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Abstract

Current industry best practice in design achieves concurrent engineering through
Integrated Product Teams (IPTs) at the design phase of a project. The Boeing Company's
Teledesic project provides the opportunity to integrate the product, process and supply
chain designs during the concept phase of the project, where the design leverage is the
greatest. The difficult functional, cost and schedule requirements on the Teledesic
project make concurrent system engineering a key enabler for project success.

To achieve this concurrency, Boeing's core competency in product system engineering is
expanded to include the process and supply chain architectures. This expansion will
provide the ability to concretely and quantitatively trade requirements across all three
architectures. This work will outline Boeing's traditional system engineering
methodology and how the Teledesic project expanded this methodology to allow for
optimization across product, process and supply chain boundaries. The implementation
strategy for this expansion is also presented. Two project examples communicate the
effectiveness of the expanded methodology in trading system requirements across
architecture boundaries.
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Disclaimer

The details about the Teledesic project outlined below have been stylized to match information that is

currently available in the public domain. Because the author had access to the actual requirements and

system architectures, many of details outlined below are known to be in error. In addition, the design has

been modified since the completion of the research, making the author's knowledge incomplete. The

examples from the Teledesic project are meant to illustrate how a concurrent system engineering

methodology would be implemented on a project like Teledesic, not to communicate any specific design

information. However, the description of the methodology and the results as demonstrated on the Teledesic

project are factual and meant to show the effectiveness of the methodology in addressing complex product,

process and supply chain architecture challenges.



1 Introduction

Current industry best practice in design achieves concurrent engineering through Integrated Product Teams

(IPTs) at the design phase of a project. [1] However, Boeing's Teledesic project provides the opportunity to

integrate the product, process and supply chain designs during the concept phase of the project, where the

design leverage is the greatest. [2] The difficult functional, cost and schedule requirements in the process

and supply chain architectures makes concurrent system engineering a key enabler for project success.

1.1 Current Best Practice in Product Design

Current best practice in product design achieves concurrent engineering through the use of IPTs. Having

the designers, manufacturing engineers and, increasingly, the major suppliers participate on a cross-

functional design team is the best way to ensure a design optimally meets the requirements. [1] However,

other work has shown that the majority of project costs are determined in the concept phase of a project,

before IPTs are traditionally engaged. [2]

In addition, most tools for production and supply chain system engineering focus in the improvement of

existing facilities or processes, not on the creation of new systems. Lean Manufacturing reduces waste and

flow time. [3] Theory of Constraints maximizes throughput. [4] Total Quality Management reduces

variation. [5] Linear Programming optimizes key output parameters. [6] Each of these tools improves

existing operations.

One of the few tools for designing new production and supply chain systems, Intel's Copy Exactly, tries to

duplicate the performance of the best existing integrated circuit fabrication facility in the new plant. [7]

While effective in Intel's context, simply duplicating today's best satellite production and supply chain

system fails to meet the Teledesic project objectives. This absence of tools to accomplish the production

and supply chain system engineering task makes Boeing's chosen methodology a benchmark for others

attempting significant innovation in the production and supply chain system design.



1.2 The Teledesic Challenge

Like many companies with a strong new product development heritage, The Boeing Company has

traditionally integrated the product and process design activities through Integrated Product Teams

(IPTs). The Teledesic project provides the opportunity to take this integration to the next level and pursue

a concurrent system engineering effort in the product, process and supply chain architectures.

The challenges for the Teledesic production and supply chain system design are significant. No mass

manufacturing production systems exist that can produce the rate of satellites needed for the success of

Teledesic, as illustrated in Figure 1. Also, radically reduced final assembly flow time is required from the

supply chain, as illustrated in Figure 2. [8] Clearly, the Teledesic project requires major innovation in the

process and supply chain architectures.

Production Rate Challenge
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Figure 1: Production Rate Challenge
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Figure 2: Final Assembly Flow Time Challenge

In order to meet these difficult project requirements, a concurrent system engineering process is necessary.

This methodology must concretely and quantitatively trade requirements across product, process and

supply chain boundaries. This work outlines how Boeing expanded its core competence in product system

engineering to the process and supply chain architectures, enabling concurrent system engineering in the

concept phase of the project.

1.3 Framework Correlation to the Methodology Recommendations

The implemented system engineering expansion is strongly correlated to frameworks recently developed at

the Massachusetts Institute of Technology (MIT) for analyzing the effectiveness of system designs. An

outline of these frameworks will serve as a useful backdrop for the subsequent discussion of the system

engineering methodology modifications.

One such framework is the Fine/Cohen FAT 3-D Matrix [9], which draws attention to the importance of

including supply chain architecture as a third component in system engineering, as illustrated in Figure 3.

Specifically, the Focus, Architecture, Technology, Product, Process and Supply Chain linkages show the



dependencies between the architectures. If these linkages to the supply chain architecture are ignored, then

the overall system integrity will be reduced and the ability of the architecture to meet its objectives will be

at risk.
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Figure 3: Fine/Cohen FAT 3-D Matrix

The recent success of several firms in competing on supply chain efficiencies also highlights the imperative

of explicitly designing the supply chain. Dell Computer, Amazon.com and L.L Bean are three examples of

organizations that use supply chain architecture and logistics to be a chief source of competitive advantage.

Several other companies, notably Chrysler, are re-aligning their product and process design systems to

maximize their strength in supply chain architecture design. [9] Analyzing the markets where these

companies compete with the FAT 3-D Matrix highlights the mismatches between architectures in the

current system, showing why these new entrants can compete successfully against the bigger and stronger

incumbents. By explicitly designing the supply chain to be in harmony with the product and process

architectures, the overall integrity of the products and systems created by the firm can be enhanced.

Specifs. &
IFlunctionls.
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Another important new framework, the Crawley Total Holistic View of Product/Process Architecture [10],

emphasizes the importance of explicit process and operational design, as illustrated in Figure 4. The black

dots represent the activities that are traditionally included in a new project effort. The product goals are

defined, the function of the subsystems is specified in the form of requirements, those requirements are

allocated to products and lastly, the execution team is specified.

Total Holistic View of Product/Process Architecture
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product behaves are occur Who does
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Traditional Product Design O New Process Design 0 Operational Design

Figure 4: Crawley Total Holistic View of Product/Process Architecture

The white dots illustrate that the often forgotten process design activities strongly parallel the product

design, and that, indeed, new processes can be designed like new products. Especially for Teledesic, where

the current industry process capability does not meet the project requirements, explicit design of the

processes is essential to project completion. These linkages also highlight the opportunity for the

development of process design tools that address the new process design challenge in a strong and direct

way.

The gray dots outline the operational design segment. Especially for the Teledesic Network, where the

system will be constantly managed throughout it's lifetime, the explicit design of the operational processes

and procedures is central to the successful completion of the project requirements.



These two frameworks help to highlight three often overlooked elements of the system engineering

process: supply chain, process and operational design. The explicit design of these elements will strongly

enhance a traditional product-centric system engineering process.



2 Teledesic Project Context

The Teledesic project is characterized by it's difficult functional, cost and schedule requirements, which

drive the need to innovate concurrently in the product, process and supply chain architectures. To address

the production and supply chain system design challenges, a new team, the DefineProduce team, was

created within the traditionally product-oriented System Engineering group. The unique Teledesic project

requirements and the corresponding unique organizational structure provide the backdrop for the expansion

of the requirement-centric product system engineering methodology to include the process and supply

chain architectures.

2.1 The Teledesic Network System Requirements

The Teledesic program is defined by difficult functional, cost and schedule requirements. In addition, the

functional, cost and schedule requirements are considered equally important. This equal weighing differs

from previous satellite systems, where the functional requirements were more important than the cost and

schedule requirements. The increased importance of cost and schedule attracts resources and visibility to

the process and supply chain design activities. This visibility enables changes to the traditional process and

supply chain design methodology that would not normally be feasible. The stringent Teledesic system

requirements are outlined below.

Functional Requirements

In the words of the Teledesic Corporation, the Teledesic Network is a high-capacity broadband network

that will provide affordable access to interactive broadband communication to all areas of the Earth,

including those areas that cannot be served economically by any other means. [11]

This mission translates into a network with global coverage, "Internet-like" flexibility and robustness,

"fiber-like" Quality of Service (QOS), capacity for millions of simultaneous users and compatibility with

applications that are based on today and tomorrow's protocols. "Fiber-like" QOS means the system will

have fiber-like performance in the dimensions of latency, error rate, service availability and data



throughput. [ 11] These goals pose very stringent requirements to the satellite design, making the Teledesic

Network the most complex satellite system ever attempted.

Schedule Requirements

As described by the Teledesic Corporation, the target schedule is:

* 1997 FCC license granted, Boeing hired as prime contractor.

* 1999 Start pre-production activities.

* 2000 Full-scale production.

* 2001 First satellite launch.

* 2002 Commercial service begins. [11]

For Boeing, this translates into a project cycle of 5 years, broken up as follows:

System design: 1 year

Detailed design/Verification: 2 years

Production and Launch: 2 years

For a system as complex as the Teledesic Network, this schedule is very aggressive. For comparison, it

takes the Hughes Corporation 18 months to design and deploy one GEO satellite, using a baseline design

and a dedicated launch. To deploy a system of 300 satellites with an extended launch campaign under

these schedule constraints will demand very efficient execution of the project plan.

Cost Requirements

Again in the estimates of the Teledesic Corporation, the design, production and deployment of the 288

satellites in the Teledesic Network will cost approximately $9 billion. [ 11] To put this cost in perspective

Iridium, the world's largest pre-Teledesic satellite project, paid Motorola $3.4 billion for 72 LEO satellites,

leading to a cost of approximately $47 million per satellite. [12] A typical GEO satellite mission typically

costs in the $125 million to $175 million range. [13] The Teledesic Network technical requirements are

much greater than the Iridium system, and yet the average cost of a Teledesic satellite will be on the same

order of magnitude as an Iridium satellite.



The Teledesic Network requirements impose constraints that are much more rigorous than other satellite

projects. In order to meet these requirements, the product, process and supply chain architectures must be

globally optimized.

2.2 Teledesic Project Organizational Framework

To address the challenges in the production and supply chain architectures, a new team, the DefineProduce

team, was added to Boeing's traditional organizational framework. This framework consists of project

management, systems engineering, IPTs, production functions and production centers. Each team's

responsibilities and deliverables are outlined below.

Team Responsibilities Deliverables

Project Management Program definition Cost budget
Program monitoring Program schedule

Risk identification and mitigation
process
Make/buy decisions
Strategic supplier selection

System Engineering Decompose program functional, IPT requirement documents
(including the DefineProduce team) cost and schedule requirements IPT interface documents
IPTs Design products Product definition

SOW definition
Supplier selection

Production Functions Design production system Program-level functional plan
Production Centers Produce products Product and documentation

Figure 5: Teledesic Organizational Responsibilities

Project Management

The project management is responsible for the identification of the proper personnel for each of the various

teams, and for determining the make/buy plan for the program. The project management sets the program

level goals, as well as strongly influences the global architecture decisions. In order to accomplish these

tasks, groups responsible for cost accounting, scheduling and risk identification and mitigation support the

project management effort.



System Engineering

The System Engineering teams are responsible for decomposing the program-level requirements into the

complete but minimal set of requirements for every major element in the architecture. This activity

includes defining the top levels of the product architecture. They also define the interfaces between the

architecture elements, producing interface control documents that define these boundaries.

DefineProduce Team

Because of the increased visibility of the process and supply chain architectures on the Teledesic project, a

new system engineering team was created to specifically address these architecture activities. This team

had the responsibility to:

* define the methodology for the process and supply chain architecture development

* develop the high level process architecture

* develop the high level supply chain architecture

* determine the key process requirements for the satellite architecture

* define the process requirements for the production centers

* define the requirements for the supply chain architecture teams

* achieve acceptance of the requirements from the IPTs

The DefineProduce team is made up of managers from Boeing's traditional production functions. This

research was completed within this team's charter.

Integrated Product Teams

The IPTs deliver a product which implements the requirements defined by the system engineers and the

plans defined by the production functions. They manage both the design and the production of their

product. They define and verify requirements for the production centers. Because of they have both

product and process responsibility, these teams typically have members with cross-functional experience,

as well a few members with deep knowledge of the necessary technologies and process capabilities. In

fact, Boeing is one of the leaders in integrating manufacturing into the design process through their creation



of design-build teams almost 17 years ago. The IPTs are the traditional place that the product and process

issues are surfaced and resolved.

Production Functions

Production functions, including the Quality, Manufacturing, Logistics, Parts, Materials and Process

(PM&P), System Test, Materiel and Digitally Driven Enterprise (DDE) groups, coordinate the important

production architecture activities.

While the production centers are selected by the IPTs and given the ability to control activity within their

plants, the various functions usually coordinate program-level activity throughout the supply chain,

mandating certain activities in order to optimize the production system. These program-level systems and

methodologies are usually documented in plans, and those plans are often referenced in legal documents

between the program and the supplier network. This plan-centric system is the historical communication

medium of the program functional expectations to all affected production centers.

Production Centers

Production centers produce the products defined by the IPT designs, following the processes outlined by

the IPT Statement of Work (SOW). They also help the IPTs obtain optimal product and process definitions

by communicating their current production process capability.



3 Boeing's Traditional System Engineering Methodology

Boeing's traditional system engineering methodology is, in fact, two distinct methodologies, as outlined in

Figure 6. The product architecture is implemented using a requirement-centric methodology, where the

functional requirements are systematically decomposed and rationalized to the architecture. Conflicts

between the architecture and the requirements are reconciled in a well-defined process, utilizing trade

studies to measure the relative value of the lower requirements in terms of program goals.

Traditional Design Methodology

Project Functional
Requirements

Project Cost and Schedule
Budgets

Product Re21%

Requirement-centric
Methodology

Plans

Plan-centric
Methodology

Figure 6: Traditional System Engineering Methodology

On the other hand, the process architecture relies on a plan-centric methodology. The cost and schedule

goals are allocated to the various production functions, which develop plans to show how they are going to

meet their targets. These plans are then negotiated with the IPTs, who develop a SOW for their designed

product. This SOW becomes the core of the process requirement contract with the production centers.

The supply chain architecture is not explicitly designed, but is the result of several process architecture

design activities. The implementation of the supply chain architecture is largely through the execution of



the production functions. Detailed explanations of the system engineering methodologies and their

resulting interactions in the IPT design process are outlined below.

3.1 Traditional Product System Engineering Methodology

Boeing's traditional product system engineering methodology is centered on requirements. The system

engineering group begins by taking the program level functional requirements and decomposing them, as in

Figure 7. Typically, these high level requirements are captured in a requirement document that becomes

part of the legal contract with the customer. Because of the legal nature of this document and the

traditional costs associated with changing it, significant effort ensures that the requirements are consistent,

clearly defined and do not overly constrain the design.

Traditional Product
Design Methodology

Program Functional Requirements

SYSTEM ARCHITECTURE

Satellite Requirements

SATELLITE ARCHITECTURE

Avionics Requirements

AVIONICS ARCHITECTURE

Star Camera Requirements

STAR CAMERA DESIGN

Figure 7: Traditional Product System Engineering Methodology

Concurrently, the system engineers are also developing potential system architecture solutions. Through

design trades, they evaluate a wide variety of architectural solutions to find the architecture that optimally

meets the high-level requirements. Traditionally, these architectures and trades focus on product

characteristics.

I



After the program system architecture solidifies, the system engineers segment the architecture into the

various pieces for the IPTs, defining the requirements for the IPTs and the interfaces between the major

architecture elements. A series of iterations rationalizes the requirements against the current best design

solutions.

For example, the Teledesic functional requirement for "fiber-like" performance would be decomposed into

quantitative requirements for latency, error rate, service availability and data throughput. Once this

decomposition is complete, various system architectures are created and evaluated. This list of architectures

could include geosynchronous satellites, Medium Earth Orbit (MEO) satellites, Low Earth Orbit (LEO)

satellites, balloons, high-altitude planes and very tall microwave towers. [14] These architectures are traded

against each other in terms of the decomposed network requirements. Through these trades, the optimal

system architecture emerges: approximately 300 LEO satellites serving as routers-in-the-sky for a

worldwide packet-switched network. [11]

Next, the subsystems of this architecture are identified, including the satellite, the user equipment and the

satellite control center. [ 11] The requirements for these subsystems are defined, linking them to the

program-level requirements through the system architecture. Also, the requirements for the interfaces

between the various subsystems are defined and documented.

Once the system architecture and the interfaces are reasonably stable, the IPTs take over, creating a design

to meet their functional requirements. This leads to a further decomposition of the design, where lower

level IPTs create designs to meet the requirements defined by the higher-level IPT. This process could

continue for several layers of decomposition, until the design can be implemented with commodity parts or

by a small team of developers. For instance, the satellite subsystem is assigned to the Satellite IPT, which

would define the product characteristics that would meet the satellite requirements. These requirements are

product characteristics, such as weight, cost and size and the data communication protocols between the

satellite and the user equipment, satellite and satellite control center and the satellite to itself. This product



architecture would divide the satellite into its major subsections, such as propulsion, avionics, payload and

energy management. Requirements and interfaces would be captured for this lower level of decomposition.

This decomposition would proceed, taking the avionics subsection and breaking it into the elements that

will accomplish the its requirements and interfaces. These elements could include a star camera, which

determines the satellite orientation. At the level of the star camera, the system is decomposed enough to

have the production centers produce a product meeting the star camera requirements. Once all the pieces of

the satellite subsystems are at this level of decomposition, then the IPT design task is done.

While the actual process is much more iterative than this clear, linear flow, the flavor of the interactions,

and the general top-down rationalization of the architecture in light of the lower level design solutions is a

fair abstraction of the process. The rationalization of the requirements to the design is the core of Boeing's

product system engineering methodology and deserves further explanation.

Rationalization of Requirements and Design

Often, tension exists between the requirements and the design. This tension can arise because two or more

requirements are contradictory or mutually exclusive, the completion metrics are missing or poorly defined,

or the requirements do not contribute to the completion of a program goal. Also, the requirements may be

well structured, but overly constrain the design. A tension between the system engineers and the designers

is inevitable on a project as risky and challenging as the Teledesic project.

The successful management of a complex project requires established procedures that create good

requirements from the start and resolve any tensions that may arise. Boeing's methodology requires that the

designers accept the requirement set for their subsystems. This puts the onus of communication on the

system engineers and drives the requirements to be rationalized in light of the current design solution space.

This rationalization occurs through several different types of interactions between the system engineers and

the designers. The process is described as an interaction between the system engineering team and the



IPTs, although the process is equally valid for a higher-level IPT defining requirements for a lower-level

IPT.

Contradictory Requirement Set

If the IPTs believe that their requirement set is inherently contradictory, then the system engineers must

produce the trade that rationalized these requirements in terms of program-level outcomes. This process

encourages the system engineers to quantitatively trade the requirements as they are completing their

decompositions.

Weak Requirement Set

If the IPTs believe that the heritage of the requirement to program level goals is weak, then the system

engineers must justify their initial linkage of the requirement back to a program level parent. This process

encourages the system engineers to provide strong parent-child linkages between the requirement

decomposition levels, eliminating unnecessary requirements at lower levels of decomposition.

Unverifiable Requirement Set

If the IPTs believe that the requirement is not verifiable, then the system engineers must justify the

proposed verification metrics, methods, locations and schedule. This process encourages the system

engineers to define clearly and quantitatively the success metrics for the IPTs and production centers. It

also allows the project leadership to correctly schedule and cost the verification task early in the design

process.

Difficult Requirement Set

If the IPTs understand the requirement set, but feel they cannot fulfill it with their current design, then the

IPTs must produce a trade or analysis of their best alternatives, and quantify their deviation from the

requirement. In this case, the IPTs must convince the system engineers of their analysis. Once this

analysis has been accepted, the system engineers will trade the two requirements in terms of program goals

and modify the less expensive requirement.



For instance, the satellite weight has strong heritage to the program cost through the launch cost. The

program cost is also strongly dependent on the expected life of a satellite, which drives an on-orbit

reliability requirement. If the best design has a failure rate below the reliability requirement, then

redundant systems must be included. These systems add excess weight, which could cause the weight

requirements to be out of specification. If the designers can illustrate that the requirements cannot be

reconciled, then the on-orbit reliability requirement would be traded against the weight requirement, in

terms of overall program cost. The requirement that was the least costly would be increased to

accommodate the best current design.

The requirement-centric product system engineering methodology proves to be a robust way to define

requirements and rationale them in light of the current design space. While iterative and seemingly full of

conflict, the result is well-worded, complete, minimal, verifiable and rationalized product requirements.



3.2 Traditional Process System Engineering Methodology

In contrast, traditional process system engineering is centered on plans. This process begins by capturing

the program level cost and schedule in the Program SOW, as outlined in Figure 8. Cost and schedule

targets are then budgeted by project management to the various IPTs and production functions.

Traditional Process System

Engineering Methodology

Program Statement of Work

IPT Statement of Work

Supplier Readiness Review

Figure 8: Traditional Process System Engineering Methodology

Based on the combination of the preliminary architecture designs, target costs and target schedule, the

production functions create a plan that defines the functional strategies and processes to be deployed across

the entire production system. These plans are referenced in the SOWs created by the IPT manufacturing

and quality engineers. The IPT SOW is the heart of the production center execution contract with Boeing.

The production centers must present a plan that shows how they are going to meet the requirements of the

IPT SOW and the program functional plans. As the project nears production, the IPT and the production

functions complete on-site readiness reviews to ensure the production centers are executing their plans in a

timely manner. The combination the production function plans, IPT SOWs and the production center plans

make up the traditional process architecture documentation.



For instance, the process system design begins with the program cost and schedule requirements. The

schedule requirement is decomposed from 5 years into the various stage requirements, such as system

design in 1 year, detailed design and verification in 2 years and production and launch in 2 years. The cost

requirement is allocated to the various segments, including the satellite segment. In this way, the cost and

schedule are decomposed down to the lowest level process elements.

Once cost and schedule are decomposed, the production functions define their plans. Materiel, for instance,

is responsible for procuring parts that meet the detailed design requirements at the allocated cost. They

describe how the suppliers are selected, and the strategy if a supplier fails to meet the contract. Logistics

describes the transportation methods and schedule between the production centers and ensures that costs

and schedules are correctly counted in the component cost and schedule performance metrics. They also

determine the spare strategy and ensure that the facilities for spare maintenance and storage are planned

and budgeted. Manufacturing outlines the best processes for the required part geometry and determines the

production system inventory control system. They also estimate the system flow time and maximum

throughput. Quality determines the methods for production center product verification, estimates quality

personnel costs and ensures verification time is counted in the overall process cycle time and capacity.

System test determines the system verification processes, both on the ground and after the satellite is

deployed into its orbit. DDE defines the system for communicating the data formats, interfaces and other

relevant design information between the project and the production centers. Lastly, PM&P determines

commodity part purchasing and quality verification.

Because the IPTs have the task of designing the product and process for their individual components, the

application of the production function plans to the IPT SOWs is a source of tension. Usually this process is

negotiated between the IPTs and the production functions, with exceptions to the production function plans

captured in the IPT SOWs.



Because of the superiority of the product system engineering methodology, product designers usually win

negotiations with the manufacturing engineers in the IPT design process. For instance, the manufacturing

plan may call for creating structural holes in one cutting operation, in order to eliminate a reaming

operation that adds cost, cycle time and clean room contamination. However, the tolerance on the hole

may be tighter than the cutting process capability, requiring the reaming operation. Product designers can

justify their tolerance as necessary to achieve a structural rigidity requirement. Because the rigidity

requirement has strong lineage to program-level goals, detailed trade studies and quantified verification

metrics, the tolerance requirement stays and the manufacturing plan requirement is exempted in the

product's SOW. This dynamic leaves the manufacturing engineers lacking the necessary facts and data to

effectively defend the key elements of the process and supply chain design, even through they have full

membership in the IPT design process.

Once the IPT SOWs have incorporated all the production function negotiations, the production centers

create plans that demonstrate their ability to implement the IPT SOW. Often, the IPT SOW is sub-optimal

for the established methods in a particular plant. In this case, the production center would negotiate with

the IPT and the relevant production function to modify the requirements by demonstrating lower cost or

higher quality. For instance, if the IPT SOW specifies inspection of a key product characteristic that the

plant verifies through statistical process control, then the IPT and the Quality function would agree to

accept the process control data for the entire production run instead of measurement data for every part.

Like the production plan exemptions, IPT SOW changes are often a result of losing trades with the stronger

functional requirements.

As full production approaches, the IPTs and production functions conduct a readiness review to ensure that

the production center is implementing its plan. Any irregularities are fixed through corrective action plans.

In rare cases, the supplier fails the review and drastic measures are taken. These measures vary from

Boeing lending the production center engineering "support" to moving the product to a new factory.



3.3 Traditional Supply Chain System Engineering Methodology

Traditionally, Boeing does not explicitly engineer the supply chain architecture. The make/buy strategy

and the selection of strategic suppliers resides with the project management, who choose the make/buy

content based on trades between internal production availability, strategic technology investment and

program risk. After the project management selects the strategic "cherished partners", the rest of the

production centers are selected by the IPTs. External suppliers are typically chosen and managed through a

multi-supplier, competitive bid arrangement. As outlined above, the coordination of the logistics and data

flow between the suppliers were managed through the functional plans and flowed to the suppliers through

the IPT SOWs.

Once the suppliers are selected, they are managed through the activities of several of the production

functions. Quality evaluates supplier performance. Materiel manages the supplier legal relationship,

determining the project sourcing strategy and negotiating product price. Logistics coordinates the

transportation, maintenance and repair activities. DDE supports the communication of drawings, change

requests and requirement specifications between the project and the suppliers. Manufacturing supports

process readiness reviews, inventory holding requirements and production system bottleneck identification

and mitigation activities. System Test verifies final assembly, on-orbit performance and supplier design

qualification. PM&P manages the quality and price of the commodity part suppliers.

In summary, the traditional system engineering design methodology reveals two distinct processes, a

requirement-centric product methodology and a plan-centric process methodology. The supply chain

architecture is implicitly designed through the process architecture activities. The quantitative nature and

rigorous rationalization of the product methodology makes the product requirement rationale superior to the

process and supply chain requirement rationale. This superior rationale enables the product design to

dominate the process and supply chain design in the IPT design process, leading to a consistent bias toward

the product design despite the strong IPT concurrent engineering emphasis.



4 Proposed System Engineering Methodology Expansion

To enable the product, process and supply chain architectures to be equally optimized, the system

engineering methodology must be common across all architectures. Without this common methodology, it

is impossible to have a common language between the product and process system engineers, deliver a

consistent requirement package to the IPTs and production centers or trade aspects of these architectures on

equal footing. So, reconciliation of the traditionally dissimilar methodologies is the first task.

The goal is to expand the requirement-centric product system engineering methodology into the process

and supply chain architectures, as outlined in Figure 9. This expansion is achieved by taking the traditional

plans and translating them into a requirement hierarchy. Once this requirement hierarchy is completed and

rationalized, then the requirements can be extracted back into the traditional plan form, if desired. The

detailed process for this translation is outlined below. This expansion of the product system engineering

methodology into the process and supply chain architectures achieves the goal of a common development

process that is able to trade requirements across product, process and supply chain architectures.

Modified Design Methodology

Project Functional, Cost and Schedule
Requirements

Figure 9: Expanded System Engineering Methodology



Another feature of the system engineering expansion is to define the supply chain architecture

independently from the process architecture. The supply chain architecture explicitly declares the supplier

selection strategy, the make/buy strategy, the logistics strategy, the operational strategy and the supplier

communication process. Also, the supply chain requirements are independently defined from the process

requirements. This segmentation of the supply chain architecture allows for the explicit design of the

supply chain and the consistent application of that architecture across all the production centers.

4.1 Advantages of Proposed Methodology Expansion

The requirement-centric product methodology proves to be superior to the plan-centric process

methodology. The quantitative nature of the requirement definition process, clear linkages back to the

program goals and defined processes for the rationalization of the requirements to the design make the

expansion of the product methodology into the process and supply chain architectures the best way to

reconcile the two processes. The advantages of the expanded system engineering methodology over the

traditional methodology are outlined below.

Quantitative Trades Across Architecture Boundaries

Because of the quantitative nature of the requirement definition and the clear linkage back to the high-level

program requirements, low-level requirements to product, process and supply chain architectures can be

quickly evaluated and traded in terms of program-level goals. The process and supply chain requirements

will be quantified and linked like their product requirement brethren, enabling the project to trade

requirements across architecture boundaries with a common methodology. The trade of the process flow

time versus the satellite weight outlined below is an excellent example of this ability to trade across

architecture boundaries.

Complete Decomposition of Project Requirements

Because of the clear linkage between the various levels of decomposition, requirements can be consistently

evaluated across architecture boundaries. The set of requirements at the lowest levels of the product,

process and supply chain architectures can be extracted and evaluated to ensure that they completely define

the necessary requirements to meet the overall project goals.



For instance, the overall supply chain flow time, from initial component acquisition to satellite orbit

insertion, can be extracted from each of the IPT process requirements. This definition of the overall flow

time enables the program to quantify the cost of repair late in the production flow, in addition to knowing

the cost of the inventory of the entire production system. This data will help to correctly trade the costs of

repairing or scraping a damaged component. Also, each segment's contribution to the overall system flow

time can be quantified, helping to direct improvement efforts to the segments where improvement would

contribute the most to the program goals.

Minimal Decomposition of Project Requirements

The clear linkage between the high and low level requirements and the defined requirement rationalization

processes also allows for the elimination of duplicate requirements and the modification of contradictory

requirements within the process and supply chain architectures. This ability to achieve minimal

decomposition is almost impossible in the plan-centric process, due to the difficulty of comprehending

every part of every plan concurrently.

In the same way designers have a natural tendency to "gold plate" their designs, production functions tend

to locally add elements to the process or supply chain architecture that they feel are important. For

instance, one materiel manager's negative experience with a supplier may trigger the specification of extra

data requirements, increasing the overall program cost. The explicit check for feature creep in the process

and supply chain requirements will minimize the overall cost to the project.

Quantitative Performance Evaluation

The requirement metrics become binding success criteria for both the IPTs and the production centers. The

measurable, quantifiable nature of the requirement metrics makes them an ideal communication tool for

defining the expectations with production centers in clear and unambiguous terms.



Instead of reviewing the production center plan of the SOW exemptions of the functional plans, the

requirement-centric review process is conducted with measurable verification metrics established early in

the design cycle. Conformance is clearly determined and the deviation from the requirement can be

quantified. The linkage between the system requirements and the production readiness evaluation is clear

and direct, allowing for a fast and detailed evaluation of project risk. This evaluation of the supplier

deviation in terms of overall project risk is much more difficult in the traditional plan-centric methodology.

Program Feasibility Assessment

The rationalization of the requirements to the design is an important mechanism for determining program

feasibility. Agreement between the system engineers and the IPTs is a credible signal to management that

the project is feasible. Extending this program feasibility visibility to the process and supply chain

requirements allows the management team to accurately assess the overall program risk at significant

project milestones.

Organizational Learning and Core Competence Development

The documentation of the design rationalization process in the form of trades also provides tangible

learning tools. The clear decision path and the quantitative nature of the analysis make learning from

project to project much easier to communicate, as well as facilitating the rapid initiation of new team

members to the past decisions that frame their current work. Especially since the satellite production and

supply chain systems are new for the industry, this learning could grow to be a significant source of

competitive advantage for Boeing.

As these points illustrate, the requirement-centric methodology has a host of attractive benefits that make it

the methodology of choice. The quantitative nature of the requirement definition process, clear linkages

back to the program goals and defined processes for the rationalization of the requirements to the design

will greatly improve the traditional plan-centric process system engineering methodology. This

improvement makes the transition to the requirement-centric process an important priority for the Teledesic

project leadership.



4.2 The Methodology Expansion Strategy

The recommendation to expand the requirement-centric product system engineering process into the

process and supply chain architectures is made in the midst of the ongoing system engineering effort.

Luckily, the creation of the DefineProduce team within the System Engineering team enables the ability to

define the process and supply chain system engineering activities. However, the production functions,

while reporting to the project through the DefineProduce team, have a strong heritage in the plan-centric

methodology. Since valuable work was accomplished in plan form, the implementation strategy allows for

the initial development of the requirements in plan form and maintains the ability to view the requirements

as a plan at the end of the process.

Hybrid Process and Supply Chain Design Methodology

PROSE REQUIREMENTS

System Level 2

Satellite Level

Avionics Level

Star Camera Level

Figure 10: Hybrid Process and Supply Chain System Engineering Process

The transition from the plan view to the requirement view back to the plan view was executed in four major

steps, following the numbers in Figure 10.



Step 1

The requirements that drive the process and supply chain architectures are identified and put into

requirement form, with verification metrics and schedules. These requirements became the very top boxes

of the process and supply chain requirement hierarchies.

Step 2

A program-level production and supply chain architecture is created, integrating into one document all the

production function strategies for achieving the program process and supply chain requirements.

Step 3

The production function managers make traditional functional plans.

Step 4

Starting with the program plan and iterating through each architecture level, the plans are translated into

full, complete requirement statements through the following process:

1. The plan is parsed into statements.

2. The statements are re-written in requirement-like language.

3. Confusing requirements are broken into multiple requirements.

4. Redundant requirements are eliminated.

5. The requirements are linked so that every requirement has a higher level parent.

6. The requirements are made product, process or supply chain specific.

7. Verification statements are added to all the requirements, specifying the metrics, methods, locations

and times of the verification activities.

8. The IPT that will implement the requirement is identified.

9. IPT agreement to the requirement set is negotiated.

10. The ownership of the requirement is transferred to the IPTs.

11. The plans are recreated by merging the requirements and verification statements into paragraph form.



12. Descriptive statements are added to the requirement paragraphs to contextualize the requirement-like

prose.

These four steps fully translate the plans into requirements, complete, link and rationalize the requirements,

obtain IPT acceptance of the requirements and then re-package the requirements into a plan view. This

hybrid process, while more effort than pure requirement decomposition, allows the production functions to

develop their strategies in a comfortable format. For the IPT product designers, the ability to see

production and supply chain requirements in the same form as the traditional product requirements gives

the new requirements more credibility than the traditional DFM guidelines and manufacturing "lore".

Well-phrased requirement statements, clearly defined success criteria, explicit linkage to program-level

requirements and quantitative trade studies put the process and supply chain requirements on equal footing

with the product requirements.



5 The Expanded Methodology in Action

The expansion of the requirement-centric product system engineering methodology to the process and

supply chain architectures has been outlined, including the advantages and implementation strategy. So,

what were the results? Two examples from the Teledesic project illustrate the effectiveness of the

expanded methodology in optimizing across architecture boundaries.

5.1 The Struggle between Flow Time and Weight

The first real test of the expanded system engineering methodology occurred over how "modular" the

Teledesic design should be. One of the difficult production requirements is short material flow time. By

shortening the flow time for all assemblies, the costs of the work in process is reduced. Also, because the

satellite production must be completed before the system can be operational, less flow time directly

translates into earlier project completion. Therefore, production flow time strongly contributes to the

overall program cost and schedule. Because the launch dates were beginning to be negotiated,

determination of the production flow time needed to be solidified. The strategy for reducing the overall

material flow was to divide up the satellite into several large pieces and produce those pieces in parallel.

This strategy lead to a requirement for a modular design: a satellite that could be physically broken up and

assembled in parallel.

The launch cost target was also set very aggressively. In order to meet this cost, many satellites where

planned to be deployed in one launch vehicle, putting a strong restriction on the satellite weight and

volume. The initial reconciliation of the satellite design to the satellite requirements showed that the

greatest deviation between the design and the specification was the satellite weight. This deviation lead to

a strong re-design effort to optimize for weight. Because joints require excess material, the baseline design

went from several to two modules. The design community said that they had met the modular requirement,

because the satellite could, indeed, be divided into modules and assembled in parallel, although with a

much longer flow time than with the original design.



In the traditional process, this disagreement would have been problematic for the IPT manufacturing

engineers. Because the goal for a modular design would have been captured in the manufacturing plan and

not captured in the requirements document, the decision to compromise modularity for weight might have

happened unconsciously. Even if the conflict were recognized, the weight requirement would have

dominated due to its more rigorous specification and rationalization.

In the expanded methodology, however, both the modular design requirement and the weight requirement

are linked back to program cost, as shown in Figure 11. Therefore, they can be traded against each other by

quantifying what a pound of weight is worth and what a day of flow time is worth. The DefineProduce

team evaluated the cost of a day of flow time by measuring the production cost savings for the project if the

production run is shortened by one day. The product system engineers evaluated the cost of building,

launching and deploying a pound of satellite. From this analysis, the IPT was able to optimize the design

across product and process boundaries, in terms of overall project cost. Without defining the process

requirements in the same manner and with the same level of quantification as the product requirements, this

trade could not be completed in a structured and analytical way.

Linkage to Cost

Figure 11: Weight and Modular Design Linkage to Cost



5.2 Performance Verification Mental Models Clash

A second major test of the expanded methodology grew out of a design verification debate. System test for

the satellite is very expensive and time-consuming. A strategy for reducing the system test cost and flow

time was to push the product performance verification to the lowest possible level of assembly. This

requirement enables faulty components to be quickly identified and fixed, as well as reduces the

complexity of the test equipment in final assembly. After the basic assemblies are tested, only the

assembled interfaces are verified at the later stages of production.

Because the product design community traditionally thinks in term of functional decomposition, they call a

design "modular" if all the elements that make up a functional subsystem are located on the same piece of

structure. For instance, a good modular design would keep the star camera grouped with the other avionics

equipment, the thrusters grouped with the rest of the propulsion equipment and the communication

antennas kept with the payload. Because the functional subsystems have verification metrics, they

interpreted the combination of the modular assembly requirement and the verification requirement to mean

that the avionics suite has to be co-located on one piece of structure so that the avionics can be tested in the

subassembly factory. Because weight constraints made it impossible to keep all functional elements on

separate structures, the designers declared the early testing requirement infeasible.

The DefineProduce team, on the other extreme, was strongly supporting a robust design approach, where

the design requirements would be much narrower than the process capability, eliminating the need for

testing altogether. However, they knew that the process capability for many new processes couldn't be

quantified, due to a lack of data. For these cases, the requirement for testing at the lowest level of assembly

was seen as the next best option. With this strategy, once the design is tested and verified, only

performance at the lowest levels of assembly needs to be tested. If these parts are within specification and

the higher level of assembly processes are completed within tolerances, then the avionics, propulsion,

payload or power systems shouldn't require functional verification as a suite.



Through the rationalization process for the verification strategy requirements, the mental model differences

between the two groups surfaced. The design community was not convinced that the low-level test strategy

was superior to the traditional final assembly test strategy. The DefineProduce team was able to show that

the savings of a shorter cycle and repair rework time over the life of the production run was much greater

than the increased testing of the design qualification units. The conclusion was the acceptance of the low-

level test requirement. Also, modular design was defined as a satellite that could be physically broken up

and assembled in parallel. Lastly, the design community accepted the strategy of not testing the functional

suites in full production.

Because historically the product requirements drove the production verification processes, the product

design assumptions of system verification normally would have significantly increased the final assembly

cost and flow time. However, because of the decomposition of the production system costs, the

inefficiencies of the old system were able to measured and the superior strategy could be quantitatively

justified. By being able to trade across product and process boundaries, the costs of assumptions in the

product architecture were accurately measured in the process architecture. In this case, the solution greatly

reduces production system cost without any negative impacts to the product functionality.

These two examples illustrate how the expanded methodology allows for the optimization of requirements

across architecture boundaries. This ability to reconcile historically dissimilar system engineering

methodologies enables a richer dialogue between functional groups which, in turn, produces better product,

process and supply chain architectures.



6 Conclusion

This work attempts to improve Boeing's world-class system engineering competency by expanding the

superior product system engineering methodology into the process and supply chain architectures. This

expansion integrates the product, process and supply chain architectures in the concept phase, where much

of the production and supply chain system costs are determined. Current industry best practice, like

Boeing's traditional process, executes concurrent engineering at the IPT design stage. This expansion of

one of Boeing's core competencies could be a key competitive advantage in the race to be the global

provider of satellite systems. In defining and implementing the methodology expansion, several

conclusions became clear.

The first insight is that a consistent methodology across the product, process and supply chain design

activities is key to optimizing overall program goals. Both the modularity and verification trades illustrate

the opportunity for global optimization through analysis across traditional boundaries. Without a common

methodology, much of the leverage of adding process and supply chain system engineering to the concept

phase will be lost due to different languages and mental models conspiring to achieve traditional outcomes.

Only by forcing a common process, a common language and a common set of tools can true concurrent

system engineering of the product, process and supply chain architectures occur.

Second, requirements are superior to plans in specifying and defining system architectures. Clear and

specific language, quantifiable verification metrics, explicit linkages to program-level goals and explicit

refinement and acceptance methods make a requirement-centric process vastly superior to a plan-centric

process. Requirements are necessary to optimize the design across architecture boundaries.

Third, challenging program goals and strategic organizational changes are key enablers to any process

improvement effort. The challenge of creating one satellite per day, when the industry best system

produces one satellite per week [8] causes senior satellite designers to be open to new ideas. In addition,

the inclusion of the DefineProduce team in the concept phase of the project shows senior management



commitment to doing system engineering in a new way. By having a voice at the very beginning of the

project, the production system can truly impact the product design. Significant risk in the process and

supply chain architectures and strong organizational positioning were key enablers of the creation of a

process and supply chain system engineering methodology and implementing it within a strong product

design tradition.

6.1 Further Research Opportunities

In the course of completing this work, several promising opportunities for further research surfaced. The

ability to estimate process capability without having the actual equipment would help focus production

system design efforts. Also, the segmentation of the supply chain architecture surfaced a conflict between

outsourcing to reduce program risk and making the product in-house to build future competencies. Lastly,

production system engineering might be able to leverage current advances in software system engineering

in increase production system design re-use and minimize unnecessary production design costs.

Process Capability Estimation Tools

The best tools for establishing the relationship between the product design and process capability; Robust

Design, DFX and Key Characteristics (KC) are based on existing process capability. However, a key

element of any process design activity is to quantify and measure the program risk in the creation and

implementation of new process capabilities. The ability to predict the risk and cost of closing the

performance gap is fundamental to assessing overall project risk. Many of the problems in the Teledesic

production system will be in ramping up these new processes to their necessary performance levels.

Currently, no good tools exist for estimating which of these processes will be problematic and should,

therefore, be mitigated first. Analytic tools to assist in this assessment would greatly aid the process

architecture effort.

Optimization of Organizational and Program Goals

The requirement-centric methodology assumes that the optimal achievement of the program level goals is

in the design organization's best interests. However, optimal product architectures often leave the design

organization with low value-added pieces of the design. [9] A system to quantitatively trade the risk of



project failure against the risk of company competence obsolescence would be a valuable extension to the

traditional project focused methodology.

"Object Oriented" Production System Engineering

Recent changes in the design and implementation of large software systems may lend a helping hand in

addressing the lack of good new production center design tools. In the last few years, software

methodologies have shifted from a functional or data flow topology to an "object-oriented" topology. The

result is a clearly defined interface between the raw building blocks of software code, centered on objects

that are more likely to be re-useable across product platforms. For instance, most software programs have a

user interface, a communication module, a computational module, a database and perhaps an image

generation module. By centering the design on these relatively constant objects, re-use across projects is

substantially increased over a functional architecture. This re-use is achieved because a product family's

"look and feel" is defined by consistent object implementation, but the products within the family are

segmented by feature set. A methodology based on objects, therefore, is more robust over several projects.

Architecture design in this framework becomes a matter of investigating the currently available objects and

relating them in such a way as to optimally meet the requirement set. Only if the current set of objects is

unable to meet the new requirement set are new objects created. In this new endeavor, old objects can be

extended or modified to meet the new requirement set, or new objects can be created from scratch. In

either case, the clear interface requirements and the quantitative deviation from the required functionality

drive the object design to completely but minimally satisfy the project requirement. This new object then

joins the library of objects available for future use.

Substituting production processes for objects, the production architecture design task could amount to the

arrangement of production processes within production centers into logical relationships. Only in the case

where the present capabilities could not fulfill the program requirements would investment in improved or

new processes be undertaken. The clear requirement and delta from its achievement would drive the

improvement to completely but minimally satisfy the project requirement.



Like in software, the tasks of production center performance and architecture design effectiveness would be

neatly segmented into two tasks with clearly defined metrics. Instead of a mish-mash of DFX guidelines,

robust design parameters and quality metrics to guide the design task, clear, uniform process capability

metrics against standard design features would serve as the communication medium between production

and design. This clear interface would give internal production center managers clear signals to optimize

or improve production capability, as well as quantify and measure the variety and complexity of the design

feature set.
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