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Abstract

The need for intelligent autonomous agents is growing in all areas of science and
industry. This thesis addresses the problem of planning by an agent deployed to
complete a mission in a complex, uncertain, and nonstationary environment.
Agents operating in such environments need the capability to plan and act at
different levels of abstraction. The level of abstraction at which an agent's actions
need to be implemented depends on the context present in the environment, which
might be difficult to recognize due to noise and partial observability. A favorable
context may allow for more goal-oriented behavior, while an unfavorable context
may demand more tactical behavior. Such contexts change over time, and for this
reason behavior and planning policies need to be continuously evaluated and
updated to fit the current context. This thesis describes, implements, and tests an
architecture for evaluating and updating policies in such environments. The
backbone of the architecture is a reinforcement learning (RL) component, which
controls interactions with the agent's environment. A neural network component
performs context-sensitive policy evaluation based on targets provided by the RL
component. Finally, fuzzy logic rules perform policy updating based on values
provided by the neural network as well as on domain-specific mission constraints.
The ideas developed in this thesis are tested on the example of a survey mission
for autonomous helicopters.
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Those who will not reason

Perish in the act:

Those who will not act

Perish for that reason.

- W. H. Auden (1966)

Chapter 1

Introduction

1.1 The Planning Problem for Autonomous Agents

An autonomous agent can be described as any versatile adaptive system that

performs diverse behaviors in order to achieve multiple goals. For concreteness, this

thesis will adopt the example of autonomous vehicles, analyzed, as they are desired

to operate in challenging external environments. The planning task for such a vehicle

is to choose some future course of action in order to successfully accomplish its

mission in a constrained environment. This is the primary capability required of all

autonomous agents, and its adequate solution can lead to numerous scientific and

industrial advances.

The goal of "mission success" in a planning problem often depends on

achieving several individual goals imposed on the mission from independent

sources, at different levels of abstraction. Examples of such goals are: speeding up the

mission to conserve fuel, avoiding oncoming obstacles, staying within certain bounds

of a long-term course, taking pictures at appropriate resolution for recognizing

search objects. However, these goals usually cannot be achieved at the level of

satisfaction required by each source. The vehicle always has to trade off the level of

goal satisfaction with respect to different sources. The above trade-offs can be

reasonably evaluated only by considering extended periods of plan execution [Pell

et. al., 1996a, 1996b].



There are several sources of constraints placed on the action plans of

autonomous vehicles. Virtually all resources of a vehicle are limited and have to be

allocated effectively for goal-achievement. Fuel and electrical energy most critically

limit mission time span. The planner has to reason about resource usage in

generating plans, but because of run-time uncertainty the resource constraints must

be enforced as a part of plan execution. In addition to resource constraints, the

environment can impose logical constraints on a vehicle's actions. For example, an

autonomous helicopter might be constrained to fly lower than a certain altitude so

that it wouldn't be detected by enemy radars located nearby. Finally, the vehicle

itself has limited capabilities, which must also be accounted for by the planner.

1.2 Environment Characteristics

The above planning problem will be analyzed in this thesis for autonomous

vehicles operating in complex, uncertain, and nonstationary environments.

Explanation of these environment characteristics and their implications for

operations of autonomous vehicles is discussed below.

Environment complexity implies a very large number of possible situations that

can be encountered during mission execution. The situations may depend on ground

terrain, weather conditions, type and density of obstacles, danger level due to hostile

activities, etc. Environment dynamics implies changes in the above conditions as the

vehicle is moving between the areas. This dynamics is usually stochastic and

partially known. Environment nonstationarity further implies unpredictable drift in the

above dynamics.

Besides the lack of knowledge about future situations in the environment,

autonomous vehicles also have incomplete information about the current situation,

which is commonly termed partial observability. A special case of partial

observability is that of hidden contexts in the environment, which affect the

outcomes of actions taken by the agent. These contexts are represented by all

functions or dependencies that affect the outcomes of agent's actions. An example of



such a dependency is the probability distribution describing the chance of collision

with unknown obstacles as a function of vehicle's speed. These dependencies can be

hidden from the agent because of vehicle's sensor limitations or its lack of

background information about the environment needed to estimate such

dependencies. It is crucial for the agent to be able to recognize these contexts and act

appropriately in each one. For example, rapid motion is very undesirable in the

context of poor visibility and multiple obstacles. On the other hand, fast motion

could just speed up the achievement of mission goals in the context of poor visibility

but a clear operating space.

The problems of environment uncertainty and partial observability are more

acute in bad weather conditions such as strong winds or bad visibility and radar

penetration due to rain or dust in the air. Also, the dynamics of moving obstacles

such as other ships or aircraft becomes more difficult to model. The data available to

the vehicle might originate from its own sensors or from communication both with

other vehicles and ground-based stations. These sources provide information of

varying degrees of quality and reliability. Intelligent processing of data from several

sources has the potential of conveying more relevant information than data from a

single sensor. [Doyle, 1996].

The problems of environment uncertainty and partial observability are

exacerbated by strict limitations on the number of sensors available on the vehicle.

Addition of sensors implies added mass, power, cabling, and up front engineering

time and effort. Each sensor must add a clear value to the mission to be justified for

inclusion. Furthermore, sensors are typically no more reliable than the vehicle

hardware, making it that much more difficult to deduce the true state of the vehicle

[Pell et. al., 1996a, 1996b].

In the view of the above characteristics of real-world environments, the

following issues need to be addressed by a planning architecture for autonomous

vehicles:

e Continuous policy evaluation



* An integrated policy updating mechanism

* No knowledge of the future environment states

* Continuous state and action spaces

* Noisy, nonlinear, nonstationary, and unknown state transition function

* Noisy policy feedback from environment

* Evolving goal structure

* Context-sensitivity

* Ability to plan actions at different levels of abstraction. In particular, ability

to combine deliberative vs. reactive behavior.

* Strict optimality is often not necessary. In most real-time applications, it is

unreasonable to run an algorithm that will take ten times more trials to learn better

performance in order to gain only one-twentieth increase in that performance. This

is especially true in nonstationary environments, where overconvergence can lead to

overfitting.

1.3 Thesis Contributions

The goal of this thesis is to find a planning approach for autonomous vehicles

that possesses the desired characteristics outlined in Section 1.2, to design an

appropriate architecture implementing that approach, and to find parameters that

would make it applicable to real data.

The contributions of this thesis are:

* an analysis of possible planning approaches drawn from existing literature

(Chapter 2)

* development of a planning approach for autonomous vehicles combining

desired features from possible approaches (Section 1.4)

* detailed analysis of reinforcement learning techniques and their

combination with function approximation systems, confirming the choice

of the proposed planning approach (Chapter 4)



* design of an architecture of specific algorithms implementing the chosen

planning approach on real data (Chapter 5)

* formulation of a survey mission for autonomous helicopters as a

reinforcement learning problem, which, unlike traditional formulations,

permitted planning without knowledge of future states of the

environment. (Chapter 3)

* The proposed context-sensitive planning approach for autonomous

vehicles was tested on the survey mission example. It was shown to

outperform both the more traditional global planning approach and the

linear context-switching approach in low-noise and high-noise

environments.

1.4 Overview of the Proposed Planning Approach

The diagram below outlines the components of the proposed planning

approach.

An Environment

Upda ed policy
State and context information

Fuzzy Logic Rules
Reinforcement Learning

Component Neural Network

Policy value in the
Poli y values in past current state and context
states and contexts

Figure 1.



Policy evaluation is the main aspect of the proposed planning approach. In

many cases, policy updating can be expressed as simply choosing the policy with the

highest value out of several generated alternatives. An adequate scheme for policy

evaluation implies safer operation of the vehicle by allowing it to update its policies

in a timely manner. At the same time, such a mechanism improves vehicle operation

efficiency by not spending resources on updating a policy that seems to be

performing poorly now but which is expected to get higher rewards in the future.

For example, assigning a low value to the policy maintaining high speed when the

operating context changes clear to obstructed will signal to the vehicle the need to

slow down. Similarly, a slow motion can be well justified in a clear operating field if

the context is expected to change to the obstructed operating field.

The theory of reinforcement learning provides an approach for policy

evaluation based on the expected sum of future rewards obtained during plan

execution. As will be shown in Chapter 3, the combination of reinforcement learning

and function approximation architectures addresses the following issues mentioned

in the previous section:

1. continuous policy evaluation

2. not requiring knowledge of the future environment states

3. working in continuous state and action spaces

4. working with noisy, nonlinear, nonstationary and unknown state

transition function

5. accounting for evolving goal structure

6. working with suboptimal policies and improving them in the process.

The remaining issues are addressed by the following two features of the proposed

planning architecture.

As was indicated in Section 1.1, a policy's value depends on the level of

abstraction at which the most pressing goals are defined. At certain times, a more

strategic behavior for achieving long-term goals is more beneficial, while at other



times a more tactical behavior for dealing with local environment might be

necessary. For example, during favorable weather conditions an autonomous

helicopter performing a survey mission might be able to fly faster to cover more

search area. During unfavorable weather conditions with poor observability, on the

other hand, the helicopter must fly slower to reduce the chance of colliding with

poles and other aircraft. The proper level of abstraction often depends on the context

present in the environment, which might be difficult to determine due to sensor

noise and partial observability. The proposed planning architecture will use a special

neural network configuration for context-sensitive policy evaluation.

The policy updating capability in the presented planning approach will be

provided by fuzzy logic rules. These rules will process information provided by the

other two architectural components about the policy value and the environment

context. In addition, they can use information about mission-dependent constraints

affecting vehicle's behavior, such as constraints on how fast state variables such as

speed or altitude can be changed. The transparency of the rule-based approach will

allow easy monitoring and adjustment of the policy updating mechanism in the

vehicle. Also, it will allow the field experts to encode relevant information about

known features of operating environment and mission characteristics in addition to

the information gathered during mission executions.



Chapter 2

Analysis of Existing Planning Approaches

Other researchers have considered different aspects of the general planning

problem, exploring particular techniques or formalisms designed to work well

within specific areas, such as graph searching or task scheduling. Little attention,

however, has been directed towards finding approaches that are appropriate for the

entire problem as was described in Section 1.1. An overview of existing planning

approaches is presented below, and their appropriateness for the planning problem

as described in Chapter 1 will be analyzed. The approaches are organized in the

following categories:

* classical operations research planning

* reactive planning

* planning using reinforcement learning

* extensions of reinforcement learning

* context-sensitive decision making

Some of the cited works may fall in more than one category, as will be pointed out in

passing.

2.1 Classical Operations Research Planning

Most of the existing work in planning considers situations in which possible

future environment states are known. The planning problem then becomes an

operations research problem of finding the best path through a graph of possible

alternatives. This approach has been used in designing the autonomous submarine at

the C. S. Draper Laboratory [Ricard, 1994]. The A* search has been used to find the

best path following a terrain with a priori known features. The same approach has

been used in the design of an autonomous submarine at the Texas A&M University

[Carroll et. al., 1992]. Alternatively, a global search technique such as simulated

annealing can be used to generate possible vehicle trajectories and then select the one



with the highest score [Adams, 1997]. However, the cost function in such approaches

evaluates the trajectory with respect to the known features of the future environment.

Extensions of classical planning work, such as CNLP [Peot and Smith, 1992]

and CASSANDRA [Pryor and Collins, 1996] have considered nondeterministic

environments. For each action in the plan, there is a set of possible next states that

could occur. A drawback of these approaches is that they do not use information

about the relative likelihood of the possible states. More advanced planning

algorithms such as BURIDAN [Kushmerick, et. al., 1995] and C-BURIDAN [Draper

et. al., 1993] operate in environments with probability distributions over initial states

and state transitions. However, they assume discrete state spaces and fixed state

transition probabilities. Therefore, these approaches are not applicable to noisy

continuous state spaces with nonstationary dynamics.

2.2 Reactive Planning

Reactive planning approaches constitute roughly the other side of the

spectrum of planning methods. One type of reactive approach is that of case-based

learning. Some recent papers providing a good overview of this field are [Aha, 1997],

[Aamodt, 1993], [Murdock et. al., 1996], and [Bergmann et. al., 1995]. Instead of

relying solely on the knowledge of the problem domain, case-based planning utilizes

the specific knowledge of previously experienced, concrete problem situations

(cases). A new plan is found by finding a similar past case, adapting it to the problem

at hand, and using the obtained result as the new plan. One of the main trade-offs in

case-based planning is that of balancing the time spent on retrieving a more similar

solution with the time spent on adapting a less similar solution. Case-based planning

and case-based reasoning (CBR) in general has the advantage of not requiring

knowledge about exact future environment states. The main drawback of case-based

reasoning is its inability to deal explicitly with noisy nonstationary data, since there

is no mechanism in CBR for deciding whether a case should be stored or discarded as



noise. To solve this problem, CBR can be extended by storing abstracted prototypical

cases and constantly revising the case base to maintain only relevant information.

The above approach for extending CBR is best formalized by treating cases as

fuzzy logic rules [Plaza et. al., 1997, Dutta and Bonissone, 1993]. Recent advances in

data-driven fuzzy reasoning allow for an automatic determination of the

applicability of each rule [Lin and Lee, 1996, Tsoukalas and Uhrig, 1997]. This has led

to a surge of interest in designing fuzzy logic controllers for autonomous systems

[Baxter and Bumby, 1993, Bonarini and Basso, 1994, Voudouris et. al., 1994]. The

advantage of using automatic fuzzy logic rules to guide the behavior of autonomous

vehicles is that they allow the vehicle to maintain its safety in complex and

unpredictable environments. However, this reactive approach cannot reason about

the temporal consequences of agent's actions for achieving its long-term high-level

goals. For example, a fixed set of rules specifying obstacle avoidance maneuvers does

not tell the vehicle in which direction it should steer during such maneuvers. This

information can only be obtained by evaluating the sequence of future situations that

are likely to arise as a result of a certain maneuver.

As will be shown in chapter 4, the theory of reinforcement learning provides

methods for evaluating such sequences. The planning approach presented in this

thesis combines the reactive fuzzy rule-based approach for recommending tactically

correct actions with reinforcement learning for evaluating long-term strategic effects

of these actions.

2.3 Planning Using Reinforcement Learning

The theory of reinforcement learning encompasses a set of planning

techniques based on the Bellman's optimality principle and dynamic programming

[Bellman, 1957]. As opposed to classical planning algorithms that perform an

exhaustive search in the space of possible plans, the dynamic programming

algorithm constructs an optimal plan by solving state recurrence relations (see

section 4.2 for more details).



The dynamic programming algorithm suffers from the same problem as the

classical graph-based search techniques: they all require knowledge of future

environment states. The theory of reinforcement provides algorithms for

incrementally estimating the state values as the states are visited over and over again

rather than by working backward from a known final state.

Reinforcement learning can also be viewed as an extension of case-based

reasoning, where the case (action) that would lead to a future state with the highest

value is chosen at each decision moment. In other words, the theory of reinforcement

learning provides algorithms for learning the similarity metric for case-based action

selection.

The above features of reinforcement learning made it an attractive approach

for determining optimal policies for autonomous vehicles [Asada et. al., 1994, Gachet

et. al., 1994]. However, there are two main problems in reinforcement learning that

limit its real-world applications: the curse of dimensionality and partial

observability. The first problem refers to the fact that when the size of the state-space

grows the chance of encountering the same state twice decreases. Therefore, the

agent will have to choose its actions randomly almost at every time instance, as its

state at that instance is likely to be new and unexplored. The second problem refers

to the fact that the exact state of the vehicle can be very difficult to determine in noisy

environments with poor sensor data.

2.4 Extensions of Reinforcement Learning

The standard approach to address the curse of dimensionality in

reinforcement learning is to estimate values of new states using function

approximation systems such as neural networks [Patek and Bertsekas, 1996], fuzzy

logic [Berenji, 1996], or local memory-based methods such as generalizations of

nearest neighbor methods [Sutton et. al., 1996]. Instead of waiting until all states will

be visited several times in order to determine the best action in each state, the

function approximation approach allows to assign similar values to similar states and



consequently to take similar actions in them. This is essential for agents operating in

continuous state and action spaces.

Combinations of reinforcement learning and function approximation systems

have led to a remarkable success in domains such as game playing [Tesauro, 1992]

and robotics [Moore 1990, Lin, 1992]. For example, Tesauro reports a backgammon

computer program that has reached grand-master level of play, which has been

constructed by combining reinforcement learning with neural networks. However,

the above works explored situations in which there was no unobservable hidden

structure in the agent's state space.

Some approaches have been proposed for addressing the issues of hidden

states in reinforcement learning [Parr and Russel, 1995, Littman et. al., 1995,

Kaelbling et. al., 1997]. A mobile robot Xavier has been designed at Carnegie Mellon

University to operate in an office environment where corridors, foyers and rooms

might look alike [Koenig and Simmons, 1996]. This research is based on the theory of

Partially Observable Markov Decision Processes (POMPD) [Smallwood and Sondik,

1973]. The main limitation of this approach is that it becomes computationally

intractable for even moderate sizes of agent's state space [Littman et. al., 1995], which

prevents its application to continuous state spaces. In addition, it doesn't account for

possibilities of a hierarchical hidden structure, such as presence of hidden contexts

that influence all states that they cover.

2.5 Context-Sensitive Decision Making

The problem of hidden contexts is very important in planning for autonomous

vehicles. The operating environment for such vehicles is rarely uniform, and

appropriate types of behavior must be chosen for each context. For example,

navigation and survey behavior of an autonomous helicopter should differ in good

and bad weather conditions, in urban and rural areas, in open fields and mountain

ranges. The exact ways in which these contexts affect the outcome of vehicle's actions



can be hidden due to limited number of sensors and limited background information

about the environment.

Recent research in the AI community has begun to address explicitly the

problem of hidden contexts in the agent's environment [Silvia et. al., 1996, Turney,

1997, Widmer and Kubat, 1996]. The main limitation of these works is that they have

been concentrating on discrete symbolic domains, which prevents their use for

control of continuous autonomous vehicle variables such as speed or altitude.

The problem of hidden contexts in continuous variables has been considered

in time series forecasting [Park and Hu, 1996, Pawelzik et. al., 1996, Teow and Tan,

1995, Waterhouse et. al., 1996, Shi and Weigend, 1997]. This has led to the

development of the so-called "mixture of experts" models, in which each expert is

represented by a function approximation architecture. Each expert specializes in

forecasting time patterns in its own context, and their forecasts are weighed by the

probabilities of each context being present in the data. The weights can either be

determined by a supervisory gating network or by the experts themselves.

The neural network component in this work is based on the gated experts

architecture presented in [Weigend and Mangeas, 1995]. The above architecture has

been designed to recognize contexts that are readily apparent in the input data. For

example, one of the data sets on which the above architecture was tested consisted of

regimes of chaotic inputs and noisy autoregressive inputs.

The gated experts architecture in this thesis extends the above architecture by

allowing the gate to consider both the raw input data and past errors of the experts.

This extension makes the gated experts architecture applicable to domains where

data targets are not future values of inputs, as in time series modeling, but are based

on a separate reward function, as in reinforcement learning. This thesis demonstrates

the use of the gated experts architecture for predicting long-term policy values rather

then just immediate future rewards.



Chapter 3

Survey Mission Example

3.1 Survey Mission Overview

The planning approach presented in this thesis can be applied to any

autonomous vehicle. For concreteness, the usage will be demonstrated on the case

autonomous aerial vehicles (AAV's). The mission of aerial survey for autonomous

helicopters will be used as an example for testing the proposed planning framework.

The proposed framework for context-sensitive policy evaluation and updating will

be applied to the policy for controlling cruising speed and altitude of a helicopter

performing a visual survey. In this case, speed and altitude are critical parameters,

and their proper control is a very difficult task. On the one hand, speed and altitude

control the resolution and hence the quality of collected information. On the other

hand, speed and altitude are the main parameters of navigation, which is highly

dependent on environmental conditions such as weather and obstacles present.

Hence, any planner has to balance the values of speed and altitude to achieve the

strategic goal of information gathering with the values that are required for the

tactical goal of navigation and vehicle safety.

In visual survey missions, the resolution at which information is collected

determines abstraction level of the information. If resolution is too high, some objects

might be very hard to piece together out of their parts. If resolution is too low, not

enough details will be present to distinguish objects from each other. Examples of

this tradeoff include the tasks of recognizing a car as well as reading its license plate,

creating an informative map of a village that identifies houses as well as possible

weapons, determining a path to the goal for a submarine as well as finding mines or

obstacles on the path, etc. The proposed policy evaluation framework will allow one

to solve different problems of this type.

The policy goal is simply to collect pictures carrying the largest amount of

information according to the Shannon's measure of information content [Shannon,



1948]. As is conventional for the task of classifying visual images, this measure is

defined as Z pi log pi, where pi is the probability of the image belonging to class i. The

measure is maximized when one of the pi's is equal to 1 and the rest are O's, which

corresponds to the total confidence in classification. The measure is minimized when

all pi's are equal, which corresponds to a totally uninformative set of pictures.

Information content is critically dependent on the resolution at which the

pictures are taken. In the mission of aerial survey, higher speed and altitude will lead

to a lower resolution, and vice versa. The value of the policy is the expected amount

of information obtained from future pictures if speed and altitude continue to evolve

with the same dynamics. However, this dynamics can be modeled only

approximately because of sensor uncertainty, partial observability, and the need for

unforeseen obstacle avoidance maneuvers. I will assume that the policy is

determined by the desired values that it sets for speed and altitude and to which

these variables are set by the navigation controller after unforeseen disturbances.

The proper values for desired speed and altitude depend on the context

present in the environment. For simplicity, the environment will be assumed to

contain just two contexts corresponding to favorable and unfavorable conditions. In

favorable contexts with good visibility, pictures at a low resolution encompass more

area and at the same time contain enough detailed information for proper image

classification. In unfavorable contexts when visibility is low due to dust, rain, or

dusk, pictures need to be taken at a higher resolution to obtain better clarity of

details. However, speed and altitude deviations from the desired values in each

context will lead to a lower picture information content.

The context interpretation given above can be clearly be generalized to many

different missions. For example, favorable contexts can represent situations in which

giving more weight to behavior for achieving higher-level goals produces better

results. Similarly, unfavorable contexts can represent situations in which giving more

weight to reactive behavior for avoiding environment disturbances produces better

results. Furthermore, the proposed framework can work with any number of hidden



contexts, which can represent other issues besides the level of abstraction required of

actions. However, the chosen interpretation is an adequate paradigm for testing all

ideas discussed in Section 1 as its solution will require addressing major issues of

operating in complex, uncertain, and nonstationary environments.

3.2 Survey Mission Specifications

Helicopter's altitude and speed will be used as state variables for the

information collection task. I will assume that because of vehicle's computational

constraints, the state will be estimated at discrete time intervals.

In the proposed case study, I assume that under the existing path planning

policy both speed and altitude evolve according to a nonlinearly transformed noisy

autoregressive function

xi(t +1) = tanh[xi(t) + ei], i = 1, 2. (1)

In the above equation, xl(t), x2(t) e R are correspondingly the current altitude and

speed, and i - N(O, a). The above equation models a nonlinear noisy autoregressive

state transition function. The autoregressive nature of this function reflects the

assumption that the speed and altitude of the helicopter cannot change abruptly, but

depend on previous values. The last term in equation (1) is a noise term, which

models uncertainty about future values of state variables due to unpredictable

environment conditions, such as weather effects or obstacles that need to be avoided.

The tanh transformation in the above equation reflects the assumption that both

speed and altitude are constrained to lie within certain limits. These limits are scaled

using tanh to the [-1,1] range, which corresponds to measuring the deviation of these

quantities from a certain average.

The purpose of the proposed architecture will be to evaluate the path

planning policy at each time t = T, i.e. to determine the expected sum of future

rewards (t = T+1, T+2, ...) from following the policy starting at state x(T). The reward



function mapping states to rewards depends on the context present in the

environment.

In favorable contexts, the reward is determined as follows:

ri(x(t)) = 4*exp(-k(u - dj)) / (1+exp(-k(u - df))) 2, (2)

where u = xi(t) + x 2(t) + s, df is the optimal value for u in favorable contexts, and E ~

N(O, a). In unfavorable contexts the reward is determined as follows:

r2(x(t)) = 4*exp(-k(u - du)) / (1+exp(-k(u - du)))2, (3)

where du is the optimal value for u in unfavorable contexts. The reward function

given above is motivated by the fact that when the speed or altitude is obviously too

much out of range, the reward should be zero. At the same time, reward cannot grow

arbitrarily since the most appropriate state values lie in between two bounds of being

too high or too low. Therefore, the reward function was chosen to be the derivative

of the sigmoid function, which is 0 for very small and large inputs and 1 at df in

favorable contexts and at du in unfavorable contexts. The constant k is the scaling

factor that controls how fast the reward rises from almost 0 to 1 and falls back.

The probability of a context starting to change at any given time is 1/N. The

final reward function r(t) is given by:

r(x(t)) = a*rr(x(t)) + (1-a)*rs(x(t)), (4)

where the subscript s corresponds to the current regime, the subscript r corresponds

to the previous regime, a = exp(-nT), and T is the number of time steps since the

previous regime started changing. This functional form for the final reward function

models a smooth change between the regimes. This corresponds to the assumption



that abrupt context changes rarely take place in the real world, and if they do, they

cannot be determined with certainty.

As we will show, the proposed framework addresses two major issues in the

problem formulation described above. First, it allows one to accurately evaluate the

existing policy despite the presence of hidden contexts as well as general

environment uncertainty, complexity, and nonstationarity. Second, as described in

Section 1.4, such an accurate evaluation will allow the vehicle to change its policy to a

different one with a higher value, if such exists. The capability to appropriately

change the policy for controlling speed and altitude increases the efficiency of the

vehicle's operation. Moreover, this capability enables the vehicle to operate in

environments where no single course of behavior can be followed at all times. Tests

confirming the above two capabilities of the proposed architecture will be presented

in Chapter 6.



Chapter 4

Background for the Proposed Architecture

4.1 Optimal Control Formulation

The policy evaluation approach presented in this thesis has its roots in the

theory of optimal control. This formulation is very general and is capable of

representing a very large class of problems, including the classical planning

problems. In terms of control theory, classical planning algorithms produce an open-

loop control policy from a system model; the policy is applicable for the given initial

state. Furthermore, classical planning is an off-line design procedure because it is

completed before the system begins operating, i.e., the planning phase strictly

precedes the execution phase. A closed-loop control policy is simply a rule specifying

each action as a function of current, and possibly past, information about the

behavior of the controlled system.

The central concept in control theory formulation is that of a state of the

environment. It represents a summary of the environment's past that contains all

relevant information to the environment's future behavior. The state transition

function specifies how the state changes as a function of time and the actions taken

by the agent. Each action taken in some state leads to a certain reward or

punishment. The agent is trying to maximize the total reward obtained from

choosing actions in all the states encountered. For example, the finite horizon discrete

time optimal control problem is:

Find an action sequence u = (uo, ui,..., u T) that maximizes the reward function

T-1

J(u) = gT(xT) + Z g,(u,x,)
i=O

subject to the state transition function



x,l+ =f,(x,, ,, w,), i = 0,... T-,

xo: given

x, ER n , i= 1,...,T

u, i = 0,...,T-1,

where wi is a vector of uncontrollable environment variables.

4.2 Methods for Solving the Optimal Control Problem

There are several approaches for solving the optimal control problem that

depend on the degree of complexity, uncertainty, and nonstationarity present in the

environment. In the simplest case, when the time dependent state transition

functions f, are known with certainty and are deterministic, then nonlinear

programming can be used to find the optimal sequence of actions u with a

corresponding sequence of the environment states x = (x,, x2 ,..., XT).

In a more complex case of probabilistic state transitions and a small set of possible

states, dynamic programming can be used to obtain an optimal policy u, = j,(x,), that

specifies optimal action to take in every state x,. The dynamic programming (DP)

algorithm exploits the fact that the cost function has a compositional structure, which

allows it to find the optimal sequence of actions by solving recurrence relations on

these sequences rather than by performing an exhaustive search in the space of all

such sequences. Backing up state evaluations is the basic step of the DP algorithm for

solving these recurrence relations. For example, if a certain action a in state i is

known to lead to state j under the current policy, then the value of this policy V(i) in

state i is:

V(i) = r(i) + V(j),

where r(i) is the immediate benefit of taking the action a. Then, starting from the final

state, actions are chosen to maximize the sum of the immediate benefit in the current

state and the long-term value of the next state.



The dynamic programming algorithm does not apply if the state transition

function is not known. This problem is commonly referred to as the curse of

modeling. Traditionally, the theory of adaptive control has been used for these

situations. In the adaptive control formulation, although the dynamic model of the

environment is not known in advance and must be estimated from data, the structure

of the dynamic model is fixed, leaving the model estimation as a parameter

estimation problem. This assumption permits deep, elegant and powerful

mathematical analysis, but its applicability diminishes for more complex and

uncertain environments.

4.3 Solution With Reinforcement Learning

The most general approach for solving the optimal control problem under

high complexity and uncertainty is to formulate it as a reinforcement learning

problem [Kaelbling et. al., 1996]. Reinforcement learning provides a framework for

an agent to learn how to act in an unknown environment in which the results of the

agent's actions are evaluated but the most desirable actions are not known. In

addition, the environment can be dynamic and changes can occur not only as a result

of exogenous forces but also as a result of agent's actions. For example, the

environment of an autonomous helicopter will change if the weather changes or if

the helicopter flies into a densely populated area with heavy air traffic.

The theory of reinforcement learning defines mission planning and execution

in terms of a plan-act-sense-evaluate operating cycle. At the first stage of this cycle,

an action plan with the highest value is chosen for accomplishing high-level goals. At

the second stage, the designed plan is executed in a manner that satisfies the

environment constraints. At the third stage, the changes to the environment as a

result of plan execution are sensed by the agent. At the fourth stage, the value of the

current plan is updated based on the newly received sensor input.

More formally, during each step of interacting with the environment, the

agent receives as input some indication of the current state xi and chooses and action



ui. The action changes the state of the environment, and the value of this state

transition is communicated to the agent through a scalar reinforcement signal r. The

agent is trying to choose actions that tend to increase the long-run sum of values of

the reinforcement signal. It can learn to do this over time by systematic trial and

error, guided by a wide variety of algorithms that have been developed for this

problem. The above formulation is much more general than that of optimal control. It

doesn't require the state transition functions f, and the reinforcement functions

gi(ui,xi) to be of any particular form or even be known. The agent's environment is

also not restricted in any way. Of course, the price paid for the above relaxation is

that the optimal action policy becomes much more difficult or even impossible to

find.

Reinforcement learning differs from the more widely studied problem of

supervised learning in several ways. The most important difference is that there is no

presentation of input/output pairs to the agent. Instead, after choosing an action the

agent is told the immediate reward and the subsequent state, but is not told which

action would have been in its best long-term interests. It is necessary for the agent to

accumulate useful experience about the possible system of states, actions, transitions

and rewards to act optimally. Another difference from supervised learning is that

these systems do not learn while being used. It is more appropriate to call them

learned systems rather than learning systems. Interest in reinforcement learning

stems in large part from the desire to make systems that learn from autonomous

interaction with their environments.

Reinforcement learning allows for a flexible combination of top-down goal-

oriented and bottom-up reactive planning. Bottom-up planning is naturally present

in reinforcement learning, since the generated action policies depend on the state of

the environment at each moment of time. The degree to which the agent's behavior is

strategic and goal-oriented can be controlled by providing rewards for subgoals at

different levels of abstraction. When rewards are given only for highest level

subgoals, more tactical decisions will be left up to the agent, and its behavior will



become less strategic and more reactive. Similarly, when rewards are given for very

low level subgoals, the agent will have less freedom in making local environment-

driven decisions and will be more directed towards achieving the specified subgoals

regardless of the environment. The first approach is more preferable for

environments with high dynamics, complexity, and uncertainty, while the second

approach is more preferable for simple and static environments. Thus, reinforcement

learning can be used as a generalization of traditional goal-oriented planning

techniques to environments with stochastic or even unknown dynamics.

4.4 Policy Evaluation in Reinforcement Learning

All reinforcement learning algorithms are based on estimating the policy

value in each state of the environment. Policy value is defined as an averaged or

discounted sum of rewards that can be obtained by starting in the current state and

following the given policy. As discussed in the introduction, continuous policy

evaluation is central maintaining the proper balance of strategic vs. tactical behavior.

In many situations, given a mechanism for evaluating future effects of actions, policy

updating stage consists simply of choosing the policy with the highest value.

The task of policy evaluation faces several problems in dynamic, complex, and

uncertain environments. All standard reinforcement learning algorithms assume that

it is possible to enumerate the state and action spaces and store tables of values over

them. The values in these tables are updated after each interaction with environment

in a manner specific to each algorithm. Except in very small and simple

environments, storing and updating tables of values means impractical memory and

computational requirements. This problem arises in complex environments and is

commonly referred to as the curse of dimensionality. It is present in its extreme form

in continuous state spaces. This creates the need for compact representations for state

and action spaces in terms of abstracted feature vectors. Therefore, the notion of a

look-up table has to be expanded to a more general value function, representing a

mapping from these feature vectors to state values. For example, the vector of sensor



variables received by an autonomous helicopter at a certain time instant can be used

to determine the value of the helicopter's path planning policy.

Besides addressing memory and computational requirements, compact

representations will allow for a more efficient use of learning experience. In a large

smooth state space we generally expect similar states to have similar values and

similar optimal actions. This is essential for continuous state and action spaces,

where possible states and actions cannot be enumerated as they are uncountably

infinite. The problem of learning state values in large spaces requires the use

generalization techniques for transfer of knowledge between "similar" states and

actions. These techniques would lead to a significant speed up of learning policies in

complex environments, and make reinforcement learning algorithms better suited for

real-time operations.

Another problem for learning state values in reinforcement learning results

from environment uncertainty. It is often the case that observations received by the

helicopter do not possess the Markov property, which requires the current

observation to contain all the information necessary for compute the probability

distribution of the next observation. Hence, these observations cannot be treated as

states of the environment. This problem is sometimes referred to as the hidden state

problem. This type of uncertainty is different from the probabilistic uncertainty about

the future states, and it requires special mechanisms for handling it. The standard

approach to solving this problem is to fit a Hidden Markov Model (HMM) to the

sequence of agent's observations, actions, and rewards [Shi and Weigend, 1997]. This

model is sometimes referred to as a Partially Observable Markov Decision Process

(POMPD) model [Kaelbling, Littman, and Cassandra, 1997]. In this model, a set of

hidden states is assumed with a Markovian transition function. Using this

assumption, the probability of the next observation is estimated based on a fixed

length sequence of past observations, action, and rewards.

However, a fixed state transition function is unrealistic in nonstationary real

world environments. In order to avoid this difficulty, the idea of a fixed model of the



environment should be abandoned: the two steps of estimating the current state and

then estimating its value should be collapsed into a single step of estimating the

value of the current situation based on the history past observations, actions, and

rewards. This estimation can be done using either a model-based function

approximator such as a neural network or a case-based function approximator such

as a nearest neighbor method or a fuzzy logic system. Both the parameters and the

structure of the function approximation architecture can be updated on-line to reflect

the drift in a nonstationary environment.

Some reinforcement learning techniques have been proven to converge for

function approximation systems that are quadratic in weights [Bradke, 1993].

However, all convergence results are relevant only to environments with fixed

dynamics. If dynamics of state transitions or reward assignments is changing over

time, then convergence to the optimal policy on a given data set might even be an

undesirable result. Such convergence would lead to overfitting of the system on the

existing data and will result in poor generalization on new data.

Besides slow drift in the state evaluation function due to environment

nonstationarity, more abrupt changes due to switches in underlying hidden regimes

can occur. In traditional treatment of the hidden state problem in reinforcement

learning, the hidden states can change at every time step and thus represent high-

frequency changes. In some environments, extra complications can arise due to lower

frequency changes that represent more fundamental changes in the environment. For

example, helicopter's altitude might constitute a state, and air traffic in helicopter's

surroundings might constitute a context, both of which might be hidden (difficult to

determine) due to poor weather conditions. A lot of work has recently been devoted

to modeling such changes in the field of Artificial Intelligence, where they are

referred to as changes in the hidden context [Widmer and Kubat, Taylor and

Nakhaeizadeh]. In addition, such models began to appear in time series modeling

[Weigend and Mangeas, 1995].



The problems with value estimation described above will be addressed by

combining the reinforcement learning component with a mixture of experts neural

network architecture. The proposed neural architecture was designed to operate on

real-valued data arriving from changing hidden contexts. It was also designed to be

more robust to overfitting than global models that disregard context information.

The proposed RL/NN combination is very general and makes only the

mildest assumptions about the data coming from the environment. The required data

consists of real vectors describing vehicle's state over time and scalar rewards for

actions taken in each state. The state observations do not even have to contain all

relevant information for determining future states. Furthermore, the relationship

between state vectors and costs of actions taken can be stochastic and nonlinear. To

my knowledge, no other algorithms for policy evaluation in reinforcement learning

have been implemented for such general data.



Chapter 5

The Proposed Architecture

5.1 Reinforcement Learning Component

The RL component of the proposed planning approach will provide targets

for the neural network component. Several issues arise in calculating the network

targets. The first one concerns targets d(t) for t < T. The available and relevant

information for computing the target d(t) consists of targets d(r) for t <r T and

outputs y(r), as well as rewards r(r) for t <r _ T. The standard dynamic

programming algorithm of value iteration is

V(x(t)) = max(E[r(x(t),a)] + y 1 P(x(t),x(t + 1),a) -V(x(t + 1))),
a x(t+1)

where E[r(x(t), a)] is the expected value of the reward received at state x(t) for taking

action a, P(x(t),x(t+l),a) is the probability of transferring to state x(t+l) after choosing

action a in state x(t), and y is the discounting factor. However, the above algorithm is

not applicable to the problem of interest for several reasons. First, the probability

P(x(t),x(t+l),a) does not exist because the state space for the problem of interest is

continuous. Second, even if the state space could be discretized and averages over

the data set would be used as probabilities, the value iteration algorithm could still

not be used because the transition probability model for the system is assumed to be

unknown.

The simplest and the most common solution to this situation is to use a

sampling algorithm such as TD(O) [Kaelbling et. al., 1996]. In this algorithm, the value

of a state x(t) is updated after receiving the reward r(t) and moving to state x(t +1)

according to:

V(x(t)) = y(t) +ca[r(t) + y*V(x(t +1)) - y(t)],



where y(t) is the forecast for V(x(t)) and a is a learning rate. This algorithm is

analogous to the standard value iteration - the only difference is that the sample is

drawn from the real world rather than from a simulation of a known model. The key

idea is that r(t) + y*V(x(t+l)) is a sample of the value of V(x(t), and it is more likely to

be correct because it incorporates the real reward r(t).

The next issue that arises in computing the NN targets is what should be the

value V(x(t +1)). The two possible choices are the network output y(t +1) and the

computed target (desired value) d(t +1). The difference between the two alternatives

is best illustrated on the example of the second to last data point. This task resembles

the situation of on-line training, where we are trying to compute d(T-1) after

transferring to state x(T). In this situation the desired value d(T) is unknown, and the

network output y(T) has to be used instead. However, when we go back in time

beyond the second to last data point, the choice d(t+l) for V(x(t+l)) would be more

informative than y(t + 1), since the later was generated without the knowledge of

future rewards r( r) for - 2 t.

Finally, the question of calculating the target d(T) for the last data point has to

be resolved. TD(O) as well as all other reinforcement learning algorithms provide the

target for a state value based on the expectation of actual value of the next state

encountered. Since no actual state is available for the last data point, a naive

expectation method has to be used:

V(x(T)) = E r(r)y] E[r()]
lr=1-

The equations for the evolution of speed and altitude given in chapter 3 were

supposed to model a common situation in which speed and altitude oscillate around

certain middle values. To aid NN training, the data in the experiments was

normalized to zero mean and unit variance. Hence, E[r(r)] = 0.



If the learning rate a is slowly decreased and the policy is held fixed, TD(O) is

guaranteed to converge to the optimal value function for finite state spaces in which

every state is visited infinitely often. The above convergence result is not applicable

to continuous state spaces. However, as was discussed in the introduction, the

convergence issues do not arise in nonstationary environment, where

overconvergence results in overfitting.

5.2 Neural Network Component: Gated Expert Overview

The policy evaluation function in this thesis is approximated by a neural

network architecture. It is trained on the state-value pairs provided by the RL

component to forecast the policy value (expected sum of future rewards) in each

state. In addition to addressing the extreme curse of dimensionality present in

continuous state spaces as described in chapter 4, this architecture will also address

the problem of hidden contexts.

The NN component is be based on the Gated Experts (GE) architecture

[Weigend and Mangeas, 1995].

y(x)

Expert 1 Expert k Gate

Input x

Figure 2.



The GE architecture consists of a set of experts and a gate, which can be

arbitrary input-output models with adaptive parameters (neural networks in this

thesis). When an input pattern is presented to the GE architecture, each expert gives

its version of the output and the gate gives the probability of each of the expert's

outputs being correct. The final GE output is obtained by adding the expert's

individual outputs weighted by the corresponding probabilities.

The advantages of a mixture of experts architecture in uncertain environments

can be formulated in more precise mathematical terms. In regression analysis, a

committee forecast can be obtained by taking a weighted average of forecasts of N

individual models. In that case, using any convex error function, the expected error

of the committee models is less than or equal to the average error of N models acting

separately. [Bishop, 1995] This result can easily be shown using the Cauchy's

inequality for the sum squared error function:

i=1 i=1

In fact, the performance of a committee can be shown to be better than the

performance of any single model used in isolation [Bishop, 1995].

Also, the idea of committee averaging underlies Bayesian data modeling. The

probability distribution of some quantity Q given a data set D and different models

Hi can be written as

p(Q ID) = p(Q,Hi I D) =>p(Q ID,Hi)p(H I D).
i i

Besides fighting uncertainty in the form of probabilistic noise, the mixture of

experts architecture is capable of reducing risk in decision making. This was

observed long ago in the fields of economics and finance. For example, in portfolio



management, the process of forming a committee of models is called risk

diversification. In particular, it is well known that diversification in stock market

investments can eliminate the firm-specific nonsystematic risk leaving only the

omnipresent systematic risk associated with uncertainty in the market as a whole.

Finally, the gated experts architecture has definite advantages in

nonstationarity environments [Weigend and Mangeas, 1995]. For example, a process

that we want to model may change between contexts, some of which are similar to

those encountered in the past. In this case, even though a single global model can in

principle emulate any process, it is often hard to extract such a model from the

available data. In particular, trying to learn contexts with different noise levels by a

single model is a mismatch, since the model starts to extract features in some context

that do not generalize well (local overfitting) before it has learned all it potentially

could in another context (local underfitting). For such processes, an architecture

capable of recognizing the contexts present in the data and weighing expert's

opinions appropriately is highly advantageous. If, in addition, each expert will learn

to specialize in making decisions in a separate context, then each of them will be

solving a much simpler task than modeling the whole process. Another motivation

for different experts in different contexts is that they can individually focus on a

subset of input variables that is most relevant to their specific context.

5.3 Gated Experts Details

The following are the main implementational features of the gated experts

architecture as described in [Weigend and Mangeas, 1995]. The targets for the GE

architecture are assumed to be normally distributed with a certain input-dependent

mean and a context-dependent variance. Each expert gives its forecast for the target

mean, and assigns the same variance to all its forecasts. During the training process,

each expert tries to determine the context in which its forecasts have the least error

and adjust its variance according to the noise level in that context. The architecture is

trained using the Expectation-Maximization (EM) algorithm. In this algorithm, the



gate is learning the correct expert probabilities for each input pattern, while each

expert is simultaneously learning to do best on the patterns for which it is most

responsible. Only one expert is assumed to be responsible for each time pattern, and

the gate's weights given to each expert's forecast are interpreted as probabilities that

the expert is fully responsible for that time pattern.

The goal of the training process is to maximize the model likelihood on all the

time patterns. The likelihood function is given by

N N K

L = I P(y(t) = d(t)Ix(t)) =HIg,(x(t),0,)P(d(t)x(t),0)
t=1 t=1 j=1

N K 1 (d(t) - y(x(t),0))2
= g (t, 0g) 2 exp'\ 2 2
t=1 2j=

where N is the total number of training patterns, K is the total number of experts in

the architecture, y(t) is the output of the whole GE architecture, d(t) and x(t) are the

target and the input for pattern at time t, P(y(t) = d(t)Ix(t),g) = P(d(t)lx(t),0) is the

probability that y(t) = d(t) given that expert j is responsible for the time pattern at

time t, and gj(x(t),O) is the probability that the gate assigns to the forecast of expert

j. In addition, O and g, are parameters for expert j and the gate, which are optimized

during training.

The actual cost function for the GE architecture is the negative logarithm of

the likelihood function:

N K 1 (d(t) - (x(t),))2
C = -InL= - In g(x(t),0g) T-2 exp - 2

t=1 j=1 O 2 i

The EM algorithm consists of two steps: the E-step and the M-step. During the

E-step, the gate's targets are computed:



gj (x(t), Og)P(d(t)lx(t), O)
hi(t) = K

Igk(x(t),,)P(d(t) x(t),Ok)
k=1

During the M-step, the model parameters are updated as follows:

N

2 h(t)(d(t) - y,(x(t),j))2
(2 t=1

j N

t h (t)

The variance of the jth expert is the weighted average of the squared errors of that

expert. The weight is given by hi(t), the posterior probability that expert j is

responsible for pattern t. The denominator normalizes the given weights.

Since the cost function essentially minimizes the squared errors over all time

patterns, the derivative of that function with respect to the output of each network is

a scaled linear function. Thus, the weight changes in the expert networks are

proportional to the difference between the desired value d(t) and the expert output

yj(t):

SC(t) 1
(t) h(t) 2 (d(t) - yj(x(t),Oj)).

Sy.(t) .

The above learning rule adjusts the expert's parameters such that the output

yj(t) moves toward the desired value d(t). However, two factors specific to the GE

architecture modulate the standard neural network learning rule. The first factor

hi(t) punishes the experts for their errors according to their responsibility for the

given time pattern. In other words, the expert whose context is more likely to be

present at time t is trying harder to learn that time pattern. This allows for experts'



specialization in contexts rather than training one global model. The second factor,

1
2 punishes more for the same error and the same hj(t) the expert whose forecast

precision was thought to be smaller. This allows the experts to adjust their variances

to fit exactly the noise level present in their contexts.

The final outputs of the gating network gj represent probabilities that the

present context is best suited for each expert. Therefore, the raw outputs of the gate sj

have to be scaled to add up to 1, which is done using the conventional softmax

function:

exp(sj)
i= K

Iexp(sk)

k=1

The softmax function enables "soft" competition between experts in which the output

of each expert has some weight instead of giving the weight of 1 to the most likely

expert. Such soft competition is desirable in high-noise environments, where no

expert can in reality be totally responsible for each time pattern.

The weight changes in the gating network are proportional to the following

quantity:

9C(t)
O - -(h(t) - gj (x(t),O,)) .

In the above equation, h (t) is the posterior probability of expert j having the best fit

for the given context - it is calculated using both input and target information. gj, on

the other hand, is calculated using only the input information. Thus, the above

learning rule results in gate's outputs, which give predicted fitness of each expert to

the current context, to approximate the actual expert's fitness to the context.



5.4 Fuzzy Logic Component

Fuzzy logic and neural networks are complementary technologies in the

design of intelligent systems. Each method has merits and drawbacks. Neural

networks are essentially low-level computational structures and algorithms that offer

good performance dealing with sensory data. Neural networks possess a

connectionist structure with fault tolerance and distributed representation properties

that result in good learning and generalization abilities. However, because the

internal layers of neural networks are always opaque to the user, the mapping rules

in the network are not visible and difficult to understand. Furthermore, the

convergence of learning is not guaranteed. Fuzzy logic systems, on the other hand,

provide a structured framework with high-level fuzzy IF-THEN rules. An example of

such a rule is: IF (the car ahead in your lane is breaking FAST) AND (the car behind

you in the lane is FAR) THEN (turn left SHARP). The transparency of the rule-based

approach allows human experts to incorporate a priori domain knowledge into such

a system, since a large part of human reasoning consists of rules such as given above.

However, since fuzzy systems do not have inherent learning capability, it is difficult

for a human operator to tune the fuzzy rules and membership functions from the

training data [Lin and Lee, 1996].

The above discussion suggests a natural combination of fuzzy logic and neural

networks within the proposed framework. The learning qualities of neural networks

make them a good fit for continuously evaluating policies in nonstationary

environments. At the same time, the transparency of fuzzy logic rules is

advantageous for policy updating mechanisms, for which human monitoring is

desirable.

For the problem formulated in chapter 3, the following fuzzy rule structure

was used for policy updating. The rule antecedents consisted of the following

variables: policy value (LOW, or HIGH) and speed + altitude (LOW, or HIGH). The

consequent was the desired value for speed + altitude (SMALL or LARGE). Ideally,



the desired value should be distributed among speed and altitude according to the

current environment constraints on these variables. For simplicity, the desired value

was evenly distributed in the current version of the system.

The following two fuzzy rules were used:

1. IF (policy value estimate is SMALL) AND (speed + altitude is SMALL) THEN

(next desired value for speed + altitude is LARGE).

2. IF (policy value estimate is SMALL) AND (speed + altitude is LARGE) THEN

(next desired value for speed + altitude is SMALL).

The membership function representing SMALL was 0.5tanh(-kx) + 0.5, and

representing LARGE was 0.5 tanh(kx) + 0.5 . The antecedents generated by equations

in chapter 3 were empirically determined to fall most often in the range of [-1,1].

Therefore, the scaling constant k was chosen to be 2 in order to capture most of the

nonlinearity of the tanh function over the range of [-1,1]. The membership function

for SMALL consequent was

{0.5- 0.5x, for x e [- 1,1]

0 otherwise

For LARGE consequent, the membership function was

{0.5 + 0.5x, for x e [- 1,1]

0 otherwise

The AND operator was implemented using multiplication of the membership

grades. The final desired value was obtained using the centroid defuzzification

procedure:

DesiredVal = x(0.5 + 0.5x)s, + x(0.5 - 0.5x)s21= S( - S2),
-1

where s, is the strength of rule 1, and s2 is the strength of rule 2. The strength of each

rule was found by applying the membership functions to each of the antecedent

variables and multiplying the results as prescribed by the AND operator. The simple

interpretation of the above computational procedure is as follows: if a greater need is

present for the desired value to be large, as indicated by a stronger result of rule 1,



then Sl - S2 > 0 and the desired value is greater than 0. The opposite effect holds when

there is a greater need for the desired value to be small. The fuzzy rule extension of

this reasoning allows to find exactly how large or small the desired value should be.



Chapter 6

Results and Discussion

6.1 Experimental Setup

The proposed planning architecture was tested on the data generated by

equations given in Section 3.2. The tests were designed to demonstrate the two most

important capabilities of the proposed architecture: 1. accurate policy evaluation

despite changes in the hidden contexts 2. the possibility of effective policy updating.

The first capability was tested using the cross-validation approach. This is the

standard approach for testing the results of a trained model having only a limited

amount of noisy data. The model was trained on a set of data called the training set.

After each training epoch, the model was applied to another set of data called the

validation set, and the model error on the validation set was recorded. The training

continued until either the training cost stopped changing or the validation cost began

to increase. The first event implies that model parameters have come to a vicinity of a

plateau or a local minimum. In this case, training was stopped to simulate real-world

time limitations. The second event implies that the model started overfitting the

training data, i.e. started fitting itself to the noise. In this case, training was stopped

to preserve the model generalization abilities. After stopping the training, the model

was applied to a third data set called the test set, and its cost was measured. The

model cost on the test set is a point sample of the cost which the model is expected to

incur on the new data. In order to obtain a more representative performance index,

the test set was regenerated many times, and the average test cost was measured. By

increasing the number of test sets, this final cost can be made to approximate

arbitrarily closely the true cost that the model is expected to incur on the new data.

The following procedure was used to choose parameters for the experiments.

To find the appropriate reward scaling parameter k in the reward equation,

E[r( r )]=0.5 would have to be solved for k. However, this equation did not seem to be

solvable analytically, and an iterative procedure was used to find k that resulted in a



value of E[r( r)] to be reasonably close to 0.5. From this, the value k=3.52 was chosen,

for which E[r( v)]=0.501.

The decay constant n in the final reward equation was chosen to be 1. The

optimal sum d, of scaled speed and altitude deviations in favorable contexts was 0.5,

and d. corresponding to unfavorable contexts was -0.5. The contexts were switched

according to a uniform distribution, switching on average every 50 steps. 500 data

points were used for training and 500 for testing. A smaller set resulted in overfitting

that was difficult to manage, while a larger set required too much training time

without an adequate gain in performance.

The learning rate of the TD(0) algorithm was fixed at 1 to simplify

interpretation of the model cost. A smaller learning rate would result in targets being

dependent on the network outputs. This would eliminate the benchmark of the error

of 0 forecast, against which the model performance could be judged.

There were two experts in the model, each with one hidden layer of 10

sigmoid units. The gate had one layer of 10 sigmoid units. Both experts and the gate

were trained using a second order Quasi-Newton method BFGS, as described in

[Press et. al., 1992]. At time t, each expert had as inputs xi(t) + x 2(t), xl(t - 1) + x 2 (t - 1),

and r(t - 1). The gate had as inputs exponentially smoothed expert's errors from past

time patterns.

The expert's and gate's parameters and 9 g were randomly chosen at the

beginning of each run. The network layers were optimized separately, as I found that

they required very different step sizes in parameters. A weight decay factor X= 0.1

was used for each layer to reduce overfitting: a penalty term of A IWI was added to

the cost function for each layer, where IIw1I is the Euclidean norm of the vector of

weights in the corresponding layer.



6.2 Results and Discussion

Graphs of helicopter's speed and altitude for two different noise levels are

shown below. Two hundred data points were used to make these graphs more

readable. The data was generated using equation 1 in chapter 3.
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As can be seen in the above graphs, the autoregressive quality of the data

diminishes visibly with the increase in the noise level: the data begins to look much



more random. This fact should make policy evaluation a very challenging task in

high-noise environments.

The next graph shows policy rewards and estimated true policy value for the

above data. The true value was estimated by simulating the data equations for 300

data points and computing the actual discounted sum of future rewards for the first

200 points.
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Increase in the noise level also made the rewards look much more random. In

addition, it had the effect of shifting down the mean of rewards and consequently of

computed values. This is due to the asymmetrical form of the reward function used.

In order to account for the above shift, the input and target data was normalized to

zero mean and unit variance.

The following results were obtained for a sample training cycle of the model

at discounting factor y = 0.7. The noise variance in both state and reward equations

was 0.05. The graph below shows decrease of the training and the validation error

during the training process. The error function used was the logarithm of the

likelihood function, as described in chapter 5.
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The costs were normalized by dividing them by the cost of the naive value

forecast. Due to normalization, the naive forecast is V(x(t)) = 0. Each training epoch

took about 15 seconds on an Ultra2 sun workstation. The model error decayed very

fast to levels statistically significantly below those of the naive forecast.



In order to get a statistically valid estimate of the true policy evaluation ability

of the trained model, it was applied to different test sets, and its error was observed.

The following error graph was obtained.

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

Graph 6

The 95% confidence level for the mean of the errors in the above graph is 0.67 ± 0.005.

The ability of the model to distinguish favorable contexts in the helicopter's

environment from unfavorable is demonstrated in the graph below. For clarity of

presentation, a context indicator variable was graphed that is 1 for favorable contexts

and -1 for unfavorable contexts. gi is the gate's output for expert 1 and hi is the

weighted error for expert 1 as described in chapter 5.
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Graph 7

The above graph shows that the gate has almost converged in its learning, as gi

matches almost identically hi. Also, gi follows very well the actual testing context,

which shows that the gate has learned to recognize contexts. Since hi gives an

indication of relative expert's errors in each context, the experts had learned to

specialize their prediction to contexts.

The procedure of testing the model on many regenerated test sets for

estimating the true policy evaluation ability of the model was used for all

comparisons described below. The first one compared the proposed gated experts

architecture to a similar one used in time series analysis. The field of time series

analysis for the most part considers the problem of estimating the immediate future

value of a variable based on its past values. The previous usa of the GE architecture

[Weigend and Mangeas, 1995] was based on the fact that context changes were

apparent in the input data, and therefore the gate was designed to use raw data as

inputs. This thesis extends the above problem to the one of forecasting values of the



policy at each time pattern, and the context changes are present only in the way the

value is computed. In other words, the context changes are present only in targets

rather than both in targets and inputs. In order to deal with this problem, the gated

experts architecture in the proposed planning approach used the gate that had

expert's past errors as inputs. This was motivated by the idea that since experts'

outputs approximate targets, the context information present in targets should also

be present in experts' errors.

The following results were obtained after comparing the mean error of two

architectures over regenerated test data sets at the 0.05 noise variance.

Mean error for the existing Mean error for the proposed

architecture architecture

0.98±0.007 0.67 ± 0.005

Table 1

The performance improvement demonstrated above enables a new usage of the

gated experts architecture: estimating long-term policy values rather then just

immediate future rewards.

The next test demonstrated the effect on the policy evaluation ability of the

model of the discounting factor y in the reinforcement learning component. Using the

intuition from time-series analysis, increase of the discounting factor should make

policy evaluation more difficult, since the model in effect will have to forecast policy

rewards farther into the future. The following results were obtained.

Discounting factor y 95% Confidence level for the mean

error at 0.05 noise variance

0.5 0.73 ± 0.01

0.7 0.67 ± 0.005

0.9 0.82 0.007

Table 2



Results in the above table confirm the ability of the proposed architecture to forecast

not only immediate future rewards but also long-term policy values. The larger error

at y = 0.5 than at y = 0.7 contradicted the initial intuition. It demonstrated that for

small y, the smoothing effect of discounting brings more information into the system.

However, after some point, the information deteriorates. This can be explained

intuitively by the observation that the mean of two independent identically

distributed random variables has a smaller variance than that of a single random

variable. This is the case when the model is trying to evaluate the policy within the

same context. However, when more variables from another context get averaged in,

policy evaluation becomes a more difficult task.

In the reinforcement learning component of the proposed planning

architecture, the neural network targets were computed by propagating back the

expected value of the last data point. The error in the value estimate at time t due to

the difference between the true and expected value of the last data point at time T is

yT-t. With y = 0.7 and 500 data points, this error falls below 0.01 after last 6% of the

data.

The next set of tests compared the performance of the proposed model with

more traditional models for policy evaluation. They consisted of combinations of the

TD(0) algorithm with different function approximation architectures.

Model Type 95% Confidence level for the mean

error

Nonlinear Gated Experts 0.67 ± 0.005

Linear Gated Experts 0.74 ± 0.008

Global Model 0.94 ± 0.01

Table 3

Policy evaluation ability of tested architectures with noise variance 0.05.



Model Type 95% Confidence level for the mean

error

Nonlinear Gated Experts 0.947 ± 0.002

Linear Gated Experts 0.951 ± 0.003

Global Model 1.026 ± 0.005

Table 4

Policy evaluation ability of tested architectures with noise variance 0.5.

The significantly smaller error for the GE architecture over the global model is

due to the fact that the experts had a chance to specialize to their contexts and not

worry about their errors outside of the context boundary. The outside-of-context

errors were decreased by low weights assigned by the gate to expert's forecasts for

those time patterns. A global model of each expert, on the other hand, did not have

had a chance to exploit the full structure of each context, since it was hindered by

trying simultaneously to decrease errors outside of the context. In fact, in high-noise

environments, the global model showed significant overfitting, which degraded its

performance even below that of the naive forecast.

The architecture with the linear gate performs better than the global model

because it possessed some context recognition abilities. The linear gate also

performed only slightly worse than the nonlinear one. This is due to the fact that

overfitting is a much bigger problem in higher noise environments. However, after

controlling the nonlinear models for overfitting, they can outperform the linear

models. In the present case, this control was implemented by the weight decay

mechanism, as described in section 6.1. Other more advanced mechanisms can also

be used, which is one of the subjects for future research.

Once the superior policy evaluation ability of the proposed architecture was

established, the policy updating capability using fuzzy logic rules was tested. In



order to save a thousand words, the diagram outlining the components of the

proposed architecture is repeated below:

UItate and con

it Learning
onent Neural Network

Policy values in past
states and contexts

pdated policy

Fuzzy Logic Rules

Policy value in the
current state and context

The low-noise environment with noise variance of 0.05 was used for the test

described below. The policy updating mechanism was tested in the following

manner. First, the GE architecture was trained as usual for policy evaluation on a

fixed set of training and validation data. After satisfactory results on the validation

set were observed, the training stopped, and the program entered the policy

updating mode. In this mode, the values of speed and altitude were generated with

varying desired values, which were provided by the fuzzy rules. After the whole test

set was generated, the actual sum of rewards was computed as before. This

procedure was repeated for a certain number of iterations, during which new test

sets were generated. Mean and variance of the sum of rewards were calculated.

S

Reinforcemen
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In order to compare the above results to the ones with no updating, the

program then entered an evaluation mode. The data was generated with desired

values for speed and altitude being 0, just as during training. For each test set, the

actual sum of rewards was calculated. The mean and variance of this sum were

computed after some number of test sets, and was used as the benchmark for

comparing with the policy updating results.

The graph below shows the mean of the rewards obtained by the model

during training, policy updating, and policy evaluation.
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As can be seen in the above graph, helicopter's rewards during the policy updating

stage are visibly higher than those during the evaluation stage with no updating. In

fact, the 95% confidence level for the mean during the initial stage of updating is

0.03±0.005, and during evaluation with no updating is -0.03±0.006.

Two types of possible errors need to be minimized when choosing

appropriate parameters for fuzzy logic policy updating: not changing the policy

enough when it is beneficial to do so, and changing the policy too much when it is



not beneficent to do so. These correspond to type I and type II errors in statistical

hypothesis testing. These errors should be controlled depending on the risk aversion

preferences for the given mission. More specifically, the more extreme a value

forecast, the more trust can be given to this forecast. This is based on the idea that

forecasts near 0 are more likely to be based on the random noise. Therefore, a higher

threshold for policy changing will result in more frequent policy changes with a

higher percentage of incorrect decisions. On the other hand, a low threshold will

result in less frequent policy changes with a lower percentage of incorrect decisions.

However, a very low threshold may result in missing the opportunities to adjust the

policy, since the policy will not be updated for many low value forecasts. The

number of missed opportunities will depend on the expected frequency of context

changes. The length of time window N has a similar effect on the possible errors. A

larger N provides more confidence for events observed within this window, since a

larger sample of policy values will provide a statistically better estimate for the

expected policy value.



Chapter 7

Conclusions and Future Work
7.1 Conclusions

An approach, an architecture and a model with tuned parameters were

presented in this thesis for context-sensitive planning by autonomous vehicles. The

proposed approach extended the existing planning approaches into the

environments of high complexity, uncertainty, and nonstationarity. It consisted of a

combination of reinforcement learning, context-sensitive neural networks, and fuzzy

logic rules. The reinforcement learning component of the architecture was

implemented by the TD(O) reinforcement algorithm. This algorithm was chosen

because of its applicability to continuous state spaces with unknown state transition

model. The neural network component of the architecture consisted of the gated

experts neural network architecture. This architecture was designed to recognize

hidden contexts in noisy real data and approximate its targets in a context-sensitive

manner. The fuzzy logic component of the architecture consisted of rules for policy

updating. The antecedents of fuzzy rules were chosen to correspond to the outputs of

the other two architectural components, while the consequent provided information

for the path planning policy of the vehicle.

The effectiveness of the proposed approach was demonstrated by applying

the corresponding model to the computer-generated data simulating aspects of

interest in the environment of autonomous helicopters. The architecture was shown

to be superior to existing approaches of combining reinforcement learning with

global neural networks. In addition, the proposed approach was compared with a

combination of reinforcement learning and neural architectures having linear

context-switching models. The results again demonstrated the superiority of the

proposed approach, which indicated effectiveness of nonlinear estimation models in

complex, uncertain, and nonstationary environments. The above results were

consistent both for low and high noise environments, which indicated the



applicability of the proposed planning approach to a broad range of missions of

autonomous vehicles.

The following extensions can be made to the proposed planning approach,

which would increase its effectiveness and applicability even further.

7.2 Extending the Fuzzy Logic Component

Membership functions for the linguistic variables used as well as the variables

themselves in the fuzzy rules can be made data dependent. This will simulate policy

updating in a priori unknown environments. The cost function that will be

minimized by the fuzzy learning rules will be the negative of this sum of rewards. A

standard backpropagation technique can be used for adjusting the mean and

variance of the rules.

7.3 Q-learning for Policy Updating

In more general environments where the physical meaning of contexts is

unknown, the following procedure can be used to adjust the vehicle's policy. The

policy control variables can be made part of the state vector, and a Q-learning type

algorithm instead of TD(O) can be used for updating the values of new states. In this

case, the values of control variables can be adjusted in every state to give the

maximum policy value. This would lead to a nonlinear programming problem in

every state, which can be solved quickly for a suboptimal solution. An optimal

solution is not required in this case because of the exploration vs. exploitation

tradeoff: choosing control variables to maximize the existing valuation scheme

would prohibit the vehicle from exploiting other policies that can potentially have

even higher values. With the use of Q-learning, when the gate gives more weight to a

valuation scheme of a certain expert, actions preferred by that expert will have more

weight. This demonstrates the automatic hierarchical planning capability of the

proposed framework, in which gate chooses the context that should be paid more

attention to and the corresponding expert chooses optimal decisions for that context.
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