
A Translation Algorithm to Solve Semantic Conflicts in
Information Exchange

by

Nancy C. Gotta

S.B., Computer Science and Engineering (1997)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1998

Copyright 1998 Nancy C. Gotta
All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author. .
Depar(ment o'f Electrical Engineering and Computer Science

May 22, 1998

Certified by
Stuart E. Madnick

John Norris MagtufrProfessor of Infor tion Technology
- Thesis Sunervisor

Accepted by
Athur C. Smith

Chairman, Department Committee on Graduate Theses
Department of Electrical Engineering and Computer Science

Enfoi--

To Jason

A Translation Algorithm to Solve Semantic Conflicts in
Information Exchange

by

Nancy C. Gotta

Submitted to the Department of Electrical Engineering and Computer Science

on May 22, 1998, in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Semantic conflicts that arise in the exchange of data among different users and data

sources can lead to the misinterpretation of facts and can potentially have devastating
effects. The Context Interchange system was created to resolve such conflicts.

In this thesis, a translation system has been constructed specifically for use with Context
Interchange. The translation system allows users to read existing user contexts and create
new contexts using a set of editors. The system translates between English and Penny,
the programming language currently used for the expression of contexts. By using this
system, it is possible for users to read and construct contexts without having any
knowledge of the Penny language.

The system is comprised of four editors and a translator. Each of the editors creates a
specific component of the Penny context: the domain model, the context axioms, the
conversion functions, and the elevation axioms. The translator transforms a context
written in Penny into a plain English description of the context.

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology, Sloan School of
Management

Acknowledgments

I would like to acknowledge and thank Professor Stuart Madnick for the

invaluable guidance he has given me over the course of the past year. I would also like to

thank the entire Context Interchange research group for their guidance and assistance. I

have gained substantial experience while working on this project.

I would like to thank my parents, Alexander and Colleen Gotta, for their advice,

understanding, support, and love. I also thank my friends for their patience and

encouragement.

Finally, I would like to thank my fiance, Jason Hintersteiner. Despite a busy

schedule, he found the time to read several drafts of this thesis. He has shown great

patience, understanding, and love, and it is to him that I dedicate this thesis.

Biography

Nancy C. Gotta received a Bachelor of Science degree in Computer Science and

Engineering from the Massachusetts Institute of Technology in June 1997. As an

undergraduate, she did extensive coursework in the areas of software engineering,

artificial intelligence, and data networking. She also worked on several projects as a

software engineer. As a graduate student, she is continuing to pursue her current research

interests in data networking. After finishing her Master's degree, she plans to work in

computer technical consulting.

Table of Contents

1 Introduction

1.1
1.2

....1 1

Background
Organization of Thesis

2 The Context Interchange System

2.1 The Overall System
2.2 Applications of COIN
2.3 The Structure of a COIN Context

2.3.1 Domain Model
2.3.2 Context Axioms
2.3.3 Conversion Functions . .
2.3.4 Elevation Axioms

3 The Penny Language

3.1 History of Penny
3.2 Syntax of Penny........

3.2.1 Domain Model
3.2.2 Context Axioms....
3.2.3 Conversion Functions.
3.2.4 Elevation Axioms...

4 The Translating and Editing System

4.1 Overview of the System
4.2 Major Components of the Translating and

4.2.1 The Penny to English Translator .
4.2.2 The Domain Model Editor
4.2.3 The Context Axiom Editor . . .
4.2.4 The Conversion Function Editor.
4.2.5 The Elevation Axiom Editor . .

.15

.15

.17

.19

.20

.20
.21
.21

.............23

...................... 23
............24
...........24
..........2 5
. .27
.........2 8

.3 1

.............. ..32
Editing System. 34
.34
.37
.43
.45
.49

5 Example of Use of Translating and Editing System.

5.1
5.2
5.3
5.4
5.5

Domain Model Editor . . .
Context Axiom Editor . . .
Conversion Function Editor
Elevation Axiom Editor. . .
Penny to English Translator

S. 53

S.53
S. 56
S. 60
S. 64
S. 67

.11

.13

6 Conclusions and Future Work

6.1 Summary of Contributions
6.2 Future Work............

6.2.1 Natural Language Processir
6.2.2 Graphical Interface
6.2.3 Translation Directly to Data

6.3 Conclusions

A Penny to English Translator Rules . . .

B Sample Application Penny Code

B. 1 Domain Model
B.2 Context Axioms

B.2.1 Disclosure (DiscAF).
B.2.2 Worldscope (WorldAF)..
B.2.3 Datastream (DStreamAF).
B.2.4 Olsen............

B.3 Conversion Functions
B.4 Elevation Axioms.

B.4.1 Disclosure.
B.4.2 Worldscope.........
B.4.3 Olsen............
B.4.4 Datastream.........
B.4.5 Auxiliary Elevation Axiom

.................... 71

........... 71

.7 1
g 7 1
...............72

Ilog 73
. 7 3

. 75

................. ...7 9

................. ...82

................. ...82

................82

. 83

................. ...8 3

................84

................. ...84

.................. ..86

................... .86

....................87

....................8 8

.................. ..8 8
s 89

C List of Abbreviations91

Architecture of the COIN system.
Architecture of the COIN mediator.

Chapter 3

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Chapter 4

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

Chapter 5

Figure 5.1
Figure 5.2
Figure 5.3
56
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11

Domain model axiom.......
Context axioms
Intensional context axiom
Conversion functions
Elevation axioms

........2 5

........26

.27

........27

........2 8

Main menu of translation system 33
Sample domain model 39
Initial domain model editor dialog and creation of first domain
m odel axiom 41
Creation of second and third domain model axioms 42
Sample context axioms 44
User dialog for creation of context axioms 45
Sample conversion functions. 47
Dialog for creation of simple conversion function 48
Dialog for creation of complex conversion function 49
Sample elevation axioms 50
Dialog for creation of elevation axioms 51

User dialog for obtaining file name for domain model. . . .
Dialog for creation of domain model axiom
Penny domain model axiom

Initial user dialog for context axiom editor
First two lines of context axiom Penny code
Menu of semantic types
Menu of semantic type modifiers
User dialog for entering modifier value
Penny context axiom
Dialog for the creation of an intensionally defined modifier.
Final line of context axiom Penny code

S. 54
S.55

.. 56
S. 57
.. 57
S. 58
S. 58
.. 58
S.59
S. 60

Table of Figures and Tables

Chapter 2

Figure 2.1
Figure 2.2

S. 16
S. 17

Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17

Figure 5.18
Figure 5.19

Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29

Appendix A

Table A. 1
Table A.2
Table A.3
Table A.4
Table A.5

Appendix B

Table B.1

User dialog for obtaining file name for conversion axioms. . . . 60
User dialog for obtaining domain model and context names . 61
First two lines of conversion functions 61
Conversion function menu 61
User dialog for creating a conversion function where the source
and target values are the same 62
A conversion function where source and target values are the same

.... . 62

User dialog for entering complex conversion functions 62
User dialog for addition of string and number conversion functions

. 63
String and number conversion functions 63
Final line of conversion functions 63
User dialog for obtaining file name for elevation axioms 64
Initial user dialog for elevation axiom editor 64
User dialog for entering semantic objects into elevation axioms. 65
First three lines of elevation axiom Penny code 66
User dialog for overriding value declarations. 66
Sample Penny code for translation 68
User dialog for obtaining file names for translator 69
Translator output 69

Rules considered regardless of value of Contexttype
Rules considered when Contexttype = "domain model"
Rules considered when Contexttype = "context axioms" . . .
Rules considered when Contexttype = "conversion functions".
Rules considered when Contexttype = "elevation axioms". . .

Axiom reference numbers for domain model and context axioms

.75

. 76

. 76
. 77
.77

................................... 80
Table B.2 Axiom reference numbers for conversion functions and elevation

axiom s . 81

This page intentionally left blank

Chapter 1

Introduction

1.1 Background

In the past decade, there has been an unprecedented growth in the number of

information sources and receivers around the world. Additionally, it has become much

easier to transmit information globally using large-scale communications media such as

the Internet. These factors have led to a vast increase in the quantity of information being

exchanged on a daily basis throughout the world.

The capacity to transmit information in this manner has led to a considerable

problem, however. While it is now possible to exchange information easily across the

globe, this information is meaningless unless considered in its underlying context. A

statement considered in the wrong context can lead to major problems of

miscommunication.

A simple example of this problem is the representation of dates. The date

4-2-1997 would, in the United States, be interpreted as April 2, 1997. In the United

Kingdom, on the other hand, it would be read as February 4, 1997.

Another example of this problem is the comparison of financial data in different

currencies. There are almost as many currencies in use in the world today as there are

countries, and the relative values of these currencies shift on a daily basis. One U.S.

dollar is a very different amount of money from one Japanese yen or one British pound

sterling.

Conflicts such as these, where information interpreted in one context means

something entirely different from the same information interpreted in another context, are

referred to as semantic conflicts. If these conflicts are not detected and resolved, the

information exchanged becomes meaningless.

The Context Interchange (COIN) strategy attempts to solve the problems of

semantic conflicts by mediating data access. Semantic conflicts among information

sources and receivers are not identified a priori. Rather, they are detected and reconciled

by a context mediator, which compares the contexts of the information sources and

receivers and translates the data accordingly'.

A context is expressed as a set of assertions in a programming language known as

Penny.2 Penny is a deductive object-oriented language which allows the logic-based

axioms and statements that comprise a context to be expressed.

Penny, however, can be very difficult to understand and use, especially for a

person who is unfamiliar with the language and not accustomed to computer

programming. Deciphering a context in Penny is not a trivial task. Determining what a

particular variable refers to in a context is even more difficult, and creating new contexts

can be a considerable challenge.

1 S. Bressan, et. al., "The COntext INterchange Mediator Prototype," ACM SIGMOD
International Conference on Management of Data, 1997.

2 Fortunato Pena, "PENNY: A Programming Language and Compiler for the Context
Interchange Project," M.Eng. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1997.

12

The goal of this thesis, therefore, is to create a system to translate Penny contexts

into a format that is easier to understand. This system enables users who are unfamiliar

with the Penny language and the complexities of context creation to read and understand

existing contexts, and either to modify these contexts or to create new contexts to suit

their needs.

1.2 Organization of Thesis

This thesis is organized into six chapters. Chapter 2 contains a detailed

description of the COIN system and the context mediator at its heart. Chapter 3 discusses

the Penny language, including its capabilities and syntax. Chapter 4 describes the

translating and editing system, including both the translator used to express Penny

contexts in an easy to understand form and the editors used to create the different parts of

Penny contexts. Chapter 5 consists of a sample run through each of the editors and the

translator. Finally, in Chapter 6, conclusions are presented along with suggestions for

future research.

This page intentionally left blank

Chapter 2

The Context Interchange System

The Context Interchange (COIN) strategy attempts to solve the problems of

semantic conflicts by mediating data access. Semantic conflicts among information

sources and receivers are not identified a priori. Instead, these semantic conflicts are

detected and reconciled by a context mediator, which compares the contexts of the

information sources and receivers and translates the data accordingly. With the system in

place, a user need never know that a semantic conflict ever occurred, as the conflict is

detected and resolved by the context mediator.'

2.1 The Overall System

The COIN system consists of three main components: the user, the remote data

source from which the user wishes to retrieve data, and the context mediator between

them. Figure 2.1 illustrates these components.

' For more information on the COIN system, see: "The COntext INterchange Project,"
World Wide Web: http://context.mit.edu/-coin/.

15

CONTEXT MEDIATION SERVICES

User

Executon Context Query
Opt d Mediated i Intensional

-..... ;.......

Extensional Answers

answers subquery

Wrapper Wrapper

A",D Non-traditional
---- "-- Data Sources

LocaDBMe., web-pges)

Figure 2.1: Architecture of the COIN system.

A user who wishes to query a remote database first expresses the query in

Structured Query Language (SQL). This query is sent to the context mediator. The

mediator uses the contexts of both the information source (the remote database) and the

information receiver (the user) to translate the user's query into SQL subqueries

appropriate to the source's context, as necessary. The mediated subqueries are sent to the

information source, which returns data to the mediator. Finally, the mediator translates

the data from the source into the receiver's context and passes the mediated data on to the

receiver.

Figure 2.2 shows the architecture of the context mediator. The mediator receives

an SQL query from the user, along with information about the user's context. The

16

mediator is also provided with a domain model, and with context, elevation, and

supplementary axioms describing the context of the remote site being queried. All of this

information is expressed in the logic-based language Datalog. An abduction engine is

used to create a new SQL query in the context of the remote site. This query is then sent

to the information source.

2.2 Applications of COIN

The COIN system can be used in any situation where data must be shared among

diverse information sources and receivers which may not share the same context. A few

examples of common data exchange situations where COIN may prove useful are as

follows.2

2 Some of these applications are discussed in the Context Interchange World Wide Web
site at http://context.mit.edu/-coin/

17

SQLQuery UserContext

CONTEXT

SQL-to-HC Q MEDIATOR
Compilex

Datalog Query COIN-to-HC Domin Model
Translator S

Engie Elevaton Axioms

Supplementary
Axiomr

Abductive Query

Figure 2.2: Architecture of the COIN mediator.

* Financial Decision Support: There is a vast number of data sources for financial

information available to investors. Many of these are foreign stock exchanges.

Financial data tend to be presented in various currencies with various scale factors.

Some databases express financial data in U.S. dollars; others use thousands of

Japanese yen; still others present financial data for each company in the currency of

the country where that company was incorporated. It is critical that queries to such

databases be mediated to retrieve meaningful data and to make meaningful

comparisons.

* Manufacturing Inventory Control: Large manufacturing processes are associated

with large amounts of data, including design, engineering, manufacturing, and

inventory information. Hundreds of contractors may be involved, and each contractor

may present its data in a different manner. Context mediation is necessary to compare

data in these disparate formats in a meaningful way.

* Medical Information Systems: The ability to share meaningful information about

patients is necessary to ensure a high quality of medical care. Within a hospital,

different departments such as internal medicine, admitting, and billing maintain

separate sets of patient information, but must share these data to ensure good patient

care. On a larger scale, different medical centers and clinics must share information

with each other as well as with insurance companies and state and federal regulators.

To share this information in a meaningful way, differences in procedure codes,

classifications, and payment must be reconciled.

* Academic Performance: Academic performance is measured on different scales at

different universities. For example, some universities use a five-point scale for grade

point averages, while others use a four-point scale, and still others grade their students

on 100-point scales. It is necessary to translate students' academic records among

these diverse systems when comparing students from different universities, such as

when evaluating graduate school applications.

Without a system like COIN in place to resolve semantic conflicts, these conflicts

must be compensated for by the user. The user must be aware of all possible conflicts

that may occur and how to correct each of them. For example, an employer comparing

the academic records of potential employees must be aware of the fact that different

universities use different grading systems. Two students may list their grade point

averages as 4.0, but one student's university may grade on a scale of 4.0 while the other's

grades on a scale of 5.0. Although the students' GPA's are the same, the student whose

university bases its grades on a 4.0 scale has a better academic record than the student

graded on a 5.0 scale. It would be an error for the employer to equate the two students'

records. The problem becomes even more complex when international students are

considered, since international students' academic performances are rated differently.

2.3 The Structure of a COIN Context

A context within COIN consists of four distinct segments: a domain model,

context axioms, conversion functions, and elevation axioms.

2.3.1 Domain Model

The domain model is the basis of the context. It lists all of the semantic types that

may potentially be involved in semantic conflicts, along with attributes and modifiers for

each semantic type that link that type with other semantic types in the context.

Each semantic type consists of a name and a data type. The data type is normally

one of the types native to the underlying system, including strings, integers, and so forth.

Each semantic type may also include attributes and modifiers. Each attribute and

modifier also has an associated data type, which may be one of the underlying system

types or another semantic type defined within the domain model.

Several contexts may share the same domain model. In fact, it is necessary for

good semantic conflict resolution that the semantic type involved in the conflict appear in

the domain models of both the user and the remote data source.

2.3.2 Context Axioms

Context axioms specify values for each modifier of each semantic type defined in

the domain model. For instance, if the domain model indicates that financial data are

subject to a scale factor, the specific scale factor is specified in a context axiom.

The mediator compares the context axioms of the data source to those of the user

to identify any semantic conflicts. When the value of a modifier in the context of the data

source differs from the value of the same modifier in the context of the user, a semantic

conflict that requires resolution by the mediator may occur.

Each context axiom contains the name of the modifier, the name of the associated

semantic type, and the value of the modifier. The value of the modifier must be in the

data type specified for that modifier in the domain model.

2.3.3 Conversion Functions

At times, the value of a given semantic object may be known with respect to one

context, and this knowledge may restrict the possible values of that semantic object in

another context. Conversion functions specify how the value of that semantic object may

be determined with respect to the second context if its value in the first context is known.

2.3.4 Elevation Axioms

Elevation axioms define the mapping of semantic types from the domain model to

the equivalent semantic objects in the data source. A set of elevation axioms includes the

name of the external relation to be elevated, the context in which the source values are

defined, the elevated relation name, and the names of the elevated semantic objects. It

may also include explicit value declarations and semantic objects, if necessary.

This page intentionally left blank

Chapter 3

The Penny Language

Penny is a programming language designed specifically for use with the Context

Interchange Project. It allows end users of COIN to create the clear and well-defined

contexts necessary for semantic conflict resolution.

3.1 History of Penny

Penny was developed from COINL, a deductive object-oriented language also

designed specifically for use with COIN.' COINL was a very powerful language for

specifying complex contexts, but even very simple contexts required a large amount of

cryptic COINL code. Learning and using COINL syntax was thus difficult and

time-consuming. 2

After several applications were designed with COINL, it became obvious that

COINL was not meeting the needs of users. Users wanted to be able to read existing

contexts and construct new ones very quickly, without spending weeks or months

learning the complicated syntax of COINL.

Fortunato Pena, "PENNY: A Programming Language and Compiler for the Context
Interchange Project," M.Eng. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1997, 11-17.

2 For more information on COINL, see: C. Goh, "Representing and Reasonning about
Semantic Conflicts in Heterogeneous Information Systems," Ph.D. thesis, Sloan School
of Management, Massachusetts Institute of Technology, 1996.

23

To meet this goal, Penny was created. Like COINL, it is a deductive

object-oriented language. Like COINL, Penny is a compiled language; a compiler was

created to transform Penny code into Datalog, which is understandable to the context

mediator at the heart of the COIN system. Unlike COINL, however, Penny is a much

easier language to learn. Its syntax is much less complicated, and is in some ways similar

to the syntax of the C programming language. Learning the language, especially for an

experienced computer programmer, thus takes much less time and effort than learning

COINL.

Nevertheless, despite the fact that Penny is much easier to work with than COINL,

Penny is still difficult to learn and use, especially for those unfamiliar with the techniques

of computer programming. A solution to this problem is the translation and editing

system presented in this thesis.

3.2 Syntax of Penny

As dictated by the design of COIN, there are four components to a context: the

domain model, the context axioms, the conversion functions, and the elevation axioms.

The syntax of each component is unique, and is described here in detail.

3.2.1 Domain Model

The domain model provides the underlying structure for a context. It contains a

number of semantic types, each with associated modifiers and attributes.3

3 Pena, 17-18.

Figure 3.1 shows an example of a domain model axiom.

semanticType companyName::number {
modifier string format(ctx);
attribute string countryIncorp;

Figure 3.1: Domain model axiom.

In this example, as shown in the first line of the axiom, the name of the semantic

type being considered is companyName, with a data type of number. All semantic types,

modifiers, and attributes are assigned data types; these data types may be either basic

types such as string and number, or other semantic types defined elsewhere in the domain

model.

Each semantic type may also have modifiers and attributes. This semantic type

has one modifier, format, of type string. It also has one attribute, countrylncorp, also of

type string.

3.2.2 Context Axioms

Context axioms specify values for the modifiers of the semantic types included in

the domain model. If a semantic conflict is present, the values specified in the context

axioms for the data source and the end user will disagree.4

Context axioms use the format shown in Figure 3.2.

4 Pena, 18-19.

First, a file specifying the domain model must be specified in the use statement.

The domain model specifies the semantic types and modifiers which are assigned values

in the context axioms following the statement.

The set of context axioms are delimited by the context and end statements. These

statements also serve the purpose of defining the name of the context, in this case c_ds.

Each context axiom includes the names of the modifier and its semantic type, and

the value being assigned to that modifier. The axiom takes the form

modifier-name < semantic-type-name > = -(value)

where the value is of the same data type as the one specified for the modifier in the

domain model.

It is also possible to define modifiers intensionally, that is, by assigning a value to

the modifier that depends on the data being examined. For example, currencies are

revalued from time to time, and the scale factor of financial data in a database may

change depending on whether the information was recorded before or after the

revaluation. When retrieving such data, it is necessary to identify the date corresponding

to each entry and to be sure to use the appropriate scale factor.

An example of an intensional context axiom is presented in Figure 3.3. This

particular axiom indicates that, in this context, the currency in which financial data are

use ('/home/ncgotta/Work/dmO.pny');
context c ds;

format<companyName> = ~("ds name");

end c ds;

Figure 3.2: Context axioms.

given for each company is the currency of the country in which that company was

incorporated.

use ('/home/ncgotta/Work/dmO.pny');
context c ds;

currency<companyFinancials> = -($) <-
Comp = self.company,
Country = Comp.countryIncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;

end c ds;

Figure 3.3: Intensional context axiom.

3.2.3 Conversion Functions

Conversion functions are used to obtain the value of a semantic object in one

context if that value is known in another context. Conversion functions are of the form

shown in Figure 3.4.

use ('/home/ncgotta/Work/dmO.pny');
context c ds;

cvt()<companyName> <-
SrcMod = self.format(source),
TgtMod = self.format(target),
SrcMod.value = TgtMod.value,
$ = self.value;

end c ds;

Figure 3.4: Conversion functions.

As with context axioms, conversion functions are delimited by use of the

context and end statements, and a use statement is necessary to specify the underlying

domain model.

Each conversion function starts with the key word cvt. This particular conversion

function indicates that if the value of the modifier format of the semantic type

companyName is the same in the source as it is in the target (i.e. it is the same in the

contexts of both the end user and the data source), then if the value of companyName is

known in either context, the value in the other context must be the same. 5

3.2.4 Elevation Axioms

Elevation axioms relate the semantic objects used in the domain model to their

equivalents in a database. These elevation axioms take the form shown in Figure 3.5.

elevate 'DiscAF'(cname, fyEnding, shares, income, sales, assets,
incorp)

in c ds
as 'DiscAF p' (^cname:companyName, ^fyEnding:date, ^shares:void,

^income:companyFinancials, ^sales:companyFinancials,
^assets:companyFinancials, ^incorp:countryName)

Figure 3.5: Elevation axioms.

The first line of the set of elevation axioms names the external relation to be

elevated, in this case DiscAF. It also lists each of the semantic objects in DiscAF that

will be elevated. The second line names the context into which this relation will be

5 Pena, 19-20.

elevated. In this case that context is c_ds. The third line provides a list of each semantic

object in the external relation, paired with its corresponding semantic type in the context.

Following these statements, value declarations are listed within the brackets.

Specific value declarations do not need to be provided, as the Penny compiler will create

default declarations. These default values can, however, be overridden here with specific

statements of the form

Asemantic-objectl . modifier = ^semantic-object2

to allow specific mappings between given semantic objects and modifiers.6

6 Pena, 20-21.

This page intentionally left blank

Chapter 4

The Translating and Editing System

The contexts of both users and data sources can be very complex and intricate.

These contexts must be carefully defined, so as to avoid errors in definition that can lead

to unresolved semantic conflicts or to the "resolution" of conflicts where none exist.

Therefore, Penny, the language used to express these contexts in the COIN system, must

of necessity be very complex to express these definitions adequately. As a result, it can

be a difficult language to read, understand, and use.

Before the COIN system can be used, it is necessary that users wishing to use

COIN, either to retrieve or to provide data, be able to define their contexts clearly. The

first step in this process is to ensure that users can read the contexts they intend to use.

The Penny translator accomplishes this goal by translating the domain models, context

axioms, conversion functions, and elevation axioms expressed in Penny into a more

readable and easier-to-understand format.

Once users are able to read existing contexts, it is necessary that they also be able

to construct their own Penny domain models, context axioms, conversion functions, and

elevation axioms to specify their own contexts. A set of editors has been created to allow

the user to create different parts of a Penny context. Each editor allows the user to

construct one of the four subsections of a context. This modular design allows users to

utilize parts of a preexisting context, modifying them for their own needs. For instance, a

user may use a preexisting domain model as a basis for defining new context axioms with

different values.

A system has been created that integrates all of these functions into one

easy-to-use package. It was implemented in ANSI C in the UNIX operating environment.

It was also compiled for use in the Windows 95 and Windows NT operating

environments. Using this system, a user is able to read existing contexts and create new

ones while knowing nothing about the syntax of the underlying Penny programming

language. This system is described below.

Throughout this chapter, an example of an application of Context Interchange will

be used to illustrate the capabilities of the system. This example is concerned with

student academic records at universities. Each student's record contains a listing of the

student's name, the number of subject units or credit hours the student has completed,

and the student's grade point average (GPA). Since different universities assign different

numbers of units to different courses and compute GPA's in different ways, there are

several opportunities for semantic conflicts to arise.

4.1 Overview of the System

When the Penny translating and editing system is started, it presents the user with

a main menu, as shown in Figure 4.1.

The following options are available.

* Option 1: Penny to English translation system. This translator, described in section

4.2.1, allows the user to translate any part of a context defined in Penny into English.

* Option 2: Context axiom editor. This editor facilitates the construction of a set of

context axioms based on a given domain model. It is described in section 4.2.3. Note

that before the context axiom editor is run, a domain model must already exist as the

basis for the context axioms to be created.

* Option 3: Domain model editor. This component, described in section 4.2.2, allows

the user to construct a domain model by entering semantic types with their attributes

and modifiers.

* Option 4: Conversion function editor. This component, described in section 4.2.4,

allows the user to create conversion functions.

1 Translate existing context from Penny to English.
Requires an existing, legal, Penny context.

2 Create Penny context axioms.
Requires an existing Penny domain model.

3 Create a Penny domain model.

4 Create a set of Penny conversion functions.

5 Create Penny elevation axioms.

6 View a file (Penny or English).

0 Quit.

Please choose from the list above or enter 0 (zero) if finished:

Figure 4.1: Main menu of translation system.

* Option 5: Elevation axiom editor. This editor, described in section 4.2.5, allows for

the easy creation of elevation axioms.

* Option 6: File viewer. This component allows the user to view any file, Penny or

English. Thus, users need not exit the system to see, for instance, the output of the

Penny to English translator or the Penny code of the context axioms they have

created. When this component is run, the system asks the user for a file name. If the

file does not exist, the user is so informed. Otherwise, the file is displayed, twenty

lines at a time, and the user is asked to press the enter key to see the next twenty lines.

When the end of the file is reached, the user is asked to press the enter key, and is

then returned to the main menu.

* Option 0: Exits the translating and editing system.

4.2 Major Components of the Translating and Editing System

There are five main components to the Penny translating and editing system.

These are the Penny to English translator, the domain model editor, the context axiom

editor, the conversion function editor, and the elevation axiom editor. These components

are explained further in the following subsections.

4.2.1 The Penny to English Translator

The Penny translator is a knowledge-based system that uses a series of rules to

determine how to translate each of the statements in a context. Each line of Penny code is

parsed to determine whether it is part of a domain model, a context axiom, a conversion

function, or an elevation axiom. After this determination is made, the information

contained in that line is then inserted into an appropriate template and written to an output

file in a format that is easier for a person unfamiliar with Penny to read and understand.

Thus, the output file contains all relevant information from the Penny context in a format

understandable to anyone with a basic knowledge of the concepts used in COIN. Thus,

specific knowledge of Penny syntax on the part of the end user becomes unnecessary.

The translator uses a set of rules to parse a Penny file and output a new file with

the same information expressed in a more intuitive and easier to understand fashion. The

list of rules used by the translator appears in Appendix A. This is an ad-hoc approach,

since it depends on specific aspects of Penny syntax in order to arrive at a correct

translation.

The Penny to English translator begins by asking the user to enter the name of the

file containing the Penny code (the input file), followed by the name of the file to which

the translation is to be written (the output file).

The input file should be an existing file consisting entirely of valid Penny code. If

the input file contains no valid Penny code, the resulting output of the translator will be

an empty output file. If the input file contains a mix of Penny code and other text, the

contents of the output file may be unpredictable.

The output file should not be a preexisting file. If, however, there is a file by the

same name already in existence, the user is provided with the following three options.

1. Append new information to the existing file. This option is useful if the user wishes

to add more semantic types to a preexisting domain model.

2. Overwrite the existing file. This option erases all data in the existing file and replaces

it with the new information.

3. Specify a different file name for the output.

The translator then proceeds to read the Penny file, one line at a time. It parses

each line using its rule base to determine whether it is a domain model axiom, context

axiom, conversion function, or elevation axiom, and which words in the line constitute

the names of semantic types, modifiers, and values. If appropriate, the translator then

writes a line to the output file stating this information in a format that is clearer than raw

Penny code.

At times, it is impossible to tell from the single line under consideration whether

that line is part of a domain model, context axiom, or elevation axiom, although the code

surrounding that line makes it clear what sort of statement is being parsed. In these

situations, the translator keeps track of what type of axiom to expect, and parses each line

according to its expectations. For example, context axioms are set off from the

surrounding Penny code by the use of context and end statements. When the translator

encounters a context statement, it expects that each line following this statement will be a

context axiom until an end statement appears.

4.2.2 The Domain Model Editor

The domain model editor allows a user to construct the domain model that

underlies a context. The domain model lists the semantic types to be considered by the

mediator, along with any attributes and modifiers those semantic types may have. It is the

basis of the context, and it is therefore necessary to have a domain model in place before

creating context and elevation axioms.

There is great freedom in the information that can be encapsulated in a domain

model. A semantic type can be given any name, and it may or may not have attributes

and modifiers. Because of this freedom, the editor communicates with the user by

prompting the user to enter each required item, rather than by providing a menu of

options.

When the user enters the domain model editor, the editor first requests a name for

the file in which the Penny domain model code is to be stored. The file name may be any

valid UNIX file name, and should not include spaces, asterisks, or other characters

forbidden by UNIX. As with the Penny to English translator, if a file with the name

provided by the user is found to exist, the user is provided with three options: append new

data to the existing file, overwrite the existing file, or specify a different file name.

The first lines written to the output file are comments indicating that this file

contains a domain model and stating the date and time of its creation.

The user is then prompted for the name of the first semantic type to be included in

the domain model. Names of semantic types may not include spaces, tabs, or other

whitespace characters. When the semantic type name has been entered, the user is asked

for its data type. In general, the data type will be either a string or a number.

Next, the system will prompt the user to enter any attributes desired for this

semantic type. For each attribute, the user is asked for the attribute name and the type.

An attribute's type may be one of the predefined data types (i.e. string or number) or a

semantic type defined elsewhere in the domain model. At any time, the user may type the

word done, instead of an attribute name, to indicate that no more attributes are to be

added.

The system then prompts the user to enter any modifiers desired for this semantic

type. As with attributes, the user is asked for each modifier's name and type. At any

time, the user may type the word done, instead of a modifier name, to indicate that there

are no more modifiers to be added to the semantic type.

At this point, the semantic type definition is complete. The user is asked if

additional semantic types are to be entered. If the answer is yes, the process of entering a

semantic type is repeated. Otherwise, the output file is closed and the process of creating

a domain model is complete.

A domain model for the student academic record example might resemble the

domain model presented in Figure 4.2.

The first domain model axiom expresses the information to be found in each

student's record: name, GPA, and units completed. Since each record represents a

different student with, presumably, a different name, students' names would never be

compared. Therefore, a student's name would not cause a semantic conflict, and it is

listed simply as an attribute of type string. GPA's and units completed may cause

conflicts, however, and so they are expanded upon in additional domain model axioms.

Different universities calculate GPA's in different ways. Some universities use a

scale where the maximum GPA attainable is 4.0, while others, such as the Massachusetts

Institute of Technology (MIT), use a scale with a maximum of 5.0. Therefore, the second

domain model axiom indicates that the GPA has a modifier called maxGPA which

indicates whether the maximum attainable GPA at this student's university is 4.0, 5.0, or

something else.

In the same way, different universities assign different numbers of units or credit

hours to their courses. For instance, a typical course at MIT has 12 subject units, but

other universities may assign 3 or 4 credit hours to a typical course, and still others

39

semanticType studentRecord::string {
attribute string studentName;
attribute GPA studentGPA;
attribute subjectUnits unitsCompleted;

}

semanticType GPA::number {
modifier number maxGPA;

}

semanticType subjectUnits::number {
modifier number unitsPerSubject;

}

Figure 4.2: Sample domain model.

merely count the number of courses the student has taken, making each course worth 1

unit. The third domain model axiom indicates this by assigning a modifier,

unitsPerSubject, that indicates the number of units assigned to a typical subject taught at

the student's university.

The following dialog takes place when this domain model is constructed. Figure

4.3 shows the creation of the initial domain model statements and the first domain model

axiom. Figure 4.4 shows the creation of the second and third domain model axioms.

Please enter the name of the output file
dm O.pny

Please enter the name of the semantic type
studentRecord
Please enter a type for this semantic type, ie. string, number.
string

Please enter the name of the first attribute.
If you do not wish to assign any attributes, type DONE then press
enter.
studentName
Please enter a type for attribute studentName, ie.
ie. string, number, or a previously defined semantic type.
string

Please enter the name of the next attribute.
If you do not wish to assign any more attributes, type DONE then
press enter.
studentGPA
Please enter a type for attribute studentGPA, ie.
ie. string, number, or a previously defined semantic type.
GPA

Please enter the name of the next attribute.
If you do not wish to assign any more attributes, type DONE then
press enter.
unitsCompleted
Please enter a type for attribute unitsCompleted, ie.
ie. string, number, or a previously defined semantic type.
subjectUnits

Please enter the name of the next attribute.
If you do not wish to assign any more attributes, type DONE then
press enter.

done

Please enter the name of the first modifier.
If you do not wish to assign any modifiers, type DONE then press
enter.
done

Do you wish to create any more axioms (y/n)
Y

Figure 4.3: Initial domain model editor dialog and creation of first domain model
axiom.

Please enter the name of the semantic type
GPA

Please enter a type for this semantic type, ie. string, number.
number

Please enter the name of the first attribute.
If you do not wish to assign any attributes, type DONE then press
enter.
done

Please enter the name of the first modifier.
If you do not wish to assign any modifiers,
enter.
maxGPA
Please enter a type for modifier maxGPA,
ie. string, number, or a previously defined
number

Please enter the name of the next modifier.
If you do not wish to assign any modifiers,
enter.
done

Do you wish to create any more axioms (y/n)
Y

Please enter the name of the semantic type
subjectUnits
Please enter a type for this semantic type,
number

type DONE then press

semantic type.

type DONE then press

ie. string, number.

Please enter the name of the first attribute.
If you do not wish to assign any attributes, type DONE then press
enter.
done

Please enter the name of the first modifier.
If you do not wish to assign any modifiers, type DONE then press
enter.
unitsPerSubject
Please enter a type for modifier unitsPerSubject,
ie. string, number, or a previously defined semantic type.
number

Please enter the name of the next modifier.
If you do not wish to assign any modifiers, type DONE then press
enter.
done

Do you wish to create any more axioms (y/n)
n

Figure 4.4: Creation of second and third domain model axioms.

4.2.3 The Context Axiom Editor

The context axiom editor allows the user to specify context axioms, which define

values for each modifier of each semantic type in a domain model. Because the semantic

types and modifiers defined in the domain model are integral parts of the context axioms,

it is necessary that the domain model be specified before context axioms can be created.

When the user enters the context axiom editor, the editor first asks for the name of

the file containing the domain model, and for the name of the output file to which context

axioms are to be written. As with the domain model editor, if this output file already

exists, the user is asked whether the system should append the new context axioms to it,

replace the existing file, or request a new file name.

The user is then asked for a context name. The name serves to identify the

context, particularly when elevation axioms are constructed. The system writes to the

output file comments indicating that the file contains a set of context axioms, the name of

the context, and the date and time.

The user is presented with a menu listing each semantic type defined in the

domain model. Any semantic type from the menu may be selected, or 0 may be entered if

the user has finished defining context axioms.

If the user selects a semantic type, a menu is provided that lists all the modifiers

associated with that semantic type. Again, the user may choose any modifier from the

menu, or enter 0 if no context axioms are to be defined for any of the listed modifiers. If

the user enters 0, the system returns to the previous menu listing semantic types.

If the user selects a modifier, a reminder of the semantic type and modifier chosen

is provided, and the user is asked for a value for the modifier. Any string or number may

be entered. As with names of semantic types, modifier values may not include spaces,

tabs, or other whitespace characters.

After entering a value for the modifier, the user is returned to the menu listing the

semantic types defined in the domain model. When all context axioms have been

entered, the user may enter 0 when presented with this menu. When this occurs, the

output file is closed and the user is returned to the main menu.

Context axioms for the student academic record example might resemble the

context axioms presented in Figure 4.5. These context axioms express the context of

MIT, where the maximum attainable GPA is 5.0 and a typical course is worth 12 subject

units.

use ('dmO.pny');

context c mit;

maxGPA<GPA> = -(5.0);
unitsPerSubject<subjectUnits> = -(12);

end c mit;

Figure 4.5: Sample context axioms.

The user dialog required to create these context axioms is shown in Figure 4.6.

Please enter name of Penny file specifying domain model
dm0.pny
Please enter the name of the output file
ca.pny
Please enter a name for this context: c mit

1 studentRecord
2 GPA
3 subjectUnits
Please choose from the list above or enter 0 (zero) if finished: 2

Please choose one of the modifiers listed below for semantic type GPA
Or enter 0 (zero) to return to previous menu.

1 maxGPA (type: number)
Please choose from the list above or enter 0 (zero) if finished: 1

You have selected semantic type GPA and modifier maxGPA.
Please enter a value for this modifier.
5.0

1 studentRecord
2 GPA
3 subjectUnits
Please choose from the list above or enter 0 (zero) if finished: 3

Please choose one of the modifiers listed below for semantic type
subjectUnits
Or enter 0 (zero) to return to previous menu.

1 unitsPerSubject (type: number)
Please choose from the list above or enter 0 (zero) if finished: 1

You have selected semantic type subjectUnits and modifier
unitsPerSubject.
Please enter a value for this modifier.
12
1 studentRecord
2 GPA
3 subjectUnits
Please choose from the list above or enter 0 (zero) if finished: 0

Figure 4.6: User dialog for creation of context axioms.

4.2.4 The Conversion Function Editor

Since conversion functions are often very complex, it is difficult to capture them

adequately, either in a form-driven system, such as the one used in the domain model

editor, or in a menu-driven system, such as the one used in the context axiom editor.

Simpler conversion functions can be created by a form-driven editor, while more intricate

functions require a knowledge of Penny. The conversion editor therefore employs two

approaches: a form-driven interface for simpler axioms, and the option to enter more

complex axioms directly in Penny.

The system first asks the user for a name for the output file that will contain the

conversion functions. As with the previously described components of the system, if the

file specified already exists, the user has the option to append new information to the file,

overwrite the file, or choose a new file name.

The system starts by writing comments into the output file, indicating that this file

contains conversion functions, and stating the date and time of its creation. Next, the user

is asked for the name of the file containing the domain model, followed by the name of

the context. The first two lines of the conversion functions, specifying this information,

are written to the output file.

The user is then presented with a menu. The first option of this menu allows the

user to create a conversion function for a situation where the value of a particular

modifier is the same in both the source and the target systems. If this option is chosen,

the user is then asked for the names of the semantic type and modifier in question, and an

appropriate conversion function is constructed automatically.

The second menu option allows the user to enter conversion functions directly in

Penny code. This is necessary for more complex functions. These conversion functions

are written directly to the output file specified by the user. When the conversion function

has been entered, the user may type the word done on a line by itself. This will return the

user to the menu.

When all the conversion functions have been created, the user may enter a 0 at the

menu prompt. At this point, the user is asked whether the simple conversion functions

for strings and numbers should be added. If the answer is yes, these functions are added

to the output file. The ending line of the conversion functions is then written to the

output file, which is closed, and the user is returned to the main menu.

For the academic record example discussed above, a number of conversion

functions must be created to account for differences in GPA scales and subject units

among universities. The two conversion functions shown in Figure 4.7 can be used to

deal with GPA's.

cvt () <GPA> <-
SrcMod = self.maxGPA(source),
TgtMod = self.maxGPA(target),
SrcMod.value = TgtMod.value,
$ = self.value;

cvt()<GPA> <-

SrcMod = self.maxGPA(source),
TgtMod = self.maxGPA(target),
SrcVal = SrcMod.value,

TgtVal = TgtMod.value,

SrcVal <> TgtVal,
Val = self.value,
Ratio = TgtVal / SrcVal,
$ = Val * Ratio;

Figure 4.7: Sample conversion functions.

In each of these conversion functions, a student's GPA is known in one context

(the source) and the maximum GPA in both the source and target contexts is known. The

first conversion function states that if the maximum GPA is the same for both source and

47

target, then the student's GPA in the target context is the same as in the source. The

second function indicates that if the maximum GPA is not the same, the student's GPA in

the target context is equal to his GPA in the source context, multiplied by the ratio of the

maximum GPA in the target context to the maximum GPA in the source context.

The first conversion function is of the simpler variety where the value of the

maxGPA modifier is the same in both the source and the target contexts. This type of

conversion function can be created without direct knowledge of Penny. Only the names

of the semantic type and modifier in question must be entered. The dialog for the

creation of this conversion function is shown in Figure 4.8.

1 Make a conversion function for a situation where the source and
target values of a particular modifier are the same.

2 Make a more complex conversion function (requires knowledge of
Penny).

Please choose from the list above or enter 0 (zero) if finished: 1
Enter the name of the semantic type with which this conversion
function is concerned.
GPA
Enter the name of the modifier in question.
maxGPA

Figure 4.8: Dialog for creation of simple conversion function.

The second conversion function, however, is more complex and requires

knowledge of Penny. It would be created as shown in Figure 4.9.

4.2.5 The Elevation Axiom Editor

The elevation axiom editor allows the user to construct that part of a context

which relates the semantic types used in the domain model to their equivalents in a

particular database. It requires that the domain model be provided by the user, so that

valid semantic types can be extracted from it.

When the elevation axiom editor is started, the user is first asked for the name of a

file specifying a valid domain model. Semantic types for the elevation axioms are drawn

from the specified domain model. Next, the user must provide a file name for the output

file. As with the previous editors, if the output file already exists, the user may choose to

append new data to it, replace it, or choose a new file name.

The user is then asked to provide the names of the external relation to be elevated,

the context, and the elevated relation. At this point, the system writes comments into the

1 Make a conversion function for a situation where the source and
target values of a particular modifier are the same.

2 Make a more complex conversion function (requires knowledge of
Penny).

Please choose from the list above or enter 0 (zero) if finished: 2
Enter conversion function in Penny below.
When you are finished, type DONE on a line by itself.

cvt () <GPA> <-
SrcMod = self.maxGPA(source) ,
TgtMod = self.maxGPA(target) ,
SrcVal = SrcMod.value,
TgtVal = TgtMod.value,
SrcVal <> TgtVal,
Val = self.value,
Ratio = TgtVal / SrcVal,
$ = Val * Ratio;

done

Figure 4.9: Dialog for creation of complex conversion function.

output file indicating that this file contains elevation axioms, stating the names of the

external relation and the context, and stating the date and time of the file's creation.

The user is then asked to enter each elevated semantic object and to choose a

semantic type from the domain model for each such object. This information is

restructured into Penny code and written to the output file.

The user is then asked to enter any overriding value declarations. Since these

declarations can be quite complex, they must be entered by the user in Penny code and

written directly to the output file. When all overriding value declarations have been

entered, the user may type the word done on a line by itself, at which point the output file

is closed and the user is returned to the main menu.

Elevation axioms for the academic record example may resemble the elevation

axioms in Figure 4.10.

elevate 'Students'(name, gradePointAvg, unitsTaken)
in c mit
as 'Students p'(^name : studentName,

^gradePointAvg : studentGPA,
^unitsTaken : unitsCompleted)

Figure 4.10: Sample elevation axioms.

The external relation to be elevated is Students, and its elevated relation is

Students_. The relation is being elevated in the context c_mit discussed in Section 4.2.3.

The semantic objects to be elevated from the database are name, gradePointAvg, and

unitsTaken; their corresponding semantic types in the context are studentName,

studentGPA, and unitsCompleted, respectively.

declarations.

The user dialog necessary to create these elevation axioms is shown in Figure

4.11.

Please enter
elev.pny

Please enter
Students

Please enter
c mit

Please enter
Students p

the name of the output file

the name of the external relation to be elevated

the name of the context

the name of the elevated relation

Please enter the name of the first elevated semantic object, as
defined in the external relation.
name

Enter its corresponding semantic type from the context.
studentName

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
gradePointAvg

Enter its corresponding semantic type from the context.
studentGPA

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
unitsTaken

Enter its corresponding semantic type from the context.
unitsCompleted

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
done
Enter below, in Penny, any overriding value declarations you wish to
include.
When you are finished, type DONE on a line by itself.

done

Figure 4.11: Dialog for creation of elevation axioms.

There are no overriding value

This page intentionally left blank

Chapter 5

Example of Use of Translating and Editing System

A sample run through the translating and editing system will indicate more clearly

how the system works in practice. The sample Penny code used here is drawn from the

code used in the implementation of a sample application created to illustrate the

capabilities of the COIN system. The application integrates several data sources

containing financial information for various foreign and domestic companies. This code

is reproduced in full in Appendix B, along with reference codes to indicate the structural

similarity among different axioms.'

Throughout this chapter, user input is indicated in italics.

5.1 Domain Model Editor

Because the domain model is the underlying core of any context, the first step in

defining the context is creation of the domain model. To accomplish this, the translating

and editing system is run and option 2 is chosen from the main menu, as described in the

previous chapter.

The system then asks for a file name for the domain model, as shown in Figure

5.1.

1 For more information on this application, see the Context Interchange World Wide Web
site at http://context.mit. edu/-coin/

The user is then asked for the name of the first semantic type, from which the first

domain model axiom will be constructed. Figure 5.2 shows the dialog that takes place in

the construction of the first domain model axiom in the sample application.

Please enter the name of the output file
dm0.pny

Figure 5.1: User dialog for obtaining file name for domain model.

Please enter the name of the semantic type
companyFinancials
Please enter a type for this semantic type, ie. string, number.
number

Please enter the name of the first attribute.
If you do not wish to assign any attributes, type DONE then press
enter.
company
Please enter a type for attribute company, ie.
ie. string, number, or a previously defined semantic type.

companyName

Please enter the name of the next attribute.
If you do not wish to assign any more attributes, type
press enter.
fyEnding
Please enter a type for attribute fyEnding, ie.
ie. string, number, or a previously defined semantic type.
date

Please enter the name of the next attribute.
If you do not wish to assign any more attributes, type
press enter.
done

Please enter the name of the first modifier.
If you do not wish to assign any modifiers, type
enter.
scaleFactor
Please enter a type for modifier scaleFactor,
ie. string, number, or a previously defined semantic
number

Please enter the name of the next modifier.
If you do not wish to assign any modifiers, type
enter.
currency
Please enter a type for modifier currency,
ie. string, number, or a previously defined semantic

currencyType

Please enter the name of the next modifier.
If you do not wish to assign any modifiers, type
enter.
done

Do you wish to create any more axioms (y/n)

Y

Please enter the name of the semantic type

DONE then

DONE then

DONE then press

type.

DONE then press

type.

DONE then press

Figure 5.2: Dialog for creation of domain model axiom.

The Penny code resulting from this dialog is shown in Figure 5.3.

Each time an axiom is completed, the user is asked if he wishes to create any more

axioms. If the answer is yes, the process is repeated. If the answer is no, the output file is

closed and the user is returned to the main menu.

5.2 Context Axiom Editor

Once the domain model is defined, the user must move on to define context

axioms by selecting option 3 from the main menu.

The editor first asks for the name of the file specifying the domain model,

followed by a file name for the context axioms, and a name for the context to be created,

as shown in Figure 5.4.

semanticType companyFinancials::number
attribute companyName company;
attribute date fyEnding;

modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

Figure 5.3: Penny domain model axiom.

Please enter name of Penny file specifying domain model
dm O.pny
Please enter the name of the output file
c ds.pny
Please enter a name for this context: c ds

Figure 5.4: Initial user dialog for context axiom editor.

At this point, the first two lines of the set of context axioms are written, as shown

in Figure 5.5.

These lines indicate the name of the file containing the domain model and the

name of the context being created, as well as indicating that the following lines are

specific context axioms.

Below are the steps involved in the creation of one of the context axioms from the

Disclosure context. The user is first presented with a menu of semantic types, as shown

in Figure 5.6.

1 companyFinancials
2 companyName
3 exchangeRate
4 date
5 currencyType
6 countryName

Please choose from the list above or enter 0 (zero) if finished: 1

Figure 5.6: Menu of semantic types.

Next, the user is presented with a menu of the modifiers of the semantic type

chosen. This menu is shown in Figure 5.7.

use ('dmO.pny');

context c ds;

Figure 5.5: First two lines of context axiom Penny code.

The user is now asked to enter a value for the chosen modifier, as shown in Figure

5.8.

You have selected semantic type companyFinancials and modifier
scaleFactor.
Please enter a value for this modifier or enter $ to define it
intensionally.
1

Figure 5.8: User dialog for entering modifier value.

At this point, the context axiom has been created. The resulting Penny code is

shown in Figure 5.9. The user is then returned to the menu of semantic types.

It is also possible to define modifiers intensionally, which requires some

knowledge of Penny code. The user selects the semantic type and modifier as usual, but

instead of entering a value for the modifier, a dollar sign ($) is entered. At this point the

user is prompted to enter the intensional definition of the modifier, in Penny, and to end

by typing the word done on a line by itself.

Please choose one of the modifiers listed below for semantic type
companyFinancials
Or enter 0 (zero) to return to previous menu.

1 scaleFactor (type: number)
2 currency (type: currencyType)
Please choose from the list above or enter 0 (zero) if finished: 1

Figure 5.7: Menu of semantic type modifiers.

Figure 5.10 shows the full dialog that would occur when creating a context axiom

of this variety.

1 companyFinancials
2 companyName
3 exchangeRate
4 date
5 currencyType
6 countryName
Please choose from the list above or enter 0 (zero) if finished: 1

Please choose one of the modifiers listed below for semantic type

companyFinancials
Or enter 0 (zero) to return to previous menu.

1 scaleFactor (type: number)
2 currency (type: currencyType)
Please choose from the list above or enter 0 (zero) if finished: 2

You have selected semantic type companyFinancials and modifier
currency.
Please enter a value for this modifier or enter $ to define it
intensionally.
$

Enter context axiom in Penny below.
When you are finished, type DONE on a line by itself.

Comp=self. company,
Coun try=Comp. coun t ryIncorp,
CurrencyType=Coun try. officialCurrency,
$=Curren cyType. value;
done

1 companyFinancials
2 companyName
3 exchangeRate
4 date
5 currencyType
6 countryName
Please choose from the list above or enter 0 (zero) if finished:

Figure 5.10: Dialog for the creation of an intensionally defined modifier.

Whenever the menu of semantic types appears, the user may select another

semantic type and create another context axiom, in which case the process described

above is repeated. The user may also enter 0, in which case the following line, shown in

Figure 5.11, is written to the output file, indicating the end of the context axioms.

After this final line is written, the output file is closed and the user is returned to

the main menu.

5.3 Conversion Function Editor

The user now chooses option 4 from the main menu to enter the conversion

function editor. This editor begins by asking the user for the name of the output file, as

shown in Figure 5.12.

Please enter the name of the output file

cony ds.pny

Figure 5.12: User dialog for obtaining file name for conversion axioms.

The user is then asked to enter the name of the file containing the domain model,

and the name of the context under consideration, as shown in Figure 5.13.

This dialog results in the creation of the first two lines of the conversion function

file, shown in Figure 5.14.

use (' dmO.pny');

context cO;

Figure 5.14: First two lines of conversion functions.

At this point, the user is presented with the following menu.

1 Make a conversion function for a situation where the source and
target values of a particular modifier are the same.

2 Make a more complex conversion function (requires knowledge of

Penny).

Please choose from the list above or enter 0 (zero) if finished:

Figure 5.15: Conversion function menu.

For each conversion function where the source and target values of a modifier are

the same, the user selects 1 from this menu, and the dialog shown in Figure 5.16 occurs,

after which the user is returned to the menu.

Please enter name of Penny file specifying domain model

dmO .pny

Please enter the name of the context
cO

Figure 5.13: User dialog for obtaining domain model and context names.

This dialog creates the conversion function shown in Figure 5.17.

For more complex conversion functions, the user chooses option 2 from the menu,

and the dialog shown in Figure 5.18 occurs.

Enter the name of the semantic type with which this conversion
function is concerned.
date
Enter the name of the modifier in question.
dateFmt

Figure 5.16: User dialog for creating a conversion function where the source and target
values are the same.

cvt()<date> <-
SrcMod = self.dateFmt(source),
TgtMod = self.datefmt(target),
SrcMod.value = TgtMod.value,
$ = self.value;

Figure 5.17: A conversion function where source and target values are the same.

Enter conversion function in Penny below.
When you are finished, type DONE on a line by itself.

cvt (scaleFactor,Val) <companyFinancials><-
FsvMod=self. scaleFactor (source) ,
FtvMod=self. scaleFactor (target),
Fs v=Fs vMod. value,
Ftv=FtvMod. value,
Fsv<>Ftv,
Ra tio=Fsv/Ftv,
$=Val*Ratio;

done

Figure 5.18: User dialog for entering complex conversion functions.

When the complex conversion functions have been entered, the user types the

word done on a line by itself. When this occurs, the user is returned to the menu.

When all conversion functions have been entered, the user enters a 0 at the menu

prompt. At this point, the editor asks the user whether it should add the simple

conversion functions for strings and numbers. This dialog is shown in Figure 5.19.

Do you want to add the simple conversion functions for strings and
numbers?
yes

Figure 5.19: User dialog for addition of string and number conversion functions.

If the answer is yes, the additional conversion functions shown in Figure 5.20 are

added to the output file.

After this is done, the final line of the conversion functions, shown in Figure 5.21,

is written to the output file.

cvt() <number> <-
$ = self.value;

cvt()<string> <-
$ = self.value;

Figure 5.20: String and number conversion functions.

Then, the output file is closed and the user is returned to the main menu.

5.4 Elevation Axiom Editor

Finally, the user creates the last component of the context, the elevation axioms.

Here the user will create a subset of the elevation axioms for Disclosure.

The user starts by selecting option 5 from the main menu, and entering the output

file name when prompted, as shown in Figure 5.22.

Please enter the name of the output file
ds elev.pny

Figure 5.22: User dialog for obtaining file name for elevation axioms.

The system then asks for the names of the external relation, the context, and the

elevated relation, as shown in Figure 5.23.

Please enter the name of the external relation to be
elevated
DiscAF

Please enter the name of the context
c ds

Please enter the name of the elevated relation
Dis cAF p

Figure 5.23: Initial user dialog for elevation axiom editor.

At this point, the system will ask for the names of all elevated semantic objects, as

defined in the external relation, and their corresponding semantic types within the

context. This dialog is shown in Figure 5.24.

Please enter the name of the first elevated semantic object, as
defined in the external relation.
cname

Enter its corresponding semantic type from the context.
companyName

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
fyEnding

Enter its corresponding semantic type from the context.
date

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
shares

Enter its corresponding semantic type from the context.
void

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
income

Enter its corresponding semantic type from the context.
companyFinancials

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
sales

Enter its corresponding semantic type from the context.
companyFinancials

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
assets

Enter its corresponding semantic type from the context.
companyFinancials

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.
incorp

Enter its corresponding semantic type from the context.
countryName

Please enter the name of the next elevated semantic object,
or type DONE if you are finished entering objects.

done

Figure 5.24: User dialog for entering semantic objects into elevation axioms.

The first three lines of the elevation axioms, including the names of the external

relation, context, elevated relation, and all elevated semantic objects with their

corresponding semantic types, are then written to the output file, as shown in Figure 5.25.

elevate 'DiscAF'(cname,
assets, incorp)
in c ds
as 'DiscAF p'(^cname:co

^fyEnding: date,
^shares:void,

fyEnding,

impanyName,

shares, income, sales,

^income:companyFinancials,
^sales:companyFinancials,
^assets:companyFinancials,

Figure 5.25: First three lines of elevation axiom Penny code.

The user is then asked for any overriding value declarations, which must be

entered directly in Penny. This is shown in Figure 5.26.

Enter below, in Penny, any overriding value declarations you wish to
include.
When you are finished, type DONE on a line by itself.

^cname. countryIncorp=^incorp;

^income. company= cname;
^income. fyEnding=^fyEnding;

done

Figure 5.26: User dialog for overriding value declarations.

When the user types done to finish entering value declarations, the remainder of

the elevation axioms are written to the output file, that file is closed, and the user is

returned to the main menu.

5.5 Penny to English Translator

As an example of the capabilities of the Penny to English translator, this section

demonstrates the translation of a small subset of the Penny code from the sample

application into English using the translator.

The code translated in this example includes one domain model axiom, one

context axiom, and a shortened set of elevation axioms. This code is shown in Figure

5.27.

% Domain Model
% Created: Sat Mar 7 18:16:25 1998

semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;
modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

};

% Context Axioms for context c ds
% Created: Sat Mar 7 18:17:59 1998

use ('test.pny');

context c ds;

scaleFactor<companyFinancials> = -(1);

end c ds;

% Elevation Axioms for external relation DiscAF into context
c ds
% Created: Sat Mar 7 18:18:58 1998

elevate 'DiscAF'(income, sales, assets)
in c ds
as 'DiscAF p'(^income : companyFinancials,

^sales : companyFinancials,
^assets : companyFinancials)

Aincome.company=^cname;

^income.fyEnding=^fyEnding;

Figure 5.27: Sample Penny code for translation.

When the translator is started, it asks the user for the names of the Penny input file

and the output file. The output file should not be a preexisting file; if it is, the user may

choose to overwrite the existing file, append new data to it, or specify a new filename.

This dialog is shown in Figure 5.28.

At this point, the translator proceeds to read in one line at a time from the input

file, translate it, and write output to the output file.

For the sample Penny code given above, the translator produces the output shown

in Figure 5.29.

Domain model axioms for semantic type: companyFinancials
Attribute company is of type companyName
Attribute fyEnding is of type date
Modifier scaleFactor is of type number
Modifier currency is of type currencyType

Context Axioms for c ds
Modifier scaleFactor of semantic type companyFinancials
has the value 1

Elevation axioms for 'DiscAF'
using context c ds

Semantic object ^income is of type companyFinancials,
Semantic object ^sales is of type companyFinancials,
Semantic object ^assets is of type companyFinancials
^income.company=^cname;
^income.fyEnding=^fyEnding;

Figure 5.29: Translator output.

Please enter the name of the Penny input file
sample.pny

Please enter the name of the output file
samplel.out

This file already exists. Please choose one of the following options:
1 Overwrite the file (existing data in the file will be permanently
erased)
2 Append new data to the existing file
3 Specify a different filename

3
Please enter the name of the output file
sample. out

Figure 5.28: User dialog for obtaining file names for translator. Includes dialog that
occurs if the output file name provided already exists.

This page intentionally left blank

Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

The translating and editing system created in this thesis provides a useful

extension to the COIN system, in that it enables users to read and create COIN contexts in

Penny without specific knowledge of Penny formats and syntax. This will, in turn, make

it more likely that a given user will choose to use COIN for semantic conflict mediation.

COIN is useless unless contexts are provided by both the user and the information source;

hence, the more widespread COIN becomes, the more useful it becomes.

6.2 Future Work

There are a number of possibilities for future extensions to this translating and

editing system. Some of these are described below.

6.2.1 Natural Language Processing

The system can be extended to take advantage of natural language processing

techniques to allow users to express a desired context in written or spoken English

without the need for the structure of menus and prompts. Natural language processing

would allow the system to take a sentence such as "I want all financial information in

U.S. dollars" and generate any necessary code. The system may either generate Penny

71

code, which would then be compiled into Datalog, or it may generate Datalog code

directly, for immediate use with the context mediator.

6.2.2 Graphical and World Wide Web Interfaces

The system currently uses a simple text-based interface. Users respond to menus

and prompts that are not always intuitive. A graphical user interface for context creation

and display can make the system more user-friendly.

One possible component of a graphical interface is the capacity to create a

graphical representation of a domain model, where each semantic type is represented by a

block and the interconnecting modifiers and attributes are represented by lines. This

representation would allow a user to see the interactions among semantic types more

easily, and to create new semantic types, attributes, and modifiers by merely drawing a

few lines and boxes.

An option for the addition of a graphical user interface is the construction of a set

of HTML documents, which would allow for interaction with the translation software

through the World Wide Web. Menu options would be presented as hyperlinks, and

prompts where the user must enter data would be presented as form inputs, which would

allow the user to enter data to be passed to the translation software. Such an interface

would also allow the translation to be used on many different platforms; at present, the

system can only be used on a few platforms.

6.2.3 Translation Directly to Datalog

At present, the system translates only between Penny and the user. It is incapable

of either reading or writing Datalog code. Instead, any code created by the user must be

compiled into Datalog before it can be used by the context mediator. A possible future

extension of this project is to construct a translating and editing system that translates

between Datalog and the user, eliminating Penny altogether.

6.3 Conclusions

The translation and editing system constructed in this thesis is an invaluable tool

for aiding end users in the use of the Context Interchange system. The system allows

users to read existing contexts and to construct new ones quickly and easily, without

requiring that the users learn how to structure these contexts in Penny, thus enhancing the

Context Interchange system.

This page intentionally left blank

Appendix A

Penny to English Translator Rules

The following rules are used to ensure that the Penny to English translator

correctly parses and translates any Penny code with which it is provided.

The translator works by examining each line, parsing it, and, if necessary, writing

the appropriate text into the output file. For more details, see Chapter 4.

Each rule used by the translator consists of two parts: an "if' clause detailing the

conditions that must be met for the rule to be fired, and a "then" clause detailing the

actions that are performed when the rule is fired.

In the rules, the following variables are used. Firstword refers to the first word on

the line under consideration, while Secondword refers to the second word on the line and

Thirdword refers to the third word on the line.

Contexttype is a state variable used to indicate whether the translator expects the

line under consideration to be part of a domain model, part of a set of context axioms,

part of a set of conversion functions, or part of a set of elevation axioms.

Table A.1: Rules considered regardless of value of Contexttype

First character of Firstword is % do nothing (the line is a comment)

Table A.2: Rules considered when Contexttype = "domain model"

Contexttype = "domain model"
Firstword = "semanticType"

write to output:
"Domain model axiom: Secondword"

Contexttype = "domain model" write to output:
Firstword = "attribute" " Attribute Thirdword is of type

Secondword"

Contexttype = "domain model" write to output:
Firstword = "modifier" " Modifier Thirdword is of type

Secondword"

Contexttype = "domain model" Contexttype = "context axioms"
Firstword = "context"

Contexttype = "domain model" Contexttype = "elevation axioms"
Firstword = "elevate"

Table A.3: Rules considered when Contexttype = "context axioms"

Contexttype = "context axioms" Contexttype = "domain model"
Firstword = "end"

Contexttype = "context axioms" Contexttype = "conversion functions"
Firstword = "cvt" write to output:

"Conversion functions appear below"

Contexttype = "context axioms" write to output:
Firstword != "end" and Firstword != "cvt" "Firstword modifier of Secondword

type has value Thirdword"

Table A.4: Rules considered when Contexttype = "conversion functions"

Contexttype = "conversion functions"
Firstword = "end"

Contexttype = "conversion functions"
Firstword != "end"

Contexttype = "domain model"

write line from input file to output

Table A.5: Rules considered when Contexttype = "elevation axioms"

Contexttype = "elevation axioms"
Firstword = "elevate"

write to output:
"Elevation axioms for Secondword"

Contexttype = "elevation axioms" write to output:
Firstword = "in" "using context Secondword"

Contexttype = "elevation axioms" 1. until a { is encountered, read in two
Firstword = "as" words from input file, and write to

output:
"Semantic object Firstword is of type
Secondword"
2. after a { is encountered and until a }
is encountered, read in each line from
input file, and write it to output file
3. Contexttype = "domain model"

This page intentionally left blank

Appendix B

Sample Application Penny Code

This appendix contains the full Penny code for the sample application presented in

Chapter 5. This application is aimed at integrating various data sources containing

financial information for a number of both foreign and domestic companies.'

Each axiom in the Penny code is accompanied by a reference number. Those

reference numbers, defined in Table B.1 and Table B.2 below, indicate which of the

axioms illustrated in Chapter 5 the axiom in question most resembles; the procedure used

to create the axiom shown in Chapter 5 can be used to create all axioms with the same

reference number.

' This code is drawn from: Fortunato Pena, "PENNY: A Programming Language and
Compiler for the Context Interchange Project," M.Eng. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1997, 37-45.

79

Table B.1: Axiom reference numbers for domain model and context axioms

I~ I. ~ "~t

Domain Model semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;

modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

CH Context Axiom use ('dm0.pny') ;

Header context c ds;

Cl Ordinary scaleFactor<companyFinancials> = ~ (1);

Context Axiom
C2 Intensional currency<companyFinancials> = -($) <-

Context Axiom Comp = self.company,
Country = Comp.countryIncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;

CE Context Axiom end cds;
End

DI

Table B.2: Axiom reference numbers for conversion functions and elevation axioms

' ' '

Conversion
Function
Header

use('dm0.pny');
context cO;

V1 Simple cvt()<date> <-
SrcMod = self.dateFmt(source),

Conversion TgtMod = self.dateFmt(target),
Function SrcMod.value = TgtMod.value,

$ = self.value;

V2 Complex cvt(scaleFactor,Val)<companyFinancials> <-
FsvMod = self.scaleFactor(source),

Conversion FtvMod = self.scaleFactor(target),
Function Fsv = FsvMod.value,

Ftv = FtvMod.value,
Fsv <> Ftv,
Ratio = Fsv / Ftv,
$ = Val * Ratio;

VSN String and cvt()<number> <-
$ = self.value;

Number cvt()<string> <-
Conversion $ = self.value;

Functions
VE Conversion end cO;

Function End
EH Elevation elevate 'DiscAF'(cname, fyEnding, shares,

income, sales, assets, incorp)
Axiom Header in c ds

as 'DiscAF p' (^cname:companyName,
^fyEnding: date,
^shares:void,

^income:companyFinancials,
^sales:companyFinancials,

^assets:companyFinancials,
^incorp:countryName)

EB Elevation
^income.company = ^cname;

Axiom Body ^income.fyEnding = ^fyEnding;

^sales.company = ^cname;
^sales.fyEnding = ^fyEnding;

^assets.company = ^cname;
^assets.fyEnding = ^fyEnding;

^incorp.officialCurrency = ~curType;

-curType.value = $ <-
-curType = Incorp.officialCurrency,
Y = Incorp.value,

'Currencytypes'(Y, $);
};

VH

B.1 Domain Model

DI semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;

modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

Dl semanticType companyName::number {
modifier string format(ctx);
attribute string countryIncorp;

};

Dl semanticType exchangeRate::number {
attribute currencyType fromCur;
attribute currencyType toCur;
attribute date txnDate;

};

Dl semanticType date::string {
modifier string dateFmt(ctx);

};

Dl semanticType currencyType::string {
modifier string curTypeSym(ctx);

};

Dl semanticType countryName::string {
attribute currencyType officialCurrency;

};

B.2 Context Axioms

B.2.1 Disclosure (DiscAF)

CH use('/home/tpena/work/coinlc/Penny/examples/tasc/penny/dmO.pny');

context c ds;

C1 scaleFactor<companyFinancials> = ~(1);

C2 currency<companyFinancials> = ~($) <-
Comp = self.company,
Country = Comp.countryIncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;

C1 format<companyName> = -~("ds name");

CI dateFmt<date> = ~("American Style /");

Cl curTypeSym<currencyType> = ~("3char");

CE end c ds;

B.2.2 Worldscope (WorldAF)

CH use('/home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0 .pny');

context c ws;

Cl scaleFactor<companyFinancials> = ~(1000);

Cl currency<companyFinancials> = ~('USD');

Cl format<companyName> = -("ws name");

Cl dateFmt<date> = -("American Style /");

Cl curTypeSym<currencyType> = -("3char");

CE end c ws;

B.2.3 Datastream (DStreamAF)

CH use ('/home/tpena/work/coinlc/Penny/examples/tasc/penny/dmO .pny');

context c dt;

Cl scaleFactor<companyFinancials> = -(1000);

C2 currency<companyFinancials> = ~($) <-
Comp = self.company,
Country = Comp.countryIncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;

Cl format<companyName> = -("dt name");

Cl dateFmt<date> = -("European Style -");

Cl curTypeSym<currencyType> = ~("2char");

CE end c dt;

B.2.4 Olsen

CH use('/home/tpena/work/coinlc/Penny/examples/tasc/penny/dmO.pny');

context c ol;

Cl dateFmt<date> = -("European Style /");

CE end c ol;

B.3 Conversion Functions

VH use('/home/tpena/work/coinlc/Penny/examples/tasc/penny/dmO.pny');

context cO;

%%--
%% conversion functions for companyFinancials
%%--

V2 cvt()<companyFinancials> <-
U = self.value,
W = self.cvt(scaleFactor, U),
$ = self.cvt(currency, W);

%%--
%% conversion functions for companyFinancials w.r.t. scaleFactors
%%--

VI cvt(scaleFactor, Val)<companyFinancials> <-
SrcMod = self.scaleFactor(source),
TgtMod = self.scaleFactor(target),
SrcMod.value = TgtMod.value,
$ = Val;

V2 cvt(scaleFactor, Val)<companyFinancials> <-
FsvMod = self.scaleFactor(source),
FtvMod = self.scaleFactor(target),
Fsv = FsvMod.value,
Ftv = FtvMod.value,
Fsv <> Ftv,
Ratio = Fsv / Ftv,
$ = Val * Ratio;

Vl cvt(currency, Val)<companyFinancials> <-
SrcMod = self.currency(source),
TgtMod = self.currency(target),
SrcMod.value = TgtMod.value,
$= Val;

V2 cvt(currency, Val)<companyFinancials> <-
SrcMod = self.currency(source),
TgtMod = self.currency(target),
SrcMod.value <> TgtMod.value,
FyDate = self.fyEnding,

olsen p(FromCur, ToCur, Rate, TxnDate),
SrcMod.value = FromCur.value,
TgtMod.value = ToCur.value,
FyDate.value = TxnDate.value,
$ = Val * Rate.value;

%%--

%% conversion functions for companyName
%%--

Vl cvt()<companyName> <-
SrcMod = self.format(source),
TgtMod = self.format(target),
SrcMod.value = TgtMod.value,
$ = self.value;

V2 cvt()<companyName> <-
SrcMod = self.format(source),
TgtMod = self.format(target),
SrcMod.value = "ds name",
TgtMod.value = "ws name",

'Name map Ds Ws p'(DsName, WsName),
self.value = DsName.value,
$ = WsName.value;

V2 cvt()<companyName> <-
SrcMod = self.format(source),
TgtMod = self.format(target),
SrcMod.value = "ws name",

TgtMod.value = "ds name",
'Name map Ds Ws p'(DsName, WsName),
self.value = WsName.value,
$ = DsName.value;

%%--
%% conversion functions for dateFmts
%%--

Vl cvt()<date> <-
SrcMod = self.dateFmt(source),
TgtMod = self.dateFmt(target),
SrcMod.value = TgtMod.value,
$ = self.value;

V2 cvt()<date> <-
SrcMod = self.dateFmt(source),
TgtMod = self.dateFmt(target),
SrcFormat = SrcMod.value,
TgtFormat = TgtMod.value,
SrcFormat <> TgtFormat,
SrcVal = self.value,

datexform($, SrcVal, SrcFormat, TgtFormat);

%%--
%% conversion functions for currency symbols.
%%--

Vl cvt()<currencyType> <-
SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = TgtMod.value,
$ = self.value;

V2 cvt()<currencyType> <-
SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = "3char",
TgtMod.value = "2char",

'Currency map p'(Char3, Char2),
self.value = Char3.value,
$ = Char2.value;

V2 cvt()<currencyType> <-
SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = "2char",
TgtMod.value = "3char",
'Currency map p'(Char3, Char2),
self.value = Char2.value,
$ = Char3.value;

%%--
%% conversion functions for number, a simple value
%% cvt function for number is overridden by the following:
%% * companyFinancials

%%--

VSN cvt()<number> <-
$ = self.value;

%%---

%% conversion functions for strings, a simple value
%% cvt function for string is overridden by the following:
%% * companyName
%% * date
%%---

VSN cvt ()<string> <-
$ = self.value;

VE end cO;

B.4 Elevation Axioms

B.4.1 Disclosure

%%--

%% Disclosure:DiscAF
%%--

EH elevate 'DiscAF'(cname, fyEnding, shares, income, sales, assets,
incorp)

in c ds
as 'DiscAF p'(^cname : companyName, ^fyEnding : date,

^shares : void, ^income: companyFinancials,
^sales : companyFinancials, ^assets: companyFinancials,
^incorp: countryName)

EB ^cname.countryIncorp = ^incorp;

^income.company = ^cname;
^income.fyEnding = ^fyEnding;

^sales.company = ^cname;
^sales.fyEnding = ^fyEnding;

^assets.company = ^cname;
^assets.fyEnding = ^fyEnding;

^incorp.officialCurrency = -curType;

-curType.value = $ <-

~curType = Incorp.officialCurrency,
Y = Incorp.value,

'Currencytypes'(Y, $);

B.4.2 Worldscope

%%--
%% Worldscope:WorldAF (Keys: CompanyName and Date)
%%--

EH elevate 'WorldAF'(cname, fyEnding, shares, income, sales, assets,
incorp)

in c ws
as 'WorldAF p'(^cname : companyName, ^fyEnding : date, ^shares
: number,

^income: companyFinancials, ^sales :
companyFinancials,

^assets: companyFinancials, ^incorp: countryName)

EB ^cname.countryIncorp = ^incorp;

^income.company = ^cname;
^income.fyEnding = ^fyEnding;

^sales.company = ^cname;
^sales.fyEnding = ^fyEnding;

^assets.company = ^cname;
^assets.fyEnding = ^fyEnding;

^incorp.officialCurrency = -curType;

-curType.value = $ <-

-curType = Incorp.officialCurrency,

Y = Incorp.value,
'Currencytypes'(Y, $);

};

B.4.3 Olsen

%%--
%% Olsen (Keys: Source Currency, Target Currency, and Date)
%%--

EH elevate olsen(exchanged, expressed, rate, date)
in c ol
as olsen p(^exchanged : currencyType, ^expressed : currencyType,

^rate : exchangeRate, ^date : date)

EB ^rate.fromCur = ^expressed;
^rate.toCur = ^exchanged;
^rate.txnDate = ^date;

};

B.4.4 Datastream

%%--

%% Datastream: DStreamAF (Keys: As of date and Name)
%%---------------------------------------

EH elevate 'DStreamAF'(date, name, total sales, total items pre tax,
earned for ordinary, currency)

in c dt
as 'DStreamAF p' (^date : date,

^name : companyName,
^total sales : companyFinancials,
^total items pre tax : companyFinancials,
^earned for ordinary : companyFinancials,
^currency : currencyType)

EB ^name.countryIncorp = ~incorp;

^total sales.fyEnding = ^date;
^total sales.company = ^name;

^total items pre tax.fyEnding = ^date;
^totalitemspretax.company = ^name;

^earned for ordinary.fyEnding = ^date;
^earned for ordinary.company = ^name;

-incorp.officialCurrency = ^currency;
~incorp.value = $ <-

Currency = -incorp.officialCurrency,
Two = Currency.value,

'Currencytypes p'(Country, Three),
Two = Three.value,

$ = Country.value;

B.4.5 Auxiliary Elevation Axioms

%%--

%% Auxillary Tables
%%--

EH elevate 'Currencytypes' (country, currency)
in c ds
as 'Currencytypes p'(^country : string, ^currency : string) {};

EH elevate 'Currency map'(cur3, cur2)
in c ds
as 'Currency map p'(^cur3 : string, ^cur2 : string) {};

EH elevate 'Namemap_Ds Ws'(dsNames, wsNames)
in c ds
as 'Name map Ds Ws p'(^dsNames : string, ^wsNames : str

EH elevate 'Name_mapDt_Ds'(dtName, dsName)
in c dt
as 'NamemapDtDsp' (^dtName : string, ^dsName : strin

EH elevate 'Name_map_DtWs'(dtName, wsName)
in c dt
as 'NamemapDtWs p' (^dtName : string, ^wsName : strin

ing) {};

g) {};

g) {};

This page intentionally left blank

Appendix C

List of Abbreviations

ANSI American National Standards Institute
COIN COntext INterchange
COINL COntext INterchange Language
HTML HyperText Markup Language
SQL Structured Query Language

This page intentionally left blank

References

Bressan, S., et. al. The COntext INterchange Mediator Prototype. ACM SIGMOD
International Conference on Management of Data, 1997.

Goh, Cheng Hian. "Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems." Ph.D. thesis, Sloan School of Management,
Massachusetts Institute of Technology, 1996.

Hoffman, James. "Introduction to Structured Query Language." World Wide Web:
http://w3.one.net/ljhoffman/sqltut.htm. 1998.

Pena, Fortunato. PENNY: A Programming Language and Compiler for the Context
Interchange Project. M.Eng. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1997.

"The COntext INterchange Project." World Wide Web: http://context.mit. edu/-coin/.

