting, which involves detecting the occurrence of a given set of information bearing

words in running speech [3-8]. In an HMM based keyword spotting system, HMM

acoustic models are trained for each keyword, and a set of "filler" or "background"

models are also trained to represent OOV words or non-keyword speech. CSR techniques

are applied to search through the network of keyword and filler models to produce a
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continuous stream of decoded keywords and fillers. One major element that distinguishes

a keyword spotting task from a CSR task is that keyword spotting only calls for the

detection of a relatively small subset of the total words that might appear in the input

utterances. Some of the more recent research in keyword spotting has demonstrated that

more detailed modeling of the non-keyword speech can result in significant improvement

in word spotting performance [6-8].

In most keyword spotting systems, a second stage decision rule is used to verify each

keyword occurrence hypothesized by the CSR. A score or confidence measure is

calculated and then compared to a preset threshold to determine whether to accept or

reject a hypothesis. Tradeoffs between probability of detection and false alarm rate can be

achieved by adjusting this threshold. Some of these keyword spotting systems operate in a

mode which is similar to the utterance verification system being investigated in this thesis

except only the events of keyword occurrences are being verified.

In our work, a large vocabulary CSR (LVCSR) system with subword HMM models is

used. Unlike keyword spotting systems, we attempt to obtain a complete transcription of

the input utterance. All words are treated equally in decoding and are all assigned

confidence measures in verification. It is not until all decoded words and their confidence

measures are passed to the spoken language understanding unit that individual words or

phrases might be treated as containing significant content

2.3 Confidence Measures

In many speech recognition systems, confidence measures have been used for

verification of recognition hypotheses. In the keyword spotting systems discussed above,
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confidence measures are used for acceptance and rejection of hypothesized keyword

occurrences. In other tasks where a large percentage of the input utterances are out of

domain, confidence measures can be used to detect illegitimate words and utterances

[9,11,15,16,18]. In tasks where OOV words and ill-formed utterances are rare, confidence

measures can be used to detect events where in-vocabulary words are decoded incorrectly

[13].

There are many different techniques for computing confidence measures [6,8-

12,14,16,18]. In [6], log-likelihood scores obtained directly from Viterbi decoding are

used as keyword scores. In many recent systems, various forms of likelihood ratio scores

have been used as confidence measures, and have been shown to out-perform likelihood

scores. LR scores have less variability, and are more efficient and robust than likelihood

scores.

As with any hypothesis test, the LR approach involves distinguishing a null hypothesis

from an alternative hypothesis. There have been many different ways for defining the

distributions associated with these hypotheses and for estimating their likelihoods in the

context of speech recognition. This is especially true for the alternative hypothesis. One

approach is to estimate the likelihood associated with the alternative hypothesis by

summing over all the likelihoods associated with other hypotheses that are possible [10-

12]. For example, one system for verifying the presence of individual keywords in a

continuous utterance generates an N-best list of 500 hypothesized sentences using a

LVCSR system [10]. The null hypothesis for testing for the presence of a keyword is

formed from all of the hypothesized sentences that contain the keyword. The alternative

hypothesis is formed from all of the hypothesized sentences that do not contain the
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keyword. The likelihood of each hypothesis is estimated by summing over the likelihoods

of all hypothesized sentences that are associated with that hypothesis.

Another approach that has been used to estimate LR based confidence measures is to

train designated acoustic models to represent the alternative hypothesis, which is defined

to be the event of a spotted keyword being a false alarm or a decoded word being

incorrect. Likelihoods associated with the alternative hypothesis are calculated by

matching speech segments against the alternative acoustic models. In some keyword

spotting systems, background and filler models are used as alternative acoustic models

[3,14]. In other systems, designated anti-keyword or "impostor" models are used

[13,16,18]. In this work, designated subword acoustic models are trained for the purpose

of representing the alternative hypothesis in the likelihood ratio calculation.

2.4 Discriminative Training

In the LR based confidence measure calculation described above, two sets of acoustic

models are needed, the "target" models for the null hypothesis, and the alternative

hypothesis models. Various methods for constructing these models and for

discriminatively training their parameters have been investigated [13-18]. The goal of

discriminative training is to maximize the discrimination power of the likelihood ratio test.

It has been shown to out-perform the ML training method for many keyword spotting and

utterance verification tasks. Different forms of models have been investigated. These

include alternative hypothesis models that are word level single state HMM's [16]. In this

work, more sophisticated impostor models are used, and discriminative training methods

are used for re-estimating both target and impostor models [18, 20].
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2.5 Summary

This chapter gave some of the background knowledge that is necessary for

understanding the verification and training algorithms that will be described in the next

chapter. First, the HMM based CSR procedure using ML criterion is described. The

structure of a typical HMM model is described and notation is introduced. Each HMM

model is characterized by a discrete Markov chain, {t j,aij} and feature vector

distributions, which are continuous mixtures of Gaussian pdfs,

M

bsj(y) = cjmN(y;gjm,,Zjm) . The ML recognition procedure is described as a
m=1

technique for finding the most probable word string given the acoustic observations based

on pre-trained acoustic and language models, i.e., to find arg max P(WI Y) by maximizing
W

P(YIW)P(W).

Previous work on topics of HMM based keyword spotting, confidence measures

computation, and discriminative training are reviewed. This work investigates confidence

measure calculation and discriminative model training algorithms similar to some that have

been recently studied. The significance of this work is to apply those techniques to a more

difficult task which deals with highly unconstrained speech, which will be described in

Chapter 4.

Another novelty of this work is that it lays the ground work for future studies of the

potential for integrating utterance verification procedures with language modeling and

spoken language understanding. There has been little work done in this field, and we hope

that this study could lead to further applications.
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3. Confidence Measures and Training
Algorithms for Utterance Verification

This chapter provides a detailed description of likelihood ratio based confidence

measures used for utterance verification and of the algorithm used for training the acoustic

models used for UV. In the first section of the chapter, the implementation of the LR

based UV procedure in continuous speech recognition is described, providing detailed

formulations for calculating the LR based confidence measures. In the second section, a

discriminative training procedure based on a gradient descent algorithm is presented as a

means for training both the target and alternative acoustic models. The training procedure

is designed to optimize a LR criterion which is very similar to that used in verification. In

the last section there is a brief discussion relating to the integration of the UV procedure

with statistical language modeling and the spoken language understanding system.

3.1 Testing Procedure and Confidence Measure Calculation

The likelihood ratio based utterance verification system being investigated in this

work consists of two passes. First, an input utterance is passed through a continuous

speech recognizer (CSR). Second, the resulting decoded word string together with the

observed feature vector sequence are passed through the UV unit in which a confidence

measure is computed for each word. This confidence measure can then be compared to a

threshold to determine whether a word is correctly decoded.
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Utterance verification is often considered as a hypothesis testing problem. The event

where a word is correctly decoded is defined to be the null hypothesis, C=1; and the event

where a word is incorrectly decoded is defined as the alternative hypothesis, C=O. The

likelihood ratio is then the ratio of the a posteriori probabilities of observing a feature

vector sequence Y conditioned on the two events,

P(YIC=1) (3.1)
P(YIC = 0)

It is assumed that for a correctly decoded word, the sequence of observation vectors, Y, is

modeled by a set of null or target hypothesis models, Ac, and for an incorrectly decoded

word, Y is modeled by a set of alternative hypothesis models, A a. The likelihood ratio

equation then becomes

P(YIAC) (3.2)

P(YI Aa)

In this work, both Ac and A a are hidden Markov models. Furthermore, it is assumed

that for each subword unit, u, there are dedicated HMMs Xc and a. The target

hypothesis model, XC, is similar to and could be identical to the HMM model used in the

CSR decoder. The alternative hypothesis model, a , models incorrectly decoded words.

It is taken to be a combination of a background model, )bg, shared by all subword units

and a set of subword unit specific impostor models, X m. The purpose of the background

model is to provide a representation of the generic spectral characteristic of speech. The

purpose of the impostor models is to provide a representation of acoustic events that are
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frequently confused with a given subword unit. The background and impostor model

probabilities are combined linearly in the following manner,

P(ylX a ) = (1 -a)_ P(ylX im) -+ a P(yl bg ). (3.3)

where a is a weighting constant. For simplicity, in this thesis, we will use the model

topology that each pair of target model and impostor model for one unit contain the same

number of states and the background model is a single state model.

The confidence measures are calculated from the observed feature vector sequence,

Y, the decoded word sequence, W, and the segmentation information on the start and end

time of each state. In Section 2.1.2 it was mentioned that given an HMM model, A, and a

sequence of observation vectors, Y, a sequence of states, Q* = ql, - ,qT, can be obtained

such that P(Y, Q*IA) = maxP(Y, QIA) where Q is any possible sequence of states.
Q

Hence, given this state sequence, Q*, the probability P(YIA) can be approximated as

T

P(Y,Q* IA) = faqt-lqtbq (y). (3.4)
t=l

As a result the likelihood ratio in Equation (3.2) can be approximated as

T
c bc (y

P(Y, Q*A)  a qtlqt qt )

t=l (3.5)
P(Y,Q*lIA a ) T (Yt

t=l

It is assumed in Equation (3.5) that the state sequence Q* is the same in both the null

hypothesis and the alternative hypothesis and was obtained using the Viterbi algorithm to

maximize P(Y, QIAc) . If the transition probabilities in Equation (3.5) are also assumed to
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be equal, i.e., ai = a i, then the approximation to the logarithm of the likelihood ratio can

be written as

P(Y, Q*l I A c)  T l bt ( y ) )

R= log P(Y, = =log ((3.6)
P(Y, Q t1a) t=1 ba ( t)

(3.6)
T

= (logbq (yt)-logba (Yt))
t=l

where bat (Y ) = a'bbg (Yt)+ (1-a)b(yimt

This is the general form of the log-likelihood ratio, or LR score R, computed over a

speech segment consisting of T observation frames.

The calculation of word level LR based confidence measures consists of a hierarchy

of calculations of LR scores at frame level, state level, unit level and finally word level. At

the frame level, the LR score for frame t with observation vector Yt and state qt takes the

form,

Rt(yt) = logb (yt) - logba (Yt)

=-- logb (yt)-log[- b bg (y t ) + ( 1 - ) b im (y )] (3.7)

At the state level, the LR score associated with the segment of speech over which the

frames were decoded as "belonging" to state sj is taken to be the sum of the LR scores of

all frames in the state, normalized by the state duration, Tj,

Rs (Ys T Rt(yt) (3.8)
- t=ti'

-'--"--~--~- ~~-



In Equation (3.8), tij, and tfj are the time indices of the first and last frames, such that

qt = sj for tij _ t < tfj , Tj = tfj - tij +1, and Ys = Ytij "...'Yq . The reason for doing

the normalization is so that different states with different durations would have

comparable scores. Finally, the unit level LR score is the average of the state level scores,

1 J"
Ru (Yu) = - Rs (Ys), (3.9)

u j=1

where Ju is the number of states in the HMM model for unit u and Yu = Ysi, ",Ys

The word level confidence measure Rw is formed from weighted linear combinations

of unit level LR scores, Ru (Y,). As with any likelihood ratio based measures, Ru (Yu)

can exhibit a wide dynamic range. In order to reduce the effects of this dynamic range, a

continuous nonlinear transformation, Fu (Ru (Yu)) , is applied to the unit level scores. The

nonlinear transformation is derived from the well known sigmoid function,

1
Fu (Yu)= 1 + exp(-y -(Ru (Yu)- )) , (3.10)

where y and t are constants chosen for the function. The offset value t determines the

center of the weighting and the scale factor y is related to the width of the function. This

function maps the entire real axis to the unit interval, (0,1). A sample of a sigmoid function

1
with r = 0 and y = 1, i.e. y = is plotted in Figure 3-1.

1+ exp(-x)

The word level score is the geometric mean of the weighted unit level LR score

scores, that is
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R, (Y,) = exp N log(F (Y (3.11)
( i=1

where N w is the number of subwords contained in word w, and i is an index used for

summation over these subwords. The effect of the geometric mean is to assign greater

weights to units with low LR scores, which are more likely to have been incorrectly

decoded. As a result, an individual unit with a particularly low score can cause the word

level score to be low and consequently cause the word to be classified as a false alarm and

be rejected. This reflects the rule of considering a decoded word to be incorrect when any

one of its subword unit is misdecoded.

In our work, the final score, R,, is defined as the confidence measure for a word.

Comparing it to a threshold yields the decision of whether to accept or reject the

hypothesis that the word had been correctly decoded. Words with confidence measure

Sample Sigmoid Function
With r=O and y=1

0.9
0.8-
0.7-
0.6--

0.20.1

-8 -4 -2/7 0 4 8

1
Figure 3-1 Sample sigmoid function with I = 0 and y = 1, that is y =+ exp(-x) .The

center of the function is determined by t, where the slope is .
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above the threshold are accepted and words with confidence measure below the threshold

are rejected, namely,

accept

R, . (3.12)
reject

It is worth mentioning that the likelihood, P(YIW)P(W), obtained from maximum

likelihood decoding cannot be directly used as a confidence measure. The reason is the

following. Although it is true that

arg max P(WIY) = arg max P(YIW)P(W),
W W

the decoder itself does not produce an estimate of P(WIY),

P(YIW)P(W)
P(WIY) = P( P(YIW)P(W). (3.13)

P(Y)

This is to say that, although P(YIW)P(W) is sufficient for determining the best word

sequence, it is not the same as the likelihood of a word sequence being correct, because it

is not normalized by the probability of observing the sequence, P(Y). This means that in

the ML procedure, a decoded word with higher likelihood score is not necessary more

likely to be correct than another decoded word with lower likelihood score when they

correspond to different segments of speech. This is the reason why likelihood scores from

the ML recognition process cannot be used directly to verify whether a word is correctly

decoded. The advantage of using the likelihood ratio algorithm proposed above is that the

probability of observing the sequence, P(Y), gets canceled out as the ratio is taken, thus

normalization is no longer needed.
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3.2 Discriminative Training Algorithm for LR Based UV

This section describes an algorithm for training the model parameters associated with

the likelihood ratio based confidence measure calculation that was presented in Section

3.1. The probability distributions that represent the target and alternative hypotheses in the

LR based hypothesis testing were both parameterized as hidden Markov models. The goal

of the training procedure is to re-estimate the model parameters to optimize a cost

function that is directly related to the LR criterion used in verification as defined in

Section 3.1.

This section has three parts. First, the cost function is defined and motivated in terms

of the objective of optimizing UV performance. Second, a gradient descent algorithm for

minimizing this cost function is described. Finally, the parameter update equations are

obtained by solving the partial derivatives associated with the gradient descent algorithm.

3.2.1 Cost Function Definition

The goal in defining a cost function for UV is to assign low cost to "desirable" events,

and to assign high cost to "undesirable" events. The terms "desirable" and "undesirable" in

this context refer to the ability of the unit level LR score Ru (Yu) to predict whether a

unit has been correctly decoded. Hence, desirable event would correspond either to a unit

being correctly decoded and Ru(Yu) being very large, or to a unit being incorrectly

decoded and Ru (Yu) being very small. Other events corresponding to LR scores not

predicting the accuracy of the hypothesized units are considered undesirable. Table 3-1

describes the relative costs in terms of the possible events.
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Objective For Cost Function Definition

unit level likelihood ratio score
hypothesized unit

correctly decoded

incorrectly decoded

low high

Table 3-1 The dark shaded entries correspond to undesirable events, which should be
assigned high cost. The light shaded entries correspond to desirable events, which should
be assigned low cost.

A cost function which reflects the above objective and is also continuous and

differentiable is derived from the sigmoid function,

(3.14)

where y and c are fixed parameters and the indicator function 6(u) is defined as

1-1 u is correctly decoded

( u is incorrectly decoded

The goal is to adjust the parameters of X' and '!m' to minimize the expected value of the

cost function Fu (Yu, X, Xm ). The background model, ?bg, which represents the generic

spectral characteristic of speech, will not be re-estimated in this work. A plot of the cost

function vs. unit level LR score forc = 0 and y = 1 is shown in Figure 3-2.

3.2.2 Gradient Descent Algorithm

The implementation for this discriminative training procedure with cost function

defined in Equation (3.14) has four steps. First, training utterances are decoded by a

continuous speech recognizer. Second, the hypothesized word strings are compared to the

known transcriptions of these training utterances, and each decoded subword unit is

F(Ru(Y))= F Yu11, n)
1+exp(-y (u)(R(Y) )

F. (R. (Y.) F. (Y.,, ti ) 1 + exp(-y -.8(u)(R u (Y.) - "r))'



labeled as either correct or incorrect, i.e., 8(u) = +1. Third, the cost is evaluated

according to Equation (3.14) with Ru (Y u ) defined in Equation (3.9). Finally, a gradient

update is performed on the average of the cost, which is a close approximation of the

expected value of the cost that would be obtained on unseen data, namely,

1NUN(u, = N F (y , XcUim) (3.15)

u i=1

An+1 = A - .VF, (3.16)

where Nu is the total number of occurrences of the unit u in the training data, and i is an

index for summing over these unit. s is the learning rate constant for the gradient update.

k refers to target models (k = c) or impostor models (k = im ).

Note that the magnitude of the derivative of the cost function with respect to the LR

score attains its maximum at t and goes to zero for values away from t, as shown in

Cost Function for Correct and Incorretly
Decoded Units at r=0 and y=1

0.9

00

0.6

-10 -5 0.4.! 5 10

o 0.-0

- '0.1

low unit level LR score high

Figure 3-2 Cost function for correctly decoded units is plotted by solid line while the
dotted line is for the incorrectly decoded units. Thick gray segments correspond to high
cost events and thin black segments correspond to low cost events.
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Figure 3-2. As a result, the LR scores close to t will contribute the most to the gradient

computation and consequently would be most affected by the update. In other words, the

sigmoid form of the cost function results in a situation where most of the effect occurs

near the center where most confusions occur and a small change in LR score could have

significant contribution to the prediction of whether a unit is correctly decoded or not. For

extreme values of the LR score, changing their value by a small amount would have little

impact. Figure 3-2 also implies that by decreasing the cost function using the gradient

descent algorithm, the LR scores for the correctly decoded units would tend to shift right,

and the LR scores for the incorrectly decoded units would shift left. This would

consequently increase the separation between LR scores for correctly decoded and

incorrectly decoded units, which is exactly the desired behavior.

3.2.3 Parameter Update Equations

The purpose of this section is to solve for the gradient of the average cost function,

VF, in the gradient update Equation (3.16). Expressions will be obtained for the partial

derivatives with respect to the parameters of both the target model, Xc, and the impostor

model, Xum , of every subword unit u. Hence, the procedure involves simultaneous re-

estimation of both target and impostor model parameters.

Recall the procedure for computing the average cost for a unit u, F(u, C ,X!).

First, the frame, state, and unit level LR scores are computed for each unit according to

Equations (3.7)-(3.9). Next, each unit level LR score is converted to a cost according to

Equation (3.14). Finally, the averaged cost for each unit is computed from the costs of all

the occurrences of the unit. The gradient of the average cost with respect to each HMM
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parameter can then be obtained by repeatedly using the chain rule for derivative

computation. For each HMM model, %k

include the mixture weights for state s i

(k = c,im), the parameters to be updated

i and mixture m, cjm, the mean vectors,

jm = I jmi , and the diagonal covariance matrix, I jm = jmi , where j=1...J

m = 1... M , and i denotes the dimensions of the feature vector.

Let 0 denote any element of the set of HMM model parameters, {Cjm, Ir jmi, (Y mi }

of all target models and impostor models. By applying the chain rule, the following partial

derivatives are obtained,

aF(u,xcu ,m)u
o

aF
-= -8(u) -Fu

Ju j= 1

1 NuFu

Nu i=1

Ru
• (1- Fu). O '

t=tij

(3.17)

(3.18)

(3.19)
R,

Recall Equation (3.7) for the definition of frame level LR score, Rt ( ) ,

Rt(Yt) = logb c (yt)-logbq (yt)qt q

= logb (y)-log[z- b

The partial derivative against any parameter in a target model, i.e., c c )c, is

R log b (y t)t qt

(3.20)

(3.21)
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The partial derivative against any parameters in an impostor model, i.e.,4im E gim, is

aR -(1- a)-b im

o im (1-a) -bim +a-bbg
" qt

Slog b k (yt)
To solve for the partial derivatives alog

observation probabilities in Section 2.1.1,

alogbim (Yt)
a0im

(k = c,im), recall the definition of

bqt=sj (Yt) = P(I qt = sj, ) ,

where qt = sj is the state association at time t. When expressed in terms of HMM

parameters, the definition of the observation probability is

M

bqt=sj (Y) = cjmN(y;g m,1 jm), (3.24)
m=1

where N(y; g jm,, jm) represents Gaussian pdfs. By expanding the Gaussian expressions,

partial derivatives of logbq,=s, (Yt) against each model parameter can be solved.

There are a variety of gradient based HMM model re-estimation procedures in the

literature [21,23,24]. In those procedures, the gradients are taken with respect to the

-k -ktransformed parameters, Cjm, -jmi and the mean vector Rjmi. The transformations are

defined as

-k kT jm = loga

-kCjm = logcjm

k -k

k = exp(mi)
Cm M

c exp(n)
n=1

(3.25)

(3.22)

(3.23)
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There are two main reasons for taking these transforms. The first reason is that it is

necessary for the values of the standard deviations and weights to stay positive and for the

weights to sum to unity. The transforms above guarantee the preservation of these

properties as the parameters are updated. The second reason is that by updating the log of

the parameters and then transforming them back, the magnitude of change of each

parameter is then scaled by its original value, because AO = 0 -A(log ) . This way, small

values would have small absolute changes and large values have large absolute changes.

This is desirable because, for example, a change in standard deviation from 0.001 to 0.101

is much more significant than a change from 10 to 10.1. In the former, the pdf is scaled by

a factor of about 100.

Combining Equations (3.24) and (3.25), the gradient with respect to the transformed

parameters are

3logbkq,=sj (Yt)
-k Yj Cjm, (3.26)

jm

alogbqk=s (Yt) k ti mi

t kY (3.27)
(i mi)

alogbq,=y ) k timi 11
-k g t=s k (Yti , (3.28)
-3m [K jmi

k mN(Yt m m
where Yjm = k (3.29)

bqt=sj (Yt)



3.3 Integration of UV With Language Model and SLU

The utterance verification algorithm described in Section 3.1 assigns acoustic

confidence measures to each word in the hypothesized word strings produced by a CSR

decoder. This section suggests how these acoustic confidence measures can be integrated

into an n-gram statistical language modeling framework to facilitate a closer interaction

between language and acoustic models. It also suggests how these acoustic confidence

measures can be integrated with spoken language understanding in order to facilitate a

more accurate semantic interpretation of each utterance.

It is often the case in speech recognition that a word is decoded solely due to the

strength of the language model, even when the local acoustic match is poor. Therefore,

when a word is incorrectly decoded, the constraints imposed by the n-gram language

model often cause the following words to be incorrectly decoded as well. By providing the

language model with access to acoustic confidence measures, the effect of this artifact

could be reduced. In one study, confidence measures computed from word level acoustic

likelihoods were integrated with language modeling by replacing the likelihood score,

P(YIW)P(W), with P(YIW)a P(W)P(X), where c is a constant, and f is a function of

the confidence measure, X, associated with a word [19]. This corresponds to an ad hoc

procedure which weights the language modeling probabilities with acoustic confidence

measures. In another study, likelihood ratio based word level acoustic confidence

measures are integrated into an n-gram statistical language model so that the language

model takes into consideration not only the word history, Wk- 1," - -Wk-n+1, but also a

coded representation of the acoustic confidence, Xk-1,",Xk-n+l, associated with the
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word history [20]. The conditional language model probabilities take the form

P(wklWk-1 ,Xk-l,"',Wk-n+l ,Xk-n+l) as opposed to the standard n-gram probabilities

P(wk Wk_-1,' Wk-n+l). The incorporation of acoustic confidence into the language

model results in a general formalism which expands the state space of the language model

to directly include acoustic knowledge.

The UV confidence measures described in this thesis were also integrated into the

statistical formalism associated with a spoken language understanding system [20]. The

task of the SLU system was to classify input utterances according to a set of semantic

classes. Probabilities derived from acoustic confidence measures were used to scale the

posterior probability of a semantic class given the input utterances. It was found that

including acoustic confidence measures resulted in an improvement in SLU performance

by allowing for the rejection of semantic class hypotheses with low acoustic confidence

measures [20].

3.4 Summary

This chapter has provided a detailed description of the confidence measures used for

UV in large vocabulary CSR and has also described a discriminative training procedure for

estimating the parameters of UV models. Word level confidence measures are computed

as the geometric means of weighted unit level LR scores. The discriminative training

procedure is based on a gradient descent algorithm that simultaneously updates both the

target and impostor model parameters. The gradient descent algorithm is based on a cost

function where decreasing the value of this cost function results in an increase in the

separation between the LR scores obtained for correctly and incorrectly decoded subword
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units. Detailed formulations for calculating the gradient of the cost function in the HMM

model parameter space were presented in Section 3.2. Finally, there is a discussion in

Section 3.3 on how the acoustic confidence measures described here might be integrated

with statistical language modeling and spoken language understanding.
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4. Phase I: Baseline Experiments

The goal of this chapter is to describe a set of baseline experiments for evaluating the

performance of the likelihood ratio based utterance verification algorithm described in

Section 3.1. The experiments were performed using utterances collected from a large

vocabulary spoken language task over the public telephone network. The speech corpus

derived from this task will be referred to here as the "How may I help you?" (HMIHY)

corpus. The results were evaluated as the ability of the UV system to detect correctly

decoded vocabulary words in hypothesized word strings produced by a CSR decoder.

This chapter has six sections. Section 4.1 describes the HMIHY natural language task, the

speech corpus, and the configuration of the baseline CSR system. Section 4.2 describes

the testing procedure by providing a flow diagram and a list of the steps involved. Section

4.3 describes the procedure for training initial background, target, and impostor models

using a maximum likelihood training algorithm. These models are used later for

initialization in the discriminative training procedure which will be described in Chapter 5.

Section 4.4 describes each of the three individual experiments, while Section 4.5 presents

and discusses the results. Section 4.6 summarizes the chapter.

4.1 Speech Corpus: How may I help you?

This section describes the HMIHY speech corpus, which is used to evaluate all

algorithms and procedures investigated in this thesis work. This section has three parts.

The first part describes how the HMIHY task is structured. The next part describes the
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speech corpus, how it was collected, and how it was partitioned into data sets for the

experiments in this work. The last part describes the recognition models and provides

recognition performance on each of the data sets.

4.1.1 The HMIHY Task

The "How may I help you?" (HMIHY) task is an automated call routing service.

In this system, a user is first prompted with the open ended question "This is AT&T, how

may I help you?". Depending on the user's response, the system will then prompt the user

with requests for confirmation or further information. Its goal is to carry out a dialog with

the user to collect enough information so that the call can be routed to an appropriate

destination, such as another automated system or a human operator. The following is an

example of such a dialog taken from [22].

Machine : This is AT&T, how may I help you?

User : Can you tell me how much it is to Tokyo?

Machine : You want to know the cost of a call?

User : Yes, that's right.

Machine : Please hold on for rate information.

In the HMIHY system, an input utterance spoken by a user is first decoded by a

continuous speech recognizer. The decoded word string is then passed to the spoken

language understanding unit for analysis. This service is designed for any user to call from

anywhere and work in real time. It is considered to be a very difficult CSR task. The

word error rate for such a system is usually very high. Recognition results will be

presented later in this section. A more detailed description of the HMIHY task can be

found in [22].
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4.1.2 The HMIHY Speech Corpus

The HMIHY corpus was collected over the telephone network from both human-

human and human-machine dialog scenarios. The first customer utterances, responding to

the greeting prompt of "This is AT&T, how may I help you?", were end-pointed,

transcribed, and stored. They were partitioned into two sets. A set of 1000 utterances was

selected and designated for testing. This set of data will be referred to as the testlK data

set. These utterances are on average 5.3 seconds in duration and 18 words in length.

Another set of 2243 utterances was designated for training the acoustic HMM models

used for recognition. This same set of training data will also be used for training the UV

models, which include the target, background, and impostor acoustic models. This set of

data will be referred to as the train2K data set.

In order to provide additional data for training the UV models, six additional data sets

were used. These additional data sets are referred to as greeting, billing method,

confirmation, re-prompt, phone number, and card number. They correspond to utterances

spoken in response to different prompts in the dialog. They were collected during a more

recent evaluation of the HMIHY system relative to the collection of the testlK and

train2K data sets. The kind of utterances each set contains is sufficiently described by the

title of each data set, e.g., billing method, confirmation. Table 4-1 summarizes some of

the statistics of each of the data sets mentioned above.

The characteristics of the six sets of additional training data are quite different from

the train2K data set for several reasons. First of all, the speech utterances in these data

sets are not well end-pointed. Some utterances may contain many seconds of silence or

noise proceeding or following speech. Secondly, a large percentage of utterances in some
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of the data sets are single word utterances as is evident from the statistics shown in Table

4-1. Finally, since these utterances correspond to different stages in the dialog, there may

be a slightly greater training-testing mismatch. Despite these disadvantages, these six sets

of data were still used in this experiment for training the target and impostor models.

title of number of words per single word utterances

data set utterances utterance frequency examples

testlK 1000 17.9

train2K 2243 17.8

greeting 1769 6.7 632 operator, hello

billing method 1390 3.3 381 collect, card

confirmation 1786 2.0 1502 yes, no

re-prompt 842 9.0

phone number 793 10.4

card number 469 9.1

All training data 9292 8.6

Table 4-1 Statistics of various data sets.

4.1.3 Recognition Models and Performance

The language model used in recognition has a perplexity of about 16. The size of the

lexicon is approximately 3600, which contains all words that appeared in the train2K data

set. With this lexicon, 30% of the test utterances still contain OOV words due to the

highly unconstrained nature of the task [22]. The acoustic models used consist of 52

subword HMM models: one single state model for silence, 40 context independent three-

state phone models, and 11 digit models with either 8 or 10 states. A list of the subwords

used can be found in Table 4-3 in Section 4.3. The names for the phoneme subwords are

taken from the ARPABET [25]. The observation density for each state consists a mixture
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of eight diagonal Gaussian densities. The feature vectors are 39 dimensional, including 12

cepstral coefficients, energy, and their 1st and 2nd order differences.

The recognition performance for testlK, train2K data sets, and all training data are

tabulated in Table 4-2. The total error rate is defined to be the sum of substitutions,

insertions, and deletions, divided by the total number of word occurrences. There are

several features worth pointing out. The six sets of additional training data yielded high

insertion rates, as is evident from the high insertion rate for all training data. This is due to

the lack of end-pointing and the fact that many utterances contain very few words. The

word error rate for test data is 56%, which is very high compared to other more

constrained tasks. This recognition performance is not the best that has been achieved on

the testing utterances. Using context dependent acoustic models and other techniques, a

lower word error rate of about 45% can be achieved. For the train2K data set, the error

rate is only 46% because it was used in the training of the recognition models.

Data set correct substitution insertion deletion total error

testlK 52% 36% 8% 13% 56%

train2K 61% 29% 6% 11% 46%

All training data 61% 31% 23% 8% 62%

Table 4-2 Recognition performance for testlK, train2K data sets, and all training data.
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4.2 Testing Procedure

Front
speech end

feature vector

Y = yl,'",YT

decoded word string
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Figure 4-1: Testing procedure for two-pass likelihood ratio based utterance verification.

The testing procedure consists of two main stages, a CSR stage and a UV stage as

shown in Figure 4-1. It is performed in several steps:

1. A feature vector sequence, Y= Yl,-",YT, obtained from front end speech

processing, is first passed through a CSR system yielding a decoded word string,

W = w1 , wK, using a language model and a set of subword acoustic models,Ar.

2. The decoded word string, W, as well as the feature vector sequence, Y, are then

passed to the UV unit.
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a) Segmentation is performed by a forced alignment of the observation

sequence, Y, with respect to the target models associated with the word

sequence, W, to find the optimal state sequence, ql,---,qT, as defined in

Equation (2.4). The state sequence provides a mapping of observation

vectors to state indices for the computation of the LR scores given in

Equations (3.7)-(3.9). It was found that doing segmentation using the

target models, Ac, yielded slightly better UV performance than using the

recognition models, Ar. Note that Ar and Ac are not identical, even though

they are both acoustic models for the same set of subword units. They are

different because they are obtained from different training processes.

b) A confidence measure, xk, is then calculated for each word, wk,

according to Equations (3.7) through (3.11), using the target and

alternative models, Ac and Aa and a set of parameters, t, y, and a. Recall

that t and y are parameters for the sigmoid weighting of the unit level LR

scores given in Equation (3.10), and a is the parameter for interpolating

the background and impostor hypothesis likelihoods in Equation (3.3).

Note that the language model is not used in confidence measure

calculation. The confidence measures are purely based on acoustics.

3. Each word level confidence measure is then compared to a threshold, . Decoded

words with confidence measure above are accepted and ones with confidence

measure below are rejected. The goal is to be able to accept correctly decoded

words and reject incorrectly decoded words.
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4.3 ML Training Procedure

In the baseline experiments, maximum likelihood training is used for training the UV

models, which include a set of target models, Ac, and alternative models which consists of

the background model, bg, and a set of impostor models, Aim. The background model is

a single state 64 mixture HMM model. Its parameters are estimated using an unsupervised

ML training procedure using all frames in the train2K data set.

The target and impostor models have the same topology as the recognition models,

which was described in Section 4.1.3. The two sets of models are trained simultaneously

from all training data. The procedure can be outlined as follows:

1. Perform recognition on all utterances in the training data sets.

2. Initialize both target models and impostor models using their corresponding

recognition models. For example, the recognition model for subword unit aa, r

is copied to its corresponding target and impostor models, ,ca , and im.

3. For each utterance, align the decoded transcription with the correct transcription

(recognized by human), and label each subword in the decoded word sequence as

either correct, insertion, or substitution.

4. Using ML training procedure, train target models and impostor models from units

labeled as correct and units labeled as substitution, respectively.

Units labeled as insertions were not used in the training of impostor models due to

practical reasons. It is because poor end-pointing and a large percentage of short

utterances in the additional training data sets resulted in insertions rates that were too
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high. Many of the insertions correspond to silence segments and are not fair

representations of acoustic events that are easily confused with particular subword units.

subword correct substitution subword correct substitution subword correct substitution

aa 3417 1042 iy 3193 1660 v 423 410
ae 2240 1354 JH 518 260 w 861 424
ah 2117 977 K 11062 2020 y 2857 535
ao 4148 1000 1 8109 2125 z 1474 2224
aw 185 238 m 5146 1628 zh 2 0
ax 6267 1756 n 7098 2107 one 2302 523

ay 6271 1931 ng 2192 869 two 2043 769
B 1802 557 ow 1575 661 three 1899 504

CH 458 232 oy 16 2 four 2266 433

D 6350 2508 P 2407 943 five 1718 315

dh 1157 997 r 5894 1316 six 1776 454

eh 4826 1160 s 4902 1309 seven 1832 398
er 2962 765 sh 306 53 eight 1728 822

ey 2640 1037 T 8989 2543 nine 1382 312

f 1171 425 th 230 378 zero 588 83

G 511 439 uh 193 177 oh 718 502

hh 917 519 uw 2961 1368
ih 5639 2167 uw 2961 1368 Total 141,738 47,231

Table 4-3 Number
training data. They

of units labeled as correct or substitution for each subword unit in
are directly related to the amount of data used toward training the

target and impostor models of each subword
are taken from the ARPABET [25].

12000

9000

6000

3000

0

3000

unit. The names of the phoneme subwords

Figure 4-2 Number of units labeled as correct or substitution for each subword unit.

Table 4-3 and Figure 4-2 illustrate the number of units that were labeled as correct or

substitution for each subword unit, which is directly related to the amount of data that was

used toward training of the target or impostor model of that subword unit. Notice that



there are a lot more units labeled as correct than substitution, which implies that there are

less data for impostor model training, which is why we had to use the six additional

training data sets. Also, the occurrence count varies greatly across different subword units.

Some subwords barely occurred, e.g., oy, zh. This suggests that maybe we could vary the

number of parameters to be estimated, that is, using different number of mixtures, for

different subword models, which could be considered in future studies.

4.4 Description of Experiments

The baseline experiments investigate three different methods for confidence measure

calculation. The purpose of the experiments is to see how UV performance improves as

more sophisticated alternative hypothesis models are applied to confidence measure

calculation. Each experiment is carried out according to the testing procedure outlined in

Section 4.2 unless otherwise noted. The experiments are described in this section, and

their results are presented and discussed in Section 4.5. The three experiments involve the

use of confidence measures based on simple log-likelihood scoring, likelihood ratio

scoring with background model, and likelihood ratio scoring with maximum likelihood

trained target and impostor models.

4.4.1 Simple Log-Likelihood Scoring

The first experiment uses a log-likelihood based, rather than likelihood ratio based,

confidence measure calculation. It is performed without any of the UV model training

outlined in Section 4.3. In this experiment, the recognition models, Ar, were used for both

segmentation and confidence measure calculation as given in Figure 4-1. To implement
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log-likelihood based confidence measure, the frame level score in Equation (3.7),

Rt(yt)=logb' (y/)-logb q(yt), was replaced by Rt(y t ) =logbq (yt). When

combining unit level scores into word level scores, simple algebraic averaging was used

instead of geometric averaging with weighting, that is, Equations (3.10) and (3.11) were

replaced with R, (Y,) = Ru (Yu). The purpose of this experiment is to see how
N u=1

well a simple log-likelihood based procedure performs for the purpose of utterance

verification.

4.4.2 LR Scoring With Background Model

The second experiment implements a likelihood ratio based confidence measure using

only a single state background model as the alternative model. It is performed without the

training of either target or impostor models. In this experiment, the recognition models,

Ar were used for segmentation and as target models in confidence measure calculation. In

Equation (3.7), the weight of the background model was set to one, i.e., a = 1, so the

frame level LR score becomes R(Yt)= logb (t) - logbbg(yt). In the sigmoid

weighting of unit level scores in Equation (3.10), the parameters were set to t = 0.0 and

y = 0.5.

4.4.3 LR Scoring With ML Trained Target and Impostor Models

The last experiment is the most closely related to the phase II experiments that are

presented in Chapter 5. It implements a likelihood ratio based confidence measure using

target, impostor, and background models, which were trained according to the maximum
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likelihood training procedure outlined in Section 4.3. In this experiment, segmentation was

performed using target models and confidence measure calculation was carried out

following Equations (3.7)-(3.11) exactly. The parameters in Equations (3.7) and (3.10)

were set to a = 0.2, t = 0.0, y = 0-5. These parameters were obtained empirically from

trial experiments. The choice of a will be discussed again later in Chapter 5.

4.5 Experimental Results

The goal of utterance verification is to accept correctly decoded words while rejecting

incorrectly decoded ones. In the baseline experiments, confidence measures were

calculated for each word in the decoded word strings. In this section, we will evaluate

these confidence measures in terms of their ability to distinguish the two classes of

correctly and incorrectly decoded words. This section will first describe the means for this

evaluation, then present and discuss the results of the three experiments conducted.

The UV performance for all three experiments was evaluated on only a subset of the

words that appeared in the decoded word strings associated with the test utterances.

There are two reasons for this. The first reason is that decoded word strings are

interpreted by a SLU unit which relies on only a subset of the words and phrases decoded

by the recognizer. Thus, it is more important to be able to correctly detect and assign

confidence measures to those words and phrases that are considered to be salient by the

SLU unit. To select these words, a large list of information bearing phrases was obtained

from the SLU training procedure, and words contained in these phrases were extracted.

The second reason for evaluating confidence measures on only a subset of the vocabulary

is the existence of "short" function words, e.g., it, a, I, etc.. These short words tend to be
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acoustically unstable, i.e., their acoustic characteristics vary as they appear in different

context. It is often the case that these short words are decoded only due to the strength of

the language model. Thus, it is not very meaningful to analyze their acoustic confidence

measures. Due to this reason, a small set of "short" words were removed from the list.

Finally, 134 words were selected, which account for 29% (4905) of the word occurrences

in the decoded word strings associated with the 1000 test utterances. They are listed

below in alphabetical order.

about, ahead, alternate, another, answered, answering, anyway, area, assist, assistance, because,
bill, billable, billed, billing, blind, brazil, business, busy, california, call, called, calling, calls,
card, cents, charge, charged, charges, check, checked, city, code, codes, collect, company,
completed, connect, connected, cost, country, couple, credit, customer, days, dial, dialed,
dialing, different, digit, direct, directory, disconnect, disconnected, distance, dollars,
emergency, getting, hang, hello, help, home, hook, hours, house, hundred, hung, incorrect,
information, instead, international, italy, line, lines, london, long, looking, make, making,
maybe, miles, minutes, misdialed, money, name, name's, number, number's, numbers, off,
office, operator, outside, overseas, paid, party, patient, pay, person, phone, pin, place, placed,
please, problem, puerto, rico, put, reached, receive, recording, restricted, reverse, rotary,
service, several, signal, something, spanish, speak, state, telephone, telling, tennessee, think,
third, through, time, touch, universal, visa, washington, whether, wrong

To evaluate the UV performance, the decoded word strings associated with each test

utterance is first compared to the correct transcription of that utterances. Each decoded

word is then labeled as either correct or incorrect. Incorrectly decoded words include

insertions and substitutions, but not deletions, since they do not appear in the decoded

word strings. The UV performance will be presented in terms of confidence measure

distributions and receiver operating characteristic (ROC) curves.
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(1) Simple Log-Likelihood Scoring
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Figure 4-3 Probability distributions of confidence measures for the 2872 correctly
decoded words and the 2033 incorrectly decoded words in the test utterances for the three
baseline experiments. Overlapped regions are shaded by solid black. Smaller overlapped
region indicates better discrimination and better UV performance.
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The three pairs of distributions of word level confidence measures for the two classes

of correctly and incorrectly decoded words are plotted as histograms and displayed

together in Figure 4-3 for comparison. Each histogram consists of 30 equally spaced bins.

The x-axis corresponds to the confidence measure, which ranges from 0 to 1 for the LR

experiments. The y-axis indicates the probability of a confidence measure being in a

particular bin given the word is correctly decoded or incorrectly decoded. The distribution

probabilities are obtained by normalizing the word counts within each bin by the total

number of words decoded correctly (2872) or incorrectly (2033). The purpose is to

eliminate the effect of a priori probabilities, P(C =0) and P(C= 1), which are

determined by the recognition performance. In these plots, the overlapped regions are

shaded by solid black. Smaller overlapped region indicates better discrimination and better

UV performance. The separation between the means of the two distributions is also a

good indicator of performance. The simple log-likelihood scoring experiment had the

worst performance. The two distributions almost entirely overlap. In the second

experiment when likelihood ratio was employed with a background model serving as the

alternative model, the separation improved significantly. The peaks of the two

distributions became distinguishable. In the third experiment, where the target models

were trained and both the subword dependent impostor models and the subword

independent background model were used as the alternative models, the overlap between

the distributions continued to decrease.

In Figure 4-4, receiver operating characteristic (ROC) curves representing UV

performance are plotted. These curves are plots of probability of detection versus

probability of false alarm, generated by sweeping the threshold, , for accepting or
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rejecting decoded words. Probability of detection corresponds to the probability of

accepting a word given it is correctly decoded. Probability of false alarm is the probability

of accepting a word given it is incorrectly decoded. Comparison of the three curves

indicates that the UV performance improved significantly.

ROC Curves

1 ..

0.9"

S0.8

0.7 -

0.6 -

o 0.5 -- / .

-0.4 - / LR, target & impostor

" 0.3 -, -- --LR, background

a 0.2 -I

0.1 - -- - - -- log-likelihood

0 I- LO 0 I( D 0)

probability of false alarm

Figure 4-4 Comparison of ROC curves for baseline experiments.

In order to summarize the performance given by a ROC curve with a single number,

the measure of equal error rate (EER) is used. It corresponds to the point on the ROC

curves where

1 - probability of detection

= probability of false rejection

= probability of false alarm.

The values of EER for the three experiments are tabulated in Table 4-4. EER decreased by

a relative 28% when likelihood ratio with background model was used, and decreased

again by a relative 20% when ML training of target and impostor models was employed.
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Another measure for UV performance is efficiency, which measures the percentage

reduction in the entropy of the classification of words, namely,

H(C)- H(CIX)
1 = x 100% , (4.1)

H(C)

in which, X e (0,1) denotes the confidence measure and C {(0,1} denotes whether the

word is correctly decoded or incorrectly decoded. For example, a perfect classifier with

1 = 100% would have H(CIX)= 0. For this case, given the confidence measure, we

know deterministically whether the word is correctly decoded or not. On the test data, out

of the 4905 decoded words, 2872 (58.6%) were decoded correctly and 2033 (41.4%)

were decoded incorrectly, yielding H(C)=0.979. H(CIX) was estimated by quantizing the

values of X using 10 uniform bins, namely,

H(CIX) =l P X eW 0) HCX (4.2)

The efficiencies for the three baseline experiments are tabulated in Table 4-4. Efficiency

increased by an absolute 14% when likelihood ratio with background model was used, and

increased again by an absolute 10% when ML training of target and impostor models was

employed.

Experiment EER Efficiency

Simple log-likelihood scoring 0.408 3.85%

LR scoring with background model 0.294 17.6%

LR with ML trained target and impostor models 0.234 27.2%

Table 4-4 Equal error rates and efficiencies for the three baseline experiments.
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4.6 Summary

This chapter described the speech corpus, the experimental procedures for testing and

training, the three baseline experiments and their results. The first experiment showed that

simple log-likelihood based confidence measures performs poorly in terms of utterance

verification. The distributions of confidence measures for correctly decoded and

incorrectly decoded words overlaps almost entirely. The second experiment showed that

employing a likelihood ratio criterion, even with a very simple definition of alternative

hypothesis model, could yield significant improvement in UV performance. The last

experiment showed that further improvement in UV performance could be achieved by

training the target model and using both the subword dependent impostor models and

subword independent background models as the alternative hypothesis models.
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5. Phase II: Discriminative Model
Training for Utterance Verification

The purpose of this chapter is to evaluate the effectiveness of using a discriminative

training procedure for training the utterance verification models. The algorithm of the

discriminative training procedure was presented in Section 3.2. It is designed to optimize

an LR criterion that is very similar to that used in verification. Therefore, discriminatively

trained UV models are expected to out-perform models trained using the ML criterion.

The task of this chapter is to verify this expectation and investigate various other aspects

of discriminative training. This chapter consists of four major sections. First, the

discriminative training procedure used in this experiment is described in detail in Section

5.1. Section 5.2 presents the utterance verification results obtained using discriminatively

trained UV models, and compares them to the previous results obtained using ML trained

UV models. Section 5.3 discusses the convergence property of the training procedure by

presenting the change in UV performance over the training iterations. Section 5.4

investigates various independent issues including the choices of the offset parameter t and

the scaling parameter y in the definition of the cost function in training. Section 5.4 also

examines the sensitivity of the UV performance to the choices of background model

weighting parameter a and the word level confidence measure threshold used for

accepting or rejecting decoded word hypotheses.
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5.1 Discriminative Training Procedure

This section describes steps involved in the implementation of the discriminative

training procedure. This training procedure is similar to the ML training procedure

described in Section 4.3, except in model parameter re-estimation algorithm. The

discriminative training algorithm and detailed formulations were presented in Section 3.2.

The training procedure is as follows.

First, speech recognition is performed on utterances in the training data sets described

in Section 4.1.1. Each subword unit in the hypothesized word strings is then labeled as

being correctly decoded, insertions, or substitutions. These labels are later used in cost

computation to assign values to the indicator function, 8(u), in Equation (3.14). Second,

UV models are initialized using the ML trained models obtained in the baseline

experiments described in Chapter 4. Third, state segmentation is performed to align the

observation frames to the states of the target HMM models. This provides a state

assignment so that for each vector yt, there is qt = sj, for some state sj. Finally, each

iteration of the iterative training algorithm is performed by estimating the expected cost

over the training data and then re-estimate the model parameters. A detailed description of

the sequence of the steps taken within the nth iteration is listed below.

I. Estimating Expected Cost:

For each unit labeled as correct or substitution

1. Compute the unit level LR score Ru (Yu) [Equation (3.9)].

2. Compute the cost Fu (Yu~ c, ku ) [Equation (3.14)].

3. Compute and accumulate gradient of the cost with respect to each

model parameter 4 [Section 3.2.3].
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II. Model Parameter Re-estimation:
1. Update the model parameters Ak = Ak- VF [Equation (3.16)]

using different learning rate constants, Et ,YEc, for means, variances,

and mixture weights, respectively.

2. Update the learning rate constants en = Eo -e-pn where p is a positive

constant. This exponential decay is chosen to reduce the learning rate as
more iterations are taken.

5.2 Experimental Results

This section describes the experimental results obtained for performing UV on the

task described in Section 4.1.1 using discriminatively trained UV models. These results are

compared to the results obtained using ML trained models in Chapter 4. The UV

experiment using discriminatively trained models was performed under the same scenario

as described in Figure 4-1. The UV performance will be presented in terms of confidence

measure distributions and ROC curves as was done in Section 4.5.

Figure 5-1 is a plot of probability distributions of confidence measures as computed

on the test data for correctly decoded and incorrectly decoded words computed using ML

trained UV models and discriminatively trained UV models. Compare the two pairs of

distributions for discriminatively trained UV models and ML trained UV models, the area

in the overlapped region decreased by a relative 6.5% when discriminative training was

performed. The plot also shows that the probability distribution of the confidence

measures for incorrectly decoded words has shifted leftward. Its mean decreased from

0.42 in the ML experiment to 0.39 in the discriminative training experiment. The mean for

correctly decoded words did not change much. This differences in means indicate that the

discriminatively trained UV models yielded better separation.
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a) LR Scoring Using ML Trained UV Models
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Figure 5-1 Probability distributions of confidence measures for the 2872 correctly decoded
words and the 2033 incorrectly decoded words in the test utterances computed using a)ML trained UV models and b) discriminatively trained UV models. Overlapped regions

are shaded by solid black. Smaller overlapped region indicates better discrimination and
better UV performance.

In Figure 5-2 the ROC curves representing UV performance for discriminatively

trained UV models and ML trained UV models are plotted. The curve corresponding to

discriminative training is slightly higher, indicating slightly better performance. Table 5-1

tabulates the equal error rates and efficiencies for the two experiments. Comparing the

performance of discriminatively trained UV models to ML trained UV model, there is a

relative 7.3% decrease in EER and a relative 11% increase in efficiency. In summary, there

is some improvement obtained by employing discriminative training in UV. Issues that
is some improvement obtained by employing discriminative training in UV. Issues that



may affect the performance of the discriminative training procedure will be discussed in

Section 5.3 and 5.4.

ROC Curves
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Figure 5-2 ROC curves representing UV performance for
models and ML trained UV models.

0.35

discriminatively trained UV

Experiment EER Efficiency

Using ML trained UV models 0.234 27.2%

Using Disc. trained UV models 0.217 30.3%

Table 5-1 Equal error rates and efficiencies for utterance verification
models and discriminatively trained UV models.

using ML trained UV

5.3 Convergence of Model Training Procedure

The discriminative training procedure is an iterative procedure whose goal is to

minimize the average cost function defined in Equation (3.15) for each subword unit. A

gradient descent algorithm is used, which is guaranteed to converge to a local minimum of

the cost function in the parameter space. This chapter investigates the rate of convergence

_ _ Disc. trained UV models
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of this algorithm on training data and its ability to generalize to unseen test data.

Understanding the manner in which the convergence occurs would allow us to better

evaluate the discriminative training procedure. This section consists of two parts. The first

part focuses on the rate of convergence of the average cost measured on the training data

for a single subword unit, aa. The second part focuses on how the word level UV

performance on training and testing data changes as more iterations of training are used.

Figure 5-3 is a plot of the value of the average cost measured over the training data

for subword unit aa, i.e., Fa, as a function of the number of training iterations. Recall

that the goal of discriminative training based on the gradient descent algorithm is to

minimize this cost. The decrease seen in the plot demonstrates that the algorithm does

indeed accomplish this goal. After 25 iterations of training, the value of the average cost

has decreased by as much as 50%.

Figure 5-4 displays the means of unit level LR scores for correctly decoded and

incorrectly decoded aa units after each iteration of the discriminative training procedure.

The means are simplified representations of the empirical probability distributions of unit

level LR scores for correctly decoded and incorrectly decoded aa units, similar to those

displayed in Figure 5-1. It is clear from Figure 5-4 that the means of unit level LR scores

of correctly decoded aa units increased and that of incorrectly decoded units decreased.

Together they imply that the distributions of unit level LR scores for correctly decoded

and incorrectly decoded aa units have drifted apart, which is the desired result.
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Over Training Iterations
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Figure 5-3 Value of average cost measured over the training data for subword unit aa, i.e.,

Faa, as a function of the number of training iterations.
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Figure 5-4 Evolution of the means of the empirical distributions of unit level LR scores for
correctly decoded and incorrectly decoded aa units. Each is a function of the number of
training iterations. Together, they demonstrate an increase in separation in unit level LR
scores for correctly decoded and incorrectly decoded aa units.
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Figure 5-5 Equal error rate and efficiency for utterance verification measured on both
testing and training data as a function of the number of training iterations. UV
performance on training data continues to improve while performance on testing data
stopped improving after three iterations.

Figure 5-5 shows the equal error rates and efficiencies for utterance verification on

testing and training data as functions of the number of training iterations. The plots show

that the UV performance on training data continues to improve as more iterations of

training are used. It is a direct consequence of the increase in separation of the unit level

LR scores demonstrated in Figure 5-4. However, UV performance on testing data stopped

improving after three iterations. This improvement on training data but not on testing data

indicates a possibility of over-fitting. Over-fitting in this context implies that there may be

insufficient training examples with respect to the total number of HMM parameters that

are being estimated. This is evident from Table 4-3 and Figure 4-2, which presented the

amount of data used toward training of target and impostor models of each subword unit.

There is also a possibility of mismatch between training and testing data which may be

attributed to the extremely wide variety of spontaneous speech utterances that were

presented to the system. Recall the description of the speech corpus in Section 4.1.2, some
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of the training utterances correspond to different stages in the HMIHY dialog than the

testing utterances, which could also contribute to the training-testing mismatch.

5.4 Additional Issues In LR Based Training and Testing

This section discusses three independent issues related to either the training and

testing procedure. The first issue is the choice of the cost function parameters, t and y,

used in discriminative training. The second and third issues are related to the choices of

the background model weighting parameter a and the word level confidence measure

threshold used in the utterance verification procedure.

Recall the discriminative training procedure described in Section 5.1. In the

computation of the cost function Fu as defined in Equation (3.14), the offset parameter

was set at t = 0.0 and the scaling parameter was set at y = 2.5. These parameters were

determined empirically so that the cost function defined would be effective for the purpose

of discriminative training. Recall the plot of the cost function given in Figure 3-2, it is

clear that the gradient obtains its maximum value at the LR score that equals to the offset

value t. It was concluded that LR scores close to t will contribute the most to the gradient

computation and consequently have the potential of being affected the most by the

training. Therefore, a cost function should be defined so that the offset parameter x is set

roughly between the probability distributions of correctly decoded and incorrectly decoded

units, where discrimination is most needed. The scaling parameter y should reflect the

separation between the distributions.
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Figure 5-6 is a plot of the means of the unit level LR scores for correctly decoded and

incorrectly decoded units and their averages for each subword unit before discriminative

training is performed. The means are simplified representations of the probability

distributions as were in Figure 5-4. Figure 5-6 shows that there is a large variation in the

mean values and their separation across different subword units, which implies a large

variation in the probability distributions. Therefore, there would be different optimal

choices of t and y for each subword unit. For example, a set of near optimal choices of t is

marked by horizontal bars in Figure 5-6. They are averages of the mean unit level LR

scores for correctly decoded and incorrectly decoded units. The dotted line in the figure

corresponds to the unit independent choice of t = 0.0 used in this experiment. It can be

concluded from the figure that using t = 0.0 for all units is a reasonable choice. Therefore,

in this experiment, unit independent choices of r and y were used for simplicity. Unit

dependent choices could be investigated in the future.

4-- Mean Unit Level LR Scores for Correctly Decoded and Incorrectly
Decoded Units

3--

-3

-4

CU .C ' > .C E 0),.. C - _ > ) 0 , 0 ) ._ o
I .. I )) I 0

Figure 5-6 Mean unit level LR scores for correctly decoded units (diamond) and
incorrectly decoded units (triangle) for each subword unit before starting discriminative
training. Their averages are marked by short horizontal bars. The dotted horizontal line
across the figure corresponds to the unit independent choice of t = 0.0.
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The next two issues that will be discussed are related to the choices of the

background model weighting parameter a and the word level confidence measure

threshold used in the UV procedure described in Section 4.2. In the testing experiments

performed in this study, the correct transcriptions of the testing utterances are known.

Thus, appropriate values of a and can be chosen to optimize the UV performance.

However, in field trials, where correct transcriptions are not available, values of a and

have to be chosen in advance. The following discussion is dedicated to determining the

sensitivity of UV performance to the choices of a and .

Figure 5-7 is a plot of UV performance measures, EER and efficiency, as functions of

the background model weighting parameter a defined in Equation (3.3). It shows that for

values of a in the neighborhood of 0.2, the performance measures do not vary much.

a = 0.2 is used in all the experiments performed in this study that involves using impostor

models, unless otherwise stated.

Sensitivity of UV Performance to Weight of Background Model
0.31

0.29 .A- ..
-- 0 - - efficiency

0.27-

0.25

0.23 EER

0.21 I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
weight of background model, a

Figure 5-7 Sensitivity of UV performance, in terms of efficiency and EER, to the weight

of background model a.

__ __I _~_ _I ___I_ ~



Figure 5-8 is a plot of various verification errors, including probability of false

rejection, probability of false alarm, and their average, as functions of the threshold setting

as defined in Equation (3.12). As the threshold varies from 0.4 to 0.6, probability of

false rejection and probability of false alarm both change significantly, one increases while

the other decreases. However, their average error does not vary as much. Comparing to

the middle point where all three curves intersect, which corresponds to equal error rate,

the average error increases by about a relative 10% as the threshold deviates by 0.05, and

increases by about a relative 30% when the threshold is off by 0.1. In most cases, setting

the threshold around 0.5 should be near optimal.

Sensitivity of Verification Errors to Average Error
Threshold Setting, 30%

50%

28%
40% - - - - - false

S."rejection
S,26%
S30%, , ----. false

Salarm
o 24%

.- average

10% - 22%0

0% I I I 20%

0.40 0.45 0.50 0.55 0.60 0.40 0.45 0.50 0.55 0.60
threshold, E threshold, 4

Figure 5-8 Sensitivity of verification errors to threshold setting, . The plot on the right is
a close up of the middle curve in the plot on the left.
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5.5 Summary

The purpose of this chapter is to evaluate the effectiveness of using a discriminative

training procedure for utterance verification model training. Section 5.1 described the

training procedure and Section 5.2 presented the results and compared them to the results

obtained using ML trained UV models. It was shown that employing discriminative

training procedure resulted in a relative 7.3% reduction in equal error rate, which

corresponds to an improvement in UV performance. Section 5.3 discussed the

convergence of the training process. It is shown that although UV performance on training

data significantly improved over iterations, UV performance on testing data stopped

improving after three iterations of training. This phenomenon suggests a possibility of

over-fitting, which in this context implies that there may be insufficient training data.

Section 5.4 discussed three other issues. It is shown that different subword units have

different probability distributions of unit level LR scores for correctly decoded and

incorrectly decoded units. Therefore, there might be an advantage to using unit dependent

offset parameter t and scaling parameter y for cost function definition in training. It is also

shown that the UV performance is not very sensitive to the choices of background model

weighting parameter o and is also not very sensitive to word level confidence measure

threshold when the deviation from optimal value is small.
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6. Phase III: Further Applications of
Utterance Verification

This chapter presents three experimental studies of issues that are related to further

applications of acoustic confidence measures. The first experiment investigates using

sentence level confidence measures for rejecting utterances that contain only background

noise, silence, or non-speech utterances. The second experiment compares the UV

performance for assigning confidence measures at a phrase level versus assigning them at

the word level. The last experiment implements a method for converting the word level

LR based confidence measure of a decoded word to an estimate of the a posteriori

probability of the word being correctly decoded given its confidence measure. In all the

experiments presented in this chapter the utterance verification models used are trained

using the discriminative training procedure described in Chapter 5.

6.1 Sentence Level Utterance Verification

This section describes an experiment which investigates using sentence level

confidence measures for the purpose of rejecting utterances that contain only background

noise, silence, or non-speech utterances. They will be referred to collectively as garbage

utterances. This section is divided into three parts. The first part describes the garbage

utterances and motivates the need for effective rejection of these utterances. Second, the

experimental setup is described. Finally, the results of a sentence level UV experiment are

presented.
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6.1.1 Problem Description

In a telephone based spoken language understanding task like the HMIHY task, there

are many situations where garbage utterances are interpreted as speech utterances

resulting in unpredictable actions being taken. A user may be silent but the telephone

receiver may pick up ambient noise, which may be interpreted as a speech utterance. A

user may enter a string of digits using the number keys on a touch-tone telephone instead

of speaking the digits and the recognizer may attempt to interpret the touch-tone digits as

a speech utterance. It is very important to be able to separate garbage utterances from true

speech. After a garbage utterance is passed to an ML based recognizer, the recognizer

would reject the utterance only when it is unable to produce a hypothesized word string

because no allowable network path could be found in the search procedure. The speech

recognizer may accept the garbage utterance and produce a hypothesized word string.

This meaningless word string will then be passed to the SLU unit and result in

unpredictable actions being taken. Therefore, it is necessary to develop a mechanism that

can reliably reject these garbage utterances.

6.1.2 Experimental Setup

This experiment is performed using the 1000 utterances in the testlK data set and

another data set in the HMIHY speech corpus that contains exclusively garbage

utterances. A total of 784 garbage utterances were presented to the recognizer. The

recognizer was unable to produce hypothesized word strings for only about 30% of the

utterances. Hypothesized word strings were produced for the remaining 543 of the

garbage utterances. Without any means for verifying these hypothesized strings, they
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would be passed directly to the SLU unit. We attempt to reject these garbage utterances

that were decoded by the recognizer by assigning them sentence level confidence measures

which can then be compared to a threshold. The sentence level confidence measure of an

utterance is defined to be the algebraic mean of the word level confidence measures

assigned to each word in the decoded word string, i.e.,

Rs K Rwk (Ywk), (6.1)
R S k=l

where Ks is the total number of words in a decoded word string , and Rwk (Yk ) denotes

the word level confidence measures defined in Equation (3.11).

6.1.3 Experimental Results

To evaluate the ability of the sentence level confidence measures to correctly identify

garbage utterances, sentence level confidence measures were computed for the decoded

word strings associated with all 543 garbage utterances and the 1000 utterances in the

testlK data set. The goal is to correctly reject the garbage utterances while accepting the

testlK utterances. We evaluate the rejection performance by plotting the probability

distributions of the sentence level confidence measures for the testlK and garbage

utterances and the ROC curve.

Figure 6-1 is a plot of probability distributions of sentence level confidence measures

for the 1000 testlK utterances and the 543 garbage utterances. The overlapped region is

small, which indicates good discrimination. Figure 6-2 is the plot of the ROC curve.

Probability of detection corresponds to the probability of accepting an utterance given that

it is one of the testlK utterances. Probability of false alarm corresponds to the
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Garbage Utterance Rejection Using
Sentence Level Confidence Measures
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Figure 6-1 Probability
testlK utterances and

distributions of sentence level confidence measures for the 1000
the 543 garbage utterances.

ROC Curve For Garbage Utterance Rejection

I.U

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 -

0.1 -

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

probability of false alarm
0.8 0.9 1.0

Figure 6-2 ROC curve representing
sentence level confidence measures.

performance of garbage utterance rejection using

EER 0.097

efficiency 64.7%

Table 6-1 Equal error rate and efficiency for garbage utterance rejection using sentence
level confidence measures.
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probability of incorrectly accepting an utterance given that it is one of the garbage

utterances. The plot shows that low false alarm rates can be achieved at low risk of false

rejection. In particular, the equal error rate is 0.097, which is presented in Table 6-1. The

efficiency for using sentence level confidence measures for sentence level utterance

verification is 64.7%, which is also presented in Table 6-1. This implies that the sentence

level confidence measure is able to provide a lot of information for whether an utterance

that has already been decoded by the recognizer is a garbage utterance.

6.2 Phrase Level Utterance Verification

This section describes an initial attempt to use confidence measures for utterance

verification at a phrase level. There are two reasons for exploring phrase level UV. One

reason is that the confidence measures calculated are passed to a SLU system that

interprets the semantic meaning of a decoded utterance based on phrase level units, e.g.,

make a credit card call. Therefore, it may be useful to assign confidence measures at a

phrase level so that the confidence measures may be better incorporated into the decision

making process of the SLU. The other reason is that the acoustic characteristics of a word

are often affected by its surrounding context, especially for shorter words. Assigning

confidence measures at a phrase level reduces this effect by taking some context into

consideration and at the same time increasing the length of the speech segment. This

section will first describe how phrase level confidence measures are defined and then

evaluate the technique on a single phrase,credit card.
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The definition of a phrase level confidence measure is very similar to that of a word

level confidence measure defined in Equation (3.11). It is the geometric mean of the

weighted unit level LR scores of all subword units contained in the phrase,

Rph (Yph) = exp N logFh ), (6.2)

where Yph is the sequence of feature vectors corresponding to the phrase, Nph is the

total number of units contained in the phrase, and Fui (Yi ) denotes the weighted unit

level confidence measure defined in Equation (3.10).

Number of Occurences in Test Data

correctly decoded incorrectly decoded

credit 70 70

card 69 71

credit card 66 74

Table 6-2 Number of correctly decoded and incorrectly decoded occurrences of the words
credit and card and the phrase credit card in test data.

The practical benefits of computing confidence measures at the phrase level are

demonstrated here for the phrase credit card. There are a total of 140 occurrences of the

phrase in the hypothesized word strings associated with the 1000 test utterances. Using

confidence measure calculation procedures similar to that described in Section 3.1, word

level and phrase level confidence measures were computed for each of the 280

hypothesized words and 140 hypothesized phrases. Table 6-2 demonstrates how many of

the words and phrases were decoded correctly and how many were decoded incorrectly. A

phrase is considered to be correctly decoded only when all of the words contained in the

phrase are correctly decoded.
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EER efficiency

credit .143 54.6%

card .188 41.0%

credit card .122 59.1%

Table 6-3 EERs and efficiencies for using word level confidence measures on the words
credit and card, and using phrase level confidence measures on the phrasecredit card.

To evaluate the UV performance for each of the words, credit, card, and the phrase

credit card, equal error rates and efficiencies are computed and tabulated in Table 6-3. It

is clear from the table that assigning confidence measures at the phrase level yielded better

UV performance than assigning confidence measures at the word level. Other similar trials

were performed on phrases such as long distance, to call, etc. Various degrees of

improvement were observed. For the phrase long distance, the phrase level UV

performance was better than both word level UV performance, same as the phrase credit

card. However, for the phrase to call, the UV performance improved for the word to, but

degraded for the word call. This could be due to the highly variable acoustic

characteristics of the short word to. A systematic way of choosing phrases and applying

phrase level confidence was not fully investigated, which could be considered in the future.

6.3 Obtain A posteriori Probability From Confidence Measure

This section investigates a method for converting the word level LR based confidence

measure for each decoded word to an estimation of the a posteriori probability of the

word being correctly decoded given its confidence measure. This conversion is motivated

by the fact that these acoustic confidence measures are passed to a SLU system that is

based on a probabilistic framework. In this section, a method for estimating these a
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posteriori probabilities based on empirical distributions of confidence measures is

described. The manner in which these a posteriori probabilities are incorporated into the

SLU system is described in [20].

The a posteriori probability of a word being correctly decoded given its confidence

measure can be expressed as

P(C = 1 IX = x) for x e (0,1), (6.3)

where C = 1 corresponds to the event of a word being correctly decoded and X = x

corresponds to the event of the confidence measure of the word being x. In this work, as

an initial attempt, we will approximate P(C = 1 IX = x), which is a continuous function

of x, with a discrete function by quantizing the values of x. In particular, the range of the

confidence measure (0,1) is partitioned into ten equally sized intervals as shown in Figure

6-3. Each interval can be visualized as a bin. Then, instead of estimating the probabilities

defined in Equation (6.3), we will estimate a set of ten discrete probabilities,

PC= 1 IX 10 1 ) for i= 1,...,10. (6.4)

In this work, a set of probabilities defined in Equation (6.4) is estimated for each word in

the lexicon due to the empirical observation that these a posteriori probabilities vary from

word to word.

I I I I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6-3 Quantization of the range of confidence measures into ten equally sized bins.
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The a posteriori probabilities in Equation (6.4) are estimated empirically from

statistics collected over the train2K data set. A non-parametric method is used. The idea is

to estimate P(C=I IX E(i-Y 0, 10 )) for a word w simply by going through the

training data and counting the fraction of words decoded correctly, among all occurrences

of the word w with confidence measure X e (i-0, 10). An outline of the procedure

is as follows.

First, word level confidence measures are computed for each word in the decoded

word strings associated with the train2K utterances. Next, for each word w in the lexicon,

empirical distributions of word level confidence measures for correctly decoded and

incorrectly decoded occurrences of the word w are accumulated. The empirical

distributions are accumulated as histograms over the same ten bins that are used for

quantizing the confidence measure x. As an example, the empirical distributions for the

word my are plotted in Figure 6-4 (a). It can be read from the plot that among the

occurrences of the word my with confidence measure within the 5th bin (0.4, 0.5), 97

were decoded correctly and 123 were decoded incorrectly.

The last step in estimating the probabilities in Equation (6.4) is to compute the

fraction of words decoded correctly for each bin of each word. For example, for the 5th

bin of the word my,

97
P(C = 1 IX e (0.4, 05)) =0.44. (6.5)

97 + 123

In Figure 6-4 (b), the estimated discrete a posteriori probabilities for the word my is

plotted as a function of confidence measure. It is the mapping function for converting
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confidence measures to a posteriori probabilities for the word my. When estimating the a

posteriori probability for the last bin, due to the low number of occurrences as seen in

Figure 6-4 (a), a linear interpolation is used. For words with very low overall number of

occurrences, it is not practical to train word dependent a posteriori probabilities for each

word. Instead, a set of default probabilities is trained from all words.

Theoretically, a set of development data different from both training data used for UV

model training and testing data should have been used for the training of the a posteriori

probabilities. However, additional data was not available. Furthermore, there are various

problems associated with quantization and estimation that are not treated in this simple

training method. More sophisticated training method could be investigated in future

works.

250 1.0

0 Incorrect 0.9-

200 - Correct 0.8-

S0.7
b. 150 - 0.6
o 123 .

o 97 0.5 -6 0.44100- 7 0.4

E 0.3
C 50 - [ 0.2

0.1
0 . I I I0.0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
confidence measure confidence measure

Figure 6-4 Left: (a) Empirical distributions of confidence measures for the word my.

Right: (b) Estimated discrete a posteriori probabilities for the word my.

Given the mapping functions from confidence measures to a posteriori probabilities

for each word in the lexicon, such as the one plotted in Figure 6-4 (b), the word level LR

based confidence measures can then be directly converted to a posteriori probabilities of

each word being correctly decoded. These a posteriori probabilities can be compared to a
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threshold for deciding whether to accept or reject a decoded word. To evaluate their UV

performance, equal error rate and efficiency were computed and presented in Table 6-4

and are compared to the UV performance of LR based word level confidence measures. It

is shown that converting LR based confidence measures to a posteriori probabilities

improves the UV performance slightly. The reason is that different words have different

confidence measure distributions, and thus, have different optimal threshold values.

Therefore, using one threshold for all words can only achieve a near optimal performance.

Converting confidence measures to a posteriori probabilities re-centers the distributions in

a way that reduces this variation, and consequently improves the performance. Another

advantage for using a posteriori probabilities is that it is less sensitive to threshold setting

than LR based confidence measures.

EER efficiency

LR based confidence measures .217 30.3%

aposteriori probabilities .211 32.2%

Table 6-4 EERs and efficiencies for utterance verification using LR based confidence
measure and using a posteriori probabilities converted from confidence measures.

6.4 Summary

This chapter has presented the results of three experimental studies related to further

applications of acoustic confidence measures. The first experiment investigated garbage

utterance rejection using sentence level confidence measures. In discriminating garbage

utterances from legitimate utterances, an EER of 0.097 was achieved. The second

experiment investigated the potential of phrase level confidence measures. For the phrase

credit card, it was shown that assigning phrase level confidence measures yielded better

UV performance than assigning word level confidence measures to each individual word
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in the phrase. The last experiment investigated a simple method for converting LR based

confidence measures to a posteriori probabilities of words being correctly decoded. The

procedure for estimating non-parametric discrete word dependent mapping functions for

this conversion by collecting statistics of confidence measures from training data is

described. It is shown that a posteriori probabilities yielded slightly better UV

performance on test data than LR based confidence measures.
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7. Conclusions

7.1 Summary

In this thesis we developed and evaluated a likelihood ratio (LR) based utterance

verification (UV) procedure and a discriminative training procedure for training a

dedicated set of hidden Markov models (HMM) that are used for UV. The UV procedure

verifies the accuracy of each decoded word in hypothesized word strings produced by a

HMM based CSR decoder. In the verification process, the UV system assigns each

decoded word a word level confidence measure that is formed from a nonlinear

combination of subword level LR scores. Each LR score for each subword unit is

computed using a target hypothesis model and an alternative hypothesis model dedicated

for each subword unit. The alternative hypothesis density is a linear combination of a

subword independent background density for representing the generic spectral

characteristics of speech and a set of subword dependent impostor HMM densities for

representing subword specific variabilities. The discriminative training procedure is

designed based on a gradient descent algorithm with a LR criterion similar to that used in

verification. It is an iterative procedure which re-estimates the UV model parameters to

increase the separation between the LR scores for correctly decoded and incorrectly

decoded subword units.

The LR based UV procedure and the discriminative training procedure are evaluated

on 1000 utterances collected from a highly unconstrained large vocabulary spoken
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language understanding task performed over the public telephone network. The UV

performance was measured in terms of its ability to accept correctly decoded words while

rejecting incorrectly decoded ones. Confidence measure distributions for correctly

decoded and incorrectly decoded words were plotted and receiver operating characteristic

curves were generated to compare the relative merits of different UV implementations.

Baseline experiments described in Chapter 4 demonstrated that LR based confidence

measures computed using both subword dependent impostor models and a single state

subword independent background model as the alternative models yielded significantly

better UV performance than using only the subword independent background model as the

alternative model. It was also shown that all LR based UV model definitions that were

investigated here significantly out-performed attempts at using the unnormalized

likelihood score obtained using an ML criterion.

Phase II experiments were related to discriminative training of the UV models, and

were described in Chapter 5. It was shown that a relative decrease of 7.3% in equal error

rate was obtained, which corresponds to an improvement in UV performance. Study of

the convergence rate of this iterative training procedure showed that the UV performance

on training data continued to improve while the UV performance on testing data no longer

improved after several iterations. While this behavior is typical of many discriminative

training procedures, it may also suggest a possibility of over-fitting to the training data.

Chapter 6 presented three additional experiments performed in order to investigate

applications beyond word level utterance verification. In the first experiment, sentence

level confidence measures were demonstrated to yield good performance when used for

rejecting utterances that contain only background noise, silence, or non-speech utterances.
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Each sentence level confidence measure is the simple algebraic mean of the word level

confidence measures assigned to all the words in a decoded word string. The second

experiment investigated the possibility of estimating confidence measures at a phrase level

rather than the word level. This is motivated by the belief that longer segments like

phrases may be less affected by the surrounding acoustic context than word level

segments. When evaluated on an anecdotal phrase credit card, phrase level confidence

measures were shown to yield better UV performance than word level confidence

measures. The last experiment investigated a simple method for converting LR based

confidence measures to a posteriori probabilities of words being correctly decoded given

their confidence measures for the purpose of integrating acoustic confidence measures

with the statistical formalism associated with the spoken language understanding system.

7.2 Future Work

This thesis has demonstrated a promising potential for using utterance verification in

large vocabulary continuous speech recognition. However, there are still various issues

not yet fully investigated. Additional effort in those aspects may lead to further

improvement in UV performance. First of all, the study of convergence rate in the

discriminative training procedure has suggested a possibility of insufficient training data.

As more data becomes available in the future, using additional data to train the UV models

may yield improvement in UV performance. Secondly, in this experiment, a particular

HMM model topology was chosen for practical reasons. There is a great possibility that

there might be some advantage to using some other HMM model topologies. Thirdly, in

the definition of the cost function used in discriminative training, subword independent
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values of the offset parameter t and the scaling parameter y were used. It was suggested in

Section 5.4 that there might be an advantage to using subword dependent values, and this

may be investigated in future work.

Another possibility for improving the UV performance is to modify the segmentation

procedure in utterance verification, a step which takes place before the confidence

measure calculation as shown in Figure 4-1. The current segmentation procedure uses the

Viterbi algorithm which is based on a maximum likelihood criterion. It searches through

all possible state sequence to find the one that yields a maximum likelihood score. It would

be a reasonable experiment to try performing segmentation based on a LR criterion similar

to the one used in confidence measure calculation using a modified Viterbi algorithm as

proposed in [18]. This modified decoder searches for a path that yields a maximum

likelihood ratio score as opposed to maximizing a likelihood score as done in a

conventional Viterbi decoder.

Another set of future experiments, some of which are already in progress, is to

integrate utterance verification with language modeling and spoken language

understanding, which was described in Section 3.3. Previous language modeling and

language interpretation techniques treat all words as if they were all decoded with equal

confidence. In the end, the principle motivation for developing robust measures of

acoustic confidence is the hope that they can provide a vehicle for inserting acoustic

knowledge into statistical language modeling and dialog control.
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