
DAVE: The Distributed Algorithm Visualization Engine

by

Sean W. McGinnis

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 22, 1998

Copyright 1998 Sean W. McGinnis. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

/7

Author

Department of Electrical Engineering and Computer Science

May 17, 1997

Certified by

Stephen J. Garland

Thesis Supervisor -- - 17

Accepted by

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE

OF ~MNOLOGY

JUL 14198
LIBRARIES

1IEnRj

Abstract: The Distributed Algorithm Visualization Engine, or DAVE, is a Master of Engineering

Thesis supervised by Doctor Stephen Garland of the Laboratory for Computer Science at MIT.

DAVE is a learning tool designed to aid in the study of distributed algorithms by providing a

visual environment in which users can construct I/O Automata and view executions of these

automata. The program is designed as a companion to Nancy Lynch's Distributed Algorithms,

and the visual layout of the program is identical to the diagrams from that text. DAVE is written

in Java, and is written to allow easy extension of the existing DAVE code. DAVE has been

written and is available for use, though performance speed is becoming something of a concern as

the program grows in complexity.

Contents:

Introduction Page 5

Background Page 7

*Composition Page 8

*The IOA Language Page 9

Design Page 10

*The User Interface Page 11

*General Principles Page 12

*The Client Area Page 13

eCommand for the Client Area Page 17

*The Tools Page 19

*Executions Page 28

Implementation Page 31

*Object-Oriented Page 31

*Java Page 32

eThe main function Page 34

eDAVEDisplay Page 36

eCreate a new process Page 36

*Configure a process Page 38

*Attach an algorithm to a process Page 39

*Connect two actions Page 40

eHandling mouse events Page 42

eSaving and Loading Configurations Page 46

*Loading an execution Page 47

*Playing an execution Page 48

*Drawing the DAVEDisplay Page 52

*Comments Page 53

*Smaller types Page 54

Sample Execution Page 57

Conclusions Page 69

Bibliography Page 73

Appendix 1: Supplements to Sample Execution Page 74

Appendix 2: Code for DAVE Page 80

*DA VE.java Page 80

*ProcessBean.java Page 115

*Variable.java Page 133

oTransition.java Page 136

*Connection.java Page 139

*Composition.java Page 144

Section I: Introduction

The field of distributed algorithms is an extremely complicated subject. Students are

hard pressed to gain a working knowledge of the subject in a time frame as limited as one

semester. There is an untold amount of material available to supplement an education in

distributed algorithms, but very few tools. Any tools that could aid the student in studying and

understanding distributed algorithms would be of great benefit to both the student and the

instructor.

The Distributed Algorithm Visualization Engine (DAVE) is one such tool. DAVE is a

software package designed to aid students in constructing and studying Input/Output Automata.

DAVE, as a supplement to a course in Distributed Algorithms, could be a very effective learning

tool in the study of distributed algorithms.

DAVE is, first and foremost, a graphical tool. The entire client area, or workspace, of

DAVE is graphical in nature. When using DAVE, the user graphically creates and links together

representations of processors and channels. When this process of creating, configuring, and

linking is complete, the user has a complete graphical model of an I/O Automaton (I/OA).

The tool is not merely graphical. Using DAVE, the user can also view the course of an

execution within the I/OA she has created with the system. DAVE allows the user to load an

execution into the constructed representation of an I/OA, and then play back the course of the

execution, watching the changes in the state of the I/OA and the activation of the actions that

caused those changes.

DAVE is designed to be used in tandem with Professor Nancy Lynch's book Distributed

Algorithms, a definitive text on the subject. The graphical appearance of the DAVE program will

appear familiar to anyone who has skimmed the book, or even just looked at the pictures.

However, DAVE is not merely a tool for the student. We have several other purposes in

mind as well. One of the most obvious applications for DAVE is as a front end to an IOA

simulator. IOA is a formal programming language based on the pseudo-code used in Lynch. At

this time, no compiler or execution environment exists for this language. However, when a

simulator becomes available for I/O automata written in IOA, DAVE is a natural candidate for

both a front end and a back end to that simulator. To use such a simulator, the user would have

to dictate how the automata are joined together and what algorithms are loaded into each process.

This functionality is already present in DAVE. In addition, DAVE can also be used to view the

simulator's output. Trying to understand the execution of an IOA by reading a series of states

and transitions is frankly nightmarish. However, there would be no real need, since DAVE

already contains the functionality necessary to play back an execution of a given automaton.

Indeed, the structure of the DAVE program is such that a simulator written in Java could easily be

integrated with the program, creating a seamless graphical IOA simulator.

DAVE is not merely for students of distributed algorithms. The ability to visualize an

entire IOA and then watch its execution step by step can be useful to even the most experienced

researcher of distributed algorithms. There is no bound on the complexity of the system that can

be built with DAVE except the memory limitations of the machine on which it is running, and the

amount of time it takes to execute commands on an automaton of a given complexity. With a

small investment of time, a user can create a persistent on-line model of an I/O Automaton and

share that model with colleagues.

With these purposes in mind, DAVE was designed for maximum freedom, usability, and

extensibility. The DAVE interface is designed to be familiar, both as an application and as a

representation of I/OA. The internal structure of DAVE also allows it to be easily extended.

Lastly, as few assumptions as possible were made when implementing DAVE, allowing as much

freedom to the user as possible. Since DAVE is a graphically oriented application, this is

especially true in the appearance of the client area.

The remainder of this document is subdivided as follows: Section II provides a brief

background for distributed algorithms, I/OA, and the IOA language; Section III explains the

design of DAVE; Section IV details the implementation of the DAVE system; Section V provides

our results; and Section VI concludes with our observations and conclusions about the DAVE

system.

Section II: Background

To understand DAVE, we must first understand I/O Automata, which provide a

convenient mathematical formalization of distributed algorithms in an asynchronous system. To

understand what an asynchronous system is, it is best to compare it to its simpler cousin, the

synchronous system. In a synchronous system, a "global clock" runs all automata. They perform

an action at each clock "tick", thereby assuring that all actions take place synchronously, hence

the name. In an asynchronous system, there is no such clock. Any action could take place at any

automaton at any time. When discussing executions of I/OA, we impose some order on the

actions - namely, each action occurs entirely before some actions and after other actions.

However, there are no constraints about the exact timing of these actions.

An I/OA is a simple state machine in which transitions are associated with certain

actions. These actions fall into three categories - input, actions from the outside; output, actions

to the outside; and internal, actions visible only to the automaton itself.

An I/OA consists of four components:

1.) A signature: These are the actions of the automata - input, output, and internal.

2.) A set of states: This is a (not necessarily finite) set of states for the automata.

3.) A set of start states: A subset of the above set of states that are designated as start

states.

4.) Transitions: For any given state s and any given action p, there is a transition (s, p, s')

if the action p is enabled in s (see below).

The signature is straightforward. For an action to be classified as internal, it can only be

visible to the automaton itself. Both the internal and the output actions are under the control of

the automaton. However, the input actions assumed to be controlled externally, and thus can

happen at any time. For any state s and any action p, if there is a transition (s, p, s'), and we say

that p is enabled in s. All input actions are enabled all the time - I/OA are input-enabled. This

means that the I/OA must always be ready for an input action - there is no way for the I/OA to

"block" the action.

While this input-enabling restriction may sound inconvenient, there are distinct

advantages to having this property. First, it forces us to consider oddly-timed inputs, not just the

inputs that we are expecting. Second, this input-enabling restriction makes the model work out

well. Without going into too much detail, it can be said that the input-enabling property makes it

appropriate to use simple notions of external behavior.

There is a fifth portion of an I/OA - the tasks partition. The tasks can be thought of as a

description of the "threads" or "tasks" of the automata. However, as DAVE doesn't deal with the

tasks partition, this is not relevant to the application.

An execution fragment is a finite or infinite sequence of alternating states and actions

such that if the sequence is finite, it must end with a state. For an execution fragment to become

an execution, the fragment must:

a.) Begin in a start state.

b.) End in a state where no non-input actions are enabled.

c.) For an automaton A, the transition (Sk, Ik+I, Sk+1) must be a valid action for all k 2 0.

To observe only the external actions of our I/OA, a trace is used instead of an execution.

A trace is an execution without the internal actions or states of the automata.

Composition

Composition is used to build a representation of a complex system by composing

automata representing smaller portions of the system. When a system is composed, actons that

have the same name are connected. Thus, if an action p occurs, all actions composed with p will

occur.

Of course, there are restrictions on the actions that can be composed and the way they can

be composed. First, no internal action can be composed (since, of course, that would expose the

internal action to the outside world). Second, two automata can not be composed unless the set of

output actions of those automata are disjoint.

Once a set of automata is composed, the output actions of the component automata

become output actions of the system, input actions that are not composed with output actions of

the component automata become inputs to the system, et cetera. Likewise, the (start) states of the

composition are the vectors of the (start) states of the component automata.

The IOA Language

In order to use I/O Automata in a computing environment, a formal language is needed.

This language is IOA, a programming language closely based on the notation used by Nancy

Lynch in her book "Distributed Algorithms". IOA also utilizes a formal specification language,

but we will largely ignore this aspect of the language. The IOA language is defined in IOA: A

Language for Specifying, Programming, and Verifying Distributed Systems, by Stephen J.

Garland, Nancy A. Lynch, and Mandana Vaziri.

A typical IOA program might look like this:

automaton Adder
signature

input add(i, j:int)
output result (k: int)

states
value: int
ready: Bool := false

transitions
input add(i, j)

eff value := i + j;
ready := true;

output result(k)
pre k = value A ready
eff ready := false

The parts of this IOA program are:

1,) The signature -- The signature follows the format described above. Each action is declared

with its type. This notation will be especially important to DAVE, when we are deciding

which transitions can be composed.

2.) The states - The states of an IOA automaton encapsulate the state variables. There is a wide

range of types that these variables can be defined as. Normally, this would be an area of

great concern when designing DAVE. However, as we will see later, we have boiled all

variable types down to a common currency that allows us to avoid the massive complexity of

implementation surrounding variable types.

3.) The transitions - The transitions of an IOA describe the effects of the actions that it can

perform. Again we see the type declaration on the action - input, output, or internal. Inside

the declaration of the transition is the "body" of the transition - that is, the operations on the

automaton's state variables that are performed when the transition occurs. These actions are

written in a form called "precondition-effect code". The precondition (pre) is the boolean

condition that must be met in order for the transition to be enabled. The effect (eff) will be

performed if the precondition is true. This code is of little interest in the design of DAVE,

and the its interpretation lies in the realm of simulators.

The field of I/0 Automata, and distributed algorithms in general, is a very broad field,

filling many books. However, this brief discussion should give us the background we need to

understand the workings of the DAVE system.

Section III: Design

The list of goals for the DAVE design is a long one. This section explores this list and

lays out the design for the DAVE system. Since the power of DAVE is in its user interface, the

interface will also be defined in this section.

To implement DAVE correctly, specifications will be needed for the following elements

of the program:

1.) A set of tools. DAVE must present the user with a set of tools that will make it quick

and convenient to assemble a set of processes into the desired IOA. We must define

this set of tools, their appearance, and their purpose.

2.) A design for the user interface (UI). This includes the appearance of the tools, the

appearance of the working area, and the appearance of the DAVE palette.

3.) A design for the executions. One half of the functionality of DAVE is the ability to

view and play back executions. Since no standard currently exists for the

representation of IOA executions, we will propose one as a stop-gap measure until a

more established design becomes available.

The User Interface

Since DAVE is a user-interface driven program, we will explore that aspect of the

program first. Along the way, as we define the appearance of the tools available to the user, we

will define these tools. In order to define the user interface of DAVE, we must define the

program in three general areas.

1.) The appearance of the client area. When we speak of the client area, we are referring to

the "workspace" of the program. The workspace is the area in which the visual

representations of processes, channels, compositions, etc. appear, and where these

representations can be analyzed, connected, and modified.

2.) The functionality of the client area. The client area must support a set of user actions,

such as arranging and connecting automata. These actions and their consequences

must be defined.

3.) The appearance of the menus and toolbars. While the appearance of the standard

Windows program (of which DAVE is one) has been well established over the years, it

is worth noting here.

4.) The purpose and UI for all available tools. Each tool has a specific set of behaviors.

These behaviors must be defined. Since each tool is different, the interface the tool

presents to the user must also be defined. This may be as simple as presenting a

different cursor to the user, or as complicated as popping up an entire menu of options.

General Principles of the Design

However, exploring the details of the design, some general principles about this design

must be established. These are the overall guiding principles of the design and implementation of

DAVE.

One of the strongest principles DAVE adheres to is providing the user with as much

freedom and power as possible. The programmer should never make assumptions about what the

user would like from the program - rather, if it could possibly be a subject of contention, the user

should be allowed to choose whatever behavior she desires. Throughout the design and

implementation of DAVE, this philosophy of "maximum user freedom" is adhered to as much as

possible.

Of course, freedom often comes at the prices of added complexity. Making assumptions

about the user's wishes, while it may impairs the user's ability to do what she desires, may also

simplify the interface to allow greater accessibility for the novice user. This is a design trade-off

that must be considered at every step in the design. At certain points, power may have to be

sacrificed for simplicity, but this decision will be justifirf when it becomes necessary to do so.

One easy way to achieve simplicity in the interface is to make the interface familiar.

DAVE is fortunate in this respect, in that there are two established sources from which to draw.

The primary source is Distributed Algorithms which, fortunately, has established a well-defined

graphical language - the diagrams that are used throughout the text (see Figure 8.3 of Lynch).

This language allows DAVE to express every aspect of any IOA that the user may wish to

assemble or observe. The secondary source in Windows itself. For more than ten years, the

Microsoft Windows interface has been evolving. This evolution has established a standard, easily

recognizable appearance that is inherent in every Windows program. This standard is apparent in

the design of the Java AWT, and is also apparent in the design of DAVE. Since DAVE is

designed primarily as a Windows program, and developed on a Windows platform, no changes to

the established Windows UI style are warranted. Thus, the interface of DAVE is very much the

same as that of any other "standard" Windows program, from the color scheme to the buttons.

One aspect that is very different from any other Windows program, as seen below, is the client

area.

The other design principles of DAVE are more general, applicable to most programs, and

a little more disposable when the necessity arises. The first is speed. The speed of the program is

especially at issue since DAVE is implemented in Java - not a programming language renowned

for its high performance. If this is such an issue, why use Java? Quite simply, Java allows

DAVE to reach the most users - with Java's ability to compile once and run anywhere, DAVE

can be distributed to many, many more students. This is especially important in the university

environment, where the available platforms may range from Macintoshes to Silicon Graphics

workstations. There is nothing more frustrating for the user than not being able to use the

program she wishes to on the most available workstation.

The Client Area

As stated in Section I, one of the primary goals of the DAVE project was to serve as a

companion to Nancy Lynch's book, Distributed Algorithms. To that end, the client area of the

DAVE program to resembles an actual diagram from the pages of that book. The text is the

inspiration for the visual elements of the client area.

Process Label
New #0

. Link

New

State ,

Actions

SConnection . "
Attachment point

Value popup tab

Figure 1: Detailfrom the client area of DAVE

Figure 1 is a detail from an actual screenshot of the DAVE workspace, with several key

elements already in place on the page. Each element is explored in detail, its significance

explained, why it is represented as it is, and what can be done with it.

1.) The process - the process is the basis for the rest of the program. The DAVE

process represents an I/O Automaton as defined in Section 2. The purpose of the

DAVE process representation is to allow the user to view the state and transitions of

an automaton, its connection to other automaton, and the action in an execution that

the automaton is taking. As such, the processes is designed to resemble, as much as

possible, the representation found in Lynch. A process contains the automaton's

state and actions. These will be explained in further detail below. The process has

several visual elements that the user is able to change. These include the size, the

color, the size and style of the text, its position on the screen, and its name. All of

these characteristics are easily modified using the configure tool, described later.

2.) The link - The link represents a "conduit" between two processes. That is, if a

composition of two actions is a "wire" between two processes, it would be a visual

mess if DAVE represented every connection as a separate visual element. Instead, all

of the wires are squeezed into one of two conduits. These conduits are established

based on which process contains the output action of a composition. Thus, between

any two processes there can be at most two links - one from Process A to Process B,

and one from process B to Process A. The link is a single visual element - an line

ending with a large dot - representing all of the composed actions "from" one

process "to" another. The purpose of the link is to allow the user to see the

connections between processes. Since there can be at most two connections between

any two processes, the client area of the program is significantly cleaner than if each

composition was represented separately. This becomes crucial as the user creates

more complex systems.

3.) A connection/composition - When two actions are composed, a "connection" is

established. A connection is one of the "wires" discussed in number 2, above. As

such, the connection has no visual representation except as a label on a link. When a

connection is established where there is no link, DAVE will construct the link and

add the composition. The composition's name will appear as the "label" to the link.

Successive compositions will be added as additional labels to the link as time

progresses. At this time, DAVE only allows the composition of two actions if one is

an output action and the other an input action. This behavior does not correctly

represent the model established in Lynch - DAVE must also allow the composition

of two input actions.

4.) A connection label - Each connection in DAVE has a unique name based on the

name of the actions being composed and the processes involved in the composition.

The name of the action involved, complete with arguments, is the basis of the

connection label. Then the names of the two processes involved, separated by

hyphens, are appended to the end of the connection label, uniquely identifying the

connection to both the user and other parts of the DAVE program.

5.) The process label - This is the name of the process. Since almost all 1/O automata

have a unique identifier (UID) state variable, it would be easiest if the process label

could be used as this UID. To this end, all process labels must be unique. This

greatly simplifies the task of creating connections. While this property does not

necessarily dictate that the processes have UIDs (that is, this label need not be used in

the actual execution of the automaton), it is still most convenient both for the user

and the program if all of these identifiers are unique. A default identifier of "new" is

applied to all automata. However, the process label is not the UID (that is, it is not a

state variable), though it may be convenient to use it as such. Its real purpose is to

uniquely identify the Java object that represents the process.

6.) The attachment point - The process label also serves as the attachment point for all

of the connections made to the process. However, this is not set in stone. Below the

process label is a small dot. By grabbing this dot and dragging it around the process,

the user can set the point at which all links are connected to the process. This cleans

up the appearance of the client area by leaps and bounds.

7.) The state - The state of a process is the list of all of the state variables declared in

the algorithm for that process. This is represented simply as a list inside of the circle

of the process. The name of a state variable is followed by a colon and its value. At

this time, the value is always represented as text - DAVE has no support for non-text

values such as images or sounds. Lists and arrays are represented as they are in

Lynch. For values that are very long (that is, exceed the bounds of the circle) or are

of a peculiar type (e.g. images, sounds) the value of the variable is replaced with a

value popup tab. These are explained later. When the user views and execution of

the automata, the color of state variables will change as they are affected by the

course of an execution.

8.) The actions - The actions of the automata are usually not shown. This practice was

adopted in order to save the valuable real estate inside of a process circle. The names

of these actions will appear when they are called during an execution, and the names

will present themselves in other ways when we are connecting automata. For the

most part, however, these names are seen very rarely.

9.) Value popup tabs - The value popup tabs, or hotspots, appear in two cases. First,

the tab will appear when a variable's value is either too long to fit inside of the

process circle (e.g. a long list or array), or when a variable's value is of an unusual

type (e.g. images, sounds, graphs, etc.). The second case is when the list of a

process's state variables is too long to fit inside of the process circle. In the first case,

left-clicking on the tab will bring up a window displaying the entire value of the

variable. This window can be specialized by add-ons to display oddly typed values.

In the second case, clicking on the tab will bring up a window presenting the entire

list of a process's state variable inside of a scrollable text window. DAVE is

responsible for deciding when a variable popup tab must be used.

The above list covers the appearance and meaning of the elements present in client area

of DAVE. However, we must also define what actions the user can make inside of the client area

in order to manipulate the processes and channels.

Commands within the Client Area

By left-clicking on a process, the user is able to select that process. When a process is

selected, it is redrawn as a red-highlighted circle. The current process is the process that all

executed commands (configures, connects) will be executed on. The current process is also the

only process that can be moved.

By left clicking and dragging, the user can move the current process. This is often

confusing to new users. To move an unselected process, the user must first select the process,

and then left-click and drag in order to move it. To alleviate any confusion, a process is repainted

with a red outline when it is selected as current. When a process is moved, any connections to the

process also move accordingly.

By right clicking anywhere in the client area, the user brings up a popup menu containing

process commands. These commands only apply to the current process. This shortcut saves the

user the effort of moving between the client area and the toolbar in order to execute the most

common commands on a process.

When the user wishes to connect two processes, she first selects the source process as the

current process by left-clicking on that process. This is the process that has the output type of the

action we wish to compose. The user then either clicks the connect button, selects connect from

the process menu, or right clicks and selects connect from the process shortcut popup. When

connect is selected, the cursor will turn into a targeting crosshair. At this point, the user clicks on

the process that she wishes to connect to, the destination process. When this is done, a popup

will appear displaying all of the actions that can be used to connect the source process and the

destination process. By selecting one action from that list, the user is able to compose the

selected actions and form a connection between the source and destination processes. At this

time, two actions can only be composed if one is an output action and the other is an input action.

In Lynch, however, two input actions can be composed. Support for this behavior is almost

trivial to add to DAVE.

Finally, the user can not be restricted to the current viewport of the workspace. To solve

this problem, the actual workspace much larger than the viewable area. There are two scrollbars

that allow the user to scroll around the area. While this may seem to be an obstacle to some of

the tools (for example, connecting two actions), in truth the format of the tools allows the user to

connect two processes effectively in spite of the fact that both processes involved may not be in

the current viewport.

The Tools

For a user-oriented system such as DAVE, users must be provided with a wide range of

tools in order to make their task as painless as possible. Assembling a complete, correct I/O

Automaton can take a long time, even with the most convenient of tools. It is therefore

incumbent upon the programmers to provide the most convenient of tools.

Creating an I/O Automaton representation

The first set of tools deals with constructing an I/O Automaton. These will be referred to

as the setup tools. These are the tools related to creating, placing, configuring, and connecting

automata. When discussing these tools, consider how to attach an algorithm to a process

representation. Figure 2 shows the toolbar with the setup tools highlighted. Note the clustering

of buttons on the right - these are the visualization tool buttons, discussed below.

Figure 2: The DAVE Toolbar. The highlighted tools (the first four buttons from the left) are the

setup tools.

The first of these tools, the New Process command, is used to create a process. This tool

allows the user to create a new, blank process representation in the client area of the program.

When this tool is executed, a new process representation appears in the center of the current

viewport. This new process has the default process label, "new", the default color and size, and is

not defined (that is, has no state or actions). When DAVE was first being designed, a tool was

considered that would create a default channel process, such as a FIFO message queue. This

process would appear with a distinctive channel shape and have a default channel shape already

loaded. However, once it was considered how many kinds of "common" automata there are, this

tool was abandoned. Implementing one specialized automaton opens a bottomless pit of other

specialized automata that could be implemented. While this may be a useful feature, it is beyond

the scope of this project, and best left to the realm of future work on DAVE.

New

White

TimesRoman

100

100

Figure 3: The "Configure Process" dialog

Once a process is created, the user may wish to configure it. Figure 3 is a picture of the

Configure Process Dialog, which appears when the user presses the Configure button or selects

Configure from the menu. The purpose of this tool is to allow the user to change the visual

elements of the current process. The first on the list, and arguably the most important, is the

name, or process label, as discussed above. The user can also change the color of the current

process. This allows for cleaner looking diagrams - for example, all the processes in a diagram

may be yellow and the channels green. The font can also be changed to serve the same purpose.

The configure dialog also allows the user to change the width and height of the current process.

In a system where most processes are circular, this may seem like an odd approach. It is not,

however, when the appearance of channels in Lynch is considered. In the text, channels appear

not as circles, but as ovals, and it only makes sense to allow the user the ability to do the same in

DAVE. Thus, the height and width fields allow the user to make any manner of oval she wishes,

as well as change the size of the circle of a process. It is important to note that all values in the

configure dialog are set to the current corresponding values in the current process. This gives the

user some idea of what changes she wishes to make, and to what degree, particularly when

addressing the size of the process.

Once the user has created a process and configured it as she wishes, she will want to load

an algorithm into the process. The algorithm contains the state and actions of the automaton.

These components are essential to compose an automaton with other automata and to use the

visualization tools. The load algorithm tool allows the user to load an algorithm into a process.

To do this, the user must press the load algorithm button. This command will load a selected

algorithm into the current process representation. The command brings up a standard Windows

file dialog, from which the user may select a .alg file. An example of this window appears in

Figure 4. When the file is selected, it is parsed and loaded into the process. The text of the

algorithm is stored within the process, and the process is permanently connected to that

algorithm. .alg files are written in the formal IOA language as discussed in Section 2. Once the

algorithm has been loaded, the state will appear inside the process, under the State heading. The

variable names will appear, but no values will be attached. Values are only attached when the

user loads an execution (see below).

Figure 4: A typical DAVE file dialog.

When the user has two or more processes with loaded state, she may wish to connect the

processes. Connection was discussed earlier in this section, but is explored here in more detail.

First, what constitutes a source process? Quite simply, a source process has the output type of

whatever action is to be composed. When the user selects a process as the destination process

only those actions matching certain conditions will be in the list of available, connectable

processes. These conditions are:

a.) The action must have the same proper name (that is, the text name of the action, not

including the arguments).

b.) The action must be of the input type. A connection can only be formed if one

process is of type input and one of type output. No actions with the same type can be

composed, and internal actions can never be composed with any other action. This

condition is not required for input actions in Lynch, and this condition will change in

the next version of DAVE, as discussed above.

The way that a user composes automata in DAVE is not technically composition at all.

In Lynch, one composes a set of compatible automata. All of the transitions with the same names

in different automata are identified (connected). These identified transitions are related such that

when one transition occurs, the other also occurs. In DAVE, the user identifies the transitions to

be composed by hand. That is, the user does not compose entire automata, but instead connects

two actions. The other actions within those automata - whether they have the same name or not -

are unaffected. The end result of this connection is the same as composition - when one action

occurs, the other also occurs. However, the user must keep in mind that this approach to

connecting automata is not correct.

Now the user has assembled a set of processes, configured them, loaded the processes

with the necessary algorithms, and connected them as she sees fit. What remains now is to save

the configuration, either to work on later or to pass to a simulator. At present, there are two

option for saving the configuration. Both are useful in different ways.

Saving and Loading Configurations

When the user has created, configured, and composed a set of automata in the DAVE

client area that set of processes and connections is called a configuration. A configuration

contains all of the visual information about the client area. These configurations can be saved

and loaded by using the Load Configuration and Save Configuration tools. These tools are

located in the Configuration menu. Since these commands are not as commonly used as the

setup or visualization tools, they do not have buttons on the command bar.

The first way to save a configuration is to save the entire DAVEDisplay object (more on

this object in Section 4), that is serialize the object and save it to a file. This makes it easy to load

the file into DAVE again and, if a simulator is written with DAVE in mind, makes it easy for the

author of that simulator to gain access to all of the structures already defined in DAVE.

However, should the simulator be written independent of DAVE, this approach will never work.

It is impossible to extract the necessary information about the automata assembled in DAVE from

the serialized object because the object is written to disk in a binary format specific to Java.

To counter this problem, DAVE has a second method of saving. Namely, DAVE

unparses each process and connection and writes out the unparsed information to a text file.

While this was much more technically challenging than the first approach, it has many benefits

that the serialized object approach lacks. First, it is readable by any program - the text is simple

for a programmer to read and understand, and the programmer can work from that information

without knowing anything about DAVE. Second, the file is easily understood by the user. The

user can peruse the file and understand it perfectly without running the DAVE program.

These second configurations are stored in .cfg file. A .cfg file might look like:

PROCESS:C1;270;49; 100; 100; java.awt.Color[r=0,g=0,b=255] ;java.awt.
Font [family=Dialog,name=Dialog, style=plain,size=12] ;Channel.alg;
PROCESS:P2;82;221;100;100;java.awt.Color[r=255,g=255,b=0] ;java.aw
t.Font[family=Dialog,name=Dialog,style=plain,size=12] ;Process.alg

PROCESS:C2;101;564;100;100;java.awt.Color[r=0,g=0,b=255] ;java.awt
.Font[family=Dialog,name=Dialog,style=plain,size=12] ;Channel.alg;
PROCESS:P3;533;584;150;150;java.awt.Color[r=255,g=255,b=0] ; java.a
wt.Font [family=TimesRoman,name=TimesRoman, style=plain, size=12] ;Pr
ocess.alg;
PROCESS:C3 ; 600;341;100; 100;java.awt.Color[r=0,g=0,b=255] ; java.awt
.Font[family=Dialog,name=Dialog,style=plain,size=12] ;Channel.alg;
PROCESS: P1; 611;72; 100;100;java.awt.Color[r=255,g=255,b=0] ; java.aw
t.Font[family=Dialog,name=Dialog,style=plain,size=12] ;Process.alg

PROCESS:User;79;880;100;100;java.awt.Color[r=255,g=255,b=255] ;ja
a.awt.Font[family=TimesRoman,name=TimesRoman,style=plain,size=12]
;user. alg;
COMPOSITION:receive (m) -C1-P2;
COMPOSITION:receive (m) -Ci-P1;
COMPOSITION:send(m, i, j)-P2-C1;
COMPOSITION:send(m, i, j)-P2-C2;
COMPOSITION:receive(m)-C2-P2;
COMPOSITION:receive(m)-C2-P3;
COMPOSITION:send(m, i, j)-P3-C2;
COMPOSITION:send(m, i, j)-P3-C3;
COMPOSITION: leader(m, i)-P3-User;
COMPOSITION:receive (m) -C3-P3;
COMPOSITION:receive (m) -C3-P1;
COMPOSITION:send(m, i, j)-P1-C1;
COMPOSITION:send(m, i, j)-P1-C3;

The two types of statements in a .cfg file are the PROCESS statement and the

COMPOSITION statement. By carefully examining each type, what information is stored in the

file can be understood. The PROCESS statement is followed by a colon and the name or label of

the process. This is followed by four integers representing the x and y coordinates of the process

on the canvas, and the width and height of the ellipse representing the process. Following this

information is the standard Java unparsing of the color of the process (in RGB values) and

information about the font that the process is currently using. The last element in the PROCESS

line is the .alg file attached to that process.

The COMPOSITION statement, by comparison, is very simple - it contains only the

name. This is because all other information about the composition can be extracted from the

name. From this name, the name of the action to be composed can be extracted. From the

appended process labels, which processes are involved can be understood. And, from the text of

the algorithms attached to the processes, it is apparent which actions are input and output for each

process. Given this information, it is trivial to re-create the original connection.

Now that DAVE has all of this information, it is easy to implement the Load

Configuration command. In this case, DAVE reads the unparsed or serialized DAVEDisplay

object and presents the loaded configuration to the user. The file dialog displayed to the user is

identical to the dialog displayed in the Load Algorithm command.

Now that the user has the tools to build her own I/0 Automata, she will wish to utilize the

second half of DAVE's functionality. Ultimately, DAVE will pass the saved configuration to a

simulator, and the simulator will assemble an execution for the user. A text execution, however,

would be hard to read at best. To solve this problem, DAVE allows the user to view the

execution that is returned from the simulator.

Visualization Tools

The tools needed to load and view executions are called the visualization tools. One of

the major design goals of this set of tools is to make them familiar and easy to use. For example,

a user should not need to know how to use the setup tools in order to use the visualization tools of

DAVE, allowing the most novice user access to these functions. Figure 5 shows the toolbar, with

the visualization tools highlighted. Note how the buttons resemble the layout of a standard

cassette deck, in an effort to make the toolbar seem as intuitive and familiar as possible.

Figure 5: The DAVE toolbar. The highlighted buttons (the six rightmost buttons) are the

visualization tools.

The first of these tools allows the user to load an execution - this is the load execution

command. This command can be executed using the toolbar button or by selecting it from the

Playback menu. This tool presents a file dialog identical to the one presented for load

configuration and load algorithm. In this case, the user selects a .ext file. When this file is read,

the state of the processes is loaded, and this new state is represented for the user in the client area

of DAVE. The format of a .ext file will be discussed later in this document. Once the execution

is loaded, all of the automata in the workspace should show a loaded state - the values assigned

to each variable.

Now the real visualization tools come into play. The primary tool is the play tool. When

the user presses the play button, the execution to plays out like a movie, showing what actions are

being called and how the state variables are being effected. As the playback of the execution

progresses, DAVE displays visually the changes that are being made to the I/O Automata

represented in the client area. When a variable has been changed by the execution, DAVE prints

that variable in red, drawing the user's attention to the change. DAVE does the same thing with

the compositions being called - when a composition is read from the execution, the composition

is highlighted in red, as are the component actions in the processes involved. Figure 6 shows a

process in the middle of an execution. Notice that the values for the variables have been filled in.

r eive(

P2

rece ive(m, j, i)

receive(m

nd(m, i. j)-P2- 23

Figure 6: A process with its initial state loaded.

Similar behavior happens with the step forward and step backward commands. These

commands are for closer examination of the execution. For example, the user may pause the

execution somewhere in the middle when a particularly interesting action takes place. The user

can then step forward or backward in single increments (that is, back up to the previous state, or

move forward to the next). When the execution has reached its final state, the user can no longer

step forward in the execution. At this point, she may stop or step back in the execution.

At any point in the execution, the user may wish to pause the playback. This stops the

playing of the execution, but leaves the execution at its current state. This allows the user to

peruse the state of all the processes. When the user is ready to proceed with the playback, she

need only press the play button again to proceed.

Often the user wishes to stop the execution altogether and back up to the beginning. For

this purpose, there is the stop button. This serves much the same purpose as the pause button, but

backs the execution back to its initial state. Note that all of the visualization buttons utilize the

standard cassette player notations, again to make the interface as familiar to the user.

Executions

As mentioned above, no formal definition of an execution language existed before the

DAVE project. In order to design a working prototype of the system, DAVE requires a language

for this purpose. This section explores the design of that language.

The execution language is exceedingly simple and follows a few simple rules. It is

easiest to explain by example:

STATE:
Pl:

pending:= {1)
status: =waiting

P2:
pending:= (2)
status:=waiting

P3:
pending:= { 3 }
status: =waiting

Cl:
buffer:= { }

C2:
buffer:= {)

C3:
buffer:={)

User:
mode := waiting

TRANSITION:
send () -P1-Cl

STATE:
Pl:

pending:= {1}
status :=waiting

P2:
pending:= (2)
status : =waiting

P3:
pending:= { 3 }

status:=waiting
Cl:

buffer:= {1)
C2:

buffer:= {
C3:

buffer:= }
User:

mode := waiting
TRANSITION:

receive(l) -Cl-P2

This is a fragment of a .ext file, and is fairly self-explanatory. The STATE heading

declares that what follows, up to the TRANSITION keyword, is a state declaration. The

TRANSITION keyword declares that, until a STATE declaration, the text describes an action to

be executed.

One of the most important things to notice in the above example is that every state is a

complete state declaration - that is, every variable in every process is assigned a value, even if the

value was not changed. This restriction allows much more freedom in the development of tools

than a less restrictive approach. For example, a tool may extract a given state from the execution

without running the execution. With this format, this would be very simple to do. However, if

the state description at every step was not complete, to extract a given state would require playing

out the execution from its beginning, or checkpointing the entire state of the automaton from time

to time. This format also makes rewinding the execution much easier - the program need only

step back one state in the text, rather than seeking repeatedly back through the text to assign

values to every variable. However, because DAVE requires that the state be completely specified

in the .ext file, the size of these files can be exceedingly large for complicated examples.

State is declared in a .ext file with the STATE: statement, followed by a newline. On

subsequent lines, the user (or simulator) must declare the process name being affected, and the

values of each variable above. In the initial state of the example above, notice the STATE

statement, followed by a process name (in this case, P1). This is followed by a variable name and

":=", followed by the value and a newline. Since this state declaration is the first in the file, it is

called an "initial state". Every .ext file must start with an initial state.

All of the variables in this example, and in all other DAVE executions, have strings as

values. In DAVE, the currency of values is strings - be the values integer, boolean, image, etc.

This may seem either limiting or inconvenient, but there are a number of advantages of using

strings. In the future, should new tools be added to DAVE, this established currency of strings

will be easy to use, as the only functions necessary to interface with the existing .ext format will

be parse and unparse features. There is also the distinct advantage that, for the majority of data

types, the string is what would appear on screen.

The TRANSITION statements are somewhat more complicated than they appear. The

naming convention when constructing compositions carries over into executions, and this name is

again laden with information. The two process names appended to the end of the action name

indicate to DAVE what processes are involved in this action. If the action is an internal action,

there will only be one process name appended to the action name, indicating which process is

executing the internal action. The proper name of the action indicates what action at each process

is to be executed. However, the most important piece of information in the TRANSITION

statement is the variable values placed inside the braces of the action, where formerly there were

simply variable names. These assignments indicate to DAVE what arguments were passed to the

transition, and allow the program to display these values in the connection, and at both the source

and destination transitions.

Section IV: Implementation

The implementation of DAVE is a complicated system. The major goals of the

implementation were to simplify the implementation and make it easily extensible for future

programmers. This is especially important in this kind of program, which was developed ahead

of other technologies that it is dependent on, such as simulators, or even the IOA language. To

ease integration with these future tools the program must be as simple and straightforward as

possible.

Object-Oriented

To achieve this simplicity, the DAVE implementation adheres adamantly to the

principles of object-oriented programming. In this system, where the theoretical objects are so

clearly defined, it is simplest and best if the theoretical objects are translated into the actual

objects in our code. Access to these objects is gained only through rigorous interfaces - there are

no public instance variables. This allows pieces of code unrelated to an object to manipulate that

object without inadvertently modifying other objects, with catastrophic results. If this discipline

is obeyed, it makes the task of programming DAVE easier, and the tasks of future DAVE

programmers.

One aspect of the program that lends a great deal to the simplicity of the implementation

is the fact that the entire DAVE program is event driven. That is, once the main graphical

elements of the program have been created, DAVE need only display these components, and then

process the events that the user's interaction with these components generate. Using this event-

driven model frees us from the complexities of dispatching commands, or attempting to run

several threads of execution simultaneously within the program (actually, this isn't exactly true,

as shown below).

Java

The choice of the programming language used to write DAVE has also kept the

implementation simple and straightforward. DAVE is written entirely in the Java programming

language, an object-oriented language very much like C++. However, where C++ comes with

very little in the way of libraries, Java comes with a large class library, which gives programmers

access to some of the most common constructs in programming.

One of the most powerful aspects of Java is the ability to "compile once, run anywhere".

Java is an interpreted language. This allows the DAVE Java files to be compiled into a

specialized representation called a .class file. These class files can then be used by a Java

interpreter to run the program on any platform for which an interpreter exists. Actually, this is

over-stating the power of the Java language. A common observation among programmers is that

Java is "compile once, debug anywhere". Across different platforms, Java may behave

differently than it does on the development platform.

Java was implemented with Windows in mind. One of the largest Java class libraries is

the AWT (Abstract Window Toolkit), a collection of visual components that are common to

Windows systems. These include windows, buttons, scrollbars, and a myriad of other

components. In a program that is as graphics-driven as DAVE, these components are used quite

often. Because Java provides many of the graphical components needed to implement DAVE,

and the tools to create components that are not provided, the code can be kept fairly streamlined

and simple.

The Java class library also provides much of the I/0 functionality that DAVE requires.

There are implementations of files, streams, and the different components necessary to use them

efficiently. This includes file dialogs, filters, stream readers, and many other components. The

use of these components can often be very complicated - all of these functions throw exceptions,

and catching these exceptions can often be tricky. Several aspects of the Java I/O libraries make

our programming DAVE easier, but several add new complexities to the task.

However, DAVE is not purely about graphics. Some of the most complicated aspects of

the DAVE system are in the parsers and unparsers used throughout the system. Fortunately, the

languages used by these parsers are designed very rigorously, or the existing languages used are

very rigorous. However, these parsers will still be very complicated, no matter how simple the

languages may be. These parsers will be explored later in this section.

The remainder of this section will discuss the intricacies of the DAVE code, the different

objects involved, and how they interrelate. This section will also delve into the graphical aspect

of DAVE, and the use of AWT components throughout the program. Finally, this section covers

the algorithms used to parse the various file formats we use, and the unique structure of the

playback tools.

DAVE

DAVEDisplay

ProcessBean

Connection

Compositions Variable

Transition

Figure 7: The DAVE object hierarchy.

Figure 7 shows an overview of the object hierarchy used in DAVE. Most functions in

DAVE are distributed across several levels of this hierarchy. This section is broken down by

functionality. That is, when a single function of the program is being discussed, the

implementation of that function will be followed through every layer of the program.

The main function

The main function of the program is written in DA VE.java (see Appendix 2 for a

complete code listing). This portion of the program actually has very little to do - it is relegated

mostly to the function of event handling and dispatching, once the initial graphical components

have been created. DAVE extends the Frame data type - this simply means that DAVE is an

application window. The Frame data type provides functionality for such things as title bars,

menus, and toolbars. All activity within the program takes place inside the DAVE window.

The main function of DAVE (which serves as the main function of the entire program)

creates a DAVE object. The declaration of the DAVE type contains a long list of graphical

components. As a matter of convenience, almost every graphical component used is listed in the

beginning of this function, with few exceptions. Note the variable calledflow of type

GridBagLayout. This is a Java AWT layout component, and controls the arrangement of

Components within the DAVE window. flow is broken into an irregular grid, and each

component inserted into the grid takes up several blocks. The console buttons, for example, take

up one block apiece, while the DAVEDisplay window (see below) takes up much, much more real

estate.

One behavior that was difficult to implement in DAVE, but is an essential element of

every Windows program, is the ability to resize the DAVE window. At this time, this behavior

still does not work correctly in DAVE. The problem lies in the fact that the resize event is not

being passed to the object representing the DAVE client area. Thus, when the application

window is resized, the client area window is not resized. This leads to a visually unpleasing and

inconvenient layout of the DAVE application window.

In the remainder of this function, the graphical components are created and put into the

DAVE window. These components include buttons, menu items, scrollbars, and the client area

object. Each component has associated with it an ActionListener. This is the foundation of our

event-driven system - all actions taken by the program will stem from one of the functions in

these ActionListeners. After all of the components have been attached to ActionListeners, they

are added to the DAVE window with a certain set of GridBagConstraints, which dictates how the

components will be placed in the GridBagLayout. Once this is done, the DAVE window is

packed and shown, which finalizes the arrangement of components in the window and then

displays that window. Notice that both the main function and the creation function for the DAVE

object just end, rather than going into a command-processing loop. All other actions in DAVE

are instigated by events.

DAVEDisplay

The DAVEDisplay type is also declared in DAVE.java. Almost all of the ActionListener

functions outlined in the DAVE class merely dispatch calls to the DA VEDisplay object. It should

be quite apparent that all of the power in DAVE lies in the DAVEDisplay object. The

DAVEDisplay object does all of the event processing for the client area of the program. Since the

DAVEDisplay has access to all of the ProcessBean objects (ProcessBeans are the object

representation of processes), DAVEDisplay is also the intermediary between the DAVE object

and any of the lower-level components in the program. The DAVE object contains one

DAVEDisplay object as a member variable.

DAVEDisplay also has a number of graphical component objects as a part of its state -

buttons, text boxes, pulldown menus. However, none of these components appear in the client

area of the program. Instead, these components are placed in the various dialogs that the user will

see as she uses the program. DA VEDisplay must have control of these components in order to

extract the information it needs from them once the dialog to which the components belong has

been dismissed.

The DAVEDisplay creation function is remarkably simple. The object need only set its

parent and size, enable mouse events, and create a few member variables. Likewise,

getPreferredSize is very simple, and really more of a technicality - the call is rarely used, but is

necessary to implement Component, the superclass of DAVEDisplay.

Create a new process

All of the ActionListeners attached to the menu commands and console buttons call

functions that implement the tools discussed in Section 3. The first of these functions is the

new_process() function. This function finds the current position of the viewport and calculates

the exact location of the center of the viewport on the underlying canvas. The function then sets

the default color and text of a new process, and calls the new_process function in the

DAVEDisplay object disp with those arguments

This function implements a few subtle behaviors that should be noted. The first

step is to create the new ProcessBean that will represent the new process. The arguments to this

function are set to their default values in class DAVE, and the values passed into this function.

The next step is to take the current bean and un-set the its current flag, and then make the new

process the current process. It is assumed that every time the user creates a new process, she will

wish to work on that process as the current one. This is a valid behavior, and also increases the

familiarity of the interface. In most Windows programs, a newly created or opened object will be

set as the current object, and there is no need to change this precedent. The new process is then

added to the vector of processes that DAVEDisplay maintains, and the canvas is redrawn.

The new process representation is implemented by a class called ProcessBean.

ProcessBean serves as an intermediary between the DA VEDisplay's high level calls and the low

level functionality of Variables, Transitions, Channels, and Compositions. Much of the graphical

power of the client area is also present in ProcessBean. There are a lot of PropertyChange

functions in the beginning of the class declaration. This is due to the fact that ProcessBean is a

Java Bean. This functionality has little bearing on DAVE. However, it is significant that making

ProcessBean a Bean also makes it a subclass of Component. Component is the base class for all

of the user interface components in DAVE, from the buttons to the menu bar. As a subclass of

Component, the DA VEDisplay has default behavior that allows it to process events easily.

However, making ProcessBean a Bean may also have contributed to DAVE's performance

problems (see Section 5).

In the case of ProcessBean, it will be necessary to become familiar with the variables of

this class before proceeding. The most important variables are three vectors, myState,

myConnections, and myTransitions. These vectors will store the state variables (as Variable

objects), connections (as Connection objects), and actions (as Transition objects) of the process,

respectively. myFont, myName, and myRect contain the font, label, and bounding rectangle of

the process. The other important variable is the Rectangle hotspot. This variable represents a

rectangle bounding the screen space that corresponds to a hotspot. When the hotspot is pressed, a

dialog displaying the entire state of the process is displayed.

Configure a process

The configure command, as discussed in Section 3, is used to set the visual properties of

a process representation. The function configure of the DAVEDisplay object is deceptively

simple - all of the configuration processing is actually done in the event handler for the return of

the configure dialog, actionPerformed, which catches the command strings for the buttons in the

configure dialog. When the "OK" button is pressed in the configure button, the dialog is hidden

again, and the actionPerformed function extracts the required values from the graphical

components that were contained within the dialog. These graphical components - the text boxes,

pulldown menus, and labels - are all member objects of class DAVEDisplay. When the dialog

box is hidden, the DAVEDisplay object extracts the values contained within these components

and changes the current process accordingly. Notice also the texttocolor function - this allows

actionPerformed to translate the color name from the configure dialog into an actual Java color.

This function will pop up again when setting global color schemes.

configure, instead of calling a configure function lower in the hierarchy, calls the

individual functions of ProcessBean used to set the graphical properties of the object. None of

these functions is particularly interesting from an implementation standpoint - they merely set the

variable that they correspond to to the value passed in as an argument.

One notable problem with DAVE is the speed at which the configure dialog is displayed.

This is something of a mystery. Since the current process representation is always the target of

the configure command, there are no loops or searches involved with the call. The configure

command need only retrieve a few values from the current process, load those values into the text

boxes and menus of the configure dialog, and display the dialog. The problem may lie in the fact

that DAVE creates a new configure dialog object each time the command is called, rather than

reusing one object repeatedly.

Attach an algorithm to a process representation

Once the current ProcessBean has been configured, the user will most likely wish to

attach a description of an I/O Automaton to the process representation. At the highest level of the

object hierarchy, this is not a particularly interesting problem - the DAVEDisplay class creates a

file dialog, extracts the file from that dialog, and then passes that file to the current ProcessBean.

In ProcessBean, things get much more interesting. The ProcessBean function loadState

is crucial to the operation of DAVE. loadState is the front end to the function that loads an

algorithm into the ProcessBean. This function, by itself, is not very impressive. It has much the

same functionality as the other parser front ends in the DA VEDisplay class, with one notable

difference. Every ProcessBean carries the text of its algorithm around internally. At this time,

this feature is not fully exploited. However, future versions of the program will add a feature that

allows the user to view the code for a given process. When this feature is implemented, this code

storage functionality will become critical. This also opens the avenue for easier simulation.

Since each process contains its IOA code, a simulator can run using the ProcessBeans alone,

rather than being forced to refer to outside sources. This makes configuration storage as objects

(rather than strings) a much more viable and useful option.

The next important function is the body of the algorithm loading functionality,

parsecode, is also located in the ProcessBean class. Once the IOA code has been loaded into a

ProcessBean, it will be necessary to extract certain information from it, namely state variables

and actions. The code itself is fairly straightforward, but the parser is rather primitive. Currently,

DAVE expects lines to be delimited by a new line character. This is not in keeping with the

standard established by the IOA manual. Using special characters to delimit the pieces of a line

allows the function to easily extract the pieces necessary to assemble objects. For example, the

name of a transition ends with a '(' character - DAVE uses this information to split a transition

name into a name and a list of arguments. When extracting an action, parsecode must discern

the action's name and its type. DAVE will later extract the arguments from the name in class

Transition, but for now it needs only this information. There are different modes in the function

- since every line is not flagged with its type (transition, state, etc.) it is necessary to keep track of

which mode the function is currently in. When the program is in TRANSITION mode, and has

extracted the necessary information from the current line, a new Transition is created and this

object is added to the ProcessBean's vector of transitions.

parsecode does not implement a fully-featured parser of the IOA language. parsecode

can only extract simple automata. The IOA language also allows for composition of automata, a

feature which parsecode does not deal with. parsecode also ignores the type statement in IOA, a

very important aspect of the language. type statements can be very complex, and it seemed

unnecessary to tackle that complexity, since all of the values in DAVE are specified by string.

parsecode serves one very simple purpose - to extract the names of a simple automata's

variables and transitions.

Connecting two actions

To compose two actions together, the user must use the connect tool. The first level of

this tool is located in the DAVEDisplay class. The DAVEDisplay connect function contains little

of the functionality that actually establishes a connection. The function merely sets a flag and

changes the cursor to indicate to the user that she is now in connect mode. Most of the connect

functionality is contained with the ProcessBean class, and this functionality is accessed when a

mouse event is dispatched that causes a connection to take place.

The connection process is continued in the connect function of ProcessBean. connect is

passed a ProcessBean - the source of the connection, and a Transition that was selected by the

user from the popup menu generated when the Connect tool was used. Using this Transition as a

guide, connect iterates through the Transitions in the source ProcessBean until it finds a

connection to make. The matching Transition must meet three criterion:

1.) The proper name - that is, the name of the Transition with the arguments removed -

must be the same as that of the Transition returned by getTransAt.

2.) The source Transition must be of type output, and the destination Transition must be

of type input.

3.) The Composition of these two Transitions must not already exist.

If these criteria are met, then a connection can be established. The last responsibility of

connect is to assure that a Connection exists between the two processes. Between any two

ProcessBean objects, there may exist at most two Connections. For any two ProcessBeans P1

and P2, a Connection can go from P1 to P2, and a different Connection from P2 to P1. If the

Connection required to hold the new Composition does not exists, it is the responsibility of

connect to create one. However, the Connections must be of two different types. For example,

if the Connection from P1 to P2 and from P2 to P1 were the same color, it would be difficult to

discern which Compositions belonged to which Connections. Thus, if a Connection from P1 to

P2 does not yet exist, connect must make sure that a Connection from P2 to P1 does not exist. If

it does, then the new Connection must be made of a different type, so it will display in a different

color than the first Connection. Once this Connection has been made, the new Composition can

be added to the Connection and connect has completed its task.

Handling mouse events in the client area

As described in Section 3, much of the functionality of DAVE is accessed by

simple mouse commands in the client area of the program. These mouse events are handled in

the DAVEDisplay object, in the processMouseEvent function. This function is responsible for

dispatching most of the commands for such essential use requests as moving processes, selecting

the current process, and connecting processes. The first event handled is the popup trigger. This

is the mouse event, defined by the system, that is supposed to bring up a popup menu (for

example, clicking the right mouse button on a Windows system). In DAVE, this popup menu

only contains two commands - configure and connect.

The next event handled is a single left-button click. This command can have several

interpretations. If the user clicks on a hotspot, the event must be dispatched to checkhotspot, and

the correct hotspot displayed. Otherwise, the user may be selecting the current process, in which

case the event much be dispatched to checkcurrent. If neither of these is the case, the click may

simply be an erroneous mouse click in the client area, in which case DAVE shouldn't do

anything. All of the code to dispatch these events is straightforward, as the functionality

associated with these user actions is encapsulated in other functions.

processMouseEvent also handles dragging processes in the client area. This is handled

in the MOUSE_PRESSED and MOUSE_RELEASED sections of the function. However, this

function must take into consideration that a mouse release may also indicate a button press. This

is something it must check for - whether the mouse was dragged, or merely clicked. Thus, in

MOUSE_RELEASED, some of the functionality already in place in MOUSE_CLICKED is

repeated. If the mouse was, in fact, dragged then the position of the current process must updated

to the new mouse position. In this version of DAVE, the upper left corner of the process is

moved to the current position of the mouse. This problem will be fixed in later versions to make

the behavior more in keeping with standard Windows dragging behavior, where the part of the

object that was "grabbed" by the mouse is moved to the mouse's coordinates. Any mouse event

that is not handled by processMouseEvent is passed up to the superclass of DA VEDisplay.

The checkcurrent function handles the single mouse click that selects the current

process. The x and y coordinates being used by this function are passed in from the mouse event

handler. checkcurrent then scrolls through the vector of processes being maintained by

DAVEDisplay until one is found that contains the x and y coordinates generated by the mouse

click. This process is then set as current, and the former current process is un-set as current.

This is accomplished with the ProcessBean functions make_current and

unmake_current, which merely set a boolean flag. These functions, however, are by no means

trivial. When the current flag is set, the ProcessBean has many behaviors that it doesn't have

otherwise. It has all the features of the current process, as described in Section 3. It is also

displayed differently than other processes, as we will see later.

The functions closeto and hitTest of the ProcessBean class are also used for processing

mouse events. When the DAVEDisplay object receives a mouse event, it has only the x and y

coordinates. It must use these to figure out which process, if any, has actually been clicked on.

When it wishes to do this, it must loop through the list of processes and call hitTest on each one.

This is a boolean function that will return true if the mouse click is within the bounds of the

ProcessBean. While this may seem crude, it is currently the most practical way to handle mouse

clicks in an event driven system.

The function hotspot, quite simply, checks whether a given set of coordinates are within

the bounds of a hotspot on some process or the hotspot of some variable within a process. If so, it

calls the appropriate function to display the contents of that hotpot. Notice that both ProcessBean

and Variable implement the inSpot function. This is not required - that is, they have no common

superclass. Rather, it was simply a convenient naming function that makes the code appear more

coherent.

The function DisplayState is responsible for creating the state viewer that pops up when

one of the "hotspots" is clicked (the "hotspots" were generated when the list of a process's state

variables exceeded the bounds of the process circle). To display the state, DAVE uses a TextArea

object. This object takes in a single string and displays it in a window. Figure 8 shows a

DisplayState dialog containing the current state of a Channel process. Since TextArea must have

a single string to work with, notice that DisplayState takes the entire state of the process, formats

it with the appropriate labels, and then concatenates the entire state together into one string.

Again, GridBagLayout is used to manage the layout of our dialog. This is due to the fact that

DAVE must put a very large text window and a fairly small button in the same dialog.

Walel
pending:(2)
statuswaiting
Transitions:
receive(m, j, i)
send(m, i, j)
leader(m, i)

Figure 8: The "View State" dialog.

The DisplayVariable function serves much the same purpose as the DisplayState

function, only on individual variables instead of entire processes. Recall that hotspots are also

put on variables that had either oddly typed values (i.e. images), or values that were simply too

long to show inside the process circle. In either case, a specialized viewer needs to appear when

the hotspot is clicked. In the current implementation, only the latter difficulty is handled -

particularly long values. Future versions of DAVE will handle a broader set of data types, and

the handlers for those types will have to pass through DisplayVariable. In almost every respect,

DisplayVariable's functionality is identical to that of DisplayState.

Save and Load Configuration

The process of saving and loading configurations - the visual layout of the client

area of DAVE - begins in the DAVEDisplay class. load_config is the function responsible for

parsing the first type of save file - the .cfg file that is written out by unparsing every object in the

system. Only DAVE itself will be responsible for writing out .cfg files, which means that as long

as the process of saving and loading configurations is consistent within DAVE, there should

never be a problem. A .cfg file is not something that the user would wish to write out by hand.

load_config begins by opening the file and loading the first line. load_config processes

lines as they are read in, as opposed to loading the whole text and then working on it as a body.

This is an excellent memory-saving measure, since old lines can be eliminated as soon as the

corresponding process has been created. When loadconfig has a line from the file, it extracts

the first token from the line, called a type identifier. Depending on this type, the line is processed

in very different ways. If the type is "PROCESS", load_config must extract the necessary

information from the line to create a new process. This includes the x and y coordinates, the

width and height, the color, font, and label of the process, and the algorithm file associated with

the process. Once it has the information, DAVE creates the process very much as if a user had

called "new process" and then configured the process. load_config is also responsible for

loading the process's algorithm file.

If the type is "CONNECTION", on the other hand, load_config has only the name of the

connection to work with. However, as demonstrated in Section 3, this is enough. DAVE extracts

the name of the action being composed and the labels of the involved process from the line.

load_config then loops through DA VEDisplay's internal list of processes until it finds both the

source and destination processes, and then loops through the destination process's actions until it

finds the correct action. With this information in hand, load_config can call the connect function

at the source process and create the connection.

One thing we must keep in mind about .cfg files is that all of the process statements must

precede the composition statements. While this may seem like an inconvenience, it is really of no

concern to the user. Since only DAVE will be writing these .cfg files, we are free to impose

whatever restrictions on the format we require.

save_config is load_config's counterpart, and is responsible for writing .cfg files. In

many ways, save_config behaves as the reverse of load_config. In save_config, DAVE cycles

through all of the processes in DAVEDisplay's internal vector of processes and creates a string

containing the unparses of the process's x and y coordinates, width, height, color, font, and

algorithm. This string is then written to a streaming output. Once all of the process information

has been written, the program loops through the processes and extracts the composition

information. This information is also written to the output stream. Once the function is

complete, the cfg information is flushed from the output stream and the function returns.

Load an execution

Once the user has the configuration she wishes to study, she will wish to load an

execution. As discussed in Section 3, an execution contains the states of an I/O Automaton and

the transitions between states. The process of loading an execution begins in DAVEDisplay with

a function called loadExecution. loadExecution reads in an .ext file and prepares the execution

for display. The file I/O for this function is very much like the I/O for load_config, with one

notable exception. In loadExecution, the entire file is read and stores in memory. This is

because the user will wish to move forward and backwards freely through the execution.

However, this is certainly not the optimal way to store an execution. DAVE's performance woul

undoubtedly improve if the states listed in an execution were stored in the ProcessBean objects

themselves, rather than keeping the entire text of a .ext file sitting in memory.

Section II stated that all executions begin with an initial state. This is the responsibility

of init(). init() is called by loadExecution once the text of an execution has been loaded. inito

contains the second of DAVE's three parsers. Section 3 outlined the format of the .ext file, and

init parses this format rather handily. init makes sure that the first line in the buffer is a

"STATE:" statement, and then parses lines until it reaches a "TRANSITION:" statement. init

takes a line from the buffer containing the name of the process, and then loops through the file

until it reaches a new process declaration. These lines contain variable names and values, which

are easily extracted because they are delimited by special characters. Once init has this

information in hand, it calls SetVarValue with the process name, variable name, and value to set

the new value.

Play an execution

The faster and slower functions of DAVEDisplay control the thread that controls

playback. Suffice to say that these functions are very simple - they simply increment or

decrement the floating point threshold at which the player thread steps an execution. This

functionality was added more as a debugging tool, a stop-gap measure until a more stable system

could be implemented.

The last class in DAVE.java is the Player class, which is responsible for playing back an

execution by calling the appropriate functions at timed intervals. This class implements the

interface Runnable. All this means is that we have implemented the virtual function run. This

function is exactly like the function main - it dictates a sequence of instructions to be run in the

new thread. Because DAVE uses an event driven model, there is no constant loop processing the

user inputs. While this provides a great deal of freedom, it also means that there is no way to do

timed playback from the body of our program.

Playing the execution (that is, stepping at fixed time intervals, much like a CD or cassette

playback) requires the creation of a new thread of execution. This thread has one responsibility -

to step the execution at certain intervals after the user presses the play button. To create a thread

in Java, the thread requires Runnable object. This is where Player comes in.

The most important function in Player is the run function. All that run does is

increment a counter at every computational cycle. When this counter reaches a certain threshold,

Player calls the step function of the DAVEDisplay object that was passed to it. Of course, this

functionality must be turned on and off, which is why control of the Player object has been given

to the DAVE class, which controls, among other things, the play button. This is not the most

efficient system for playing back an execution, since the use of a counter uses considerable

processor time. A more efficient system would be to put the Player thread to sleep when it isn't

in use. This functionality should be easy to add to the DAVE system.

Whenever the play button is pushed in the DAVE window, this will cause an event to fire

which will set a boolean flag within DAVE. As the Player thread is processing, it will check at

every cycle whether this flag has been set. If the flag is set (that is, the console should currently

be playing), the Player will begin incrementing, and call next on the DAVE class whenever it

reaches its threshold value. If the user presses pause, the flag inside of DAVE is un-set, and

Player no longer increments or calls next until the flag is set again.

The other three functions in Player are a creation function, an increment function, and a

decrement function. The creation function is passed a DAVEDisplay object as an argument.

This will give the Player access to the next function it requires. The other two functions are used

to increment or decrement the threshold value. This has the effect of making the playback go

faster or slower. This thresholding system should be replaced with an actual clock, to remove

the system dependency of the playback speed.

The behavior of the Player thread depends on a single boolean variable that is controlled

by the DA VEDisplay functions play(), pause(), and isplaying(). play and pause simply set this

boolean value, which is then accessed by the player thread through the isplaying function. It

could be argued that the isplaying function is not required, and that it would be easier to simply

make play a public variable. However, this would violate DAVE's strict adherence to the

precepts of object-oriented programming. This phenomenon of hiding simple variables behind

function interfaces will crop up over and over in the DAVE code. The purpose behind doing this

is to simplify the use of DAVE classes for future programmers.

Much of the functionality of the DA VEDisplay function init is also a part of the basic

function of playback, the DA VEDisplay next. next is the function responsible for "stepping

through" the execution. When next is called, the pending transition is highlighted in the DAVE

window and its arguments are set. Then the next state is read and loaded into the processes.

First, next resets the system, using the reset function. This means that the connection that was

last highlighted is set back to its inactive mode. The arguments of all actions are reset. Then

next reads the next transition line and calls SetTransValue with the source and destination

process names, the transition name, and the argument values, next then moves forward in the

execution and executes the functionality of init, reading in the new state. After this function is

called, the entire canvas is repainted. This is necessary because an entirely new set of variables

will be highlighted, and a new connection has become active. This information must be relayed

to the user through color changes on the canvas. Ideally, DAVE should only repaint the portions

of the canvas that are changed. However, this optimization has not yet been added to DAVE.

The ProcessBean SetTransValue and SetVarValue, are the the counterparts of the same

functions in DAVEDisplay. A Variable value can not be changed from the DAVEDisplay object.

This is because DAVEDisplay has little access to the internals of the ProcessBean object. Thus,

DAVEDisplay could merely identify the ProcessBean involved, and then relegate the duty of

changing the variable values to that ProcessBean. The ProcessBean then uses these functions to

change the appropriate value. Note, however, that the same separation takes place in these

functions. ProcessBean can merely identify the Variable or Transition involved in the operation

by simple name matching. Once that object is identified, the responsibility passes to the object to

make the appropriate changes.

next's sister function is previous. This function is much easier to implement, since next

is called in the body of the function. Rather than trying to step backwards in the execution text,

previous merely moves the execution pointer back to the previous transition and then calls next.

This has the effect of "backing up" the execution to its previous step. It now becomes apparent

why the entire state of every process is declared in the .ext file - it saves a great deal of effort

when attempting to step backwards through the execution.

The next function that is relevant to playing an execution is reset, a member function of

DAVEDisplay. The need for reset has already been described above, and its functionality is

remarkably simple. reset prepares the client area of DAVE to display another step of an

execution. This involves undoing the color changes - the highlighted variables and links - that

were made when the last step of the execution was processed. Because of the tree structure

shown in Figure 7, a great deal of DA VEDisplay's functionality to can be relegated to lower

components in the graph. This is done in reset. reset simply scrolls through DA VEDisplay's list

of processes and calls reset on each of these. The reset present in ProcessBean is not nearly this

simple.

One place where this rigorous separation of levels was not maintained is in the reset

function of ProcessBean. The purpose of reset is to prepare all of the graphical elements for the

next step of the execution by un-setting the "modified" flags of all elements. Since changed

elements are highlighted in red when viewing an execution, it is necessary to reset the old

elements before proceeding. The reset function of ProcessBean is responsible for doing this.

This function iterates through myState, myTransitions, and myConnections and resets each

element by un-setting the "modified" flag of each element. When this is done, execution

playback can proceed.

Draw the DAVEDisplay

The paint function for DAVEDisplay is very simple, as each object in the program (e.g.

process, variable) is responsible for painting itself. Since this is the case, DAVE need only paint

all of the processes in its process vector. The call to paint will then branch out as seen in Figure

7, as each object calls the paint function of its child objects. This means that the paint command

will then branch out to the ProcessBeans associated with the DA VEDisplay object.

The painting function of ProcessBean is the draw function. Almost all of the graphical

horsepower of DAVE is derived from this function. The top-level DAVEDisplay object has no

real control over the appearance of the client area - the draw functions of the individual

ProcessBeans dictate the layout of the workspace. The first responsibility of draw is to draw the

ProcessBean itself. This is accomplished by using AWT routines to draw the label of the process

and its label. Recall, however, that if the ProcessBean is the current process, flags are set such

that the outline of the oval will be drawn in red, indicating the ProcessBean's special status to the

user.

Once the ProcessBean itself is drawn, it must also draw all of its child components.

Based on the current position of the ProcessBean, the Variable objects in myState are configured

accordingly. This involved setting the x and y coordinates of the variable on the screen and

deciding whether the variable is long enough require a value popup tab. Once the Variables are

configured, they are responsible for drawing themselves. A similar hierarchy exists for the

Transition objects in myTransitions. The notable exception to this format is the drawing of

Connection objects. These objects need no configuration -that is, the ProcessBean is not

responsible for calling a function that will set the Connections position on the screen. The

ProcessBean's draw function instead calls the paint function of the Connections the

ProcessBean contains. The Connections then set their own x and y screen coordinates, based on

the screen coordinates of their parent ProcessBeans. This is possible because each Connection

contains its parent ProcessBeans, and can access information about the location of the parents.

Comments on DAVEDisplay and ProcessBean

Throughout DA VEDisplay and ProcessBean, there are several recurring themes. The

first of these is the benefit derived from using an event driven system. This system makes it easy

to implement graphical components such as buttons and dialogs, since each component only

requires creation and a handler function. The second benefit is derived from the hierarchical

object system used in DAVE. Throughout DAVEDisplay and ProcessBean, functionality is

relegated to lower, smaller modules, where the complexity is more easily managed.

Because of the hierarchical, object-oriented structure of DAVE, the highest level of the

program is exceedingly simple. Surprisingly, the lowest levels of the tree - the Variables,

Transitions, and Compositions - are also very simple. Most of the functionality of DAVE is

located in the ProcessBean and DA VEDisplay classes. These classes, while complex, are never

unmanageably so. The code for these classes is very long because these classes serve as the

middlemen between the high-level execution of the program and the low-level details of the

smaller objects - Variables, Compositions, Connections, and Transitions.

Smaller Types: Variable

The first of these objects is the Variable type. It is easy to dismiss this class simply as a

wrapper around a name and value. However, this is hardly the case. A significant amount of

functionality relating to the Variable was moved to where it belongs - within the Variable object

itself. A Variable represents a state variable and contains, most importantly, the name and value

of a state variable.

Most of the functionality of the Variable class has already been explored in earlier

sections of this paper. Much of the remainder of the functionality is, again, a set of interfaces to

maintain our strict adherence to object-oriented principles. This section concentrates on the most

interesting aspects of the Variable class.

The first function of interest is the function hitTest. This is the lowest rung on the ladder

that began in DAVEDisplay - namely, finding out which Variable is actually being clicked on.

Recall that, at each level of mouse event processing, DAVE strips away a layer. The progression

follows from a mouse event, to a particular process, and now to the actual variable through a

series of function calls. This chain starts at the mouse event handler for DAVEDisplay, which

calls a function within the ProcessBean that was clicked, which in turn calls a function in the

Variable that was clicked. The "click" is represented by a set of screen coordinates that is passed

down through the levels of the program. This exemplifies the hierarchical character of DAVE

that has been stressed throughout this document.

The next function, configure, plays a large role in the "hotspotting" of Variables. This

function decides whether a Variable should be hotspotted or not, and sets the appropriate flags.

Remember that this function was called every time the parent ProcessBean was painted. DAVE

does this because the decision to hotspot a Variable may change between every repaint.

The last function of interest in class Variable is, of course, the draw function. This

function is remarkably simple - it merely formats and prints the Variable name and value at the

object's coordinates. This simplicity is achieved because much of the work was already done at

the layer above. The ProcessBean is responsible for positioning the Variable because the

Variable has no knowledge of its parent's structure. Thus, when the time comes to draw the

Variable object, it is in the proper position.

Smaller Types: Transition

A close relative to the Variable class is the Transition class - the two are very similar in

structure. The only notable difference is the setArgs function of class Transition. This function

is used when the user is viewing an execution. When a step is taken (that is, a composed action is

executed or an internal action is read from the execution), the user may want the component

actions of that transition to show the arguments to the action. That is why the Transition class

uses setArgs. This will (temporarily) set the text of the action such that the variable values are

present in place of the argument names. To undo this effect when the execution proceeds to the

next step, DAVE uses unsetArgs. This function reverts the Transition to its original name, with

argument labels in place.

Smaller Types: Composition and Connection

The last two classes in DAVE, Composition and Connection, are very closely related.

Composition contains two Transitions and a name. These are the source and destination actions

of the composition, and the complete name (e.g. send(m)-P1-P2) of the composition. There is

really very little else involved in the Composition, since the responsibility of drawing the

Composition falls to the Connection object.

Because Composition does so little, Connection is a somewhat complex class. The

Connection represents a conduit between two processes through which the Compositions, like

wires, flow. A Connection contains two ProcessBeans - a source and a destination. These are

set when the Connection is created. A Connection also contains a vector of compositons - the

"wires" running between the processes. Connection contains several functions necessary for

maintaining this vector of Compositions, but these functions are straightforward and easy to

understand.

Connections have a distinct type. This is explained earlier in the section about connect.

The type is required so that Connections that run between the same two processes can be

distinguished from one another in the client area by being painted in different colors. To achieve

this functionality, Connection contains a command setType, which gives the ProcessBeans

responsible for creating the Connections the ability to set their graphical characteristics. To aid in

establishing whether a Connection does exist between two ProcessBeans during the connection

process, Connections also implement a function to test for the existence of a Connection between

any two ProcessBeans.

Connections are the most graphically complex objects in the client area of DAVE, since

they must connect between points and place a label at the midpoint of the line. This complexity

can be seen in the draw function. The length appears daunting, but the function itself is quite

simple - most of the arithmetic gymnastics are necessary to find the midpoint of the line and

display the labels appropriately.

The study of the structure of the DAVE code has revealed several interesting aspects of

the program that bear repeating. A precept harped upon since the beginning is a rigorous

devotion to the principles of object-oriented programming. This system made the entire

development process orders of magnitude easier, and allows the smooth introduction of any

modifications. DAVE also adheres to a strict hierarchical structure. This hierarchy is imposed,

for the most part, by the object-oriented nature of the programming.

Section V: Sample Execution

DAVE is a very visual program, and as such has no real numerical results. Instead, we

will walk through a typical user interaction with the system, demonstrating along the way the

powerful visualization functionality of DAVE.

Appendix 1 contains the code that we will be using in this example. The two algorithms,

process.alg and channel.alg, represent a process involved in an LCR leader election algorithm

(see page 28 of Lynch) and a typical, one-way FIFO channel, respectively. The execution,

LCR.ext, represents the execution of a four-process system running the LCR leader election

algorithm.

Figure 9: Afresh DAVE Window.

The user begins with an empty DAVE window, as shown in Figure 9. To begin the

construction process, the user clicks the "New Process" button. This command creates a new

process in the center of the screen. This process will be the new current process. To configure

this process, the user need only click the "Configure" button, or select this command from the

popup menu. Figure 10 shows the user's progress at this point, with the Configuration dialog box

open. In this figure, the user has already entered the data relevant to this process.

Figure 10: The user configures the new process.

Once the user has properly configured the process, she is ready to attach an algorithm to

the process. The user selects the "Load Algorithm" command and selects a .alg file from the list

of available files. In this case, the user wishes to create a Process process, and thus selects

Process.alg. Figure 11 shows the process with the new state loaded. Notice that none of the

variables have values associated with them.

P1

pending:
status:
Trarsitions
receive(m , i)

Figure 11: The process, now attached to the Process automaton.

The user repeats this process until all of the desired processes are on the screen. Figure

12 shows the current configuration of the IOA. This diagram is complicated, and bears some

explanation. The yellow processes are the Process automata. There are three of these, and each

has been loaded with the Process.alg code. The green processes represent the FIFO channels.

Notice that between every pair of processes, there is a channel process. Communication in the

LCR leader election algorithm only moves one way around the ring.

P2

perdin::
Stats:
Trausitnns
F cewe(ms i)

Figure 12: The processes in place.

P3
C23

tat.: /pemiing
b er status:

T .ns Transitios
\ucewve(1) /)

rnmi a i

Now that the processes are in place and have algorithms loaded, the user will begin

composing functions together to create the finished IOA. The user begins by selecting a current

process to connect. This process will be the source process for the composition. The user then

clicks the Connect button or selects that command from a popup menu.

012

Figure 13: A new connection

Once the user is in Connect mode, she moves the mouse pointer to the process she wishes

to connect with. She then centers the mouse pointer over the action she wishes to compose and

clicks the mouse button. At this point, a new connection will be established. Figure 13 shows the

new connection. The destination process is the Channel C12, and the source is Process P1. The

action that has been composed is the send action, which takes one argument, m. All of this

information can be extracted from the label on the Connection that has just been formed. Note

also the direction of the connection between the two processes - this large dot indicates the

destination of the composition.

C12

i end(m, i, j)-P2-C1 2

tate:
pending:
status:
Transitions
receive(m, j, i)

end(m, i,j)

Figure 14: Two connections. Note the color difference between the two.

Say the user decides to connect the receive action of C1 back to the receive action of P1.

This is not technically correct for this example, but it does point out an important feature of

DAVE. Figure 14 shows the new diagram with both connections in place. The original

connection is still blue. However, the new connection and its label are drawn in green. This

convention allows the user to distinguish between the compositions of two different connections,

even when the connections are very close to one another.

But, to return to the LCR example, the user has completed making all of the connections

she wishes to. Figure 15 shows the completed diagram. The user had moved several of the

processes to allow for easier viewing of the diagram. After this amount of work, the user would

most likely want to save her work. At the end of Appendix 1 is the text of the .cfg generated by

executing the Save Configuration command on this IOA.

lyperSnap-DX
loorarv license at

pending:
status:
Transitions
receive(m, j, i)

end(m, i, j)
C12

te send ,-P1-C12
buffer:b

Transitions receive(m)-C31-P1 C3send(rn
receeveetem

Transitions
send(m) .% s

eceive(m)-C1 2-P2

send(m, , j)-P3 C31

P2

pending: ite:

status: pending:
rceive(m, j, i) receive(m)-C23-P Transitions
end(m, i,) receive(m, J)

end(m, i, j)

buffer

Figure 15: The completed I/O Automaton representation

At this point, the user may wish to send this newly constructed IOA to a simulator. That

simulator would return an execution of the IOA. The user will now take advantage of the second

half of DAVE's functionality - the ability to view executions.

If the user has started a new session, she will load the configuration she saved in the first

part of our example. The next step is to use the Load Execution command. This generates a file

dialog similar to the Load Algorithm and Load Configuration commands, from which the user

selects the appropriate .ext file. The execution will be loaded and initialized, as discussed in

Section 4. Figure 16 shows the state of the execution after the Load Execution command has

completed. Every variable in every process now has a value attached to it. For example, in

Figure 15, variable pending in process P2 is blank. In Figure 16, that variable now has the value

{2} following its name.

yperSnap-DX
eporary

license at

)erionics.com

PP

ate:
pendingpn)
status waiting
Transtions
recelve(m, J, i)

C12

send Pl-C12

Transions rece ve(m)-31-1

Figure 16: The initial state of the automaton.

At this point, the user has several options. She may begin stepping through the execution

by using the Step Forward command, or she may simply press Play. These commands are

located on the right end of the toolbar, and resemble a cassette deck console. In this case, assume

that the user has pressed Play. The execution will then proceed at approximately one second

intervals. Figures 17 and 18 show two subsequent steps of the execution. These steps are

highlighted in the execution listing in Appendix 1. Figure 17 shows process P2 receiving a

message from Channel C12. The arguments to the composition and its two component action

have been filled in. In Figure 18, Process 3 is sending a message to P1, via channel C31. The

buffer of channel C31 now contains the UID of Process P3. Again, the arguments of the last

composition executed and its component transitions are filled in.

1porary license at:
perionics.com

P1

receive(m, j, i)
end ,)

C12

t e. send , -P-C12

Transitions receive(m)-C31-P1 C31

receive(, tate

pending:{2)
status:walitng Transitions Transiions,) receive(em,, i)tend(m, , j)-P3-C31

recle(m)

Figure 17: Two steps into the execution.

oorary lice

pending:(1)
statuswaiting
Transitions
receive(m, J, i)

end(m, i, D
012

tesend , -Pl-012

Transitions C3 receive(m)-C31-P1 T 31

send 3, PJ, 1.-

re~eve(n, i) re ceiv e(m)

end(3, P3, 31)-P3

Figure 18: Three steps into the execution.The execution playback controls 23give the user the ability to freely movem, back and forth in

the execution. Eventually, the user may reach the end of the execution. Figure 19 shows thet uentua i,e ucren(, 1 1)

execution in its final state. This example highlights most of the functionality of DAVE. Of

course, there are several possible paths of execution within the program, and not all of them can

be explored here.

perunap
)orary lic
rinnime I

ate:
pending:{3)
status:waitng
Transitions
receive(m, i, i)
Cend(m, 1, 031C12

tate: send -Pi-C12 rece e(m)-C31-P1
buffer TransitionsTranstIens semd(m

end(m, i, j)-P3-C31
eceive(m)-C12-P2

.3

pendlng:{ 3)
status:elected
Transitions
Pecelvi-, 023 P3)P2 en i, j)

ate:
pending:{3)
status:waiting receive(3, C23. P3)-C23-P3Transitions is , .)-P2-C23
recetve(m,.i, O
end(m, i, j)

P3)

Transtions
send(m)
receve(3, C23 P3)

Figure 19: The final state of the execution. Notice that P3 has been elected leader.

We can derive some numerical data from the DAVE program. Once of gravest concerns

about Java programs in general is that they generally perform slowly. Table 1 shows the average

execution time for some simple DAVE commands. The system used to take these measurements

was a Pentium 166 with 80 MB of RAM running the Windows 95 operating system. The Java

interpreter used was java.exe, part of the Java Development kit released by Sun Microsystems.

0.9 seconds

1.2 seconds

3.1 seconds

Load a 9ocess configuatio 10.8 seconds

5.2 seconds

S orwar e executon 0.7 seconds

Table 1: Average execution times for some common DAVE tools.

These times are exceedingly slow, a problem that was not noticed until DAVE was nearly

finished. Performance, initially not a concern with DAVE, has become its greatest problem.

There are a number of reasons for this poor performance. The code has not been optimized - for

example, there are several time-consuming loops in DAVE that could be circumvented. There

may also be performance issues in the use of Java Beans - experience has shown that Beans have

a tendency to be slow. The speed issue must be addressed before DAVE can be widely used.

Section VI: Conclusions

The example in Section 5 is intended to demonstrate that DAVE meets all of the design

criterion and purposes set forth in Section 1 and Section 3. DAVE can be used to construct an

arbitrarily complex IOA and view executions of that IOA. It is also a stated goal of this project

that the underlying code conforms very rigidly to several design decision specified in Section 4.

Can DAVE be used as an effective learning tool? The user interface of DAVE is

designed to be intuitive and familiar. A user that is somewhat familiar with the Windows

environment should be able to understand the tools that have been provided with this software

package. The client area of DAVE is also designed be familiar to any student of distributed

algorithms, particularly students using Professor Nancy Lynch's Distributed Algorithms text.

The graphical representations of processes and compositions are pulled straight from the pages of

that text.

Given that this document has established the usability and familiarity of the DAVE

interface, the only outstanding issue is that of performance. Does DAVE meet our a baseline

performance goal? Based on the example in Section V, it seems that DAVE meets those goals

quite handily. DAVE is not a performance-driven application - that is, it is not written with a

great deal of computational shortcuts, obsessive optimization, or pure number-crunching

horsepower. These goals are better left to the realm of simulators. The purpose of DAVE is to

provide the user with the tools needed to construct any IOA she wishes to view, and free the user

from any hindrance that would prevent her from achieving this goal.

Thus we arrive again at the issue of freedom. It is apparent throughout the design and

implementation of DAVE that the program closes very few doors. The languages for algorithms

and executions are well specified. However, these need not be the only languages supported by

DAVE. DAVE was designed for the developer as well as the user. The structure of the code is

designed to be a modular as possible, allowing future developers to add, remove, or change

functionality as they see fit, and as the study of I/O Automata progresses.

DAVE is designed to provide the user with as much freedom as possible. Notice that

there are very few limitations imposed by DAVE. Yes, processes must be represented by ovals or

circles. The purpose of this decision, however, is not to limit the ability of the user to achieve the

desired graphical representation of her IOA, but rather to enable the user by providing a common

graphical language for I/O Automata. But even this standard can be changed with a small effort

by a single developer - significant change in the appearance of DAVE can be achieved in as little

as half an hour.

DAVE is designed as the front end to an IOA simulator. Considering that such a

simulator does not exist, proving that this goal has been achieved is something of a challenge.

Nonetheless, refer back to the example of Section 5. Once the user has created an IOA, she may

save that IOA to a file. This file, a .cfg file, can easily be read by a user or programmer. Without

any knowledge of the DAVE system at all, the developers of a simulator could read this file as

input, and provide DAVE with an output. Of course, this output may not be supported by the

current implementation of DAVE. But again, the structure of DAVE is such that implementing a

new parser for execution files is almost a matter of just dropping it into the current DAVE code.

As trite as it may sound, the results seen in Section 5 speak for themselves. The power of

DAVE is evident from the example - the fact that the user can compose arbitrary automata into

an IOA, and then run an execution through that system. It was postulated in Section 1 that one of

the most difficult aspects of distributed algorithms is visualizing the execution of an algorithm. It

is hoped that that the goal of simplifying this often challenging task has been met.

DAVE also has several notable problems, the worst of which is the speed issue. DAVE

is unforgivably slow, and needs to be optimized. The DAVE IOA parser also needs to be fleshed

out into a fully functional parser that can handle any IOA program. There are also a number of

smaller problems - for example, the problem with resizing - that need to be fixed before DAVE

can be used in a classroom or research environment.

DAVE can go in a myriad of different directions with future work. The most pressing

issue is to develop a simulator to work under DAVE. After we have this simulator, though, we

can begin expanding the DAVE program to serve the user better. DAVE should be expanded to

be more compatible, and contain more tools to work with, the IOA language. The existing parser

for IOA that is contained in DAVE is very crude. A library of pre-configured processes could be

useful to the user. In addition, future developers could implement many features that were

beyond the scope of this project. This includes the ability to zoom the view in and out, as well as

a series of "power tools" - tools that are designed to simplify the process of laying out automata.

These tools could include a utility for assembling automata into common configurations: rings,

grids, super-connected meshes, etc.

Because of the structure of DAVE, making these expansions is convenient and modular.

Because of the extensibility and the platform independence of DAVE, the program will hopefully

be in use for a long time. The field of distributed algorithms will always be challenging, and

DAVE can be used by students and researchers alike to overcome that challenge.

Bibliography:

Garland, Stephen J., Nancy A. Lynch, and Mandana Vaziri.
IOA: A Language for Specifying, Programming, and Validating Distributed Systems.

MIT Laboratory for Computer Science. Cambridge, 1997.

Lynch, Nancy. Distributed Algorithms. Morgan Kaufman. San Francisco, 1996.

Appendix 1:

The process algorithm:

automaton Process(I:type, i:I)
assumes RingIndex(I, String)
type Status = enumeration of waiting, elected, announced
signature

input receive(m: String, const left(i), const i)
output send(m: String, const i, const right(i)),

leader(m:String, const i)
states

pending: Mset[String] := (name(i)},
status: Status := waiting

transitions
input receive(m, j, i)
output send(m, i, j)
output leader(m, i)

The channel algorithm:

automaton Channel
uses SubSequence(M)
signature

input send(m:M)
output receive(m:M)

states
buffer: Seq[M] := {

transitions
input send(m)

eff buffer := buffer + m
output receive(m)

pre buffer != {} && m = head(buffer)
eff buffer := tail(buffer)

The execution from Section 5:
STATE:

Pl:
pending:=(1)
status:=waiting

P2:
pending:={2)
status:=waiting

P3:
pending:={3)
status:=waiting

C12:
buffer:={}

C21:
buffer:={}

C23:
buffer:={}

C32:
buffer:=(}

C31:
buffer:= (

C13:
buffer:=(}

TRANSITION:
send(l, Pl, C12)-P1-C12

STATE:
Pl:

pending:=(l)
status:--waiting

P2:
pending:=(2)
status:=waiting

P3:
pending:= (3
status:--waiting

C12:
buffer:= 1)

C21:
buffer:=()

C23:
buffer:=()

C32:
buffer:=()

C31:
buffer:=()

C13:
buffer:=()

TRANSITION:
receive(l, C12, P2)-C12-P2

TRANSITION:
receive(3, C31, P1)-C31-P1

STATE:
Pl:

pending:=(3}
status:=waiting

P2:
pending:=(2)
status:=waiting

P3:
pending:=(3)
status:--waiting

C12:
buffer:=}

C21:
buffer:=()

C23:
buffer:=)

C32:
buffer:=()

C31:
buffer:=()

C13:
buffer:= }

TRANSITION:
send(3, Pl, C12)-P1-C12

STATE:
Pl:

pending:=(3)
status:=waiting

P2:
pending:=(2)
status:=waiting

P3:
pending:= 3)
status:--=waiting

C12:
buffer:=(3)

C21:
buffer:= }

C23:
buffer:= {

C32:
buffer:= {

C31:
buffer:= {

C13:
buffer:= {)

TRANSITION:
receive(3, C12, P2)-C12-P2

STATE:
Pl:

pending:= (3)
status : =waiting

P2:
pending:= { 3)
status : =--waiting

P3:
pending:=(3)
status : =-waiting

C12:
buffer:= (

C21:
buffer:= {

C23:
buffer:= {

C32:
buffer:= {)

C31:
buffer:= ()

C13:
buffer:= {

TRANSITION:
send(3, P2, C23)-P2-C23

STATE:
Pl:

pending:= (3)
status : =waiting

P2:
pending:= (3)
status : =waiting

P3:
pending:= (3)
status: =waiting

C12:
buffer:= ()

C21:
buffer:= (

C23:
buffer: ={3)

C32:
buffer:=)

C31:
buffer:={}

C13:
buffer:= {

TRANSITION:
receive(3, C23, P3)-C23-P3

STATE:
Pl:

pending:={3)
status:=waiting

P2:
pending:= (3)
status:=waiting

P3:
pending:={3)
status:=elected

C12:
buffer:={}

C21:
buffer:=()

C23:
buffer:={)

C32:
buffer:={}

C31:
buffer:={}

C13:
buffer:=()

Appendix 2: Code for DAVE

DAVE.java

import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import java.io.*;
//import java.util.Vector;
import java.util.*;
import java.beans.*;
import ProcessBean.*;
import Variable.*;
import Transition.*;

public class DAVE extends Frame{
public static void main(String[] args)
(

new DAVE ();

DAVEDisplay disp;
ScrollPane pane;
Panel toolbar;
Player player;
Thread playthread;
Button newbutton;
Button configbutton;
Button connectbutton;
Button loadbutton;
Button execbutton;
Button nextbutton;
Button prevbutton;
Button stopbutton;
Button playbutton;
Button pausebutton;
GridBagLayout flow;
GridBagConstraints gbc;
boolean playing = false;
public DAVE() {

super("DAVE");
this.setBackground(Color.lightGray);
flow = new GridBagLayout();

flow.columnWidths = new int[] (35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35);

flow.rowHeights = new int[] (35, 700);
gbc = new GridBagConstraints();
newbutton = new Button("New process");
newbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (new_process();)));
newbutton.setSize(80, 30);
configbutton = new Button("Configure");
configbutton.addActionListener(new ActionListener() (public void

actionPerformed(ActionEvent e) (configure();}});
configbutton.setSize(80, 30);
connectbutton = new Button("Connect");
connectbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (connect();}});
connectbutton.setSize(80, 30);
loadbutton = new Button("Load Algorithm");
loadbutton.addActionListener(new ActionListener() (public void

actionPerformed(ActionEvent e) (load_state();}}));
loadbutton.setSize(80, 30);
execbutton = new Button("Load Execution");
execbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (load_exec();}});
execbutton.setSize(80, 30);
nextbutton = new Button(">");
nextbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (step();}}));
nextbutton.setSize(30, 30);
prevbutton = new Button("<");
prevbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (stepback();)));
prevbutton.setSize(30, 30);
stopbutton = new Button("STOP");
stopbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (stop();}});
stopbutton.setSize(30, 30);
playbutton = new Button("PLAY");
playbutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) {play();}});
playbutton.setSize(30, 30);
pausebutton = new Button("I I");
pausebutton.addActionListener(new ActionListener() {public void

actionPerformed(ActionEvent e) (pause();}});
pausebutton.setSize(30, 30);
pane = new ScrollPane();
pane.setSize(700, 700);
this.setLayout(flow);
gbc.gridwidth = 1;
gbc.gridheight = 1;
gbc.gridx = 0;
gbc.gridy = 0;
this.add(newbutton, gbc);
gbc.gridx = 1;
gbc.gridy = 0;
this.add(configbutton, gbc);
gbc.gridx = 2;
gbc.gridy = 0;
this.add(connectbutton, gbc);
gbc.gridx = 3;
gbc.gridy = 0;
this.add(loadbutton, gbc);
gbc.gridx = 4;
gbc.gridy = 0;
this.add(execbutton, gbc);

gbc.gridx = 5;
gbc.gridy = 0;
this.add(prevbutton, gbc);
gbc.gridx = 6;
gbc.gridy = 0;
this.add(playbutton, gbc);
gbc.gridx = 7;
gbc.gridy = 0;
this.add(pausebutton, gbc);
gbc.gridx = 8;
gbc.gridy = 0;
this.add(stopbutton, gbc);
gbc.gridx = 9;
gbc.gridy = 0;
this.add(nextbutton, gbc);
gbc.gridx = 0;
gbc.gridy = 1;
gbc.gridheight = 1;
gbc.gridwidth = 20;
this.add(pane, gbc);
disp = new DAVEDisplay(this, 10000, 3600, pane);
pane.add(disp);
pane.setBackground(Color.white);
disp.setBackground(Color.white);
MenuBar menubar = new MenuBar();
this.setMenuBar(menubar);
Menu sim = new Menu("Process");
Menu configuration = new Menu("Configuration");
Menu playback = new Menu("Playback");

menubar.add(sim);
menubar.add(playback);
menubar.add(configuration);

MenuItem p, c, 1, g, a, e, save, load, faster, slower, global,
delete;

sim.add(p = new MenuItem("New process", new
MenuShortcut(KeyEvent.VK_P)));

sim.add(delete = new Menultem("Remove Process", new
MenuShortcut(KeyEvent.VK_R)));

sim.add(c = new MenuItem("Connect", new
MenuShortcut(KeyEvent.VK_C)));

sim.add(l = new MenuItem("Load Algorithm", new
MenuShortcut(KeyEvent.VK_L)));

sim.add(g = new Menultem("Configure process", new
MenuShortcut(KeyEvent.VK_G)));

sim.add(global = new MenuIltem("Preferences", new
MenuShortcut(KeyEvent.VK_G)));

sim.add(e = new Menultem("Load Execution", new
MenuShortcut(KeyEvent.VK_E)));

configuration.add(save = new Menultem("Save Configuration", new
MenuShortcut(KeyEvent.VK_S)));

configuration.add(load = new MenuItem("Load Configuration", new
MenuShortcut(KeyEvent.VK_O)));

playback.add(faster = new Menultem("Faster", new
MenuShortcut(KeyEvent.VK_F)));

playback.add(slower = new Menultem("Slower", new
MenuShortcut(KeyEvent.VK_D)));

p.addActionListener(new ActionListener() ({public void
actionPerformed(ActionEvent e) (new_process();}})));

delete.addActionListener(new ActionListener() (public void
actionPerformed(ActionEvent e) (remove_process();}});

c.addActionListener(new ActionListener() (public void
actionPerformed(ActionEvent e) (connect();)));

l.addActionListener(new ActionListener() (public void
actionPerformed(ActionEvent e) (load_state();}}));

g.addActionListener(new ActionListener() (public void
actionPerformed(ActionEvent e) (configure();}});

global.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (global_configure();}}));

e.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (load_exec();}});

save.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (save_config();}});

load.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (load_config();}});

faster.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (faster();}});

slower.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (slower();}});

this.addWindowListener(new WindowAdapter() ({public void
windowClosing(WindowEvent e) (close();}});

this.setSize(730, 730);
player = new Player(disp);
playthread = new Thread(player);

this.pack();
this.show();
playthread.start();

}//main

void new_process()
{

Point pos = pane.getScrollPosition();
Dimension d = pane.getViewportSize();
int newx = pos.x + d.width/2;
int newy = pos.y + d.height/2;
String newname = "New";
Color newcolor = Color.blue;

float newfactor = (float)1.0;
disp.new_process(newname, newcolor, newy, newx, newfactor);

void remove_process()
{

disp.delete();
}

void faster()
{

player.increment();
}

void slower()
{

player.decrement();
}

void configure()
{

disp.configure();
}

void global_configure()
(

disp.global_configure();
}

void connect()

System.out.println("Processing connect button event.);
disp.connect();

void save_config()
(

disp.save_config_create();
)

void load_config()
{

disp.load_config_create();
)

void load_state()
(

disp.loadCreate();
}

void load_exec()
{

disp.loadExecCreate();
)

void step()
{

disp.next();
)

void stop()
(

disp.pause();
disp.reset();
disp.init();

)

void stepback()
(

disp.previous();
)

void play()
(

disp.play();
)

void pause()
(

disp.pause();
)

void movepane(int factor)
{

Point current = pane.getScrollPosition();
current.x = factor * current.x;
current.y = factor * current.y;
pane.setScrollPosition(current);

repaint();

void movepaneout(int factor)
(

Point current - pane.getScrollPosition(;
current.x = current.x/factor;

current.y = current.y/factor;
pane.setScrollPosition(current);

repaint();

void close()

System.exit(O);

}//BenchTest

// ----- Parts-----

class DAVEDisplay extends Component implements ActionListener(
Vector processes = new Vector();
ProcessBean currentbean = new ProcessBean("invalid");
ProcessBean connectbean = new ProcessBean("invalid");
int width;
int height;
int globalsize = 12;
Color colorl = Color.blue;
Color color2 = Color.green;
boolean attachmode = false;
float scale;
Frame frame;
PopupMenu myPopup;
PopupMenu connectPopup;
Dialog myConfig;
Dialog myglobalConfig;
FileDialog myLoad;
GridLayout myLayout;
GridLayout myglobalLayout;
Menu myVisibleMenu;
Vector myVisibleMenuItems;
int myLastX, myLastY;
ScrollPane myScrollParent;
boolean myMouseDown;
boolean myMouseUp;
boolean myMouseDrag;
boolean play = false;
boolean processing = false;
Button okbutton;
Button cancelbutton;
Button globalokbutton;
Button globalcancelbutton;
Choice colorchoice;
Choice colorichoice;
Choice color2choice;
Choice fontchoice;
TextField nametext;
TextField heighttext;
TextField widthtext;
TextField sizetext;
Label widthlabel;
Label heightlabel;
Label namelabel;
Label colorlabel;
Label fontlabel;
Label sizelabel;
Label colorllabel;
Label color21label;
Dialog myViewer;

Button viewok;
TextArea viewertext;
GridBagConstraints gbc;
boolean connectmode = false;
Vector exectext = new Vector();
int execpointer = 0;

public DAVEDisplay(Frame frame, int width, int height, ScrollPane p) (
this.frame = frame;
this.width = width;
this.height = height;

this.scale = 1;
this.myScrollParent = p;
myVisibleMenuItems = new Vector();
this.enableEvents(AWTEvent.MOUSE_EVENTMASK);
PopupMenuCreate();
}

public Dimension getPreferredSize() {return new Dimension(10000,
1200);)

public void delete()
(

Enumeration enum = processes.elements();
while(enum.hasMoreElements())
{

ProcessBean pb = (ProcessBean)enum.nextElement();
pb.delete(currentbean);

)
currentbean.unmake_current();
processes.removeElement(currentbean);
repaint();

public void play()
{

play = true;
)

public void pause()
{

play = false;
)

public boolean isplaying()
{

return play;
)

public void new_process(String name, Color c, int y, int x, float f)
(

ProcessBean newbean = new ProcessBean(name, c, y, x, f);
newbean.setFontSize(globalsize);
if(l(currentbean.getName()).equals("invalid"))

{
currentbean.unmake_current();

processes.addElement((Object)newbean);
currentbean = newbean;
currentbean.make_current();
repaint();

public void connect()

System.out.println("Processing internal connect comand.");
if(connectmode == false)

connectmode = true;
System.out.println("In connectmode.");

this.setCursor(Cursor.getPredefinedCursor (Cursor.CROSSHAIR_CURSOR)

}
}

public void configure()
{

configCreate();
myConfig.pack();
myConfig.show();

)

public void global_configure()
(

globalConfigCreate();
myglobalConfig. pack () ;
myglobalConfig. show();

public Color texttocolor(String t)

if(t.equals("Black"))

return Color.black;

if(t.equals("Red"))

return Color.red;

if(t.equals("Blue"))

return Color.blue;
}
if(t.equals("Yellow"))

return Color.yellow;

if(t.equals("Green"))

return Color.green;
}
if(t.equals("White"))

return Color.white;
}
return Color.white;

public void actionPerformed(ActionEvent event)

String command = event.getActionCommand();
if(command.equals("configure"))

configCreate();
myConfig.pack();
myConfig.show();

}
else
if (command.equals("OK")) {

currentbean.setName(nametext.getText());

currentbean.setColor(texttocolor(colorchoice.getSelectedItem()));
currentbean.setSize(Integer.parseInt(widthtext.getText()),

Integer.parselnt(heighttext.getText()));
currentbean.setFont(fontchoice.getSelectedItem());
myConfig.hide();
repaint();

)
else
if (comnnand.equals("Cancel")) {

myConfig.hide();
repaint();

}
else
if (command.equals("globalOK")) {

Enumeration enum - processes.elements();
while(enum.hasMoreElements())
(

ProcessBean pb = (ProcessBean)enum.nextElement();

pb.setColorl(texttocolor(colorlchoice.getSelectedItem()));

pb.setColor2(texttocolor(color2choice.getSelectedItem());
pb.setFontSize(Integer.parselnt(sizetext.getText()));

)
colorl = texttocolor(colorlchoice.getSelectedItem());
color2 = texttocolor(color2choice.getSelectedItem();
globalsize = Integer.parseInt(sizetext.getText());
myglobalConfig.hide();
repaint();

}
else
if (command.equals("globalCancel")) {

myglobalConfig.hide();
repaint();

}
else

Enumeration enum = connectbean.getTransitions();
System.out.println("Processing connect command.");
while(enum.hasMoreElements())
(

Transition tl = (Transition)enum.nextElement();
if(command.equals(tl.getProperName()))
(

System.out.println("Found correct connecting
transition.");

currentbean.connect2(connectbean, tl);
}

)
processing = false;
repaint();

return;

public void checkcurrent(int x, int y)
(

Enumeration enum = processes.elements();
ProcessBean pb;

boolean gothit;
while (enum.hasMoreElements ())

pb = (ProcessBean)enum.nextElement();
if(pb.hitTest(x, y))

if(!(currentbean.getName()).equals("invalid"))
{

currentbean.unmake_current() ;
}
currentbean = pb;
currentbean.make_current () ;

public void DisplayState(ProcessBean pb)

myViewer = new Dialog(frame, pb.getName());
gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
gbl.columnWidths = new int[] (300);

gbl.rowHeights = new int[] (300, 50);
gbc.gridx = 0;
gbc.gridy = 0;
gbc.gridheight = 1;

gbc.gridwidth = 1;
String viewtext = "State:";
Enumeration enum = pb.getVariables();
int maxwidth = 100;
int columns = 0;
while(enum.hasMoreElements())

Variable v = (Variable)enum.nextElement();
viewtext = viewtext + "\n" + v.getName() + ":" +

v.getValue();
columns += 1;
if(viewtext.length() > maxwidth)

maxwidth = viewtext.length();
}

)
enum = pb.getTransitions();
viewtext = viewtext + "\n" + "Transitions:";
while(enum.hasMoreElements())

Transition t = (Transition)enum.nextElement();
viewtext = viewtext + "\n" + t.getName();
columns += 1;
if(viewtext.length() > maxwidth)

maxwidth = viewtext.length();
}

)
if (columns<30)

columns = 30;
)
viewertext = new TextArea(viewtext, columns, maxwidth,

TextArea.SCROLLBARS_BOTH);
viewertext.setSize(280,280);
viewok = new Button("OK");

viewok.setSize(80, 30);
viewok.setActionCommand("ViewOK");

viewok.addActionListener(new ActionListener() {public void
actionPerformed(ActionEvent e) (viewerok();}}));

myViewer.setLayout(gbl);
gbc.gridx = 0;
gbc.gridy = 0;
myViewer.add(viewertext, gbc);
gbc.gridx = 0;
gbc.gridy = 1;
myViewer.add(viewok, gbc);
myViewer.pack();
myViewer.show();

public void viewerok()
{

myviewer.hide();
}

public void DisplayVariable(Variable v)
{

myViewer = new Dialog(frame, v.getName());
gbc = new GridBagConstraints();
GridBagLayout gbl = new GridBagLayout();
gbl.columnWidths = new int[] (300);

gbl.rowHeights = new int[] (300, 50);
gbc.gridx = 0;
gbc.gridy = 0;
gbc.gridheight = 1;

gbc.gridwidth = 1;
String viewtext = "";
int maxwidth = 280;
int columns = 30;
viewtext = viewtext + "\n" + v.getName() + ":" + v.getValue();
maxwidth = viewtext.length();

viewertext = new TextArea(viewtext, columns, maxwidth,
TextArea.SCROLLBARS BOTH);

gbc.gridx = 0;
gbc.gridy = 1;
viewok = new Button("OK");
viewok.setActionCommand("ViewOK");
viewok.addActionListener(new ActionListener() (public void

actionPerformed(ActionEvent e) (viewerok();}});
myViewer.setLayout(gbl);

gbc.gridx = 0;
gbc.gridy = 0;
myViewer.add(viewertext, gbc);
gbc.gridx = 0;
gbc.gridy = 1;
myViewer.add(viewok, gbc);
myViewer.pack();
myViewer.show();

public boolean checkhotspot(int x, int y)
{

Enumeration enum = processes.elements();
ProcessBean pb;
while(enum.hasMoreElements())
{

pb = (ProcessBean)enum.nextElement();
if(pb.isShorthand())
(

if(pb.inSpot(x, y))

DisplayState(pb);
return true;

}
}
Enumeration enum2 = pb.getVariables();
while(enum2.hasMoreElements())
{

Variable v = (Variable)enum2.nextElement();
if(v.inSpot(x, y))

DisplayVariable(v);
return true;

)

return false;

public void checkconnect(int x, int y)

Enumeration enum = processes.elements();
ProcessBean pb;
ProcessBean hit = currentbean;
boolean foundhit = false;
Vector candidates = new Vector();
boolean success = false;
System.out.println("Attempting to connect.");
processing = true;
while(enum.hasMoreElements())
(

pb = (ProcessBean)enum.nextElement();
if(pb.hitTest(x, y))
(

System.out.println("Found proper bean to connect.");
hit = pb;
foundhit = true;
//success = currentbean.connect(pb, x, y);

if (Ifoundhit)

return;

Enumeration enum2 = hit.getTransitions();
while(enum2.hasMoreElements())

Transition tdest = (Transition)enum2.nextElement();
Enumeration enum3 = currentbean.getTransitions();
while(enum3.hasMoreElements())
(

Transition tsource = (Transition)enum3.nextElement();

if((tsource.getProperName().equals(tdest.getProperName()) &&
(tsource.getType().equals("output")) &&
(tdest.getType() .equals("input")))

candidates.addElement(tdest);

connectbean = hit;
if(ConnectMenuCreate(candidates))
(

connectPopup.show(this, myLastX, myLastY);
}

this.setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
connectmode = false;

return;

public void processMouseEvent(MouseEvent e) {
if(processing)
(

return;
}
if (e.isPopupTrigger()) (

myLastX = e.getX();
myLastY = e.getY();
checkcurrent(myLastX, myLastY);
myPopup.show(this, myLastX, myLastY);

)
else
if ((e.getID() == MouseEvent.MOUSE_CLICKED) &&

(le.isPopupTrigger()))
{

myLastX = e.getX();
myLastY = e.getY();
boolean hotcheck = false;
if(Iconnectmode)

checkcurrent(myLastX, myLastY);
}
else
(

if((myLastX >= (currentbean.getAttachx() - 2)) &&
(myLastX <= (currentbean.getAttachx() + 2))

&& (myLastY >= (currentbean.getAttachy() - 2))
&& (myLastY <= (currentbean.getAttachy() + 2)))

(
System.out.println("Going into attachmode.");
attachmode = true;
return;

hotcheck = checkhotspot(myLastX, myLastY);
if(hotcheck)
{

return;

System.out.println("Mouse says to connect.");
checkconnect(myLastX, myLastY);

)
myMouseDown = true;
System. out.println("Click");
repaint();

)
else
if((e.getID() == MouseEvent.MOUSE_PRESSED) && (!(e.getID() ==

MouseEvent.MOUSE_CLICKED)))
(

myLastX = e.getX();
myLastY = e.getY();

if((myLastX >= (currentbean.getAttachx() - 2)) && (myLastX <=
(currentbean.getAttachx() + 2))

&& (myLastY >= (currentbean.getAttachy() - 2)) &&
(myLastY <= (currentbean.getAttachy() + 2)))

(
System.out.println("Going into attachmode II.");
attachmode = true;
return;

else
{

myMouseDrag = true;

}
else
if(e.getID() == MouseEvent.MOUSERELEASED)
(

int diffx = (e.getX()) - myLastX;
int diffy = (e.getY()) - myLastY;
boolean hotcheck = false;
if(diffx < 0)
{

diffx = -1 * diffx;
}
if(diffy < 0)
(

diffy = -1 * diffy;

if(connectmode)
{

checkconnect(e.getX(), e.getY());
System.out.println("Frag 1: Mouse also says to

connect.");
}
else
{

hotcheck = checkhotspot(e.getX(), e.getY());
if(hotcheck)
{

return;
}
else
if(attachmode)
{

System.out.println("Exiting attachmode.");
currentbean.setAttach(e.getX(), e.getY());
attachmode = false;
repaint();

}
else
if((diffx > 5) && (diffy>5))

(
myLastX = e.getX();

myLastY = e.getY();
if(myMouseDrag)

currentbean.setpos(myLastX, myLastY);
System.out.println("Dragged");
repaint();

)
myMouseDrag = false;

}

else super.processMouseEvent(e);
}

public void paint(Graphics g)
(

//Dimension size = myScrollParent.getViewportSize();
//Point corner = myScrollParent.getScrollPosition();
//g.setClip(corner.x, corner.y, size.width, size.height);

System.out.println("Repainting");
Enumeration enum = processes.elements();
ProcessBean pb;
while(enum.hasMoreElements())
(

pb = (ProcessBean)enum.nextElement();
pb.setpos(pb.getX(), pb.getY());
pb.paint(g);

)

public void PopupMenuCreate() {
myPopup = new PopupMenu();
MenuItem mi - new MenuItem("Configure");
mi. setActionCommand("configure");
mi.addActionListener(this);
myPopup.add(mi);
MenuItem item = new MenuItem("Connect");
item. setActionCommand("connect");
item.addActionListener(this);
myPopup.add(item);
this.add(myPopup);

public boolean ConnectMenuCreate(Vector candidates) {
connectPopup = new PopupMenu();
Enumeration enum = candidates.elements();
boolean hasEls = false;
while(enum.hasMoreElements())
(

hasEls = true;
Transition t = (Transition)enum.nextElement();
System.out.println("Menu option: " + t.getProperName());
MenuItem mi = new Menultem(t.getProperName());
mi.setActionCommand(t.getProperName());
mi.addActionListener(this);
connectPopup.add(mi);

this.add(connectPopup);
return hasEls;

public void loadCreate()
(

myLoad = new FileDialog(frame, "Load State", FileDialog.LOAD);
myLoad.setDirectory(".");
myLoad.show();
currentbean.loadState(new File(myLoad.getFile()));
repaint();

public void load_config_create()
(

myLoad = new FileDialog(frame, "Load Configuration",
FileDialog.LOAD);

myLoad.setDirectory(".");
myLoad.setFilenameFilter(new cfgFilter());
myLoad.show();
load_config(new File(myLoad.getFile()));
repaint();

public void save_config_create()

myLoad = new FileDialog(frame, "Save Configuration",
FileDialog.LOAD);

myLoad.setDirectory(".");
myLoad.show();
save_config(new File(myLoad.getFile()));
repaint();

}

public void loadExecCreate()
{

myLoad = new FileDialog(frame, "Load Execution", FileDialog.LOAD);
myLoad.setDirectory(".");
myLoad.show();
loadExecution(new File(myLoad.getFile()));
repaint();

public Color get_color(String s)
(

int r = 0;
int g = 0;
int b = 0;
String vals = s.substring(s.indexOf('[') + 1, s.indexOf(']'));
String red = vals.substring(0, vals.indexOf(','));
red = red.substring(red.indexOf('=') + 1);
System.out.println("Red:" + red);
vals = vals.substring(vals.indexof(',') + 1);
String green = vals.substring(0, vals.indexOf(','));
green = green.substring(green.indexf('=') + 1);
System.out.println("Green:" + green);
vals = vals.substring(vals.indexof(',') + 1);
String blue = vals;
blue = blue.substring(blue.indexof('=') + 1);
System.out.println("blue:" + blue);
try
(

r = (Integer.valueOf(red)).intValue();
}
catch(NumberFormatException e)
(

return(Color.black);
}
try
(

g = (Integer.valueOf(green)).intValue();
}
catch(NumberFormatException e)
{

return(Color.black);

try
{

b = (Integer.valueOf(blue)).intValue();

catch(NumberFormatException e)

return(Color.black);
}
return(new Color(r, g, b));

public void load_config(File f)

String currentline = new String("");
char curr[] = new char[l];
int index = 0;
int result = 0;
int x = 0;
int y = 0;
int iwidth = 0;
int iheight = 0;
FileReader fr;
try

fr = new FileReader(f);
)
catch(FileNotFoundException e)
(

System.out.println("Error opening file.");
return;

)
catch(IOException e)
(

System.out.println("File not found on load.");
return;

)
processes = new Vector();
while(result I= -1)
(

while(curr[0] 1= '\n')
{

try

result = fr.read(curr, 0, 1);
}
catch(IOException e)

System.out.println("Error reading file #111");
return;

}
if(result == -1)
(

break;
)
else
(

currentline = currentline + (new String(curr, 0,
1));

}
)
System.out.println("Beginning a new loop.");
System.out.println(currentline);
System.out.println("Printed currentline.");
if(currentline.indexOf(':') < 0)
(

break;
)
String type = currentline.substring(0,

currentline.indexOf(':'));
System.out.println("Got past type.");
type = type.trim();
System.out.println(type);
if(currentline.indexOf(':') < 0)

break;
}

String data = currentline.substring(currentline.indexOf(,:,)
+ 1);

System.out.println("To loop.");
if(type.equals("PROCESS"))
(

System.out.println("in loop.");
if(data.indexOf(';') < 0)

break;
}
String Name = data.substring(0, data.indexOf(';'));
System.out.println("Name:" + Name);
if(data.indexOf(';') < 0)
{

break;
}
data = data.substring(data.indexof(';') + 1);
if(data.indexOf(';') < 0)
{

break;
}
String X = data.substring(0, data.indexOf(';'));
x = Integer.parselnt(X);
System.out.println("X:" + X);
if(data.indexOf(';') < 0)

break;
}
data = data.substring(data.indexOf(';') + 1);
if(data.indexOf(';') < 0)
{

break;
}
String Y = data.substring(0, data.indexOf(';'));
y = Integer.parselnt(Y);
System.out.println("Y:" + Y);
if(data.indexOf(';') < 0)
{

break;
}
data = data.substring(data.indexf(';') + 1);
if(data.indexOf(';') < 0)
{

break;
}
String width = data.substring(0, data.indexOf(';'));
iwidth = Integer.parseInt(width);
System.out.println("Width:" + width);
if(data.indexOf(';') < 0)
{

break;
}
data = data.substring(data.indexf(';') + 1);
if(data.indexOf(';') < 0)
{

break;
}
String height = data.substring(0, data.indexOf(';'));
iheight = Integer.parselnt(height);
System.out.println("Height:" + height);
if(data.indexOf(';') < 0)

break;
}

data = data.substring(data.indexOf(';') + 1);
if(data.indexOf(';') < 0)
{

break;
}
String color = data.substring(0, data.indexOf(';'));
System.out.println("Color:" + color);
Color newColor = get_Color(color);
if(data.indexOf(';') < 0)
{

break;
}
data = data.substring(data.indexOf(';') + 1);
if(data.indexOf(';') < 0)
{

break;

String font = data.substring(0, data.indexOf(';'));
System.out.println("Font:" + font);
if(data.indexOf(';') < 0)
{

break;
)
data = data.substring(data.indexOf(';') + 1);
if(data.indexOf(';') < 0)
(

break;
)
String file = data.substring(0, data.indexOf(';'));
System.out.println("File:" + file);
ProcessBean p = new ProcessBean(Name, newColor, y, x,

(float)l.0);
p.setFontSize(globalsize);
p.setSize(iwidth, iheight);
p.setColor(newColor);
File newFile;
newFile = new File(file);
p.loadState(newFile);
processes.addElement(p);
System.out.println("Donel");

)
if(type.equals("COMPOSITION"))
{

repaint();
String Name = data;
System.out.println("Configuration:");
String base = data.substring(0, data.indexOf('-'));
data = data.substring(data.indexOf('-')+l);
String P1 = data.substring(0, data.indexOf('-'));
System.out.println("Source: " + Pl);
data = data.substring(data.indexOf('-') + 1);
String P2 = data.substring(0, data.indexOf(';'));
P1 = Pl.trim();
P2 = P2.trim();
System.out.println("Destination: " + P2);
Enumeration enum = processes.elements();
ProcessBean pbl = (ProcessBean)enum.nextElement();
ProcessBean pb2 = (ProcessBean)enum.nextElement();
enum = processes.elements();
while(enum.hasMoreElements())

ProcessBean pb =
(ProcessBean)enum.nextElement();

if(pb.getName().equals(Pl))

pbl = pb;
System.out.println("Found correct source:"

+ pbl.getName());
}
if(pb.getName().equals(P2))
(

pb2 = pb;
System.out.println("Found correct

destination:" + pb2.getName());
}

}
if(true)

Enumeration enum2 = pb2.getTransitions();
String base2 = base.substring(0,

base.indexOf('('));
Transition t = (Transition)enum2.nextElement();
enum2 = pb2.getTransitions();
while(enum2.hasMoreElements())
{

t = (Transition)enum2.nextElement();
if(t.getProperName() .equals(base2))

System.out.println("Found correct
transition:" + t.getName());

x = t.getX() + 1;
y = t.getY() - 1;
break;

}

pbl.connect2(pb2, t);
}

curr[O] = '
currentline = ""
x = 0;
y= 0;

}

public void save_config(File f)
(

String currentline = new String("");
int index = 0;
FileWriter fw;
try
(

fw = new FileWriter(f);

catch(FileNotFoundException e)
{

System.out.println("Failed to save configuration.");
return;

catch(IOException e)
(

System.out.println("IO Exception on save.");
return;

}
Enumeration enum = processes.elements();
while (enum.hasMoreElements ())
(

ProcessBean pb = (ProcessBean)enum.nextElement();
currentline = "PROCESS:" + pb.getName() + ";";
currentline += pb.getX() + ";" + pb.getY() + ";" +

pb.getWidth() + ";" + pb.getHeight() + "; "

currentline += pb.getColor().toString() + ";" +
pb.getFontName() + ";" + pb.getFile().getName() + ";\n\r";

try
{

fw.write(currentline, 0, currentline.length());
}
catch(IOException e)
{

System.out.println("IO Exception on pb save.");
return;

}
currentline = I";

enum = processes.elements();
while (enum.hasMoreElements ())
(

ProcessBean pb = (ProcessBean)enum.nextElement();
Enumeration enum2 = pb.connections();
while (enum2 .hasMoreElements ())
{

Connection c = (Connection)enum2.nextElement();
Enumeration enum3 = c.getCompositions();
while (enum3 .hasMoreElements ())
{

Composition comp =
(Composition)enum3.nextElement();

currentline = "COMPOSITION:" + comp.getName() +
";\n\r";

try
{

fw.write(currentline, 0,
currentline.length());

}
catch(IOException e)
(

System.out.println("IO Exception on comp
save.");

return;
I

}
S

try
{

fw.flush();

catch(IOException e)
(

System.out.println("IO Exception on flush.");

try
{

fw.close();

catch (IOException e)
{

System.out.println("IO Exception on flush.");
}

)

public void loadExecution(File algfile)
{

char nextc[] = new char[l];
String currentline = new String("");
int index = 0;
FileReader fr;
try{

fr = new FileReader(algfile);
}
catch(FileNotFoundException e)
(

System.out.println("Shitl");
return;

)
while(index != -1)
{

try
{

index = fr.read(nextc, 0, 1);
)
catch(IOException e)
{

break;
)
if(nextc[0] == '\n')
{

exectext.addElement(currentline);
currentline = new String("");

}
else

if(index != -1)
{

currentline = currentline.concat((new
Character(nextc[0])).toString());

}
}
if(index == -1)
{

exectext.addElement(currentline);
currentline = new String("");

init();

public void init()
{

String varname;
String procname;
String value;
String process;
execpointer = 0;
String line = (String)exectext.elementAt(execpointer);
if(l(line.equals("STATE:")))
(

execerror();

while(! line.equals ("TRANSITION:") && (execpointer <
exectext.size()))

execpointer += 1;

100

line = ((String)exectext.elementAt(execpointer)).trim();
procname = line.substring(0, line.indexOf(':'));
execpointer += 1;
line = ((String)exectext.elementAt(execpointer)).trim();
while(I(line.endsWith(":")) && execpointer <

exectext.size())
(

varname = line.substring(0, line.indexOf(':'));
value = line.substring(line.indexOf('=') + 1);
System.out.println("Setting a variable:" + varname +

value);
SetVarValue(procname, varname, value);
execpointer += 1;
if(execpointer >= exectext.size())
(

break;
)
else
(

line =
((String)exectext.elementAt(execpointer)).trim();

)
}
execpointer -= 1;

)
repaint();

)

public boolean inBounds()
(

if(execpointer >= exectext.size())

return true;
)
else
(

return false;

public void next()

execpointer += 1;
if(execpointer > exectext.size())
(

return;
}
String transname;
String sourcename;
String destname;
String args;
String varname;
String procname;
String value;
String process;
String tempstr;
int temp;
reset();
String line = (String)exectext.elementAt(execpointer);
if(!(line.equals("TRANSITION:")))
{

execerror();

while(Iline.equals("STATE:") && execpointer<exectext.size())

if(execpointer < (exectext.size() - 1))

execpointer += 1;

else

return;

line = ((String)exectext.elementAt(execpointer)).trim();
while(I(line.endsWith(":")) && execpointer <

(exectext.size() - 1))
{

transname = line.substring(0, line.indexOf('('));
System.out.println("Transname." + transname);
value = line.substring(line.indexOf('(') + 1,

line.indexOf(')'));
System.out.println("value." + value);
temp = line.indexOf('-');
tempstr = line.substring(temp + 1);
System.out.println("tempstr:" + tempstr);
sourcename = tempstr.substring(0, tempstr.indexOf('-

'));
System.out.println("sourcename:" + sourcename);
destname = tempstr.substring(tempstr.indexOf('-') +

1);
System.out.println("Destname: " + destname);
System.out.println(sourcename + " " + destname + " " +

transname + " " + value);
SetTransValue(sourcename, destname, transname, value);
if(execpointer < (exectext.size() - 1))

execpointer += 1;

else

return;

line =
((String)exectext.elementAt(execpointer)).trim();

while(line.equals("TRANSITION:") && execpointer<exectext.size())
{

if(execpointer < (exectext.size() - 1))

if(execpointer < (exectext.size() - 1))

execpointer += 1;

else

return;

line =
((String)exectext.elementAt(execpointer)).trim();

procname = line.substring(0, line.indexOf(':'));
if(execpointer >= exectext.size())

break;

else

if(execpointer < (exectext.size() - 1))

102

execpointer += 1;
}
else

return;
)
line =

((String)exectext.elementAt(execpointer)).trim();
while(I(line.endsWith(":")) &&

execpointer<exectext.size())

varname = line.substring(0,
line.indexOf(':'));

value = line.substring(line.indexOf('=') +
1);

System.out.println("Var: " + varname + " "
+ value);

SetVarValue(procname, varname, value);
if(execpointer < exectext.size())

execpointer += 1;
)
else
(

return;
)
if(execpointer>= (exectext.size() - 1))
{

break;
}
else
{

line =
((String)exectext.elementAt(execpointer)).trim(;

)
)

)
if(execpointer < exectext.size())
(

execpointer -= 1;
}

)
repaint ();

public void previous()
{

int transcount = 0;
int statecount = 0;
execpointer -= 1;
String current = (String)exectext.elementAt(execpointer);
reset();
while((transcount<2) && (statecount<2))
{

current = (String)exectext.elementAt(execpointer);
if(current.equals("STATE:"))
(

statecount += 1;
)
if(current.equals("TRANSITION:"))
(

103

transcount += 1;
if(transcount == 2)

break;

execpointer -= 1;
if(execpointer < 0)
(

execpointer =
init();
return;

}
next ();

public void reset()
{

Enumeration enum = processes.elements();
while(enum.hasMoreElements())
{

ProcessBean pb = (ProcessBean)enum.nextElement();
pb.reset();

)

public void SetVarValue(String process, String varname, String value)
{

Enumeration enum = processes.elements();
while(enum.hasMoreElements())
{

ProcessBean pb = (ProcessBean)enum.nextElement();
if(pb.getName().equals(process))

pb.SetVarValue(varname, value);
break;

public void SetTransValue(String source, String dest, String trans,
String value)

(
Enumeration enum = processes.elements();
while(enum.hasMoreElements())
{

ProcessBean pb = (ProcessBean)enum.nextElement();
if(pb.getName().equals(source))

pb.SetTransValue(dest, trans, value);
break;

public void execerror()
{

return;

public void configCreate()
{

myonfig = new Dialog(frame, "Configure Process", false);

104

nametext = new TextField(currentbean.getName(), 30);
heighttext = new

TextField(String.valueOf(currentbean.getHeight()), 3);
widthtext = new TextField(String.valueOf(currentbean.getWidth()),

3);
colorchoice = new Choice();
String colorname = "Black";
if(currentbean.getColor().equals(Color.black))
(

colorname = "Black";
}
if(currentbean.getColor().equals(Color.red))
{

colorname = "Red";
)
if(currentbean.getColor().equals(Color.blue))
{

colorname = "Blue";
)
if(currentbean.getColor().equals(Color.yellow))
(

colorname = "Yellow";
)
if(currentbean.getColor().equals(Color.green))

colorname = "Green";
}
if(currentbean.getColor().equals(Color.white))

colorname = "White";
}
colorchoice.add("Black");
colorchoice.add("Red");
colorchoice.add("Blue");
colorchoice.add("Yellow");
colorchoice.add("Green");
colorchoice.add("White");
colorchoice.select(colorname);
fontchoice = new Choice();
fontchoice.add("TimesRoman");
fontchoice.add("Courier");
fontchoice.add("Helvetica");
fontchoice.add("Dialog");
fontchoice.add("Serif");
fontchoice.add("SanSerif");
fontchoice.select(currentbean.getFontName());
okbutton = new Button("OK");
okbutton.setActionCommand("OK");
okbutton.addActionListener(this);
cancelbutton = new Button("Cancel");
cancelbutton.setActionCommand("Cancel");
cancelbutton.addActionListener(this);
myLayout = new GridLayout(6, 2, 2, 2);
namelabel = new Label("Name:");
colorlabel = new Label("Color:");
fontlabel = new Label("Font:");
widthlabel = new Label("Width:");
heightlabel = new Label("Height:");
myConfig.add(namelabel);
myConfig.add(nametext);
myConfig.add(colorlabel);
myConfig.add(colorchoice);
myConfig.add(fontlabel);
myConfig.add(fontchoice);

105

myConfig.add(widthlabel);
myConfig.add(widthtext);
myConfig.add(heightlabel);
myConfig.add(heighttext);
myConfig.add(okbutton);
myConfig.add(cancelbutton);
myConfig. setLayout (myLayout);

public void globalConfigCreate()
(

myglobalConfig = new Dialog(frame, "Global settings", false);
sizetext = new TextField(String.valueOf(globalsize), 3);
colorichoice = new Choice();
color2choice = new Choice();
String colorlname = "Black";
if(colorl.equals(Color.black))
{

color1name = "Black";

if(colorl.equals(Color.red))

colorlname = "Red";

if(colorl.equals(Color.blue))
(

colorIname = "Blue";
)
if(colorl.equals(Color.yellow))

color1name = "Yellow";
}
if(colorl.equals(Color.green))
{

color1name = "Green";
)
if(colorl.equals(Color.white))
{

coloriname = "White";

colorlchoice.add("Black");
colorlchoice.add("Red");
colorlchoice.add("Blue");
colorlchoice.add("Yellow");
colorlchoice.add("Green");
colorlchoice.add("White");
colorlchoice.select(colorlname);

String color2name = "Black";
if(color2.equals(Color.black))

color2name = "Black";

if(color2.equals(Color.red))
{

color2name = "Red";
)
if(color2.equals(Color.blue))
(

color2name = "Blue";

if(color2.equals(Color.yellow))

color2name = "Yellow";

106

if(color2.equals(Color.green))
(

color2name = "Green";
)
if(color2.equals(Color.white))
(

color2name = "White";
}
color2choice.add("Black");
color2choice.add(lu"Red");
color2choice.add("Blue");
color2choice.add("Yellow");
color2choice.add("Green");
color2choice.add("White");
color2choice.select(color2name);

globalokbutton = new Button("OK");
globalokbutton.setActionCommand("globalOK");
globalokbutton.addActionListener(this);
globalcancelbutton = new Button("Cancel");
globalcancelbutton.setActionCommand("globalCancel");
globalcancelbutton.addActionListener(this);
myglobalLayout = new GridLayout(4, 2, 2, 2);
sizelabel = new Label("Font size:");
colorilabel = new Label("Connection 1 Color:");
color21label = new Label("Connection 2 Color:");
myglobalConfig.add(sizelabel);
myglobalConfig.add(sizetext);
myglobalConfig.add(colorllabel);
myglobalConfig.add(colorlchoice);
myglobalConfig.add(color2label);
myglobalConfig.add(color2choice);
myglobalConfig.add(globalokbutton);
myglobalConfig.add(globalcancelbutton);
myglobalConfig.setLayout(myglobalLayout);

)

class Player implements Runnable
(

private DAVEDisplay myD;
private double counter = 0.0;
private double limit - 1000.00;
public Player(DAVEDisplay d)
(

myD = d;
)

public void increment()
(

limit += 100.0;
}

public void decrement()
{

limit -= 100.0;

public void run()
{

while(true)

107

if(counter > limit)
{

if(myD.isplaying())
{

if(myD.inBounds())
{

myD.pause();
counter = 0.0;

else
{

myD.next();
counter = 0.0;

}
}

if(myD.isplaying())
{

counter += 0.001;
I

class cfgFilter implements FilenameFilter
{

public cfgFilter()
{

return;

public boolean accept(File dir, String name)

int period = name.indexOf('.');
String extension;
if(period > 0)

extension = name.substring(name.indexOf('.) + 1);
}
else
(

return false;
}
System.out.println("Extension: " + extension);
if(extension.equals ("cfg"))

return true;

else
{

return false;

ProcessBean.java

import java.awt.*;
import java.io.*;
import java.beans.*;
import java.util.*;
import Variable.*;

108

import Transition.*;
import java.lang.*;

public class ProcessBean extends Component
implements PropertyChangeListener (

private Vector myState = new Vector();
private Vector myConnections = new Vector();
private Vector myTransitions = new Vector();
private Color myColor = Color.orange;
private Color colorl = Color.blue;
private Color color2 = Color.green;
private Font myFont = new Font("Dialog", Font.PLAIN, 12);
private String myName = "Name";
private Rectangle myRect = new Rectangle(0, 0, 100, 100);
private int myRadius = 100;
private float myScaleFactor = 1;
private int myLayer = 1;
private boolean current = false;
private Vector algtext = new Vector();
private boolean shorthand = false;
private Rectangle hotspot;
private File af = new File("");
private int attachx;
private int attachy;
boolean attachmoved = false;

// for notifying listening beans of property changes
private PropertyChangeSupport changes = new

PropertyChangeSupport(this);

// constructors
public ProcessBean() {

double w = (double) ((((float)myRect.width)/2) *
(((float)myRect.width)/2));

double h = (double) ((((float)myRect.height)/2) *
(((float)myRect.height)/2));

myRadius = (int) (Math.sqrt(w + h));

public ProcessBean(String name) {
myName = name;
double w = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double h = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(w + h));

public ProcessBean(String name, Color color) (
myName = name;
myColor = color;
double w = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double h = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(w + h));

public ProcessBean(String name, int x, int y) {
myName = name;

109

myRect.x = x;
myRect.y = y;
double w = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double h = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(w + h));

public ProcessBean(String name, Color color, int x, int y)
{

myName = name;
myColor = color;
myRect.x = x;
myRect.y = y;
double w = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double h = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(w + h));

public ProcessBean(String name, Color color, int y, int x, float
factor)

{
myScaleFactor = factor;
myName = name;
myColor = color;
myRect.x = x;
myRect.y = y;
double w = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double h = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(w + h));
attachx = x;
attachy = y;
myFont = new Font("Dialog", Font.PLAIN, (int)(myScaleFactor

* 12));
}

//PropertyChangeSupport methods
public void addPropertyChangeListener(PropertyChangeListener 1) (

changes.addPropertyChangeListener(1);
}

public void removePropertyChangeListener(PropertyChangeListener 1)

changes.removePropertyChangeListener(1);
}

public void firePropertyChange(String propertyName, Object
oldValue,

Object newValue) {

changes.firePropertyChange(propertyName, oldValue,
newValue);

)

//PropertyChangeListener method: what to do when this is notified
// of a property change it's listening for
public void propertyChange(PropertyChangeEvent evt) {

110

ProcessBean pb = (ProcessBean)evt.getSource();
//System.out.println("This is being called.");
if (evt.getPropertyName() == "ChangeRadius")

}
else
(

if (evt.getPropertyName() == "ChangeLayer")
{
}

)

//repaint();

// methods
public void resize(float factor)

myRect.x = (int)((factor/myScaleFactor)
myRect.y = (int)((factor/myScaleFactor)
myFont = new Font("Dialog", Font.PLAIN,
myScaleFactor = factor;

public void make_current()
(

current = true;

* myRect.x);
* myRect.y);
(int)(12 * factor));

public void unmake_current()
(

current = false;

public void delete(ProcessBean pb)

Enumeration enum = myConnections.elements();
while(enum.hasMoreElements())
(

Connection c = (Connection)enum.nextElement();
if(c.exists(this, pb))

myConnections.removeElement(c);

public void loadState(File algfile)
{

af = algfile;
char nextc[] = new char[l];
String currentline = new String("");
int index = 0;
FileReader fr;
try(

fr = new FileReader(algfile);
}
catch(FileNotFoundException e)

System.out.println("ShitI");
return;

111

while(index I= -1)
(

try
(

index = fr.read(nextc, 0, 1);
)
catch(IOException e)
{

break;
)
if(nextc[0] == '\n')
{

algtext.addElement(currentline);
currentline = new String("");

)
else

if(index != -1)
{

currentline = currentline.concat((new
Character(nextc[O])).toString());

}
)
if(index == -1)
{

algtext.addElement(currentline);
currentline = new String("");

}
}
this.parsecode (;
Enumeration e = myTransitions.elements();
while (e.hasMoreElements ())
{

Transition a = (Transition) e.nextElement();
System.out.println(a.getName());

)
return;

public Enumeration connections()
(

return myConnections.elements();

private void parsecode()
{

Enumeration code = algtext.elements();
String tempstr;
String vartype;
int mode = 0;
int trash_index = 0;
boolean modeend = false;
while (code. hasMoreElements ())
(

String line = (String)code.nextElement();
line = line.trim();
System.out.println(line);
if(line.equals("states"))
{

mode = 1;
System.out.println("In state mode.");
continue;

if(line.equals("transitions"))

112

mode = 2;
System.out.println("In transition mode.");
continue;

}
if(mode == 1)
{

trash_index = line.indexOf(':');
if(trash_index == -1)
{

parsefail();
}
else
(

String varname = line.substring(0,
trash_index);

varname = varname.trim(;
tempstr = line.substring(trash_index+l);
trash_index = tempstr.indexOf(':');
if(trash_index < 0)
(

vartype = tempstr.substring(l);
}
else

vartype = tempstr.substring(l,
trash_index);

}
vartype = vartype.trim();
if(line.endsWith(","))
{

mode = 1;
}
else
{

mode = 0;
}
vartype = vartype.substring(0,

vartype.length() - 1);
vartype = vartype.trim();
System.out.println("Found a variable.");
this.addVariable(new Variable("", varname,

vartype, this.myRadius));
}

}
if(mode == 2)

trash_index = line.indexOf(' ');
if(trash_index 1= -1)
(

String transtype = line.substring(0,
trash_index);

System.out.println("A transition?");
System.out.println(transtype);
transtype = transtype.trim();
String transname =

line.substring(trash_index + 1);
int numargs = 0;
if((transname.indexof('(') + 1) ==

(transname.indexof(')')))

numargs = 0;
}
else

113

numargs = 1;
String temp = transname;
int index = transname.indexOf(',');
while(index >= 0)
{

numargs += 1;
temp =

temp.substring(temp.indexOf(',') + 1);
index = temp.indexOf(',');

)
}
if((transtype.equals("input"))

(transtype.equals("output"))
(transtype.equals("internal")))

{
Transition t2 = new

Transition(transname, transtype);
t2.setNumArgs(numargs);
this.addTransition(t2);

}
}

return;

private void parsefail()
(

System.out.println("Parse failed...badly.");
return;

}

private boolean closeto(int x, int y)

if((x > (myRect.x)) && (x < (myRect.x + (myRect.width))))

if ((y > (myRect.y)) && (y < (myRect.y +
(myRect.height))))

{
return true;

}
}
return false;

)

public boolean hitTest(int x, int y) {
if (this.isVisible() && this.closeto(x, y))

System.out.println("Hit!");
return true;

}
return false;

public void setpos(int x, int y)
{

int diffx = x - myRect.x;
int diffy = y - myRect.y;
myRect.x = x;
myRect.y = y;
Enumeration enum = myState.elements();
int minX = myRect.x + myFont.getSize();

114

int minY = myRect.y + (2* myFont.getSize());
int maxX = myRect.x + myRect.width;
int maxY = myRect.y + myRect.height;
minY += myFont.getSize();
while (enum.hasMoreElements())
(

Variable nextV = (Variable)enum.nextElement();
nextV.configure(minX, minY, maxX, maxY,

myFont.getSize());
minY += myFont.getSize();

)
enum = myTransitions.elements();
minY += myFont.getSize();
while (enum.hasMoreElements ())
(

Transition nextt = (Transition)enum.nextElement();
nextt.configure(minX, minY, maxX, maxY,

myFont.getSize());
minY += myFont.getSize();

)
enum = myConnections.elements();
while (enum.hasMoreElements ())

Connection nextc = (Connection)enum.nextElement();
nextc.update();

)
if (attachmoved)

attachx = myRect.x;
attachy = myRect.y;

}
else

attachx += diffx;
attachy += diffy;

public void addVariable (Variable v)
(

myState.addElement((Object)v);
)

public void addTransition(Transition v)
{

myTransitions.addElement((Object)v);
)

public String getName() { return myName; }

public void setName(String name) (
myName = name;
//repaint();

public Color getColor() (return myColor; }

public void setColor(Color color) {
myColor - color;
//repaint();

115

public int getX() (return myRect.x;)

public int getY() { return myRect.y; }

public void setX(int x) (
int diffx = x - myRect.x;
myRect.x = x;
if(attachmoved)

attachx += diffx;
}
else
{

attachx = x;
)
//repaint();

)
public void setY(int y) {

int diffy = y - myRect.y;
myRect.y = y;
if(attachmoved)

attachy += diffy;
}
else

attachy = y;
}
//repaint();

}
public int getRadius() (return myRadius; }
public int getWidth() { return myRect.width;)
public int getHeight() { return myRect.height;}
public boolean getshorthand() (return shorthand;)
public File getFile() { return af;)
public void setSize(int w, int h)
(

myRect.width = w;
myRect.height = h;
double dw = (double) ((((float)myRect.width)/2) *

(((float)myRect.width)/2));
double dh = (double) ((((float)myRect.height)/2) *

(((float)myRect.height)/2));
myRadius = (int) (Math.sqrt(dw + dh));

}

public String getFontName()
(

return myFont.toString();

public void setFont(String n)

myFont = new Font(n, Font.PLAIN, 12);
)

public void paint(Graphics g) {
// only draw if this is visible
if (isVisible())

// draw this ParticipationBean
draw(g);

}

116

public Transition getTransAt(int x, int y)

Enumeration enum = myTransitions.elements();
int fontsize = myFont.getSize();
int minx, miny, maxx, mazy;
Transition t;
while (enum.hasMoreElements ())
(

t = (Transition)enum.nextElement();
minx = t.getX();
miny = t.getY() - fontsize;
maxx = minx + (t.getLength() * fontsize);
maxy = t.getY();
if((x>=minx) && (x<-maxx) && (y>=--miny) && (y<-maxy))
(

return t;
)

}
return (new Transition("SWMError", "Error"));

public void addConnection(Connection c)
(

myConnections.addElement(c);
)

public boolean connect(ProcessBean pb, int x, int y)
(

Transition tI = pb.getTransAt(x, y);
Connection c = new Connection(this, pb);
boolean exists = false;
if((tl.getType()).equals("Error"))
(

return false;
}
System.out.println("Made it past transition finder.");
Transition t2;
Enumeration enum = myTransitions.elements();
while (enum.hasMoreElements ())

t2 = (Transition)enum.nextElement();
System. out.println("-----------");
System.out.println(t2.getProperName());
System.out.println(t2.getType());
System.out.println(tl.getProperName ();
System.out.println(tl.getType());
if((t2.getProperName().equals(tl.getProperName()) &&

(t2.getType().equals("output")) &&
(tl.getType() .equals("input")))
(

System.out.println("Found a connection to
make.");

Enumeration enum2 = myConnections.elements();
while(enum2 .hasMoreElements() && lexists)
{

c = (Connection)enum2.nextElement();
if(c.exists(this, pb))
(

exists = true;
System.out.println("Exists

already?");
break;

117

}
if(lexists)
{

c = new Connection(this, pb);
Enumeration enum3 = pb.connections();
while(enum3 .hasMoreElements())
(

Connection c2 =
(Connection)enum3.nextElement();

if(c2.exists(pb, this))

c.setType(2);
break;

}
)

}
String newname;
if(tl.getNumArgs() > t2.getNumArgs())
{

newname = tl.getName() + "-" +
this.getName() + "-" + pb.getName();

)
else
{

newname = t2.getName() + "-" +
this.getName() + "-" + pb.getName();

}
c.addComp(t2, tl, newname);
if(lexists)
{

c.setColorl(colorl);
c.setColor2(color2);
myConnections. addElement(c);

}
System.out .println("Success!");
return true;

}
}
return false;

public int getAttachx()
{

return attachx;
)

public int getAttachy()
{

return attachy;

public boolean connect2(ProcessBean pb, Transition tl)

Connection c = new Connection(this, pb);
boolean exists = false;
if((tl.getType()).equals("Error"))
{

return false;
}
System.out.println("Made it past transition finder.");
Transition t2;
Enumeration enum = myTransitions.elements();
while (enum.hasMoreElements ())

118

t2 = (Transition)enum.nextElement();
System.out.println("-----------);
System.out.println(t2.getProperName());
System.out.println(t2.getType ();
System.out.println(tl.getProperName());
System.out.println(tl.getType());
if((t2.getProperName() .equals(tl.getProperName))) &&

(t2.getType().equals("output")) &&
(tl.getType() .equals("input")))

System.out.println("Found a connection to
make. ") ;

Enumeration enum2 = myConnections.elements();
while(enum2.hasMoreElements() && lexists)
{

c = (Connection)enum2.nextElement();
if(c.exists(this, pb))
(

exists = true;
System. out .println("Exists

already?");
break;

)
)
if(lexists)
{

c = new Connection(this, pb);
Enumeration enum3 = pb.connections();
while(enum3.hasMoreElements())
(

Connection c2 =
(Connection)enum3.nextElement();

if(c2.exists(pb, this))
(

c.setType(2);
break;

)
)

)
String newname = t2.getName() + "-" +

this.getName() + "-" + pb.getName();
c.addComp(t2, tl, newname);
if(lexists)
{

c.setColorl(colorl);
c.setColor2(color2);
myConnections. addElement(c);

}
System.out.println("Success);
return true;

}
)
return false;

public void SetVarValue(String variable, String value)
(

Enumeration enum = myState.elements();
while (enum.hasMoreElements ())

Variable v = (Variable)enum.nextElement() ;
String oldval = v.getValue();

119

if(v.getName().equals(variable))
(

v.setValue(value);
if(lvalue.equals(oldval))

v.setUsed();

break;

public void SetTransValue(String dest, String trans, String value)
{

Enumeration enum = myConnections.elements();
while (enum.hasMoreElements ())

Connection c = (Connection)enum.nextElement();
if(c.getDestination().getName().equals(dest))
{

Enumeration enum2 = c.getCompositions();
while(enum2.hasMoreElements())

Composition m =
(Composition)enum2.nextElement();

String s = m.getSource().getName();
s = s.substring(0, s.indexf('('));
if(s.equals(trans))
{

m.getSource().setArgs(value);
m.getSource().setUsed();
m.getDestination().setUsed();
m.getDestination().setArgs(value);
m.setArgs(value);
m.setUsed();
c.setUsed();

public void reset()
(

Enumeration enum = myState.elements();
while(enum.hasMoreElements())

Variable v = (Variable)enum.nextElement();
v.unsetUsed();

enum = myTransitions.elements();
while(enum.hasMoreElements())
(

Transition t = (Transition)enum.nextElement();
t.unsetUsed();
t.reset();

enum = myConnections.elements();
while(enum.hasMoreElements())

Connection c = (Connection)enum.nextElement();
c.unsetUsed();

}

120

public boolean inSpot(int x, int y)
{

if(Ishorthand)
{

return false;
}
if((x > hotspot.x) && (x < (hotspot.x + hotspot.width)) &&

(y > hotspot.y) && (y < (hotspot.y + hotspot.height)))
(

return true;
}
return false;

}

public void setAttach(int x, int y)

attachmoved = true;
if((x < myRect.x) && (y < myRect.y))
{

attachx = myRect.x;
attachy = myRect.y;
return;

}
if((x < myRect.x) && (y > (myRect.y + myRect.height)))
(

attachx = myRect.x;
attachy = myRect.y + myRect.height;
return;

}
if((x > (myRect.x + myRect.width)) && (y < myRect.y))
{

attachx = myRect.x + myRect.width;
attachy = myRect.y;
return;

}
if((x > (myRect.x + myRect.width)) && (y > (myRect.y +

myRect.height)))
(

attachx = myRect.x + myRect.width;
attachy = myRect.y + myRect.height;
return;

}
if((y < myRect.y))
{

attachx = x;
attachy = myRect.y;
return;

}
if(y > (myRect.y + myRect.height))
C

attachx = x;
attachy = myRect.y + myRect.height;
return;

}
if(x < myRect.x)
C

attachx = myRect.x;
attachy = y;
return;

}
if(x > (myRect.x + myRect.width))(

121

attachx = myRect.x + myRect.width;
attachy = y;
return;

}
attachx = myRect.x;
attachy = myRect.y;
return;

public Enumeration getVariables()

return myState.elements();
}

public Enumeration getTransitions()
{

return myTransitions.elements();
)

public Enumeration getConnections()

return myConnections.elements();
}

public boolean isShorthand()

return shorthand;

public void setFontSize(int newsize)

myFont = new Font(myFont.getName(), myFont.getStyle(),
newsize);

public void setColorl(Color a)

Enumeration enum = myConnections.elements();
while (enum.hasMoreElements ())
{

Connection c = (Connection)enum.nextElement();
c.setColorl(a);

colorl = a;

public void setColor2(Color a)
{

Enumeration enum = myConnections.elements();
while(enum.hasMoreElements())

Connection c = (Connection)enum.nextElement();
c.setColor2(a);

color2 = a;

private void draw(Graphics g) (
// draw label on top left of roundRect
shorthand = false;
int Yoffset = 0;

122

int Xoffset = myRadius/2;
g.setFont(myFont);
FontMetrics fm = g.getFontMetrics(myFont);
if(current)

g.setColor(Color.red);

else

g.setColor(Color.black);

g.drawString(myName, myRect.x + 2, myRect.y);

// draw rounded rectangle with border
g.setColor(myColor);
g.fillOval((myRect.x + 1), (myRect.y + 1), (myRect.width -

2), (myRect.height - 2));
g.fillOval((attachx - 1), (attachy - 1), 2, 2);
if(current)

else

g.setColor(Color.red);

g.setColor(Color.black);

g.drawOval((myRect.x + 1), (myRect.y + 1), (myRect.width -
2), (myRect.height- 2));

Enumeration enum = myState.elements();
int minX = myRect.x + myFont.getSize();
int minY = myRect.y + (2* myFont.getSize());
int maxX = myRect.x + myRect.width;
int maxY = myRect.y + myRect.height;
g.drawString("State:", minX, minY);
minY += myFont.getSize();
while (enum.hasMoreElements())

Variable nextV = (Variable)enum.nextElement();
nextV.configure(minX, minY, maxX, maxY,

myFont.getSize());
minY += myFont.getSize();
if(minY > maxY)

if(Ishorthand)

shorthand = true;
g.drawString("...", minX, minY);

if(Ishorthand)

nextV.paint(g);

if(current)

g.setColor(Color.red);

else

g.setColor(Color.black);
)
g.setFont(myFont);
enum = myTransitions.elements();

123

g.drawString("Transitions", minX, minY);
minY += myFont.getSize();
while (enum.hasMoreElements ())
{

Transition nextt = (Transition)enum.nextElement();
nextt.configure(minX, minY, maxX, maxY,

myFont.getSize());
minY += myFont.getSize();
if(minY > maxY)
{

if(Ishorthand)

shorthand = true;
g.drawString("...", minx, minY);
hotspot = new Rectangle(minx, minY -

myFont.getSize(), 4, myFont.getSize());
}

}
if(Ishorthand)
{

nextt.paint(g);
}

}
enum = myConnections.elements();
while(enum.hasMoreElements())
{

Connection nextc = (Connection)enum.nextElement();
nextc.paint(g);

}

public Dimension getPreferredSize() {
return new Dimension(2 * myRadius, 2 * myRadius);

}

Variable.java
import java.util.*;
import java.awt.*;
public class Variable
{

private String myTalue;
private String myTyNe;
private String myName;
private Vector myValues;
private int firstindex = 0;
private int lastindex = 0;
private int myX = 0;
private int myY = 0;
private Color myColor;
private boolean myVis = true;
private boolean changed = false;
private boolean shorthand = false;
private int availableRadius = 0;
private Rectangle hotspot;

public Variable(String v, String n, String t, int a)
{

myValue = v;
myName = n;
myType = t;
availableRadius = a;

124

public void setUsed()
{

changed = true;

public void unsetUsed()

changed = false;
}

public boolean isVisible()
(

return myVis;
)

public String getName()

return myName;
)

public String getType()
{

return myType;

public String getValue()
{

return myValue;
}

public int getLength()

return (myName + ":" + myValue).length();
)

public void setValue(String newval)
{

myValue = newval;
return;

}

public boolean isShorthand()
(

return shorthand;
)

public boolean hittest(int x, int y, int fsize)
{

int myLength = this.getLength() * fsize;
int myHeight = fsize;
if((x > myX) && (x < (myX + myLength)) &&

(y > myY - myHeight) && (y < (myY)))
{

return true;

else
{

return false;

}

125

public void configure(int minx, int miny, int maxx, int maxy, int

this.setPos(minx, miny);
shorthand = false;
if((this.getLength() * fsize) > maxx)

shorthand = true;
int p = myName.length() * fsize;
hotspot = new Rectangle(myX + p, myY - fsize, 4,

;

else

shorthand = false;

public boolean inSpot(int x, int y)
{

if(!shorthand)

return false;

if((x > hotspot.x) && (x < (hotspot.x + hotspot.width)) &&
(y > hotspot.y - hotspot.height) && (y < (hotspot.y)))

return true;

return false;
}

public void setPos(int x, int y)
{

myX = x;
myY = y;

}

public void paint(Graphics g) {
// only draw if this is visible
if (isVisible())

// draw this ParticipationBean
draw(g);

private void draw(Graphics g) (
// draw label on top left of roundRect
if(changed)

g.setColor(Color.red);
}
else

g.setColor(Color.black);

String myString = myName + ":" + myValue;
if(Ishorthand)

g.drawString(myString, myX, myY);

126

fsize)

fsize)

else
{

myString = myName + ":... ";

g.drawString(myString, myX, myY);

Transition.java
import java.util.*;
import java.awt.*;
public class Transition
{

private String myName;
private String myProperName;
private String myBaseName;
private String myType;
private int myX = 0;
private int myY = 0;
private Color myColor;
private boolean used = false;
private boolean myVis = true;
private int numargs;

public Transition(String n, String t)
(

myName = n;
myProperName = myName. substring(0, myName.indexOf ('('));
myType = t;
myBaseName = myName;

)

public void setArgs(String args)
{

int i = 1;
String g = args;
String temp2 = "";
while (i<=numargs)
(

int q = g.indexOf(',');
String val;
if(q < 0)
{

val = g;
temp2 = temp2 + val;
break;

)
else
(

val = g.substring(0, g.indexOf(','));
temp2 = temp2 + val + ", ";
g = g.substring(g.indexOf(',') + 1);

)
String temp = myName.substring(0, myName.indexOf('(')+l);
myName = temp + temp2 + ")";

public void setUsed()

used = true;

127

public void setNumArgs(int i)
{

numargs = i;
)

public int getNumArgs()
{

return numargs;
}

public void unsetUsed()
{

used = false;
)

public boolean isVisible()

return myVis;
}

public String getName()
{

return myName;
}

public String getProperName()
{

return myProperName;
}

public String getType()
(

return myType;
}

public int getLength()

return myName.length();
}

public void configure(int minx, int miny, int maxx, int maxy, int
fsize)

(
this. setPos (minx, miny);

)

public void setPos(int x, int y)
{

myX = x;
myY = y;

)

public int getX()
{

return myX;
}

public int getY()
{

return myY;

128

public void reset()
{

myName = myBaseName;
}

public void paint(Graphics g) (
// only draw if this is visible
if (isVisible())
(

// draw this ParticipationBean
draw(g);

)

private void draw(Graphics g) {
// draw label on top left of roundRect
if(used)
{

g.setColor(Color.red);
}
else
{

g.setColor(Color.black);
}
String myString;
myString = myName;
g.drawString(myString, myX, myY);

Connection.java
import java.util.*;
import java.awt.*;
import Transition.*;
import Composition.*;
import ProcessBean.*;

public class Connection
(

private ProcessBean source;
private ProcessBean destination;
private int sourceX = 0;
private int sourceY = 0;
private int destX = 0;
private int destY = 0;
private Vector compositions;
private boolean myVis = true;
private boolean used = false;
private int myType = 1;
private Color colorl = Color.blue;
private Color color2 = Color.green;

public Connection(ProcessBean s, ProcessBean d)
(

source = s;
destination = d;
sourceX = source.getAttachx();
sourceY = source.getAttachy();
destX = destination.getAttachx();
destY = destination.getAttachy();
compositions = new Vector();

}

129

public void setType(int i)
{

myType = i;
if(myType != 1)
{

sourceX -= 5;
sourceY -= 5;

}

public boolean exists(ProcessBean s, ProcessBean d)

if(source.equals(s) && destination.equals(d))
{

return true;

else
(

return false;

public void addComp(Transition s, Transition d, String name)
{

boolean done = false;
Composition c;
Enumeration enum = compositions.elements();
while(enum.hasMoreElements())
{

c = (Composition)enum.nextElement();
if((c.getSource().equals(s)) &&

(c.getDestination().equals(d)))

done = true;
}

)
if(Idone)
{

compositions.addElement(new Composition(s, d, name));
}
return;

public boolean isVisible()
{

return myVis;
}

public ProcessBean getSource()
{

return source;

public ProcessBean getDestination()

return destination;

public void update()

sourceX = source.getAttachx();
sourceY = source.getAttachy();
destX = destination.getAttachx();

130

destY = destination.getAttachy();
if(myType 1= 1)
{

sourceY -= 5;
destY -= 5;

}
return;

public void setUsed()
{

used = true;

public void unsetUsed()

used = false;
Enumeration enum = compositions.elements();
while(enum.hasMoreElements())
{

Composition c = (Composition)enum.nextElement();
c.unsetused();

)

public Enumeration getCompositions()
{

return compositions.elements();

public void paint(Graphics g) (
// only draw if this is visible
if (isVisible())

// draw this ParticipationBean
draw(g);

public void setColorl(Color a)
(

colorl = a;

public void setColor2(Color b)

color2 = b;

private void draw_arrow(int pointx, int pointy, int basex, int
basey, Graphics g)

(
int diffx = pointx - basex;
int diffy = pointy - basey;
int pointlx = diffx - 10;
int pointly = diffy + 5;
int point2y = diffy - 5;
g.drawLine(pointx, pointy, basex + pointlx, basey +

pointly);
g.drawLine(pointx, pointy, basex + pointlx, basey +

point2y);
}

private void draw(Graphics g) {
// draw label on top left of roundRect
if(used)
(

g.setColor(Color.red);
}
else

if(myType == 1)
{

g.setColor(colorl);

else
{

g.setColor(color2);

)
g.drawLine(sourceX, sourceY, destX, destY);
double vectX = (double)sourceX - (double)destX;
double vectY = (double)sourceY - (double)destY;
double mag = Math.sqrt((vectX * vectX) + (vectY * vectY));
vectX = vectX/mag;
vectY = vectY/mag;
vectX = vectX * 10;
vectY = vectY * 10;
//draw_arrow(destX, destY, destX + (int)vectX, destY +

(int)vectY, g);
g.fillOval(destX, destY, 4, 4);
int midpointX;
int midpointY;
if(sourceX<destX)
(

midpointX = sourceX + ((destX - sourceX)/2);

else
{

midpointX = destX + ((sourceX - destX)/2);

if(sourceY<destY)

midpointY = sourceY + ((destY - sourceY)/2);

else

midpointY = destY + ((sourceY - destY)/2);

if(sourceX < destX)
{

midpointY = midpointY + (g.getFont()).getSize();

else

midpointY = midpointY - (g.getFont()).getSize();

Enumeration enum = compositions.elements();
while(enum.hasMoreElements())

Composition c = (Composition)enum.nextElement();
if(c.isused())
{

g.setColor(Color.red);

else

132

if(myType == 1)

else

g.setColor(Color.blue);

g.setColor(Color.green);

}
g.drawString(c.getName(), midpointX, midpointY);
if(sourceX < destX)
{

midpointY = midpointY + (g.getFont().getSize();

else

midpointY = midpointY - (g.getFont().getSize();

Composition.java

import java.util.*;
import java.awt.*;
import Transition.*;

public class Composition
{

private Transition source;
private Transition destination;
private String name;
private String basename;
private boolean used = false;

public Composition(Transition s, Transition d, String n)

source = s;
destination = d;
name = n;
basename = name;

public Transition getSource()

return source;

public Transition getDestination()

return destination;
}

public String getName()
{

return name;

public void setArgs(String args)
{

String first = name.substring(0, name.indexOf('(') + 1);

133

String rest = name.substring(name.indexOf (') '));
first = first + args + rest;
name = first;

public boolean isused()

return used;
}

public void setUsed()

used = true;

public void unsetused()

used = false;
name = basename;

134

