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Abstract

In this paper I describe the design, implementation, and features of ML/OS, an oper-
ating system with an embedded ML compiler. ML/OS supports a continuation-based
thread model of concurrency with non-blocking, interrupt-driven input/output. By
embedding the ML compiler into the operating system, ML/OS attempts to elimi-
nate levels of abstraction that are present in traditional interactions between compil-
ers and operating systems. By using a continuation-based scheduler, I demonstrate
the use of advanced programming language features such as continuations and type
safety in system-level programming.
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1 Introduction

There has been considerable research in the area of advanced programming lan-

guages, especially functional languages such as Scheme, ML, and Haskell. There

have also been a number of projects focusing on embedding programming languages

into operating systems. The product of this project, ML/OS, is an investigation into

the potential benefits and effects of combining the features of advanced languages

and language-based operating systems. Specifically, I examine the feasibility of im-

plementing a low-level operating-system mechanism, concurrency, using high-level

advanced-language features such as higher-order procedures and continuations.

The Background section introduces the concepts behind ML and ML/OS. Con-

currency is discussed, as are the features of the ML programming language. In ad-

dition, I mention other advanced languages, previous work in the field, and related

projects.

The Overview discusses the existing software components that were used to build

ML/OS. It explains the rationale behind using SML/NJ and the OSKit in building

the operating system. It also introduces the concurrency model and other features

of ML/OS.

The Implementation section discusses in detail the process of building ML/OS.

The numerous modifications to SML/NJ and OSKit are motivated and explained.

The steps involved in putting all the pieces together are laid out, and a sample

application for ML/OS is discussed.

The Results section examines the various benefits and drawbacks of ML/OS. It

discusses the effects of using an advanced language and having the compiler and

operating system in close interaction. It also lists some drawbacks and avenues for

improvement within ML/OS.

The Conclusions section draws a few summary conclusions about ML/OS. It also

proposes a number of directions for future research based on ML/OS.



2 Background

2.1 Concurrency

Concurrency refers to the simultaneous progress of independent computations within

a computer and the syntactic constructs used to express and control these com-

putations. Over the years, people have used a number of different approaches to

implementing concurrency or multitasking in computer systems. Some of the vari-

ous concurrency mechanisms include threads and multi-processing. Threads[5] are

independent pieces of program execution sharing the same address space within a

machine. Multi-processing is the practice of using multiple physical processors to do

computations in parallel. There has been extensive research into different methods

of task switching and thread management as well as issues such as shared memory

and avoiding deadlock.

2.2 ML

The primary implementation language used in this project is ML (short for Meta-

Language). Originally developed as a part of the Edinburgh LCF theorem-proving

system[12], ML is a programming language with a number of features that make it

an attractive candidate for advanced language research. Among these features are

polymorphism, type checking and inference, safety, and a formally defined semantics.

ML is a functional programming language. A functional language is a program-

ming language in which function application is the primary means of computation.

Functional languages are also characterized by their treatment of functions as first

class values and minimization of side effects.

One of the most distinctive features of ML is its strong polymorphic type system.

The type system ensures that values of incompatible types aren't mixed, and a

type inference algorithm assigns to expressions of unspecified type the most general

types possible that maintain type-safety. ML is notable in that it supports type

inference in the face of polymorphic functions. For example, ML is able to correctly



type-check an application of the polymorphic list map function. Type checking and

inference allow ML to detect type errors during compilation. Detecting these errors

at compile-time instead of at run-time catches many common mistakes and speeds

the development cycle.

ML features a formally defined semantics. By referring to The Definition of

Standard ML[17], one can reason precisely about ML program behavior and prove

certain properties of ML programs. The semantics also provide an unambiguous

definition of the language for programmers, compiler writers, and language designers.

ML is a safe language. This means that valid programs (as defined by the se-

mantics) written in ML cannot cause the run-time system to fail catastrophically.

The type system, exception handlers, and memory management ensure that it is

impossible for programs to do things like read from unallocated memory or perform

pointer arithmetic. As a result, distinct ML programs can run concurrently in the

same address space without needing run-time boundaries to prevent them from in-

terfering with each other. ML provides the safety of processes and the efficiency of

threads.

Other powerful features of ML include higher-order procedures, a garbage collec-

tor, and a module system. Higher-order procedures in ML, as in Scheme and other

functional languages, provide a powerful means of abstraction and a way to easily

capture and name computations. The garbage collector relieves the programmer

from having to deal with memory management issues. The module system aids in

developing effective programming abstractions.

The specific implementation of ML used in ML/OS is version 109.30 of Standard

ML of New Jersey (SML/NJ)[2, 3].

2.3 Related Projects

The project most closely related to this one is the Fox project[7, 14] at CMU. Though

the Fox project members have not implemented an operating system, they have

written an entire TCP/IP stack in ML to investigate the feasibility of using ML as

a language for systems programming. In addition, they have written a number of



network applications, including a WWW server, in ML.

A number of other existing projects also examine the effects of embedding a

language into an operating system and providing OS services in an advanced pro-

gramming language. The Lisp Machine project[4, 13] featured both hardware and

software that supported an operating system with Lisp as its primary interface. The

SPIN[27] operating system allows applications to execute partially in the kernel's

address space via kernel extensions and the safety properties of the Modula-3[19]

programming language. The Sting[21] operating system uses the Scheme program-

ming language and is based on virtual processors and lightweight threads. The

Inferno[16] operating system features modules, threads, type-checking, and a type-

safe language, Limbo.

The idea of using safe languages in operating systems is not new. The IBM 801[22]

featured a single address space and provided a language, PL.8, that featured a safe

subset. Similarly, the Alto was another single address space system programmed in

a safe subset of the Mesa[18] programming language.



3 Overview

The goal of this research project was not to create a novel operating system, compiler,

or advanced language, but rather to investigate the process and effects of combining

the three into a single tightly integrated unit. The interactions between any two

of these components are interesting in their own right; this research examines those

interactions as well as the characteristics of the entire system.

Given the complexity of even the most basic operating systems, building an

entirely new operating system from the ground up is a daunting task even for expe-

rienced OS hackers. In fact, the point of an operating system is to provide a simple

interface to complex hardware, and it's the OS implementor that needs to know

the full details of the underlying machine. Also, the complexity of most compilers

and especially those for advanced languages makes it worthwhile to use an existing

compiler instead of writing a new one, which would be a project unto itself.

In order to contain the scope of this project, pre-existing components were utilized

to build ML/OS. Fortunately, there are tools available to assist in building operating

systems as a test bed for new ideas in operating system research. ML/OS is built from

the Flux OS Toolkit[9, 10], the SML/NJ compiler[2, 3], the GRUB boot loader[6],

and original code. The Concurrent ML (CML) package[23, 24] was ported and

used as the base concurrency model of ML/OS. In addition to putting these various

packages together into one system, a number of different I/O options were added to

ML/OS.

3.1 Components

The use of existing code provided a way to quickly obtain a running kernel to which

interesting extensions could be added. Since the component packages used are fairly

complete and mature, it ensured that large portions of the code would be reasonably

functional and stable as well. Although it was not quite as simple as would have

been expected, interfacing the various components was still considerably less effort

than writing both a compiler and an operating system from scratch.



3.1.1 SML/NJ

Standard ML of New Jersey is a compiler and runtime system for ML developed at

AT&T Bell Laboratories and Princeton University. It is now a joint project between

AT&T Research, Bell Laboratories (Lucent Technologies), Princeton University, and

Yale University. ML/OS incorporates most of the SML/NJ run-time system and ML

heap.

SML/NJ was used as the compiler for ML/OS for a number of reasons. It is one of

the most mature implementations of ML available; though the last "official" release

was in 1993, current working releases are available. In the course of development,

ML/OS was modified to use several different "current" versions of SML/NJ. The

source code is freely available, making it possible to modify the compiler. The

development team is sizeable, and the developers were very helpful in providing

assistance in navigating and understanding the source code.

SML/NJ is also perhaps the most full-featured of any existing ML implementa-

tion. There are many auxiliary packages included with SML/NJ, including ML-Lex,

ML-Yacc, a compilation manager (CM), Concurrent ML (CML), and a graphical user

interface module (eXene). The SML/NJ modules made it easier to add functionality

to ML/OS as it was being developed.

One of the most interesting features of SML/NJ is that it runs without a stack:

all procedure frames are allocated in the heap, and heap allocation/deallocation is

very inexpensive. One result of stackless operation is that higher-order functions and

continuations can be created cheaply. The fact that continuations are inexpensive in

SML/NJ enables their use as a primitive operating system concurrency mechanism.

SML/NJ consists of a run-time system, written in C, that loads a heap image

from disk, containing compiled ML code and other ML data structures. The heap

image contains a designated top-level procedure for the run-time system to invoke

upon loading. The SML/NJ heap is largely operating-system independent, while

the run-time system varies from platform to platform. Under a standard operating

system environment, SML/NJ is run by starting the run-time system, which loads



the heap from disk and invokes the designated top-level procedure.

3.1.2 OSKit

The Flux OS Toolkit (OSKit) is a set of basic operating-system components devel-

oped at the University of Utah that is intended be a tool for OS researchers[9, 10].

It consists of several modular libraries that can be used separately or together in

building an operating system. These libraries include a memory manager, a minimal

C library, and a set of device drivers adapted from Linux and FreeBSD. The OSKit

also includes documentation and example kernels, making it very easy to quickly

compile a working kernel. The most useful parts of the OSKit were the low-level

kernel-support library, the memory-management library, and the minimal C library.

The kernel-support library provides a basic environment for the kernel by in-

stalling default handlers for hardware traps and providing primitive keyboard input

and screen output. It also provides functions for low-level hardware manipulation

such as switching processor modes and setting up page tables. The library enables

an OS implementor to get a kernel up and running without having to learn every sin-

gle hardware detail or knowing exactly how to set up interrupt handlers and switch

processor modes.

The memory-management library frees the developer from having to worry too

much about memory, if that is not the focus of the research. It provides a flex-

ible list-based memory manager that can deal with the memory-allocation issues

found in typical operating system kernels. The memory manager is implemented

at a fairly low level; for example, it doesn't record the sizes of allocated blocks of

memory. However, the OSKit provides a simple implementation of malloc() and

free() based on the memory-management library. SML/NJ has a built-in memory

manager that allocates large blocks of memory from the operating system and uses

its own high-performance system for allocating and managing ML data structures

such as records, lists and procedure activation frames. As a result, it does not need

a very complex operating-system interface for managing memory, and the provided

malloc () and free() interface of the OSKit is adequate for the needs of ML/OS.



The minimal C library implements a subset of the standard POSIX C library. It

provides many standard string, memory, and output functions to the kernel devel-

oper, so writing kernel code becomes similar to writing standard user code. For exam-

ple, primitive I/O is provided in the form of printf (), putchar(), and getchar().

The OSKit C library enables the easier porting of existing applications into the ker-

nel, and it saves the OS developer from having to rewrite many of the standard

library functions.

Another very useful feature of the OSKit is its serial-line debugging capabilities.

The OSKit can be used to build a kernel that can send gdb-readable debugging

packets over a serial port. By using the remote debugging capabilities of gdb and

a serial cable connected to a test machine, serial-line debugging enables source-level

debugging of the running ML/OS kernel. This allows the developer to use all of

the functionality of gdb or a compatible debugger to debug the kernel. Without

this feature of the OSKit, debugging ML/OS would have been via the exceedingly

cumbersome method of strategically inserted calls to printf () and halt ().

3.1.3 GRUB

Another important piece of software used in ML/OS is GRUB[6], the GRand Unified

Bootloader. Written by Erich Boleyn, GRUB is a versatile boot loader for a large

variety of operating systems. It contains code that can read most common filesys-

tems, such as those used by Linux, FreeBSD, Windows, and DOS. As a result, the

kernel can be compiled in a FreeBSD environment, then later booted directly from

the BSD filesystem by GRUB. This sped up the development cycle, as the ML/OS

kernel could be compiled on a development machine and then copied to a test ma-

chine for booting. The filesystem support of GRUB eliminated the need to dedicate

a disk partition to ML/OS and write the kernel into that partition for testing.

GRUB also has support for so-called boot modules. Boot modules are pieces

of non-kernel data that can be passed to the operating system as part of the boot

sequence. A number of operating systems, such as Mach, use boot modules to load

device drivers and other pieces of functionality that aren't in the kernel. By sepa-



rating the boot modules from the kernel, the operating system has more flexibility

and convenience in deciding what modules to load. Also, loading boot modules at

boot time is more efficient than compiling them into the kernel, then finding and

separating the relevant data after booting.

In the early stages of ML/OS development, the SML/NJ heap image was linked

into the ML/OS kernel, and the SML/NJ run-time system was modified to read the

heap image directly from memory instead of disk. Later in the development process,

the heap image was separated from the kernel and treated as a GRUB boot module.

The run-time system was also changed to locate the boot module in memory and

read the heap image from the resulting location. Treating the heap image as a boot

module makes the ML/OS compilation and testing process much more efficient, as

it separates the compilation processes for the run-time system and the heap image.

Changes can be made to the relatively small run-time system without the need to

regenerate the heap image. Similarly, changes to ML code in the heap image do not

have to be linked into the run-time system before booting.

Overall, GRUB provides a great deal of flexibility and convenience when booting

the ML/OS kernel. Its support for reading directly from common filesystems helped

speed up the development cycle, as did its boot-module capabilities.

3.2 ML/OS

ML/OS combines the functionality of SML/NJ and the OSKit and adds some of

its own. It takes the SML/NJ run-time system and embeds it into an OSKit-based

kernel. At bootup, the ML/OS run-time system relocates the ML heap image in

memory and executes it. ML/OS runs entirely in physical memory; virtual mem-

ory and other memory abstractions are not currently supported. Modifications were

made to both SML/NJ and the OSKit; functions were written in C and ML to

smoothly interface between the two systems. ML/OS adds an interrupt-driven I/O

mechanism and a port of CML, the concurrency module for SML/NJ. The concur-

rency model of CML makes use of higher-order procedures and explicit continuation

handling. By using CML in SML/NJ as the concurrency mechanism for the en-



tire OS, ML/OS investigates the effects of implementing basic OS functions in an

embedded advanced language.



4 Implementation

Creating an operating system with an embedded ML compiler required modifying

SML/NJ and the OSKit, interfacing the two packages, and adding features to the new

system. Standard ML of New Jersey was modified to work within the environment

of the OSKit, which is markedly different from the Unix or Windows environment

under which it is written to operate. The OSKit was extended to work with SML/NJ.

Various interface functions were written in order for the system to compile as one

unit, and the Concurrent ML package was ported to ML/OS. Finally, extra I/O

functionality and a sample application were written to demonstrate the capabilities

of ML/OS.

4.1 SML/NJ Modifications

Standard ML of New Jersey expects to be run as an application in a full-featured

OS with the standard components available from an OS: memory management, pro-

cesses, a filesystem, networking, etc. Since the OSKit is a toolkit for building oper-

ating systems that only provides a basic kernel environment, a number of changes

were made to SML/NJ in the process of building ML/OS.

4.1.1 C Libraries

The run-time system of SML/NJ has a set of C libraries that allows ML functions

to use Unix system calls. They provide the means to perform system calls such as

read(), write(), fork(), pause (), select 0(), and gethostbyaddr() from within

ML. Since many of these Unix system calls are not provided by the OSKit's minimal

C library, the corresponding functions in the C libraries were replaced with dummy

functions. The type signatures of the affected functions had to be changed to match

the type of the dummy functions. For example, the ML invocation of exec changed

from a function of type (string * string list) -> 'a to a dummy function of

type string -> unit. All functions in the C libraries that were not explicitly needed

for the basic functionality of ML/OS were replaced with dummy functions of type



string -> unit.

As functionality was added to ML/OS, some of the C functions were added

back to the SML/NJ C library and made available to ML. Needed functions such

as read(), select(), pause() and gettime() were later implemented using the

OSKit.

4.1.2 Memory Management

The memory-management library of SML/NJ was modified to work with OSKit.

The SML/NJ memory-management library provides for allocation of memory blocks

by using one of a number of different underlying mechanisms depending on the host

operating system. The OSKit provides a basic memory management library but

no higher-level functions such as mmap() or vm_allocate(). Instead of using these

functions, the SML/NJ library was modified to use malloc() and free(). The

SML/NJ run-time system requests a large block of memory once at boot time and

manages ML memory allocation requests internally, so the way memory is allocated

to the run-time system is not very important. Thus, using malloc 0() is sufficient for

the purposes of ML/OS.

SML/NJ manages memory via garbage collection and open-coded sequences for

allocation. Since there is no stack, all allocations are done on the heap. SML/NJ can

very efficiently allocate memory by simply moving its heap pointer and allowing the

stop-and-copy garbage collector to reclaim unused memory. In fact, it can allocate

and initialize n words in approximately n + 2 instructions. In order for this to work,

though, the allocations need to be atomic, otherwise an interrupt in the middle of a

memory allocation could leave the heap in an inconsistent state, corrupting the heap

and possibly crashing the system.

SML/NJ achieves atomicity by deferring all interrupt handling until the ends of

basic blocks. If an interrupt occurs in the middle of a basic block, it is noted and

the limit pointer (representing the end of available memory) is set to be equal to

the heap pointer (representing the end of allocated memory). After the limit and

heap pointers are adjusted, the interrupted code is resumed without servicing the



interrupt. SML/NJ does a garbage collection check on every basic block boundary; if

the heap pointer and the limit pointer are equal, it appears as if there is no remaining

free memory and a garbage collection is necessary. When the garbage collector is

invoked, it first checks whether or not there are signals pending. If there are no signals

pending, the garbage collector proceeds as usual. If there are pending signals, the

limit pointer is restored to its original value, and the appropriate interrupt handler

is called.

In short, signals arriving in the middle of basic blocks are deferred, and the limit

pointer is temporarily adjusted so as to "fake out" the end-of-basic-block garbage-

collection check, which cedes control to the garbage collector, which checks for

pending signals and calls a signal handler if necessary. Deferring interrupts until

basic-block boundaries ensures that heap allocation operations are atomic. A full

explanation of this technique can be found in a paper by Reppy[25].

4.2 OSKit Modifications

The OSKit required relatively little modification for use as part of ML/OS, since it

was designed to be used for OS projects. The parts of the OSKit used most heavily

in ML/OS were the kernel support library, the minimal C library, and the memory

management library. Aside from early compilation problems, the OSKit was a highly

useful and relatively trouble-free component of ML/OS[9].

4.2.1 Nonblocking I/O

One thing that was added to the OSKit was an improved keyboard input function.

The simple direct_cons_getchar() function provided by the OSKit would, when

called, loop until a key was available from the hardware keyboard buffer, then return

the value of the key. Having the entire operating system go into a tight loop while

waiting for keyboard input is not desirable behavior, especially if it is supporting

concurrency and there are other threads waiting to run.

In preparation for supporting concurrency, the keyboard input function was split



into two C functions. One function, direct_cons_trygetchar(), is a polling input

function that immediately returns the next character in the keyboard buffer or -1

if there is no input available. The second function is a replacement for the original

direct_cons_getchar() that uses the polling function to read characters. The

advantage of the polling version of the keyboard input function is that it returns

without looping, and the system doesn't necessarily block while waiting for keyboard

input.

Granted, the new direct_cons_getchar() is not much more useful than the

original, but it gives the system the option of using direct_cons_trygetchar()

instead to immediately return -1 if there is no input available instead of waiting

indefinitely for an input character. The introduction of interrupt-driven I/O for

concurrency (described later) is even more efficient and eliminates the need for any

of the original keyboard input functions.

4.3 Putting It All Together

Given the OS facilities provided by the OSKit and the environment that SML/NJ

expects to run in, the job of ML/OS is to integrate both into a functional whole.

This is primarily a task of smoothing out differences between interfaces and filling

in functionality gaps. In addition to just merging SML/NJ and the OSKit, ML/OS

also provides non-blocking and interrupt-driven I/O.

4.3.1 Heap Conversion

The SML/NJ run-time system expects to read the initial heap image from disk, but

ML/OS has no filesystem. To enable the reading of the heap the ML heap image

was linked directly into the ML/OS kernel. This was done by developing a utility

that takes an arbitrary data file and converts it to an a.out-format object file that

contains the data in the original file and defines a linker symbol to be the address of

this data. When linked with other object files, the resulting executable can access

the data from the original file as an array of characters from the converted object



Type I Examples
SML exceptions & interrupts Div, Overflow, Subscript
Unix synchronous & asynchronous signals SIGFPE, SIGALRM, SIGHUP
x86 exceptions & interrupts div0, timer, overflow, double fault

Figure 1: Interrupt & exception types

file. An unmodified SML/NJ was used to produce a heap image which was then

converted to an object file and linked with the ML/OS run-time system to produce

the final, bootable ML/OS kernel.

SML/NJ was modified to read directly from the array in physical memory, in-

stead of trying to read the initial heap image from disk. Linking the heap image

directly into the kernel eliminated the need to develop a filesystem for ML/OS, which

would have been a significant research effort by itself. Later, the heap image was

separated from the run-time system and loaded as a boot module by GRUB. This

made development even more convenient, as the 65KB run-time system could be

repeatedly recompiled without having to also link the 10MB heap image every time.

4.3.2 Trap/Signal Interface

One thing that is not provided by the OSKit's minimal C library is a signal facility.

However, the SML/NJ run-time system is written to deal with exceptional circum-

stances such as division by zero and integer overflow by using Unix signal handlers

that invoke the SML/NJ exception system. At the interface between SML/NJ and

the OSKit, ML/OS needs to resolve the differences between what SML/NJ expects

and what the OSKit provides. Figure 1 illustrates the various types of interrupts

and exceptions that ML/OS must deal with.

The OSKit's kernel-support library provides functions that interact with the

hardware at a low level. It deals with machine interrupts and exceptions, and it

provides direct access to the x86's Interrupt Descriptor Table (IDT), which controls

how hardware interrupts are handled. The OSKit uses the x86 hardware's ability

to jump to different addresses on interrupts and provides the ability to call different



C functions on interrupts. It installs one handler in the IDT for each hardware

exception. Each handler, written in x86 assembly language[8], pushes its exception

number onto the stack' and jumps to a common handler. The handler fetches a C

function from a table, indexed by the exception number, and transfers control to it

using the C function-call linkage. By default, all hardware exceptions result in a call

to trap_dump_panic () and subsequent shutdown by the OSKit. Optionally, the OS

implementor can install handlers that call predefined C functions for more graceful

handling of interrupts.

SML/NJ, on the other hand, expects to be run in a Unix (or Windows) en-

vironment with full signal generation and delivery facilities. It uses signal() or

sigaction() to install C signal handlers that interact with ML to properly deal

with exceptions. The SML/NJ run-time system is designed to map Unix signals

to SML interrupts and exceptions. For asynchronous interrupts, it installs signal

handlers that adjust the heap pointer as described earlier. The difference between

synchronous exceptions and asynchronous interrupts is that interrupts require the

run-time system to construct a continuation before entering the signal handler, so

the interrupted computation can be resumed if desired after the handler completes.

ML/OS manages these different interfaces by registering an exception handler

with the OSKit that creates a "signal" if possible and delivers it to SML/NJ if ap-

propriate. ML/OS installs a default handler, MLOSTrapHandler(), for exceptions.

The handler is a C function that maps hardware exceptions to Unix signal val-

ues, where possible. These values don't represent actual signals because the OSKit

doesn't support signals, but they are presented to SML/NJ as if the equivalent Unix

signal had been generated. Currently, only the divide by zero, overflow, and debug

exceptions are handled by ML/OS. The first two are passed to the SML/NJ run-time

system by the ML/OS, and the debug exception is passed to a debugging function;

others such as exception 6 ("invalid opcode") and exception 8 ("double fault") are

1This is a bounded-length stack used by the C code in the OSKit and the SML/NJ run-time
system. ML/OS as a whole runs "stackless" because all ML procedure frames are allocated on the
ML heap.



ML/OS Layer Requires Provides

CML ML interrupts concurrency
SML/NJ Unix signals ML interrupt &
run-time with C handlers exception system
ML/OS x86 interrupts & exceptions "Unix signals"
interface code with C handlers with C handlers
OSKit hardware x86 interrupts & exceptions

with C handlers
hardware x86 interrupts & exceptions

Figure 2: Interrupt & exception handling in ML/OS

indicative of more serious problems and cannot be mapped to a valid SML/NJ sig-

nal. The remaining exceptions are unhandled and cause the OSKit to panic and shut

down. Figure 2 summarizes the roles of the various parts of ML/OS when dealing

with interrupts and exceptions.

Remote debugging is achieved via exception 1. If debugging is enabled, the

ML/OS exception handler passes the exception to the gdb handler, gdbtrap(),

before doing anything else. The gdb handler is a C function that is capable of using

the gdb serial debugging protocol to send debugging information over the serial port.

Once done, the gdb handler returns a success code, and the ML/OS handler does not

need to do any further work. If debugging is not enabled, the gdb handler returns a

failure code, and the exception is passed like any other exception to the rest of the

ML/OS exception handler, which attempts to translate the exception number into

an equivalent signal for SML/NJ.

4.3.3 Alarm Clock Facility

Implementing preemptive concurrency requires a way of setting a system timer and

acting when the timer runs out. In Unix, this is done by installing a handler for the

SIGALRM signal and setting a system alarm clock with the setitimer() system

call. For ML/OS, instead of implementing general signals, a simplified alarm-clock

mechanism was implemented.



The OSKit provides a way to install C functions as handlers for hardware inter-

rupts, so ML/OS installs a handler, Tick(), for the timer interrupt, which happens

every 100 ms. The handler, when called, updates a global system clock and a private

internal timer. If there is an alarm clock active, it checks to see if the internal timer

has run out, and if so calls an auxiliary function. This second function emulates the

SML/NJ signal handler, which enqueues the "signal," sets various ML-related state

variables, and adjusts the limit pointer if necessary to alert ML of a pending signal.

To set the alarm clock, the SML/NJ run-time system calls the setitimer () func-

tion from the smlnj-signals C library. This alarm-clock mechanism gives ML/OS a

coarse-grained timing mechanism and a way to deliver the equivalent of a SIGALRM

signal to SML/NJ. By installing an interrupt handler for the hardware clock inter-

rupt and interfacing it directly to the SML/NJ run-time system, ML/OS bypasses

the levels of abstraction that are present in a standard Unix implementation of

signal-based alarm clocks.

4.3.4 Interrupt-Driven I/O

Interrupt-driven input was implemented to improve the efficiency of ML/OS; in-

stead of polling the keyboard buffer for input once every scheduling quantum, the

system is notified whenever input becomes available. A function similar to the orig-

inal direct_consgetchar() was written and installed as the OSKit handler for a

hardware-generated keyboard interrupt. For ML/OS, interrupt-based I/O acts on

two levels, both driven by the installed handler.

At the kernel level, a data structure is maintained to hold keyboard input. This

software input buffer holds character codes for keys that have been entered at the

keyboard as well as their shift, control, and alt states (i.e., "ctrl-c" is stored dif-

ferently than "c"). The installed handler inserts characters into this buffer, and

direct_cons_getchar() was replaced with a function that simply returns either

the first character in the buffer or a return value denoting an empty buffer.

At the ML level, the installed handler calls an ML function, IOInterrupt (), in

the SML/NJ run-time system similar to the one that is called when a system timer



expires. This function delivers a simulated SIGUSR1 signal to SML/NJ, indicating

that input has become available. An ML signal handler can be installed to respond

to the I/O notification and deal with the input appropriately; if there is input, it

will be invoked when program execution reaches the next basic-block boundary.

4.4 CML

ML/OS uses Concurrent ML (CML) as its basic concurrency mechanism. Concur-

rent ML is a module that provides concurrency in SML/NJ. CML programs are com-

posed of threads, which perform sequential evaluation of ML expressions. Threads

are implemented using the first-class continuations of SML/NJ, and preemption is

implemented using its asynchronous interrupt system. Synchronous communication

and synchronization between threads is done by sending messages via data structures

called channels. In addition to providing CML, ML/OS adds support for nonblocking

and interrupt-driven I/O.

CML threads communicate via typed channels, which are the standard means

of inter-thread communication. Channels are created with the channel 0() function,

and communication is performed using accept and send. Channel transmission is

synchronous, so threads block on accept and send calls until a message arrives or

another thread is ready to accept a sent message, respectively.

Threads in CML can also synchronize on an event or a nondeterministic choice

of events using the sync function. Events are first-class values in CML, and different

types of events are implemented by different modules within CML. There are channel

send and receive events, timeout events, I/O events, degenerate events (always,

never), and ways to manipulate events (choose, wrap) to make them more useful.

The specific semantics of the various events are described in the CML manual.[23]

Figure 3 shows a sample CML program. The function proc () creates a channel

and spawns a thread that sends two messages over the channel. Since communication

is synchronous, the spawned thread blocks until the original thread calls CML.recv.

After the second call to recv, both threads finish.

At the core of CML is the scheduler, which manages threads by setting an alarm



fun proc () = let
val ch = CML.channel()
in
CML.spawn (fn () => (

CML.send(ch, "hi\n");
CML. send(ch, "bye\n"))) ;

Debug.sayDebug (CML.recv ch);
Debug.sayDebug (CML.recv ch)

end

fun test () = RunCML.doit (proc, SOME(Time.fromSeconds 1))

Figure 3: Example CML function

clock timer to regulate time quanta and by maintaining a run queue of threads ready

to run. Threads are represented and stored on the various scheduler queues as their

continuations in combination with auxiliary information such as their unique thread

ID. When the current time quantum has expired or the current thread blocks, an

ML trap handler saves the interrupted computation as a continuation and passes

the thread information to the scheduler. The use of continuations for representing

threads means that resuming a thread is done by simply throwing to the stored

continuation, and suspending a thread is done by saving the current continuation

and throwing to the schedulerHook continuation.

The timeout manager deals with threads that are blocked and waiting on a time-

out event. When a thread blocks on a timeout, the scheduler moves it to the sorted

timeout queue. After each time quantum or when CML has nothing else to do (i.e.,

when pause() is called), the timeout queue is checked to determine if any threads

can proceed. If so, the eligible threads are moved to the run queue. The time-

out manager is accessed via the pollTime() function, which does the checking and

enqueueing of ready threads.

Similarly, the I/O manager handles threads that are blocked while waiting for

input or output events. After each time quantum, the pollI0() function is called

to determine whether or not any threads can be moved to the run queue. The



functionality of pollIO() was later moved to an interrupt handler when interrupt-

driven I/O was added to ML/OS.

Porting CML to ML/OS was relatively straightforward. In fact, it compiled with-

out any major modifications other than added debugging output. Adding interrupt-

driven I/O to CML involved modifying the OSKit's keyboard-interrupt handler to

emulate the alarm clock interface, so that a simulated SIGUSR1 signal is delivered

to SML/NJ when a key is pressed. Registering an ML I/O handler provided the

means to call pollIO() when and only when a key is pressed. When ML/OS boots,

it automatically calls RunCML.doit (), which starts the scheduler and a predefined

top-level function.

4.5 Application: Session Manager

After ML/OS was implemented, an application was written to demonstrate its ca-

pabilities. Since the only input and output methods were from the keyboard and to

the screen, respectively, there was not much choice in the kinds of applications that

could be usefully implemented. If networking or a graphical user interface are added

in the future, other more complex applications could be written, such as a World

Wide Web server or a windowing system. For this project, a simple session manager

was written to demonstrate the functionality of ML/OS.

A session manager, as the name implies, allows the user to interact with and con-

trol several "sessions" simultaneously. In the ML/OS session manager, each session

is represented by a CML thread. A session can be a read-eval-print loop, an inter-

active thread, or a thread that produces output. The session manager demonstrates

how ML/OS can manage the input and output needs of several different, concurrent

threads.

The behavior of the ML/OS session manager is loosely modeled after that of

other existing session managers. One example of a process that manages different

sessions is a Unix shell. A shell allows a user to do several things. The user can start

or stop a process by typing a command name at the shell prompt or hitting a "kill"

character such as ctrl-C, respectively. Processes can be suspended and resumed via



appropriate command keys. Also, the user can list all active processes. At any given

point, the user can interact with a maximum of one process. Processes are referred

to by their unique process ID or by a shell-defined naming convention (e.g., 42, %1,

%2, %emacs, etc).

Another example of a session manager is the method of switching between virtual

consoles in Linux and similar operating systems. By using various keystrokes, the

user can switch between a number of independent virtual consoles. There is a similar

notion here of a "suspended" session; if a process is waiting for input on one virtual

console and the user is in another one, it waits/blocks until input becomes available.

The ML/OS session manager manages each session as a separate thread and

controls how keyboard input is received by each process. Similarly to a Unix shell,

all of the threads send output to the screen simultaneously, but the user can only

send keyboard input to one thread at a time. Managing keyboard input is done

by assigning a CML channel to each thread on its creation and having the session

manager pass keyboard input to the "foreground thread" via these channels. Each

thread is called with its channel as an argument, so it knows where to get input.

At any point, the user can switch to manager mode by hitting a predefined

"escape key," similar to the suspend key in a Unix shell. In the manager mode,

the user can list the threads, start new threads, designate another thread as the

foreground thread, or shut down the manager altogether. The code for the session

manager can be found in Appendix A.

The session manager consists of a thread list, a main loop, a job list, a thread ID

list, and various utility functions. The thread list is an associative list of predefined

threads and their names. While the manager is running, the user can spawn a thread

from the thread list, and the associated name of the thread is used for identification

when listing active threads.

The job list and thread ID lists are a data structures used by the session manager

to keep track of currently active threads. The job list is a list of thread names

and their corresponding CML channels, with a type of (string * char CML. chan)

list ref. The session manager uses the job list to list threads and redirect user



input to the current thread. The thread ID list is a list of thread IDs which is used

by the session manager to synchronize on and properly handle thread death. Newly

spawned threads are added to the job list, and their thread IDs are added to the

thread ID list.

The main loop is a thread that repeatedly blocks, waiting for user input or thread

death. After an event happens (KEYPRESS or THREAD_DEATH), the main loop performs

the appropriate action. If there is a thread death, it removes the dead thread from

the job and thread ID lists. Otherwise, it acts according to the current session

manager state, which is either MANAGER or THREAD of int. If the current state is

MANAGER, the key is interpreted as a command for the manager thread. The user

can list threads, spawn a thread, make a thread current, or shut down the session

manager. If the current state is THREAD(n), the key is sent to the n-th thread. The

user can switch between the MANAGER and THREAD states via the "escape" and various

"foreground" keys. When the session manager is shut down, CML halts and all the

spawned threads are killed.

4.5.1 Limitations

The session manager is not very advanced, and there are limitations to its capabili-

ties. Currently, only threads from the predefined thread list can be spawned, though

an appropriately modified real-eval-print loop (modified to take input from a CML

channel) could be defined, put on the thread list, and used to dynamically spawn

new threads.



5 Results

ML/OS exhibits many of the expected benefits of a tightly coupled operating system

and compiler, even though it is not a "production-quality" OS. The elimination of any

distinction between kernel threads and user threads reduces the overhead of system

calls. The use of CML as a system-wide concurrency mechanism takes advantage

of the inexpensive first-class continuations of the SML/NJ compiler. Also, ML/OS

inherits all the advanced language features of ML.

5.1 Advanced Language Features

The use of SML/NJ as the compiler in ML/OS provides both the operating system

and the user with all the benefits of the ML programming language and SML/NJ,

such as higher-order procedures and garbage collection. All the type-safety and

polymorphism of ML is available, as is the ability to directly create, manipulate, and

save continuations. The presence of these features in ML/OS allows it to examine

the benefits and drawbacks of using high-level programming language concepts for

low-level system programming.

5.2 Streamlining the OS

One of the major benefits of moving the compiler into the kernel is that it reduces

much of the overhead involved with running user applications in a typical operating

system. The safety property of ML allows user threads and system threads to coexist

in the same address space without any danger of unintentionally interfering with.each

other. The single address space eliminates the need to do costly context switches to

handle system calls or perform other kernel functions.

Since there is no intermediate layer between an application and the hardware,

events such as hardware timer and keyboard interrupts can be handled more effi-

ciently than in a standard operating system. Since the OSKit doesn't provide a

generic signal mechanism, hardware interrupts are forwarded to SML/NJ after a rel-

atively short function call, instead of having the operating system save the context



and switch into kernel mode to process the interrupt. The way interrupts are han-

dled allows threads to receive and respond to notification of these significant system

events with a minimum of interference and system overhead.

5.3 Continuations And Concurrency

Continuations are used as the system-wide concurrency mechanism in ML/OS for a

number of reasons. Continuations are first-class values in SML/NJ, and they are a

natural way of expressing concurrency. More importantly, the creation of continu-

ations is inexpensive, allowing for efficient switching between threads of execution.

Using a relatively high-level construct such as a continuation to implement a low-

level OS function such as concurrency demonstrates some of the benefits of close

interaction between the compiler, the operating system, and an advanced language.

Continuations can be explicitly created, manipulated, and saved in SML/NJ and

ML/OS. They are an easy way of encapsulating the current state; instead of manually

saving the program state and switching contexts, the ML programmer can just save

the current continuation and throw to another saved continuation. Since all memory

allocation is done on the heap, there is no stack to save, and memory management

issues are left to the garbage collector. As a result, continuations can be created and

used efficiently and cheaply enough to be effectively used for concurrency in ML/OS.

The use of continuations for concurrency in ML/OS is interesting because it

demonstrates one way in which the compiler and operating system closely interact

in ML/OS. Continuations are supported at all levels of ML/OS, from the CPS rep-

resentation used by the SML/NJ run-time system to the use of continuations to

represent threads in the implementation of CML. By implementing concurrency in a

language more advanced than assembly or C, ML/OS shows that it is possible to use

higher-order procedures, type safety, and continuations to implement low-level op-

erating system mechanisms. By using CML as its concurrency mechanism, ML/OS

takes what was originally designed as a module for a compiler and pushes it down

into one of the lowest and most important functions of an operating system.



5.4 Drawbacks/Difficulties

5.4.1 SML/NJ

Working with Standard ML of New Jersey proved to be much more difficult than

expected. The sheer amount of code, sparse documentation, and periodic releases

of new versions combined to made it difficult to effectively integrate SML/NJ into

ML/OS. The assistance provided by Lorenz Huelsbergen and John Reppy, of the

SML/NJ development team, was essential to understanding the run-time system

and effectively embedding it into ML/OS.

Standard ML of New Jersey is a large software package. There are about 144,000

lines of code in over 1,000 source files. Even with a well laid-out directory structure

and comments in the code, it was often difficult to determine exactly what a given

function was doing and how it fit into the larger structure of the system.

Since the last official release of SML/NJ was in 1993, the development releases

were not very well-documented. The paucity of documentation isn't surprising, con-

sidering that these were intermediate development releases and that the SML/NJ

team was probably busier programming than documenting. However, the lack of

documentation (and obsolescence of old documentation) made it almost always nec-

essary to read the appropriate source files in order to determine the type of a function

or the use of a particular module.

The frequent release cycle was sometimes difficult to deal with. Granted, accept-

ing rapid change is part of the decision to use development releases, but sometimes

a new release would fix a serious bug and would have to be integrated into ML/OS.

Module interfaces and function names would sometimes change between releases, re-

quiring the modification of already-written ML/OS code. The frequency of releases

would not have been so bad if the locations of important functions such as callcc

had remained stable.

Also, debugging ML programs was awkward at best. Traditional C debuggers

could not be used for finding ML bugs since the run-time system cannot be single-

stepped while ML code is executing. ML's type-checking catches many errors, but



run-time debugging is restricted to inserted debugging output. Overall, the lack of

debugging tools in SML/NJ was one of its biggest drawbacks.

5.4.2 ML/OS

The main drawback of ML/OS in its current state is the fact that it is still a prototype

system and is missing a number of important OS components. Devices other than

the keyboard and screen are not supported; currently, input is only received from the

keyboard and output is only sent to the screen or a serial port. There is no networking

or filesystem support, though work is being done towards adding networking in the

future.

Potential problems may also arise when additional OS features are added to

ML/OS; certain algorithms may have to be reevaluated or rewritten entirely. Tech-

niques developed for user programs don't always work at the operating-system level

or at the hardware level. For example, the way SML/NJ handles asynchronous

signals, by deferring them until a basic-block boundary, would no longer function

correctly with the addition of virtual memory. If part of the current basic block has

been swapped out, the operating system can no longer simply defer the handling of

a page fault until the end of the block, because it will never get that far unless the

needed page is retrieved from disk.



6 Conclusions

ML/OS is interesting for a number of reasons. It is an implementation of an advanced

language embedded into an operating system. It demonstrates the benefits of using

such a language to do system-level programming in a type-safe manner. ML/OS

shows how a continuation-based thread model can be used as the base concurrency

mechanism for an operating system. It is an example of how existing components

can be used to build an operating system more efficiently and productively than at-

tempting to implement one from scratch. Finally, it incorporates all these ideas into

a single operating system, combining ideas from compiler, programming-language,

and OS research.

6.1 Future Directions

There are a number of directions for further research using ML/OS. The addition

of a filesystem and networking would make it an ideal platform for experiments in

implementing device drivers and network protocols using the features of an advanced

language. Also, development of a persistent store for ML/OS would be an interesting

attempt to match an advanced filesystem with an advanced language.



A ML/OS Session Manager

(* Session Manager *)

(* command specifics:

* '0' to bring up session manager

* '1'-'9' to fg thread 1-9

* 'l' to list jobs in manager
* 'a','b',... to start a thread

* ',, to shutdown everything
*)

structure PF = Posix.FileSys;
structure PIO = Posix.IO;
val pd = OS.IO.pollDesc(PF.fdToIOD(PF.stdin))

val pi = OS.IO.pollIn(case pd of SOME(foo) => foo);
val stdInReadEvt = OS.IO.pollEvt([pi]);

datatype managerstate = MANAGER I THREAD of int

datatype key_type =
CMDMANAGER (* == CMDBG *)

I CMD SHUTDOWN
I CMDLISTJOBS
I CMDNEW_JOB of int
I CMDFG of int
I CHAR of char

datatype event_type =
KEYPRESS

I THREADDEATH of CML.thread id



(* example threads: *)

fun thread1 channel =

(* prints out "loop" 5000 times *)

let

fun loop 0 = print "done\n"

I loop n = (print "loop\n"; loop (n-1))

in

loop 5000

end

fun thread2 channel =

(* repeats every input char 75 times, except q *)

let

fun rptch (0, ch) = print "\n"

I rptch (n, ch) = (print (Char.toString ch);

rptch (n-1, ch))

fun rptstr (0, str) = print "\n"

I rptstr (n, str) = (print str; rptstr (n-1, str))

fun foo #"q" = rptstr (50, "q rules! ")

I foo ch = rptch (75, ch)

fun loop () =

(foo (CML.recv(channel)); (* wait for input, repeat it *)

loop ())

in

loop ()

end

fun thread3 channel =

(* echoes input *)

let

fun loop () = (print (Char.toString (CML.recv(channel)));

loop ())

in

loop ()

end



fun thread4 channel =
(* prints out "hack" 300 times *)

let

fun loop 0 = print "done\n"

I loop n = (print "hack\n"; loop (n-1))

in

loop 300
end

fun thread5 channel =
(* prints out "lose" 300 times *)

let

fun loop 0 = print "done\n"

I loop n = (print "lose\n"; loop (n-1))

loop 300
end

val threadlist = [("looploop", threadl),

("repeat75", thread2),
("echo", thread3),
("hackloop", thread4),
("loseloop", thread5)];



fun SessionManager () = let

(* state variables *)

val current_state = ref MANAGER (* manager state: MANAGER or THREAD(n) *)
val current_job = ref 0 (* session manager thread id *)

val job_list: (string * char CML.chan) list ref =
ref (("dummy", CML.channel()) :: nil)

val thread_id_list: CML.thread_id list ref =
ref ((CML.getTid ()) :: nil)

val sm_tid = hd (!thread_id_list)

(* utility functions *)

(* find: 'a list * 'a -> int: returns pos of item in list or -1 *)
fun find (nil, tid) = -1

I find (h :: tl, tid) = (if (h=tid) then 0 else
let

val f = find (tl,tid)

(if (f<0O) then f else 1+f)

end)

(* dropnth: 'a list * int -> 'a list: removes the nth element from the list *)
fun dropnth (nil, n) = raise Subscript

I dropnth (h :: tl, 0) = tl
I dropnth (h :: tl, n) = (if (n<O)

then raise Subscript

else h :: dropnth (tl, n-1))

(* xlate_key : char -> key_type *)

fun xlate_key ch =
(case ch of

#"0" => CMD_MANAGER

I #"1" => CMD_LIST_JOBS
I #"'" => CMD_SHUTDOWN
I _ => if Char.isDigit(ch) then

CMD_FG (Char.ord(ch) - Char.ord(#"O"))
else if ch >= #"a" andalso ch <= #"f" then

CMD_NEW_JOB (Char.ord(ch) - Char.ord(#"a"))
else

CHAR ch

(* end case *))

fun listjobs nil = print "SM: CMD_LIST_JOBS: end of list\n"

I listjobs ((jobname, channel) :: r) =
(print ("SM: CMD_LIST_JOBS: " ^ jobname ^ "\n"); listjobs r)



(* main session manager loop *)

fun loop () =
(print "SM: waiting\n";

let
val event =

CML.sync(CML.choose

((CML.wrap (stdInReadEvt, fn x => KEYPRESS )) :

(map (fn t => (CML.wrap (CML.joinEvt t,

fn foo => THREAD_DEATH t)))

(!thread_id_list))))

val curtid = hd (!thread_id_list)

val _ = print "SM: something happened: "

in

(case event of

KEYPRESS => (* deal with keypress *)

let

val key = Char.chr(Word8.toInt(Word8Vector.sub
(PIO.readVec(PF.stdin, 1),0)))

in

(print " KEYPRESS\n";

print ("\nSM: read key: " ^ (Char.toString key) ^ "\n");
(case !current_state of

THREAD(int) =>

(print "SM: current_state = THREAD\n";

case xlate_key(key) of

CMD_MANAGER => (* background the process *)

(print "SM: got CMDMANAGER\n";

current_state := MANAGER)

I => let

val (tname,tch) =
List.nth(!job list, !current_job)

in

(print ("SM: sending key to " ^

tname ^ "\n");

CML.send (tch, key))
end

(* end case xlate_key *))



MANAGER =>

(print "SM: current_state = MANAGER\n";
case xlate_key(key) of

CMDSHUTDOWN =>
(print "SM: got CMD_SHUTDOWN\n";

RunCML.shutdown())
I CMDLIST_JOBS =>

(print "SM: got CMD_LIST_JOBS\n";

listjobs(tl(!job_list)))
I CMDNEW_JOB thread_num =>

if (thread_num >= List.length(thread_list)) then
print "SM: CMD_NEW_JOB: invalid thread\n"
else

let

val newch = CML.channel()

val (tname,tproc) =
List.nth(thread_list, thread_num)

in

(print "SM: CMD_NEW_JOB: start\n";
job_list := !job_list @ [(tname, newch)] ;
thread_id_list := (!thread_id_list) @

[CML.spawn(fn () =>
((tproc newch); ()))];

current_job := length(!job_list)-1;

current_state := THREAD(!current_job);
print "SM: CMD_NEW_JOB: done\n")

end

I CMDFG thread_num =>

(print "SM: got CMD_FG\n";
(if (thread_num >= List.length(!job_list))

then print "SM: CMD_FG: invalid job\n"
else

(current_job := thread_num;
current_state := THREAD thread_num)))

I_ => print "SM: error, invalid key\n"
(* end case xlate_key *))

(* end case current_state *));
loop ())

end



I THREAD_DEATH tid => (* deal with thread death *)
let

val _ = print "THREAD DEATH\n"

val pos = find (!thread_id_list, tid) (* better be > 0 *)

in

(case !current_state of

THREAD(i) => (if (pos = i) then

(print "SM: current thread died\n";

current_job := 0;

current_state := MANAGER)

else (if (pos < i) then
(print "SM: adjusting current state\n";
current_job := !current_job - 1;

current_state := THREAD(i-1))

else

(0))
I MANAGER => ()

(* end case current_state *));

joblist := dropnth (!joblist, pos);
thread_id_list := dropnth (!thread_id_list, pos);

print "SM: dead thread removed\n";

loop ()
end

(* end case event *))

end)
in

loop ()
end



(* function to invoke session manager *)

fun RunSessionManager () =
RunCML.doit (SessionManager, SOME(Time.fromMilliseconds(500)));

(* function to export to heap *)

fun main2 (s:string, sl: string list): OS.Process.status = (

print "SM: starting\n";
RunSessionManager ();

print "SM: done\n";

OS.Process.success
)
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