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Abstract

Segment-based speech recognition systems must explicitly hypothesize segment
start and end times. The purpose of a segmentation algorithm is to hypothesize
those times and to compose a graph of segments from them. During recognition, this
graph is an input to a search that finds the optimal sequence of sound units through
the graph. The goal of this thesis is to create a high-quality, real-time phonetic
segmentation algorithm for segment-based speech recognition.

A high-quality segmentation algorithm produces a sparse network of segments that
contains most of the actual segments in the speech utterance. A real-time algorithm
implies that it is fast, and that it is able to produce an output in a pipelined manner.
The approach taken in this thesis is to adopt the framework of a state-of-the-art
algorithm that does not operate in real-time, and to make the modifications necessary
to enable it to run in real-time.

The algorithm adopted as the starting point for this work makes use of a forward
Viterbi search followed by a backward A* search to hypothesize possible phonetic
segments. As mentioned, it is a high-quality algorithm and achieves state-of-the-art
results in phonetic recognition, but satisfies neither of the requirements of a real-
time algorithm. This thesis addresses the computational requirement by employing
a more efficient Viterbi and backward A* search, and by shrinking the search space.
In addition, it achieves a pipelined capability by executing the backward A* search
in blocks defined by reliably detected boundaries.

Various configurations of the algorithm were considered, and optimal operating
points were located using development set data. Final experiments reported were
done on test set data. For phonetic recognition on the TIMIT corpus, the algorithm
produces a segment-graph that has over 30% fewer segments and achieves a 2.4% im-
provement in error rate (from 29.1% to 28.4%) over a baseline acoustic segmentation
algorithm. For word recognition on the JUPITER weather information domain, the
algorithm produces a segment-graph containing over 30% fewer segments and achieves
a slight improvement in error rate over the baseline. If the computational constraint
is slightly relaxed, the algorithm can produce a segment-graph that achieves a further
improvement in error rate for both TIMIT and JUPITER, but still contains over 25%
fewer segments than the baseline.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
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Chapter 1

Introduction

The majority of the speech recognition systems in existence today use an observation

space based on a temporal sequence of frames containing short-term spectral infor-

mation. While these systems have been successful [10, 12], they rely on the incorrect

assumption of statistical conditional independence between frames. These systems

ignore the segment-level correlations that exist in the speech signal.

To relax the independence assumption, researchers have developed speech recog-

nition systems that use an observation space based on a temporal network of seg-

ments [6]. These segment-based systems are more flexible in that features can be

extracted from both frames and hypothesized segments. Segment-based features are

attractive because they can model segment dynamics much better than frame-based

measurements can. However, in order to take advantage of this framework, the system

must construct a graph of segments.

The task of hypothesizing segment locations in a segment-based speech recognizer

belongs to the segmentation algorithm. This algorithm uses information such as

spectral change, acoustic models, and language models to detect probable segment

start and end times and outputs a graph of segments created from those times. The

graph is passed to a segment-based dynamic programming algorithm which uses frame

and segment-based measurements to find the optimal alignment of sounds through

the graph. Figure 1-1 shows the block diagram of a segment-based speech recognition

system. The speech signal is the input to a segmentation algorithm that outputs
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Figure 1-1: A segment-based speech recognition system. Unlike a frame-based sys-
tem, a segment-based system uses a segmentation algorithm to explicitly hypothesize
segment locations.

a segment-graph. The graph is subsequently processed by a search to produce the

recognizer output.

An example segment-graph is shown in the middle of Figure 1-2. On top is a speech

spectrogram, and on the bottom is the reference word and phone transcriptions. Each

rectangle in the segment-graph corresponds to a possible segment, which in this case

is a phonetic unit. The graph can be traversed from the beginning of the utterance to

the end in many different ways; one way is highlighted in black. During recognition,

the search finds the optimal segment sequence and the phonetic identity of each

segment. The segmentation algorithm is essential to the success of a segment-based

speech recognizer. If the algorithm outputs a graph with too many segments, the

search space may become too large, and the recognizer may not be able to finish

computation in a reasonable amount of time. If the algorithm hypothesizes too few

segments and misses one, the recognizer has no chance at recognizing that segment,

and recognition errors will likely result.

This thesis deals with the creation of a new phonetic segmentation algorithm for

segment-based speech recognition systems.

1.1 Previous Work

Until recently work on segmentation has been focused mainly on creating a linear

sequence of segments. However, for use in segment-based speech recognition systems,



Figure 1-2: On top, a speech spectrogram; in the middle, a segment-graph; on the
bottom, the reference phonetic and word transcriptions. The segment-graph is the
output of the segmentation algorithm and constrains the way the recognizer can divide
the speech signal into phonetic units. In the segment-graph, each gray box represents
a possible segment. One possible sequence of segments through the graph is denoted
by the black boxes.

a linear sequence of segments offers only one choice of segmentation with no alter-

natives. Needless to say, the segmentation algorithm must be extremely accurate, as

any mistakes can be costly. Because linear segmentation algorithms are typically not

perfect, graphs of segments are becoming prevalent in segment-based speech recog-

nition systems. A graph segmentation algorithm provides a segment-based search

with numerous ways to segment the utterance. The output of the algorithm is the

segment-graph previously illustrated in Figure 1-2. This section discusses previous

work in linear and graph segmentation.

1.1.1 Segmentation using Broad-Class Classification

In [4], Cole and Fanty use a frame-based broad-class classifier to locate phonetic

boundaries. They construct a linear segmentation using a neural network to classify

each frame in the speech utterance as one of 22 broad-phonetic classes. The segmen-

tation is used in an alphabet recognition system. Processing subsequent to segmenta-

tion uses features extracted from sections of segments that discriminate most between

certain phones. They achieved 95% accuracy in isolated alphabet recognition.



1.1.2 Acoustic Segmentation

In acoustic segmentation [61, segment boundaries are located by detecting local max-

ima of spectral change in the speech signal. Segment-graphs are created by fully

connecting these boundaries within acoustically stable regions. Although this algo-

rithm is fast, and recognizers using its segment-graphs perform competitively, the

belief is that these graphs unnecessarily hypothesize too many segments.

1.1.3 Probabilistic Segmentation

In probabilistic segmentation [2], the segment-graph is constructed by combining the

segmentation of the N-best paths produced by a frame-based phonetic recognizer.

N is a variable that can be used to vary the thickness of the segment-graph. This

framework is shown in Figure 1-3. The algorithm makes use of a forward Viterbi and

backward A* search to produce the N-best paths, as shown in Figure 1-4. Recogniz-

ers using this algorithm achieve state-of-the-art results in phonetic recognition while

using segment-graphs half the size of those produced by the acoustic segmentation.

However, one major drawback of this algorithm is that it cannot run in real-time. It

cannot do so because it is computationally intensive, and because the two-pass search

disallows the algorithm from running in a left-to-right pipelined manner.

1.2 Thesis Objective

Because of the success of the probabilistic segmentation algorithm in reducing error

rate while hypothesizing fewer segments, the approach taken in this thesis is to adopt

that framework and to make the modifications necessary to enable a real-time capa-

bility. More specifically, the goal of this thesis is to modify probabilistic segmentation

to lower its computational requirements and to enable a pipeline capability.

Since the acoustic segmentation is so cheap computationally, creating a segmen-

tation algorithm with even lower computational requirements would be difficult. In-

stead, the aim is to create a probabilistic algorithm that produces fewer segments
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Figure 1-3: The probabilistic segmentation framework. The speech signal is passed to
a frame-based recognizer, and the segment-graph is constructed by taking the union
of the segmentation in the N-best paths.

Figure 1-4: The frame-based recognizer used in the probabilistic segmentation frame-
work. Because the recognizer uses a forward search followed by a backward search, the
probabilistic segmentation algorithm cannot run in a pipelined manner as required
by a real-time algorithm.
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than the acoustic segmentation and is fast enough that the overall recognition sys-

tem, processing a smaller segment-graph, runs faster than one using the acoustic

segmentation, and performs competitively in terms of error rate.

Figure 1-5 illustrates this goal. In a segmentation algorithm, the number of seg-

ments in the segment-graph can usually be controlled by one or more parameters,

such as the variable N in probabilistic segmentation. A general trend is that as the

number of segments increases, segment-based recognition improves because the rec-

ognizer has more alternative segmentations with which to work. This trend for a

hypothetical segmentation algorithm is plotted on the left. The plot shows number

of segments per second versus error rate. The acoustic segmentation baseline is rep-

resented simply by a point on this graph because an optimal point has presumably

been chosen taking into account the relevant tradeoffs. This thesis seeks to develop

an algorithm, like the hypothetical one shown, that can produce an improvement in

error rate with significantly fewer segments than the acoustic segmentation baseline.

Another trend in segmentation is that as the number of segments increases, the

amount of computation necessary to produce the segment-graph also increases. This

trend is illustrated for the same hypothetical segmentation algorithm in the plot on

the right of Figure 1-5. The plot shows number of segments per second versus overall

recognition computation. This thesis seeks to develop an algorithm that requires

less computation than the baseline at the operating points that provide better error

rate with significantly fewer segments, similar to the one shown in the plots. The

regions of the curves shown in bold satisfy the desired characteristics. Effectively

the amount of extra computation needed to compute a higher quality segment graph

must be lower than the computational savings attained by searching through a smaller

segment network.

The rest of this thesis is divided as follows. Chapter 2 describes the experimental

framework in this work. In particular, it describes the two corpora used and the

baseline configuration of the recognizer. Chapter 3 describes the changes made to

the forward Viterbi search. These changes allow the frame-based recognizer in prob-

abilistic segmentation to run much more efficiently. Chapter 4 presents the backward
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Figure 1-5: Plots showing the desired characteristics of a segmentation algorithm.
The algorithm should be able to produce an improvement in error rate as depicted
by the plot on the left. It should also use less overall computation than the acoustic
segmentation baseline, as shown on the right. The bold regions of the curves satisfy
both of these goal.

A* search used to compute the N-best paths of the frame-based recognizer. Chapter

5 describes how a pipelining capability was incorporated into the algorithm. Chapter

6 concludes by summarizing the accomplishments of this thesis and discussing future

work.
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Chapter 2

Experimental Framework

2.1 Introduction

This thesis conducts experiments in both phonetic recognition and word recognition.

This chapter provides an overview for both of these tasks.

2.2 Phonetic Recognition

This section describes TIMIT, the corpus used for phonetic recognition experiments

in this thesis. In addition, performance of the baseline TIMIT recognizer is presented.

2.2.1 The TIMIT Corpus

The TIMIT acoustic-phonetic corpus [11] is widely used in the research community

to benchmark phonetic recognition experiments. It contains 6300 utterances from

630 American speakers. The speakers were selected from 8 predefined dialect regions

of the United States, and the male to female ratio of the speakers is approximately

two to one. The corpus contains 10 sentences from each speaker composed of the

following:

* 2 sa sentences identical for all speakers.



* 5 sx sentences drawn from 450 phonetically compact sentences developed at

MIT [11]. These sentences were designed to cover a wide range of phonetic

contexts. Each of the 450 sx sentences were spoken 7 times each.

* 3 si sentences chosen at random from the Brown corpus [5].

Each utterance in the corpus was hand-transcribed by acoustic-phonetic experts,

both at the phonetic level and at the word level. At the phonetic level, the corpus

uses a set of 61 phones, shown in Table 2-1. The word transcriptions are not used in

this thesis.

The sa sentences were excluded from all training and recognition experiments

because they have orthographies identical for all speakers and therefore contain an

unfair amount of information about the phones in those sentences. The remaining

sentences were divided into 3 sets:

* a train set of 3696 utterances from 462 speakers, used for training. This set is

identical to the training set defined by NIST.

* a test set of 192 utterances from 24 speakers composed of 2 males and 1 female

from each dialect region, used for final evaluation. This set is identical to the

core test set defined by NIST.

* a dev set of 400 utterances from 50 speakers, used for tuning parameters.

Because of the enormous amount of computation necessary to process the full dev

and test sets, experiments on them were run in a distributed mode across several

machines. Unfortunately, it is difficult to obtain a measure of computation in a

distributed task. To deal with this problem, the following small sets were constructed

to allow computational experiments to be run on the local machine in a reasonable

amount of time:

* a small-test set of 7 random utterances taken from the full test set, used for

measuring computation on the test set.



Table 2-1: The 61 acoustic-phone symbols used to transcribe TIMIT, along with their
corresponding International Phonetic Alphabet (IPA) symbols and example occur-
rences. The symbols roughly correspond to the sounds associated with the italicized
letters in the example occurrences.

TIMIT I IPA IExample TIMIT IPA Example

aa a bottle ix I debit
ae e bat iy i beet
ah A but jh j joke
ao D bought k k key
aw o' about kcl kD k closure
ax a about 1 1 lay
ax-h oh suspect m m mom

axr a- butt er n n noon
ay cvi bite ng 0r sing
b b bee nx f winner
bcl b" b closure ow o boat
ch t choke oy DY boy

d d day p p pea
dcl d0  d closure pau o pause
dh 6 then pcl P p closure
dx r butter q ? cotton
eh E bet r r ray

el I bottle s s sea
em m bottom sh 9 she
en n button t t tea
eng 1 Washington tcl to t closure
epi D epenthetic silence th 0 thin
er 3- bird uh o book

ey e bait uw u boot
f f fin ux ii toot

g 9 gay v v van

gcl g0  g closure w w way
hh h hay y y yacht
hv fi ahead z z zone
ih I bit zh 2 azure

-h# utterance initial and final silence



* a small-dev set of 7 random utterances taken from the full dev set, used for

measuring computation on the dev set.

To ensure fair experimental conditions, the utterances in the train, dev, and test

sets never overlap, and they reflect a balanced representation of speakers in the corpus.

In addition, the sets are identical to those used by many others in the speech recogni-

tion community, so results can be directly compared to those of others [6, 7, 10, 12, 15].

2.2.2 Baseline Recognizer Configuration and Performance

The baseline recognizer for TIMIT was previously reported in [6]. Utterances are rep-

resented by 14 Mel-frequency cepstral coefficients (MFCCs) and log energy computed

at 5ms intervals. Segment-graphs are generated using the acoustic segmentation al-

gorithm described in Chapter 1.

As is frequently done by others to report recognition results, acoustic models are

constructed on the train set using 39 labels collapsed from the set of 61 labels shown

in Figure 2-1 [6, 7, 12, 19]. Both frame-based boundary models and segment-based

models are used. The context-dependent diphone boundary models are mixtures of

diagonal Gaussians based on measurements taken at various times within a 150ms

window centered around the boundary time. This window of measurements allows the

models to capture contextual information. The segment models are also mixtures of

diagonal Gaussians, based on measurements taken over segment thirds; delta energy

and delta MFCCs at segment boundaries; segment duration; and the number of

boundaries within a segment. Language constraints are provided by a bigram.

Table 2-2 shows the performance of this recognizer in terms of error rate, number

of segments per second in the segment-graph, and a real-time factor. The error rate is

the sum of substitutions, insertions, and deletions. The real-time factor is a measure

of computation defined as total recognition processing time on a 200MHz Pentium

Pro, divided by the total time of the speech utterances being processed. A number

greater than one translates to processing slower than real-time. The goal of this

thesis is to create a segmentation algorithm that simultaneously reduces error rate,



Table 2-2: TIMIT baseline recognizer results, using the acoustic segmentation.

Set Error Rate (%) Segments/Second Real-Time Factor

dev 27.7 86.2 2.64
test 29.1 87.2 3.02

segment-graph size, and computation.

2.3 Word Recognition

This section describes JUPITER, the corpus used for word recognition experiments in

this thesis. In addition, performance of the baseline JUPITER recognizer is presented.

2.3.1 The JUPITER Corpus

The JUPITER corpus is composed of spontaneous speech data from a live telephone-

based weather information system [20]. The corpus used for this thesis contains

over 12,000 utterances spoken by random speakers calling into the system. Unlike

TIMIT, whose reference transcriptions were hand-transcribed, JUPITER's reference

transcriptions were created by a recognizer performing forced alignment.

The words found in the corpus include proper names such as that of cities, coun-

tries, airports, states, and regions; basic words such as articles and verbs; support

words such as numbers, months, and days; and weather related-words, such as humid-

ity and temperature. Some sentences in the JUPITER corpus are shown in Table 2-3.

As was done for TIMIT, the utterances in the corpus were divided into 3 sets:

* a train set of 11,405 utterances

* a test set of 480 utterances

* a dev set of 502 utterances

In addition, the following smaller sets were created for computational experiments:



o a small-test set of 11 utterances

* a small-dev set of 13 utterances

2.3.2 Baseline Recognizer Configuration and Performance

The baseline JUPITER recognizer is based on a phonetic recognizer that only con-

siders phone sequences allowed by a pronunciation network. This network defines the

legal phonetic sequences for all words in the lexicon, and accounts for variability in

speaking style by defining multiple possible phone sequences for each word and for

each word pair boundary.

Utterances are represented by 14 MFCCs computed at 5ms intervals. Segment-

graphs are generated using the acoustic segmentation algorithm described in Chap-

ter 1.

The lexicon of 1345 words is built from a set of 68 phones very similar to the

TIMIT phones shown in Table 2-1. Only context-dependent diphone boundary models

are used in this recognizer. These models are similar to the ones used in TIMIT

and are composed of mixtures of diagonal Gaussians trained on the train set using

measurements taken at various times within a 150ms window centered around the

boundary time. In addition to constraints defined by the pronunciation network, the

recognizer uses a bigram language model.

Table 2-3: Sample Sentences from the JUPITER corpus.

What cities do you know about in California?
How about in France?
What will the temperature be in Boston tomorrow?
What about the humidity?
Are there any flood warnings in the United States?
Where is it sunny in the Caribbean?
What's the wind speed in Chicago?
How about London?
Can you give me the forecast for Seattle?
Will it rain tomorrow in Denver?



Table 2-4: JUPITER baseline recognizer results, using the acoustic segmentation.

Set Error Rate (%) Segments/Second Real-Time Factor

dev 12.7 100.1 1.03
test 10.6 99.7 0.89

Table 2-4 shows the performance of this recognizer, in terms of error rate, num-

ber of segments per second, and the real-time factor. In terms of error rate and

computation, these results are better than the phonetic recognition results shown

in Table 2-2. This is the case because the TIMIT baseline recognizer is tuned to

optimize recognition error rate while the JUPITER baseline recognizer is tuned for

real-time performance. As in TIMIT, the goal of this thesis is to create a segmen-

tation algorithm that lowers error rate while using smaller segment-graphs and less

computation.



Chapter 3

Viterbi Search

3.1 Introduction

The key component of the probabilistic segmentation framework is the phonetic recog-

nizer used to compute the N-best paths. Although any recognizer, be it frame-based

or segment-based, can be used for this purpose, a frame-based recognizer was chosen

to free the first pass recognizer from any dependence on segment-graphs. Consid-

ering that Phillips et al achieved competitive results on phonetic recognition using

boundary models only [14], those models were chosen to be used with this recognizer.

As illustrated in Figure 1-4, the phonetic recognizer is made up of a forward

Viterbi and a backward A* search. When a single best sequence is required, the

Viterbi search is sufficient. However, when the top N-best hypotheses are needed, as

is the case in this work, an alternative is required. In this thesis, the N-best hypotheses

are produced by using a forward Viterbi with a backward A* search. The backward

A* search uses the lattice of scores created by the Viterbi search as look-ahead upper

bounds to produce the N-best paths in order of their likelihoods.

This chapter describes the Viterbi search used to find the single best path. How

the Viterbi lattice can be used with a backward A* search to produce the N-best

paths is deferred to Chapter 4. This chapter focuses on the modifications made to

the Viterbi search to improve its computational efficiency.



3.2 Mathematical Formulation

Let A be a sequence of acoustic observations; let W be a sequence of phonetic units;

and let S be a set of segments defining a segmentation:

A = a, a, ... , a}

W = {wl, w2,.., wN}

S = {s, S2, ..., SN}

Most speech recognizers find the most likely phone sequence by searching for W*

with the highest posterior probability P(W I A):

W* = arg max P(W I A)

Because P(WIA) is difficult to model directly, it is often expanded into several

terms. Taking into account the segmentation, the above equation can be rewritten:

P(W I A) = P(WS I A)
S

W* = arg max E P(WS I A)
S

The right hand side of the above equations is adding up the probability of a

phonetic sequence W for every possible partition of the speech utterance as defined

by a segment sequence S. The result of this summation is the total probability of the

phonetic sequence. In a Viterbi search, this summation is often approximated with a

maximization to simplify implementation [13]:

P(W I A) f max P(WS I A)
S

W* = arg max P(WS I A)
WS

Using Bayes' formula, P(WS A) can be further expanded:



P(WS I A) - P(A I WS)P(S W)P(W)
P(A)

P(A WS)P(S I W)P(W)
W* = arg max

WS P(A)

Since P(A) is a constant for a given utterance, it can be ignored in the maximizing

function. The remaining three terms being maximized above are the three scoring

components in the Viterbi search.

3.2.1 Acoustic Model Score

P(A I WS) is the acoustic component of the maximizing function. In the probabilis-

tic segmentation used in this thesis, the acoustic score is derived from frame-based

boundary models. While segment models are not used in probabilistic segmentation,

they are used in the segment-based search subsequent to segmentation. They will be

relevant in the forthcoming discussion on the segment-based search.

In this thesis, the context-dependent diphone boundary models are mixtures of

diagonal Gaussians based on measurements taken at various times within a 150ms

window centered around the boundary time. The segment models are also mixtures of

diagonal Gaussians, based on measurements taken over segment thirds; delta energy

and delta MFCCs at segment boundaries; segment duration; and the number of

boundaries within a segment.

3.2.2 Duration Model Score

P(S I W) is the duration component of the maximizing function. It is frequently

approximated as P(S) and computed under the independence assumption:

N

P(S W) I P(S) fl P(s i )
i=O

In this work, the duration score is modeled by a segment transition weight (stw) that

adjusts between insertions and deletions.



3.2.3 Language Model Score

P(W) is the language component of the maximizing function. In this thesis, the

language score is approximated using a bigram that conditions the probability of

each successive word only on the probability of the preceding word:

N

P(W) = P(wl, ... , WN) = II P(wi I wi-1)
i=1

3.3 Frame-Based Search

Normally a frame-based recognizer uses a frame-based Viterbi search to solve the

maximization problem described in the previous section. The Viterbi search can be

visualized as one that finds the best path through a lattice. This lattice for a frame-

based search is shown in Figure 3-1. The x-axis represents a sequence of frames in

time, and the y-axis represents a set of lexical nodes. A vertex in the lattice represents

a phonetic boundary. One possible path, denoted by the solid line, is shown in the

figure. This path represents the sequence h#, ae, ..., t, ..., tcl, tcl, t.

* S. ** 0---- /
• 'I

t

tl t2 t3
TIN.

* S S

* S S

t48 t49 t50

Figure 3-1: The frame-based Viterbi search lattice. The x-axis is time represented by
a sequence of frames, and the y-axis is a set of lexical nodes. At each node, only the
best path entering is kept. The search finds the optimal alignment of models against
time by finding the optimal path through the lattice.

tcl -

t +

ae -



To find the optimal path, the Viterbi search processes input frames in a time-

synchronous manner. For each node at a given frame, the active lexical nodes at the

previous frame are retrieved. The path to each of these active nodes is extended to

the current node if the extension is allowed by the pronunciation network. For each

extended path, the appropriate boundary, segment transition, and bigram model

scores are added to the path score. Only the best arriving path to each node is kept.

This Viterbi maximization is illustrated at node (t3, t) of Figure 3-1. Four paths

are shown entering the node. The one with the best score, denoted by the solid line,

originates from node (t2, ae); therefore, only a pointer to (t2, ae) is kept at (t3, t).

When all the frames have been processed, the Viterbi lattice contains the best path

and its associated score from the initial node to every node. The overall best path

can then be retrieved from the lattice by looking for the node with the best score at

the last frame and performing a back-trace.

To reduce computational and memory requirements, beam pruning is usually done

after each frame has been processed. Paths that do not have scores within a threshold

of the best scoring path at the current analysis frame are declared inactive and can

no longer be extended.

Figure 3-2 summarizes the frame-based Viterbi search algorithm. In the figure,

scores are added instead of multiplied because the logarithms of probabilities are used

to improve computational efficiency and to prevent underflow.

3.4 Segment-Based Search

The frame-based Viterbi search presented in the last section is very efficient when only

frame-based models, such as boundary ones, are used. Unfortunately, a frame-based

search was not available when probabilistic segmentation was originally implemented.

Instead of investing the time to implement one, a readily available segment-based

search was used to emulate a frame-based search. This section first describes the

general mechanics of a segment-based search. Then it shows how the segment-based

search can be used to emulate a frame-based search. Finally it tells why this emulation



for each frame fto in the utterance
let best_score(fto) = -oo
let f,,st be the frame preceding fto
let ' be the measurement vector for boundary fiast

for each node nto in the pronunciation network
for each pronunciation arc a arriving at node nto

let nfro, be the source node of arc a
let b be the pronunciation arc arriving at node nfrom
if (ni fro, firom) has not been pruned from the Viterbi lattice

let 0 be the label for the transition b -+ a
let acoustic_score = p(Y 1 3)
let durationscore = stw if b = a, or 0 if b = a
let language_score = p(/)
let score = acoustic_score + duration_score + language_score

if (score(nfrom, ffrom) + score > score(nto, fto))
score(nto, fto) = score(nfrom, ffrom) + score
make a back pointer from (nto, fro) to (nfrom, ffrom)
if score(nto, fto) > best_score(fto)

let best_score(fto) = score(nto, fto)

for each node nto in the pronunciation network
if bestscore(fto) - score(nt, ft,) > thresh

prune node (nto, ft,) from the Viterbi lattice

Figure 3-2: Pseudocode for the frame-based Viterbi algorithm.



is inefficient.

The lattice for the segment-based Viterbi search is shown in Figure 3-3. It is

similar to the frame-based lattice, with one exception. The time axis of the segment-

based lattice is represented by a graph of segments in addition to a series of frames.

A vertex in the lattice represents a phonetic boundary. The solid line through the

figure shows one possible path through the lattice.

tcl * ,

0 t-- * -

h#- * *
II I I ,

tl t2 t3 t48 t49 t50
L1 y L1TZZ

TIME

Figure 3-3: The segment-based Viterbi search lattice. The x-axis is time represented
by a sequence of frames and segments; and the y-axis is a set of lexical nodes. As in
the frame-based case, only the best path entering a node is kept, and the search finds
the optimal alignment of models against time by finding the optimal path through
the lattice.

To find the optimal path, the search processes segment boundaries in a time-

synchronous fashion. For each segment ending at a boundary, the search computes

the normalized segment scores of all possible phonetic units that can go within that

segment. It also computes the boundary scores for all frames spanning the segment,

the duration score, and the bigram score. Only models that have not been pruned

out and those that are allowed by the pronunciation network are scored. As before,



only the best path to a node is kept, and the best path at the end of processing can

be retrieved by performing a back-trace. Figure 3-4 summarizes the segment-based

search.

The segment-based search can emulate a frame-based one if it uses boundary

models only on a segment graph that contains every segmentation considered by a

frame-based search. Since a frame-based search considers every possible segmentation

that can be created from the input frames, such a segment-graph can be obtained by

creating a set of boundaries at the desired frame-rate and connecting every boundary

pair. Figure 3-5 illustrates the construction of such a graph.

To keep the size of the segment-graph manageable, the maximum length of a

segment formed by connecting a boundary pair is set to be 500ms. This limit has no

effect on performance, as the true frame-based search is unlikely to find an optimal

path with a segment longer than 500ms.

Using the segment-based search as a frame-based search is computationally inef-

ficient. Whereas in the true frame-based search each model is scored only once per

time, each model can be scored multiple times in the segment-based emulation. This

redundant scoring occurs whenever multiple segments are attached to either side of

a frame. Because every boundary pair is connected in the segment-graph used in the

simulated search, numerous models are needlessly re-scored in this framework.

3.5 Reducing Computation

To do away with the inefficiencies of the emulation, a true frame-based search as

described in Section 3.3 was implemented. In addition, computation was further

reduced by shrinking the search space of the Viterbi search. In time, instead of

scoring at every frame, only landmarks that have been detected by a spectral change

algorithm were scored. The landmarks used have been successfully applied previously

to the acoustic segmentation algorithm, and eliminate large amounts of computation

spent considering sections of speech unlikely to be segments. Along the lexical-space,

the full set of phone models was collapsed into a set of broad classes. Phones with



for each boundary bto in the utterance
let best_score(bto) = -oo
for each segment s that terminates at boundary bto

let bfrom be the starting boundary of segment s
let X be the measurement vector for segment s
let y' be the measurement vector for boundary bfro,
let yi[] be the array of boundary measurement vectors for every

frame from bfrom+l to bto- 1

for each node nto in the pronunciation network
for each pronunciation arc a arriving at node nto

let n fom be the source node of arc a
let b be the pronunciation arc arriving at node nfrom
if (nfrom, bfrom) has not been pruned from the Viterbi lattice

let a be the label on arc a
let a be the anti-phone label
let Ob be the label for the transition boundary b -+ a
let pi be the label for the internal boundary a -- a
let acoustic_score = p('Ia) - p('Id) + p(Yb I) + p([] Ii)

let duration_score = stw if b : a, or 0 if b = a
let language_score = p(,b)
let score = acoustic_score + duration_score + languagescore

if (score(nfrom, bfrom) + score > score(nto, bto))
score(nt, bto) = score(nrom, bfrom) + score
make a back pointer from (nto, bto) to (nfrom, bfrom)
if score(nto, bto) > best_score(bto)

let best_score(bto) = score(nto, bto)

for each node nto in the pronunciation network
if best score(bto) - score(nto, bto) > thresh

prune node (nto, bto) from the Viterbi lattice

Figure 3-4: Pseudocode for the segment-based Viterbi algorithm.
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Figure 3-5: The construction of a segment-graph used to emulate a frame-based
search. Every boundary pair on the left are connected to create the segment-graph
shown on the right.

similar spectral properties, such as the two fricatives shown on the left and the two

vowels shown on the right of Figure 3-6, were grouped into a single class. This can

be done because the identities of the segments are irrelevant for segmentation.

Figure 3-6: From left to right, spectrograms of [f], [s], [a], and [o]. To save compu-
tation, phones with similar spectral properties, such as the two fricatives on the left
and the two vowels on the right, were grouped together to form broad-classes.

3.6 Experiments

This section presents the performance of various versions of the Viterbi search. The

best path from the search is evaluated on phonetic recognition error rate and on the

computation needed to produce the path. Even though probabilistic segmentation

does not use the best path directly, these recognition results were examined because

they should be correlated to the quality of the segments produced by the probabilistic

segmentation algorithm.
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Experiments were done on the dev set using boundary models and a bigram. To

avoid having to optimize the pruning threshold for each search configuration, no

pruning was done in these experiments. Although the error rates to be presented can

be attained with much lower computation if the pruning threshold was optimized, the

purpose of these experiments was not to develop the fastest frame-based recognizer

but to show the relative recognition and computational performance. Optimizing

the pruning threshold for each configuration should result in similar recognition error

rates and similar relative computational improvements.

Table 3-1 shows the results for the simulated frame-based Viterbi search and

Table 3-2 shows the results for the true frame-based search. Both experiments were

done for three different frame-rates. The original probabilistic segmentation algorithm

uses the simulated frame-based search at a frame-rate of 10ms. A comparison between

the two tables shows that error rates between the simulated search and the true search

are comparable, but the true search requires less computation for a given frame-rate.

In theory, the error rates between the two configurations should be identical for a

given frame-rate; however, a difference in the implementation of the bigram results

in a slight mismatch between the two. In the frame-based search, a bigram weight

is applied at every frame. In the simulated frame-based search, a bigram score is

applied at segment boundaries only. The computational savings achieved are not

as dramatic as would be expected. This can be attributed to a caching mechanism

that prevents previously computed scores from being recomputed in the simulated

frame-based search.

The next table, Table 3-3, shows the results for the true frame-based search using

landmarks. Comparing Table 3-2 and Table 3-3 shows that the landmarks did not

significantly degrade error rate, but significantly reduced computation.

The last table, Table 3-4, shows broad-class recognition results using a true frame-

based search with landmarks. To conduct this experiment, the TIMIT reference pho-

netic transcriptions were converted into broad-class transcriptions according to Ta-

ble 3-5. Broad-class models were subsequently trained, and recognition was done using

the newly trained models. While the broad-class error rate shown is not comparable



Table 3-1: TIMIT dev set recognition results, using the frame-based search simulated
with a segment-based search.

Frame-rate

10ms
20ms
30ms

Error Rate (%)
28.7
28.0
29.0

Real-Time Factor

4.05
1.73
1.09

Table 3-2: TIMIT dev set recognition results, using the true frame-based search.

Frame-rate

10ms
20ms
30ms

Error Rate (%)
28.9
28.2
29.4

Real-Time Factor
3.01
1.52
1.01

Table 3-3: TIMIT dev set recognition results, using the true
landmarks.

frame-based search with

Frame-rate Error Rate

Landmarks 28.5
(%)

Table 3-4: TIMIT dev set recognition results on
based search with landmarks.

Frame-rate Error Rate

Landmarks I 24.1
(%)

Real-Time

0.92
Factor

broad classes, using the true frame-

Real-Time Factor

0.44
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Table 3-5: Set of 8 broad classes used in the broad class recognition experiment shown
in Table 3-4.

to the error rates shown in the other tables, the respectable error rate is promising,

as the computational requirements for this search configuration is extremely low.

3.7 Chapter Summary

This chapter presented several variations of the Viterbi search. It showed that a more

efficient landmark-based search can reduce computation by 77% (real-time factor of

4.05 to 0.92) with minimal impact on recognition performance (phone error rate

of 28.0% to 28.5%) compared to the baseline search. Furthermore, it showed that

an additional computational savings of 52% (real-time factor of 0.92 to 0.44) were

attainable by recognizing broad phonetic classes only.

Based on the results from this chapter, all subsequent experiments in this thesis

use the landmark-based search. Because the broad class recognition error rate cannot

be directly compared to the recognition error rate of the full set of phones, a decision

regarding the set of models to use is not made at this point.

Broad Class Members

front y i I e c ae I
mid ar 3- a
back 1 1 w u o o a i
weak v f 0 6 h fi
strong s z s z c
stop bdgptk
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Chapter 4

A* Search

4.1 Introduction

The previous chapter presented the Viterbi search as an algorithm that finds the

most likely word sequence for recognition. Unfortunately, due to the maximization

that takes place at each node in the lattice, the Viterbi search cannot be used to find

the top N paths. Various attempts have been made to modify the Viterbi search so

that it can produce the N-best paths [3, 16, 17]. One efficient way involves using the

Viterbi search in conjunction with a backward A* search [18].

This chapter presents the A* search. Using the lattice of scores from the Viterbi

search, an A* search running backward in time can efficiently produce the paths with

the top N likelihoods. This chapter describes the mechanics of a frame-based A*

search in the context of finding the N-best paths for probabilistic segmentation.

4.2 Mechanics

The search space of the backward A* search is defined by the same lattice as used

in the Viterbi search. However, unlike the Viterbi, which is a breadth-first time-

synchronous search, the backward A* search is a best-first search that proceeds back-

wards. The partial path score of each active path in the A* search is augmented by a

look-ahead upper bound, an estimate of the best score from the analysis node to the



beginning of the utterance.

Typically, the A* search is implemented using a stack to maintain a list of active

paths sorted by their path scores. At each iteration of the search, the best path is

popped off the stack and extended backward by one frame. The lexical nodes to

which a path can extend are defined by the pronunciation network. When a path

is extended, the appropriate boundary, segment transition, and bigram model scores

are added to the partial path score and a look-ahead upper bound to create the

new path score. After extension, incomplete paths are inserted back into the stack,

and complete paths that span the entire utterance are passed on as the next N-best

output. The search completes when it has produced N complete paths. To improve

efficiency, paths in the stack not within a threshold of the best are pruned away.

In addition to the pruning, the efficiency of the A* search is also controlled by

the tightness of the upper bound added to the partial path score. At one extreme

is an upper bound of zero. In this case, the path at the top of the stack changes

after almost every iteration, and the search spends a lot of time extending paths that

are ultimately not the best. At the other extreme is an upper bound that is the

exact score of the best path from the start of the partial path to the beginning of the

utterance node. With such an upper bound, the scoring function always produces

the score of the best complete path through the node at the start of the partial path.

Hence the partial path of the best overall path is always at the top of the stack, and

it is continuously extended until it is complete.

To make the A* search as efficient as possible, the Viterbi search is used to provide

the upper bound in the look-ahead score, as the Viterbi lattice contains the score of

the best path to each lattice node. Because the A* search uses the Viterbi lattice,

pruning during the Viterbi search must be done with care. Pruning too aggressively

will result in paths that do not have the best scores.

Figure 4-1 summarizes in detail the A* search. It is best understood by going

through an example. Consider Table 4-1, which shows the boundary scores for a hy-

pothetical utterance, and Figure 4-2, which shows a Viterbi lattice that has processed

those scores. The scores in the table follow the convention that lower is better. The



seed stack
let n = 0
while (n < N)

let path = best path popped from stack
let b = path.start_arc
let nto = b.start_node
let ft = path.start_frame - 1
let ' be the measurement vector for boundary ft
for each pronunciation arc a arriving at node nto

let nfrom be the source node of arc a
let p be the label for the transition a -+ b
let acoustic_score = p(* 1 /)
let duration_score = stw if b = a, or 0 if b = a
let language_score = p(3)
let score = acousticscore + duration_score + languagescore
let new _path.start _frame = ft
let new _path.start _arc = a
let newpath.last = path
let new _path.partial_score = path.partialscore + score
let newpath.full_score = new path.partial_score

+ viterbi_score(nfrom, ft)
if newpath is complete

let n = n + 1
output newpath
continue

else
push newpath onto stack

Figure 4-1: Pseudocode for the frame-based A* search algorithm.



lattice contains the overall best path, represented by a solid line. It also contains

the best path and its associated score to each lattice node. Only the model h# is

scored at time tl and t4 because the pronunciation network constrains the start and

end of the utterance to h#. The pronunciation network does not impose any other

constraints.

Table 4-2 shows the evolution of the stack as the A* search processes the hypo-

thetical utterance. Each path in the stack is associated with two scores. One is the

partial score of the path from the end of the utterance to the start of the path. The

other is a full path score that is the sum of the partial path score and the look-ahead

upper bound from the Viterbi lattice. The paths in the stack are sorted by the full

path score, but the partial score is needed to compute the full path score for future

extensions.

In the example, the stack is seeded with an end-of-utterance model, h#, as re-

quired by the pronunciation network. This single path is popped from the stack and

extended to the left, from the end to the beginning. During extension, the look-ahead

estimate is obtained from the appropriate node in the Viterbi lattice. The new partial

score is the sum of the old partial score and the boundary score of the new boundary

in the path. The new full path score is the sum of the estimate and the new partial

score. Each of the extended paths is inserted back into the stack, and the best path

is popped again. This process continues until the desired number of paths have been

completely expanded. In the example shown, two paths are found. They are shown

in bold in the figure.

The example presented highlights the efficiency of the A* search when it uses an

exact look-ahead estimate to compute the top paths. In particular, the top of the

stack always contains the partial path of the next best path. The search never wastes

any computation expanding an unwanted path.

In probabilistic segmentation, the segment-graph is simply constructed by taking

the union of the segmentations in the N-best paths. In the above example, the

segment-graph resulting from the two best paths found is shown in Figure 4-3.



Table 4-1: The boundary scores for a hypothetical utterance. Because the pronunci-
ation network constrains the beginning and end of the utterance to be h#, only h#
models are scored at tl and t4.

tl t2 t3 t4

Label Score Label Score Label Score Label Score
h# - aa 3 aa - aa 1 aa - aa 2 aa - h# 3
h# -+ ae 4 aa -+ ae 3 aa -+ ae 1 ae - h# 1
h# - h# 5 aa -+ h# 3 aa - h# 2 h# - h# 4

ae -+ aa 2 ae - aa 3
ae - ae 4 ae - ae 4
ae -h# 3 ae -h# 4
h# -aa 4 h# -aa 3
h# - ae 2 h# - ae 2
h# -h# 3 h# -h# 4
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Figure 4-2: A processed Viterbi lattice showing the best path to each node and the
score associated with the path.
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Table 4-2: The evolution of the A* search stack in a hypothetical utterance. Paths

are popped from the stack on the left, extended on the right, and pushed back on

the stack on the left of the next row, until the desired number of paths is completely

expanded. In this example, the top two paths are found, and they are shown in bold

in the figure.

Stack Extensions
Full Partial New New Partial New Path

Path Score Score Score Estimate Score Score
h# 6 0 aa/h# 6 3 9

ae/h# 5 1 6
h#/h# 6 4 10

ae/h# 6 1 aa/ae/h# 4 2 6
aa/h# 9 3 ae/ae/h# 6 5 11
h#/h# 10 4 h#/ae/h# 6 3 9

aa/ae/h# 6 2 aa/aa/ae/h# 3 3 6
h#/ae/h# 9 3 ae/aa/ae/h# 4 4 8

aa/h# 9 3 h#/aa/ae/h# 5 6 11
h#/h# 10 4

ae/ae/h# 11 5
aa/aa/ae/h# 6 3 h#/aa/aa/ae/h# 0 6 6
ae/aa/ae/h# 8 4
h#/ae/h# 9 3

aa/h# 9 3
h#/h# 10 4

h#/aa/ae/h# 11 6
ae/ae/h# 11 5

ae/aa/ae/h# 8 4 h#/ae/aa/ae/h# 0 8 8
h#/ae/h# 9 3

aa/h# 9 3
h#/h# 10 4

h#/aa/ae/h# 11 6
ae/ae/h# 11 5

h# aa ae h#

h# ae aa ae h#
I I I I I I

4-3: The construction of a segment-graph from the two best paths in the A*
example.

Figure
search



4.3 Experiments

A frame-based A* search was implemented in this thesis to work with the frame-

based Viterbi search discussed in Chapter 3. This section presents recognition results

and computational requirements of a segment-based phonetic recognizer using the

A* search for probabilistic segmentation. The difference between the implementation

presented here and the implementation presented in [2] is the improved efficiency of

the Viterbi and A* searches. In addition, experiments on JUPITER and on broad-

class segmentation are presented for the first time.

In these experiments, only boundary models were used for segmentation. For the

subsequent segment-based search, both boundary and segment models were used. In

addition, both recognition passes used a bigram language model.

The results are shown in Figure 4-4. TIMIT results are on top, and JUPITER re-

sults are on the bottom. The recognition plots on the left show the number of segments

per second in the segment-graph versus recognition error rate. The computation plots

on the right show the number of segments per second in the segment-graph versus

overall recognition computation. The number of segments per second is controlled

by N, the number of path segmentations used to construct the segment-graph. To

further evaluate the tradeoff between broad-class and full-class models left unresolved

in Chapter 3, experiments were performed using both sets of models for segmenta-

tion. Results on broad-class segmentation are shown as broken lines, and results on

full-class segmentation are shown as solid lines. The set of broad-classes used was

shown in Figure 3-5. Experiments were conducted on the dev sets.

This section first discusses general trends seen in both TIMIT and JUPITER,

then discusses some trends unique to each corpus.

4.3.1 General Trends

The plots in Figure 4-4 shows several general trends:

* The recognition plots show that as the number of segments in the segment-graph

increase, recognition error rate improves but asymptotes at some point. The
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initial improvement stems from the fact that the segmentation is not perfect at

N = 1, and the search benefits from having more segmentation choices. The

error rate asymptotes because the average quality of the segments added to the

segment-graph degrades as N increases. At some point, increasing N does not

add any more viable segments to the segment-graph.

* The computation plots show that as the number of segments in the segment-

graph increases, computation also increases. This is due to two effects. First,

a bigger segment-graph translates into a bigger search space for the segment-

based search, and hence more computation. Second, the A* search requires

more computation to produce a bigger segment-graph. The latter effect is com-

pounded by the fact that as N increases, the A* search is less likely to produce

a path with a segmentation not already in the segment-graph.

* The recognition error rate for broad-class segmentation is worse than for full-

class segmentation. Furthermore, for a given segment-graph size, the broad-

class segmentation leads to greater computational requirements for the overall

recognizer. The computation result is surprising, but can be explained by the

fact that with so few models, the space of all possible paths is much smaller,

and the chances of duplicate segments in the top N paths are much higher.

Therefore, a greater N is needed to provide the same number of segments. The

computation needed to compute the segment-graph for a higher N dominates

over the computational savings from having a smaller search space. The plots

in Figure 4-5 show that this is indeed the case. Both TIMIT plots, on top, and

JUPITER plots, on the bottom, are shown, but they show the same pattern.

The plots on the left, N versus the overall recognition computation, show that

the broad-class segmentation requires less computation for a given N, the ex-

pected result of having a smaller search space. However, the plots on the right,

N versus segments per second, show that broad-class models result in much

fewer segments at a given N. Overall, these results show that using broad-class

models in this segmentation framework is not beneficial. In the rest of this
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chapter, only the full-class results are considered.

4.3.2 Dissenting Trends

Recall from Table 2-2 that the baseline for the TIMIT dev set is a 27.7% error rate

achieved using a segment-graph with 86.2 segments per second, at 2.64 times real-

time. The JUPITER dev set baseline from Table 2-4 is a 12.7% error rate, achieved

with a segment-graph containing 100.1 segments per second, at 1.03 times real-time.

For TIMIT, this segmentation framework achieves an improvement in recogni-



tion error rate with so few segments that overall computational requirements also

improve over the baseline. The story is entirely different for JUPITER, however.

In JUPITER, recognition error rate is far from that of the baseline. This may be

caused by the large difference between the number of segments produced in these

experiments and the number of segments produced by the baseline. In an ideal situ-

ation the x-axes in Figure 4-4 should extend to the baseline number of segments so

that direct comparisons can be made. Unfortunately limited computational resources

prevented those experiments. Regardless, the algorithm has no problems beating the

baseline in TIMIT with such small segment-graphs.

One possible explanation for the algorithm's poor performance on JUPITER is

a pronunciation network mismatch, and illustrates the importance of the network

even in segmentation. For TIMIT, the pronunciation network used in probabilistic

segmentation and in the subsequent segment-based search is the same. As is typical

in phonetic recognition, this network allows any phone to follow any other phone. For

JUPITER, the pronunciation network used in probabilistic segmentation allows any

phone to follow any other phone, but the network used in the subsequent segment-

based search contains tight word-level phonetic constraints.

Since the focus of this thesis is on phonetic segmentation, word constraints are

not used even if the segment-graph is being used in word recognition. However, the

results here seem to indicate that the segmentation algorithm could benefit from such

constraints.

4.4 Chapter Summary

This chapter described the backward A* search that produces the N-best paths used

to construct the segment-graph in probabilistic segmentation. It presented results in

phonetic and word recognition using segment-graphs produced using the algorithm.

The results demonstrate several trends. First, as the number of segments in the

segment-graph increases, recognition accuracy improves but asymptotes at a point.

Second, the amount of computation necessary to perform recognition grows as the



number of segments increases. Third, the broad-class segmentation results in poor

recognition and computation performance.

The segment-graphs produced by probabilistic segmentation result in much better

performance for TIMIT than for JUPITER. This can be attributed to the fact that

the segmentation algorithm does not use word constraints even for word recognition.

Since the focus of this thesis is on phonetic segmentation, higher level constraints

such as word constraints are not used.



Chapter 5

Block Processing

5.1 Introduction

Recall from Chapter 1 that the original probabilistic segmentation implementation

could not run in real-time for two reasons. One is that it required too much com-

putation. Chapter 3 showed that switching to a frame-based search using landmarks

helped to relieve that problem. The other reason is that the algorithm cannot pro-

duce an output in a pipeline, as the forward Viterbi search must complete before the

backward A* search can begin. This chapter addresses this problem and describes a

block probabilistic segmentation algorithm in which the Viterbi and A* searches run

in blocks defined by reliably detected boundaries. In addition, this chapter introduces

the concept of soft boundaries to allow the A* search to recover from mistakes by the

boundary detection algorithm.

5.2 Mechanics

Figure 5-1 illustrates the block probabilistic segmentation algorithm. As the speech

signal is being processed, probable segment boundaries are located. As soon as one

is detected, the algorithm runs the forward Viterbi and backward A* searches in

the block defined by the two most recently detected boundaries. The A* search

outputs the N-best paths for the interval of speech spanned by the block, and the
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Figure 5-1: Illustration of block processing using hard boundaries. The two-pass N-
best algorithm executes in blocks defined by reliably detected segment boundaries,
producing the N-best paths and the segment-graph in a left-to-right manner.

segment-graph for that section is subsequently constructed. The algorithm continues

by processing the next detected block. The end result is that the segment-graph is

produced in a pipelined left-to-right manner as the input is being streamed into the

algorithm.

5.3 Boundary Detection Algorithms

This section introduces the boundary detection algorithms used to detect the probable

segment boundaries that define the blocks to be processed. In general, the bound-

ary detection algorithm must have two properties. First, the boundaries detected

must be very reliable, as the N-best algorithm running in each block cannot possibly

produce a segment that crosses a block. Because the probabilistic segmentation al-

gorithm running within each block produces segment boundaries inside the block, a

missed boundary by the boundary detection algorithm is much preferred to one that is

wrongly detected. Second, the boundary detection algorithm should produce bound-

aries at a reasonable frequency so that the latency for the segmentation algorithm is



not too long.

In this thesis, two different boundary detection algorithms were examined. They

are described separately below.

5.3.1 Acoustic Boundaries

The acoustic boundary detection algorithm detects probable segment boundaries

based on acoustic change. Boundaries are placed at major peaks of spectral change

in the speech signal. These boundaries are a subset of the landmarks used to save

computation in the Viterbi search presented in Chapter 3. A threshold on the height

of the peaks controls the frequency of the boundaries. In this thesis, the threshold is

set such that a boundary is detected on average every 200ms.

Experiments show that the boundaries detected by this algorithm have the desired

characteristics. Approximately 85% of the detected boundaries in TIMIT are within

10ms of an actual segment boundary in the phonetic transcription. For JUPITER,

the number rises to about 96%. This difference between TIMIT and JUPITER can

be attributed to two factors. First, the algorithm may be better suited for tele-

phone speech. Second, and likely the dominating factor, is that the TIMIT reference

transcription is neutral and hand-transcribed, whereas the JUPITER reference tran-

scription is based on forced paths. Since even humans frequently disagree about the

precise placement of segment boundaries, this difference is not significant.

5.3.2 Viterbi Boundaries

The Viterbi boundary detection algorithm is based on statistics in the Viterbi search.

Boundaries are placed at frames where all active nodes above a threshold are transition

nodes. The threshold controls the frequency of the boundaries. In this work, it was

set to produce a boundary on average every 200ms.

The performance of this algorithm is similar to that of the acoustic boundary

detection algorithm. Experiments show that approximately 85% of the detected

boundaries in TIMIT are within 10ms of an actual segment boundary in the pho-



netic transcription. For JUPITER, the number rises to about 94% for the same

possible reasons as given for the acoustic boundaries.

5.4 Recovery from Errors

The statistics presented for each of the boundary detection algorithms show that they

are generally reliable. However, they are not perfect. In particular, they do occasion-

ally detect a boundary where a boundary does not exist. When this occurs, the N-best

algorithm running between the boundaries cannot hypothesize actual segments that

cross the boundary.

To counter this problem, soft boundaries were introduced. Figure 5-2 illustrates

this concept. In contrast to Figure 5-1, where the N-best algorithm runs between ev-

ery neighboring hard boundary, the N-best algorithm runs between every other soft

boundary. This allows the N-best algorithm to recover from mistakes in the bound-

ary detection algorithm by hypothesizing segments that span parts of two blocks.

Unfortunately, this benefit comes at a cost. An algorithm using soft boundaries re-

quires more computation than one using hard boundaries because some sections of

the speech signal are processed twice. In addition, an algorithm based on soft bound-

aries has a higher latency because the output lags the latest input data by at least

one block.

Figure 5-2: Illustration of block processing using soft boundaries. The N-best algo-
rithm runs between every other boundary, allowing the N-best algorithm to correct
mistakes by the boundary detection algorithm.
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5.5 Experiments

This section presents experiments performed to study the performance of the block

probabilistic segmentation algorithm. Experiments on the dev sets were performed to

study the tradeoffs between several configurations of the algorithm. Optimal operat-

ing points were picked based on data from those experiments, and final experiments

were run on the test set. In all these experiments, only boundary models were used

for segmentation. For the subsequent segment-based search, both boundary and seg-

ment models were used. In addition, both recognition passes used a bigram language

model. The development and final experiments are discussed separately below.

5.5.1 Development Experiments

The development experiments were conducted to examine the effect of three variables

on the performance of the block probabilistic segmentation algorithm in terms of both

overall recognition accuracy and computation. The variables examined are acoustic

versus Viterbi boundaries; soft versus hard boundaries; and broad-class models versus

full-class models.

The effect of each of these is assumed to be independent, so that the effect of one

variable can be examined by holding the others constant. Experiments were done

on the dev set, for both TIMIT and JUPITER. In the plots to be presented, the

TIMIT results are on top and the JUPITER results are on the bottom. Recognition

performance, that is, number of segments per second versus error rate, is plotted on

the left, and computation performance, shown as the number of segments per second

versus the real-time factor, is plotted on the right.

Acoustic versus Viterbi Boundaries

In this experiment, the difference in performance between acoustic and Viterbi bound-

aries was examined. The segmentation algorithm used soft boundaries with a full set

of models.

The results are shown in Figure 5-3. The acoustic boundaries are represented



by the broken lines, and the Viterbi boundaries are represented by the solid lines.

The computation plots on the right show that they both require about the same

amount of computation. However, the recognition plot on the top left shows that for

TIMIT, the Viterbi boundaries clearly outperform the acoustic boundaries in terms

of recognition error rate. Therefore, all subsequent TIMIT experiments use Viterbi

boundaries. The recognition plot on the bottom left shows that for JUPITER, the

Viterbi boundaries are better at some operating points while the acoustic boundaries

are better at other operating points. Because the segmentation algorithm runs at the

operating point where the acoustic boundaries are better, all subsequent JUPITER

experiments use acoustic boundaries.

Soft versus Hard Boundaries

In this experiment, the performance difference between soft and hard boundaries

was examined. The segmentation algorithm used Viterbi boundaries for TIMIT and

acoustic boundaries for JUPITER. In addition, the algorithm used a full set of models.

The results are shown in Figure 5-4. The soft boundaries are represented by

the broken lines, and the hard boundaries are represented by the solid lines. The

left recognition plots show that the soft boundaries in general outperform the hard

boundaries in terms of error rate, but the right computation plots show that this

performance comes at a cost of greater computation, as expected. This is one trade-

off to be taken into account when looking for an optimal operating point for the

segmentation algorithm.

Broad-Class versus Full-Class

Chapter 4 presented poor results from experiments in which broad-class models were

used for probabilistic segmentation processing the entire utterance. This was ex-

plained by the fact that with so few models, the space of all possible paths is much

smaller, and the chances of duplicate segments in the top N paths are much higher.

However, because the space of all possible paths grows exponentially with the length

of the piece of speech being processed, the effect of broad classes on this space is
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Figure 5-3: Plots showing recognition performance on the left and computation per-
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much smaller on blocks than on the entire utterance. Therefore, the phenomenon

seen in Chapter 4, where broad-class segmentation failed to bring any computational

savings, may not apply to the algorithm processing small blocks. This experiment

examines whether broad-class models used on small blocks can boost computational

performance at a reasonable cost to recognition performance.

The set of broad-class models used in this experiment is the one shown in Fig-

ure 3-5. The segmentation algorithm uses Viterbi soft boundaries for TIMIT and

acoustic soft boundaries for JUPITER. The results are shown in Figure 5-5. Unlike

in Chapter 4, using broad-class models on the block algorithm can achieve com-

putational savings over the full-class models. In particular, broad-class models are

computationally cheaper for some operating points in TIMIT and all operating points

in JUPITER. However, as seen in Chapter 4, the full-class models perform better than

the broad-class models in terms of error rate. This is another tradeoff to be taken into

account when looking for an optimal operating point for the segmentation algorithm.

5.5.2 Final Experiments

Based on the results from the development experiments, final experiments on TIMIT

used Viterbi boundaries, and final experiments on JUPITER used acoustic bound-

aries. They were conducted on their respective test sets.

For TIMIT, an improvement over the baseline in terms of error rate, number of

segments, and computation was attained using soft Viterbi boundaries with full-class

models. In addition, when the recognizer was allowed to run without any computa-

tional constraints, a further error rate reduction was achieved by simply increasing

the size of the segment-graph. This result is shown in Table 5-2.

For JUPITER, the new segmentation algorithm achieved an improvement in terms

of error rate and number of segments using acoustic soft boundaries and full-class

models. However, the algorithm at that operating point required significantly more

computation than the baseline. Using the set of 8 broad-classes shown in Figure 3-5

resulted in an algorithm that achieved an improvement in computation and number

of segments, but not in error rate. As a compromise between the two, experiments
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Table 5-1: Set of 21 broad classes used for final JUPITER experiments.

using a set of 20 broad-classes shown in Table 5-1 were run. This configuration of

the algorithm achieved an improvement in word error rate and number of segments

at a much more reasonable level of computation. Table 5-3 summarizes the test set

results for JUPITER. In the table, the result with the computational constraint used

the set of 20 broad-class models, and the result without the computational constraint

used the full set of models.

5.6 Chapter Summary

This chapter presented several modifications to the probabilistic segmentation algo-

rithm to enable it to run in a pipelined manner. The revised algorithm executes the

N-best algorithm in blocks defined by probable segment boundaries. These bound-

Broad Class I Members

1 yie
2 I eaI
3 AoaU
4 a al ol olca
5 r rr rx
6 1wl
7 u yu
8 r- ir
9 or ar
10 aY 3Y
11 v6fi
12 fOh
13 sz
14 sz 2
15 bp
16 dt
17 gk
18 m n i mm nn
19 r tx
20 b° do 90 p tO 0 k° h# h#l h#2
21 ? iwt



Table 5-2: Final TIMIT recognition results on the test set.

Error Rate (%) Segments/Second
Baseline 29.1 87.2
With Computation Constraint 28.4 56.6
Without Computation Constraint 28.1 61.3

Table 5-3: Final JUPITER recognition results on the test set.

Error Rate (%) Segments/Second
Baseline 10.6 99.7
With Computation Constraint 10.5 65.2
Without Computation Constraint 10.0 76.3

aries are defined by a boundary detection algorithm, two of which were explored in

this chapter. To allow the N-best algorithm to correct for mistakes in the bound-

ary detection algorithm, soft boundaries were introduced. These boundaries allow

the N-best algorithm to produce a path with a segment that crosses over a detected

boundary.

Experimental results on various versions of the block segmentation algorithm

were presented. These experiments show that the Viterbi boundaries work better

for TIMIT, and the acoustic boundaries work better for JUPITER. They also show

that, as expected, the choice between soft and hard boundaries involves a tradeoff

between recognition performance and computation. The same tradeoff is true for the

choice between broad-class and full-class models.

When optimal operating points were chosen for experiments on test data, improve-

ments in both TIMIT and JUPITER were attained. For TIMIT, at the same com-

putation level as the baseline, recognition error rate improved from 29.1% to 28.4%,

and size of the segment graph decreased from 87.2 to 61.3 segments per second. For

JUPITER, at a similar computation level as the baseline, error rates improved from

10.6% to 10.5% and segment-graph size decreased from 99.7 to 76.3 segments per

second. When no constraints were placed on computation, further error rate gains

were achieved with slightly larger segment-graphs. In TIMIT, recognition error rate



declined to 28.1% at 61.3 segments per second, and for JUPITER error rate declined

to 10.0% at 76.3 segments per second.



Chapter 6

Conclusion

6.1 Accomplishments

In this thesis, various modifications to the probabilistic segmentation algorithm pre-

sented in [2] were explored, with the goal of creating an algorithm that is fast, runs

in a pipeline, and results in competitive recognition error rate.

Computational savings were attained by replacing the segment-based search us-

ing only boundary-models with a much more efficient frame-based search. Further

computational savings were attained by using acoustic landmarks located at irregu-

lar intervals rather than regularly spaced frames. A pipeline capability was achieved

by running the probabilistic segmentation algorithm in blocks defined by probable

segment boundaries.

Experiments were performed to study the computation and recognition tradeoffs

for several configurations of the algorithm. In particular, the difference in performance

between acoustic and Viterbi boundaries; soft and hard boundaries; and full-class and

broad-class segmentation were examined. Optimal operating points picked from these

experiments result in a segmentation algorithm that can produce an improvement in

error rate with significantly fewer segments than the baseline acoustic segmentation.

The error rate improvement is greater when the recognizer is allowed to use signifi-

cantly more computation than the baseline recognizer.



6.2 Algorithm Advantages

The algorithm developed in this thesis has several attractive attributes. First, the

algorithm allows for a tradeoff between accuracy and computation as determined

by the number of segments produced. If computation is an important factor for

an application, the algorithm can be tuned to run faster than the baseline while still

producing a competitive error rate. If error rate is more important than computation,

the algorithm can be tuned to produce an optimal error rate significantly better than

the baseline.

More importantly, the algorithm outputs a smaller segment-graph containing more

relevant segments than that produced by the baseline acoustic segmentation. This

allows more sophisticated segment-based modeling techniques to be explored. For

example, Chang has developed a novel segment-based acoustic modeling technique,

termed near-miss modeling, that relies on a quality segment-graph [1].

Finally, the algorithm produces information in the first pass recognizer that can

be reused to guide acoustic modeling in the subsequent segment-based search. For

example, if the first-pass recognizer identifies a segment to be a fricative, then the

segment-based search can use features and models tailored for distinguishing between

phones within the fricative class. Heterogeneous measurements that improve within-

class classification performance have been developed by Halberstadt [8]. They can

easily be applied to this framework.

6.3 Future Work

Possible extensions to this work include:

Using a dynamic N tuned to the characteristics of each block. Currently the

number of segments in the segment-graph is controlled by N, the number of

paths used to produce the segment-graph. This N is a constant, regardless of

the size of the block being processed, or the confidence that the segments in

the block are correct. Allocating a larger N to bigger blocks or blocks with low



confidence should help to distribute segments to areas of the speech signal with

more uncertainty.

* Using word or syllable constraints in the probabilistic segmentation recognizer.

As discussed in Chapter 4, the segmentation algorithm can benefit from such

constraints when the overall task of the segment-based recognizer is word recog-

nition.

* Investigating the tradeoff between memory and computation. This thesis con-

centrated on the tradeoff between recognition performance and computation,

without regard to memory requirements. However, memory can affect the speed

of execution as well if the memory requirements are so enormous that time spent

swapping memory dominates over time spent computing. This phenomenon is

seen at very large N in this thesis.

* Investigating the use of the A* word graph search instead of the A* N-best

search [9]. The word graph search directly computes a graph and should reduce

redundant computation used to expand previously seen segmentations in the

N-best search.
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