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Influence of the regeneration by neutral currents in the observable flux
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The telescopes of astrophysical high-energy neutrinos based on the Cherenkov technique are very different
from the conventional telescopes in that the first ones look down, to the interior of the Earth. These Cherenkov
detectors are designed to observe the upward-going muons produced by muon neutrinos that traverse through
our planet, when they interact weakly with matter around the detector. In order to interpret the data from
upward-going muons it is important to understand how the neutrino flux is modified when it travels through
the Earth. Besides absorption, the neutrino flux can be altered by other mechanisms, for example, regeneration
by means of neutral currents. In this work we explore the effect of the regeneration through neutral currents
in the propagation of neutrinos and its influence on the observable flux of upward-going muons for different
astrophysical and exotic models of high-energy neutrinos.

1. Introduction

The detection of extraterrestrial high-energy neutrinos will open a new window to the farthest and most ener-
getic phenomena in the universe. So far, these elusive particles have escaped from observation but it is thought
that with the next generation of 1 km

�
Cherenkov detectors, like Icecube, the first detection of very high-energy

neutrinos from outer space could be achieved [1]. The neutrino telescopes based on the Cherenkov technique
look in the direction of the Earth and use our planet as a filter for neutrinos and as an extension of the detector
[2]. They are designed to observe the upward-going muons produced by muon neutrinos in charged current
interactions with the rock under the detector [3].

In its transit through the Earth, the neutrino flux is modified mainly by absorption due to ��� � interactions,
where

�
is a nucleon from the medium. However, there are secondary mechanisms, such as regeneration by

means of neutral currents, that alter the shape of the neutrino flux and hence the rate of detectable upward-going
muons. Therefore, those processes must be studied in order to understand properly the data from Cherenkov
detectors. In this article, we will be concerned with the role of the regeneration by neutral currents in the
propagation of muon neutrinos through the Earth and with its contribution to the detectable flux of upward-
going muons from different sources.

2. Regeneration by means of neutral currents

At high energies, neutrinos which undergo charged current (CC) interactions are removed from the initial flux,
but those which interact through neutral currents (NC) only degrade their energy, that is, present regeneration
[4]. This phenomenon is possible because at high energies the final lepton tends to conserve the direction of
the initial neutrino [5], and because in each ��� � collision the neutrino, in average, loses a small fraction � of
its initial energy (For �	��

��������������� GeV, ������
 0.3 � 0.2 [6]).

Neglecting � ��� interactions, the transport equation that applies to a muon neutrino flux that traverse through
the Earth (in absence of � oscillations and muon decay) is [4]
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Figure 1. (a) Astrophysical and exotic fluxes of high-energy muon neutrinos. See text for description. In (b) and (c) we
can see the regeneration and the IKJ factor, respectively, for the Waxman-Bahcall bound as a function of the energy L�J for
three different nadir angles.

A similar equation applies for muon antineutrinos. In the above equation, M is the nadir angle of observation,'9$ M ) ; the column depth of matter found by a neutrino along the M direction after traversing a given distance
inside the Earth;

�-,
, the Avogadro’s number;

. 032#4�65 , the total � � � cross section;
 . 5�F�N5 $ � D� & � �7)(O  � � , the

differential one for the corresponding neutral current process, and
! �#"%$ � ��&('*) represents the flux of muon

neutrinos at '9$ M ) . The first term on the right-hand side of relation (1) is associated with absorption and the
second one, with regeneration. The effect of absorption and regeneration in

! � "%$ �	� &#'*) can be factorized using
the following expression [7]:

! �("%$ � ��&#'9$ M )#) 
 ! � � " $ � ��)#�7P3Q�RTSVUXWVY*Z\[^]B(_ R ; B U#`a$ � ��&('9$ M )()b& (2)

where
! � �(" $ � ��) is the initial flux that arrives to the Earth surface and c 032#4�65 $ � �7) 
d� O �e,K. 032#4�65 $ � �7) , the to-

tal � � � interaction length of a muon neutrino with energy � � . The effect of the regeneration is put inside`a$ � ��&('*) , which has become known as the regeneration factor and satisfies `a$ � ��&#'*)�f � . The factor `a$ � ��&#'*)
is ruled by the following integro-differential equation [7]:
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with the initial condition `a$ � ��& � ) 
o� . We solved numerically this equation for �ap�q6r� 
o�����s� GeV and
different initial neutrino fluxes in order to find

! �#"%$ � ��&#'*) in each case.

Here, we considered the models displayed in graph 1a. In that figure, three different spectra of the form � P3t
are shown, with spectral index uv
w� [8], x (Waxman-Bahcall limit [9]) and 3.6 (angle-averaged atmospheric
neutrinos [6, 10], named Atmospheric in the figure). We also present the Mannheim’s model for the AGN
diffuse flux of muon neutrinos [11], that from Engel et al. for the spectra of GZK muon neutrinos [12] and a
Sigl’s model associated with topological defects (TD) [13].

On the other hand, the rate of detectable upward-going muons above a given threshold, �yp�z t� , in a Cherenkov
detector of effective area {|

� km } was estimated through the relation [6]
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Figure 2. (a) Final flux of neutrinos, after traversing the Earth, compared with its corresponding initial flux for various nadir
angles. The results with ��J��>�J equal to and different from one are shown in the graph. In the first case only absorption is
involved (Abs.) and, in the second one, regeneration is included (Abs. + Reg.). (b) Annual rate of detectable upward-going
muons and antimuons in a 1 km � Cherenkov detector from several astrophysical and exotic sources of high-energy muon
neutrinos.

In this expression, ��� �1$ � ��& � p�z t� ) � represents the average range of a muon in standard rock and '\�C$ M ) , the
total column depth of matter along the M direction inside the Earth. The ��� � cross section was calculated at
leading order in the framework of the Standard Model using the quark-parton model and considering

�
as

an isoscalar nucleon. We also employed the CTEQ6-L1 [14] and Double Logarithmic Approximation [15] to
describe the parton distributions of the nucleon. The interior of the Earth was described with the Preliminary
Earth Model, which we took from [6]. Finally, in order to evaluate the average range of a muon in standard
rock we used MUM v1.4 [16] and studied the propagation of ����� muons in this medium.

3. Results and discussions

In order to illustrate our results, we present in figure 1b the regeneration factor for the Waxman-Bahcall bound
as a function of M and �	� . The regeneration factor, in general, increases with the angle M and, therefore, with
the total column depth ' � $ M ) . Moreover, it exhibits a maximum at high energies, in particular, near ��p�q6r� . The
value of `a$ � ��&('*) depends on the specific model, too. In the case of the power law spectra, it grows up as the
spectral index u decreases, behavior that was already pointed out by Nicolaidis et al. [4].

From graph 1b, it can be observed that the value of the regeneration factor is bigger for large column depths and
very high energies. But, before any conclusion about the importance of the regeneration in the flux of neutrinos
through the Earth can be drawn it must be remembered that the contribution of the regeneration to the final flux
compete with the effect of attenuation. For all the models that were analysed, the attenuation always dominates
over the regeneration effects, as can be seen, for instance, in figure 2a, since

! �#"%$ � ��&('��*$ M )#)VO ! � �(" $ � �7)��� , except for the GZK model where
! �#"%$ � ��&#'��*$ M )#)VO ! � � " $ � �7)vf � at low energies. Then, it results that

the effective attenuation length ��� $ �G� &('*) defined through
! � "3$ �G� &('*) 
 ! � �(" $ �G� )��6���>� � '9$ M )VO ��� $ �G� &('*)k� in

[17], in order to describe the combined influence of absorption plus regeneration in the neutrino flux, becomes
negative and takes an infinity value when

! �#"%$ � ��&('��7) 
 ! � �(" $ � ��) .
The regeneration factor can be also be expressed in terms of the ��� factor introduced by Naumov and Perrone
in reference [17] in the following way: ` � $ �G� & M ) 
 exp � ��� $ �	� & M )�'CO c 032#4�65 $ �	� )k� . This ��� $ �G� & M ) factor has
information about the competition between regeneration and absorption in the neutrino flux when traveling
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across the Earth. In graph 1c, the ��� factor of the Waxman-Bahcall limit is shown for three different nadir
angles. We can observe that the value of the ��� factor is less than one. This implies that absorption is more
important than regeneration. In addition, we can see that the ��� factor increases when the observation angle
becomes closer to the horizontal direction. These characteristics of the ��� factor were also observed for the
other models, but the first one for the GZK flux. In this case, at low energies it results that ��� f � , which
means that the regeneration effects are more important than those from attenuation.

Now, the rates of detectable events with absorption and regeneration are shown in figure 2b as a function
of the threshold energy at the detector. According to our evaluations, the contribution from regeneration to
the

� � ~�  ��¡ $ � p�z t� ) flux is less than 16 %. The biggest contributions are observed in the case of the � P �
spectrum, the GZK model and the Sigl’s flux from topological defects. We also see that, from all the � P3t
spectra, the enhancement of the

� ��~   � ¡ $ �ep�z t� ) rates due to regeneration effects is smaller for those fluxes
with higher spectral indexes, n.

4. Conclusions

The regeneration by means of neutral currents recycles neutrinos which undergo a neutral current � � � inte-
raction during their propagation through the Earth. This effect is flux dependent. An increase on the amount
of matter traversed by the neutrinos results in a bigger regeneration factor, although, it is not enough to com-
pensate the effect of the attenuation. Only at low energies the first one could balance or overcome the decrease
of absorption specifically for fluxes which behave like the GZK spectra. The final enhancement of the number
of detectable upward-going muons due to regeneration is modest, less than 16 % for the analysed models, but
it should be incorporated for a detailed description of the problem.
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