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Abstract. Credit scoring, which is typically transformed into a classification problem, is a powerful 
tool to manage credit risk since it forecasts the probability of default (PD) of a loan application. 
However, there is a growing trend of integrating survival analysis into credit scoring to provide 
a dynamic prediction on PD over time and a clear explanation on censoring. A novel dynamic 
credit scoring model (i.e., SurvXGBoost) is proposed based on survival gradient boosting decision 
tree (GBDT) approach. Our proposal, which combines survival analysis and GBDT approach, is 
expected to enhance predictability relative to statistical survival models. The proposed method is 
compared with several common benchmark models on a real-world consumer loan dataset. The 
results of out-of-sample and out-of-time validation indicate that SurvXGBoost outperform the 
benchmarks in terms of predictability and misclassification cost. The incorporation of macroeco-
nomic variables can further enhance performance of survival models. The proposed SurvXGBoost 
meanwhile maintains some interpretability since it provides information on feature importance. 

Keywords: credit scoring, survival analysis, survival gradient boosting decision tree, probability of 
default, consumer loan, machine learning.

JEL Classification: C53, D81, D14, G17.

Introduction

Since the global financial crisis, risk management has achieved much prominence and be-
come a primary focus of both academia and industry. Among the various types of risks 
in financial institutions, credit risk, which is defined as the potential loss when a counter-
party fails to meet his/her obligation, is regarded as the largest risk that financial institutions 
faces (Apostolik et al., 2009). The Basel Accord proposed several credit risk parameters to 
quantify credit risk. Financial institutions are also allowed to employ internal ratings-based 

Copyright © 2020 The Author(s). Published by Vilnius Gediminas Technical University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/441199883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/S0377-2217(03)00091-2
http://dx.doi.org/10.1016/S0377-2217(03)00091-2
https://doi.org/10.3846/tede.2020.13997


Technological and Economic Development of Economy, 2021, 27(1): 96–119 97

(IRB) methods, which means that financial institutions can build their own quantitative 
models to estimate these risk parameters as Basel Accord II instructed. Although advanced 
IRB approach is prohibited for some types of assets in Basel Accord III, it can still be used 
to estimate key risk parameters for retailing portfolio. Among the credit risk parameters, 
probability of default (PD) has received much attention from banks and researchers since 
it supports decision making in consumer loans and the calculation of regulatory capital re-
quirement (Crook et al., 2007). Credit scoring, defined as an empirical model-based predic-
tion on the undesired behaviour of a potential borrower (Lessmann et al., 2015), is a popular 
measure to estimate PD in practice. 

Credit scoring mainly includes three sequential stages: pre-modelling, modelling, and 
post-modelling. During the first phase, feature selection (Maldonado et al., 2017), wavelet 
analysis (Hung, 2019) and data transformation (Han & Ge, 2017) are utilized to provide a 
representative dataset. In the post-modelling stage, model validation (e.g., misclassification 
cost and profit-based evaluation measures) (Lohmann & Ohliger, 2019; Xia et al., 2017b), 
probability calibration (Bequé et al., 2017), credit rating migration (Huang et al., 2020; Liang 
et  al., 2016) and interpretability (Munkhdalai et  al., 2019) have been considered in prior 
studies. The pursuit of accurate model is the central task of modelling stage because a minor 
improvement of credit scoring model may incur enormous economic benefits (Finlay, 2011). 
Despite credit scoring models are established by clustering algorithms in some cases (Lim 
& Sohn, 2007), they are routinely built using classification methods. Statistical models (e.g., 
logistic regression and generalized additive models) are initially used for credit scoring mod-
elling. Despite their transparency and easy-to-implementation, statistical methods hold some 
strong assumptions that are far from reality (e.g., linear separability or normal distribution 
of input data). Consequently, statistical methods are not comparable with machine learning 
methods in terms of predictability as suggested in several comprehensive comparative anal-
ysis (Baesens et al., 2003; Lessmann et al., 2015). Popular machine learning approaches used 
in credit scoring include decision tree (DT), support vector machine (SVM), artificial neural 
network (ANN), evolutionary algorithms, among others (Huang et al., 2007; Ong et al., 2005; 
West, 2000). Inspired by the famous “no free lunch theorem” (Wolpert & Macready, 1997), 
there is a growing trend that ensemble learning, which combines the predictions of multiple 
models, is extensively introduced to credit risk assessment mainly due to its superior pre-
dictive accuracy as shown in several comparative studies (Finlay, 2011; Wang et al., 2012). 
Random forest (RF) is even advocated as industry benchmark in credit scoring (Lessmann 
et al., 2015). Among the ensemble models, gradient boosting decision tree (GBDT) and its 
variant algorithms have been applied as a homogeneous ensemble model itself (Ma et al., 
2018; Xia et al., 2020a, 2018b) or as a critical component of heterogeneous ensemble struc-
ture (Xia et al., 2018a). 

However, these classification approaches are typically cross-sectional models, which share 
a number of drawbacks that can be further overcome by survival models. Survival models 
have a long history and was initially applied in medical research (Klein & Moeschberger, 
2006). Over the past few decades, the application of survival models into credit risk assess-
ment is becoming research hotspot (Malik & Thomas, 2010; Stepanova & Thomas, 2002; 
Tong et al., 2012). The advantages of survival models applied in credit scoring are: 
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1. Survival models can provide a dynamic PD prediction overtime (e.g., 12-months or 
lifetime PDs of loan portfolio as required in CECL and IFRS 9). A dynamic PD means 
that the financial institutions can precisely adjust the capital charge and collection 
strategy during the payment of loans; 

2. Survival models can offer a reasonable explanation on censoring, which contributes to 
a realistic and practical credit scoring model (Leow & Crook, 2016); 

3. Survival models can be easily incorporated with time-dependent covariates (e.g., mac-
roeconomic or behavioural covariates) (Bellotti & Crook, 2009). 

Recent advancements with regard to applying survival models to credit risk assessment 
mainly concern on building accurate survival models. One path to achieve this goal is im-
proving statistical models. Time-dependent covariates and coefficients are examined in-depth 
for survival function and partial likelihood function to consider the time-varying effects in 
credit scoring (Dirick et al., 2019; Djeundje & Crook, 2018, 2019; Leow & Crook, 2016). 
Another solution concerns on the fusion of survival models with machine learning. By far, 
survival models have been integrated with ANN (Baesens et al., 2005) and RF (Wang et al., 
2018). In a benchmark study, Dirick et al. (2017) compared several classical survival models 
used in credit scoring and revealed that Cox PH-based models provided a good performance 
especially in combination with spline methods. However, few studies have combined survival 
model with GBDT-based techniques despite GBDT showed superiority relative to classical 
classifiers when using cross-sectional data (Xia et al., 2017a). Table 1 includes a selection of 
research applying survival models to credit scoring, which shows that limited studies have 
incorporated survival analysis into machine learning. We aim to overcome this gap in this 
paper. Validated on a large dataset of consumer loans, we develop SurvXGBoost, a survival 
gradient boosting decision tree approach that combines XGBoost (Chen & Guestrin, 2016) 
and survival analysis, to provide an accurate and dynamic prediction on PD. The experimen-
tal results also illustrate the efficiency of our proposal. 

We make three contribution in this paper to prior literature. First, we establish a novel 
method (i.e., SurvXGBoost) to predict PD overtime. SurvXGBoost is a modified Cox propor-
tional hazard (PH) model (Cox, 1972) whereas departs from the prototype by relaxing PH 
assumption and allowing for non-linearity for covariates. To the best of knowledge, survival 
gradient boosting decision tree approaches have not been applied to credit risk assessment. 
Second, as shown in Table 1, four out of seven studies have considered only a small number 
of macroeconomic variables in modelling. Macroeconomic variables can reflect the sud-
den change of economy (Kartal, 2020; Sukharev, 2020) and the economic uncertainty (Liu 
et al., 2019), which are expected to affect the borrowers’ ability and wiliness to pay (Zhang 
& Thomas, 2012) and therefore determine the PD. Thus, we further enhance the predicta-
bility of SurvXGBoost model by extracting information from the principle components of 
1,042 monthly macroeconomic variables. Finally, the out-of-sample (OOS) validation that 
frequently used in existing studies may theoretically contain future information in the train-
ing set and thus over-estimates the model performance. Instead of fixed training and test set 
used in prior studies, we compare model performances under both OOS and out-of-time 
(OOT) validation to examine the external validity of empirical comparisons. 
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Table 1. Literature table

Authors Data Model Macroeconomic 
variables Validation Evaluation 

measure

Tong et al. 
(2013)

A consumer 
loan dataset 
from a major 
UK bank

Mixture cure 
model

None OOS AUC, KS, H 
measure

Bellotti 
and Crook 
(2013)

Three large 
datasets from 
1999 to 2006

Discrete linear 
survival model

9 macroeconomic 
variables

OOS Log-likelihood 
ratio

Leow and 
Crook 
(2016)

A credit card 
dataset from 
2002 to 2011

Time-varying 
Cox PH

12 macroeconomic 
variables

OOS Compare model 
parameters

Dirick 
et al. 
(2017)

Five datasets 
containing 
personal loans 
and small 
enterprises 
loans

AFT, Cox PH, 
Cox PH with 
splines, Mixture 
cure, Mixture 
cure with 
multiple events

None OOS AUC, MAE, 
MSE, FV

Leow and 
Crook 
(2018)

A credit card 
dataset from 
2005 to 2010

Multistate 
delinquency 
models

10 macroeconomic 
variables

OOS Discrepancy 
measure

Wang et al. 
(2018)

A P2P lending 
dataset from 
2013 to 2015

Mixture random 
forests

None OOS AUC, KS, H 
measure

Djeundje 
and Crook 
(2019)

A credit card 
dataset from 
2002 to 2011

Time-varying 
Cox PH

Index of 
production, 
consumer 
confidence, 
FTSE index, and 
unemployment rate

OOT and 
OOS

AUC and 
misclassification 
cost

Note: AFT – Accelerated failure time model, OOS – Out-of-sample validation, OOT – Out-of-time 
validation.

The remaining part is structed as follows. Section 1 introduces the preliminaries. In Sec-
tion 2, the proposed SurvXGBoost model. Section 3 explains experimental setup, includ-
ing the data, model validation, and evaluation measures are discussed in details. Section 4 
compares and analyses the experimental result. Finally, conclusions and future research are 
discussed in the last section. 

1. Preliminaries

1.1. Standard survival analysis

Survival analysis is used to model the time of a certain event (e.g., default or survival). Since 
the event distribution is usually modelled as a continuous function of time, we define survival 
function as the probability of not having encountered the event until a specific time t, namely 
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which measures the event rate at time t conditional on survival until t. Once the hazard 
function is acquired, one can retrieve the survival function through the cumulative hazard 

( )H t  by:

 ( ) ( ) ( )−−= = ∫0 .
t
h s dsH tS t e e  (3)

In real-world data, a proportion of censored samples exists, which means non-default 
loan applications exist by the time of data collection. Under this circumstance, early payment 
and fully paid loans are interpreted as censored, the true event time of which is unknown. 
Instead of observing the true event time *T , we can only observe right-censored event time 

{ }= *min ,T T C , where C is the censored time. Moreover, the status indicator δ = 1( )δ = = *1 T T
 
, 

where 1( )⋅1  is the indicator function. Specifically, δ  = 1 denotes the occurrence of default 
event, and δ = 0 indicates an early or fully paid loan. For the i-th sample in the dataset, let xi 
denote the covariates and Ti imply the observed during time. The likelihood for right-cen-
sored data is represented as follows:

 ( ) ( ) ( ) ( ) ( )( )δ −δ δ
=

 q δ = q q = q − q ∏ ∏1
1; , , | , | , | , exp | , ,i i in

i i ii i i i i i i i i
i i

L T x f T x S T x h T x H T x

 (4)

where q is the set of parameters. Eq. (4) can be optimized by maximum-likelihood approach 
over functional space of S and parameter space of q, whereas this is usually intractable when 
no prior form is specified on hazard function. The recent extensions on standard survival 
analysis mainly focus on the specification on the survival function, hazard function, or cu-
mulative hazard. We will subsequently introduce two types of modified survival analysis 
model, namely Cox PH model and random survival forests model.

1.2. Cox Proportional hazard model

The Cox PH model is widely used in survival analysis. It develops a semi-parametric speci-
fication on the hazard function described in Eq. (2):

 
( ) ( ) ( )q = q0| , exp ,Th t x h t x  

(5)

where ( )0h t  is a non-parametric baseline hazard, and ( )qexp T x  denotes a parametric rela-
tive risk function. Due to the semi-parametric form, the function cannot be directly opti-
mized using the maximum-likelihood approach. In this paper, the cumulative baseline haz-
ard (i.e., ( )H t  described in Eq. (3)) is estimated by Breslow estimator:
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where ( ) ( )∆ = δ ∑ q0 / xp ˆˆ e T
i iH T x . The baseline hazard ( )0h t  can therefore be estimated 

by smoothing the increments (i.e., ( )∆ 0
ˆ

iH T ). The parametric part, namely the relative risk 
function, is fitted by maximizing the Cox partial likelihood, which is expressed as follows:
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where Ri denotes the set of samples that not censored before time Ti. The Cox PH model 
has been extensively applied to the survival analysis in credit scoring. Some recent studies 
modified the conventional Cox PH model to handle time-varying covariate or time-varying 
coefficient (Bellotti & Crook, 2009; Djeundje & Crook, 2018, 2019; Leow & Crook, 2016). 
Specifically, the hazard function described in Eq. (5) are modified as follows: 

 ( ) ( ) ( )( )q = q0| , ;Th t x h t exp x t  (8)

 ( ) ( )0( | , ) [ ( )] .Th t x h t e xxp tq = q  
(9)

Although the two models are closer to reality than the prototype, it remains one major 
drawback, namely the parametric forms of relative risk function. The universal approxima-
tion property of ANN provides an alternative to non-parametric relative risk function (Bae-
sens et al., 2005), but abundant evidences have shown that a single ANN is not comparable 
to ensemble models in credit risk assessment (Lessmann et al., 2015). To further enhance 
the predictability of survival models, we aim to introduce tree-based ensemble methods into 
survival analysis. 

1.3. Random survival forests

RF is a popular non-parametric tree-based ensemble algorithm proposed by Breiman 
(2001). In survival setting, random survival forests (RSF) (Ishwaran et al., 2008) make pre-
dictions on time-to-event by combining the results of multiple survival trees. The general 
procedure of RSF is as follows:

Step 1. Take samples from training set via bootstrap method.

Step 2. Train a survival tree based on the samples in the training set. For each node of the 
survival tree, RSF selects the splitting variable randomly. The splitting threshold is deter-
mined by a certain criterion such as log-rank test.

Step 3. Continue to split the nodes until a stopping criterion is reached.

Step 4. Aggerate the information of all the survival trees to obtain the risk prediction of RSF.

Let h denote the terminal node of the survival tree. Different from the conventional forms 
illustrated in Subsection 1.1, the cumulative hazard and survival function for terminal node 
h are estimated using Nelson–Aalen and Kaplan–Meier estimators, respectively:
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where ,j hd  and ,j hY  denote the number of default samples and individual at risk at time ,j ht . 
Given a new sample with feature X, X would be assigned into a unique terminal node h. The 
cumulative hazard and survival function for X can be calculated as

 ( ) ( )=| ,ˆ
h hH t H tX  ; (12)

 ( ) ( )=| .ˆ
h hS t S tX 

 (13)

The ensemble cumulative hazard and survival function are determined by averaging the 
tree estimators in all the survival trees. Let ( )ˆ |iH t X  and ( )ˆ |iS t X  denote the cumulative haz-
ard and survival function of the i-th survival tree. The ensemble estimators are computed as 

 
( ) ( )

=

= ∑X X
1

1| | ;ˆ
N

i
i

H t H t
N  

(14)

 
( ) ( )

=

= ∑X X
1

1| | .ˆ
N

i
i

S t S t
N  (15)

2. SurvXGBoost model 

GBDT is a member of boosting algorithms, which combines multiple weak learners into a 
storing one by an additive manner (Friedman, 2000). XGBoost (Chen & Guestrin, 2016) is an 
advanced GBDT-based approach that provide superior performance in credit risk assessment 
(Xia et al., 2017a). For a given dataset ( ){ }= =, , 1, 2,...,i iD x y i n, GBDT-based techniques use 
K additive functions to make predictions on the target variable:

 ( ) ( )
=

= = ∑
1

,ˆ
K

i i k i
k

y F x f x  (16)

where ( ) ( )= ωq xf x  is the space of classification and regression trees. To determine the set 
of ( )f x  in Eq. (16), SurvXGBoost aims to minimize the objective function Lobj below:
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where ( )⋅ ⋅,l  is a convex loss function that measures the difference between the true value yi 
and the prediction ˆiy . Based on the likelihood defined in Eq. (4), the loss function of SurvXG-

Boost for right-censored survival data is defined as ( ) ( ) ( )ω
ω

∈

 
 ω = −δ −
 
 

∑log j

i

F x
i i

j R

l F x e . 

( )Ω ⋅ = g + lω
1
2

T  herein is a regularization term. g is a regularization hyper-parameter. T 



Technological and Economic Development of Economy, 2021, 27(1): 96–119 103

denotes the number of splits, and l is a L2 regularization term. Let t
iy  denote the prediction 

of the i-th sample at the t-th model. SurvXGBoost attempts to optimize Eq. (17) by adding 
a new base learner ft:
 ( )( ) ( )−

=

= + + Ω∑ 1

1

, .
n

t t
i i t i tobj

i

L l y y f x f  (18)

In SurvXGBoost, the optimal new base leaner is approximated by Newton-Raphson 
method rather than the gradient descent method used in conventional GBDT since the use 
second-order gradient information usually provides a quick approximation. After removing 
the constant term, the Eq. (18) can be simplified to the following form at the t-th iteration:

 ( ) ( ) ( )
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1
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i
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where gi and hi represents the first- and second-order gradient of the i-th sample, respectively. 
Once the optimal base learner is acquired, it is added to the prior functions following Eq. 
(16) to finish an iteration. Moreover, XGBoost also makes some engineering optimization to 
build a scalable GBDT approach. For example, a histogram-based approximation algorithm 
is developed to quickly optimize Eq. (19). Moreover, XGBoost supports distributed learning 
and GPU computing which accommodates the application of big data.

3. Experimental setup

3.1. Data

To clarify the superiority of SurvXGBoost, an experiment is conducted based on a real-world 
consumer loan dataset. The dataset is derived from a consumer loan transactions of a major 
P2P lending platform in the U.S. This dataset consists of 226,148 loan applications which 
were issued between January 2009 and December 2013. 

The dataset comprises a variety of application variables, which can be roughly categorized 
into three types, namely loan characteristics, borrower’s creditworthiness, and borrower’s 
solvency. In this dataset, we define the loan status “reject” as 120 days or more past due. The 
status “fully paid” means that the loan is paid before or at the duration time. The summary 
statistic of the time-to-event, loan status, and the features are displayed in Table 2, which 
shows that the class distribution is imbalanced in this dataset. 

Moreover, macroeconomic variables are added to reflect the dynamics of business cir-
cle on payment of retailing loans. Instead of the limited number of macroeconomic varia-
bles used in prior studies (Bellotti & Crook, 2009; Dirick et al., 2019; Djeundje & Crook, 
2019), we applied 1,042 macroeconomic variables to provide a comprehensive description 
on economic conditions. All these macroeconomic variables are monthly series. Principal 
component analysis is applied to convert the original set of macroeconomic variables into 
high-performance variables since multicollinearity occurs between macroeconomic variables. 
The principle components (PCs) of macroeconomic variables are subsequently employed as 
features of survival analysis. Table 3 displays the top five influential macroeconomic variables 
for each PC. According to the influential macroeconomic variables, the PCs are named as la-
bour force indicator, employment indicator, price indicator, recession indicator, technological 
diffusion and advancement indicator, and inventory indictor, respectively. 
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Table 2. Summary statistics of the dataset

Type Min Max Mean S.D.

Loan status Categorial – – 0.15 –
Loan characteristics

Funded amount Numeric 1000 35000 13800.94 8066.58 
Term Categorial – – 41.83 –
Interest rate Numeric 0.05 0.26 0.14 0.04 

Borrower’s creditworthiness
Credit grade Categorial – – 11.61 –
No. of delinquency Numeric 0 29 0.22 0.67 
Total number of credit lines Numeric 2 105 24.15 11.16 

Borrower’s solvency
Employment length Numeric 0 11 5.98 4.07 
Home ownership 0 3 1.67 0.62 
Annual income Numeric 4000 7141778 71709.82 54011.22 
Income verification status 0 2 1.11 0.87 
DTI ratio Numeric 0 34.99 16.44 7.57 
Revolving utilization rate Numeric 0 1.40 0.57 0.24 

Macroeconomic variables
PC1 Numeric –9.08 1.50 –0.80 2.48 
PC2 Numeric –5.02 1.21 –4.07 0.63 
PC3 Numeric –7.40 3.17 1.99 1.40 
PC4 Numeric –2.06 1.37 0.47 0.90 
PC5 Numeric –2.71 3.10 0.38 0.74 
PC6 Numeric –3.25 2.02 –0.04 1.23 

3.2. Model validation 

The initial task of model validation lies on the splitting of training and test set. In prior stud-
ies, a fixed training and test set were determined based on a certain time threshold and the 
survival models were built only once using the training set and made predictions on test set 
(Bellotti & Crook, 2009; Dirick et al., 2019; Djeundje & Crook, 2018, 2019). However, such 
a validation approach arouses concerns in that it may provide unreliable experiment results 
especially for small dataset (Lessmann et al., 2015). As a result, we use two types of validation 
approaches in this paper: regarding the OOS validation, a five-fold cross-validation (CV) is 
performed for 50 times and the average performance is used to evaluate models. Concerning 
the OOT validation, we apply a sliding-window method, the basic idea of which is described 
in Figure 1. The “window” is specified as one year and the test set comprises samples in the 
corresponding year. The training set includes samples before the window. Once the models 
are built and evaluated, the window slides into the next year. Sliding-window method does 
not stop until the samples in the final year of issuing date have been employed as test set. 
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Table 3. Top five macroeconomic variables for each principle components

Ranking PC1: labor force indicator PC2: employment indicator PC3: price indicator

1 Civilian Labor Force 
Participation Rate: High 
School Graduates, No 
College, 25 years and over

Employment Level: 25 to 54 
years

Producer Price Index by 
Commodity for Chemicals 
and Allied Products: 
Chlorine, Sodium 
Hydroxide, and Other 
Alkalies

2 Labor Force Participation 
Rate: White

All Employees, Construction Sweden / U.S. Foreign 
Exchange Rate

3 Small Time Deposits 
- Total (Seasonally 
Adjusted)

Nonfarm Private 
Construction Payroll 
Employment (Not Seasonally 
Adjusted)

Manufacturers: Inventories 
to Sales Ratio (Seasonally 
Adjusted)

4 Small Time Deposits - 
Total (Not Seasonally 
Adjusted)

Total Construction Spending: 
Commercial (Not Seasonally 
Adjusted)

Real Trade Weighted 
U.S. Dollar Index: Other 
Important Trading Partners, 
Goods

5 Civilian Labor Force 
Participation Rate: 20 
years and over, White 
Men

Employment Rate: Aged 25-
54: All Persons for the United 
States (Percent, Monthly, 
Seasonally Adjusted)

Total Business: Inventories 
to Sales Ratio

Ranking PC4: recession indicator PC5: technological diffusion 
and advancement indicator

PC6: inventory indictor

1 Domestic Auto 
Inventories

Chicago Fed National Activity 
Index: Diffusion Index

Retailers: Inventories to 
Sales Ratio

2 OECD based Recession 
Indicators for the United 
States from the Peak 
through the Trough

San Francisco Tech Pulse 
(Percent Change at Annual 
Rate, Monthly, Seasonally 
Adjusted)

Total Business Inventories 
(Seasonally Adjusted)

3 Other Separations: Total 
Nonfarm (Rate, Monthly, 
Seasonally Adjusted)

Business Tendency Surveys 
for Manufacturing: 
Confidence Indicators: 
Composite Indicators: OECD 
Indicator for the United States

Manufacturers’ Inventories 
(Not Seasonally Adjusted)

4 OECD based Recession 
Indicators for the United 
States from the Period 
following the Peak 
through the Trough

San Francisco Tech Pulse 
(Percent Change from Year 
Ago, Monthly, Seasonally 
Adjusted)

Other Separations: Total 
Nonfarm (Rate, Monthly, 
Not Seasonally Adjusted)

5 All Employees: Mining 
and Logging: Oil and Gas 
Extraction

San Francisco Tech Pulse 
(Percent Change, Monthly, 
Seasonally Adjusted)

Consumer Price Index: 
OECD Groups: All Items 
Non-Food and Non-Energy 
for the United States

The proposed SurvXGBoost model is compared with three non-parametric survival mod-
els, namely the Cox PH model, RSF, and survival GBDT model (Chen et al., 2013). The Cox 
PH model is a state-of-the-art benchmark that has been extensively considered in existing 
literature (Bellotti & Crook, 2009; Wang et al., 2018). We have also employed a time-varying 
Cox PH model following Bellotti and Crook (2013) to capture the time-varying effects of 
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some features. The number of trees is determined as 200 for RSF. To optimize the hyper-pa-
rameters in GBDT and XGBoost, a Bayesian hyper-parameter tuning approach is performed 
following Xia et al. (2017a). Bayesian hyper-parameter optimization is a type of sequential 
model-based optimization, which means it pre-sets the number of iterations for optimization. 
During each iteration, Bayesian hyper-parameter optimization builds a surrogate probability 
model of a fitness function and determines the optimal hyper-parameters for the surrogate. 
The hyper-parameters are afterwards used to the real fitness function and returns the corre-
sponding results. The hyper-parameters and the corresponding results are then used to up-
date the surrogate model. The iteration continues unless the number of iterations is reached. 
Specifically, the five-fold CV Concordance Index (C-index) of training set is employed as 
the fitness function of survival GBDT and SurvXGBoost. The surrogate probability model 
is established based on the Tree Parzen Estimator following Bergstra et al. (2011). The hy-
per-parameters considered in this paper is summarized in Table 4.

Table 4. The definitions and searching spaces of hyper-parameters for survival GBDT and SurvXGBoost

Model Hyper-parameter Function Searching 
space

Survival GBDT Number of iterations The number of iterations of boosting 
process

[50, 500]

Maximum depth Maximum depth of a single CART [3, 6]
Subsample rate The fraction of samples used for training a 

single CART
[0.6, 1]

Learning rate It shrinks the contribution of each CART 0.01
SurvXGBoost Number of iterations The number of iterations of XGBoost [50, 500]

Maximum depth Maximum depth of a single base learner [3, 6]
Subsampling rate The fraction of samples used for training a 

single base learner
[0.6, 1]

Learning rate It shrinks the contribution of each base 
learner

0.01

Column sampling 
rate

The fraction of features used for training a 
single base learner

[0.6, 1]

Gamma Minimum loss reduction required to make 
a further partition

[0, 5]

Figure 1. An illustration of out-of-time validation
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3.3. Evaluation measures

We employ four popular evaluation measures to examine model performance in terms of 
discriminative ability and label prediction. The discriminative ability implies the model’s ca-
pability of distinguishing between default and non-default borrowers. Following the instruc-
tion of CECEL and IFRS 9, the 12-month PD of survival models is evaluated. The evaluation 
metrics consist of: 

(1) C-index, which is a popular performance metric that quantifies the quality of rank-
ings for survival models. It is computed as the fraction of concordant pairs divided 
by the number of possible evaluation pairs. The range of C-index is   0.5, 1 , where 
0.5 indicates a random guess and 1 indicates a perfect model. 

(2) Area under the ROC curve (AUC), which evaluates the quality of model’s prediction 
irrespective what decision threshold is determined. AUC has been regarded as a fre-
quently used metric in evaluating credit scoring models in prior literature (Bequé & 
Lessmann, 2017; Xia et al., 2017a). AUC measures the entire two-dimensional area 
under the ROC curve. Following Huang and Ling (2005), AUC is calculated as fol-
lows for a binary classification:

 
( )− +

= 0 0 0

0 1

1 / 2
AUC ,

S n n
n n  

(20)

where n0 and n1 denote the number of non-default and default loans in test set, re-
spectively. = ∑0 jS rank  is the rank of probability predications of j-th default loans. 

(3) H measure, which is proposed by Hand (2009) to overcome the inconsistent mis-
classification costs that potentially assumed in AUC. Specifically, AUC potentially 
assumes that the misclassification cost is dependent on the classifiers rather than the 
datasets, which is far from reality. Thus, Hand (2009) advocated to employ a beta 
distribution to fit a cost weight function. In a further analysis of Hand and Anag-
nostopoulos (2014), the optimal parameter of beta distribution is discussed, and in 
this paper, we follow the suggestion of Hand and Anagnostopoulos (2014) to use a 
beta (2, 2) distribution. Recent credit scoring studies have introduced H measure as 
an efficient alternative to AUC when evaluating models (Ala’raj & Abbod, 2016; He 
et al., 2018). 

(4) Misclassification cost. Since cost-sensitivity usually occurs in credit scoring, accuracy 
can seldom provide an overall evaluation on the label prediction (Shen et al., 2020). 
As a result, we follow Lohmann and Ohliger (2019) to evaluate the capability of label 
prediction by misclassification cost defined as follows:

 

 { }=
   a = = + = =   =

∑ 1
1| 0 0 | 1

Misclassification cost ,

n
i ii ii

status status status status

n  
(21)

where ⋅    is the Iverson bracket. a herein is the cost parameter and we determine 
it as 5 in this paper. The misclassification cost further raises an issue on the decision 
threshold, which can dramatically affect the label prediction. The samples with higher 
PDs than decision threshold will be rejected and the remaining loan applications will 
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be granted. In a highly imbalanced dataset, credit scoring model tends to predict all 
the applications as the majority class (usually non-default) and thus lacks the capabil-
ity to discriminate risky ones (Sahin et al., 2013). Cost-sensitive learning is a solution 
to imbalanced dataset, which can be roughly divided into the direct method and 
indirect ones (Shen et al., 2020; Xia et al., 2017b). The direct cost-sensitive learning 
methods design models that are cost-sensitive in themselves, whereas the indirect 
methods transform the cost-insensitive models into cost-sensitive one by sampling 
or thresholding. The sampling technique means balancing the class distribution in 
training set, and the thresholding indicates adjusting the decision threshold. In this 
paper, we employ the thresholding technique due to its easy-to-implementation and 
popularity. Specifically, we determine the decision threshold as the fraction of good 
and risky applications in training set as advocated by Bequé and Lessmann (2017) 
and Xia et al. (2020b). 

4. Experimental results

4.1. Out-of-sample validation

The results in Table 5 show the average performance of SurvXGBoost and benchmarks around 
the evaluation measures. The standard deviations of performance are described in brackets 
and the best-performing model for each evaluation metric is highlighted in bold. Perfor-
mances that are significantly inferior to the best model at a 95% confidence level with respect 
to a paired t-test are denoted in underlines. Table 5 exhibits several important findings.

First, the superiority of machine learning algorithms is explicitly demonstrated. The 
proposed SurvXGBoost performs significantly better than the benchmark models for both 
discriminative capability and misclassification cost. Moreover, survival GBDT and RSF are 
also marginally better than Cox PH models. These results are similar with those in Chen 
et al. (2013) and further imply that the predictive ability of machine learning algorithms is 
superior to statistical ones in most cases. This finding advocates the extension of machine 
learning approaches to real-world credit risk evaluation. 

Table 5. Performance of SurvXGBoost and the benchmark models

Model C-index AUC H measure Misclassification cost

Cox PH 0.6521
(0.0025)

0.6728
(0.0028)

0.0949
(0.0030)

0.6580
(0.0055)

Cox PH (time-varying) 0.6524
(0.0029)

0.6680
(0.0031)

0.0892
(0.0032)

0.6628
(0.0063)

RSF 0.6513
(0.0032)

0.6772
(0.0031)

0.0998
(0.0035)

0.6510
(0.0072)

Survival GBDT 0.6566
(0.0027)

0.6793
(0.0030)

0.1017
(0.0034)

0.6496
(0.0058)

SurvXGBoost 0.6573
(0.0026)

0.6808
(0.0029)

0.1035
(0.0033)

0.6484
(0.0055)

Note: the best-performing model for each evaluation measure is highlighted in bold. The value in brack-
ets is the standard deviation. The underlines imply a significant difference between the corresponding 
model and the best-performing one. 
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Second, when comparing among the parametric survival models, time-varying Cox PH 
model provides better results in terms of C-index and misclassification cost than the original 
model. This implies that the time-varying Cox PH model quantifies the non-linear relation-
ship between covariates and default time to some extent. However, the inferior performance 
of time-varying Cox PH model relative to the non-parametric survival models indicates that 
the parametric form proposed by Bellotti and Crook (2013) can only capture parts of the 
non-linear effects. 

 Finally, when comparing among non-parametric models, Table 5 reveals that a combina-
tion of GBDT-based model improves model performance relative to RSF. This result is similar 
with those reported in Xia et al. (2017a) and Xia et al. (2020) in case of classification credit 
scoring models. Future research can explore applying other advanced GBDT-based methods 
into survival credit scoring models.

4.2. Out-of-time validation

The OOT validation starts from the year of 2010, implying that the samples issued before 
2010 are employed as training set. The loan transactions issued during the year of 2010 are 
employed as test set. The window slides into the next quarter until the last quarter of the 
dataset is reached. Figures 2 to 5 display the heatmaps of C-index, AUC, H measure, and 
misclassification cost for the models, respectively. In these figures, the columns represent the 
models and the rows display the year. 

When making a horizontal comparison, the machine learning variants of survival analysis 
provide promising results. The SurvXGBoost provides the best performance on all evaluation 
metrics except H measure. This is in line with those revealed in the previous subsection and 
again demonstrates the superiority of the proposed SurvXGBoost. RSF and survival GBDT 
achieve the best performance when the data is limited. Concretely, when samples in 2011 is 
utilized as test set, the two models achieve the best AUC, H measure and misclassification cost. 

When making a vertical comparison, Figures 2 to 5 reveal that model performance varies 
in different years. Although survival models provide unsatisfying performance when training 
data is limited, their performance does not necessarily improve when number of training 
sample grows. A possible explanation on this phenomenon lies on that the characteristics of 
loan applications show very different patterns over the year of 2010 to 2013. Further inves-
tigation is required for this argument.

4.3. The effects of macroeconomic variables

The main goal of this subsection is to examine whether model performance is improved 
after adding macroeconomic variables. Moreover, we aim to see whether the determinants 
of default and time-to-event differ. Thus, a Cox PH model (abbreviated as Model 1) and 
logistic regression model (abbreviated as Model 2) are established with all the covariates 
listed in Table 2. 

The fitted coefficients for the two models are reported in Table 6. A few important find-
ings can be revealed from Table 6. Concretely, we can observe that loan characteristics, 
borrowers’ creditworthiness and solvency are powerful determinants of time-to-default.  
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Figure 2. Out-of-time validation results of C-index

Figure 3. Out-of-time validation results of AUC

Figure 4. Out-of-time validation results of H measure
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Figure 5. Out-of-time validation results of misclassification cost
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Table 6. Parameter estimates for Cox PH and logistic regression model

Model 1: Cox PH model Model 2: logistic regression model

Est. p-val Est. p-val

Loan characteristics
Funded amount 0.19590 0.00000 0.27281 0.00000 
Term –0.03442 0.02439 0.39629 0.00000 
Interest rate 3.10000 0.00000 2.98617 0.00000 

Borrower’s creditworthiness
Credit grade –0.85400 0.00000 –0.72478 0.00001 
No. of delinquency –0.98050 0.00003 –0.21077 0.41608 
Total number of credit lines 0.27410 0.00000 –0.20787 0.00130 

Borrower’s solvency
Employment length –0.07123 0.00000 –0.05475 0.00109 
Home ownership –0.13580 0.00000 –0.16920 0.00000 
Annual income –33.64000 0.00000 –38.82243 0.00000 
Income verification status –0.00371 0.80150 –0.00399 0.80628 
DTI ratio 0.19730 0.00000 0.45685 0.00000 
Revolving utilization rate –0.28480 0.00000 –0.04250 0.29225 

Macroeconomic variables
PC1 –0.00224 0.88052 –0.02947 0.07560 
PC2 –0.08298 0.00498 –0.09046 0.00609 
PC3 –0.04303 0.06983 –0.03210 0.22528 
PC4 –0.07547 0.00100 –0.05918 0.02112 
PC5 0.05761 0.00004 0.07053 0.00000 
PC6 0.00371 0.47953 0.00744 0.20597 
Intercept – – –3.02939 0.00000 
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This finding is in parallel with those revealed in Wang et al. (2018) and Dirick et al. (2019). 
Moreover, the fitted coefficients for Cox PH model and logistic regression exhibit very dif-
ferent patterns. Concretely, the variables of No. of delinquency, revolving utilization rate, 
and price indicator can hardly affect loan status significantly whereas they are significant 
determinants of time-to-default. This encourages a deep investigation on the determinants 
of time-to-default in future research. Finally, macroeconomic variables, especially indicators 
concerning employment, price, recession, and technological diffusion and advancement, are 
powerful determinants in survival analysis. This further encourages us to examine the pre-
dictability of survival models when incorporating macroeconomic variables. 

 The comparisons of the evaluation measures are presented in Table 7. The models are 
benchmarked against models that employ the same loan characteristics, borrowers’ cred-
itworthiness and solvency variables without macroeconomic variables. Both the results of 
OOS and OOT validation are reported to give a comprehensive description of the models. 
Concerning the results of OOS validation, a comparison between Tables 5 and 7 shows that 
the performance of benchmark models is improved after adding macroeconomic variables 
to survival models in most cases, therefore partially demonstrating the effectiveness of mac-
roeconomic variables in credit risk assessment. According to the famous five Cs of credit, 
character, capacity, capital, collateral, and conditions are key factors to predict borrower’s 
PD. The former four characteristics have been attached much attention whereas the macro-
economic condition is not frequently considered in credit risk modelling. Future research 
should be performed on this topic. 

However, the OOS validation may over-estimate the effects of macroeconomic variables 
since it includes future information of macroeconomic variables in training set. Thus, we 
also report the OOT results in Table 7. This table reveals that macroeconomic variables can 
enhance model performance for OOS validation in most cases. The comparison between 
OOS and OOT validation indicates that in-time modelling can capture a larger share of the 
variation in the training set and lead to higher C-index, H measure, and AUC than those in 
OOT validation. Considering the fact that OOT validation is closer to real-world modelling 
process whereas it gathers limited attention in concerning studies, this finding highlights the 
necessity of OOT validation in model comparisons. 

Heterogeneity is also witnessed for model performance under OOT validation. Con-
cretely, for benchmark Cox PH model, the incorporation of macroeconomic variables does 
not better off the model performance. These results are in line with expectations since the 
macroeconomic variables may have non-linear effects on time-to-event. For example, Figure 
6 shows the estimates of time-dependent coefficients for the six PCs of macroeconomic vari-
ables of Cox PH model, where the solid vertical lines indicate the coefficients of zero and the 
dashed lines represent the fixed coefficients of Cox PH model. This figure illustrates a rapid 
change in the sign and the magnitude of the coefficients for macroeconomic variables. The 
Cox PH model can hardly capture the non-linear effects of macroeconomic variables and 
thus lead to inferior performance than non-parametric survival models. 

From Table 7 we can also observe that the ranks of models hold the same when mac-
roeconomic variables are not included. SurvXGBoost becomes the best-performing model 
under OOS and OOT validations, which confirms the robustness of the proposed method. 
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Table 7. Results of models under out-of-sample and out-of-time validation when macroeconomic vari-
ables excluded

Model C-index AUC H measure Misclassification cost

Out-of-sample validation (macroeconomic variables excluded)
Cox PH 0.6518

(0.0032)
0.6728

(0.0030)
0.0946

(0.0032)
0.6583

(0.0055)
Cox PH (time-varying) 0.6522

(0.0030)
0.6679

(0.0032)
0.0891

(0.0032)
0.6631

(0.0066)
RSF 0.6510

(0.0032)
0.6770

(0.0031)
0.0998

(0.0034)
0.6501

(0.0070)

Survival GBDT 0.6566
(0.0031)

0.6792
(0.0029)

0.1016
(0.0033)

0.6500
(0.0060)

SurvXGBoost 0.6572
(0.0032)

0.6807
(0.0030)

0.1034
(0.0034)

0.6485
(0.0057)

Out-of-time validation (macroeconomic variables excluded)
Cox PH 0.6437 0.6699 0.0925 0.6476
Cox PH (time-varying) 0.6416 0.6667 0.0892 0.6512
RSF 0.6415 0.6682 0.0907 0.6489
Survival GBDT 0.6455 0.6700 0.0912 0.6510
SurvXGBoost 0.6462 0.6707 0.0922 0.6484

Note: the best-performing model for each evaluation measure is highlighted in bold. The value in brack-
ets is the standard deviation. The underlines imply a significant difference between the corresponding 
model and the best-performing one. For out-of-time validation, only the average values are reported.

Figure 6. Time-dependent coefficients for PCs of macroeconomic variables of Cox PH model
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4.4. Interpretability

Lack of interpretability may hinder the mangers’ wiliness to employ complex credit models. 
Moreover, transparent models are required by regulators in many regions or countries. Since 
CART is employed as the base learner of SurvXGBoost, one can plot all the base models in 
a graph so that the process of decision making is clear to the users. However, it is a tough 
work to take hundreds of base models into consideration. Thus, the proposed SurvXGBoost 
maintain some interpretability whereas it is not so interpretable relative to parametric ones. 

Nevertheless, we can explain the proposed SurvXGBoost model by figuring out the im-
portant features. XGBoost provides several feature importance measures to describe how 
important a feature is during modelling. In this paper, we select relative gain measure since it 
directly evaluates the relative contribution of a certain feature selected as the splitting variable 
to the model. A higher relative gain indicates a more important feature when generating base 
models. Figure 7 shows the feature importance measured by relative gain for the 50 × 5-fold 
CV. The error bars in Figure 7 indicate the confidence intervals. As shown in Figure 7, in-
terest rate, annual income, and credit grades account for the top three important features in 
the modelling of SurvXGBoost. On the contrary, some features concerning loan character-
istic, borrowers’ creditworthiness and solvency can hardly be used for splitting nodes. The 
macroeconomic variables, especially the labour force and employment indicators also play 
important roles in building SurvXGBoost models. 

Figure 7. Feature importance of SurvXGBoost model

Funded amount

Term

Interest rate

Credit grade

Delinquency over past two years

Toal number of credit lines

Employment length

Home ownership

Annual income

Income verification status

DTI ratio

Revolving utilization rate

Macroeconomic variables PC1

Macroeconomic variables PC2

Macroeconomic variables PC3

Macroeconomic variables PC4

Macroeconomic variables PC5

Macroeconomic variables PC6

0 0.2 0.4 0.6

Fe
at

ur
e

Importance



Technological and Economic Development of Economy, 2021, 27(1): 96–119 115

Conclusions and future research

Credit risk is a major type of risk that financial institution encounters. To quantify the credit 
risk of a portfolio, financial institutions have developed several risk parameters, among which 
PD is a major concern. Credit scoring is a common method to predict PD. In the modelling 
stage of credit scoring, ensemble models which combines the predictions of multiple models 
have shown their superiority in predictability. Moreover, survival analysis which can provide 
dynamic predictions on PD over time has been considered as an alternative to common 
classification algorithms. Thus, we develop a novel SurvXGBoost model which integrates a 
state-of-the-art ensemble model (i.e., XGBoost) and survival analysis. Our proposal is com-
pared with several benchmark survival models on a large real-world consumer loan dataset. 
To further enhance model performance of survival models, information extracted from the 
principle components of 1,042 macroeconomic variables are integrated with the original 
features which include loan characteristics, borrower’s creditworthiness and solvency. The 
model performance on predictability and misclassification cost are compared under OOS 
and OOT validation. For OOS validation, the proposed SurvXGBoost model outperforms 
the benchmarks significantly in all the evaluation measures. Concerning OOT validation, 
SurvXGBoost is marginally better than the benchmarks in most cases. The information ex-
tracted from macroeconomic variables can improve the predictability of survival models, 
which confirms the relationship between business circle and time-to-event. The model per-
formance under OOT validation is worse than those in OOS validation, thereby confirming 
the fact that OOS validation may include future information of macroeconomic variables in 
modelling and therefore lead to over-estimated performance. It is thus recommended that 
OOT validation should be emphasized in the comparison of credit models. We also found 
that SurvXGBoost can maintain some interpretability by disclosing the feature importance. 

Regarding the directions of future research, the proposed SurvXGBoost can only handle 
right-censored data at present. One may further extend SurvXGBoost to support other type 
of censored data. Moreover, the interpretability of non-parametric survival model requires 
further exploration. Maybe the SurvLIME algorithm can be applied into the explanation of 
complex survival models in credit risk assessment. The integration of other efficient GB-
DT-based algorithms into survival analysis is also an interesting research direction.
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