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Abstract
Increasing demand for high bandwidth networks has prompted the use of fiber optics as the next

step for physical medium. We develop the data-link layer, in hardware, required to transmit IP packets
over SONET. In particular, we design the byte-wide HDLC controller that frames PPP-encapsulated
network-layer packets, as described in RFC 1662, "PPP in HDLC-like Framing." Targeted for a Xilinx,
Inc. XC4000XL-series FPGA, the design will interface with PMC-Sierra, Inc. S/UNI-Plus or S/UNI-622
SONET framers and will include the appropriate interface logic. Furthermore, a few additional options are
designed into the chip. We also reveal that a design with a higher degree of modularity will outperform
one with a lower degree.
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Chapter 1 : Introduction

1.1 Background

Increasing demand for bandwidth from network applications, from conferencing to file transfers,

motivate the development of faster networks supporting Internet Protocol (IP) traffic. One path is the

transmission of data over optical fiber. Fiber has very low bit-error rates and signal attenuation, and the

maximum theoretical bandwidth is measured in terabits per second.

The framing protocol for optical networks run by telephone companies is known as SONET

(Synchronous Optical Network) or SDH (Synchronous Digital Hierarchy), the technical difference between

them primarily in the frame header. The SONET/SDH framing process adds header information to

outgoing data. The header is used for synchronization and control signals between peer SONET framers.

Designed to reduce operation and equipment costs, yet provide transmission rates beyond copper, SONET

starts at about 52 Mbps (STS-1), while SDH starts at 156 Mbps (SDM-1). Higher rates are multiples of the

base rate, so STS-3 is 156 Mbps.

SONET framers map voice into a SONET frame, but they can also map data into a frame. Most

framers designed to transmit data map ATM (Asynchronous Transfer Mode) cells into the frame. ATM

was designed to transport both voice and data, unifying the various telephone and cable networks, and

operate over SONET [19]. To transmit IP packets over an ATM-SONET network, the IP packets are

segmented and inserted into ATM cells, with some additional overhead via the AAL (ATM adaptation

layer). Then, the ATM cells are mapped into the SONET frames as usual. If the goal is to just transfer IP

packets, then the IP-ATM-SONET process may not be a good idea. ATM imposes a per-cell overhead of

at least 5 bytes for every 53 bytes, so the maximum bandwidth utilization is just over 90%. (AAL 3/4 adds

4 bytes of additional overhead, reducing utilization to 83%, but AAL 5 imposes no per-cell penalty.)

One alternative to increase bandwidth utilization of IP-over-ATM-over-SONET is to directly map

IP into SONET frames. Some bandwidth is saved and processing overhead is reduced by eliminating

ATM.



1.1.1 Point-to-Point Protocol in IP over SONET

Substituting for data-link functionality, when ATM is taken out of the picture, is PPP (Point-to-

Point Protocol). PPP multiplexes network-layer protocols through a 16-bit header.

Protocol Information (e.g. IP packet)
16 bits n bits

Figure 1-1: PPP encapsulated packet.

The 16-bit protocol field uniquely identifies what type of packet is in the information field. The

possibilities include IP, IPX (Novell), and PPP control packets (link control and network control), among

others, for link establishment. The values assigned to different protocols can be found in the "Assigned

Numbers" RFC. While the header identifies the packet, framing, the process of adding a checksum and

headers and marking the space between packets, is still required.

This framing is provided by the HDLC protocol. Normally a bit-oriented protocol, HDLC maps a

network layer packet into a frame suitable to transmit over a physical layer like SONET. All bit-oriented

HDLC-like protocols use the same frame format.

Flag Address Control Information Checksum Flag
01111110 8 bits 8 bits n bits 16 bits 01111110

Figure 1-2: Generic bit-oriented frame.

Flags are reserved values and mark inter-frame space; at least one flag sits between two

consecutive frames, and flags are transmitted when the connection is idle. Bit sequences in the data packet

that might be misconstrued as control sequences (e.g. a flag field) are "stuffed," i.e. replaced with a

different sequence that is deconstructed at the receiver, transparent to the network-layer protocol.

A byte-oriented version of HDLC very much looks like the bit-oriented HDLC. In the case of

PPP, the address and control fields have lost some functionality - the fields are fixed [17]. Byte-oriented

HDLC is specified for mapping PPP packets into SONET/SDH frames: no compression of the address and

control fields and a 32-bit FCS are recommended [15].



Flag Address Control Protocol Information FCS Flag
01111110 11111111 00000011 16 bits (e.g. IP packet) 32 bits 01111110

n bits

Flag (inter-frame fill) or next Address

Figure 1-3: Byte-oriented HDLC frame, per RFC 1662. The protocol header of PPP is shown
explicitly.

Instead of bit-stuffing, byte-oriented HDLC uses byte-stuffing to replace special characters in the frame.

The HDLC protocol can be implemented in hardware, since its function set is not large. In

addition, a hardware controller should be faster than a software implementation, and CPU time processing

the outgoing frame should be reduced. One possible network interface card (NIC) design using HDLC is

the following:

Figure 1-4: Top-level block diagram, showing one possible application of the HDLC controller.

The controller frames data from the PPP layer before transmitting it to the SONET/SDH framer. In the

receive path, the reverse is true.

1.2 Goals

In this thesis, a byte-oriented HDLC controller suitable for PPP over SONET at OC-3c (155

Mbps), per RFC 1662 and RFC 1619, will be designed, synthesized, and tested for behavior and timing.

The design will be implemented using a field programmable gate array (XC4000-series) from Xilinx, Inc.



The controller will have the required logic to interface with a PMC-Sierra SONET framer, either the

S/UNI-Plus or the S/UNI-622. In addition, the issue of modularity will be addressed, and we will show

how a design with many small modules outperforms one with few large modules.

1.3 Thesis Overview

In the next chapter, an overview of the design flow and the design tools (Xilinx Foundation) will

be given. Chapter 3 discusses the specifications of the design and the interfaces in detail. Chapter 4

describes the final implementation of the controller on a module-by-module basis; the verification of the

implementation is in chapter 5. Finally, chapter 6 reviews the performance results between a monolithic

(few, large modules) implementation versus a modular (many, smaller modules) implementation.



Chapter 2 : Toolkit and Desig n Flow

The design of this HDLC controller required the use of certain software tools. The Foundation

software, from Xilinx, Inc., provides a complete top-down solution, from design entry (VHDL and

schematic entry) to implementation (place-and-route) into a Xilinx FPGA (Field Programmable Gate

Arrays), a device with an internal array of combinational logic blocks, registers, and interconnect resources.

How the various resources behave can be programmed into the device. The use of FPGAs makes sense,

since they are cheaper to build in low quantities versus custom ASICs, and they also can be re-

programmed. Mistakes can be fixed and design improvements can be implemented in the FPGA by simply

re-programming the device.

Associated with the toolkit is a design flow, starting with the determination of specifications and

ending with the implementation of the design in a target FPGA. However, certain steps of the flow may

change, depending on project requirements. We start by reviewing a design flow, then discussing issues

surrounding the design entry, verification, and implementation stages of the flow, in the context of the

Foundation design tool.

2.1 Design Flow

The first step in the design flow is to understand what the design will do and where it belongs in

the context of a larger design, like a network interface card. The functionality of the device can come from

several places: from established standards and specifications like Internet standards documents and Request

for Comments (RFCs); from algorithms, like the fast Fourier transform used in digital signal processing; or

from older designs that need to be revised and improved. The external interfaces of the device under

design depend on other devices and, sometimes, on performance criteria. This is especially true for bus

widths. The internal data bus of the device may be 32-bits wide, but additional logic will be required to

interface the device to an 8-bit device. When these issues are sorted out and the functions are partitioned

into modules, the next step is design entry.

Expressing a design requires at least one of the following, in increasing order of control over the

final implementation: a hardware description language, like VHDL, schematics, or layout at the logic block



level. The method (or combination of methods) used depends on project objectives and constraints.

Typically, this includes what tools are available and the degree of optimization of area and/or speed. For

example, a high performance design may require more work at the layout level, since added control over

the implementation may be required. In our case, however, the main focus will be on design using VHDL.

Functional verification of individual modules and of the whole system of modules is closely

linked with design entry. After a module has been coded, but before synthesis, it is tested with unit or no

delay. Verification is done at both the module and system levels, checking modules' functionality as well

as their interfaces with respect to each other.

The next step in the flow is implementing the design in a target FPGA. This process actually

includes two steps: translation and place-and-route. The translation process converts the wires and gates in

the netlist (from synthesis and/or schematics) into FPGA logic blocks, taking into consideration any

implementation constraints set by the user (pin placement, etc.). The blocks are optimized, and then the

process goes to place-and-route, or PAR. In PAR, the software attempts to find the optimal placement and

connectivity of the logic blocks, taking into consideration net delays and any physical constraints imposed

by the user.

The last step in the design flow is to check that all signals meet worst-case timing requirements.

The place-and-routed design gets worst-case timing information assigned to each logic element, including

logic blocks, buffers, and wires. Then, the simulator runs test vectors on the implemented design, revealing

worst-case timing paths.

Assuming the report files indicate the worst-case delays are within timing specifications, most

signals will satisfy the requirements. Signals that do not may require returning to PAR for additional

iterations or different user constraints, in order to squeeze extra performance from the design. Extremely

poor results that do not respond to changes in PAR require re-evaluation and re-designing of the device.

Timing models of devices that meet the design's various external interfaces should be used, so a more

accurate representation of maximum delays can be created. The test vectors developed for functional

verification also work here.



2.2 Design Entry Issues

By designing in a hardware description language (HDL) instead of schematic entry or FPGA logic

block editing, we can take advantage of a much higher level of abstraction and leave the gate synthesis to a

software compiler. In addition, the behavior of the code can be easily understood. Code is also portable, so

the same code that works on one compiler in general should work with another. Compilers can also

optimize logic expressions and state machines, saving some time and hassle.

A critical drawback to VHDL design is also the dependence on the compiler. [18] describes three

problems with VHDL. First, by using a compiler, the engineer forfeits gate-level control of the resulting

circuit. Since compilers are algorithm-driven, the best one can usually do is to specify parameters of the

algorithm, either area-optimal or a speed-optimal. The LogiBLOX (Foundation) optimizations are device-

specific, and move away somewhat from the idea of VHDL being a "high-level" language. Second, the

compiler output will likely not be the most efficient circuit, because, again, of limitations in synthesis

algorithms. Finally, the result from one compiler may differ from another compiler.

On the other end of the spectrum, directly programming and routing logic blocks means having

absolute control of the design and should give the best results in terms of utilization and performance.

However, little is automated, so more work is required on the part of the designer. The logic equations are

created and optimized by hand, and, for large designs, this process may take an immense amount of time

and is error-prone. Furthermore, small changes in the design, like adding a single logic block in a module,

can affect the rest of the design in dramatic ways. In a worse case scenario, the entire device will require

re-routing. Of the three techniques, logic block editing is the least obvious and portable method. What

behavior the logic blocks and the routing represent is not obvious without a lot of study, and the design is

not compatible with an FPGA of different architecture or size.

Schematic entry lies somewhere between VHDL and layout. Schematics are easier to read and

understand than layout, yet offer more control over the final implementation than VHDL synthesis.

However, altering a schematic when an error is found can still be a tedious and time consuming task,

especially when the design starts to get big. Wires and gates will have to be drawn and re-drawn. Like

layout, the overall behavior of a schematic may not be intuitively obvious from quick observation.

Furthermore, portability to different FPGAs is compromised if a schematic uses device-specific elements,



like specialized clock or input/output buffers. (If the goal is to use device-specific elements, though, then

schematic entry is very useful, since all the elements will be instantiated as a graphic and can be easily

included in the design.)

2.2.1 VHDL Limitations

Several caveats must be observed when using Foundation. First, the VHDL compiler and the

XACTstep place-and-route tool have some incompatibilities. In order to avoid some multiple-driver-per-

line errors under XACTstep, the compiler optimization in the compiler must be turned off for any VHDL

module included in the design. Also, VHDL port names must be kept relatively short (about 8-10

characters or so), else the schematic tool truncates the name, confusing XACTstep. These kinds of

behavior are caused by net-naming problems between the compiler and the implementation tool. Second,

large VHDL modules (in number of gates compiled) tend not to work well in terms of both area and speed.

In fact, the documentation recommends that VHDL modules compile to less than 4000 gates.

For Foundation, some additional benefits come from using VHDL. The compiler offers several

useful libraries that allow adders to be expressed as vector sums (e.g. c <= a + "00001") for readability.

Foundation's LogiBLOX can also detect special logic structures in the VHDL code, such as RAM or

adders, and replace them with pre-optimized modules (LogiBLOX modules may also be instantiated

directly in VHDL code). This optimization is device-specific to Xilinx FPGAs and can take advantage of

special architectural features of the FPGA family, such as dedicated carry logic.

2.3 Verification Issues

In functional verification, the Foundation logic simulator sets the delay to all elements to zero,

though artificial delays can be built into the model via the after expression in VHDL. Test modules can be

written and hooked up to the design to ease testing. For example, said modules may be state machines that

output certain data and will respond to the design under test; however, they need to be compiled with the

rest of the design and must be removed prior to device fitting. Alternatively, command (or script) files

offer a slightly lower level of automation, since they cannot respond to changing outputs from the design,



but can still ease testing. So far, no option was found in Foundation to use the test modules from functional

verification in static timing analysis.

The testing strategy for the HDLC controller is to verify first each functional module individually,

then check systems of modules. The controller design mostly uses state machines for the various modules.

Each state machine is tested by traversing every state and all state transitions. Other non-trivial modules,

like the FCS generators and the scrambler/de-scrambler, are compared to reference designs.

2.4 Implementation (Place-and-route) Issues

The implementation process in Foundation actually includes two steps: translation and place-and-

route. The translation process converts the wires and gates in the netlist into FPGA logic blocks, taking

into consideration any implementation constraints set by the user (pin placement, etc.). The blocks are

optimized, and then the process goes to place-and-route, or PAR. In PAR, the software attempts to find the

optimal placement and connectivity of the logic blocks, taking into consideration net delays and any

physical constraints imposed by the user.

Foundation offers two additional options to PAR to improve results. One is re-entrant routing.

Basically, this tells the PAR software, given the placement of the logic blocks, to re-route the design

additional times, keeping the best result. The other option is multi-pass PAR, where each "pass" uses a

slightly different implementation, and the best ones are saved.



Chapter 3 : Design Specification

3.1 Functional Specification

3.1.1 Basic Design Functions (HDLC specification)

This design performs the basic functionality as specified in RFC 1619 and RFC 1662. The

specified base SONET data rate for PPP over SONET is OC-3, or about 155 Mbps. Since the design

interface between the HDLC controller and the SONET framer is only 8 bits wide, the controller must be

able to sustain at least 19.5 MHz at its output.

When creating an HDLC frame, the controller takes a PPP packet from the PPP module, then it

adds header the standard headers and appends the frame check sequence for the packet. Byte stuffing is

performed over the whole frame, including the header and FCS. Control bytes, Ox7D and Ox7E, found in

the frame are replaced with the two byte sequence Ox7D Ox5D (0x7D) or Ox7D Ox5E (0x7E). The second

byte in the sequence is the original byte XORed with 0x20. Finally, the byte stuffed frame is transmitted to

the SONET framer.

When receiving data from the SONET module, the controller looks for frames among the inter-

frame spacing (flag bytes). Frames less than 6 bytes in length are ignored, since 6 bytes are just enough to

represent a valid HDLC frame (1 byte address, 1 byte control, 4 byte FCS, but no data). The incoming

frame is also checked for errors via another FCS.

Byte de-stuffing continually replaces stuffed sequences by dropping the initial escape byte (0x7D),

and the second byte, XORed by 0x20, is transmitted to the next module. Assuming the transmitter

performs byte stuffing correctly and no transmission errors occur, the receiver should not encounter

sequences Ox7D Ox7E or Ox7D Ox7D. Interestingly, at the receiver, [17] implicitly allows Ox7D 0x7D,

since any byte except Ox7E (which is always invalid) is XORed with 0x20. This leaves Ox7D Ox7E as the

only invalid sequence in byte-oriented HDLC. When the invalid sequence is detected, the Ox7E is assumed

to be the flag byte that marks the end of the current frame, and a stuffing error is signaled to the PPP layer

device. The Ox7E is not XORed.



3.1.2 Extended Design Functions

Functions beyond the basic HDLC specifications include several options. First, the default

headers can be overridden, and the PPP module can provide its own address and control information.

Second, special interface logic is required to interface the controller design to PMC-Sierra SONET framers.

The transmit side of the interface has a data scrambler, based on the x43+1 polynomial, while the receive

side has a module that de-scrambles the incoming data. The scrambler and de-scrambler can be

independently enabled or disabled. The use of the scrambler and de-scrambler is not specified in [15] but is

mentioned in both [11] and [13], which mentions it in the context of ATM transmission.

One particular feature of the PMC-Sierra framers is that if their transmit buffers contain less than

one full ATM cell's worth of data, the framer automatically transmits an "idle" ATM cell. The

transmission of the idle cell will disrupt the correct processing by the receiver HDLC controller. For

example, if an idle cell gets transmitted in the middle of an HDLC payload, then the receiver will assume

the cell is part of the HDLC payload. Hence, the clock frequency of the HDLC controller must be

somewhat higher than the minimum required rate. The design, then, operates at speeds of at least 20 MHz,

producing a data rate of 160 Mbps or above, roughly 4 Mbps above the SONET transmission rate. In turn,

the PPP buffers must be able to provide data fast enough not to starve the HDLC controller and,

consequently, the SONET framer. (The PPP layer could, for example, not signal a start of packet indicator

to the transmit HDLC until an entire packet has been loaded into the PPP buffers on the NIC.)

Received frames that have a byte stuffing error are not silently discarded as described in RFC

1662. They are instead transmitted normally to the PPP module but marked as having a stuffing error.

3.2 Interface Specifications

The HDLC controller design interfaces to two different devices: the SONET framer and the PPP

module (or some higher layer module). The PMC-Sierra application note describes the 8-bit interface

between the HDLC and the SONET module, and the signals are described below. The interface to the PPP

module is designed to be synchronous, to minimize the amount of logic required for the HDLC controller.



3.2.1 Transmit Side

The transmit interface between the PPP module and the controller consists of an 8 bit data path, a

start of packet (SOP) indicator, a default fields (DF) signal, and a scrambler disable (NO_SCR). The PPP

module starts a new transmission by raising SOP and presenting the data byte at the same time. Also, the

DF signal should be asserted or de-asserted for at least one clock cycle. Similarly, the end of a

transmission is indicated through presenting SOP low at the same time as the last data byte, so for a packet

of length n, the SOP signal is high for n-1 clock cycles. The NO_SCR signal can be asserted or de-asserted

at any time. Asserting the signal immediately stops the scrambling function of the HDLC-SONET

interface, but no guarantees can be made that the receiver can determine when the scrambling stopped.

When the SONET framer starts to run out of buffer space, it de-asserts transmit cell available

(TCA, active low), and both the HDLC and PPP modules must respond by holding their outputs for as long

as TCA remains de-asserted. TCA is used to gap the 20 MHz clock that drives the transmit sides of both

the HDLC controller and the PPP module. The framer's internal transmit buffer requires an indicator for

the start of an ATM cell; the HDLC controller must assert transmit start of cell (TSOC) every 54 bytes

transmitted (ATM cell size).

The PPP module and the HDLC controller are on the same (gapped) clock, so the controller

signals ready back to the PPP module. When ready is sampled low, the PPP module should not change its

data and SOP outputs. The design also generates a gapped clock from the 20 MHz reference, and the PPP

module presents signals to the HDLC on this clock.

3.2.2 Receive Side

A byte stream from the SONET module is presented to the HDLC controller one byte at a time.

The receive SONET-HDLC interface uses a receive cell available (RCA) signal to gap a 20 MHz clock that

drives only the receive side of the controller and the PPP module. (RCA and TCA are independent.)

In addition to the 8-bit data bus, the controller uses several other signals to indicate the condition

of the received frame. First, a receive SOP signal is used in the same way as the transmit version. Second,

a valid bit gets attached to each data byte presented; any byte with a valid bit of 0 is not useful data. Third,



S_ERR marks packets that have a stuffing error. Finally, if a packet has no stuffing errors or transmission

errors, it is marked with GOOD_FCS.



Chapter 4 : Design Implementation

Two implementations were created. The original implementation has a single, monolithic state

machine each for the transmitter and receiver, while the final implementation has multiple, small state

machines in a more modular design.

In the original implementation, the transmit state machine serves as header generator, trailer

generator, and byte stuffer, while the receive state machine integrated the byte de-stuffer and the byte

counter. The result is state machines with 20 and 30 states.

8 8

Transmit
(Receive)

ppp ] State Machine SONET

Transmit 8 Transmit
(Receive) Z (Receive)
Interface FIFO

2 8,, Interface

FCS
Generator

Figure 4-1: HDLC block diagram with monolithic state machine. The FCS generator is also different
from the final implementation.

The figure illustrates the data flow and control signal directions for the transmit side, using a FCS generator

that integrates a multiplexor controlled by the state machine. The receive side is very similar, except that

the data paths are reversed. Other differences include a minor change in the FCS generator (no

multiplexor, but a comparator in the module replaces the 8-bit output with a single bit) and control signals

to the PPP interface. In the end, the original implementation did not meet the performance specifications

and required a very large FPGA. A different approach had to be taken.

A faster design of the HDLC controller, the one described detail in this chapter, takes advantage of

small functional modules. Each module is based on a specific aspect of the HDLC framing process. In



addition, they are all implemented using VHDL code and integrated using schematic entry, except where

noted.

4.1 Transmit Side

The transmit side of the HDLC controller maps the PPP packet into an HDLC frame, then sends

the frame to a lower level device, the SONET framer. As previously described, the HDLC frame can be

divided into three parts: header information, including the address and control fields; the PPP data

(minimum of two bytes); and a trailer, consisting of the frame check sequence (FCS) and at least one flag

byte to mark inter-frame space. This side of the controller provides the header and the trailer.

Furthermore, byte stuffing is performed over the entire frame.

This implementation uses multiple modules to form the HDLC frame:

8 Header Trailer 8 Byte
Generator Generator Stuffer

PPP SONET
Transmit Transmit

Figure 4-2: Transmit side HDLC block diagram.

The header state machine interfaces with the PPP-layer device. Both the transmit HDLC controller and the

PPP transmit interface operate on the same clock, generated from the HDLC controller (see Section 4. 1.5

SONET Interface Logic, Transmit Side). The state machine normally transmits the default HDLC address

and control values (OxFF and 0x03, respectively), but that can be disabled, allowing the PPP layer to

bypass header generation (useful when PPP needs to use different address and control values). If no packet

needs to be transmitted, then the header generator state machine transmits flag bytes to the trailer generator

state machine. These bytes are not confused with packet data, because these bytes are not marked as such.

The trailer module manages the FCS generator and transmits the FCS result. Normally, it

transmits bytes from the header module to th the PPP-layer . Both theader module indicates that no more

data are in the packet, the trailer generator tells the header module to wait until it finishes transmitting the



FCS for the current packet. When the header generator presents a byte not marked as packet data, the byte

is ignored and merely transmitted to the byte-stuffer, without modification or transmission to the FCS

generator. At the conclusion of a frame, one flag byte is inserted into the byte stream. The next frame can

start immediately after the single flag byte.

The byte-stuffer examines data from the trailer generator. If the byte is marked as packet data,

then if it is either Ox7E or Ox7D it is stuffed into a two byte sequence (Ox7D Ox5E or Ox7D Ox5D,

respectively). Otherwise, the module ignores the byte and transmits it to the SONET interface. Typically,

only inter-frame flag bytes are not marked as packet data and, therefore, not stuffed.

4.1.1 Header Generator

The transmit header generator (HG) determines what type of header information - the Address and

Control fields of the HDLC frame - to include. Normally, the header generator provides the default values

for Address and Control (OxFF and 0x03, respectively). Alternative values can be used if the header

generator is set to bypass mode.



no new packet;
send Ox7E

IDLE

new packet,
use default

fields; send OxFF

new packet,
don't use DF end of packet;

default fields; send Ox7E
send PPP byte

send 0x03

PASS

more data to transmit;
send PPP byte

Figure 4-3: Transmit header generator state machine.

After reset, the module waits for the PPP layer to signal the start of a new packet, through the start

of packet (SOP) signal, asserted at the same time as the first byte of data. Depending on whether the HG is

in header bypass mode or not, the next state is either DF or PASS. If the mode is selected (default fields

asserted), then the first byte of data should be the HDLC address field, and the next state is PASS.

Otherwise, the next state is DF. The PPP layer signals an end of packet condition by de-asserting SOP

while presenting the last byte of the packet. Since only one signal is used to signal both start and end of a

packet, the PPP layer must present at least two bytes. The first byte is presented with SOP asserted, the

second byte with SOP de-asserted.

The module uses a ready signal to indicate whether the PPP layer should present the next data

byte. If the PPP layer samples ready de-asserted, then the previous values of the PPP data byte, SOP, and

DF should be held until ready is re-asserted. The module de-asserts the signal when transmitting default

fields. There is no option for the PPP device to pause packet processing in the HDLC.



The HG sends its 8-bit output to both the transmit FCS module and the trailer generator. The HG

also generates a start of packet indicator for the trailer module. It is essentially a re-timed version of the

SOP signal generated by the PPP module.

Modules later in the data path, such as the trailer generator and byte stuffer, communicate with the

HG through their own ready signals. The HG holds its outputs when either module de-asserts their ready

signals.

CLOCK

RESET

TDATIN(8) OxXX ADR CTR PPPPPPa

SOP

DF

TGREADY

TDATOUT(8) OxXX Ox7E ADR CTR PPPxFF

HGREADY

HGSOP

Figure 4-4: Transmit header generator timing diagram.

In the timing diagram, two packets are presented at the input port of the HDLC controller by the

PPP module. The first packet, ADR-CTR-PPP1, shows a case where the default fields (signal DF) are not

used, immediately followed by a packet using default fields. The trailer generator uses TGREADY to

make the PPP device hold its current value on TDAT_IN and the HG to hold OxFF at its output. The byte

stuffer's ready signal (not shown) has a similar effect as TGREADY. The clock is actually a gapped clock

generated in the SONET FIFO manager, described elsewhere.



4.1.2 Trailer Generator

The trailer generator (TG) manages the transmit FCS generator through reset and clock enable

control signals. Furthermore, at the conclusion of a PPP packet, indicated by the HG de-asserting its SOP

signal, the TG transmits the FCS and a flag byte to end the HDLC frame.

SOP from HG
de-asserted

SOP not
re-asserted

SOP
re-asserted

Figure 4-5: Trailer generator state machine.

The default state is IDLE, where the HG and PPP modules are holding their SOP signal de-

asserted. In this state, the TG transmits whatever HG presents at its input port to the next module, the byte



stuffer. It also presets the FCS register. When the PPP module asserts SOP, the TG releases the preset

signal to the FCS. This action is based on the PPP-SOP, because the FCS consumes data directly from the

HG. Therefore, the preset signal must be de-asserted early. The TG remains in state NP, transmitting data

unchanged to the byte stuffer, as long as SOP is asserted.

When the HG presents the last byte of data, it also de-asserts its SOP, causing the TG state

machine to go from NP to EP. After that final byte gets transmitted, the state machine disables the FCS

clock, holding the value of the FCS register. Then, the TG takes the contents of the FCS register and

transmits its complement over 4 clock cycles, one byte transmitted per clock, least significant byte first.

After state FCS, the state machine marks the end of the frame with a flag byte and checks for a

new packet (SOP asserted). If one is detected, then the next state is NP; the TG resets the FCS, and its next

state is NG (as above). Otherwise, the next state is IDLE.

Since the TG cannot accept any data when transmitting the FCS, it uses two ready signals, one

each to the HG and the PPP device, to communicate when new data can be presented. The ready signal

comes to the PPP device one state (clock) earlier than the one to the HG.

In any state, the TG does not transition to a new state and holds its output values when the byte

stuffer indicates it is not ready for new data.



CLOCK

RESET

TDATIN(8) OxXX Ox7E ADR CTR PPP1 OxF

PPPSOP

HGSOP

TDATOUT(8) OxXX x7E ADR CTR PPP1 FCSO FCS FCS2 FCS3 x7E

TGSOP

READY PPP

READY HG

FCS PRESET

FCSCLKEN

Figure 4-6: Trailer generator timing diagram.

The diagram above shows the same transaction as the one for the header generator. The two

READY signals go either the PPP or the HG modules, depending on the suffix of the signal name.

4.1.3 Byte Stuffer

At this point, the HDLC header and trailer, along with the frame payload, have been assembled.

The next step is to apply byte stuffing over the whole frame, before transmission to the FIFO manager for

the SONET framer. The byte stuffing mechanism in this HDLC controller only stuffs the flag (0x7E) and

escape (0x7D) bytes.

Under normal operation, the header generator transmits the flag byte during idle periods. Idle

periods are recognized through yet another start of packet signal, this time from the trailer generator.

Depending on the state of the SOP signal from the TG, the transmit byte stuffer (TBS) can ignore a data

byte or compare it to the reserved values Ox7E and Ox7D and perform byte stuffing, if necessary.



SOP not detected;

transmit stuffed
flag byte

transmit stuffed
escape byte

Figure 4-7: Byte stuffer state machine.

While in the IDLE state, the state machine checks the condition of the SOP signal, sent from the

trailer generator. If asserted, then the current data byte is compared to Ox7E and 0x7D. A match to Ox7E

sends the state machine to state NPF, while Ox7D (Escape) is transmitted to the FIFO manager. Similarly,

a match to Ox7D makes the state machine transition to NPE, and Ox7D is also transmitted. At the next

clock, the respective stuffed version (0x5E or Ox5D) gets transmitted, and the TBS returns to IDLE.

Since a single data byte can be transmitted as two bytes, the TBS needs a way to pause the TG,

HG, FCS generator, and PPP device, so no new data gets presented. A single ready signal is fed back to

the transmit modules, including the PPP device. When de-asserted, the modules hold their current outputs

and do not change states.

CLOCK
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TGSOP
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BSREADY

7
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Figure 4-8: Byte stuffer timing diagram.
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The timing diagram shows an HDLC frame with payload Ox7E Ox7D. The first Ox7E in the

timing requires one clock cycle to effect BSREADY, so the trailer generator presents the next byte, Ox7D.

This time, it holds Ox7D while the byte stuffer transmits the stuffed sequence Ox7D Ox5D.

4.1.4 Transmit Frame Check Sequence (FCS) Generator

Since the HDLC operates on a byte-wide data path, the transmit frame check sequence generator

(TFCS) also needs to work on a byte-wide basis. An XOR tree was derived from Morse's article that

describes how CRCs work and the basis of a byte-wide CRC implementation.

clock reset
enable

data from 8
HG / 32 bit

XOR 32 / FCS A 32/, contents of FCS
Tree reg. / register to TG

32/

clock

Figure 4-9: Diagram of FCS generator.

The tree comes from the linear feedback shift register (LFSR) implementation of the 32-bit CRC,

where data are shifted bit-wise into the shift register with XORs between certain flip-flops. The XORs

correspond to the generator polynomial; in this case,

G(x) = x
32 +x

26 +x
2 3 +x

22 
+x

16  
x12 -x

11 
-x

10  x8 +x
7 

+x
5 

+x
4  

X2 +X +1

The LFSR contains the value of the FCS of all the bits shifted in since the last reset or preset, so if

8 bits are shifted in, the contents of the LFSR should be the FCS for one byte of data.



Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17 R16

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R15R14R13R12R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 RO

Figure 4-10: Contents of the FCS register, just after preset and before any bits get shifted in. R31
through RO are the initial values of the FCS. In this case, they are all '1'. The highlighted bit

positions indicate the terms of the CRC polynomial.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TO R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17

TO TO TO TO TO TO TO TO TO

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R16R15R14R13R12R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

TO TO TO TO

Figure 4-11: One bit of data has been shifted in. The LSB gets shifted out and XORed with the
message bit. The result (TO) is fed back to the register.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T1 TO R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18

T1 TO TO T1 TO TO T1 TO TO T1 TO TO TO

T1 T1 T1 T1 T1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R17 R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2

T1 TO T1 TO TO T1 TO

T1

Figure 4-12: The register after the second shift.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T1 TO TO TO T1 TO TO TO R31 R30 R29 R28 R27 R26 R25 R24

T7 T1 T1 T4 T3 T1 T1 T2 T3 T2 T2 T3 T1 TO TO TO

T6 T5 T5 T4 T2 T2 T4 T4 T3 T4 T4 T2 T1 T1 T2

T7 T6 T6 T5 T3 T3 T5 T6 T5 T5 T6 T3 T2 T3 T3

T7 T7 T4 T5 T7 T7 T6 T7 T7 T5 T4 T4 T4

T6 T6 T6 T5 T5

T7 T7 T6

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R23 R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 R11 R10 R9 R8

T2 T1 TO TO T3 T2 T7 T1 TO T4 T1 TO T1 TO TO T2

T3 T2 T1 T4 T6 T5 T5 T3 T2 T2 T1 T3

T7 T6 T5 T7 T6 T4 T3 T5 T4

T7 T6

Figure 4-13: The final value of the register after a total of 8 shifts. The terms in each column are
XORed together to get the new value of the register bit. Duplicate terms have been removed from

the chart.



Figures 2 through 5 use the same notation and are based on the derivation of the byte-wide implementation

of the 16 bit CRC in (Morse 86).

Figure 9 shows the contents of the FCS register immediately after preset, before any data has been

shifted in. For FCS calculations, the register is preset to OxFFFFFFFF. In Figure 10, the least significant

bit of the data gets shifted in. DO, the LSB of data, is XORed with RO, the 0 th bit of the register, and the

original contents of the register (R31 through RO) gets shifted to the right by 1 bit. RO falls off the end.

TO, an abbreviation for DO XOR RO, gets applied to the terms shown in Figure 3, so that bit 31 of the new

FCS is TO, the new bit 30 is R31 XOR TO, the new bit 29 is R29 XOR TO, and so on.

When the next data bit gets shifted in, the same process applies, as shown in figure 11. Figure 12

is the result of 6 more shifts, for a total of 8 data bits shifted in. The lowest 8 bits of the original register

have been shifted out, and the remaining terms rely only on those original 8 register bits and 8 bits of data.

The logic for each bit of the XOR tree comes from each column of figure 5, where all the terms are XORed

together. For example, the new bit 15 is R23 XOR T2 (R2 XOR D2) XOR T3 (R3 XOR D3) XOR T7 (R7

XOR D7).

CLOCK

TDATIN(8) OxX Y ADR CTR 07D FCSO FCS1 YFCS2 FCS x X

PRESET

ENABLE

FCSREG(32) Ox FFF Y ADR C R Yx7D FCSO FCS1 FC 3

Figure 4-14: FCS timing diagram. The data intended for the register are ADR, CTR, Ox7D, and the
FCS bytes.

The FCS module uses a synchronous preset to initialize the register. When the enable signal goes

low, the FCS register does not get updated by either incoming data or the preset signal.

4.1.5 SONET Interface Logic (Transmit side)

The interface logic, taken from the PPP over SONET application note from PMC-Sierra, performs

several functions. First, it generates the gapped clock that drives the remainder of the transmit portion of

HDLC controller. Second, it asserts transmit start of cell (TSOC) to the SONET framer every 54 clock



cycles of the 20 MHz reference clock (as opposed to the gapped clock). TSOC is required for proper

loading of the internal buffers of the SONET framer. Finally, data scrambler scrambles outgoing HDLC

data, based on the X4 3+1 polynomial (also applied to ATM cells over SONET). The scrambling process

may be disabled.

The gapped clock is derived from the 20 MHz reference clock and the active low transmit cell

available (TCA) signal from the SONET framer by ANDing the two together. TCA is registered on the

falling clock edge before going through an AND gate with the clock.

TCA D Q

GAPCLK

CLOCK

Figure 4-15: Transmit GAPCLK generator.

The output of the AND gate drives an internal global low-skew buffer in the FPGA for faster clock

distribution. The GAPCLK is also fed through fast output blocks to the PPP module.

TSOC comes from a simple 6 bit resettable counter that asserts TSOC when it counts to 53

(starting from 0). The implementation of the counter is done through VHDL libraries that compile into

device-specific optimized circuits.

INIT S53

TSOC - TSOC

TCA 00 ENB

CLOCK )O CLOCK

Figure 4-16: TSOC counter.

The enable signal for the counter is the TCA signal, also used in the GAPCLK generator.



Finally, the data scrambler takes the original data stream and passes it through a combination of

delay elements (registers) and an XOR gate (though the module is still implemented in VHDL), producing

scrambled data.

STDAT[7:0]

TDAT[7:O ] D[7: ] D[7: ]

D[7:0] D[7:0]
Q[7:0] Q[7:0]

D[7:0] D[2:0]

Q[7:3] Q[2:0]

SDAT[4:0] Q[2:0]

CLOCK

SDAT[7:5]

Figure 4-17: Transmit data scrambler. The data register for the output (STDAT[7:0]) and the
enable signal are not shown.

The output of the last (3-bit) register becomes the high 3 bits of the input to the XOR gate; the high 5 bits

of the next-to-last register becomes the low 5 bits. The synchronous enable signal resets all registers.

4.2 Receive Side

The receive side of the HDLC controller extracts HDLC frames from a byte stream presented by

the physical layer and verifies the FCS. It also notifies the PPP layer of frames that have stuffing errors

(0x7E followed by Ox7D is the only invalid stuffed sequence). Frames that are too short to contain header

and FCS information are ignored.



Figure 4-18: HDLC receive side block diagram.

The byte de-stuffer state machine takes the byte stream from the SONET FIFO interface and

searches for a escape byte (0x7D). It then looks at the next byte and outputs the de-stuffed value (the

original byte XORed with 0x20) to the byte counter. A stuffing violation is noted by the state machine, but

it continues to de-stuff data. Also, the byte de-stuffer detects when a new frame starts and notifies the byte

counter.

The byte counter rejects frames that are less than 6 bytes; a frame of exactly 6 bytes contains only

the address, control, and FCS fields of the HDLC frame. The counter state machine passes the address and

control bytes (and any data bytes) up to the PPP interface, and it is up to PPP to determine what to do with

the data stream. The counter also manages the receive FCS generator, using clock enable and register

preset signals to guarantee proper information gets shifted into the FCS.

The FCS compare unit simply matches the contents of the FCS register against the "good" FCS

value (OxDEBB20E3). If the FCS matches, then the comparator asserts a signal to the PPP device. The

signal is otherwise de-asserted.

4.2.1 Byte De-stuffer

The receive byte de-stuffer (DS) serves two main functions. First, it (obviously) de-stuffs any data

coming in from the SONET framer. However, when the sequence Ox7D Ox7E is received, the DS signals a

stuffing error to the byte counter. Second, the DS signals the start of a new HDLC frame. The first non-

flag byte following a flag byte is assumed to be the first byte of a new frame.



no start of frame
(all data are flag bytes)

IDLE

data not Ox7E nor data is Ox7D; Ox7E received;
Ox7D; signal signal SOP but not de-assert SOP

Ox7E received; SOP and VALID VALID de-assert SOP
signal end of and assert byte

packet stuff error signal

NPNS NPS
data is not Ox7D;
assert VALID and
output data XORed

with 0x20

data is Ox7D; de-
assert VALID

Figure 4-19: Byte de-stuffer state machine.

When in IDLE, the DS ignores Ox7E, waiting for either Ox7D or any other value. If a received

byte is not Ox7E, then the state machine assumes that byte is the first byte of a new HDLC frame. The

value Ox7D is the beginning of a stuffed sequence, so the state machine goes to NPS from IDLE when it is

detected. Then (NPS to NPNS), the next received byte gets XORed with 0x20 before getting transmitted to

the receive byte counter. As long as Ox7E is not received, the DS passes any bytes to the byte counter. An

escape byte causes the state machine to return to NPS for de-stuffing. The DS can also transition to NPNS

directly from IDLE, when anything other than a flag byte or escape byte is received.

At the beginning of a frame, the module signals start of packet (or frame) to the byte counter.

Used in combination with valid byte, the byte counter should see a de-stuffed byte stream. In other words,

since the DS transmits all bytes to the byte counter that it receives, it de-asserts valid byte when it transmits

an escape byte. That way, the byte counter will not interpret escape bytes as part of the frame.

The DS assumes the flag byte received just after an escape byte prematurely marks the end of a

frame (HDLC stuffing error). The next byte can be the start of a new frame, if its value is other than Ox7E;

therefore, state NPS transitions to IDLE if Ox7E follows Ox7D. The module, for at least one clock cycle,

asserts stuff error while de-asserting start of packet.



CLOCK

RDATIN(8) x7E Ox7D E x7D x20 x7D D 0x02 0x03 004

RDATOUT(8) Ox7E Ox7D x7E Ox7D x Ox7D Ox7D Ox 0x02 0x03

DS_SOP

DSVALID

DS_SERR

Figure 4-20: Byte de-stuffer timing diagram.

As shown in the figure, bytes that are not part of the packet (like the escape bytes before Ox7E,

0x00, and Ox7D) are presented with VALID low. Any non-flag byte following a flag byte is assumed to be

the start of a new packet, while a stuffing error also ends a frame (0x7D Ox7E).

4.2.2 Byte Counter

The receive byte counter (RBC) follows the byte de-stuffer, signaling start of packet to the PPP

module only when the frame is at least 6 bytes long and managing the receive FCS module (like the

transmit side, through a clock enable and a register preset). A 6-byte HDLC frame includes only the two

byte header and the FCS, but it is up to the PPP module or some higher level module to decide whether to

discard the frame. HDLC frames shorter than 6 bytes are not accepted, and start of packet is not signaled.

The other outputs from the BDS, valid, stuff error, and the data byte, are not processed. Instead, they are

merely pipelined through the module; the design of the byte counter is a mix of VHDL and schematics.



BDS-SOP de-asserted

asserted

-SOP asserted

asserted;
preset receive
FCS and de- BYTE3

assert RBC-SOP

BDS-SOP asserted
BYTE4

BDS-SOP asserted

BYTE5

BDS-SOP asserted;
BDS-SOP BYTE6 assert RBC-SOP

asserted

Figure 4-21: Byte counter state machine.

In the IDLE state, the RBC waits for the byte de-stuffer to signal a start of packet (SOP) while

presenting the first byte of a new HDLC frame. Once that happens, SOP must remain asserted for 5

additional clock cycles. At the last transition (state BYTE5 to BYTE6), the RBC start of packet signal gets

asserted to the PPP module. At the same time, the first byte of data that caused the transition from IDLE to

BYTE1 is also available to the PPP module.
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Figure 4-22: Byte counter timing diagram (1/2).
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Figure 4-23: Byte counter timing diagram (2/2).

The two timing diagrams show the interaction between the byte de-stuffer (DS) and the byte

counter. The HDLC frame used for the DS timing diagram is used again. The byte counter's SOP output

is not asserted for the (short) frame with the byte stuffing error; however, it is asserted for the next frame,
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with VALID de-asserted for escape bytes. The PPP module should not "see" any bytes not marked with

VALID; bytes not marked with SOP may be ignored.

4.2.3 Receive Frame Check Sequence (FCS) Generator and Comparator

The receive FCS circuit is identical to the transmit circuit, except for a comparator. The additional

module compares the register with the special value OxDEBB20E3. If a match is made, then GOOD_FCS

gets asserted, otherwise it stays low.

clock
enable preset

data from 8
HG 32

XOR 3 bit
XOR FCS " = Oxdebb20e3 I GOOD_FCS

reg

32

clock

Figure 4-24: Diagram of FCS generator and comparator.

CLOCK

TDATIN(8) xXX ADR CTR 7D CSO FCS1 FCS2 FCS3 Ox E-E

PRESET

ENABLE

GOOD_ FCS

Figure 4-25: FCS timing diagram. Bytes FCSO through FCS3 are "correct" for the frame, causing
GOOD_FCS to go high.

Unlike the FCS register, the comparator has no reset or enable. It always compares the register,

even if the register contains an undefined value. This also means that the GOOD_FCS signal is asserted for



only one clock cycle, as seen in figure 24, but it is timed so that GOOD_FCS, SOP low, and the last byte of

data are all presented at the same time.

4.2.4 SONET Interface Logic (Receive side)

The SONET interface logic in the receive path does not need to assert any control signals to the

HDLC controller. In fact, the logic only implements another gapped clock and a de-scrambler, and the

receive start of cell (RSOC) signal is ignored.

The receive gapped clock is also derived from the 20 MHz reference clock. The gapping signal is

the receive cell available (RCA) signal from the SONET framer, asserted when at least one ATM cell's

worth of data is available in the framer's buffer.

RCA D Q

GAPCLK

CLOCK

Figure 4-26: Receive GAPCLK generator.

Unlike TCA, RCA is active high, so the non-inverted output of the flip-flop is used. The GAPCLK

generator behaves identically to the transmit version.

The data de-scrambler reverses the scrambling process in the transmit interface. The process is

similar to scrambling data, except that the input to the first register comes from the input data stream

(RDAT) instead of the output data stream (DSRDAT).



RDAT[7:0]

CLOCK I I

SDAT[7:5]

Figure 4-27: Receive data scrambler. The data register for the output (DSRDAT[7:0]) and the
enable signal are not shown.

Like the scrambler, the de-scrambler can be disabled. Re-activating the circuit, though, will cause some

lost data while it re-synchronizes to the data stream.



Chapter 5 : Testing

As discussed in chapter 2, an important part of design is verification. The HDLC design was

tested first for functionality and signals occurring at the right clock cycles, then to make sure all delays

fitted in the clock period. For the most part, the testing was done with command files, so incremental

changes could be re-tested without rewriting the test inputs.

5.1 Functional Verification

Individual state machine modules were tested using test vectors that covered all states and state

transitions. Since the design included only small state machines, the process was straightforward.

The FCS generators, on the other hand, were somewhat more interesting. The reference design, a

software table lookup, did not immediately translate into an XOR tree; testing by matching all 256 entries

of the table is accurate but might be more than necessary. Instead, 10 8-bit vectors, 8 one-hot encoded, one

all-zeros, and one all-ones, tested every bit of the FCS register through a process where the register was

reset, then one of the bytes was clocked in. The value was cleared after 2 clocks; then, the next byte could

be loaded.

Most of the time, a command file drove the inputs of modules and systems. For testing the entire

chip, though, a PPP-layer testing module was written to interact with the transmit side. The output of the

chip was looped back to the input of the receive side, though, to simultaneously test both data paths of the

HDLC controller. (Both the transmitter and the receiver were tested separately, nonetheless.) The PPP

module, a state machine, outputted one data byte per state and could respond to stimulus generated by the

controller. For example, the ready signal asserted low would prevent the PPP module from presenting the

next data byte. Since functional verification does not take into account delays and chip area, the test

module could be as large as required.

Errors caught during this stage tended to be control signals that were off by one or more clock

periods. Especially problematic were FCS enable and preset signals and ready signals. FCS enable signals

prevented data from being loaded into the register, while the preset signal cleared the register prematurely.

Incorrectly timed ready signals caused the transmit side to sample a data byte twice from the PPP module.



5.2 Static Timing Analysis

Running the same test vectors as in functional verification through the implemented chip should

uncover some more design errors; the timing analysis done by the software cannot be considered as a

performance guarantee. This was evident when the timing report indicated that the chip had a worst-case

combinational path short enough to operate at 20 MHz, yet, when simulated at that speed, the outputs of the

scrambler and de-scrambler were not fast enough. This caused subsequent modules to register invalid

values and ruin the overall operation of the device. Since no control signals run between the scrambler/de-

scrambler and the rest of the HDLC controller, an 8-bit register inserted after the XOR gate fixed the

problem.



Chapter 6 : Results and Conclusion

6.1 Implementation Results

The results from the two implementations of the HDLC controller (original and revised) can be

measured in maximum clock frequency, as reported by the timing analyzer tool, and the minimum size

FPGA required to fit the design. All targets are the fastest speed grade of their respective models. The best

performance results (reported below) took advantage of re-entrant routing. No other PAR options were

used.

Original Revised

Modules 2 transmit, 2 receive 4 transmit, 3 receive
FPGA XC4036XL-1 XC401 O0XL-1

Max. logic blocks 1,296 400

Logic block usage 71% 76%
Max. Freq. <= 10 MHz <= 30 MHz

Implementation runtime -30 min. - 3 min.

Figure 6-1: Performance of the original (monolithic) implementation versus the revised (modular)
implementation. Maximum logic block counts come from the XC4000E and XC4000X series product

specification sheets. The module count does not include modules identical to both the original and
revised chips, like the SONET interface logic.

The original design required the largest FPGA supported by the Foundation tool suite. It used over 900

combinational logic blocks (CLBs) of the FPGA, yet could not operate faster than 10 MHz, only 50% of

the specification, even with additional routing iterations. Implementation runtime, the CPU time required

from netlist mapping to end of PAR, was significantly longer than the revised design.

Once a new design with more but smaller modules was implemented, increased performance

surfaced in every category. Most importantly, the maximum clock frequency was reported at 30 MHz,

significantly above the specification of 20 MHz, where the original implementation achieved only 10 MHz.

The software runtime was reduced, since fewer CLBs were required. A smaller design also meant lower

PAR time.

6.2 Conclusions

We can conclude from these vastly different performance results that designing using smaller

modules in VHDL will produce a better implementation. In just about every respect the revised design beat



the original design: in size, speed, and software runtime. Significantly, the new design reduced area by

75% and increased speed by 200%. Furthermore, smaller modules are easier to individually test, although

at a cost of additional inter-module interfaces to design and verify.

It is unclear whether the difference in performance was solely derived from the change in design

strategy or from a combination of factors. A competing VHDL compiler may give better netlist results,

leading to a different, possibly faster or smaller, PAR result; VHDL optimization was turned off for

Foundation, because of incompatibilities between the compiler and the XACTstep tool.



Appendix A: Code Listing

The code for the receive FCS generator is identical to the transmit generator and not included here.

-- XMITHG.VHD

-- transmit header generator

-- appends default headers to

-- last updated: 1/7/98

library ieee;
use ieee.std_logic_l164.all;

entity xmithg is
port (

clk
reset

tdatin
sop
df
bsready
tgready
hgsop
ready
tdat_out

PPP packets, if necessary

: in std_logic;
: in std_logic;

in std_logicvector(7 downto 0);
in stdlogic; -- start of packet
in std_logic; -- default fields
in std_logic; -- byte stuffing ready
in std_logic; -- tail generator ready
out std_logic; -- HG start of packet
out std_logic;
out stdlogic_vector(7 downto 0)

end xmithg;

architecture xmithg_arch of xmithg is

signal cs
constant IDLE
constant NDF

: std_logic_vector(2 downto 0);
: std_logic_vector(2 downto 0)
: stdlogic_vector(2 downto 0)

constant PASS : std_logicvector(2 downto

constant flagbyte

:= "100";
:= "010"; -- new packet with default

-- fields
0) := "001"; -- copy tdat_in to

-- tdat out

: std_logicvector(7 downto 0) := "01111110";

begin

process (clk)
begin

if (clk'event and clk='l') then
if (reset = '1') then

hgsop <= '0';

tdat_out <= flag_byte;
ready <= '1';
cs <= IDLE;

else
if (bsready = '1') then

case (cs) is
when IDLE =>

if (sop = '1') then

hgsop <= '1';
if (df = '1') then

tdatout <= "11111111";
ready <= '0';

cs <= NDF;
else

end if;

tdat_out <= tdat_in;
cs <= PASS;

else
ready <= '1';



hgsop <= '0';
tdat_out <= flag_byte;

end if;
when NDF =>

if (tgready = '0') then
-- fcs tranmission @ TG
tdat_out <= "11111111";
cs <= NDF;

else
ready <= '1';
tdat_out <= "00000011";
cs <= PASS;

end if;
when PASS =>

tdat_out <= tdat_in;
if (sop = '0') then -- end of packet

hgsop <= '0';
ready <= '0';
cs <= IDLE;

else
ready <= '1';
cs <= PASS;

end if;
when others =>

hgsop <= '0';
tdat_out <= flag_byte;
ready <= '1';
cs <= IDLE;

end case;
end if;

end if;
end if;

end process;

end xmithgarch;



-- XMITTG.VHD

-- transmit trailer generator
-- manages the FCS module and appends the FCS when appropriate

-- 1/28/98: added ready_hg, because ready transition from 0 to 1 needed to be 1 clock
earlier for PPP than HG. (in states FCSx)

-- last updated 1/28/98

library ieee;
use ieee.std_logic_l164.all;

entity xmittg is
port (

clk : in std_logic;
reset : in std_logic;

tdat_in : in std_logic_vector(7 downto 0);
freg_in : in std_logic_vector(31 downto 0); -- FCS register
sop : in std_logic;
hgsop : in std_logic;
bsready : in std_logic; -- byte stuffing ready
tgsop : out std_logic; -- high when tranmitting a packet; low otw
fclkenb : out stdlogic; -- fcs clk enable
fpreset : out std_logic; -- fcs preset
ready : out std_logic; -- ready signal for PPP
ready_hg : out std_logic; -- similar to ready for PPP but

-- delayed 0->1 transition
tdat_out : out std_logic_vector(7 downto 0)

end xmittg;

architecture xmittg_arch of xmittg is

signal cs : std_logicvector(7 downto 0);
constant IDLE : std_logic_vector(7 downto 0) := "10000000";
constant NP : std_logic_vector(7 downto 0) := "01000000"; -- new packet
constant EP : std_logic_vector(7 downto 0) := "00100000"; -- end packet
constant FCSO : std_logic_vector(7 downto 0) := "00010000";
constant FCS1 : std_logic_vector(7 downto 0) := "00001000";
constant FCS2 : std_logic_vector(7 downto 0) := "00000100";
constant FCS3 : std_logic_vector(7 downto 0) := "00000010";
constant CHK : std_iogic_vector(7 downto 0) := "00000001";

constant flag_byte : std_logic_vector(7 downto 0) := "01111110";

begin

process (clk)
begin

if (clk'event and clk='l') then
if (reset = '1') then

tgsop <= '0';
fclkenb <= '1';
fpreset <= '1';
ready <= '1';
ready_hg <= '1';
tdat_out <= flag_byte;
cs <= IDLE;

else
if (bsready = '1') then

case (cs) is
when IDLE =>

tgsop <= '0';
fclkenb <= '1';
ready <= '1';
ready_hg <= '1';
tdat_out <= tdat_in;
if (sop = '1') then -- new packet

fpreset <= '0';



Cs <= NP;
else

fpreset <= '1';
cs <= IDLE;

end if;
when NP =>

tdat_out <= tdat in;
if (hgsop = '0') then -- end packet

fclkenb <= '0';
ready <= '0';
ready_hg <= '0';
cs <= EP;

else
tgsop <= '1';
cs <= NP;

end if;
when EP =>

tdat_out <= freg_in(7 downto 0) xor
"11111111";

cs <= FCSO;
when FCSO =>

tdat_out <= freg_in(15 downto 8) xor
"11111111";

cs <= FCS1;
when FCS1 =>

tdat_out <= freg_in(23 downto 16) xor
"11111111";

cs <= FCS2;
when FCS2 =>

ready <= '1';
fclkenb <= '1';
fpreset <= '1';
tdat_out <= freg_in(31 downto 24) xor

"11111111";

cs <= FCS3;
when FCS3 =>

tgsop <= '0';
readyhg <= '1';
fclkenb <= '1';
fpreset <= '0';
tdat_out <= flag_byte;
--cs <= IDLE;
cs <= CHK;

when CHK => -- check for new packet
if (hgsop = '1') then -- new packet

tgsop <= '1';
tdat_out <= tdat_in;
Cs <= NP;

else
fpreset <= '1';
cs <= IDLE;

end if;
when others =>

fclkenb <= '1';
fpreset <= '1';
ready <= '0';
ready_hg <= '0';
tdat_out <= flag_byte;
cs <= IDLE;

end case;
end if;

end if;
end if;

end process;

end xmittg_arch;



-- XMITBS.VHD

-- transmit side byte stuffer

-- last updated: 1/28/98

library ieee;
use ieee.std_logic_l164.all;

entity xmitbs is
port (

reset : in std_logic;
clk : in std_logic;

tdat_in : in std_logic_vector(7 downto 0);
sop_in : in std_logic;
ready : out std_logic;
tdat_out : out std_logicvector(7 downto 0)

end xmitbs;

architecture xmitbs arch of xmitbs is

signal cs : stdlogicvector(2 downto 0);
constant IDLE : std_logic_vector(2 downto 0) := "100";
constant NPF : std_logic_vector(2 downto 0) := "010";
constant NPE : std_logic_vector(2 downto 0) := "001";

constant flagbyte : std_logic_vector(7 downto 0) := "01111110";
constant esc_byte : std_logic_vector(7 downto 0) := "01111101";
constant s_flag_byte : stdlogic_vector(7 downto 0) := "01011110";
constant s_esc_byte : stdlogic_vector(7 downto 0) := "01011101";

begin

process (clk)
begin

if (clk'event and clk='l') then
if (reset = '1') then

ready <= '1';
tdat_out <= flag_byte;
cs <= IDLE;

else
case (cs) is

when IDLE =>
if (sop_in = '1') then -- is SOP low, ignore

-- tdatin

if (tdat_in = flag_byte) then
tdat_out <= esc_byte;
ready <= '0';

cs <= NPF;
elsif (tdat_in = esc_byte) then

tdat_out <= esc_byte;
ready <= '0';
cs <= NPE;

else
ready <= '1';

tdatout <= tdat_in;
cs <= IDLE;

end if;
else

tdat_out <= tdat in;

cs <= IDLE;

end if;
when NPF => -- stuff a flag byte

ready <= '1';
tdat_out <= s_flagbyte;

cs <= IDLE;
when NPE => -- stuff a esc byte

ready <= '1';



tdat_out <= s esc_byte;
cs <= IDLE;

when others =>
ready <= '1';
tdat_out <= tdat_in;
cs <= IDLE;

end case;
end if;

end if;
end process;

end xmitbs arch;



-- XMITFCS.VHD

-- Transmit FCS generator; identical to receive fCs generator

-- 1/18/98: updated bits 6 15

-- last updated: 1/25/98

library ieee;
use ieee.std_logic_l164.all;

entity xmitfcs is
port

clk
preset

tdatin
clkenb
bsready
freg_out

16 20 21 23 24

: in std_logic;
: in std_logic;

: in std_logicvector(7 downto 0);
: in std_logic;
: in std_logic;
: buffer std_logicvector(31 downto 0)

end xmitfcs;

architecture xmitfcs_arch of xmitfcs is

constant initval: STD_LOGIC_VECTOR(31 downto 0)
"iiiiiiiiiiiiiiiiiiiiiiiiiiii11111111111111111111111111111111i";

begin

SYNC_PROC: process (clk)
begin

if (clk'event and clk='l') then
if (preset = '1') then

freg_out <= init_val;
else

if (clkenb = '1' and bsready = '1') then
-- generate the next value of FCS register
freg_out(31) <= --

(tdatin(l)
(tdatin(7)

freg_out(30) <= --

(tdatin(0)
(tdat_in(l)
(tdatin(6)
(tdat_in(7)

fregout(29) <= --

(tdat_in(0)
(tdat_in(l)
(tdatin(5)
(tdat_in(6)
(tdatin(7)

freg_out(28) <=--
(tdat_in(0)
(tdat_in(4)
(tdat_in(5)
(tdatin(6)

freg_out(27) <= --

(tdat_in(l)
(tdat_in(3)
(tdat_in(4)
(tdat_in(5)
(tdat_in(7)

freg_out(26) <= --

(tdat_in(0)
(tdat_in(l)
(tdat_in(2)
(tdat_in(3)
(tdat_in(4)
(tdat_in(6)
(tdat_in(7)

T1 T7
xor freg_out(l)) xor
xor freg_out(7));
TO T1 T6 T7
xor freg_out(0)) xor
xor fregout(l)) xor
xor freg_out(6)) xor
xor fregout(7));
TO T1 T5 T6 T7
xor freg_out(O)) xor
xor freg_out(l)) xor
xor freg_out(5)) xor
xor freg_out(6)) xor
xor freg_out(7));
TO T4 T5 T6
xor freg_out(O)) xor
xor freg_out(4)) xor
xor freg_out(5)) xor
xor freg_out(6));
T1 T3 T4 T5 T7
xor fregout(l)) xor
xor fregout(3)) xor
xor freg_out(4)) xor
xor freg_out(5)) xor
xor freg_out(7));
TO T1 T2 T3 T4 T6 T7
xor freg_out(O)) xor
xor freg_out(l)) xor
xor freg_out(2)) xor
xor freg_out(3)) xor
xor fregout(4)) xor
xor fregout(6)) xor
xor freg_out(7));



freg_out(25) <= -- TO T1 T2 T3 T5 T6
(tdat_in(O) xor freg_out(0)) xor
(tdat_in(1) xor freg_out(1)) xor
(tdat_in(2) xor freg_out(2)) xor
(tdatin(3) xor fregout(3)) xor
(tdat_in(5) xor freg_out(5)) xor
(tdat_in(6) xor freg out(6));

freg_out(24) <= -- TO T2 T4 T5 T7
(tdat_in(O) xor fregout(0)) xor
(tdat_in(2) xor freg_out(2)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(5) xor freg_out(5)) xor
(tdat_in(7) xor freg_out(7));

freg_out(23) <= -- R31 T3 T4 T6 T7
freg_out(31) xor
(tdat_in(3) xor freg_out(3)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(6) xor freg_out(6)) xor
(tdat_in(7) xor fregout(7));

freg_out(22) <= -- R30 T2 T3 T5 T6
freg_out(30) xor
(tdat_in(2) xor fregout(2)) xor
(tdat_in(3) xor fregout(3)) xor
(tdatin(5) xor freg_out(5)) xor
(tdat_in(6) xor freg_out(6));

freg_out(21) <= -- R29 T2 T4 T5 T7
freg_out(29) xor
(tdat_in(2) xor freg_out(2)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(5) xor fregout(5)) xor
(tdatin(7) xor freg_out(7));

fregout(20) <= -- R28 T3 T4 T6 T7
freg_out(28) xor
(tdatin(3) xor freg_out(3)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(6) xor freg_out(6)) xor
(tdat_in(7) xor freg_out(7));

freg_out(19) <= -- R27 T1 T2 T3 T5 T6 T7
fregout(27) xor
(tdat_in(1) xor fregout(1)) xor
(tdat_in(2) xor freg_out(2)) xor
(tdat_in(3) xor freg_out(3)) xor
(tdatin(5) xor freg_out(5)) xor
(tdat_in(6) xor freg_out(6)) xor
(tdat_in(7) xor freg_out(7));

freg_out(18) <= -- R26 TO T1 T2 T4 T5 T6
freg_out(26) xor
(tdat in(O) xor fregout(0)) xor
(tdatin(1) xor freg_out(1)) xor
(tdat in(2) xor fregout(2)) xor
(tdatin(4) xor freg_out(4)) xor
(tdat in(5) xor freg_out(5)) xor
(tdat_in(6) xor freg_out(6));

freg_out(17) <= -- R25 TO T1 T3 T4 T5
freg_out(25) xor
(tdatin(O) xor freg_out(0)) xor
(tdatin(1) xor freg_out(1)) xor
(tdat_in(3) xor freg_out(3)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(5) xor freg_out(5));

freg_out(16) <= -- R24 TO T2 T3 T4
freg_out(24) xor
(tdat_in(O) xor freg_out(0)) xor
(tdat_in(2) xor fregout(2)) xor
(tdat_in(3) xor freg_out(3)) xor
(tdat in(4) xor freg_out(4));

freg_out(15) <= -- R23 T2 T3 T7
freg_out(23) xor
(tdat_in(2) xor fregout(2)) xor
(tdat_in(3) xor freg_out(3)) xor
(tdat_in(7) xor freg_out(7));



fregout(14) <= -- R22 T1 T2 T6

fregout(22) xor
(tdat_in(1) xor freg_out(l)) xor
(tdat_in(2) xor fregout(2)) xor
(tdat_in(6) xor freg_out(6));

freg_out(13) <= -- R21 TO T1 T5
fregout(21) xor
(tdat in(O) xor freg_out(O)) xor
(tdat_in(1) xor fregout(l)) xor
(tdat_in(5) xor freg out(5));

freg_out(12) <= -- R20 TO T4

freg_out(20) xor
(tdat_in(O) xor fregout(O)) xor
(tdat_in(4) xor freg out(4));

freg_out(ll) <= -- R19 T3

freg_out(19) xor
(tdat_in(3) xor freg_out(3));

fregout(10) <= -- R18 T2

freg_out(18) xor
(tdat_in(2) xor freg_out(2));

freg_out(9) <= -- R17 T7

freg_out(17) xor
(tdat_in(7) xor freg_out(7));

freg_out(8) <= -- R16 T1 T6 T7

fregout(16) xor
(tdat_in(1) xor freg_out(1)) xor
(tdatin(6) xor freg_out(6)) xor
(tdat_in(7) xor fregout(7));

fregout(7) <= -- R15 TO T5 T6
freg_out(15) xor
(tdat_in(O) xor fregout(0)) xor
(tdat_in(5) xor freg_out(5)) xor
(tdat_in(6) xor freg_out(6));

freg_out(6) <= -- R14 T4 T5

fregout(14) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(5) xor freg_out(5));

freg_out(5) <= -- R13 T1 T3 T4 T7

freg_out(13) xor
(tdat_in(1) xor fregout(l)) xor
(tdatin(3) xor freg_out(3)) xor
(tdat_in(4) xor freg_out(4)) xor
(tdat_in(7) xor freg_out(7));

freg_out(4) <= -- R12 TO T2 T3 T6

freg_out(12) xor
(tdatin(O) xor freg_out(O)) xor
(tdatin(2) xor freg_out(2)) xor
(tdat_in(3) xor fregout(3)) xor
(tdat_in(6) xor freg_out(6));

freg_out(3) <= -- R11 T1 T2 T5

freg_out(ll) xor
(tdatin(1) xor fregout(l)) xor
(tdat_in(2) xor freg_out(2)) xor
(tdat_in(5) xor freg_out(5));

freg_out(2) <= -- R10 TO T1 T4

freg_out(10) xor
(tdatin(O) xor freg_out(O)) xor
(tdat_in(1) xor fregout(l)) xor
(tdat_in(4) xor fregout(4));

freg_out(1) <= -- R9 TO T3

fregout(9) xor
(tdat_in(O) xor fregout(O)) xor
(tdat_in(3) xor freg_out(3));

freg_out(O) <= -- R8 T2

freg_out(8) xor
(tdatin(2) xor fregout(2));

else
null;

end if;
end if;

end if;



end process; -- End SYNC_PROC

end xmitfcs_arch;



-- RCVDS.VHD

-- destuffing logic for receive state machine

-- stuff error signal is pipelined thru with everythign else
-- (leave the dealing up to a higher level module)

-- last modified: 1/8/98

library ieee;
use ieee.std_logic_1164.all;

entity rcvds is
port (

clk : in std logic;
reset : in std_logic;

rdatin : in std_logicvector(7 downto 0);
s_err : out stdlogic; -- stuff error
valid : out std_logic; -- valid data at output
sop out : out std_logic; -- 0->l when first byte of a new packet is

-- detected

rdatout : out std_logicvector(7 downto 0)

end rcvds;

architecture rcvds arch of rcvds is

signal cs : stdlogic_vector(2 downto 0);
constant IDLE : std_logic vector(2 downto 0) := "100";
constant NPS : std_logic_vector(2 downto 0) := "010";
constant NPNS : std_logicvector(2 downto 0) := "001";

constant flagbyte : std logicvector(7 downto 0) := "01111110";
constant escbyte : std_logic_vector(7 downto 0) := "01111101";

begin

process (clk)
begin

if (clk'event and clk = '1') then
if (reset = '1') then

serr <= '0';

valid <= '0';
sop_out <= '0';

rdat_out <= rdat in;
else

case (cs) is
when IDLE =>

serr <= '0';
if (rdatin = flagbyte) then

valid <= '1';
sopout <= '0';
rdat_out <= rdat_in;

else
sop_out <= '1';
rdatout <= rdat_in;
if (rdatin = escbyte) then

valid <= '0';
cs <= NPS;

else
valid <= '1';

cs <= NPNS;

end if;
end if;

when NPS =>

valid <= '1';

if (rdat_in = flagbyte) then
-- stuffing error

serr <= '1';

sop_out <= '0';



rdat_out <= rdat_in;
cs <= IDLE;

else
rdat_out <= rdat_in xor "00100000";
cs <= NPNS;

end if;
when NPNS =>

if (rdat_in = flag_byte) then
valid <= '1';
sopout <= '0';
rdat_out <= rdatin;
cs <= IDLE;

elsif (rdat_in = esc_byte) then
valid <= '0';
rdat_out <= rdat_in;
cs <= NPS;

else
valid <= '1';
rdat_out <= rdat_in;
cs <= NPNS;

end if;
when others =>

valid <= '0';
sop_out <= '0';
s_err <= '0';
rdat_out <= rdat_in;
cs <= IDLE;

end case;
end if;

end if;
end process;

end rcvds_arch;



-- RCVCT.VHD

-- Receive path byte counter

- counts bytes starting from a Ox7e. If enogh bytes pass, then
-- assert SOP. Packet is long enough to support HDLC. The minimum
-- packet length is 2, not including the 4 byte FCS (6 total).

-- lasta updated: 1/8/98

library ieee;
use ieee.std_logic_l164.all;

entity rcvct is
port (

clk : in std_logic;
reset : in std_logic;

dsvalid : in stdlogic; -- de-stuffing module valid data
sop_in : in stdlogic;
serr_in : in std_logic; -- stuff error pipelined w/ valid_in
fpreset : out std_logic;
fclkenb : out stdlogic;
sop_out : out std_logic

end rcvct;

architecture rcvct arch of rcvct is

signal cs : std_logic_vector(6 downto 0);
constant IDLE : std_logic_vector(6 downto 0) := "1000000";
constant bytel : stdlogic_vector(6 downto 0) := "0100000";
constant byte2 : stdlogic_vector(6 downto 0) := "0010000";
constant byte3 : stdlogic_vector(6 downto 0) := "0001000";
constant byte4 : std_logicvector(6 downto 0) := "0000100";
constant byte5 : stdlogic_vector(6 downto 0) := "0000010";
constant byte6 : stdlogic_vector(6 downto 0) := "0000001";

begin

process (clk)
begin

if (clk'event and clk='l') then
if (reset = '1' or serr_in = '1') then

sop_out <= '0';
fpreset <= '1';
fclkenb <= '1';
cs <= IDLE;

else
if (dsvalid = '1') then

fclkenb <= '1';
case (cs) is

when IDLE =>
if (sop_in = '1') then

fpreset <= '0';
cs <= BYTE1;

else
fpreset <= '1';

cs <= IDLE;
end if;

when BYTE1 => -- ADDR

if (sop_in = '1') then

cs <= BYTE2;
else

fpreset <= '1';

cs <= IDLE;

end if;
when BYTE2 => -- CTRL

if (sop_in = '1') then
cs <= BYTE3;

else



fpreset <= '1';
cs <= IDLE;

end if;
when BYTE3 => -- FCSO

if (sop_in = '1') then
cs <= BYTE4;

else
fpreset <= '1';
cs <= IDLE;

end if;
when BYTE4 => -- FCS1

if (sop_in = '1') then
cs <= BYTE5;

else
fpreset <= '1';
cs <= IDLe;

end if;
when BYTE5 => -- FCS2

if (sopin = '1') then
sop_out <= '1';
cs <= BYTE6;

else
fpreset <= 'i';
cs <= IDLe;

end if;
when BYTE6 => -- FCS3

if (sop_in = '1') then
cs <= BYTE6;

else
sop_out <= '0';
fpreset <= '1';
cs <= IDLE;

end if;
when others =>

fpreset <= '1';
fclkenb <= '1';
sop_out <= '0';
cs <= IDLE;

end case;
else

fclkenb <= '0';
end if;

end if;
end if;

end process;

end rcvct_arch;



-- 6COUNT.VHD

-- 6 bit counter (up to 53 states)

-- This is implemented as a 6 bit binary counter. It's up to the compiler

-- to figure out how to best synthesize this circuit.

-- last updated 12/30/97

library IEEE, synopsys;
use IEEE.std_logic_l164.all;
use synopsys.std_logic_unsigned.all; -- req'd for +

-- the use of the synopsys library is specific to Foundation and
-- synthesis tool

the Metamor

entity GCOUNT is
port( ENB

RESET
CLK

TSOC

: in STD_LOGIC;
: in STD_LOGIC;
: in STDLOGIC;
: out STDLOGIC

-- warning: active low

end GCOUNT;

architecture gcountarch of GCOUNT is

constant S53
signal COUNT

: STD_LOGIC_VECTOR(5 downto 0) := "110101"; -- 54 bytes (53d)

: STD_LOGIC_VECTOR(5 downto 0);

begin

SYNCPROC: process (CLK, RESET)

begin
if (RESET = '1') then

COUNT <= "000000";

TSOC <= '1';
elsif (CLK'event and CLK='l') then

if (ENB = '0') then
if (COUNT = S53) then

COUNT <= "000000";
TSOC <= '1';

else

COUNT <= COUNT + "000001";

TSOC <= '0';

end if;

end if;

end if;

end process; -- End SYNC_PROC

end gcount_arch;



-- XMITSCR.VHD

-- 8 bit scrambler for PPP over SONET using PMC-Sierra SONET framers

-- 1/28/98: fixed number of registers required.

-- last updated: 12/30/97

library IEEE;
use IEEE.std_logic_1164.all;

entity xmitscr is
port (

tdat_in
clk
reset
no_scr_in
tdat_out

in STD_LOGIC_VECTOR (7 downto 0);
in std_logic;
in std_logic;
in std_logic;
buffer std_logic_vector(7 downto 0) -- scrambled tdat

end xmitscr;

architecture xmitscrarch of xmitscr is
signal DATA_B : STD_LOGIC_VECTOR(7
signal DATA_C : STD_LOGIC_VECTOR(7
signal DATA_D : STD_LOGIC_VECTOR(7
signal DATA_E : STD_LOGIC_VECTOR(7
signal DATA_F : STD_LOGIC_VECTOR(7
signal DATA_G : STD_LOGIC_VECTOR(2

begin
process (clk)
begin

downto
downto
downto
downto
downto
downto

if (clk'event and clk='l') then
if (reset = '1' or noscr_in

data_b <= "00000000";
data_c <= "00000000";
data_d <= "00000000";
data_e <= "00000000";
data_f <= "00000000";
data_g <= "000";

else
data_b
datac
data_d
datae
data_f
data_g

0);
0);
0);
0);
0);
0);

= '1') then

tdat_out;
data_b;
data_c;
datad;
datae;
data_f(2 downto 0);

end if;
end if;

end process;

tdatout(7 downto 5) <= tdat_in (7 downto 5) xor data_g;
tdat_out(4 downto 0) <= tdat_in (4 downto 0) xor data_f(7 downto 3);

end xmitscrarch;



-- RCVDSCR.VHD

-- 8 bit descrambler for receive fifo manager

-- 1/28/98: fixed number of registers required

-- last updated 12/31/97

library IEEE;
use IEEE.std_logicl1164.all;

entity rcvdscr is
port (

rdatin : in STDLOGIC_VECTOR (7 downto 0);
clk : in std_logic;
reset : in std_logic;
no_dscr_in : in stdlogic;
rdat_out : out std_logicvector(7 downto 0)

end rcvdscr;

architecture rcvdscr arch of rcvdscr is
signal DATA_B : STD_LOGIC_VECTOR(7 downto 0);
signal DATA_C : STDLOGICVECTOR(7 downto 0);
signal DATA_D : STD_LOGICVECTOR(7 downto 0);
signal DATA_E : STD_LOGICVECTOR(7 downto 0);
signal DATA_F : STD_LOGIC_VECTOR(7 downto 0);
signal DATA_G : STD_LOGIC_VECTOR(2 downto 0);

begin
process (clk)
begin

if (clk'event and clk='l') then
if (reset = '1' or nodscr_in = '1') then

data b <= "00000000";
data c <= "00000000";
data d <= "00000000";
datae <= "00000000";
dataf <= "00000000";
data_g <= "000";

else
data_b <= rdat in;
data_c <= datab;
data d <= data c;
data_e <= datad;
data f <= data e;
data g <= data_f(2 downto 0);

end if;
end if;

end process;

rdat_out(7 downto 5) <= rdat_in (7 downto 5) xor data g;
rdat_out(4 downto 0) <= rdat_in (4 downto 0) xor data_f(7 downto 3);

end rcvdscr_arch;
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