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Abstract

With more and more computers being constantly connected to the internet, with
increasingly larger hard drives, and with network bandwidth not keeping up, caching
is quickly becoming a necessity. A protocol is needed to find copies of objects that
are near to you, with a minimal impact on the overall CPU usage of all the computers
on the network and a minimal impact on the network traffic. This thesis describes an
algorithm that attempts to find copies of objects while optimizing resource usage.
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Chapter 1

Introduction

Computers are slowly turning into our universal device for retrieving and viewing

information. As Cable companies deliver more and more advanced features from our

cable boxes, such as online programming schedule and video on demand, computers

seem to be the next logical step in set top boxes. A computer can replace the obsolete

cable box with a more advanced and customizable programming guide, replace VCRs

by using hard drives as caches, and provide true video on demand. For example, if

you arrive home 5 minutes late to watch your favorite TV show, then you should be

able to tune in to the remaining 25 minutes while requesting the first 5 minutes be

retransmitted. HPRTP[4] provides a mechanism for this exact scenario to be handled

gracefully and with a minimal overhead on the network.

It would also be nice to extend the features of this system to allow the retrieval of

objects even if they are not currently being broadcast. Thus even if you return home

after the show has finished transmission, you could still be able to find a copy of the

object in someone else's cache, and retreive the data from their computer instead of

having to go back to the original source. This thesis is about designing a protocol

to find the nearest copy of an object with a minimal network overhead that works in

the framework of HPRTP.



1.1 Thesis Overview

There was a fair amount of work to be done to bring HPRTP up to the state where

a cached object locator would be useful.

Chapter 2 explains some fundamentals of HPRTP.

Chapter 3 explains some of the work done to port HPRTP to the Windows platform.

Since the majority of computers use Windows, demonstrating the ability to use

this advanced protocol on a common platform shows that this is not a distant

dream, but realizable using today's technology.

Chapter 4 explains the application developed for HPRTP to demonstrate it's effec-

tiveness.

Chapter 5 discusses the object location protocol which allows currently cached, but

not active, objects to be located and reopened.



Chapter 2

HPRTP

HPRTP[4] combines a reliable network protocol with a caching subsystem to allow the

seamless access of media related information, whether it be located on your computer,

on another computer, or if it is currently being broadcast. By incorporating the cache

together with the network protocol, the system allows other computers to query the

contents of the cache without any intervention from the program that put the contents

there in the first place.

As is illustrated in Figure 2-1, HPRTP sits between the application and the disk

and network. Any requests for information broadcast or delivery is sent to HPRTP. It

then takes care of broadcasting to multiple receivers on the network, handling repairs

on lost packets, and if appropriate, caching to the local disk for future access.

CLIENT CLIENT

HPRTP HPRTP etc...
DISK DISK

Figure 2-1: HPRTP System Diagram

HPRTP also accepts requests from the network. While the application is receiv-

ing a particular data stream, HPRTP can simulatenously serve another part of the



data stream to a different computer. In the event another computer loses a part of

the stream, HPRTP can send a repair packet to that computer. The fact that any

computer participating in a given data stream can respond to repair requests is a

distinct advantage of HPRTP because it reduces the load on the original server.

2.1 Reliable Multicast

HPRTP uses multicast IP to deliver the data stream to multiple recipients with a

minimal load on the network. Several techniques were added to fix the unreliable

nature of multicast.

One is called FEC, or Forward Error Correction. This technique essentially trans-

mits redundant data, under the assumption that if a packet is lost, its information

can be inferred from the other packets. This is similar to parity checking used in

RAM, RS-232 communications, or RAID.

The other technique is called NACK, or negative acknowledgements. When a

client discovers it is missing a piece of data, it will send a negative acknowledgement,

which means that it did not receive the data it was supposed to. Another computer

will respond to this NACK with the missing data. This is similar to what happens

in a conversation when you say "I'm sorry, could you repeat that?" This technique

is the opposite of that used in TCP, which uses positive acknowledgements. Positive

acknowledgements are sent for each piece of data that is properly received. This

is similar to saying "Uh huh" or "Yeah" while another person is talking to you.

Both methods work, but negative acknowledgements scale better with the number of

receivers.

2.2 Dynamic Partitions

In addition to delivering a reliable stream efficiently to multiple receivers, HPRTP

servers can create additional late join streams called dynamic partitions. This is useful

if one attempts to view a live broadcast after it has started. For example, if you get



home 5 minutes late for your favorite TV show, you can receive the last 25 minutes

of it by listening to the current broadcast. Additionally you can request the first five

minutes. This is called a late join because you join the current live broadcast late. A

neighboring HPRTP server that has the data cached can open a dynamic partition

to serve this data to you. HPRTP integrates the two streams together and returns

them as one uniform stream to the application that requested the data. Thus the

application does not need to worry about the details of caching the live stream while

receiving the second stream; HPRTP takes care of all the details.

2.3 Application Data Units (ADU's)

HPRTP gives a mechanism to assist applications in segmented their data. It resembles

multidimensional arrays: the application specifies the number of "dimensions" and

the maximum value for each one. For example, audio data might be segmented into

hours, minutes, seconds, and samples, with maximum values of 24, 60, 60, and 44100

for one days worth of sound sampled at 44.1kHz. When the application gives data

to HPRTP, it sends along with it the ADU range the data represents. Additionally,

when initially describing the object, the expected rate of ADU's is given so that

HPRTP knows how quickly to retransmit the data in the event it is required to serve

a dynamic partition.

2.4 Object Control Channels

HPRTP uses two object control channels, the Logical Data Stream Control Channel

and the Intra-Object Control Channel, to communicate information describing the

object. NACK's, repairs, a list of available streams for an object, and a description

of an object including expected bandwidth are all transmitted among one of the two

channels. All HPRTP servers involved with the object with listen to the IOC, and

it will listen to the LDS of each stream it is taking part in. By only listening to

the channels pertaining to the data the server is handling, HPRTP can somewhat



minimize the excess traffic it must listen to.

2.5 Potential Applications

The capabilities of HPRTP make it well suited to be the digital media delivery mech-

anism for packet switched networks such as the internet. It is capable of serving

broadcast television shows, movies, radio, and phone or video conferencing.



Chapter 3

Porting HPRTP

In order to make HPRTP usable on a variety of systems, an effort was made to port it

from the Digital Unix development environment to Windows NT. During this process,

a number of cross platform issues were brought up, both because of the processor and

because of the operating system.

Processors can differ in several aspects: the instruction set, which is the set of

commands the processor can interpret and run; the word size, which is the range of

integers the processor can efficiently deal with; and the byte order (also referred to

as endian), which is the order the bytes within a word are ordered when stored in

memory. The instruction set differences are masked by the compiler. The Windows

NT compiler was also able to emulate the 64-bit word size of the Alpha on the 32-bit

Intel processor. Lastly, the byte order of the two machines is the same, although

HPRTP is designed to use the universally accepted network byte order (big-endian)

when communicating over the network.

Differences in the operating system proved to be the most difficult obstacle to

overcome. While the compilers under Windows NT and Digital Unix both support

ANSI standards, there are many advanced features of each operating system that work

quite differently. These functions include multithreading, mutexes, semaphores, con-

ditional events, multicast network support, and shared memory. To make the design

of HPRTP as modular as possible, a common API implemented on both platforms

was developed.



3.1 Portable Library

There were two main versions of the portable library, which supported the common

API. The first was Windows NT, also known as Win32. The second was for Digital

Unix and supported major standards such as POSIX and System 5. This library

was able to compile under Linux with no changes, and would likely work under

other POSIX and System 5 compliant Unices. The functions calls of this library

are described in Appendix A.

3.1.1 Multithreading

Both operating systems support multithreaded programs. Digital Unix provides this

through support for the POSIX standard while Windows NT has a unique API. Given

that our needs were simple enough, the only functions that were implemented was

one to create a thread and one to terminate the current thread.

3.1.2 Semaphores

There is support for global semaphores in both operating systems; Windows provides

a reference by name and Unix provides a reference by a randomly generated number.

The lowest common denominator chosen was a randomly generated number. A mech-

anism was needed for Windows to grab a handle to the semaphore given a number.

A C++ class was used to encapsulate this abstraction quite easily. However, this

C++ class had to reside in shared memory and be used by multiple processes. Since

handles are unique to each process, a lookup table was created in private memory

that allowed the common class to associate the random number with a local copy of

the handles.

3.1.3 Mutexes

Mutual exclusion objects, or mutexes, are used in multithreaded programming to en-

sure only one procedure or thread has access to an object at any given time. Mutexes



differ from semaphores because the thread that locks the mutex actually owns it,

and future calls to lock the mutex will succeed as long as the calling thread owns

the mutex, even if it is already locked. Mutexes were used in HPRTP, but only

locally. While it is possible to use the global semaphore mechanism to implement

local mutexes, it can be more efficient to use some other mechanism. Windows sup-

ported unnamed mutexes, which were assumed to be local, while the POSIX threads

specification described its own mechanism.

3.1.4 Conditional Events

Windows supports both local and global conditional events, while Unix only supports

local conditional events. Windows supports events where the waiting threads can

either be signaled one at a time, or all at once; however the same event cannot be

used for both. Unix allows events to be signalled either way depending on the desired

result at the time. HPRTP needed local events that could be signalled either way,

but since the broadcast signal was only used when shutting down HPRTP, a hack was

made which just continuously signalled the event until it was known that all threads

received the signal.

3.1.5 Multicast Network Support

The multicast support under Windows NT works differently than under Unix.

Loopback

Under Windows you cannot disable multicast loopback. This option is designed to

prevent a program from receiving packets that it sends out to the multicast group. A

filter was set up to automatically discard packets whose originating address was the

current computer. Unix can automatically do this filtering.



Bind vs Join

Under Windows you cannot bind to a multicast address. It is assumed that after

joining the group, all packets sent to the address will be received. Under Unix, you

can additionally bind to the multicast address. The benefit of this bind is unclear.

Order of Initialization

Under Windows, you must join a multicast group before you can initialize the time

to live for the socket. Under Unix, the opposite occurs.

3.1.6 Shared Memory

Shared memory was fairly easy to implement on both platforms. While the function

calls were slightly different, the supplied functionality was similar enough to provide

the same capabilities on both machines.

3.1.7 Clock

The default clock resolution under Windows running on Intel processors is 16 ms (60

Hz), while the Alpha workstations have a resolution of 1 ms. HPRTP is extremely

sensitive to the clock, and uses it extensively to determine when to expect data to

arrive on a channel, when to schedule requests, when to send data out, and much

more. The default resolution under Windows was inadequate for these purposes, so it

was increased. HPRTP is also dependant on having all the computers synchronized

to a common clock. NTP[5] was used to perform this action.



Chapter 4

Development of CD player

HPRTP is a great protocol for distributing media across a wide area network, but it

needs an application to prove its effectiveness and demonstrate its superiority over

other protocols. Given the proliferation of cheap networkable computers with built

in CDROM drives and sound cards, we chose an audio application. Possible real

world applications include putting all radio stations online such that one can tune

into any radio station from around the world (such as RealAudio[2]) or a conference

call system (such as Reflection of Presence[3].) I chose to implement a CD jukebox,

where you could put a CD in your computer and play it or a CD from anybody

elses computer. The program read the digital data from the CD and broadcasted it

using HPRTP. It also included the option to broadcast MPEG compressed music to

illustrate HPRTP's ability to handle compressed data streams. However, due to the

fact that MPEG is an assymetric codec and cannot be encoded realtime on today's

processors, all compression had to be performed offline.

4.1 CD Digitization

Most computer CDROM drives support reading audio data directly off the CD. This

works well because the data read is lossless. The alternative would be to play the

CD and record through the soundcard, but this would involve going through the CD

player's DAC and the soundcard's ADC, resulting in a lossy translation through the



etc...

Figure 4-1: CD Player System Overview

analog circuit.

The main difficulty with digitizing CD's is the inaccuracy of the drive. Seeking

to a particular location on some lower quality CDROM drives does not always seek

to the exact sector, and is sometimes not even aligned on a sector boundary. When

reading programs off a CD this is not a problem since each sector of 2048 bytes

contains a header that the drive can look for. However, audio data sectors are 2352

bytes and do not have room for a header.

Given that seeks are sometimes inaccurate, each consecutive read must overlap

by a small amount. Since the end of the first read overlaps with the beginning of the

second read, this can be used to match the two reads together (see Figure 4-2). This

wastes some time performing the extra read and memory compares, but given drives

today running at 24 times the normal CD speed, it is not a problem. Even a 2x drive

has no problem keeping up.

4.2 Audio library

To ensure portability, a separate interface was written to the audio devices. There

is a portable library for Unix called AudioFile; a library providing my interface us-



read 1
This overlap is used to patch together the two reads

read 2

beginning of this read is unknown

Figure 4-2: Two consecutive reads from CD

ing AudioFile was easy to write and allowed it to work on Digital Unix along with

many others, in cast HPRTP is ever ported to other platforms. Writing a library for

Windows was also very simple.

4.3 MPEG support

Transmitting the full CD bitrate across the network is fine for the ATM network we

have in lab, but it isn't practical for the cable modems or DSL some people have

or for the Internet backbone that must carry this traffic. To demonstrate that more

reasonable data rates are possible, MPEG layer 2 and 3 audio decompression was

added. Layer 3 allows a data rate of 256 kilobits per second to be used to achieve CD

quality audio[1], thus giving a compression rate of 5.5:1. Soon to be released MPEG

AAC compression will allow compression rates of 11:1 while still acheiving CD quality

audio.



Chapter 5

Cached Object Locater

The mechanism to locate objects that was built into HPRTP used SAP and SDP,

which are currently used on the multicast backbone. They allow the distribution of

currently broadcasted streams, but an additional protocol is needed to locate objects

that may be stored in caches but is not currently being broadcast.

I developed a protocol using multicast communication channels to find the nearest

copy of an object. To support the use on a world wide network, a protocol involving

servers as intermediaries is described.

5.1 Peer Multicast Protocol

When looking for the nearest copy of an object, it makes sense to first ask those

computers near you first. This reduces the amount of extraneous requests computers

must listen to, since they will only hear a request if there are no computers closer

who have the object. The peer multicast subset of the cached object locator is based

on the idea of asking neighboring computers to reply in a cooperative fashion first,

gradually broadening the search criteria until the object is found.



rep rep
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Figure 5-1: Example of a heirarchy with clients and representatives

5.1.1 Protocol description

When a program requests an object, HPRTP first uses the current mechanisms to see

if it knows about the object. If it does, it can get the data without making a special

request. Otherwise, a request for the object is sent out to a local group of peers. If

no response is received, subsequently larger and larger groups are asked until either

the object is found or all resources are exhausted.

Heirarchy setup

The protocol starts by asking small groups of peers first, and then moves on to larger

and larger groups until it finds the object. This cuts down on network traffic if a

nearby computer has the object, since only the local network will hear the request.

It also assists in finding a local copy, since local computers are queried first.

Currently, a global configuration file, shared by all computers, is used to describe

the hierarchy queries should progress through (see Figure 5-2). HPRTP parses this



file at startup and decides which groups it should listen in and reply to, and the

order in which requests should be made. This simple mechanism allows a network

administrator to centrally manage the heirarchy and distribute the information via

NFS. Alternatively, the protocol could be expanded to allow it to communicate with

a central server (denoted by a DNS entry) and fetch the configuration information

from that server.

# (peer mcastaddress port scope ttl hostl or (peer ...) host2...)

(peer 239.255.255.254 9876 5 7
(peer 239.255.255.253 9876 5 7 rocky-horror repo-man liquid-sky)
(peer 239.255.255.252 9876 5 7 alphaville bad-taste barbarella))

Figure 5-2: Sample Heirarchy Configuration File

Request

A request for the object is made when an application attempts to open an object that

it does not have cached or a session announcement for. The server requests that a

local computer that knows about the object join the IOC channel (see Section2.4). If

the client makes a call to initialize the object for receiving, then the local server will

query for information about the object on the IOC channel, such as the data rate.

When a request is sent to a group, the sender will wait for a reply. The amount

of time it waits should be proportionate to the maximum roundtrip time between it

and any other computer in the group. Empirically this works out to roughly 5ms

within MIT campus, 30ms within the East Coast, and 130ms across the US. The

actual timeout should be around five times larger to allow for the variable latency

reply (see below). Larger groups should have longer delays to minimize the number

of responders.

Reply

When a request is received, HPRTP checks to see if it knows about the object. If it

does and it is willing to serve the object, it schedules a response with a small random



Figure 5-3: Example of a heirarchy with timings

delay. If during this delay it hears another computer responding, then it unschedules

the response and does not join the IOC channel. This tecchnique is used in other

areas of HPRTP[4]. This suppression technique reduces the number of responses and

reduces the number of servers joining the IOC channel, thus reducing the impact of

a request on the surrounding computers.

5.1.2 Analysis of traffic / scalability issues

Assuming a tree like structure where each successive group is b times larger than the

previous:

o=number of objects

n=number of objects in a local cache

c=number of computers

C*nf=number of computers an object is cached on
o

n=probability an object is cached on this computer



b=number of branches on the tree

In c =height of tree
In b

bl=number of peers on level 1 (range 1..height)

p = 1 - (1 - )b'=probability object is in level 1

(b') * (In(1 - 1)) = In 1 - p

bl = ln-p
In(1- )

bl = n -p -on 1-p approximation

1 * In b = In -o*n 1-p
n

1in -o*ln1-p
1 n= n 1 is which level is needed to achieve a probability p that the object

can be found.

This shows that in general, -o*n 1-p people must be asked before finding a copyn

of the object. However this model for viewing does not take into account normal

viewing practices, where a small number of objects are viewed by the majority, and

a large number of objects are rarely accessed.

5.2 Representative Protocol

The multicast protocol works well for small groups of computers, but when the size

gets much larger, then the amount of traffic on the channel can become quite large.

To alleviate this, a representative protocol was designed. In this configuration, one

or more dedicated servers handle all requests. This relieves the load from the clients.

5.2.1 Client Protocol Description

The representative acts as a multicast channel to which requests can be made. The

clients will first ask all the peer groups it knows about, and then lastly ask the

representative. At that point the representative will take over handling the request.

It first checks all the objects it knows about; if it finds a match, it returns the location;

otherwise it forwards the request up the heirarchy much like a client would.

Each representative stores information about all the objects stored under it in the

heirarchy. Thus is serves as a proxy and a sort of barrier. Any requests coming from



outside the subtree governed by the representative are handled by the representative,

rather than flooding all the computers with the request.

5.2.2 Object Registration Protocol

In order for the representative to know about all the objects underneath it, the clients

must send messages to the representative describing which objects it has. These

messages should be infrequent so that the network does not become flooded with

messages about objects. Additionally, a message should be sent when the object is

deleted from the cache to prevent stale data.

5.2.3 Multiple Representative Cooperation Protocol

To avoid a single point of failure, multiple representatives can work together to serve

a subtree. When working together, the representatives can shuffle the load of re-

quests around and check the availability of the other representatives. In the event a

representative goes down, they can reconfigure themselves to rebalance the load.

In order for the representatives to be able to communicate with each other, a

multicast address is used. This channel is used to communicate each representa-

tives presence so a count can be kept, a request for a load balance, and to maintain

consistancy in the object directory.

Existance Message

Once a second, an existance message is sent to the multicast address. This allows other

representatives to keep a list of active representatives. This message also includes

information on the number of requests it received from outside the subtree. The

address range that this representative is assigned to is divided into four subranges,

and separate tallies are kept for each group. By keeping these statistics on hand and

readily available, reorganizations are easy to compute. The message also includes the

number of objects currently known, so that consistancy among the object caches can

be maintained.



Consistancy Check

When a representative notices that another has a different number of objects, then

a request for a consistancy check is sent out. When each representative receives a

request, it sends an acknowledgement. At this point the representative goes into

consistancy check mode (it will still handle other requests). If another consistancy

request comes in, an acknowledgement that it is in that mode already is sent out.

Now each computer broadcasts what objects it has. Rather than broadcast every

single object, checksums of the objects whose name fits within a range are sent out.

When discrepancies are noticed, that range is further subdivided until the differences

are worked out.

Specifically, the full name range is divided until 16 groups based on the upper

4 bits of the first character. The MD5 checksum of all the object names for each

range is computed and broadcasted. For each range where a discrepancy is noticed,

a request to investigate is sent out. At that point the subrange is further subdivided

into 16 groups, and the process repeats. When the total number of objects in the

range is less than 4 then all the objects are transmitted instead of the subgroups.

Object Registration

Representatives receive object announcements from clients. If the message is about a

new object or about deleting an object, it is broadcasted to the other representatives

immediately to maintain the best cache conherence. If it is an update announcement,

the request is queued for several seconds to reduce representative to representative

communication.

Load Rebalancing

The representatives predetermine a division of the IP address range to serve. It is

possible that the division of labor will cause a major load imbalance. This can be

detected from the existance message. If a computer notices that such an imbalance

exists, he will propose a new distribution of addresses. The other representatives



will respond in agreement, and a switch will occur on a signal. When the signal is

received, the representative will serve both address ranges for five seconds, to allow for

propogation delays in the network. Since the protocol allows for multiple responses

to a request, this will not significantly affect the load.

5.2.4 Analysis of scalability

The representative protocol is used to ensure scalability for large networks. As the

size of the governed subnetwork becomes larger and larger, then the amount of server

power necessary also goes up. However, given today's environment with the current

array of TV series and movies, this should fit within a reasonable amount of RAM.

It is envisioned that there will be a representative at each corporations or at each

ISP's link to the backbone. It would be possible for several small ISP's to collaborate

and share one representative to reduce costs. It is possible that at an even higher

level there might be a representative, such as at the country level, or at each coast.



Chapter 6

Conclusion

This document describes a method for setting up a heirarchy for querying object

location. There is yet to be a wide distribution and implementation of multicast

applications and technologies, so much of this is still speculation. Certainly as the

technology becomes widespread and popular, the protocols will need to be revised.

Future work will need to consider security issues. In an environment where anyone

can cache an object and serve it, then one must take steps to validate the authenticity

of the object and to pay royalties to the originator.

The field promises to be an exciting one as conventional TV and radio broadcasts

move permanently to the digital domain. Hopefully the ideas presented here will have

some lasting impact in this area.



Appendix A

Portable Library API

A.1 Multithreading

A.1.1 pl_thread_create

int pl_thread_create (void (*func) (void *) ,void *param);

Creates a new thread of execution which calls func with the parameter param.

A.1.2 pl_thread_exit

void pl_thread_exit();

Causes the current thread to terminate.

A.2 Semaphores

class pl_shared_sem {

public:

pl_shared_sem(int nsems,int initval);

pl_shared_sem(int semid);

void remove();

int getid() const;

bool islocked(int n);



int getcount(int n);

int lock(int n);

int unlock(int n,int count=l);

A.2.1 pl_sharedsem

Constructs a local reference to a global group of semaphores.

pl_shared_sem(int nsems, int initval); constructs a new group of nsems semaphores

with an initial value of initval.

pl_shared_sem(int semid); constructs a local reference to an already existing

group of semaphores. semid should be set to the return value of getid() from the

group you wish to reference.

A.2.2 remove

void remove();

Deletes the semaphores from the operating system.

A.2.3 getid

int getid() const;

Returns the identifier of the semaphore group. This value can be used as the

parameter to the constructor to make a duplicate reference of the group, even in

another process.

A.2.4 islocked

bool islocked(int n);

Returns whether a given semaphore is locked.



A.2.5 getcount

int getcount(int n);

Returns the count of semaphore n.

A.2.6 lock

int lock(int n);

Locks semaphore n. Blocks until it can receive the lock.

A.2.7 unlock

int unlock(int n,int count=1);

Unlocks a semaphore. count is set to the number of times to unlock.

A.3 Mutexes

class pl_unshared_mutex {

public:

pl_unshared_mutex() ;

~pl_unshared_mutex () ;

bool islocked();

int lock();

int unlock();

A.3.1 pl_unshared_mutex

pl_unsharedmutex ();

Constructs a local mutex (one that will not be shared among processes).



A.3.2 islocked

bool islocked();

Returns whether the mutex is locked or not.

A.3.3 lock

int lock();

Locks the mutex. This call will succeed if the mutex is unlocked or if it is locked

by the current thread.

A.3.4 unlock

int unlock();

Unlocks the mutex.

A.4 Conditional Events

class pl_unshared cond {

public:

plunsharedcond();

~pl_unsharedcond();

int wait(pl unshared_mutex &pum);

int timedwait(pl_unshared_mutex &pum,const timespec &ts);

int signal();

A.4.1 pl_unshared_cond

plunshared_cond() ;

Creates a local conditional object.



A.4.2 wait

int wait(pl_unsharedmutex &pum);

Waits for the conditional to be signalled. Before waiting, the mutex is unlocked,

and after being signaled, the mutex is relocked.

A.4.3 timedwait

int timedwait (pl_unsharedmutex &pum, const timespec &ts);

Similar to wait, but includes a timeout of ts.tssec seconds and ts.tsnsec

nanoseconds.

A.4.4 signal

int signal();

Signals one thread waiting on this conditional.

A.5 Shared Memory

A.5.1 pl_shmcreate

int pl_shmcreate(size_t size);

This creates a shared memory segment of a given size and returns it global iden-

tifier (can be used in any process). The segment is not actually usable until it is

attached (see below).

A.5.2 pl_shmremove

int pl_shmremove(int shmid);

This deletes a shared memory segment from the operating system, thus freeing

up resourced.



A.5.3 pl_shmattach

void *plshmattach(int shmid,pl_flags flags);

This attaches a given shared memory segment. Currently the only flag supported

is pl_RDONLY, which attaches the segment as read only memory.

A.5.4 pl_shmdetach

int pl_shmdetach(void *a);

This detaches a shared memory segment by supplying a pointer to the base of the

memory segment.



Appendix B

Packet Descriptions

B.1 Client Request

command adulen objnamelen unused

uniqueid

ioc address

ioc port unused

originator address

start adus

stop adus

object name

command Unique identifier for this type of packet, set to 0.

adulen The number of 32-bit integers used to represent each ADU. Can be set to 0

if information about the object is being requested.

objnamelen The length of the object name, not including the NULL character.

uniqueid A unique identifier for this request. This can be used by a representative

(who may have several outstanding requests at once) to differentiate the replies.

ioc address The IOC address for the object that the replying computer should join.



ioc port The IOC port for the object that the replying computer should join.

originator address The originator of the request (only different from the sending

computer if a representative is sending the request). Used to determine whether

a computer will reply.

start adus The start of the data range the client is requesting. Stored as an array

of 32-bit integers.

stop adus The end of the data range the client is requesting. Stored as an array of

32-bit integers.

object name The name of the object, without the null terminator. Stored as an

array of characters.

B.2 Client Reply With Data

command adulen unused
unique id

originator address

start adus

stop adus

command Unique identifier for this type of packet, set to 1.

adulen The number of 32-bit integers used to represent each ADU.

uniqueid A unique identifier matching the request.

originator address The originating clients IP address.

start adus The beginning of the range of data that this computer can supply. In

the event the computer cannot supply all the data, this range will be a subset

of the requested range. Stored as an array of 32-bit integers.



stop adus The end of the range of data that this computer can supply. Stored as

an array of 32-bit integers.

B.3 Multiple Representative Packets

These are the packet types used for representatives to communicate with one another.

B.3.1 Existance

command unused

numrequest- 1

numrequest-2

numrequest-3

numrequest-4

numknown

command Unique identifier for this packet, set to 2.

numrequest 1/4 The number of requests this computer has seen from the first

quarter of its assigned address range.

numrequest 2/4 Same for the second quarter.

numrequest 3/4 Same for the third quarter.

numrequest 4/4 Same for the fourth quarter.

numknown The total number of objects known by this computer.

B.3.2 Reqest for Consistancy

command unused

command Unique identifier for this packet, set to 3.



B.3.3 Reply to Consistancy

command prev state unused

command Unique identifier for this packet, set to 4.

consistancy state A 1 if the computer was already in the consistancy check mode

or a 0 if not.

B.3.4 Object Count

command unused range length

md5[0]

md5[1]

md5[2]

md5[3]

md5[4]

md5[5]

md5[6]

md5[7]

md5[8]

md5[9]

md5[10]

md5 [11]

md5[12]

md5[13]

md5[14]

md5[15]

search prefix, packed in bytes

command Unique identifier for this packet, set to 5.

range length The length of the search prefix in nibbles (4 bits).

search prefix The search prefix is the first range length nibbles of the object name

which this search represents.



md5[16] The MD5 checksum of all the objects represented by the search prefix plus

the index in this array.

B.3.5 Request to investigate

command unused range length

search prefix

command Unique identifier for this packet, set to 6.

range length The length of the search prefix in nibbles (4 bits).

search prefix The search prefix, as described by the Object Count packet.

B.3.6 Object List

command unused num objects

object name

num contacts repeated for each object

contact list

command Unique identifier for this packet, set to 7.

number of objects Number of objects listed in this packet.

object name[] The name of each object, as an array of null terminated strings.

contact list[] The contact list for each object. Listed as the number of contacts

followed by the each contact's IP address and ADU range.



B.3.7 New Object

command namelen unused

timeout, as # seconds since Jan 1 1970

object name

contact info

ADU range

command Unique identifier for this packet, set to 8.

name length Length of the object name.

object name Object name.

contact info The new contact for this object.

ADU range The ADU range this client has cached.

timeout When this object will timeout from the contact's cache.

B.3.8 Delete Object

command namelen unused

IP address of contact

object name

command Unique identifier for this packet, set to 9.

name length The length of the object name.

object name The object name.

contact info The IP address to delete from the contact list on this object.



B.3.9 Update Object

command numobj unused

IP address to update

timeout

namelen object name

repeat for each object

command Unique identifier for this packet, set to 10.

numobj The number of objects in this update list.

name length[] For each object, the length of the name.

object name[] The object name.

contact info[] The contact for this object to update.

new timeout[] The new timeout for this contact on this object.

B.3.10 Load Balance Proposal

command num reps unused

rep address

start range

end range

repeat for each representative

command Unique identifier for this packet, set to 11.

num reps The number of representatives known and listed.

rep address[] The address of a rep.

rep start range[] The first address the representative should serve.

rep end range[] The last address the representative should serve.



B.3.11 Load Balance Acceptance

command unused

proposer's IP address

command Unique identifier for this packet, set to 12.

proposer's IP Since multiple proposals may be out, this identifies which proposal

is being accepted.

B.3.12 Load Balance Execute

command unused

command Unique identifier for this packet, set to 13.



Appendix C

Implementation

The peer protocol is implemented inside HPRTP. The files deadbit-manager. ?xx con-

tain the code that parse the heirarchy configuration file and create the necessary listen-

ing threads. There is a call from hprtp_server. cxx to deadbit-manager : :f ind_obj ect

in the event that a call to open the object fails. Thus when the object cannot be

located, an attempt will be made to find computers with copies of the object, and

get those computers to join the IOC channel.
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