
Deadlock-Free Routing in a Faulty Hypercube

by

Eric Lehman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

A uthor

Department of Electrical Engineering and Computer Science
May 18, 1998

Certified by. .101
F. T. Leighton

Professor of Applied Mathematics
Thesis Supervisor

Accepted by
Arthur Smith

Chairman, Departmental Committee on Graduate Students

n V r i; . , f

Deadlock-Free Routing in a Faulty Hypercube

by

Eric Lehman

Submitted to the Department of Electrical Engineering and Computer Science

on May 18, 1998, in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

Abstract

In massively parallel computers, processors are often connected in a hypercube con-
figuration. Each vertex in the hypercube represents a processor, and each edge rep-
resents a communication link. One problem in such a system is avoiding deadlock, a
state where there is a cycle of processors, each waiting on the next indefinitely. A
second problem is that in a system with many processors, some are bound to fail,
leaving a faulty hypercube. This thesis investigates the problem of efficiently moving
data between processors in a faulty hypercube while avoiding deadlock.

This work was supported by the US Army through grant DAAH04-95-1-0607 and
by DARPA under contract N00014-95-1-1246.

Thesis Supervisor: F. T. Leighton

Title: Professor of Applied Mathematics

Acknowledgments

The author would like to thank Hristo Begin, JinSuk Kim, and Tom Leighton for

helpful discussions.

Contents

1 Introduction

1.1 The Faulty Hypercube

1.2 Routing

1.3 Evaluating a Routing Algorithm

1.4 Our Result

2 Previous Work

2.1 Previous Work on Similar Problems

2.2 Previous Work Using Similar Techniques

2.3 Comparison with Our Work

3 A New Routing Algorithm

3.1 General Randomized Routing

3.1.1 Bound on Expected Congestion

3.1.2 High-Probability Bound on Congestion

3.1.3 Bound on Expected Load

3.1.4 High-Probability Bound on Load . . .

3.2 An Initial Routing Algorithm

3.3 Eliminating Deadlock

3.3.1 Intuition Behind Eliminating Deadlock

3.3.2 Description of Algorithm B

3.3.3 Analysis of Algorithm B

4 Conclusion

18

. 18

.. . . . 20

. 23

.. 24

. 25

. 25

. 30

. 31

. 32

.. . . . 36

List of Figures

3-1 A summary of general randomized routing. 19

3-2 Algorithm A 27

3-3 How deadlock arises in general randomized routing 32

3-4 An illustration of two new notations 33

3-5 A route defined by Algorithm B 34

3-6 Algorithm B 35

3-7 An ordering of the edges proving that Algorithm B is deadlock-free . 37

Chapter 1

Introduction

A central problem in massively parallel computing is moving data efficiently between

processors. One simple approach to this problem is to run a wire between every pair

of processors to permit direct communication. However, as the number of proces-

sors grows large, the number of wires becomes enormous, and this approach becomes

wholly impractical. An alternative is to permit each processor to communicate di-

rectly with only a few others. A message originating at one processor may then pass

through a number of other processors before reaching its destination.

This alternate approach to moving data efficiently between processors raises a

number of tricky issues. What if a message takes an inordinately long and circuitous

path? What if many messages are all directed across one wire, causing a traffic jam?

And what if message traffic becomes so badly locked up that some messages become

permanently stuck? Furthermore, suppose that we do devise an intricate scheme that

tiptoes around all these issues. In a massively parallel computer, some components are

bound to fail occasionally. When this happens, will our scheme fall apart completely?

This thesis addresses the above questions for the special case of a parallel computer

with processors arranged in a hypercube as in [6, 15], for example. In particular, we

give an algorithm for routing messages in a hypercube that tolerates many faulty

processors, uses only short paths, rarely causes message traffic to pile up, and never

causes a complete deadlock.

The remainder of this chapter formalizes the problem that we address and the

result that we claim. Section 1.1 introduces the hypercube architecture and our as-

sumptions about faults. Section 1.2 describes the form of the data moving between

processors, and the general features of an algorithm guiding the movement of data.

Section 1.3 discusses various ways to evaluate the quality of such an algorithm. Sec-

tion 1.4 states our result.

1.1 The Faulty Hypercube

We assume that processors are arranged in an n-dimensional hypercube configuration.

That is, there is one processor for each n-bit binary string. Two processors can

communicate directly if their binary strings differ in a single bit position. In this case,

we assume that the two processors are connected by a pair of one-way communication

channels running in opposite directions. We will often use graph terminology, referring

to processors as nodes and to communication channels as arcs or edges. We will always

use n to denote the hypercube dimension and N = 2" to denote the number nodes.

Some components are bound to fail from time to time in a massively parallel sys-

tem. For example, there might be a fault in a processor or in a communication link

between two processors. In this thesis, we consider only processor faults. Further-

more, we assume that a faulty processor is not only incapable of computation, but

also is unable to convey data. In graph terms, a processor fault deletes a node and

all incident arcs.

There are two common, but different assumptions about the distribution of faults.

In one case, each processor is assumed to fail with probability p independently of all

others. In the other case, an adversary places faults in the worst possible config-

uration. We analyze the performance of our routing algorithm in the presence of

worst-case faults.

1.2 Routing

There are several common ways to model the data moving between processors. We

describe only two here. In the store-and-forward model, each message is represented

by an indivisible packet. Each processor maintains one or more queues which store

packets until they can be forwarded to another processor. At any moment, a packet

is either stored in a queue at a particular node or is in flight along a communication

link. In the wormhole model, a message is divided into small, fixed-size pieces called

flits. The originator of the message sends flits to a neighboring node over some

communication link. After the first flit is sent, the link is reserved until after the last

flit has been transmitted. The neighboring node begins sending out flits as soon as

the first one is received, thus reserving another link. The message resembles a worm

in that it moves through the network as a strung-out sequence of flits. The edges

occupied by the worm are reserved until the worm moves on. In this thesis, we are

primarily concerned with the wormhole model.

A node that sends a message is called the source, and the node that receives the

message is called the destination. The path taken by the message is called a route.

A scheme defining the route taken by a message as it travels between a given source

and destination is called a routing algorithm. There are two broad classes of routing

algorithms. In an oblivious routing algorithm, the route of one message is unaffected

by the presence of other messages in the network. By contrast, in an adaptive routing

algorithm, the route of one message may be affected by the presence of others; for

example, if a traffic jam develops, subsequent messages might be directed toward

quieter areas of the system. This example suggests that adaptive routing algorithms

may have a substantial advantage. The disadvantage is that adaptivity typically

requires additional hardware support. The routing algorithm proposed in this thesis

is oblivious.

1.3 Evaluating a Routing Algorithm

The quality of a routing algorithm can be evaluated in many ways. We focus on four

measures of quality.

First, a good routing algorithm should have short routes. That is, a message

should not take a winding, circuitous path between its source and destination. Such

long paths would imply slow delivery of messages and thus poor performance of the

parallel computer. The length of a route is defined to be the number of edges that it

contains. In an n-dimensional hypercube, there is a route of length at most n between

every pair of nodes. Thus, a good routing algorithm for a hypercube should not use

routes with length significantly exceeding n.

Second, a good routing algorithm should have low congestion. This means that

not too many messages should be directed across a single communication link. Since

messages can only cross at a certain rate, high congestion again would imply slow

delivery of messages and poor system performance. Naturally, the congestion on

an edge depends on the particular routing problem; that is, congestion depends on

the number, sources, and destinations of messages sent. In this thesis, we analyze

the congestion arising from two types of routing problem. In a permutation routing

problem, each node is the source and destination of one message. More generally, in a

h-relation each node is the source and destination of at most h messages. Since some

nodes may be faulty and others may be isolated by faults, we will actually consider

permutations and h-relations on only a subset of "usable" nodes.

A third desirable property of a routing algorithm is that it be deadlock-free. That

is, there should be no way to form a cycle of messages such that each is unable to

advance until after the next one advances. This is primarily a concern in wormhole

routing, because under that model an edge is reserved until the entire message passes

through. This protracted reservation of edges heightens the risk of deadlock. Never-

theless, deadlock can even occur under the store-and-forward model if queues become

full.

Here is an example of a deadlock situation in the wormhole model. Suppose that

processors are arranged in a 2-cube or square. Every node tries to send a message

to the diagonally opposite node by a route circling clockwise around the square. At

some point, every message has reserved the first edge of its route. Now no message

can advance because all edges are reserved, but no message can unreserve an edge

until it advances. This is deadlock.

A simple way to prove that an oblivious routing algorithm is deadlock-free was

described in [5]. The method is to give an ordering of all edges so that every route

crosses edges in increasing order. We will apply this method to a simple routing

algorithm in the next chapter, and later use it to prove that our own routing algorithm

is deadlock-free.

A fourth desirable property of a routing algorithm is fault tolerance. If some

processors fail, then the algorithm should prescribe fault-free routes while still giving

good performance. For example, a modest number of faults should not force long

paths, high congestion, or deadlock. We do not consider dynamic fault tolerance in

this thesis; that is, if a fault occurs, then the current computation may be disrupted.

1.4 Our Result

As noted above, we assume that an adversary places faults in a worst-case configura-

tion. For example, the adversary might try to impose long paths by putting faults on

all short paths. He might try to force congestion by arranging faults so as to funnel

many messages through a single link. Or he might try to coerce a routing algorithm

into allowing deadlock.

The main result of this thesis is a routing algorithm that defeats such an adversary

on all fronts. We present an oblivious, deadlock-free routing algorithm that tolerates

O(N/ log N) worst-case faults while maintaining short paths and low congestion.

Specifically, any permutation can be routed on a prescribed set of (1 - o(1))N nodes

such that every path has length at most (1+ o(1))n, the expected congestion on every

edge is constant, and with high probability all edges have congestion O(log N).

The remaining chapters are organized as follows. Chapter 2 reviews previous work.

Our new routing algorithm is described and analyzed in Chapter 3. Conclusions and

open problems are discussed in Chapter 4.

Chapter 2

Previous Work

Routing in the hypercube and related networks has been studied extensively. In this

chapter, we review only two most relevant branches of this previous work. Section 2.1

describes prior research into similar problems, and Section 2.2 summarizes prior work

using similar techniques.

We will frequently refer to terminology and techniques introduced in Section 2.2

when we describe our own routing algorithm in the next chapter.

2.1 Previous Work on Similar Problems

Wormhole routing and the associated deadlock problem were first considered by Dally

and Seitz [5]. The authors proved the key result that an oblivious routing algorithm

is deadlock-free if and only if there is some ordering of the edges such that every

route traverses edges in increasing order.' Dally and Seitz addressed the deadlock

problem in part with a hardware fix. In effect, they made several copies of hypercube

edges by introducing "virtual channels". This considerably simplifies the problem of

constructing the ordering of the edges needed to prove that a routing algorithm is

deadlock-free.

1Schwiebert [14] subsequently showed that under different assumptions no ordering of the edges
is necessary to ensure deadlock-freedom for an oblivious algorithm in the wormhole model. Although
Schwiebert's assumptions are possibly better, his counterexample is sufficiently contrived that it has
no obvious implications for the design of routing algorithms.

Kim and Shin [9] studied the problem of constructing an oblivious, deadlock-

free routing algorithm for a faulty hypercube. Specifically, they proposed a routing

algorithm for a hypercube with up to log n + log log n + 0(1) faults in a worst-case

configuration. Their technique requires an (n-2)-dimensional subcube with no faults.

A route consists of three stages. First, the message moves from the source to the

nearest node in the healthy (n - 2)-cube. From there, the message moves to the node

in the healthy (n - 2)-cube closest to the destination. Finally, the message travels to

the destination. There are additional optimizations if, for example, there is a healthy

(n - 1)-cube. Kim and Shin's procedure has the advantage of simplicity. Though

the number of tolerable faults is asymptotically quite small, it may be sufficient in

practice. For example, 5 faults can be tolerated in a 10-cube.

If the deadlock-free condition is put aside, then not only routing, but also general

computation is fairly well understood for the faulty hypercube. Bruck, Cypher, and

Soroker [3] considered a hypercube with O(nc) faults in a worst-case configuration,

for any constant c. They showed that such a faulty hypercube could run any normal

algorithm only a constant factor slower than a healthy hypercube. (For a definition

of "normal algorithm", see [10].) The techniques in this paper can also be adapted

to give an oblivious, deadlock-free routing algorithm for a hypercube with O(nc)

worst-case faults. Aiello and Leighton [1] subsequently improved this result, using a

completely different algorithm. They showed that a hypercube with O(nc) worst-case

faults can run any algorithm with constant slowdown.

Results are even stronger for the random fault model. Hastad, Leighton, and

Newman [7] considered a hypercube where nodes are faulty independently with some

probability p < 1. They showed that with high probability this faulty hypercube could

emulate a healthy hypercube with constant slowdown. In particular, any routing

algorithm on a healthy hypercube translates to a routing algorithm on the faulty

hypercube with congestion and path lengths increased by only a constant.

Several recent publications describe adaptive algorithms for deadlock-free rout-

ing in faulty networks. For adaptive algorithms, the requirement that routes must

traverse edges in increasing order is considered too restrictive. That is, there exist

attractive deadlock-free routing algorithms that violate this requirement. Much effort

has been devoted to finding minimal conditions necessary to ensure that an adaptive

routing algorithm is deadlock-free. Two recent papers along these lines are due to

Park and Agrawal [13] and Anjan, Pinkston, and Duato [2].

2.2 Previous Work Using Similar Techniques

In this section, we describe three previous routing algorithms that use methods related

to our own. Each builds on the one before, and the last algorithm is the prior result

most similar to our own.

Probably the most natural routing scheme on the hypercube is the bit-fixing al-

gorithm. In this algorithm, the dimensions are numbered from 1 to n in an arbitrary

way. The bit-fixing algorithm always directs a message across the lowest-numbered

dimension in which its present position differs from its destination. In this way, the

bit-fixing algorithm defines a unique path between a source and a destination; we

call this a bit-fixing path. This term will be used extensively in the next chapter.

For example, suppose that a message has source 1010 and destination 0111. If we

number the dimensions from left to right, then the message would take the route

1010 -+ 0010 -* 0110 -- 0111. Bit-fixing is also sometimes called xyz routing, be-

cause in the three-dimensional case a message moves first in the x direction, then in

the y direction, and finally in the z direction.

The bit-fixing algorithm has many nice properties. It is oblivious, deterministic,

and always uses shortest paths. For a random-destination routing problem, the edge

congestion is1 in expectation and O(log N) with high probability. (Here and after

"high probability" is defined as probability at least 1 - !.) Furthermore, bit-fixing is

deadlock-free. We can prove this by giving an ordering of the edges such that every

route traverses edges in increasing order. Suppose that we put all edges crossing

dimension one first in the ordering, then we put all edges crossing dimension two, and

so forth. The edges crossing a particular dimension can be ordered arbitrarily relative

to one another. Since bit-fixing sends messages across dimensions in ascending order,

every route crosses edges in increasing order, and so the algorithm is deadlock-free.

The principal drawback of bit-fixing is that there exist natural permutation routing

problems for which the congestion on an edge is Q(VN). The bad worst-case conges-

tion of bit-fixing can not be overcome without the use of randomization or adaptive

routing; Kaklamanis, Krizanc, and Tsantilas [8] have proven that every deterministic,

oblivious routing algorithm on the hypercube has edge congestion Q(V N/log N) for

some permutation.

Valiant and Brebner [16] found an elegant way to introduce randomization into

routing; in fact, the general term randomized routing typically refers to their specific

approach. Instead of sending a message directly from source to destination using

bit-fixing, Valiant and Brebner proposed sending the message from the source to a

random intermediate node and then on to the destination, using bit-fixing in both

stages. Intuitively, this two-stage approach breaks a single, potentially "hard" routing

problem into two random routing problems, both of which are "easy" with high

probability.

Valiant and Brebner's use of two stages does have disadvantages. First, the ex-

pected edge congestion is 1, double that of simple bit-fixing. More importantly, the

length of the path traveled by any message is expected to be log N, regardless of

whether the source and destination are close or far apart. However, randomized

routing has one big advantage: for every permutation routing problem, the worst

congestion on any edge is O(log N) with high probability. This is a substantial im-

provement on the Q(v/N) edge congestion that can arise from simple bit-fixing.

Both of the preceding routing algorithms were designed for a fault-free hypercube.

However, Leighton, Maggs, and Sitaraman [11] showed how to extend randomized

routing to handle faults. Their techniques are quite similar to our own. (In fact,

our Algorithm A, which we describe in Section 3.2, is largely a translation of [11]

from a butterfly to a hypercube.) Their modification of randomized routing has two

main elements. First, if a node is faulty or even close to too many faults, then it can

not serve as the source or destination of a route. Second, the random intermediate

node is chosen from a restricted set of nodes so that the source-intermediate and

intermediate-destination paths are guaranteed to be fault-free.

Leighton, et al. describe their algorithm in the context of a butterfly network,

rather than a hypercube. Roughly, they show that their algorithm retains the ad-

vantages of randomized routing despite the presence of faults. Specifically, they show

that in an N-node butterfly network with at most F = N faults, an arbitrary

permutation can be routed on a majority of the nodes. The congestion on every edge

is O(log N) with high probability.

2.3 Comparison with Our Work

Our new routing algorithm compares most directly with the result of Kim and Shin [9].

Both are oblivious, deadlock-free, and fault tolerant. Our algorithm tolerates many

more faults, O(N/ log3 N) compared to O(loglog N). We also achieve lower conges-

tion through use of randomization. There is a permutation giving congestion Q(v-N)

under Kim and Shin's scheme. Our algorithm, however, has expected congestion at

most 4 + o(1) on every edge, and with high probability every edge has congestion

O(log N). Nevertheless, Kim and Shin's result has one key advantage. While their

algorithm is simple and practical, our scheme requires that inordinately large amounts

of data be stored at every processor.

As noted above, the methods of Leighton, Maggs, and Sitaraman [11] are closest to

our own. They also present an oblivious routing algorithm for a hypercubic network

based on randomized routing. There are three main differences. First, our scheme is

deadlock-free, while the one proposed in [11] is not. Second, our scheme uses paths of

length at most (1+o(1))n, but their approach gives paths of length 2n when translated

from the butterfly to a hypercube. On the other hand, even though our routes are

shorter, we do not prove that messages are actually delivered faster. Leighton et al.

prove that an arbitrary permutation is routed in time O(log N) with high probability

under the store-and-forward model. We prove no upper bound on routing time.

Chapter 3

A New Routing Algorithm

In this chapter we describe our new algorithm for oblivious, deadlock-free routing

in a hypercube with worst-case faults. The description is divided into three parts.

The first section introduces a basic building block, a small generalization of random-

ized routing. In the second section, we construct an initial algorithm for routing in

a hypercube containing faulty nodes. This scheme gives low congestion and short

routes, but can create deadlock. We amend the scheme in the third section to make

it deadlock-free.

For reference, the basic building block described in the first section is called general

randomized routing. The initial routing algorithm for a faulty hypercube introduced

in the second section is called Algorithm A. Our complete, deadlock-free routing

scheme, which we describe in the third section, is called Algorithm B.

3.1 General Randomized Routing

In this section we describe the basic building block of our new algorithm, a small vari-

ation on randomized routing that we call general randomized routing. The technique

is summarized in Figure 3-1 and discussed further below.

General randomized routing is obtained by adjusting Valiant and Brebner's [16]

original randomized routing scheme in two ways. First, we can restrict the set of

nodes that send and receive messages. In particular, we define a set A C {O, 1il of

* There is a set A C {O, 1}n of active nodes.

* For all s, d E A, there is a set Isd C {0, 1}n of valid intermediate nodes.

* A message is routed from source s E A to destination d E A as follows:

Select a valid intermediate node i uniformly at random from Isd-
phase 1: Route the message from s to i using bit-fixing.
phase 2: Route the message from i to d using bit-fixing.

Figure 3-1: This is a summary of general randomized routing.

active nodes and require the source and destination of every message to be an element

of A. Second, we can force the random intermediate node visited by a message to be

drawn from a restricted set of nodes. More precisely, for each pair of nodes s, d E A,

we define a non-empty set Id C {0, 1}n of valid intermediate nodes. If a message is

sent from source s to destination d, then the intermediate node must be an element

of Isd. Throughout this chapter, we will frequently refer to these sets A and Isd-

A message is routed much as in the original randomized routing scheme. Let s E A

be the source of the message, and let d E A be the destination. First, we pick an

intermediate node i uniformly at random from Isd. The actual routing is then broken

into two phases. In the first phase, the message is routed from the source s to the

intermediate node i using bit-fixing. In the second phase, the message is routed from

the intermediate node i to the destination d, again using bit-fixing. More generally,

any number of messages can be routed by applying this algorithm for each message.

However, if multiple messages are routed, then the corresponding intermediate nodes

should be picked mutually independently.

We will prove two properties of general randomized routing. First, it inherits the

low congestion of ordinary randomized routing, provided that the sets Isd of valid

intermediate nodes are all sufficiently large. Second, no node is used too often as an

intermediate node. More precisely, we define the load on a node i to be the number

of messages with i as the intermediate node. That is, each message contributes a

unit of load to exactly one node, the randomly-selected intermediate node; a message

does not contribute a unit of load to every node that it visits. We will prove that

every node has low load, again provided that all the sets Isd are sufficiently large.

Load is relevant because the load on a node in this algorithm will correspond to the

congestion on an edge in a later algorithm.

We capture the notion that all sets Isd of valid intermediate nodes are "sufficiently

large" as follows. Let I be the size of the smallest set Isd; that is, let I = min,dCA Isd.

We will we express congestion and load bounds in terms of this parameter I.

The following theorem characterizes congestion and load in general randomized

routing. In particular, we analyze the routing of an h-relation. This is not more

enlightening than studying a permutation routing problem, but the generality will be

needed later. All of the probabilities and events discussed below are over the sample

space defined by randomly picking an intermediate node for each message.

Theorem 1 Suppose that general randomized routing is used to route an h-relation

on the set A of active nodes. The following bounds on congestion and load hold.

1. The expected congestion is at most Nh/I on every edge.

2. With probability at least 1 - 1/8N, every edge has congestion O(log N + Nh/I).

3. The expected load is at most Nh/I on every node.

4. With probability at least 1 - 1/8N, every node has load O(log N + Nh/I).

The proof of this theorem is long and dry, but encapsulates almost all of the messy

calculations in this thesis. The rest of this section is devoted to the proof. There is

one subsection for each of the four bounds claimed.

3.1.1 Bound on Expected Congestion

We must show that the expected congestion is at most Nh/I on an arbitrary edge e.

Initially, we consider only congestion "during the first phase"; that is, we count only

the number of messages that cross edge e while en route to an intermediate node. We

will show that the expected congestion on edge e is at most Nh/21 during the first

phase. Then we will indicate how to adapt this argument to give the same bound for

the second phase. The overall bound of Nh/I on edge congestion follows by linearity

of expectation.

We still must show that the expected congestion on edge e during the first phase

is at most Nh/21. Each active node is the source of h messages. However, we can

partition all the messages into h "batches" so that every active node is the source

of a single message in each batch. (Note, however, that several messages in a batch

can have the same destination.) We will show below that during the first phase the

expected congestion on an edge e contributed by a single batch of messages is at most

N/21. Linearity of expectation then implies that the total congestion on the edge e

during the first phase is at most Nh/21 as desired.

All that remains is to show that the contribution of a single batch of messages to

the congestion on edge e during the first phase is at most N/21. Thus, hereafter, we

are concerned with just one batch of messages, and we assume that each active node

is the source of exactly one message.

Let P,i be an indicator variable for the event that a message in the batch has

source s and intermediate node i. The congestion on a particular edge e during the

first phase is equal to the sum of all indicators Ps,i such that the edge e lies on the

bit-fixing path from the source s to the intermediate node i. If we let s - i denote

the set of edges on the bit-fixing path from s to i, then the preceding sentence can

be rewritten in symbols as follows:

congestion on edge e = P,
,i:Taking expectations on both sides of the above es-quation gives:

Taking expectations on both sides of the above equation gives:

Ex(congestion on edge e) = Ex(si: eEsiPi)

S Z Ex(P,,)
s,i: eEs--i

= E Pr(Ps,i = 1)
s,i: eEs--i

We will upper bound the expected congestion on edge e by upper bounding both

the magnitude and number of the terms in the last summation above.

First, we bound the magnitude of each term in the summation. In other words,

we upper bound Pr(P,, = 1), the probability that there is a message with source s

and intermediate node i. If s is an active node, then there is a message with source s.

Let d be the destination of that message. An intermediate node is chosen uniformly

at random from the set Isd of valid intermediate nodes. If i is a valid intermediate

node, then it is chosen with probability 1/|Isdl 1/I. Thus, if s is an active node

and i is a valid intermediate node, then Pr(P,i = 1) < 1/I. On the other hand, if

s is not an active node or i is not a valid intermediate node, then there can not be

a message with source s and intermediate node i; that is, Pr(P,,i = 1) = 0. In both

cases, we have the bound Pr(P,i = 1) < 1/I.

Next, we upper bound the number of terms in the summation. Each term corre-

sponds to a bit-fixing path from a source s to an intermediate node i that contains

the edge e. All of these paths must cross the dimension along which the edge e is

aligned. Furthermore, note that every such path is uniquely identified by specifying

whether or not it crosses each of the remaining n - 1 dimensions. Hence, each edge

e is contained in exactly 2 n-1 = N/2 paths, and so the summation contains exactly

N/2 terms.

We can now upper bound the expected congestion on an edge by substituting the

results from the two preceding paragraphs into the congestion expression given above.

N1
Ex(congestion on edge e)= y Pr(P,i = 1) < -. -

s,z: eEs~i 2

Thus, the expected congestion on edge e during the first phase arising from a

single batch of messages is at most N/21 as claimed.

All that remains is to indicate how to modify the above argument to show that the

expected congestion on edge e during the second phase is also at most Nh/21. For

the second phase, a "batch" is redefined so that every active node is the destination

of one message in each batch. Then each variable Ps,i is replaced by a variable P,d,

which indicates that there is a message with intermediate node i and destination d.

Otherwise, the argument is the same.

3.1.2 High-Probability Bound on Congestion

We must show that with probability at least 1 - 1/8N, every edge has congestion

O(log N + Nh/I). In all, there are m = IA -h < Nh messages to be routed. Index

these message from 1 to m in an arbitrary way. Let Ek be an indicator for the event

that message k crosses edge e. The congestion on edge e is thus the sum of the

indicators Ek.

m

congestion on edge e = Ek
k=1

There are two key facts about the indicator variables Ek. First, the expected

value of the sum is at most Nh/I. This follows from the upper bound on expected

congestion computed in Part 1 of the proof. Second, the indicators Ek are mutually

independent, since intermediate nodes are chosen mutually independently.

Given these two facts, we can get a high-probability bound on the congestion on

edge e with a Chernoff bound [4, 10]. For all c > 1, we have:

Pr (congestion on on edge e > c < ec 2

To get the right result, we choose c = log(4N2 log N) + e2 . Substituting this

definition of c into the Chernoff bound gives:

Nhl 42 2_ 1) Nh
Pr (congestion on e> c < e M 421o (oge2

< - log(4N
2 ogN)

1
4N 2 log N

We have shown that a particular edge has congestion exceeding c - Nh/I with

probability at most 1/(4N 2 log N). An n-cube contains a total of 1N log N edges.

Therefore, by the union bound, the probability that some edge has congestion ex-

ceeding c- Nh/I is at most 1N log N. 1/(4N 2 logNN) = . Thus every edge has8N

congestion at most

Nh NI - log(4N2 ogN)+e 2)Nh
I Nh I

Nh
= log(4N 2 log N) + e2

I

= O(log Nh)

with probability at least 1 - 1/8N, as claimed.

3.1.3 Bound on Expected Load

We must prove that the expected load on an arbitrary node i is at most Nh/I. Index

messages from 1 to m as before. Let Mj be an indicator for the event that node i is

the intermediate node for message j. The load on node i is the sum of the indicators

M,. Taking expectations gives:

Ex(load i)= E Pr(Mj = 1)
3=1

We upper bound the above summation by bounding each term. The intermediate

node for message j is selected from a set of at least I valid intermediate nodes. If node

i is not a valid intermediate node for message j, then Pr(M. = 1) = 0. Otherwise, if

node i is a valid intermediate node for message j, then Pr(Mj = 1) _ 1/I. In both

cases, Pr(Mj = 1) < 1/I, and we can upper bound the sum as follows:

m Nh
Ex(load i)= E Pr(Mj = 1) < N

j=1

3.1.4 High-Probability Bound on Load

We must show that with probability at least 1 - 1/8N, every node has load O(log N+

Nh/I). As before, let Mj be an indicator for the event that node i is the intermediate

node for message j. The indicator variables Mj are mutually independent, since

intermediate nodes are chosen mutually independently. Therefore, we can apply a

Chernoff bound to get the high-probability result.

Pr load i> log8N 2 +e2 = Pr load i > (h log 8N 2 + e2 Nh

< (log 8N2 (lo ge2i1-_1 -

< e- log 8N
2

1

8N 2

Thus, a particular node i has load exceeding log 8N 2 + e2(Nh/I) with probability

at most 2 . Since there are N nodes in total, the union bound implies that with

probability at least 1 - 1/8N, every node has load at most log 8N 2 + e2(Nh/I)

O(log N + Nh/I).

3.2 An Initial Routing Algorithm

This section describes an initial algorithm for routing in a faulty hypercube, which

we call Algorithm A. This scheme has good congestion and short routes, but is not

deadlock-free. The algorithm is summarized in Figure 3-2 and discussed below.

Algorithm A is general randomized routing with particular definitions for the set

A of active nodes and the sets Isd of valid intermediate nodes. The definitions of these

sets are given below. The main concern in these definitions is the presence or absence

of faults along certain paths through the hypercube. We define a faulty path to be a

path containing one or more faulty nodes. If a path contains no faults, then we call

it a fault-free path. If a node s is faulty, then, for example, every path originating at

s is faulty.

The set A of active nodes is defined according to two criteria. For a node a to

be active, we require first that at most N/3n of the bit-fixing paths with source a

be faulty. Second, we also require that at most N/3n of the bit-fixing paths with

destination a be faulty. Taken together, these two conditions require that node a be

well-connected to the rest of the hypercube; a node that is nearly isolated by faults

will not satisfy these conditions.

The sets Isd of valid intermediate nodes are defined according to three criteria.

For a node i to be a valid intermediate node between a source s and destination d,

we require that both the bit-fixing path from s to i and the bit-fixing path from i to

d be fault-free. These two conditions are necessary to avoid routing a message to a

faulty node. The third condition is that these two paths have total length at most

n + V2n log 6n. Naively, randomized routing could send a message across nearly 2n

edges, if the source were close to the destination and the intermediate node were far

from both. However, such long routes have little value, so we disallow them.

The facts that we need about Algorithm A are stated below as a theorem.

Theorem 2 Suppose that an n-cube contains at most N/3n2 (n + 2) faults. Then

Algorithm A routes any h-relation on the set of active nodes with the following guar-

antees:

1. Every edge has expected congestion at most (1 + o(1))h.

2. With probability at least 1 - 1/8N, every edge has congestion O(log N + h).

3. Every node has expected load (1 + o(1))h.

* There is a set A C {0, 1}" of active nodes consisting of all nodes a
that satisfy two conditions:

1. At most N/3n bit-fixing paths with source a are faulty.
2. At most N/3n bit-fixing paths with destination a are faulty.

* For all s, d E A, there is a set Isd C {0, 1}n of valid intermediate nodes
consisting of all nodes i that satisfy three conditions:

1. The bit-fixing path from s to i is fault-free.
2. The bit-fixing path from i to d is fault-free.
3. These two paths have total length at most n + V/2n log 6n.

* A message is routed from source s E A to destination d E A as follows:

Select a valid intermediate node i uniformly at random from Isa.
phase 1: Route the message from s to i using bit-fixing.
phase 2: Route the message from i to d using bit-fixing.

Figure 3-2: Algorithm A.

4. With probability at least 1 - 1/8N, every node has load O(log N + h).

5. The length of every route is at most (1 + o(1))n.

Furthermore, the set of active nodes has size (1 - o(1))N.

The only difficulty in proving this theorem is computing sizes for the set A of active

nodes and the sets I'd of valid intermediate nodes. The congestion and load claims

will then follow from Theorem 1, which characterizes general randomized routing.

We establish lower bounds on the size of the set A and the sets I'd with two lem-

mas. Intuitively, a hypercube must contain many fault-free bit-fixing paths in order

for the sets A and Isd to be large. The reason is that almost all of the membership

requirements for sets A and Isd, outlined in Figure 3-2, are that various bit-fixing

paths be fault-free. This motivates the first lemma, which states that if a hypercube

does not contain too many faults, then most bit-fixing paths are fault-free.

Lemma 1 If an n-cube has F faults, then at most -- 2NF bit-fixing paths contain a

fault.

Proof: We first show that a single fault is contained in exactly n+2N bit-fixing

paths. Any bit-fixing path containing this single fault can be uniquely identified

by specifying the set of dimensions crossed by the path, and the number of these

dimensions that are crossed before the fault is reached. For a path of length 1, the

set of dimensions crossed by the path can be selected in (n) ways, and the number

of these dimensions crossed before the fault is reached can be chosen in (1 + 1) ways.

Summing over all possible path lengths gives the total number of bit-fixing paths

containing a single fault:

1() = + 2

1=0

Consequently, a hypercube with F faults can have at most n+-NF faulty bit-fixing

paths. m

If a hypercube contains few enough faults, then the preceding lemma implies that

almost all bit-fixing paths are fault-free. In such a case, the earlier intuitive argument

would say that the sets A and Isd should be large. This intuition is confirmed by a

second lemma.

Lemma 2 Suppose that a hypercube contains at most N/3n2 (n + 2) faults. Then the

following bounds hold on the sizes of set A and sets Isd as defined in Algorithm A.

1. The set A of active nodes has size at least (1 - 1/n)N.

2. For all s, d E A, the set Isd of intermediate nodes has size at least (1 - 1/n)N.

Proof: (Part 1.) A node is active if it satisfies the two conditions defined in Figure 3-

2. Assume for the purpose of contradiction that more than N/2n nodes violate

the first condition. That is, there are more then N/2n nodes, each of which is the

source of more than N/3n faulty bit-fixing paths. This implies that the hypercube

contains more than N/2n - N/3n = N 2/6n 2 faulty bit-fixing paths overall. But this

contradicts the preceding lemma, which states that the total number of faulty bit-

fixing paths is at most n+2NF < n+2N -N/3n2(n + 2) = N 2/6n 2 . A similar argument

shows that at most N/2n nodes violate the second condition. Putting these two facts

together, the number of nodes violating at least one of the conditions is at most

N/2n + N/2n = N/n. The number of nodes satisfying both conditions is thus at

least (1 - 1/n)N as claimed.

(Part 2.) The set Isd for s, d E A consists of all nodes satisfying the three condi-

tions defined in Figure 3-2. Since s is an active node, only N/3n nodes i violate the

first condition, which is that the bit-fixing path from s to i be fault-free. Similarly,

since d is an active node, only N/3n nodes i violate the second condition, which is

that the bit-fixing path from i to d be fault-free. We will show below that at most

N/3n nodes violate the third condition as well. Altogether, the number of nodes

violating at least one of the three conditions is at most N/3n + N/3n + N/3n = N/n.

Therefore, the number of nodes satisfying all three conditions is at least (1 - 1/n)N

as claimed.

All that remains is to show that at most N/3n nodes violate the third condition,

which is that the total length of the bit-fixing paths s to i and i to d can be at most

n + V2n log 6n. We will show that at most N/6n nodes are distance greater than

S(n + 2n log 6n) from the source node s. By the same argument, at most N/6n

nodes are similarly distant from the destination d. Thus, there are at most N/3n

intermediate nodes i such that the distance from s to i plus the distance from i to

d exceeds n + /2n log 6n. Since bit-fixing always uses shortest paths, at most N/3n

nodes violate the third condition.

To complete the proof, we must show that at most N/6n nodes are distance

greater than (n + v/2n log 6n) from the source node s. Orient the hypercube so that

s is the node with all coordinates 0. Let il, i2, ... , in be the coordinates of a node i

chosen uniformly at random from {0, 1}". Then il, i 2,., in are uniform, mutually

independent Bernoulli variables. We can write the distance between the source s and

the random node i as E ik and then bound this sum with a Chernoff bound [4, 12].

Pr ik > I(n + 2n log 6n)) =Pr 8 log 6n n

1 8 log 6n n
< e4 n 2

- log 6n

1

6n

Thus, the distance between the source s and a random node i exceeds (n +

2n log6n) with probability at most 1/6n. Combinatorially, this implies that at

most N/6n nodes i are distance greater than (n + V2n log 6n) from the source s.

We can now prove Theorem 2 by plugging the sizes of sets A and Isd into Theo-

rem 1, which describes general randomized routing.

Proof: (of Theorem 2)

(Part 1.) By Theorem 1, the expected congestion on every edge is at most Nh/I.

Lemma 2 states that every set Isd of valid intermediate nodes has size at least (1 -

1/n)N. This implies that I = mins,dEA sd is at least (1 - 1/n)N. Substituting in

this expression for I into Nh/I, we get that the expected congestion on every edge

is at most (1 + n~-1)h = (1 + o(1))h.

(Parts 2-4.) These results follow immediately by substituting the bound on I into

the corresponding parts of Theorem 1, just as in Part 1 above.

(Part 5.) Every route has length at most n+ /2n log6n = (1+o(1))n by condition

3 in the definition of the sets Id of valid intermediate nodes.

Finally, by Lemma 2, the set A of active nodes has size at least (1 - 1/n)N =

(1 - o(1))N. *

3.3 Eliminating Deadlock

This section presents our oblivious, deadlock-free routing algorithm for a faulty hyper-

cube. We call this scheme Algorithm B. This algorithm retains the good congestion

and path length features of Algorithm A, but incorporates an additional trick to

eliminate deadlock.

The section is broken into three subsections. The first describes the intuition be-

hind the trick to eliminate deadlock. The second section gives the details of Algorithm

B. The final section contains the main theorem of this thesis, which gives performance

guarantees for Algorithm B.

3.3.1 Intuition Behind Eliminating Deadlock

One main consideration underlies the trick used in Algorithm B to eliminate dead-

lock: bit-fixing is deadlock-free, but general randomized routing is not.

Recall that bit-fixing is deadlock-free because there exists a total ordering of hy-

percube edges so that every route traverses edges in increasing order. In particular,

we put all the dimension 1 edges first (in an arbitrary order), followed by all the

dimension 2 edges, and so forth.

On the other hand, general randomized routing can produce a deadlock involving

just two messages. Recall that each route produced by general randomized routing is a

concatenation of two bit-fixing routes. The problem that arises in general randomized

routing is that the second leg of one route can overlap the first leg of another and

vice-versa. This can create deadlock. Such a situation is shown in Figure 3-3.

We preclude such a situation in Algorithm B. The scheme is still approximately

general randomized routing. The trick is to define two disjoint classes of hypercube

edges. The first leg of a route uses only "class one" edges, and the second leg uses

only "class two" edges. No deadlock configuration can exist in a single class of

edges, because within one class we will use only bit-fixing, which is deadlock-free.

Furthermore, no deadlock configuration spanning both classes can exist either; the

second leg of one route can not overlap the first leg of another route as in Figure 3-3,

because the two legs consist of edges in different classes.

We will come back and connect this intuitive description to the actual routing

algorithm after giving the details of Algorithm B.

Ai dB
B B

SB

a - - - --...

dA A

Figure 3-3: This figure shows how deadlock can arise if even two messages are sent
using general randomized routing. The network shown is a 2-cube. Message A follows
the path from source SA to intermediate node iA to destination dA, indicated by dashed
arrows outside the square. Message B follows the path from source SB to intermediate
node iB to destination dB, indicated by dashed arrows inside the square. Deadlock can
occur because the second leg of route A overlaps the first leg of route B (on the bottom
edge), and the second leg of route B overlaps the first leg of route A (on the top edge).

3.3.2 Description of Algorithm B

This section describes Algorithm B in detail.

We need two pieces of notation. First, throughout the description of Algorithm

B, we regard the n-cube as a set of four (n - 2)-cubes obtained by cutting along the

first two dimensions. We call the four subcubes Coo, C01, C11, and C10 . Following the

natural convention, subcube Cik contains all nodes with first coordinate j and second

coordinate k. Our second piece of notation is that if x is an arbitrary node, then

X3 k denotes the node with first coordinate j, second coordinate k, and all remaining

coordinates in agreement with x. Thus, node Xjk is always contained in subcube Cjk*

The nodes x0 0, x01 , x 11 , and xlo form a square, as shown in Figure 3-4. Note that

the node x itself is necessarily one of these four nodes.

We can now proceed with the description of the algorithm, which is summarized

in Figure 3-6. Algorithm B shares the major features of Algorithm A. Specifically,

there is a set A of active nodes, and the source and destination of every message are

in this set. Also, a message visits a random intermediate node picked uniformly from

a set I,d of valid intermediate nodes. These sets will be fully defined after we describe

the route traveled by a message. Only one fact about these sets is needed right away:

Figure 3-4: This figure illustrates the two new notations introduced in this section.
The entire picture represents an n-cube. Each of the four squares represents an (n-2)-
cube obtained by cutting along the first two dimensions. We call these subcubes Coo,
Col, C11, and Clo. If x is an arbitrary node, then xij denotes the node with first
coordinate i, second coordinate j, and with all remaining coordinates in agreement
with x. The nodes Zoo, x0 1, x 1o, and xll are connected in a square as shown. (The
dotted lines represent single edges.) The node x itself must be one of these four nodes.

all sets Isd of valid intermediate nodes are completely contained in the single subcube

Coo.

A message is routed from a source s to a destination d as follows. As a preliminary

step, an intermediate node i = ioo is selected uniformly at random from the set of valid

intermediate nodes Isd. The actual route consists of five phases, which are described

below and illustrated in Figure 3-5.

In the first phase, the message moves to subcube Coo. In particular, the message

is routed from the source s to node soo by traversing some suffix of the path sol -*

sil -- slo soo. (Recall that the source s must be one of the four nodes on this

path.) If the subcubes Cij are drawn as in Figure 3-5, then the message visits the

subcubes in clockwise order; thus, we refer to this as clockwise routing. In the second

phase, the message moves from soo to the random intermediate node ioo using bit-

fixing. In the third phase, the message crosses the single edge from ioo to io0 . In the

fourth phase, the message moves from iol to do01, again using bit-fixing. In the final

phase, the message is routed counter-clockwise to the destination d; that is, the route

is some prefix of the path do01 doo -+ do - dll.

We can now connect Algorithm B to the intuition given in the preceding section.

Col

Figure 3-5: This figure shows a route defined by Algorithm B. In this case, the source
s is in subcube Co0 and the destination d is in subcube Clo. The route is indicated
with a dotted line. Each straight segment represents a single hypercube edge, and the
two curved segments represent bit-fixing paths. Roughly the routing scheme is: go
clockwise to subcube Coo, do the first leg of general randomized routing, hop over to
subcube Co0, do the second leg of general randomized routing, and then go counter-
clockwise to the destination.

The intuitive plan was to do the first leg of general randomized routing on one class

of edges and the second leg on a second class of edges. This would guarantee that a

deadlock situation like the one shown in Figure 3-3 could not occur. The second and

fourth phases of Algorithm B correspond to the two phases of general randomized

routing. From this perspective, the "class one" edges used for the first leg of general

randomized routing are the edges internal to the subcube Coo. Similarly, the edges

internal to subcube Col are the "class two" edges used for the second leg of general

randomized routing. The second leg of one route can not overlap the first leg of

another route, because all first legs are contained in subcube Coo and all second legs

are contained in subcube Co0.

To finish describing Algorithm B, all that remains is to define the sets A and Isd

For the purpose of these two definitions, we consider a node x faulty if any of the

nodes x00 , x01, x 11, or x10 is faulty.

The set A of active nodes consists of all nodes a satisfying two conditions. These

are analogous to the two conditions on active nodes in Algorithm A. First, at most

N/12(n - 2) bit-fixing paths with source a0oo and destination in Coo can be faulty.

* A node x is marked faulty if any of the nodes oo00 , o1 , x 11, or 10o are faulty.

* There is a set A C_ {O, 1}" of active nodes consisting of all nodes a that
satisfy two conditions:

1. At most N/12(n - 2) bit-fixing paths with source aoo and destination
in cube Coo are faulty.

2. At most N/12(n - 2) bit-fixing paths with source in cube Col and
destination aol are faulty.

* For all s, d E A, there is a set Isd C {O, } of valid intermediate nodes
consisting of all nodes i in Coo that satisfy three conditions:

1. The bit-fixing path from soo to ioo is fault-free.
2. The bit-fixing path from io1 to dol is fault-free.

3. These two paths have total length at most n - 2 + 2(n - 2) log 6(n - 2).

* A message is routed from source s E A to destination d E A as follows:

Select a node i = ioo uniformly at random from Isd.
phase 1: Route clockwise from s to soo.
phase 2: Route from soo to ioo using bit-fixing.
phase 3: Route from ioo to io, by the direct edge.
phase 4: Route from io1 to do1 using bit-fixing.
phase 5: Route counter-clockwise from do, to d.

Figure 3-6: Algorithm B.

Second, at most N/12(n - 2) bit-fixing paths with source in Co0 and destination ao01

can be faulty. Note that all routes with source a pass through aoo, and all routes with

destination a pass through aol. Thus, intuitively, these conditions ensure that every

active node a is well-connected to the rest of the hypercube. The limit of N/12(n - 2)

faulty bit-fixing paths is obtained by taking the corresponding bound of N/3n in

Algorithm A and "scaling down" to dimension n - 2. That is, n is replaced by n - 2,

and N is replaced by N/4. The rationale for this "scaling down" will be given in the

next section.

Finally, we must define the sets Isd of valid intermediate nodes. The set Isd consists

of all nodes i in subcube Coo satisfying three conditions. Again, these conditions are

analogous to those in Algorithm A. First, the bit-fixing path from soo to ioo must

be fault-free. This ensures that a message does not encounter a fault during phase

two of the algorithm. Second, the bit-fixing path from io0 1 to do0 must be fault-free.

This ensures that no fault is encountered during phase four. Finally, we restrict

the total length of these two bit-fixing paths to (n - 2)+ 2(n - 2) log 6(n - 2).

(This complicated expression is also formed by taking the analogous expression in

Algorithm A, n + V2n log 6n, and "scaling down" by two dimensions.) This ensures

that Algorithm B generates short routes.

3.3.3 Analysis of Algorithm B

We can now state the main result of this thesis. This is a theorem saying that

Algorithm B is highly fault-tolerant, produces short routes, rarely creates congestion,

and never creates deadlock. Note that Theorem 2 assumed N/3n2(n + 2) faults, but

that the theorem below assumes only N/12n(n - 2)2 faults. This is again a "scaling

down" by two dimensions.

Theorem 3 Suppose that an n-cube contains at most N/12n(n - 2)2 faults. Then

Algorithm B routes any h-relation on the set A of active nodes with the following

guarantees:

1. Deadlock can not occur.

2. The length of every route is at most (1 + o(1))n.

3. Every edge has expected congestion at most (4 + o(1))h.

4. Every edge has congestion O(log N + h) with probability at least 1 - 1/N.

Furthermore, the set of active nodes has size (1 - o(1))N.

Proof:

(Part 1.) We prove that Algorithm B is deadlock-free by giving an ordering of

the edges such that every route crosses edges in increasing order. Such an ordering

is defined in Figure 3-7.

Coo CoI

4 5 6

8 3 1
CIO C1

9

phase 1: edges
edges
edges

phase 2: edges
phase 3: edges
phase 4: edges
phase 5: edges

edges
edges

from Col to C11

from C 11 to C 1 o

from C1o to Coo
within Coo, ordered by increasing dimension
from Coo to Col
within C01, ordered by increasing dimension
from Col to Coo
from Coo to Clo
from C1 o to C11

Figure 3-7: This figure shows an ordering of the edges proving that Algorithm B is
deadlock-free. In the diagram, the numbers indicate where sets of edges appear in the
ordering. The table below describes each set of edges in text. The routing phase that
makes use of each set of edges is also noted.

(Part 2.) We can upper bound the length of a route by summing over the five

phases. Phases 1, 3, and 5 contribute at most 3 + 1 + 3 = 7 edges. Phases 2 and 4

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

contribute at most (n - 2)+ V2(n - 2) log 6(n - 2) edges by property 3 of the sets

Isd. Adding these quantities shows that every route has length at most (1 + o(1))n

as claimed.

The remainder of the proof follows from one key observation. After phase 1 of

Algorithm B is completed, there are 4h messages at every active node in Coo. Before

phase 4, there are 4h messages at every active node in Col. The middle three phases

of Algorithm B correspond exactly to routing a 4h-relation on an (n - 2) cube with

Algorithm A, except that between the two routing phases of Algorithm A messages

jump from Coo to Col. Establishing this correspondence was the rationale for "scaling

down" the number of faults and the definitions of sets A and Isd by two dimensions.

Using this correspondence, the remainder of the proof follows from Theorem 2 as

described below.

(Part 3.) We must show the expected congestion on every edge is at most (4 +

o(1))h. For edges internal to cubes Coo and Co0 , a bound of (1+o(1))-4h = (4+o(1))h

follows from Part 1 of Theorem 2. Note that the congestion on an edge from Coo to Col

is equal to the load on the endpoint of that edge in Coo. Thus, the expected congestion

on such edges is at most (4 + o(1))h by Part 3 of Theorem 2. All remaining edges

have congestion at most 3h.

(Part 4.) We must show that with probability at least 1 - 1/N, every edge has

congestion O(logN). Part 2 of Theorem 2 implies that every edge internal to Coo

and Col has congestion O(log N + h) with probability at least 1 - 1/2N. Part 4

of Theorem 2 implies that every node in Coo has load at most O(log N + h) with

probability at least 1 - 1/2n. This implies that the edges from Coo to Col0 have

congestion O(logN + h) with probability at least 1 - 1/2n. All other edges have

congestion at most 3h. By the union bound, every edge has congestion O(log N + h)

with probability at least 1 - 1/N as claimed.

Finally, Theorem 2 implies that Coo contains (1 - o(1))(N/4) active nodes. Since

a node a is active if and only if a00 is active, the total number of active nodes is four

times greater, (1 - o(1))N. m

The theorem above gives interesting corollaries for two special values of h, the

number of messages starting and finishing at each node. First, suppose that h =

log N. In particular, suppose that each of the N nodes sends log N messages to the

opposite node, distance log N away. Then the total congestion over all edges must be

at least N log 2 N. Since there are only N log N edges, some edge must have congestion

at least (N log 2 N)/(N log N) = log N. Corollary 3 states that with high probability

the congestion on every edge is O(log N), which is within a constant factor of optimal,

for every (log N)-relation.

Corollary 3 If a (log N)-relation on the set of active nodes is routed with Algorithm

B, then with high probability every edge has congestion O(logN). Deadlock-freedom

and bounds on path length and the number of active nodes hold as before.

Finally, the main result claimed in the introduction follows when we set h = 1.

Corollary 4 Algorithm B is an oblivious, deadlock-free algorithm that routes any

permutation on a prescribed set of at least (1 - o(1))N nodes in a hypercube with

Q(N/n3) faults using paths of length at most (1 + o(1))n such that every edge has

expected congestion at most 4 + o(1), and with probability at least 1 - 1/N, every edge

has congestion O(log N).

Chapter 4

Conclusion

We have shown an oblivious, deadlock-free routing algorithm for a hypercube with

O(N/ log 3 N) faults. The algorithm routes any permutation on a set of (1 - o(1))N

nodes with constant expected congestion, congestion O(log N) with high probability,

and with paths of length at most (1 + o(1))n.

Several related problems remain open. While our result is a double-exponential

improvement on the best previous result, we completely sacrifice practicality; a better

balance between fault-tolerance and feasibility would be nice.

Putting aside the deadlock-free condition, there remains the problem of embedding

a healthy hypercube into a hypercube with more than O(nc) faults with constant

congestion, load, and dilation. On the other hand, putting aside the issue of fault-

tolerance, necessary and sufficient conditions for the existence of a low-congestion,

deadlock-free routing algorithm are also unknown.

Bibliography

[1] W. A. Aiello and T. Leighton. Coding theory, hypercube embeddings, and fault

tolerance. Symposium on Parallel Algorithms and Architectures, pages 125-136,

July 1991.

[2] K. V. Anjan, T. M. Pinkston, and J. Duato. Generalized theory for deadlock-free

adaptive wormhole routing and its application to disha concurrent. In Interna-

tional Parallel Processing Symposium, pages 815-821, 1996.

[3] J. Bruck, R. Cypher, and D. Soroker. Tolerating faults in hypercubes using

subcube partitioning. IEEE Transactions on Computers, 41:599-605, 1992.

[4] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics, 23:493-507, 1952.

[5] W. Dally and C. Seitz. Deadlock free message routing in multiprocessor inter-

connection networks. IEEE Transactions on Computers, pages 547-553, May

1987.

[6] B. Duzett and R. Buck. An overview of the ncube3 supercomputer. In Proceedings

of the Fourth Symposium on the Frontiers of Massively Parallel Computation,

pages 458-464, 1992.

[7] J. Hastad, T. Leighton, and M. Newman. Fast computation using faulty hyper-

cubes. In Symposium on the Theory of Computation, pages 251-263, 1989.

[8] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious routing

in the hypercube. In Symposium on Parallel Algorithms and Architectures, pages

31-36, 1990.

[9] J. Kim and K. G. Shin. Deadlock-free fault-tolerant routing in injured hyper-

cubes. IEEE Transactions on Computers, pages 1078-1088, September 1993.

[10] F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan

Kauffman, 1992.

[11] T. Leighton, B. M. Maggs, and R. K. Sitaraman. On the fault tolerance of some

popular bounded-degree networks. SIAM Journal on Computing, to appear.

[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Press, 1995.

[13] H. Park and D. P. Agrawal. Generic methodologies for deadlock-free routing. In

International Parallel Processing Symposium, pages 638-643, 1996.

[14] L. Schwiebert. Deadlock-free oblivious wormhole routing with cyclic dependen-

cies. In Symposium on Parallel Algorithms and Architectures, pages 149-158,

1997.

[15] C. Seitz. The cosmic cube. Communications of the ACM, pages 22-33, January

1985.

[16] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.

In Symposium on the Theory of Computation, pages 263-277, 1981.

