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Cosmic Rays present an opportunity to measure the proton cross–section at the energies unaccessible by mod-
ern accelerators. We use the High Resolution Fly’s Eye stereo fluorescence detector data and a novel decon-
volution technique to find the p–air inelastic cross–section to be
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eV. The result links ultra–high energy cosmic ray measurements with lower energy accelerator data for
the first time. It also favors the Froissart bound saturation at ultra–high energies.

1. Introduction

The energy of cosmic rays can exceed the capability of modern accelerators by orders of magnitude extending
above

��&�-/.
eV [2, 3]. However, the cosmic ray flux is very weak at these energies, rendering direct measure-

ments implausible. Extensive air showers generated by the ultra–high energy cosmic particles present an op-
portunity for indirect measurements. The Fly’s Eye air fluorescence experiment [1] has successfully measured
the p–air inelastic cross–section at

��&�(�0+* 1
eV using a distribution of the air shower maxima. The procedure is

as follows. The amount of UV scintillation light coming from a segment of the air shower is proportional to the
number of charged particles. This allows us to measure the air shower profile, which is the number of charged
particles as a function of the slant depth in the atmosphere. The peak of the shower profile is defined as 2436587
and is measured in 9 :�;8< -

. An 2=36587 distribution is then found for many showers within a given energy range.
In the Fly’s Eye measurement, the exponential slope of the 2>36587 distribution is related to the p–air interaction
length using a proportionality coefficient ? found from Monte Carlo simulations. We use the 2 36587 distribution
for our measurement as well, but employ a novel deconvolution technique, described in greater details in [4].
This deconvolution technique allows us to greatly reduce the interaction model dependence and increase the
stability of the 2 36587 distribution fit, leading to a more reliable result.

2. Detector

The High Resolution Fly’s Eye stereo fluorescence detector (HiRes) is located in the western Utah desert
about 120 miles west of Salt Lake City, USA. It consists of two detector stations separated by 12.6 km. One
station, HiRes–1, has 20 mirrors and covers a field of view (FOV) of about @%A & B in azimuth and from
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in elevation. The other detector station, HiRes–2, has 42 mirrors with about
��&%& B

azimuthal and
� B

–
� � B

elevational FOV coverage. All mirrors are spherical with 3.84 < -
effective area. A UV sensitive camera with

256 photo-multiplier tubes (PMT) is installed in the focal plane of each mirror. The FOV of each PMT is
about

�'B
. HiRes–1 uses sample and hold electronics while HiRes–2 uses more modern flash digital to analog

converter electronics for better time resolution. Stereo observations are possible when both detector stations are
observing the night sly simultaneously. Stereo observations greatly improve the 2 36587 resolution contributing
to the smaller error bars. A detailed description of the Hires detector can be found in [5].
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3. Measurement Technique

We used a novel deconvolution measurement technique described in details in [4]. The 243C5+7 distribution is
approximated by a convolution function:
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where
I

is a normalization factor,
E 3 is the depth of the shower maximum,

E ( is the depth of the first
interaction and q f NP5+rts is the p–air interaction length. The parameters of this fit:

E f�g 5�h ,
k l3 and

i
are known

from Monte Carlo simulations. The function
D �uE 3 � convolutes two distributions: the distribution of the depth

of the first interaction approximated by the first exponential term in Eq. 1 and the distribution of the depthE 3 "vE ( , approximated by the second power-exponential term. The first distribution is statistical and it’s mean
value is the p–air interaction length. The second distribution is due to shower fluctuations in the air.

This approximation allows us to fit directly for the q f NP5+rts , thus, “deconvoluting” it from the 2 36587 distribution.
The deconvolution technique is more stable than a previously used method [1]. Most importantly, this method
significantly reduces the result dependence on the interaction model. The lower energy part of the air shower,
the air shower development in the atmosphere, is separated from the highest energy part of the shower, the first
interaction. The former is studied with Monte Carlo simulations. Most modern interactions models are in good
agreement with each other and with the experimental data at lower energies and lead to nearly identical values
of
E f�g 5+h ,

kOl3 and
i

.

4. Data

The Hires stereo data set used for this study consists of 3346 reconstructed stereo events collected between
December 1999 and March 2003. Quality cuts were applied to these events, insuring that only cosmic ray
showers for which 2w36587 can be determined precisely are used for the analysis. A detailed Monte Carlo study
shows that the achieved 2w36587 resolution is about 21 9�:
;8< -

and energy resolution is about 15%. The 2x36587
resolution function is shown in Figure 1 and the energy resolution function is shown in Figure 2.

The quality cuts are designed to introduce no 2x36587 bias in the final data set. A detailed description of the
quality cuts and the resolution function study can be found in [5].

1348 cosmic ray events passed the quality cuts forming is our final data set. The energy distribution for the
final data set is shown on Figure 3. The mean energy is

�'& (�)�* ,S-
eV. The 2=36587 distribution for the selected

events is shown on Figure 4. The q f Ny58rts deconvoluted from the 2w36587 distribution is z � @�{ �|� @�{ & 9�:
;+< -
which corresponds to the p–air inelastic cross–section of
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mb.

5. Systematic Errors

As indicated above, the model dependence, as estimated by using different models, is negligible due to the
technique used. The detector trigger bias and heavy nuclei contamination is avoided by using the 700 9 :�;8< -
or deeper portion of the 2w36587 distribution. The atmospheric aerosol influence is less than the detector intrinsic
resolution and is minimized by selecting data only from clear nights. Uncertainty in the molecular atmosphere
introduces an elongation rate bias of less than 1 9 :�;8< -

, see [6], and can be safely ignored. The reconstruction
and quality cuts bias does not exceed

� { � 9�:
;+< -
, the fitting uncertainty is less than

� 9 :�;8< -
. For this study,

we assumed that the gamma ray flux at these energies is undetectable, with an upper limit of 5%. Using Monte



p–air inelastic cross–section ... 345

)2 (g/cmmax-XMC
maxX

-400 -200 0 200 400

1

10

10
2

10
3

XmaxResolution

Nent = 4725   

Mean  =   1.58

RMS   =  27.38

Chi2 / ndf = 262.3 / 33

 17.72 ±Constant = 813.4 

 0.3318 ±Mean     = 2.331 

 0.3462 ±Sigma    = 21.89 

 MCmax-XMC
maxX XmaxResolution

Nent = 4725   

Mean  =   1.58

RMS   =  27.38

Chi2 / ndf = 262.3 / 33

 17.72 ±Constant = 813.4 

 0.3318 ±Mean     = 2.331 

 0.3462 ±Sigma    = 21.89 

Figure 1. ~����8� resolution function.
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Figure 2. Energy resolution function.

Carlo simulations and assuming a 5% gamma ray flux, we estimated the systematic shift in our cross–section
measurement does not exceed

� 9 :�;8< -
. The total systematic error for Hires measurement of the p–air inelastic

cross–section is estimated to be
"��%���$��� 9 :�;8< -

. An asymmetric systematic error is due to the potential
gamma ray flux. Details about systematic errors and the gamma ray study can be found in [5].

6. Discussion

The p–air inelastic cross–section value measured by the HiRes is
���%�d���
	�������������v�������� !��"��������� !�

mb. It is
in a good agreement with the cross–section values measured by Akeno [7] and Fly’s Eye [1] at lower energies
rescaled by M. Block [8] using newer interaction models. The HiRes value is also in a good agreement with
the interaction model predictions and the accelerator data extrapolation [9].

7. Conclusions

The Hires stereo fluorescent detector provides us with the highest quality cosmic ray data. The ability to
see the greater part of the air shower shower profile in stereo greatly improves the 2 36587 resolution. The
deconvolution technique removes the interaction model dependence and increases the accuracy and stability of
the cross–section measurement.
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Figure 3. Energy distribution. Cosmic ray data.
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Figure 4. ~|�d�8� distribution. Cosmic ray data.
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