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Abstract

Replication and load-balancing are two fundamental techniques for improving avail-
ability and performance of distributed systems. However, correct and efficient realiza-
tion of these techniques is intricate when the distributed environment may partition
and merge because of processor and communication failures.

In this thesis, we show how a view-synchronous group communication service recently
specified by Fekete, Lynch, and Shvartsman can be used to support a sequentially
consistent replicated data service that load balances queries and tolerates partitioning
and merging of the underlying network.

Our work is done in the framework of the I/O automaton model of Lynch and Tuttle.

First, we present an I/O automaton specification that defines the allowed behavior of
a sequentially consistent replicated service. Then, we successfully refine this specifica-
tion to arrive at an I/O automaton that models a distributed implementation of this
service. In this implementation, update requests are processed in the same order at
all servers of the system, thus guaranteeing mutual consistency of all replicas; query
requests are processed at single servers determined by a load-balancing strategy which
equalizes the number of queries assigned to each member of the same group. Third,
we give a rigorous hierarchical proof that the implementation automaton implements
the specification automaton in the sense of trace inclusion. This proof establishes
partial correctness of the implementation. Finally, we prove a liveness-related claim
that servers are always able to process the queries assigned to them; that is, the
servers are never blocked by missing update information.

Thesis Supervisor: Professor Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

Multicast group communication services are important building blocks for fault-tolerant

applications that require reliable and ordered communication among multiple parties.

These services manage their clients as collections of dynamically changing groups and

provide strong intra-group multicast primitives. Recently, in an effort to remedy the

existing lack of good specifications for these services and to facilitate consensus on

what properties these services should exhibit, Fekete, Lynch, and Shvartsman gave

a simple automaton specification VS for a view-synchronous group communication

service and demonstrated its power by using it to support a totally-ordered broadcast

application TO [13, 14]. In this thesis, we further investigate the power of VS by

using it to support an intricate and important application: a replicated data service

that load-balances queries, guarantees sequential consistency, and tolerates partition-

ing and merging of the underlying network.

1.1 Service Description

The service maintains a data object replicated at a fixed set of servers in a consistent

and transparent fashion and enables the clients to update and query this object. We

assume the underlying network is asynchronous, strongly-connected, and subject to

processor and communication failures and recoveries. The failures and recoveries may

cause the network or its components to partition and merge. The greatest challenge

for the service is coping with network partitioning while preserving correctness and



maintaining liveness.

We assume that executed updates cannot be undone, which implies that update oper-
ations must be processed in the same order at each replica. To avoid inconsistencies,
the algorithm allows updates to occur only in primary components. Following the
commonly used definition, primary components are defined as those containing a ma-
jority (or more generally, a quorum) of all servers. The nonempty intersection of
any two majorities (quorums) guarantees the existence of at most one primary at
a given time and allows for the necessary flow of information between consecutive
primaries. Our service guarantees processing of update requests whenever there is a
stable primary component, regardless of the past network perturbations.

On the other hand, processing of queries is not restricted to primary components
and is guaranteed provided that the client's component eventually stabilizes. The
service uses a round-robin load-balancing strategy to distribute queries to each server
evenly within each component. This strategy makes sense in commonly occurring
situations when queries take approximately the same amount of time, and this time
is significant. Each query is processed with respect to a data state that is at least as
advanced as the last state witnessed by the query's client. The service is arranged in
such a way that the servers are always able to process the queries assigned to them;
that is, they are not blocked by missing update information.

Architecturally, the service consists of two layers: the servers' layer and the com-
munication layer. The servers' layer is symmetric: all servers run identical state-
machines. The communication layer consists of two parts, a group communication
service satisfying VS, and a collection of individual channels providing reliable re-
ordering point-to-point communication between all pairs of servers. The servers use
the group communication service to disseminate update and query requests to the
members of their groups and rely on the properties of this service to enforce the
formation of identical sequences of update requests at all servers and to schedule
query requests correctly. The point-to-point channels are used to return the results
of processed queries back to their original servers.



1.2 Related Work

1.2.1 Group Communication

A good overview of the rational and usefulness of group communication services is

given in [4]. Examples of implemented group communication services are Isis [5],

Transis [10], Totem [24], Newtop [12], Relacs [3], and Horus [27]. Different services

differ in the way they manage groups and in the specific message ordering and delivery

properties of their multicast primitives. Even though there is no consensus on which

properties these services should provide, a typical requirement is to deliver messages

in total order within a single group.

To be most useful, group communication services have to come with precise descrip-

tions of their behavior. Many specifications have been proposed using a range of

different formalisms [3, 6, 9, 11, 15, 23, 26]. Fekete, Lynch, and Shvartsman re-

cently presented the VS specification for a partitionable group communication ser-

vice. Chapter 5 of this thesis presents a short summary of the VS specification. For

a more detailed description of VS and a comparison of VS with other specifications,

the reader is referred to [13].

Several papers have since extended the VS specification. Chockler, Huleihel, and

Dolev [8, 7] have used the same style to specify a virtually synchronous FIFO group

communication service and to model an adaptive totally-ordered group communi-

cation service. De Prisco, Fekete, Lynch, and Shvartsman [25] have presented a

specification for group communication service that provides a dynamic notion of a

primary view.

1.2.2 Replication and Load Balancing

The most popular application of group communication services is for maintaining

coherent replicated data through applying all operations in the same sequence at all

replicas. The details of doing this in partitionable systems have been studied by Amir,

Dolev, Friedman, Keidar, Melliar-Smith, Moser, and Vaysburd [18, 1, 2, 19, 16, 17].

In his recent book [4, p. 329], Birman points out that process groups are ideally

suited for fault-tolerant load-balancing. He proposes two styles of load-balancing



algorithms. In the first, more traditional, style, scheduling decisions are made by

clients, and tasks are sent directly to the assigned servers. In the second style, tasks

are multicast to all servers in the group; each server then applies a deterministic rule

to decide on whether to accept each particular task.

In this thesis, we use a round-robin strategy originally suggested by Birman [4, p.

329]. In accordance with this strategy, tasks are sent to the servers using a totally-

ordered multicast; the ith task delivered in a group of n servers is assigned to the

server whose rank within this group is (i mod n). Since tasks are delivered to all
members of the same group in the same order, each member is assigned the same
number of tasks as any other member of its group. The load-balancing algorithm

presented in this thesis extends this round-robin strategy with a fail-over policy that

reissues query requests when group membership changes.

1.2.3 Sequential Consistency

There are many different ways in which a collection of replicas may provide the ap-

pearance of a single shared data object. The seminal work in defining these precisely is
Lamport's notion of sequential consistency [20]. A system provides sequential consis-

tency when for every execution of the system there is an execution with a single shared
object that is indistinguishable to each individual client. A much stronger coherence
property is atomicity, where a universal observer can't distinguish the execution of
the system from one with a single shared object. The algorithm presented in this
thesis provides an intermediate condition where the updates are atomic, but queries
are sequentially consistent. Overall, the algorithm satisfies sequential consistency.

1.3 Our Contributions

This thesis presents a new distributed algorithm for providing replicated data on top of

a partitionable group communication system, in which the work of processing queries

is rotated among the group replicas in a round-robin fashion. While the replication

part of the algorithm relates to the ideas of [18, 1, 2, 19] and the load-balancing

strategy relates to the one in [4, p. 329], the novelty of the algorithm comes from

the integration of these two parts. In particular, the algorithm supports sequentially



consistent processing of queries in all, not just primary, components and guarantees

that the servers of these components always have sufficiently advanced replicas in

order to be able to process the queries assigned to them.

A major accomplishment of this work is in modeling and verifying the presented

algorithm formally. This is done in the framework of the I/O automaton model for

asynchronous computing [21] and includes the following components:

* An I/O automaton that specifies the allowed behavior of a sequentially consis-

tent replicated service.

* An I/O automaton that models a distributed implementation of this specifica-

tion as a composition of a servers' layer and a communication layer. The servers'

layer consists of a number of identical state-machines, one for each server. The

communication layer consists of a group communication service specification

satisfying VS and of a collection of specifications for reliable reordering chan-

nels between any pair of servers.

* A hierarchical simulation proof that establishes that all traces of the implemen-

tation automaton are valid traces of the specification automaton. This proof

relies on a number of high-level properties of the reachable states of the imple-

mentation automaton.

* An assertional proof of the high-level properties. The proof of these properties

is based on an interesting approach: we invent a derived function X that ex-

presses recursively the highest state reached by each server in each group. In a

sense, this function presents a law according to which the replication part of the

algorithm operates. As seen in Section 7.4, the recursive nature of this func-

tion makes proofs by induction easy: proving an inductive step simply involves

unwinding a recursive step of the derived function X.

* A proof that the load-balancing part of the algorithm is uniform and non-

blocking. For uniformity, we show that each member of a group is assigned

the same number of query requests as any other member of that group. For

non-blockage, we show that the servers are always able to sufficiently advance

the state of their replicas in order to process the queries assigned to them.

Another important contribution of this thesis is its support of VS as an adequate

specification for a group communication service. A critical advancement of this work



over the previous one [13] is that it explores some of the stronger properties of VS.
Previous work [13] verified TO, an application in which all servers within a group
process messages identically. In a sense, the TO application is anonymous, since a
server uses its identity only to generate unique labels. While the proof in [13] uses the

property of agreed message sequence, it does not account for the identical membership

of message recipients. In contrast, the load-balancing part of our algorithm uses the

fact that query recipients have the same idea of their membership when they decide

which of them has to process a query.

Finally, the algorithm and the correctness proof presented in this work reveal sev-

eral generic approaches that can be used to formally model other replication and

load-balancing algorithms that are based on formally specified group communication

services.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the

I/O automaton model of Lynch and Tuttle [21] and introduces basic mathematical

notation used in the thesis. Chapter 3 presents an I/O automaton that specifies the

allowed behavior of the replicated service from the point of view of its blocking clients.

Chapter 4 presents an intermediate specification for the service, the purpose of which
is to simplify the proof of correctness. Chapter 5 presents an I/O automaton for the

service implementation. Chapters 6 and 7 contain a proof that the implementation

automaton implements the specification automaton in the sense of trace inclusion.
Chapter 8 argues that the load-balancing strategy is uniform and non-blocking.



Chapter 2

Presentation Formalism

In this chapter, we summarize the I/O automaton model (without fairness) of Lynch

and Tuttle [21], and present the mathematical notation used in this thesis.

2.1 The I/O Automaton Model

The following summary of the I/O automaton model for asynchronous computing

is based on Chapter 8 of [22, pages 199-234]. We present only those aspects of the

model that are used in this thesis.

2.1.1 I/O Automata

An I/O automaton models a distributed system component that can interact with

other system components. It is a simple state machine in which the transitions are

associated with named actions, each one of which is classified as either input, output,

or internal. The inputs and outputs are used for communication with the automaton's

environment and are externally visible; The internal actions are visible only to the

automaton itself. The input actions are assumed not to be under the automaton's

control - they arrive from the outside-while the automaton itself specifies what

output and internal actions should be performed. The output and internal actions of

the automaton are said to be locally controlled.



An I/O automaton is defined by the following four components: signature (input,
output and internal actions), set of states, set of start states (a nonempty subset of
states), and a state-transition relation (a subset of the cross-product of states, actions,
and states). Note that the definition in [21, 22] has a fifth component, tasks, which is
used to define fairness conditions on an execution of the automaton. We do not use
this component because our current work deals only with the safety properties of the
presented automata.

We call an element (s, 4, s') of the state-transition relation a transition, or a step. If
for a particular state s and action 4, the automaton has some transition of the form

(s, 4, s'), then we say that 4 is enabled; States s and s' are respectively called prestate
and poststate. A step (s, 4, s') such that s' equals s is called an empty transition and
is denoted by A.

I/O automata are said to be input-enabled, since the input actions are not under the

automatons control, and hence, are always enabled.

2.1.2 Executions and Traces

An execution fragment of an I/O automaton A is either a finite sequence, so, 01, S2, 02,

... , 0r, st, or an infinite sequence, so, 1i, S2, 2,... , Sr, -,.., of alternating states

and actions of A such that (Sk, 4 ' k+1, Sk+1) is a transition of A for every k > 0. If the

sequence is finite, it must end with a state. An execution fragment beginning with a
start state is called an execution. A state is said to be reachable in A if it is the final

state of a finite execution of A.

The trace of an execution a of A is a subsequence of a consisting of all external
actions. We say that 3 is a trace of A if p is a trace of an execution of A.

2.1.3 Operations on Automata

Composition

The composition operation allows an automaton representing a complex system to be
constructed by composing automata representing individual system components. The



composition identifies actions with the same name in different component automata.

When any component automaton performs a step involving V), so do all component

automata that have V in their signatures.

The composition operation is restricted to compatible automata, which for our pur-

poses have to satisfy the following two conditions:

1. The internal actions of each automaton have to be disjoint from all actions of

the other automata. This condition is necessary to keep the internal actions of

one automaton unobservable by other automata.

2. The output actions of all automata have to be disjoint. This condition is nec-

essary to have at most one automaton control any given action.

In addition, the definition of compatibility in [22, pages 207-211] requires that each

action be an action of only finitely many of the component automata. We do not use

this condition because the compositions in this thesis contain only finite number of

components.

When we compose a collection of automata, output actions of the components become

output actions of the composition, internal actions of the components become internal

actions of the composition, and actions that are inputs to some components but

outputs of none become input actions of the composition.

The states and start states of the composition automaton are vectors of states and

start states, respectively, of the component automata. The transition of the compo-

sition are obtained by allowing all the component automata that have a particular

action V) in their signature to participate simultaneously in steps involving 4, while

all the other component automata do nothing.

In order to prove properties of a composed system of automata, it is often helpful to

reason about the component automata individually. Section 8.5.4 of [22] shows that

the composition operation has the nice properties that we expect it to have.

The composition of a countable, compatible collection of I/O automata {Ai}iEI is

denoted by E,,I Ai. If I is a finite set, we sometimes use the infix operator symbol

x to denote the composition. E.g., if I = {1,... , n}, A 1, x ... x An denotes Hii Ai.



Hiding

The hiding operation reclassifies the specified output actions of an automaton as
internal. This prevents them from being used for further communication and means
that they are no longer included in traces.

2.2 Properties and Proof Methods

In this section we describe the main techniques used to prove correctness of I/O
automata: invariant assertions and hierarchical proofs. The material in this section
is closely based on [22, pages 216-228].

2.2.1 Invariants

The most fundamental type of property to be proved about an automaton is an in-
variant assertion, or just invariant, for short. An invariant assertion of an automaton
A is defined as any property that is true in every single reachable state of A.

Invariants are typically proved by induction on the number of steps in an execution
leading to the state in question. While proving an inductive step, we consider only
critical actions, which affect the state variables appearing in the invariant. In this
thesis, there are also several invariants that are proved by inductive arguments that
do not rely directly on the length of the execution sequence.

2.2.2 Hierarchical Proofs

One of the important proof strategies is based on a hierarchy of automata. This

hierarchy represents a series of descriptions of a system or algorithm, at different
levels of abstraction. The process of moving through the series of abstractions, from

the highest level to the lowest level, is known as successive refinement. The top
level may be nothing more than a problem specification written in the form of an
automaton. The next level is typically a very abstract representation of the system:
it may be centralized rather than distributed, or have actions with large granularity,



or have simple but inefficient data structures. Lower levels in the hierarchy look more

and more like the actual system or algorithm that will be used in practice: they may

be more distributed, have actions with small granularity, and contain optimizations.

Because of all this extra detail, lower levels in the hierarchy are usually harder to

understand than the higher levels. The best way to prove properties of the lower-

level automata is by relating these automata to automata at higher levels in the

hierarchy, rather than by carrying out direct proofs from scratch.

The simplest way to relate two automata, say D and S, is to present a refinement

mapping DS() from the reachable states of D to the reachable state of S such that

it satisfies the following two conditions:

1. If d is an initial state of D, then DS(d) is an initial state of S.

2. If d and DS(d) are reachable states of D and S respectively, and (d, a, d') is

a step of D, then there exists an execution fragment of S beginning at state

DS(d) and ending at state DS(d)', with its trace being the same as the trace of

o and its final state DS(d)' being the same as DS(d').

The first condition, or initial condition, asserts that any initial state of D has some

corresponding initial state of S. The second condition, or step condition, asserts that

any step of D has a corresponding sequence of steps of S. This corresponding sequence

can consist of one step, many steps, or even no steps, as long as the correspondence

between the states is preserved and the external behavior is the same.

The following theorem gives the key property of refinement mappings:

Theorem 2.1 If there is a refinement mapping from D to S, then

traces(D) C traces(S).

If automata D and S have the same external signature and traces of D are traces

of S, then we say that D implements S in the sense of trace inclusion, which means

that D never does anything that S couldn't do. Theorem 2.1 implies that, in order

to prove that one automaton implements another in the sense of trace inclusion, it is

enough to produce a refinement mapping from the former to the latter.



Proving that one automaton implements another in the sense of trace inclusion con-
stitutes only partial correctness, as it implies safety but not liveness. In other words,
partial correctness ensures than "bad" things never happen, but it does not say any-

thing whether some "good" thing eventually happens.

In this thesis, we concentrate on proving the partial correctness of our implementation.

In addition, we prove a liveness-related claim that servers are always enabled to

advance their replica states sufficiently far to be able to process the queries assigned

to them. Future work will consider liveness properties, such as performance and fault-

tolerance, stated conditionally to hold in periods of good behavior of the underlying

network.

2.3 Mathematical Foundation and Notation

We use standard notation on sets, functions, and sequences, with the following

specifics.

2.3.1 Sets and Functions

If A is a set, then P() denotes the power set of A, i.e., the set consisting of all the

subsets of A: S IS C A}.

If A and B are two sets, then A x B denotes the set {(a, b) Ia E A A b E B}.

Total functions are denoted by "-+" and partial functions are denoted by "-". If

f : A -+ B then the domain of f, denoted dom(f), is the entire set A; so for any

a E A, f(a) is an element of B. If g : A 4 B then the domain of g is defined as a set

{a i3 b. (a, b) E g}; so for any a E A, f(a) is an element of B if a E dom(f), or is I

otherwise.

Given a total or a partial function f from A to B and elements a E A and b E B,
f [a : b] denotes a function that is the same as f except it maps a to b. Sometimes

we treat functions as sets of elements, where each element is a pair of an abscissa and

ordinate.

Given a set A and some condition, con(a), on its elements, the set Alcon(a) denotes a



subset of A that consists solely of elements that satisfy this condition:

Alcon(a) = {a a E A A con(a)}.

2.3.2 Disjoint Unions

Somewhat non-standard is our use of disjoint unions (+), which differs from the

usual set union (U) in that each element is implicitly tagged with what component it

comes from. For simplicity, we use variable name conventions to avoid more formal

"injection functions" and "matching constructs." Thus, for example, if Update and

Query are the respective types for update and query requests, then type Request =

Update + Query defines a general request type. Furthermore, if req E Request,

and u and q are the established variable conventions for Update and Query types,

then "req +- u" and "req = q" are both valid statements, denoting an assignment

statement and an equality statement respectively.

2.3.3 Sequences

If x is a sequence then xIl denotes the length of x. Sequences of zero length are

denoted by []. If x is a sequence and 1 < i < j 5 4zx, then x[i] is the ith element of

x, x[i..j] is the subsequence x[i],..., x[j] of x, and [i..] is the suffix of x starting at

the ith element. Indexing of sequences starts either from 0 or 1. If x is an instance of

the former, then the first element is x[0], and the last element is x[IxI - 1]; if x is an

instance of the latter, then the first element is x[1], and the last element is x[x ]. If

x and y are sequences, then x + y is the concatenation of them (we sometimes abuse

this notation by letting x or y be a single element). Notation x < y expresses the fact

that x is a prefix of y. Two sequences are consistent, denoted by x <> y, if one is a

prefix of another. We use x <11 y and x <11 y to denote the length-wise comparison

of x and y.

We use the dot notation to project sequences of tuples on their individual elements.

For example, if z is a sequence (xl, y),... , (x, yn), then z.x denotes the sequence

If... is a sequence each element of which is an element of a disjoint union, we denote

If z is a sequence each element of which is an element of a disjoint union, we denote



the subsequence of z consisting solely of the elements that belong to the same basic

type by subscripting z with a conventional symbol for that type. For example, if z is
a sequence each element of which is of type (Update + Query), then z, denotes the

subsequence of z that consists solely of elements of Update.

2.3.4 Helpful Functions

Given two partial functions, f : X -+ Y and g : X -+ Y, function overlay(f, g)
X -4 Y is defined as g over dom(g) and as f over (dom(f) - dom(g)).

If a is an element of a totally ordered set A, then rank(a, A) is defined to be the

number of elements that are smaller than a.

If x is a sequence "fi, f2, ... , fn" with each element fi being a function of the type
A - A, and if a is an element of A, then apply(, a) ="fi (a), f 2 (a), ... ,(a)",
compose(x) ="(fn o .. o fo f2 l)", and scan(x) = "fi, (f2 0 fl),... , (f o.. .o f2 o fl)".

2.3.5 Notation

To access components of compound objects we use the dot notation. Thus, if dbs is

a state variable of an automaton, then its instance in a state s is expressed as s.dbs.
Likewise, if view is a state variable of a server p, then its instance in a state t is

expressed as t[p].view; When the state is clear from the discussion, we write p.view.

We describe the transition relation in a precondition-effect style (as in [22]), which

groups together all transitions that involve each particular type of action into a single

atomic piece of code.



Chapter 3

Service Specification S

In this chapter, we present an I/O automaton S that specifies the allowed behavior

of the replicated data service from the clients' point of view. Automaton S operates

under the assumption that its clients are blocking. Being input-enabled, it cannot

restrict its traces to those exhibited only by blocking clients. In order to get an

automaton with well-formed traces, we close S by composing it with an automaton

C that models a collection of nondeterministic blocking clients.

3.1 Type Information

The complete information on basic and derived types, along with a convention for

variable usage, is given in Figure 3.1.

Figure 3.1 Type information
Variable Type
c C
db DB
a Answer
u Update : DB -+ DB
q Query : DB -+ Answer
r Request = Update + Query
o Output = Answer + {ok}

Description
Finite set of clients.
Database type with a distinguished initial value dbo.
Answer type for queries. (Answers for updates are {ok}.)
Update requests.
Query requests.
Request is a disjoint union of Update and Query types.
Output is a disjoint union of Answer and {ok} types.



3.2 I/O Automaton S

The entire code for the I/O automaton S appears in Figure 3.2.

Figure 3.2 Specification S
Signature:
Input:
request(r)c, r E Request, c E C
Output:
reply(o)c, o E Output, c E C

State:
dbs E SEQO DB, initially dbo.
last E C -+ K, initially {* - 0}.
map E C '- (Request + Output),

Transitions:
request(r)c

Eff: map(c) +- r

update(c, u)
Pre: u = map(c)
Eff: dbs +- dbs + u(dbs[Idbsl - 1

map(c) +- ok
last(c) ~ Idbsl- 1

Internal:
update(c, u), c E C, u E Update
query(c, q, 1), c E C, q E Query, I E A

Sequence of database states. Indexing starts from 0.
Index of the last db state witnessed by c.

initially I. Buffer for the clients' pending requests or replies.

reply(o)c
Pre: map(c) = o
Eff: map(c) +- I

query(c, q, 1)
Pre: q = map(c)

]) last(c) < 1 < Idbsl - 1
Eff: map(c) q(dbs[n])

last(c) +- 1

Signature

The interface between the service and its blocking clients is typical of a client-
server architecture: Clients' requests are delivered to S via input actions of the form
request(r)c; S replies to its clients via actions of the form reply(o),.

Submitted requests are processed by internal actions of the form update(c, u) and

query(c, q, 1). The former represents processing of an update request u submitted by

client c. The latter represents processing of a query request q submitted by client c

with respect to the lth database state.

State Variables

If our service were to satisfy atomicity (i.e., behave as a non-replicated service), then
specification S would include a state variable db of type DB and would process each



update and query request with respect to the latest value of this variable. Since,

in the actual distributed setting, servers of non-primary components may have out-

dated database values, satisfying atomicity would restrict processing of queries to the

primary components of the system.

In order to eliminate this restriction and increase availability of the service, we give

a slightly weaker specification that requires each query to be processed with respect

to a value that is only at least as advanced as the last value witnessed by the query's

client, not necessarily the latest one. For this purpose, S maintains a history dbs of

database states and keeps an index last(c) to the latest state witnessed by each client

c. Please note that indexing of the dbs sequence starts from zero, which places the

latest database state at the index I dbs I - 1.

In addition to dbs and last, there is a third state variable, map, that associates each

client c with the status of its current request, if there is such. This status can be

either the request itself if it has not been processed yet, or an output value if the

request was processed but the output value has not been delivered to the client yet.

In the initial state, the variables have the following values. Sequence dbs contains

only a single element dbo. The value of last(c) for each client c is 0, as it points to

the initial database dbo in dbs. The map is empty since at this time there are no

submitted requests.

Transitions

When a client c submits a request r via action request(r)c, automaton S adds to the

partial function map an association between c and r.

If the request r is an update request, u, then this association enables an internal action

update(c, u). When this action is executed, automaton S applies update request

u to the latest database state dbs[Idbs| - 1] and appends the resultant database

state to the dbs sequence. As another two consequences of this action, automaton S

reassociates c with ok in map, and sets last to point to the last element of dbs.

Otherwise, if the request r is a query request, q, then the association of c with r in

map enables the following internal actions: {query(c, q, 1) 1 last(c) < 1 < Idbsl - 1}.

The condition on I ensures that query request q will be processed with respect to a



state that is at least as advanced as the last one witnessed by client c. When one
of these enabled actions is executed, automaton S applies query request q to the lth
database state, reassociates c in map with the answer to this query, and sets last(c)
to point to 1, which now represents the last database state witnessed by client c.

After a request r is processed by one of the internal actions, the entry in map asso-
ciated with its client c points to an output value. This association enables an output
action reply(o)c. When this action is executed, automaton S removes c from map.

3.3 Sequential Consistency

Even though our service is not atomic, it still appears to each particular client as
a non-replicated one, and thus, satisfies sequential consistency. Note that, since the
atomicity has been relaxed only for queries, the service is actually stronger than the
weakest one allowed by sequential consistency.

3.4 Client Specification C

Automaton S operates under the assumption that its clients do not submit subsequent
requests before they receive replies for the earlier submitted requests. Figure 3.3
presents an automaton C, for such a well-formed client c.

Figure 3.3 Specification C, for a nondeterministic blocking client c
Signature:
Input: Output:
reply(o)c, o E Output request(r)c, r E Request

State:
busy E Bool, initially false. A status flag that keep track of whether there is a pending request.

Transitions:
request(r)c reply(o)c

Pre: busy = false Eff: busy +- false
Eff: busy +- true

The state of this automaton is a single boolean variable busy, initially equal to false.

This variable reflects whether the client is currently awaiting a reply for a submitted



earlier request.

Whenever busy is false, the automaton is enabled to submit an arbitrary request r

via an output action request(r)c. When it does so, it sets busy to true, which blocks

any subsequent submissions until a reply is received. When an input action reply(o)c

occurs, the automaton resets busy to false, thus enabling further request submissions.

Automaton Cc is nondeterministic in a sense that it submits arbitrary requests at

arbitrary times. A real blocking client can be shown to implement such a nondeter-

ministic one.

Traces of the automaton Cc are alternating sequences of request(r)c and reply(o)c

actions that begin with request(r)c.

3.5 Closed Automaton S

Being input-enabled, automaton S allows for request actions to occur at any time,

possibly deviating from the assumed pattern. In order to constrain the allowed exe-

cutions of automaton S to follow the assumed pattern, we form a closed automaton

S by composing S with the automata for the nondeterministic blocking clients.

S= sx H cc(c).

In the rest of the thesis, when we present other automata, we will deal with their

closed versions and will denote them with a bar (as in 3).

Invariant 3.1 For each client c E C, (c.busy = false) if and only if (map(c) = 1).

Proof 3.1: A proof by induction is straightforward: As far as the basis, the invariant

is true in the initial state because c.busy = false and map(c) = 1. As far as the

inductive step, we observe the following. The values of the two sides of the proposition

both remain the same as their pre-state values when update and query actions take

place, and they both reverse their pre-state values when request and reply actions

take place. From this observation, it follows that the proposition is true in the post-

state, assuming it is true in the pre-state. U
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Chapter 4

Intermediate Specification D

In this chapter we introduce an intermediate specification D and prove that automa-

ton D implements automaton S in the sense of trace inclusion. Later, when we

present an implementation automaton T, we prove the same result about automata

T and D, which by transitivity of the "implements" relation implies that automaton

T implements automaton S in the sense of trace inclusion.

4.1 Motivation

Action update of specification S accomplishes two logical tasks: It updates the cen-

tralized database, and it sets client-specific variables, map(c) and last(c), to their

new values. In a distributed setting, these two tasks are generally accomplished by

two separate transitions. To simplify the refinement mapping between the implemen-

tation and the specification, we introduce an intermediate specification D, in which

these two tasks are separated.

4.2 I/O Automaton D

Automaton D is formed by splitting each update action of S into two, update and

service. The first one extends dbs with a new database state, but instead of setting

map(c) to "ok" and last(c) to its new value as in S, it saves this value (i.e., the



index to the most recent database state witnessed by c) in delay buffer. The second
action sets map(c) to "ok" and uses information stored in delay to set last(c) to its
value. The code for automaton D appears in Figure 4.1.

Figure 4.1 Intermediate Specification D
Signature: Same as in S, with the addition of an internal action service(c), c E C.
State: Same as in S, with the addition of a state variable delay E C " N, initially I.
Transitions: Same as in S, except update is modified and service is defined.

update(c, u)
Pre: u = map(c)

c g' dom(delay)
Eff: dbs +- dbs + u(dbs[jdbsl - 1])

delay(c) +-I dbsl - 1

service(c)
Pre: c E dom(delay)
Eff: map(c) +- ok

last(c) +- delay(c)
delay(c) +- 1

4.3 Correctness of D

In this section, we prove that the closed automaton D implements the closed automa-
ton S in the sense of trace inclusion. First, we study the invariants of D needed for
the correctness proof. Then, we present a mapping between the reachable states of
D and S and prove that this mapping is a refinement, which implies the correctness
result.

4.3.1 Invariants on D

Invariant 4.1 For each client c E C, each of the following propositions is true.

1. (c.busy = false) => (map(c) = I)

2. (map(c) = I) = (c.busy = false)

3. (c.busy = false) => (delay(c) = I)

Proof 4.1: This multipart invariant can be proved by induction on the length of
the execution sequence similarly to the proof of Invariant 3.1 in Chapter 3. U

Invariant 4.2 For each client c E C, if delay(c) = I then map(c) E Update.

Proof 4.2: A proof by induction on the length of the execution sequence is straight-
forward. The parts of the inductive step that involve actions request and service
rely on Invariant 4.1. I



4.3.2 Refinement Mapping DS : D -+ S

We want to construct a mapping DS() that maps each reachable state of D to a
reachable state of S and satisfies the following two properties:

1. If d is an initial state of D, then DS(d) is an initial state of S.

2. If d and DS(d) are reachable states of D and S respectively, and (d, a, d') is
a step of D, then there exists an execution fragment of S beginning at state
DS(d) and ending at state DS(d)', with its trace being the same as a and its
final state DS(d)' being the same as DS(d').

A state of S consists of the following components: dbs, map, last, and c.busy for
all c E C. The refinement mapping DS() has to specify how these components are
constructed from a reachable state d of D in a way that preserves the two properties
above.

The difference between automata D and S is that D delays the propagation of new
values in to map and last by temporarily storying them in delay. Thus, the entries in
delay are always more up-to-date than the corresponding entries in map and last. In
automaton 3, on the other hand, the values in map and last are always up-to-date.

Definition: Given two partial functions f, g : X -4 Y, we define a partial function
overlay(f, g) : X - Y to be as g over dom(g) and as f over (dom(f) - dom(g)).

Lemma 4.1 The following function DS() is a refinement from automaton D to au-
tomaton S with respect to the reachable states of D and S.

DS(d:D) - S = s, where
s.dbs = d.dbs
s.map = overlay(d.map, {(c, ok) I c E dom(d.delay)})
s.last = overlay(d.last, d.delay)
s[c].busy = d[c].busy for all C

Proof 4.1:

1. Basis: We want to show that the initial state do of D maps to the initial state so of

S. Consider the initial state do. It is straightforward to see that DS(do).dbs = so.dbs

and DS(do)[c].dbs = so[c].dbs for all c E C. For the remaining two state variables,

notice that do.delay = _ implies that DS(do).map = do.map and DS(do).last =

do.last. Since map and last are the same in the initial states of D and S, it follows

that DS(do).map = so.map and DS(do).last = so.last. Thus DS(do) = so.



2. Inductive Step: Assume that d and DS(d) are reachable states of D and S respec-
tively, and that (d, a, d') is a step of D. We show that, for all a, the step (d, a, d')
of D simulates the step (DS(d), 4, DS(d)') of S with 4 = a and DS(d') = DS(d)',
except when a is a service action, then the step (d, a, d') of D simulates an empty
transition of S.

Even though the code for actions request, reply, and query is identical in S and D,
the preservation of the refinement mapping for the transitions involving these actions
is not trivial because state variables d.map and d.last do not map directly to their
counterparts s.map and s.last in S.

Consider a transition (d, a, d') of D that involves any one of these three actions and
assume it is enabled in state d. Then, d.map(c) V Update in the pre-state (for
request use Invariant 4.1.1). By Invariant 4.2, d.delay(c) is undefined, and thus, c V
domain(d. delay). From this and the fact that d'.delay = d.delay it is straightforward
to show that the refinement mapping is preserved.

The two remaining actions of D are update and service. Let's examine them closer:

a = update(c, u) - A transition of D with this action corresponds to a tran-
sition of S with the same action. The precondition on this action implies that
c V dom(d.delay), and thus DS(d).map(c) = u. This means that the correspond-

ing action of S, update(c), is enabled. It is straightforward to see that the refinement
holds for state variables dbs and c.busy. For map and last we use the fact that
dom(d'.delay) = dom(d.delay) U {c}.

a = service(c) - A transition of D with this action corresponds to an empty
transition of S. We have to show that DS(d) = DS(d'). The precondition on a implies
that c E dom(d.delay). This means that DS(d).map(c) = ok and DS(d).last(c) -

d.delay(c). In the post-state DS(d'), these variables are the same because even though
c is no longer in dom(d'.delay), DS(d').map(c) and DS(d').last(c) have been set
respectively to ok and d.delay(c) by a. Finally, d'.dbs = d.dbs, and for all c E C,
d'[c].busy = d[c].busy since these state variables are not affected by a. N

Theorem 4.2 Automaton D implements automaton S in the sense of trace inclusion.

Proof : Follows immediately from Lemma 4.1. U



Chapter 5

Service Implementation T

In this chapter, we present an I/O automaton T that models a distributed implemen-

tation of the replicated data service specified by the automaton S of Chapter 3. The

proof of correctness that establishes T as an implementation of S appears in the next

two chapters.

5.1 Architectural Structure of T

The distributed implementation of the service consists of the servers' layer and the

communication layer. The servers' layer is symmetric: all servers run identical state-

machines. The communication layer consists of two parts, a group communication

service satisfying VS, and a collection of individual channels providing reliable re-

ordering point-to-point communication between all pairs of servers.

The servers use the group communication service to disseminate update and query

requests to the members of their groups and rely on the properties of this service to

enforce the formation of identical sequences of update requests at all servers and to

schedule query requests correctly. The point-to-point channels are used to send the

results of processed queries directly to the original servers.

Figure 5.0 below depicts the major components of the system and their interactions.

Set P represents the set of servers. Each server p E P runs an identical state-machine

VStoDP and serves the clients whose c.proc equals p.
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Figure 5.0 System components and their interactions.

The I/O automaton T for the service implementation is a composition of the servers'
layer I = [,,cp(VStoDp) with the group-communication service specification VS and
a collection PTP of reliable reordering point-to-point channels between any pair of
servers, with all the output actions of this composition hidden, except for the servers'
replies.

T = hideout(I x VS x PTP) - {reply(o)) (I x VS x PTP).

5.2 Communication Layer

5.2.1 The VS Specification

The state-machine VS of [13, 14, without the performance/fault-tolerance property
VS-property ] is reprinted in Figure 5.1.

For the rest of the paper, we fix M to be a message alphabet for the group commu-

nication service, and (G, <G, g0) to be a totally-ordered set of view identifiers with
an initial view identifier. An element of the set V = G x P(P) is called a view. If v
is a view, we write v.id and v.set to denote its components.

Automaton VS specifies a partitionable service in which, at any moment of time,
every client has precise knowledge of its current view. VS does not require clients to

learn about every view of which they are members, nor does it place any consistency
restrictions on the membership of concurrent views held by different clients. Its only

VStoD, ) ... VStoDq

gpsnd(m)p gprcv(m)q,p safe(m),,p newview(v)p gpsnd(m)q gprcv(m)p,, saf e(m)p,q newview(v),

PTP



Figure 5.1 Automaton VS
Signature:
Input:
gpsnd(m)p, m E M, p E P
Internal:
createview(v), v E views
vs-order(m,p, g), m E M, p E P, g E G

State:
created C V, initially {(go, P)}
for each p E P:

currentviewid[p] E G, initially go
for each g E G:

queue[g], a sequence of M x P, initially empty

Transitions:
createview(v)
Pre: v.id > max(g : 3S, (g, S) E created)
Eff: created +- created U {v}

newview(v)p
Pre: v E created

v.id > current viewid[p]
Eff: current.viewid[p] +- v.id

gpsnd(m)p
Eff: append m to pending[p, currentviewid[p]]

vs-order(m, p, g)
Pre: m is head of pending[p, g]
Eff: remove head of pending[p, g]

append (m,p) to queue[g]

Output:
gprcv(m)p,q m E M, p E P, q E P, hidden g E G
safe(m)p,q m E M, p, q E P, hidden v E views
newview(v)p, v E views, p E P, p E v.set

for each p E P, g E G:
pending[p, g], a sequence of M, initially empty
next[p, g] e A>O, initially 1
next_safe[p, g] E AN>O, initially 1

gprcv(m)p,q, hidden g
Pre: g = currentviewid[q]

queue[g](next[q, g]) = (m,p)
Eff: next[q, g] +- next[q, g] + 1

safe(m)p,q, hidden g, S
Pre: g = current viewid[q]

(g, S) E created
queue[g](next_safe[q, g]) = (m,p)
for all r E S:

next[r, g] > next-safe[q, g]
Eff: next_safe[q, g] +- next_safe[q, g] + 1

view-related requirement is that views are presented to each client according to the

total order on view identifiers. VS provides a multicast service that imposes a total

order on messages submitted within each view and delivers these messages according

to this order, with no omissions, and strictly within a view. In other words, the

sequence of messages received by each client while in a certain view is a prefix of

the total order on messages associated with that view. Separately from the multicast

service, VS provides a "safe" notification once a message has been delivered to all

members of the view.

5.2.2 The PTP Specification

The automaton PTP for the collection of reliable reordering point-to-point channels

between all pairs of clients is a composition 1-p,p,,p(Lp,p,) of individual channels L,,,

for all p, p' E P.



The code for the I/O automaton Lp,p, appears in Figure 5.2; it is similar to the

automaton A in [22, pages 460-461].

For the rest of the paper, we fix Packet to be a message alphabet for the point-to-point

channels and denote by pkt an element of this alphabet.

Figure 5.2 Specification L,p, for a reliable reordering channel from p to p'
Signature: State:
Inp: ptpsnd(pkt)p,p,, pkt E Packet, p E P, p' E P in-transitp,p,, a multiset of elements of Packet,
Out: ptprcv(pkt)p,,,ppkt E Packet,p E P,p' E P initially 0

Transitions:
ptpsnd(pkt)p,p, ptprcv(pkt)p,p,

Eff: add pkt to in-transitp,p Pre: pkt E in-transitp,p,
Eff: remove pkt from in-transitp,,,

5.3 Servers' Layer

The servers' layer is composed of |PI identical state-machines, one for each server

p e P. We next describe an automaton VStoDp that models the state-machine of a

server p.

5.3.1 Type Information

As an extension to Figure 3.1 on page 27, Figure 5.3 presents additional information

on types and a convention for variable-name usage.

Figure 5.3 Additional type declaration
Variable Type Description

P Fixed set of servers.
Q C P(P) Fixed set of quorums. Notice: P E Q.

g (G, <G, 90) Totally-ordered set of view identifiers.
v V = G x P(P) Set of views.
x X = G x (C x Update)* x K Expertise information for exchange process.
m M = C x Update + C x Query x A + X Messages sent via VS.
pkt Packet = C x Answer x N x G Packets sent via PTP.

For the rest of the paper, we fix a set Q of quorums, each of which is a subset of P.

We assume that every pair Q, Q' in Q satisfies the intersection property Q n Q' = 0.



The sets V and G of VS views and their identifiers are introduced on page 38.

There are three different types of messages that are transmitted via the group com-

munication service: update, query, and expertise. An update message consists of an

update requests paired with its client id. If m is an update message, then m.u and

m. c denote its components. A query message is a triple consisting of a query request,

its client id, and an index to the last database state witnessed by this client. If m

is a query message, then m.q, m.c, and m.l denote its components. An expertise

message is a triple consisting of a view identifier, a sequence of update messages, and

a natural number representing the length of a certain prefix of this sequence. If x is an

expertise message, then x.xl, x.us, and x.su respectively denote the just mentioned

components. Expertise messages are used during expertise-exchange process, which

is explained in the next section.

Packets transmitted via point-to-point channels carry information pertaining to the

processed query requests. Each packet consists of four components: a client id, an

answer to the client's query, an index to the database states with respect to which

the query was processed, and a view identifier of a view in which the query was

processed. If pkt is a packet, then pkt.c, pkt.a, pkt.l, and pkt.g respectively denote

the just mentioned components.

5.3.2 I/O Automaton VStoDp

The I/O code for the VStoDp state machine is given in Figures 5.4 and 5.5.

Signature

The external actions of the automaton VStoDp represent its interface with the outside

world, namely, with the group communication service, the point-to-point channels,

and the clients. Thus, the external actions of VStoDp are exactly the external actions

of VS projected on p, of ,,cp(L,,, x Lp,,), and of {cEC Ic.proc=p}(C c).

The internal actions of the automaton VStoDp are labeled update and query. An

instance of the former applies an update request u from a client c to the current

database state. An instance of the latter applies a query request q from a client c to

the current database state which is at least as advanced as the lth state.



Figure 5.4 Implementation VStoDp : Signature and State Variables
Signature:
Input: Output:
request(r)c, r E Request, c E C, c.proc = p reply(o)c, o E Output, c E C, c.proc = p
gprcv(m)p,,p,m E M,p' E P gpsnd(m),,m E M
safe(m)p,,p,m m M,p' E P ptpsnd(pkt)p,p,, pkt E Packet, p' E P
newview(v), v E V Internal:
ptprcv(pkt)p,,p, pkt E Packet,p' E P update(c, u), c E C,u E Update

query(c, q, 1), c E C, u e Update

State:
db e DB, initially dbo.
last E CI(c.proc=p) - .i, initially Cl(c.proc=p) 4 0.
map E CI(c.proc=p) - Request + Output, initially 1.
pending E P(C(c.proc=p)), initially 0.
updates E (C x Update)*, initially [].
safetoupdate E KV, initially 0.
lastupdate E N/, initially 0.
querycounter E /, initially 0.
queries E C L- (Query x ) + (Answer x K),

initially I.
view E V, initially Vo = (go, P).
expertise-level E G, initially go.
expertise_max E X, initially (go, [],0).
expert_counterl E K, initially 0.
expertcounter2 E K, initially 0.
mode E {normal, expertise broadcast,

expertisecollection}, initially normal.

Local database replica.
Index of the last db state seen by each client.
Buffer for pending requests or replies.
Clients whose requests are being processed.
Sequence of update requests (indexing from 1).
Index of the last safe element in updates.
Index of the last executed element in updates.
Load-balancing counter.
Query requests paired with their last(c) or
query answers paired with their last(c).

Current view of p.
The highest primary view id known to p.
The highest expertise received so far.
Number of expertise messages received so far.
Number of expertise messages received safely.
Modes: The first item is normal activity,
the last two are recovery activity.

State Variables

State variable db models the server's local database replica. The initial state of this

variable is dbo. Notice that VStoDp maintains only one database state, the current
one. This is in contrast to the specifications S and D which maintain a history of
database states.

State variables last and map have the same purpose as in the specification automata:

last(c) is an index to the last database state witnessed by the client c of p; map(c)
is either undefined if there is no outstanding request from the client c, or Request

if VStoDp has not begun processing a submitted by client c request, or Output if

VStoDp has already obtained an output value for a request submitted by client c but

has not delivered it to c yet. When VStoDp begins processing submitted by a client c
request, it enters c in a set pending until the output value for the request is obtained.

VStoDp maintains a sequence updates of update requests paired with their client iden-



tifiers. The purpose of this sequence is to enforce the order in which update requests

are applied to the local database replica db. The sequence has two distinguished

prefixes updates[1..safe _to _update] and updates[1..last _update], called safe and done,

that mark respectively those update requests that have been determined as safe to

execute and those that have been already executed.

A querycounter keeps track of the number of query requests delivered in the current

view. Based on this number, the server decides whether or not to accept for processing

each query request. Partial function queries associates clients, whose requests have

been accepted, with either of the two types of pairs: A pair of the first type contains

a query request and an index to a minimum database state with respect to which the

query has to be processed. A pair of the second type contains an answer to a query

and an index to a database state with respect to which this answer was obtained.

A view variable contains the current view of the server. A view can be either primary

or not depending on whether the members of the view comprise a quorum. In order

for the server to determine how advanced its state is compared to others, it keeps

track of a view identifier of the latest primary view of which it has knowledge. This

identifier is stored in the expertise _level variable.

The purpose of the mode variable is to enable/disable certain transitions depending

on the current state of the automaton.

In certain automaton states, the server receives expertise messages from other servers

of its view. The state variable expertisemax keeps track of the highest expertise

received so far. The two counters, expert_counterl and expert_counter2, keep track

respectively of how many expertise messages and of how many safe notifications for

these messages have been delivered to the server in its current view.

Transitions

Transitions of VStoDp can be classified as either front end, processing of query re-

quests, processing of update requests, or recovery activity.

Front end transitions involve actions of the form request(r)c and reply(o)c, which

result in the submitted requests being checked in to and the replied output values

being checked out of the map buffer.



Figure 5.5 Implementation VStoDP: Trans
Transitions:
request(r)c

Eff: map(c) +- r

gpsnd(c, q, 1),
Pre: mode = normal

q = map(c) A c 0 pending
I = last(c)

Eff: pending +- pending U c

gprcv(c, q, 1)p ,p
Eff: query_counter +- querycounter + 1

if (rank(p, view.set) =
querycounter mod Iview.setl)

then queries(c) +- (q, 1)

query(c, q, 1)
Pre: (q, 1) E queries(c)

last update > 1
Eff: queries(c) +- (q(db), lastupdate)

ptpsnd(c, a, 1, g)p,p
Pre: c E dom(queries) A c.proc = p'

(a, 1) E queries(c)
g = view.id

Eff: queries(c) +- I

ptprcv(c, a, 1, g)p',p
Eff: if (g = view.id A c.proc = p) then

pending +- pending - c
map(c) - a

last(c) - I

newview(v)p
Eff: queries +- I; querycounter +- 0

pending - pending - {c 1 (3 q . (c, q) E map)

safe_toupdate + safe_toupdate + A

expertise_max +- expertisemaxo

expertcounterl +- 0; expertcounter2 +- 0
mode - expertise broadcast
view + v

gpsnd(x)p
Pre: mode = expertisebroadcast

x = (expertise_level, updates, safe_toupdate)
Eff: mode +- expertise collection

itions

reply(o)c
Pre: map(c) = o
Eff: map(c) +- I

gpsnd(c, u)p
Pre: mode = normal A view.set E Q

u = map(c) A c 0pending
Eff: pending +- pending U c

gprcv(c, u)p,,p
Eff: updates +- updates + (c, u)

safe(c, u)p,,p
Eff: safetoupdate +- safe_toupdate + 1

update(c, u)
Pre: last update < safe_to_update

(c, u) = updates[last update + 1]
Eff: last update +- last_update + 1

db +- u(db)

if (c.proc = p) then
pending +- pending - c
map(c) - ok
last(c) - lastupdate

gprcv(x)p,,p
Eff: expertise_max +- maxX (expertise_max, x)

expert_counterl +- expertcounterl + 1
if (expert_counterl = Iview.setl) then

expertiselevel +- expertise_max.xl
updates +- expertise max.us
safe_to_update - expertise_max.su
if (view.set E Q) then

} expertiselevel - view.id

saf e(x)p,,
Eff: expertcounter2 - expert_counter2 + 1

if (expert_counter2 = Iview.setl) then
if (view.set E Q) then

safe_toupdate +- I expertise_max.us I

pending +- pending -
{c I c E pending A

c 0 updates[(last.update + 1) ..
safe_toupdate]. c}

mode +- normal

The server initiates processing of the submitted requests by multicasting them to the
members of its current view (including itself) using the gpsnd primitive of VS. This
operation is limited to the times when the server's mode is normal, which corresponds
to the server being in an established view.



When a view of the server changes, the server suspends processing of new requests by

switching its mode away from normal and starts recovery activity. The goal of the

recovery activity is to establish the server's new view so it may resume its normal

mode of operation. Successful completion of this activity requires collaboration of all

the servers of the new view.

We will now describe each of the different transition categories in more detail. Please

refer to the corresponding code fragments in Figure 5.5.

Front End

Transitions involving input actions of the form request(r)c cause the server to ex-

tend its map buffer with the corresponding client/request associations. Presence of

client/output-value associations in the server's map buffer enables transitions involv-

ing output actions of the form reply(o)C.

The code models map buffer as a partial function because it asserts that, at any given

time, for each client c, there can be at most one outstanding request. The validity of

this assertion depends on the well-formedness of clients.

Processing of Query Requests

Processing of query requests is handled by actions of the form gpsnd(c, q,l),,

gprcv(c, q, l),,,, query(c, q, 1), ptpsnd(c, a, 1, g)p,p,, ptprcv(c, a, 1, g)p,,,, and

newview(v).

The server initiates processing of each submitted query request by multicasting it to

the members of its view, using a gpsnd(c, q, 1)p action. The last argument, 1, is an

index to the least database state with respect to which query q has to be processed in

order to ensure sequential consistency. The value of I is taken as the value of last(c).

When VS delivers a query request to the server using a gprcv(c, q, 1),,,, action, the

server checks if it is its turn to service this query, and if so, accepts the request. The

fact that all members of the server's view receive query requests in the same order

guarantees that the delivered in this view queries are scheduled uniformly among its

members.

Accepted query requests are serviced by internal actions of the form query(c, q, 1),

which is enabled only when the state of the server's database db is no smaller than the



one specified by the request. This condition is captured by last_update being greater
than or equal to 1. The non-trivial guarantee of the algorithm is that the servers are
always enabled to advance their database states sufficiently far to be able to process
the accepted queries.

Answers for the serviced queries are forwarded to the queries' original servers using
actions of the form ptpsnd(c, a, 1, g),,,. The first argument, c, specifies the client of p'
to whom answer a has to be relayed. The third argument, 1, specifies an index of the
database state with respect to which the answer was obtained. The last argument, g,
specifies the current view of the server. It is included in the packet in order to ensure
the within-view delivery to p'.

When a point-to-point channel PTPp,,p delivers to the server a packet (c, a, 1, g)
carrying an answer to a query, the server accepts this answer only if the following two
conditions are met. The first condition checks if the server's current view matches
the one specified in the packet. This condition implements the within-view delivery

of answers and is necessary in order to eliminate unexpected packet arrivals (see next
paragraph). The second condition checks if c is among the server's clients. This

condition is just a technical one: It always holds (as shown by Invariant 6.5 on
page 54) but is included to ensure well-typing (as the domains of map, pending, and
last are restricted to those cs whose c.proc = p).

When the server learns of its new view, it executes a simple query-related recovery
procedure , in which it moves its own pending queries for reprocessing and erases any
information pertaining to the queries of others.

Processing of Update Requests

Processing of update requests is handled by actions of the type gpsnd(c, u),,
gprcv(c, u)p,,p, safe(c, u)p,p, and update(c, u).

The server initiates processing of each submitted update request by multicasting it

to the members of its view, using a gpsnd(c, u)p action. This action is allowed only

when the current view of the server is a primary one.

When VS delivers an update request to the server using a gprcv(c, u)p,,p action, the

server fixes a tentative position of this request by appending it to its updates sequence.
The algorithm ensures that, when this request is delivered to other members of the



service's view, it is assigned the same tentative position in the updates sequences

of these members. This is necessary in order to maintain the updates sequences of

different servers mutually consistent. Attainment of this behavior directly relies on

the following four properties of the algorithm: First, servers start with the same,

empty, updates sequences. Second, updates sequences of the members of the same

primary (non-initial) view are the same when each is taken at the time when its

server establishes this view. Third, when update requests are delivered to servers,

the servers' views are already established. Finally, members of the same view receive

update requests in the same order with no omissions. The second and third properties

are established as a result of preceding recovery activity; The last one is guaranteed

solely by VS.

When VS delivers a safe notification to the server using a safe(c, u)P,,, action, the

server extends the safe prefix of its updates sequence to cover an adjacent to the prefix

request. The code asserts that the covered request is in fact the one for which the

server has received the safe notification. The validity of this assertion rests on the

following five properties of the algorithm: First, servers start with the same, empty,

safe prefixes. Second, safe prefixes of all the members of the same primary (non-initial)

view are the same when each is taken at the time when its server switches to normal

mode. Third, when each server switches to normal mode, the only unsafe requests on

its updates sequence are those that it has received in its current view. Fourth, when

safe notifications for update requests are delivered to servers, the servers' modes are

already normal. Finally, safe notifications arrive in the same order with no omissions

as the delivered requests. The second, third, and fourth properties are established as

a result of preceding recovery activity; The last one is guaranteed solely by VS.

Update requests that are covered by the server's safe prefix are applied to the server's

database replica by internal actions of the form update(c, u), in the order specified

by the prefix. If the applied request happens to be native, i.e., belong to one of the

server's clients, then the server also removes c from pending, sets map(c) to ok and

last(c) to last_update (which is the index of the current database state).

Notice that a simple operation of extending a safe prefix to cover an adjacent to the

prefix request has crucial implications: It allows for the covered request to be applied

to the server's database (once all the preceding, say i - 1, requests in the prefix are

applied), and as a consequence, requires that the ith update request applied by any

server to its database be this particular request (or otherwise mutual consistency of



data replicas is violated). The ability of the algorithm to allow these implications and
still guarantee correctness rests in large on the way recovery activity is organized.

Recovery Activity

The server's recovery activity is initiated when the server is informed of its new view,
and is handled by actions of the form newview(v)p, gpsnd(x)p, gprcv(x)p,,p, and

safe(x)p,,p.

When VS informs the server of its new view using a newview(v)p action, the server

performs the following three tasks: First, it executes a small query-related recovery

procedure described on page 46. Second, it adjusts its safetoupdate index to be at
least as advanced as each of the last indices witnessed by its clients; This is discussed
in more detail on page 49. Third, it enters an expertise-exchange procedure that

constitutes the rest of the recovery activity.

During an expertise exchange procedure, servers exchange their expertise, which is
defined as a triple consisting of expertise _level, updates, and safetoupdate. The

purpose of the expertise-exchange procedure is to bring everyone's expertise to a
common base that is consistent with these and other servers' execution histories and

is suitable for the resumption of their normal modes of operation.

Definition 5.1 The cumulative expertise, maxX (X), of a set or a sequence, X, of
expertise elements is defined as the following triple

maxX (X) = (max{x.xl x EX,

max{x.us I (x E X) A (x.xl E max<G{x.xl I x E X})},
<11

max{x.su Ix E X}})

As a first step, the server's collaboration with others during an expertise-exchange

process aims at advancing everyone's expertise to the highest one know to them as a
group. This step is completed with a delivery of the last expertise message via action
gprcv(x)p,,p.



Advancing the servers' expertise achieves two purposes. First, it ensures the propa-

gation of update requests to previously inaccessible replicas. Second, it ensures the

future ability of servers to process the queries that are assigned to them.

In addition to advancing their expertise, the servers of primary views have to ensure

their ability to process new update requests once they resume their normal activity,

which subsumes that they have to start normal activity with identical updates se-

quences, the entire content of which is safe and contains as prefixes the safe prefixes

of all other servers in the system. For this purpose, once the server of a primary view

learns that all expertise-exchange messages have been delivered to all servers of this

view, it extends its safe prefix to cover the entire updates sequence adopted during

the expertise-exchange process.

The resultant safe prefix acts as a new base that all servers of the future primary

views will contain in their updates sequences. Attainment of this behavior depends

on the intersection property of primary views and the fact that subsequent primary

views have higher identifiers. (This property is expressed in part 2 of Invariant 7.30

on page 91.)

The established base works as a divider: partially processed update requests that

are not included in the base will never find a way to a safe prefix unless they are

resubmitted by their original servers. Therefore, once a server of a primary view

establishes the base, it moves all pending update requests that are not in this base

back for reprocessing. After this step, the server may resume its normal activity,
which enables it to process new update and query requests.

The A statement

One of the effects of a newview action adjusts the safe_toupdate index of a server

by A, a derived variable defined below (see Definition 5.2). For convenience, we will

refer to this statement as the A statement. We will now take a close look at this

statement.

Motivation: In a primary view, different servers may possess different safe toupdate

indices, which may result in queries being performed with respect to database states

that are more advanced than those that are regarded as safe by the queries' original

servers. In order to ensure that the servers of subsequent views have sufficiently



advanced database states to process queries, each server, upon learning of a new
view, adjusts its safetoupdate index to be at least as large as the last(c) index of
any of its clients.

Definition of A: For each server p, we define two derived variables, last_max and A,
to be respectively the largest database index witnessed by clients of p and the amount
by which this index surpasses the safeto_update index of p. An invariant will show
that p.A can be greater than zero only when p.view is primary and p.mode is normal.

Definition 5.2 For each server p, define lastmax and A as follows:

p.last_max = max{p.last(c) I c e C A c.proc = p}

p.A = p.last_ma - p.safe_toupdate if p.lastmax > p.safe_to_ update

0 otherwise

Handling of the A statement: The A statements ensure that servers of future views

have sufficiently advanced safeto_update indices to enable database replicas to reach
sufficiently advanced states that may be required in order to process certain queries.
We prove this property in Chapter 8. Note that this property is a part of liveness; it
ensures that something "good" happens.

On the other hand, the absence of the A statement would not violate the safety
properties of the system; The traces of the implementation would still be included in
the traces of the specification. However as a result, the servers would be unable to
process certain queries in minority views, because they may require database states
that are more advanced than those that the servers know as safe.

For convenience, we introduce the following notation that distinguishes between the
two versions of the automata, with and without the A statements:

Notation: Denote by VStoDP, I, and T the I/O automata respectively for the
server's state-machine, the servers' layer, and the service implementation, each
without the A statements. Likewise, denote by VStoD', I', and T' these I/O au-
tomata but with the A statements.

In this notation, our ultimate goal is to show that implementation automaton T'

implements specification automaton S in the sense of trace inclusion. There are two



ways we can go about achieving this goal: First, we can give a direct simulation from

T' to D. Second, we can give two simulations, one from T to D and another from T'

to T.

An obvious advantage of the first approach is that it is direct. An advantage of the

second approach is that it keeps the proof of the replication part of the algorithm sep-

arate from that of the load-balancing part, and thus, allows its future reuse in similar

settings (e.g., same replication but different load-balancing algorithms). We chose

the second approach because it has long-term benefits, and because its complexity is

similar to (if not less than) that of the first approach.

Proof Outline: There are two stages that we have to accomplish. First, we have to

prove that T implements D in the sense of trace inclusion. Then, we have to prove

that T' implements T in the sense of trace inclusion.

The second stage is straightforward: The refinement mapping between reachable

states of T' and T is identity. The action correspondence is also identity, except for

newview actions; A transitions of T' that involves actions of the form newview(v)p

simulates the execution sequence of T that contains safe notifications for A actions of

the form safe(c, u)p,,p (possibly separated with safe notifications for query requests,

which have no effect on the algorithm) followed by the corresponding newview(v)P
action. As a result of this simulation, the p.safe_toupdate index of T is advanced

forward by A, which corresponds to what is accomplished with the A statement in

T'. The only non-trivial part of this stage is to prove that this execution sequence

is possible, i.e., that safe notifications for A update requests are enabled. We prove

this part in Lemma 8.2 of Chapter 8 on 103. Assuming that this lemma holds, we

conclude the following lemma:

Lemma 5.1 Automaton T' implements automaton T in the sense of trace inclusion.

We note that, if we went with the first, direct, approach, then the simulation proof

that T' implements D in the sense of trace inclusion would be identical to the proof

that T implements D in the sense of trace inclusion, except for the proofs of several

invariants in Section 7.4 of Chapter 7.
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Chapter 6

Correctness of T: Simulation

In this chapter, we present a mapping from the reachable states of the closed imple-

mentation automaton T to the reachable states of the closed intermediate-specification

automaton D, and give a simulation proof that this mapping is a refinement. This

result, in conjunction with Theorem 4.2 of Chapter 4 and Lemma 5.1 of Chapter 5,

implies that the implementation automaton T' implements the specification automa-

ton S in the sense of trace inclusion.

6.1 High-Level Invariants

The simulation proof given in this chapter relies on the following five high-level invari-

ant assertions. These assertions are specifically designed to be used in the simulation

proof; Many of them depend on more general properties of the algorithm. A detailed

proof of these assertions is postponed until the next chapter.

Invariant 6.1 For each server p E P, the value of p.lastupdate is bounded from

above by p.safeto.update, which in turn is bounded from above by the length of

p.updates sequence:

p.lastupdate < p.safe _toupdate < |p.updatesI.



The following invariant expresses a very specific consistency property, which is a
consequence of a more general one that states that safe and done prefixes of all
servers are consistent. This property is discussed in the next chapter.

Invariant 6.2 For any two servers pi and P2 C P, if the lengths of their done pre-
fixes are the same, then their done prefixes are the same:

pl.last_-update = P2last-update implies

pl. updates[1..p.last _update] = P2. updates[1..P2.last-update].

The following invariant expresses the fact that all update requests that are safe some-
where but has not been executed at there native location are still reflected in their
native map and pending buffers.

Invariant 6.3 If (c, u) = p.updates[i], c.proc.last update < i, and i < p.safe toupdate,
then

(a) (c, u) c c.proc.map

(b) c G c.proc.pending

The following invariant states that at most one unexecuted update request per each
client can appear at that client's server. This property is a consequence of the fact
that clients are blocking.

Invariant 6.4 For all clients c E C, there exists at most one index i E A such
that i > c.proc.last _update and c = c.proc.updates[i].c.

The following invariant expresses the properties of packets on a point-to-point chan-
nel. It is the key to correctness of queries.

Invariant 6.5 For all packets (c, a, 1, g) E in-transitp,,p, it follows that c.proc = p.
Moreover, if p.view.id = g then

(a) c e dom(p.map) A p.map(c) E Query (d) 1 > p.last(c)

(b) c E p.pending (e) 1 < max,{p.last_update}

(c) a = p. map (c) (compose(p. updates [1.. 1]) (dbo))



6.2 Refinement Mapping TD : T -+ D

We want to construct a refinement mapping TD() that maps each reachable state of

implementation T to a reachable state of specification D. This mapping has to satisfy

the following two properties:

1. Basis: If t is any initial state of T, then TD(t) is an initial state of D.

2. Inductive Step: If t and TD(t) are reachable states of T and D respectively,

and (t, 7r, t') is a step of T, then there exists an execution fragment of D from

TD(t) to TD(t') with the same trace as 7r.

A state of D consists of the following components: map, dbs, last, delay, and c.busy

for all c E C. Function TD() should specify how to construct these components from

a reachable state t of T, in a way that preserves the two properties above.

6.2.1 The Mapping

Lemma 6.1 The following function is a refinement from T to D with respect to

reachable states of T and D.1

TD(t:T) - D =

let t.done = t[p].updates[1..t[p].last_update], where p is any such that

t[p]. last update = maxp {t[p]. last_ update }

dbs = dbo + apply(scan(t.doneu), dbo)

map = UPp t[p].map

last = UPEP t[p].last

delay = {(t.done[i].c, i) I 1 < i < |t.donel A t[t.done[i].c.proc].last_update < i}

c.busy = c.busy for all c E C

Definitions of TD(t).map, TD(t).last, and TD(t)[c].busy are straightforward.

Invariant 6.2 states that all executed sequences of the same length are in fact the same.

Derived variable t. done denotes the longest sequence of update requests processed by

1Notation: If s is a sequence "(Cl, Ul),... , (c,, Un) ", then su denotes the sequence "ut,... , un ".



one of the servers. This sequence corresponds to all modifications applied to the
database of D, which explains the way TD(t).dbs is defined.

Domain of TD(t).delay consists of ids of update requests that have been executed
somewhere (i.e., in t.done) but not at their native locations (i.e., the last_update at
their native locations have not yet surpassed these update requests). With each c in
this domain we associate its position in sequence t.done. This position corresponds
to the last database state witnessed by client c, which explains the way d.delay is
defined.

6.2.2 Action Correspondence

Automaton D has five types of actions. Actions of the types request(r)c and
reply(o)c are simulated when T takes the corresponding actions. Actions of the
type query(c) are simulated when T executes ptprcv(c, a, 1, g)p',p with g = p.view.id.

The last two types of actions, update(c, u) and service(c), are both simulated under
certain conditions when T executes update(c, u): We define an action update(c, u)p
of T as leading when t[p].lastupdate = max,{t[p].last_update}, and as native when
c.proc = p. Actions that are just leading simulate update(c, u), that are just native
simulate service(c), that are leading and native simulate "update(c, u),service(c)",
and that are neither simulate empty transitions. Transitions of T with any other
actions simulate empty transitions of D. This is summarized in Figure 6.1.

Figure 6.1 Circumstances under which each action of D is simulated by T.

D T Condition
request(r)c request(r),
reply(o)c reply(o)c
update(c, u) update(c, u)p t [p]. last_update = max,{t[p]. last _update}
service(c) update(c, u)p c.proc = p
query(c, q, 1) ptprcv(c, a, 1, g)p,,p g = t[p].view.id

6.2.3 Simulation Proof

We now give a simulation proof of Lemma 6.1.



Basis:

The fact that the initial state of T maps into the initial state of D is straightforward.

Inductive Step:

Before considering each possible transition (t, 7r, t') of T, we highlight the tasks that

need to be accomplished in order to show that the inductive step holds for this

transition:

1. Identify the corresponding action sequence a of D;

2. Check that traces exhibited by (t, r, t') and (TD(t), a, TD(t)') are the same;

3. Prove that every action in the sequence a is enabled; and

4. Prove that TD(t') is equal to TD(t)', the post-state of (TD(t), a, TD(t)').

The correspondence of actions has been presented in Figure 6.1 on page 56. Task 2

is just a check that a contains the same external action as 7r. The last two tasks rely

on invariants presented in Section 6.1 on page 53 and involve reasoning about r and

U.

We note the following four facts here, in order to eliminate their repetition in many

places of the proof.

1. Two states are equal if their corresponding state components are equal. A

variable of D is the same in states TD(t) and TD(t') if the variables of T that

define it are the same in states t and t'.

2. If, for all p E P, t'[p].last_update = t[p].lastupdate, then t'.done = t.done,

TD(t').dbs = TD(t).dbs, and TD(t').delay = TD(t).delay.

3. Many transitions (t, 7r, t') of T correspond to empty transitions of D. Task 2 is

true if r is not an external action of T. Task 3 is satisfied since empty transitions

are always enabled. Task 4 involves showing that TD(t') = TD(t), which is true

if none of the variables of T that appear in TD() are changed as a result of ir.

4. It is straightforward to see that the refinement is preserved for the busy com-

ponents. We, therefore, omit restating this fact in the proof.

We now investigate each of the possible actions 7r taken by some processor p E P:



1. 7r = request(r)c - the corresponding action of D is a = request(r)c. Both
are external actions, so their traces are the same. Action a is enabled since
action 7r is enabled, which means that t[c].busy and TD(t)[c].busy are both

false. State variables dbs, last, and delay are the same in TD(t) and TD(t)'.
They are also the same in TD(t) and TD(t') since none of the variables of T
involved in their definition in TD() are affected by 7r. Thus, they are the same
in TD(t)' and TD(t'). The only state component left to consider is map:

TD(t)'.map = TD(t).map[c: r]

= (UpEP t[p].map) [c: r]

SUp(P-,) t[p].map U t[p].map[c: r]

= U (P-p) t'[p].map U t'[p].map

=UE t' [p].map

= TD(t').map

2. 7r = reply(o)c - the corresponding action of D is a = reply(o)c. Both are out-

put actions, so their external traces are the same. Since 7r is enabled, its precon-

dition t[p].map(c) = o is satisfied. By the TD() mapping, TD(t).map(c) = o,
and thus a is enabled. Using the same reasoning as in 1 we can show that state
variables map, dbs, last, and delay are the same in TD(t)' and TD(t').

3. 7r = update(c, u) - the corresponding action sequence of D is not constant
like in the cases above. It depends on the current state of T. More specifically,
it depends on whether or not 7r is a leading update, and on whether or not it is
a native update.

Equations (L) and (N) express what it means for an update to be leading and
native.

t[p]. last _update = maxp{t[p].lastupdate } (L)

c.proc = p (N)

We write (L) and (N) when the opposites apply. Also, for convenience, we use
i to denote the value of t[p].last_update + 1.

Recall from the code that c and u stand for t[p].updates[i].c and t[p].updates[i].u.

Delayed spec D takes action update(c, u) when (L), and it takes action
service(c) when (N). A particular state t may exhibit none, one, or both



of these properties, yielding to the following four possibilities for a:

{(A), (update(c, u)), (service(c)), (update(c, u), service(c))}.

We investigate each of these possibilities.

a) a = (A) when (L) and (N).

Since (N), the if-then clause of ir is not executed. This means that TD(t').map

= TD(t).map and TD(t').last = TD(t).last.

We now show that TD(t').dbs = TD(t).dbs and TD(t').delay = TD(t).delay.

(L) implies that

t'[p].last _update = t[[p].last _update + 1

< maxp{t[p].last_update} + 1

< max,{t[p].last_update}.

Since, for all p # p, t'[p].last_update = t[p].last_update, it follows that

maxp{t'[p] .last _update } = maxp{t[p].last_update}.

Together with invariant 6.2, this result implies that t'.done = t.done, and thus

TD(t').dbs = TD(t).dbs.

Moreover, by taking into account (N), we get

TD(t').delay = TD(t).delay.

b) a = update(c, u) when (L) and (N).

First we have to show that a is enabled. Since vr is enabled, we know that its

precondition is true:

t[p]. lastupdate < t[ p].safe_toupdate.

This implies that the following bound holds for i:

t[p].lastupdate < i < t[pl.safeto_update.



(L) and invariant 6.3 imply t[c.proc].map(c) = u, and thus, the first precondition
on a is true:

TD(t).map(c) = u.

The fact that the second precondition, c ( dom(TD(t).delay), on a is true
follows from t[c.proc].last_update < t[p].lastupdate and Invariant 6.4, which to-
gether imply that c does not occur in t.done between indices t[c.proc].last_update+
1 and It.donel.

Because of (N), the if-then clause of 7r is not executed. Thus, TD(t').map -
TD(t).map and TD(t').last = TD(t).last. Action a does not modify these com-

ponents either. So TD(t').map = TD(t)'.map and TD(t').last = TD(t)'.last.

We now consider the remaining components, dbs and delay.

TD(t)'.dbs = TD(t).dbs + u(TD(t).dbs.last)

= dbo + apply (scan(t.done), dbo) + u(TD(t).dbs.last)

= dbo + apply (scan(t.done), dbo) + u(compose(t.done)(dbo))

(L) and t'[p].last_update = t[p].last_update + 1 imply t'.done = t.done + (c, u)

= dbo + apply (scan(t.done), dbo) + compose(t'.done)(dbo)

= dbo + apply (scan(t'.done), dbo)

= TD(t').dbs.

Finally,

TD(t)'.delay = TD(t).delay U (c, ITD(t).dbs|)

= TD(t).delay U (c, It.donel + 1)

= TD(t).delay U (c, i)

= TD(t').delay,

where the last step is justified by (N).

c) a = service(c) when (L) and (N).

This action is enabled because its precondition, c C dom(TD(t).delay), follows



from (c, i) E TD(t).delay, which is true because

(L) = i = t[[p].last _update + 1 < It.donel

(N) = t[t.done[i].c.proc].lastupdate = t[ p].lastupdate < i.

We now consider the state components of D:

TD(t)'.map = TD(t).map[c: ok]

= (UP, t[p].map)[c: ok]

= UPE(P-p) t[p].map U t[p].map[c: ok]

= UpE(P-) t'[p'.map U t'[p].map

= Up t'[p].map

= TD(t').map.

Using the same reasoning as in a) we can show that

TD(t)'.dbs = TD(t').dbs.

Similarly to map we get

TD(t)'.last = TD(t).last[c: TD(t).delay(c)]

= (UpEP t[p].last)[c: i]

= Up (P-p) t[p].last U t[p].last[c: i]

= Upc(P-,,) t'[p].last U t'[p].last

= UpEp t'[p].last

= TD(t').last.

Finally, since t'[p].last_update = i, (c, i) is no longer in TD(t').delay, so

TD(t)'.delay = TD(t).delay - (c, i) = TD(t').delay.

d) a = (update(c, u), service(c)) when (L) and (N).

The first action is enabled because of the reasons given in b). The second action

is enabled because the first one defines delay at c. Using a straightforward



combination of b) and c) we can show that TD(t)' = TD(t').

4. 7 = ptprcv(c, a, 1, g), - the corresponding action of D is query(c, q, 1) pro-
vided that g = t[p].view.id, where q = TD(t).map(c).

The first precondition on a is true because of part (a) of Invariant 6.5. Using
parts (d) and (e) of Invariant 6.5, we get the following bounds for 1:

TD(t).last(c) = t[[p].last(c) < 1 < t.done = I TD(t).dbs - 1

which establishes the truth of the second precondition.

We now consider the state components of D. Notice that q is t[p].map(c).

TD(t)'.map = TD(t).map[c: q(TD(t).dbs[l + 1])]

= (UpP t[p].map)[c: q(compose(t[p].updates[1..l]) (dbo))]

Using part (c) of Invariant 6.5,

= UpE(P-p) t[p].map U t[ ].map[c: a]

= Up(P-) t'[p].map U t'[p.map

= UpEP t'[p].map

= TD(t').map.

Similarly to map, we get

TD (t)'. last = TD(t).last[c: 1]

= (UpEP t[p].last)[c: 1]

= Upe(P-p) t[p].last u t[p].last[c: 1]

= Up6(P-) t'[p].last U t'[p].last

= TPp t'[p].last

= TD(t').last.



None of the variables in the definitions of dbs and delay are affected by 7r,

therefore

TD(t)'.dbs = TD(t).dbs = TD(t').dbs

TD(t)'.delay = TD(t).delay = TD(t').delay.

5. The rest of the actions of T do not affect any of the variables involved in TD().

They correspond to empty transitions of D. For one action, gprcv(x)p,,p, we

have to invoke a theorem (see Corollary 7.34 on page 93) that says that if

(t, 7r, t') is a transition of T, then, for all p in P, t[p].updates[1..t[p].lastupdate]

is a prefix of t'[p].updates[1..t'[p].last update]. In the case of gprcv(x)p,,p, this

theorem implies that t[p]. updates[1. .t[p]. last_update] remains unchanged.

This completes the proof of Lemma 6.1 which established function TD() as a

refinement mapping from implementation T to delayed specification D.

Theorem 6.2 Automaton T and automaton T' implement automaton S in the sense

of trace inclusion.

Proof 6.2: Follows immediately from Lemma 5.1, Lemma 6.1, Theorem 4.2, and

transitivity of the "implements" relation. U
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Chapter 7

Correctness of T: Invariants

The goal of this chapter is to prove the high-level invariants used in the simulation

argument of chapter 6. Most of these invariants (e.g., Invariant 6.2) are the conse-

quences of more general properties of the system. To prove these properties, we state

and prove an elaborate collection of invariants. These invariants are given in terms

of the state variables of T taken at a single reachable state of T; their statements

sometimes involve variables that are derived from the state variables of T.

7.1 View-Related Derived Variables

In this section, we present a number of useful view-related derived variables, such

as a derived function that maps processes to the sets of views that contain them as

members. These derived variables are based solely on the state components of VS.

First, notice that an identifier of a created view uniquely defines the view and its cor-

responding membership set (this will be demonstrated by part 1 of Invariant 7.1). We

introduce the derived functions Gto V and GtoS that map a view identifier to its view

and to its membership set, respectively. We sometimes allow ourselves to exploit the

equivalence between views and their identifiers by using these terms interchangeably.

State variable created captures all views that have been created by VS. We define

created_views(p) to be a set of all created views that contain p as a member. Notice



that for any p E P, the initial view vo is always in createdviews(p).

createdviews(p) = {v Iv E created A pE v.set}

Elements of created views(p) are ordered according to the total order on view iden-

tifiers. Given an element v of created_views(p), different from vo, function prevview

produces an immediately preceding element of createdviews(p).

prevview (p, v) = max{v' I v' E created_views(p) A v'.id < v.id} if v $ vo
IL otherwise

Recall that Q denotes a fixed set of quorums, subsets of P, such that any two
have nonempty intersection. We define a derived set primary_views consisting of

created views whose membership sets are quorums. (Invariant 7.3 will show that

t[p].view.set E Q if and only if current _viewid [p] E primary_views).

primary_views = {v iv E created A v.set C Q}

We use created viewids, prev_viewid, and primary_viewids to

that are defined as above, but in terms of view identifiers.

createdid = {g I 3 S. (g, S) E created}

created_viewids(p) = {g I S . (g, S) C created A pE S}

prevviewid(p, g) = max{g' g'
L _

stand for the variables

if g 90go
otherwise

primary_viewids = {g 1 S . (g, S) E created A S E Q}

7.2 VS Invariants

This section presents basic invariants of VS. These invariants are preserved when VS

is composed with the other automata to yield the service implementation automaton

T. We use these invariants in the later sections to prove invariants of T.

All but the last three statements of the following invariant are reprinted from [14, VS

created_viewids(p) A g' < g}



Lemma 4.1, page 10]; the last three statement reveal additional properties of VS.

Invariant 7.1 For any p E P, S C P, m E M, g E G, the following statements are

true:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

If g E createdid then there is a unique S such that (g, S) E created.

current-viewid[p] E createdid.

If (current-viewid[p], S) E created then p E S.

If pending[p, g] # A then g E createdid.

If pending[p, g] : A then g < current-viewid[p].

If queue[g] $ A then g E createdid.

If (m,p) is in queue[g] then g 5 current-viewid[p].

next[p, g] 5 length(queue[g])+ 1.

next-safe[p, g] length(queue[g]) + 1.

next-safe[p, q] 5 next[p, g].

If (g, S) E created and next[p, g] = 1 then p E S.

If (g, S) E created and next-safe[p, g] 4 1 then p E S.

If (g, S) E created then next-safe[p, g] next[p', g] for all p' E S.

If next[p, g] > 1 or next-safe[p, g] > 1 then g < current-viewid[p].

If m pending[p, g] or (m, p) E queue[g] then pE GtoS(g).

Proof 7.1: All are straightforward by induction.



7.3 Basic Invariants

In this section, we study basic invariants of the system. First, we exhibit the corre-

spondence between view-related information in VStoDp and VS. Then, we investigate
the structure of the total order that VS provides on messages sent within one view.

We prove facts such as "expertise messages sent within one view appear as a prefix
of the total order on messages of this view." Finally, we define derived variables that
express the notions of views being established and normal, and state properties that

relate these notions to the state variables of VS and VStoD,.

7.3.1 Consistency of Current Views

The following invariant states that VS has a correct notion of each server's current

view. (Thus, in the future, we use p.view.id and current _viewid [p] interchangeably.)

Invariant 7.2 p.view.id = current_viewid[p] and p.view = Gto V (currentviewid[p]).

Proof 7.2: Easy induction. The only critical action is newview. U

As a corollary from Invariant 7.2, we note the following invariant.

Invariant 7.3 The following statements are true for all p E P:

1. p.view E created

2. p.view E created_views(p)

3. p.view.set E Q if and only if current_viewid[p] E primary_viewids.

Proof 7.3: Follows immediately from p.view.id = current_viewid[p] ( Invariant 7.2)

and Invariant 7.1 (parts 1, 2, and 3). U



7.3.2 Initial and Primary Views

The following invariant presents the basic properties of the initial view vo. It states

that processes in the initial view always operate in normal mode and never com-

municate expertise messages. The first part involves the state variables of VStoD,,

while the second - of VS. These parts appear under the same invariant statement

because the proof of the second part depends on the first. (Notice the usage of queue.

to denote the subsequence of queue consisting solely of expertise messages.)

Invariant 7.4 The following statements are true:

1. p.view.id = go =- p.mode = normal

2. pending[*, go] = [ ] A queue,[go] = [1

Proof 7.4: For part 1, the critical actions are newview(v)p (use its precondition and

effect) and gpsnd(x)p (use the inductive hypothesis) - The invariant is vacuously

true. For part 2, the critical actions are gpsnd(x)p (use part 1) and vs-order(m,p, g)

(use the inductive hypothesis). U

The following invariant states that update requests are communicated only by pro-

cesses that are members of a primary view.

Invariant 7.5 For all (g, S) E created, if there is an update message on pending[p, g]

or on queue[g] then g E primary_viewids.

Proof 7.5: Basis is trivial. For the inductive step, the critical actions are gpsnd

and vsorder, both are straightforward. U

7.3.3 Expertise Messages

Per-process uniqueness of expertise messages in one view

The following two invariants show that, in any state of the system, there is at most

one expertise message from each process in a given view.



First, for all p E P, if p is in expertise _broadcast mode then there are no expertise
messages from p in VS associated with the current view of p. This is true because
when p is in expertise _broadcast mode it has not yet sent its expertise message.

Invariant 7.6 If p.mode = expertise broadcast then there is no x such that x E
pending[p, p.view.id] or (x, p) E queue[p.view.id].

Proof 7.6:

Basis: In the initial state, every process is in normal mode. Thus, the proposition is
vacuously true.

Inductive Step: The critical actions are newview, gpsnd, and vs_order. The first one
changes the antecedent from false to true, while the last two may affect the conclusion.
newview(v)p: One of the preconditions that must hold for this action to be enabled

is v.id > current_viewid[p]. When used with the contrapositives of parts 5 an 7
of Invariant 7.1, it implies that pending[p, v.id] is empty and that there are no
messages from p on queue [v.id]. Absence of all messages implies absence of expertise
messages there. Thus, in the poststate, the proposition is trivially true.

gpsnd(x)p: When enabled, this action places x on pending[p, current_viewid[p]], but

its second effect changes the mode of p from expertise broadcast to expertise _collection.

Thus, in the poststate, the proposition is vacuously true.

vs_order(x, p, g): The precondition on this action and the contrapositive of the induc-

tive hypothesis imply that, in the prestate, p. mode is different from expertise _broadcast.
Since p.mode is unchanged as the effect of this action, the proposition is vacuously
true for the poststate.

We can use this invariant to prove the per-process uniqueness of expertise messages

in each view.

Invariant 7.7 For all p e P and for all g E G, there is at most one expertise

message from p in both pending[p, g] and queue[g].

Proof 7.7:

Basis: In the initial state, pending[p, g] and queue[g] are empty. Thus, the proposi-

tion is trivially true.

Inductive Step: The critical actions are gpsnd, and vs_order.



gpsnd(x)p: The precondition on this action ensures that, in the prestate, p.mode is

expertise_broadcast. Invariant 7.6 implies that there are no expertise messages from

p in pending[p, p.view.id] and queue[p.view.id]. Since the effect of this action places

x on pending[p, p.view.id], there is only one such message in the poststate. Thus, the

proposition holds.

vs_order(x, p, g): The effect of this action moves an expertise message from pending[p, g]

to queue[g]. Therefore, the number of expertise messages in these sequences remains

unchanged. The inductive hypothesis ensures that the proposition holds.

Upper-limit on the number of expertise messages in one view

The following invariant states that the total number of expertise messages that may

appear in any view is limited from above by the number of members in that view.

This property is obvious in the light of Invariant 7.7, which limits to one the number

of expertise messages sent by each process.

Invariant 7.8 For each view v, the number of expertise messages appearing in VS

is less than or equal to the size of v's membership set. If g denotes v.id, then

|pending[*, g]I + Iqueue [g] I< Iv.setl

Proof 7.8: Since the only messages that occur in pending[*, g] and queue[g] are

from members of v (part 15 of Invariant 7.1), and since Invariant 7.7 states that there

is at most one expertise message from each process associated with g, it follows that

the invariant is true. U

Expertise messages are a prefix of the total order on messages of one view

Recall that state variables expert_counterl and expert_counter2 of VStoDp track re-

spectively the number of delivered expertise messages and the number of delivered

safe notifications for these messages. To show that the subsequence of queue[g] con-



sisting of expertise messages is a prefix of queue[g] we develop a number of invariants

that involve these state variables.

The first invariant relates the values of expert_counterl and expert_counter2 to the

lengths of the delivered and the safe prefixes of queue[g].

Invariant 7.9 For all p E P, the following statements are true:

1. p.expert_counterl = Iqueue_[p.view.id][1..(next[p, p.view.id]- 1)]I

2. p. expert_counter2 = queue. [p. view. id][1.. (next_safe[p, p. view. id] - 1)]

Proof :

Basis: In the initial state, both sides of each of these propositions are equal to zero.

Inductive Step: The critical actions are newview(v)p, vs_order(x, p, g), gprcv(x)p,,p,
and safe(x)P,,p.

newview(v)p: A precondition on this action ensures that v.id > current_viewid[p].

Part 14 of Invariant 7.1 implies that if next[p, g] or nextsafe[p, g] is greater than 1,
then g < current _viewid[p]. The contrapositive of this lemma implies that the right

sides of the two propositions are equal to zero. One of the effects of this action sets

counters p. expertcounterl and p.expert_counter2 to zero. So, both sides are equal,
and the proposition holds in the poststate.

vs_order(x,p, g): Parts 8 and 9 of Invariant 7.1 state that next and nextsafe are

bounded by the size of their corresponding queue sequence. Thus, even though one of
the effects of this action appends an element to queue[g], the subsequences appearing

on the right sides of the two propositions are not affected. The counters are unaffected,
as well.

gprcv(x),,p: only the first proposition is affected - both sides are increased by 1.

safe(x)p,,,: only the second proposition is affected - both sides are increased by 1.

Invariants 7.8 and 7.9 imply the following corollary:

Invariant 7.10 The values of p.expertcounterl and p.expertcounter2 are less

than or equal to Ip.view.setl.

The following invariant relates the values of the server's mode and expertcounter2.

It states that, if a server p is not in the initial view and is operating under normal



mode, then it has successfully completed an expertise-exchange process, which means

that p has received safe notification for expertise messages from all members of its

current view, and therefore, its expert_counter2 equals Ip.view.setl.

Invariant 7.11 (p.view.id : go A p.mode = normal) '4 p.expertcounter2 =

lp.view.setl.

Proof 7.11:

Basis: In the initial view, both sides of the proposition are false, so the proposition

is vacuously true (domination law). The left side is false because the viewid of any

process in the initial state is go. As for the right side: Invariant 7.2 and Invariant 7.1

(part 1, 2, 3) imply p E p.view.set. This means that Ip.view.setl is greater than or

equal to one. Therefore, Ip.view.setl may not be equal to zero, the initial value of

p.expert_counter2. Thus, the right side is false as well.

Inductive Step: The critical actions are newview(v)p and safe(x)p,,.

newview(v)p: In the poststate, both sides are false. The left side is false because

p.mode is set to expertise_broadcast. The right side is false because p.expert_counter2

is set to zero, while (as was argued in the Basis case) Ip.view.setl cannot be zero.

safe(x)p,,p: Using the inductive hypothesis, we can show that, if this action hap-

pens, then both sides of the proposition are false in the prestate. Indeed, Corol-

lary 7.10 states that p.expert_counter2 cannot be larger than Ip.view.setl. Since

p. expert_counter2 is increased by 1 as an effect of this action, we can conclude that it

is strictly less than |p.view.setl in the prestate. So, the right side is false. Inductive

hypothesis implies that the left side is false as well. Now, for the poststate, we have

two cases:

(a) If p.expert_counter2 reaches Ip.view.setl as a result of this action, then the right

side of the proposition becomes true as well: p.mode is set to normal as an effect of this

action, and the fact that p.view.id is not equal to go follows from the contrapositive

of Invariant 7.4 (part 1) used with the prestate value of p.mode.

(b) Otherwise, if p.expert_counter2 is still less than Ip.view.setl as a result of this

action, then both sides of the proposition remain false.

We need one more intermediate invariant before we can prove the prefix property on

expertise messages.



Invariant 7.12 For all created views (g, S), other than go, if there exists an update
or a query message in either pending[*, g] or queue[g] then Iqueuex[g] = ISI

Proof 7.12:

Basis: The proposition is vacuously true for the initial state.

Inductive Step: The critical actions are createview(v), and gpsnd(m)p and
vsorder (m,p, g) when m is an update or a query message (i.e., (c, u) or (c, q)).

createview(v): The precondition on this action ensures that v.id is greater than all

previously created viewids. Contrapositives of parts 4 and 6 of Invariant 7.1 imply
that pending[*, v.id] and queue[v.id] are empty; that is, there are no messages on
these sequences. Therefore, the proposition is vacuously true.

gpsnd(m)p: This action has a precondition "p.mode = normal." Invariant 7.11
tells us that p.expert_counter2 = Ip.view.setl, which, when used with Invariants 7.9

and 7.8, yields the desired conclusion: Iqueuex[p.view.id]l = Ip.view.setl.

vs_order(m, p, g): The fact that the proposition holds for the poststate follows im-

mediately from the inductive hypothesis.

Finally, we are able to prove the prefix property on expertise messages.

Invariant 7.13 For all created views g, the subsequence of queue[g] that consists

solely of expertise messages is a prefix of queue[g].

Proof 7.13: If g = go, then there are no expertise messages on the queue of VS

(Invariant 7.4) - so we are all set. Otherwise, we proceed by induction. Consider
a critical action vsorder, which places a message (x, p) on queue[g]. In order

for the proposition to hold, there should be no update and no query messages on

queue[g]. We show this fact by contradiction: If there is an update or a query mes-

sage on queue[g], it means that, in the prestate, the number of expertise messages on

queue[g] is IGtoS(g)l (Invariant 7.12). By Invariant 7.8 this number is the largest

possible, implying the impossibility of this action in the first place. M



7.3.4 Established and Normal Views

In Chapter 5, when we described the server's automaton VStoDp, we used the terms

established and normal to refer to certain states of the server's view. The server was

said to "establish" its view when it received an expertise message from the last server

in its view. Likewise, the server's view was said to become "normal" when the server

received safe notification for the last expertise message in its view. The initial view

of any server was considered both established and normal.

Derived Functions

The following two functions map each process to the sets of established and normal

views of which it is a member. They are derived from the state variables of VS.

established views (p) = {vo} U {v I next[p, v.id] > Iv.set]}

normal_views(p) = {vo} U {v I nextsafe[p, v.id] > Iv.setl}

Given any view v, we can also define the latest preceding established view of p.

lastestablished_view(p, v) = max<{v' I v' E established_views(p) A v'.g < v.id}

Notice that last _established _view (p, v) is well defined for all views v because vo E

established _views(p) and v.ido < v.id.

The following set captures all the views that are established at all their members.

totallyestablished _views = {v I Vp E v.set . v e established _views(p)}

We will use establishedviewids, normal_viewids, last_established_viewid, and

totally _established _viewids to stand for the variables that are defined as above, but in

terms of view identifiers. Since there is an equivalence between views and their view



identifiers, we sometimes allow ourselves to use these variables interchangeably.

established _viewids (p) = {go} U {g I next[p, g] > GtoS(g)I}

normal_viewids(p) = {go} U {g I next_safe[p, g] > IGtoS(g)]}

last_establishedviewid(p, g) = max<,{g' I g' E established_viewids(p) A g' < g}

totallyestablishedviewids = {g I Vp E GtoS(g) . g E established _viewids (p)}

Invariants

We now present invariants that involve the defined above functions.

First, notice the following relationship between normal_views, established_views, and
totally _established_views.

Invariant 7.14 The following statements are true for all p E P:

1. normal_views(p) C established _views (p)

2. normalviews(p) C totally_establishedviews

Proof 7.14: Follows immediately from the definitions of normal_views,
establishedviews and totally _establishedviews, and from the fact that nextsafe[p, g] <
next[p', g] for all p' e GtoS(g) (Invariant 7.1, part 13). U

The following two invariants relate the notion of a view v being established or normal
to the types of messages that appear on queue[v.id].

First, if a non-initial view v is established at some process, then queue[v.id] contains

an expertise message from each member of v.

Invariant 7.15 For all p and g, if g $ go and g E established_viewids(p) then the

set {p I (x, kp) E queue[g]} is the same as GtoS(g).

Proof 7.15: Straightforward. Follows from the invariants in Section 7.3.3. U



Second, if VS delivered an update or a query request to p in a certain view, then this

view is established at p. Likewise, if VS delivered a safe notification for an update or

a query request to p in a certain view, then this view is normal in p.

Invariant 7.16 For all p and g,

1. If 3((c, r), p') E queue[g][1..(next[p, g] - 1)] then g E established _viewids(p).

2. If 3((c, r), p') E queue[g] [1..(next_safe[p, g] - 1)] then g E normal_viewids(p).

Proof 7.16: Straightforward induction. Follows from the invariants in Section 7.3.3.

The following two statements relate the server's mode of operation to the notion that

the server's current view is established or is normal. First, if the server's mode is

expertise _broadcast, then its view is not established. This follows from the fact that

the server has not yet submitted its expertise message, which means that it could have

not received all expertise messages, and therefore, its view is not established. Second,

the server's view being normal is equivalent to the server's mode being normal. This

statement is trivial for initial views. For non-initial views, it follows from the fact

that the server's mode becomes normal when it receives the last safe notification for

the expertise-exchange process, which is exactly when the server's view is considered

to become normal.

Invariant 7.17 p.mode = expertise_broadcast =- p.view V established _views(p).

Invariant 7.18 p.mode = normal 4=' p.view E normalviews(p)

Proof 7.17 and 7.18: Straightforward induction. Relies on invariants in Sec-

tion 7.3.3. U

Functions established_views and normal_views are defined on state variables of VS.

We now express the notion that the current view of a server p is established/normal

in terms of the state variables of VStoDp, and then, connect these notions together

in Invariant 7.19.



Definition 7.1 A derived boolean flag p.established is defined to be true if and
only if either p.view.id = go or p.expert_counterl = Ip.v.setl. Likewise, a derived
boolean flag p.normal is defined to be true if and only if either p.view.id = go or
p.expert_counter2 = Ip.v.setl.

Invariant 7.19 The following statements are true for all p E P:

1. p.established is true if and only if p.view E established _views (p)

2. p.normal is true if and only if p.view E normal_views(p)

7.4 Derived Expertise X

This section develops an approach for proving major correctness results about our
algorithm, such as consistency of updates sequences and of their safe and done prefixes
at different servers. Proving such results requires reasoning on the values of state
variables at different points of the execution. However, the advantage of invariant

proofs over operational proofs is exactly in that they avoid reasoning about multiple
states and restrict their properties to single reachable states. In order to carry out
invariant proofs and still be able to reason about past values of variables, these values

have to be accessible within single states of the system. A traditional approach is
to define history variables that preserve values of regular state variables as they
change throughout the execution. In this work, however, we do not introduce history
variables, as we are able to access all necessary historic information at a single state
of the VS specification.

In particular, a single state of the VS specification includes information about previ-
ously created views and about their pending and queue buffers. Using this informa-

tion, we are able to derive a powerful function, X(p, g), that maps each process p and

a view g E createdviewids(p) to (what we claim is) the highest expertise attained
by p during its participation in the view g.

The power of this function comes from the fact that it expresses the expertise of
a process in a given view recursively in terms of the expertise of this and other
processes in earlier views. In a sense, this function presents the law according to
which the replication part of the algorithm operates. The recursive nature of this
function makes it simple to establish various properties of this law by induction,



because inductive steps can be proved by unwinding the recursive definition of X to

reach the domains of the underlying inductive hypotheses.

7.4.1 Definition of X

Definition 7.2 For each process p E P and each view g E G, we define X(p, g) to

be I if g V created _views (p). Otherwise, if g E created _views (p), then

X(p,g) =
If g E established _viewids (p) then

l= = maxX (queue.[g]).xl if g V primary viewids,

g otherwise.

us = maxx (queuex[g]).us + queueu[g][1..(next[p, g] - 1)]

S= maxX (queuex[g]).su if g V primary viewids V g V normal_viewids(p),

I maxX (queue.[g]).us + queue,[g][1..(nextsafe[p, g] - 1)]1 otherwise.

else X (p, prev-view (p, g))

Notice that X(p, g) is well-defined because the smallest possible view, go, is estab-

lished at all processes.

The definition of X(p, g) corresponds to our understanding how the algorithm oper-

ates. First, if a process p has never succeeded in establishing a view g, then it has

never modified its expertise_level, updates sequence, and safetoupdate index in that

view, which explains why its expertise in that view is defined as its own expertise in

the preceding to g view. Invariant 7.20 extends this case in stating that the expertise

of a process p in a view g is the expertise of p in its last established view.

Second, if process p has succeeded in establishing view g, then the three components

of p's expertise are defined as follows: The expertise level of p in view g is either g

itself if the view is primary, or it is the expertise that p has acquired as a result of

the expertise-exchange process in g (see gprcv(x)p,,p). The sequence of updates at p

is defined as the sequence that p has adopted as a result of the expertise-exchange

process in g (see gprcv(x)p,,p) extended with the update requests that p has received

during its participation in g (see gprcv(c, u)p,,,). Notice that, if g is a non-primary



view, then the sequence at p is only the adopted sequence since there are no update

requests that p has received in that view. Finally, there are the following three cases
for the safeto_update index at p: (a) If g is a non-primary view, then the index

is just that which p has adopted as a result of the expertise-exchange process in g

(see gprcv(x)p,,p); (b) If g is a primary view, but is not normal in p (i.e., p has not

received safe notifications for all expertise messages), then the index is the same as in

the previous case; (c) If g is both primary and normal, then the value of the index is

defined as the length of the sequence of updates that p has adopted as a result of the

expertise-exchange process in g (see safe(x),,p) plus the number of safe notifications

for the update requests delivered to p during its participation in g (see safe(c, u)P,,p).

The following invariant expresses two basic properties of X.

Invariant 7.20 For all p E P and for all g E created views(p),
1. g > current_viewid[p] => X(p, g) = X(p, current_viewid[p])

2. X(p, g) = X(p, lastestablished_viewid(p, g))

Proof 7.20: Follows immediately from the total ordering of views in createdviews,
and from the definition of X. U

Having defined the derived expertise X, we now have to accomplish the following two

steps. First, we have to show that the derived expertise X indeed corresponds to the

real expertise of each server. For this purpose, we prove that, in any reachable state

of the system, the value of the derived expertise taken at the current view of any

server is the same as the real expertise of that server. This result will allow us to
extend properties of the derived expertise to those of the real expertise. Second, we

have to study various properties of the derived expertise, with a goal of identifying a

precise relationship among expertise possessed by different servers in different views.

Reaching this goal will allow us to prove important consistency properties of our

algorithm.

7.4.2 Correspondence between Derived and Real Expertise

The following invariant shows the correspondence between p.expertise _max, a state

variable used in expertise-exchange process to keep track of the running expertise



maximum, and the messages on the VS queue.

Invariant 7.21 For allp E P, the value of p.expertise_max is equal to

maxX (expertise_maxo, queue_ [p. view. id] [1.. (next[p, p. view. id] - 1)])

Proof 7.21: The critical actions are newview and gprcv- both are straightforward.

Now, we are able to link real expertise of a server to that defined by function X:

Invariant 7.22 For all p E P,

(p.expertise level, p.updates, p.safe _to.update) = X (p, p.view.id).

Proof 7.22:

Basis: Straightforward.

Inductive Step: The critical actions are gprcv((*, u)),,,p, safe((*, u))p,,p, gprcv(x)p,,p,

and safe(x)p,,p.

gprcv((*, u))p,,p: Only p.updates is affected. Invariant 7.16 part 1 implies that

p.view.id is in established_viewids(p). The validity of the proposition in the poststate

immediately follows from the inductive hypothesis.

safe((*, u)),,,p: Only p.safe_to_update is affected. Invariants 7.5 and 7.16 imply that

p.view.id is primary and normal. The step itself is just as above.

gprcv(x),,p: The only interesting action is when p establishes its view, i.e., when it

receives the last expertise message. Use Invariant 7.21 directly. Then, show that a)
queue[p.view.id][1..(next[p,p.view.id] - 1)] is the entire queuez[p.view.id] (Invari-

ant 7.8); b) the view is established but not normal; c) there are no update messages

on queue [p.view.id].

safe(x)p,,p: The only interesting action is when p switches to normal mode. Only

safe_to_update is affected. Show that a) the view is established; and b) if the view is

primary then it is normal.

U



7.4.3 Derived Expertise-level vs Real View

The following invariant reveals the relationship between derived expertise level of a
process p in a view g and the view g itself.

Invariant 7.23 For all p and all g e created _views(p), X(p,g).xl < g. More

strongly, if g primary_views or g established_viewids(p) then X(p, g).xl < g.

Proof 7.23:

Basis: In the initial state, go is the only view created. For all p, go E createdviews(p).
The value of X(p, go).xl is equal to go, as go is both, established at p and primary.

Inductive Step: A critical action always deals with a single p and a single g. If in
the poststate, g established _viewids(p), then X(p, g).xl = X(p, prev_view(p, g)).xl.
By the inductive hypothesis, X(p, prev_view(p, g)).xl < prev_view(p, g), which, in

turn, is less than g. (Notice that, since g established viewids(p), g > go and

prev_view is defined.) Otherwise, if g E established_viewids(p) in the poststate, we

should consider whether or not g is a primary view. a) If g is not a primary view,
then X(p, g).xl = maxX (queue [g]).xl = x.xl for some (x, p') E queue,[g]. By

Invariant 7.25, x.xl = X(p', prev_view(p', g)).xl. By inductive hypothesis, this is less
than prev_view(p', g), which, in turn, is less than g. b) Otherwise, if g is a primary

view, then X(p, g).xl = g. U

The following invariant reveals monotonicity of each server's expertise level.

Invariant 7.24 For all p and all gl and g2, if L 9 g2, 91 E created _viewids (p) and

g2 E createdviewids(p), then X(p, gl).xl < X(p, g2).xl.

Proof 7.24: The case of gl = g2 is trivial. Let's consider gl < g2.

Basis: In the initial state, go is the only created view. It is established for all p and

is primary. Therefore, X(p, g1).xl = X(p, g2).xl.

Inductive Step: The critical actions are those that involve p and g2. If, in the post-

state, g2 establishedviewids(p), then X(p, g2).xl = X(p, prev_view(p, g2)).xl, and

the inductive hypothesis applies, since gl < prev_view(p, g). Otherwise, if g2 E
established_viewids(p) in the poststate, then by Invariant 7.15 there exists (x, p) E
queuex[g]. By Invariant 7.25, x.xl = X(p, prevview(p, gz)).xl, which, according to



the inductive hypothesis, is greater than X(p, gi).xl. We are done if we can show that

X(p, g 2).l > x.xl.

To show that X(p, g2).zl > x.xl, we consider the following two cases: a) If g2 is

not a primary view, then X(p,g 2).xl = maxx (queue.[g2 ]).xl > x.xl. b) if g2 is a

primary view, then x.xl < maxX (queue.[g]).xl = X(p', prev_view(p', g92)).xl. By

Invariant 7.23, this is less than or equal to prevview(p', g2), which is less than g2,

the value of X(p, g2).xl. -

7.4.4 Recursive Nature of X

The following invariant expresses the fact that an expertise message x sent by p in a

view g is the maximum expertise possessed by p during its previous view.

Invariant 7.25 (x E pending[p, g] V (x, p) E queue[g]) = x = X(p, prev_view(p, g))

Proof 7.25:

Basis: In the initial state, pending[p, g] and queue[g] are empty for all p and g. Thus

the proposition is vacuously true.

Inductive Step: The critical actions are gpsnd(x)p, and vs_order(x, p, g).

gpsnd(x)p: This action appends x to pending[p, current_viewid[p]]. By a precondi-

tion on this action, x is (p.expertise_level,p.updates,p.safe to_update), which, ac-

cording to Invariant 7.22, is equal to X(p,p.view.id). Another precondition en-

sures that process p is in expertise _broadcast mode. Invariant 7.17 implies that

p.view.id V established.viewids(p). Thus, according to the definition of X, x is

X (p, prev view (p, g)).

vs_order(x, p, g): Follows immediately from the inductive hypothesis.

7.4.5 Consistency of Derived Expertise

In this section, we prove key invariants that express relationship between derived

updates and safe sequences of different servers in different views depending on their

derived expertise _level. All together, we show the following three results: First, the



updates sequences of different servers are consistent if their expertise levels are the
same. Second, the safe sequence of one server is always a prefix of the updates
sequence of another server with the same or higher expertise level. Finally, the safe
sequence of a server in a normal primary view contains as a prefix the safe sequence
of any server with a strictly smaller expertise level.

Proof Outline

Each of these invariants deals with two servers, pi and P2, and two views, gl and

g2, such that gl E created _viewids(p,) and g2 E created _viewids(p 2). We prove each

of them by induction on the upper bound g on gl and g2, rather then by induction
on the length of the execution sequence. This type of induction is valid because view

identifiers are totally ordered and have a minimum element go.

The proof of each of these invariants follows the same pattern: For the basis we show

that an invariant is true when gl and g2 are both the initial view. This part is

straightforward. For the inductive hypothesis, we suppose that an invariant is true

for all g and g2 strictly smaller than g. For the inductive step, we show that the

invariant is true for all gl and g2 smaller than or equal to g.

To show that the invariant is true for all gi and g2 smaller than or equal to g, we

study each of the following cases:

1. gl < g and g2 < 9

2. gl < g and g2 = g

3. gl = g and g2 <g

4. gl = g and g2 = g

The first case is covered directly by the inductive hypothesis. To show that the

invariant is true for each of the other three cases, we use the definition and invariants

of X to relate the values of derived variables associated with the view g to those

associated with a smaller view. For this purpose, we look at possible subcases, such

as whether or not a view is established at a server, a view is normal at a server, and a

view is primary. Most of the cases follow the same argument and are straightforward.



However, there are are also unique cases, the proof of which exploits fundamental

assumptions about the algorithm, e.g., that any two primary views have common

members.

Invariants

The following invariant states that the updates sequences of any two servers in any

two views are consistent (<>) if their expertise levels are the same. (Recall that two

sequences are said to be consistent if one is a prefix of another.)

Invariant 7.26 For all pl and p2, and all g andg2 such that gi E created_views(p1 )

and g2 E created _views(p)

X(p 1, g91).l = X(p 2 , 92 ).xl = X(p1, gl).us <> X(P 2 , g 2).US

Proof 7.26: By induction on the upper bound g of gi and g2.

Basis: If g = go, then g1 = g2 = go and it is straightforward to show that the

proposition is true.

Inductive Step: Assume that the proposition is true for all gl and g92 such that gl < g

and g2 < g. We want to show that the proposition is true for all g1 and g2 such that

gi < g and g92 < 9g.

We consider the following four cases:

1.g91 < g and g2 < g. The proposition is true by the inductive hypothesis.

2.gi < g and g2 = g. We consider the following three subcases:

(a)g2 V established_viewids(p2 )
By definition of X,

X (P2, 92).xl = X (P2 , prev _view (p 2 , g2 )).xl

X (P2 , 92).us = X (p2, prev view (p2, g2 )).us.

Since prev_view(p 2 , 92) < g92 = g, it follows that the proposition is true by

the inductive hypothesis.



(b)g 2 E established _viewids(p 2 ) and g2 0 primary_views

X(p 2 , g2).us = maxx (queue[g92]).us - definition of X and Invariant 7.5

= x.US,

for some (x, p') E queuex[g2 ], such that x.xl = maxX (queuex[g2 ]).xl and

x.us = maxX (queue [g2]).us.

= X(p', prevview(p', g2 )).us - Invariant 7.25.

X(p 2, g2 ).xl = maxX (queue9[g2]).xl - definition of X

= x.xl

= X (p', prev_view(p', g2)).xl.

Since prevview(p', g92) < g2 = 9, it follows that the proposition is true by

the inductive hypothesis.

(c)g 2 E established _viewids(p2 ) and g2 E primaryviews

In this subcase, the antecedent of the proposition cannot be true:

X(p 2 , g2).l = 92 - by definition of X

> gi - case assumption

> X (pl, gl).xl - Invariant 7.23.

Thus, the proposition is vacuously true.

3.gl = g and g2 < g This case is symmetric to the previous one.

4.gl = g and g2 = 9
The case when either g V establishedviewids (pl) or g V established viewids (pz)
is straightforward as it brings us to one of the previous cases (Invariant 7.25).

Therefore, we consider the case when

g e established viewids (pl) A g E established _viewids (p).

There are two subcases depending on whether or not g is a primary view:

(a)g V primary_views



By the definition of X, the contrapositive of Invariant 7.5, and Invariant 7.25,

X(pi, g).us = maxx (queue.[g]).us = xl.us = X(p', prev view(p', g)).us

X(p 2 , g).us = maxX (queuez[g]).us = x 2.us = X(p', prev_view(p', g)).us,

for some (x, p ) E queuex[g] and (x2 , P ) E queue;[g] such that

x 1.xl = zX2.xl = maxX (queuex[g]).xl

IZx.usj = X2.usl = I maxx (queue [g]).usI.

Notice that we do not assume that Xl.us = X2.US.

Since

X(pl, g).xl = maxX (queuex[g]).xl = xl.xl = X(p , prev_view(p', g)).xl

X(P2 , g).xl = maxX (queuex[g]).xl = x 2 .xl = X(p2, prev_view(p', g)).xl,

and both prev_view(p', g) and prev_view(p', g) are strictly smaller than

g, it follows that the proposition is true by the inductive hypothesis.

Notice that, since Ixl.usl = Il 2 .us, in addition to consistency of updates

sequences, we can actually conclude their equality:

Corollary 7.27 For all pl, P2, and g such that g primary_viewids and

g E established _viewids(pi) and g E established _viewids(p 2 ), it follows that

X(p1, g).us = X(P 2 , g).us

(b)g E primary_views

By definition of X, X(pl, g).xl = X(p 2 , g).xl = g and

X(pl, g).us = maxX (queuex[g]).us + queue,[g][1..(next [pi, g] - 1)]

= xl.us + queue,[g][1..(next[pl, g] - 1)]

X (p2 , g).us = maxX (queuex[g]).us + queue,[g][1..(next[p2 , g] - 1)]

= x 2 .us + queue,[g] [1..(next [p2 , g] - 1)],



for some (x1 , p') E queuex[g] and (x2, Pi) E queuex[g] such that

Xl.xl = x 2.xl = maxx (queuex[g]).xl

I 1.us I = Ix2 .us = I maxX (queuex[g]).usl.

As we did in subcase (a), we can show that xl.us = x 2.us. Therefore,

since queue[g][1..(next[pl, g] - 1)] and queue,[g][1..(next[p2 , g] - 1)] are

consistent, it follows that the proposition is true.

We introduce the following notation for the safe prefix of derived expertise:

Definition 7.3 X(p, g).sp = X(p, g).us[1..X(p, g).su].

The following invariant states that the safe sequence of any server is as a prefix of

the updates sequence of any other server with a higher or the same expertise level.

(Recall the discussion in Chapter 5 on page 49 about safe sequences acting as a base

for future views.) To prove this property, it is helpful to note that a server could

have gotten its safe sequence directly by participating in a primary normal view, or

indirectly by adopting it from another server during an expertise-exchange process.

We express this fact as an additional part of this invariant.

Invariant 7.28 The following two statements are true:

1. For all pi and gl such that gl E created_viewids(p,), there exist p2 and g2

such that the following four statements are true:

(a) g2 E primary_viewids (c) X(p 2, 92).l < X(pl, gl).xl

(b) 92 E normal_viewids(p) (d) X(p 2 , g2).sp = X(pl, gl).sp.

2. For all pi and P2, and all g, and 92 such that gi E created _views(p 1 ) and

92 E createdviews(p2), it follows that

X(p, gl).xl < X (p2, g2).xl = X(pl, g1).sp K X(p 2 , g2).us.

Proof 7.28: By induction on the upper bound g of gl and g2.



Basis: If g = go, then gl = g2 = go and it is straightforward to show that both

propositions are true.

Inductive Step: Assume that both propositions are true for all gl and g2 such that

gl < g and g2 < g. We want to show that both propositions are true for all gl and

g2 such that gl 5 g and g2 < g. We consider each of the two propositions separately.

Part 1. If gl < g, then the truth of part 1 follows immediately from the inductive

hypothesis. Otherwise, if g1 = g, then we consider the following cases:

1.g1 V establishedviews(pi). Then the proposition is true because, according

to the definition of X, X(p1 , gi) = X(p1 , prev.view(pl, gl)), and the inductive

hypothesis applies.

2.gl E established_views(p1 ) and gl V primaryviews.

X(pi, gl).sp = X(pi, gl).us[1..X(pl, gl).su]

= xu.us[1..x,.su]

= X(p, prevview(pu, gi)).us[1..X(p,, prev_view(p,, gl)).su],

for some (x,, pu) c queuex[g1 ] and (x,, Ps) E queuez[g] such that

xS.xl < xz.xl = maxX (queue[g]).xl = X(p1, gi).xl.

By the inductive hypothesis of part 2, X(p, prevview(p, g,)).sp is a prefix of

X(pu, prevview(pu, gl)).us, and thus,

X(pi, gi).sp = X (p, prev-view(p,, g1)).sp

Therefore, the inductive hypothesis of part 1 applies, and the proposition is true.

3.g1 e established views (p ), gl E primary_views, but gl V normal_viewids(p1 ).

The proof that the proposition is true in this case is very similar to the previous

one.

4.g1 E established views(p1 ), gi E primary_views, and gl E normal_viewids(p,).

The proposition is true because we can take P2 as pi and g2 as gl.

Part 2. We consider the following three cases:

1.gl < g and g2 < g. The proposition is true by the inductive hypothesis.

2.gl < g and g2 = g. We consider the following three subcases:



(a)g2 V established_viewids(p2 ). Similarly to the corresponding case in the
proof of Invariant 7.26.

(b)g2 E established _viewids(p 2 ) and g2 V primaryviews. Similarly to the

corresponding case in the proof of Invariant 7.26.

(c)g 2 e established _viewids (p2 ) and g2 E primaryviews.

By the inductive hypothesis of part 1, there exists a primary g, (gs <

X(pl, gl).xl) and a process p, such that

gs E normal_viewids(p,) and X(pl, gl).sp = X(ps, g,).sp.

Since g, is normal for ps, it follows from part 2 of Invariant 7.14 that g, is

totally established. From the definition of X and the inductive hypothesis

of part 2, it follows that, for all p e GtoS(g,),

X (ps, g9).xl = X(p, g8 ).xl = g

X(ps, g8 ).sp X(p, g).us

Since gs and g2 are primary views, there exists a process Pn that is a
member of both views (by the definition of primary views).

Since g2 is established at P2, Invariant 7.15 implies that there exists (Xn, Pn) E
queue,[g2]. By Invariant 7.24, X(pn,gs).xl < Xn.xl. Moreover, by def-

inition of maxX () it follows that Xn.xl < maxx (queuex[g9]).xl and

xn.us < maxX (queue [g2 ]).us.
By definition of X, X(p 2, g2 ).US contains as a prefix maxX (queuex[g2 ]).us,
which equals to x, for some (xu, Pu) E queue[g2] such that xu.xl =
maxX (queue,[92]).xl.
It follows that

X(pi, g1).xl < Xn.xl < x,.xl = X(p,, prev_view (p, g92)).xl,

and the inductive hypothesis applies:

X(pi, gi).sp < X(p,, prev_view(p, g2)).us < X(p 2, g 2).US

3.gi = g and g2 < g. We have to consider the following four subcases:

(a)gl V established _viewids (p,). Straightforward.



(b)gl E established _viewids(pl) and gl V primary_views

Straightforward. Similarly to the corresponding case in part 1.

(c)g l e established_viewids(pl) and gl V normal views(pl).

Straightforward. Similarly to the corresponding case in part 1.

(d)gl E establishedviewids(pl), gl E primary_views, and gi E normal_views(pl).

Straightforward. Directly from the definition of X and part 13 of Invari-

ant 7.1.

Finally, the following invariant states that the safe sequence of any server in a primary

and normal view contains as prefixes safe sequences of other servers with strictly

smaller expertise levels.

Invariant 7.29 For all pl and p2, and all and g2 such that gl E created views(p 1 )
and g2 E created views(p 2 ),

g2 E primary_viewids

g2 E normal_viewids(p2 ) = X(pl, gl).sp < X(p 2 , g2).sp

X(Pl, gl).xl < X(P 2 , 92).xl

Proof 7.29: Straightforward. The proof is very similar to that of Invariant 7.28. N

7.5 Consistency of updates, safe and done sequences

In this section, we extend Invariants 7.26, 7.28, and 7.29 of the previous section,

which express consistency properties of the derived expertise, to the real expertise

of servers. Then, we use this result to obtain a number of high-level consistency

properties, among which there are Invariants 6.1 and 6.2 (Chapter 6, page 53).

Invariant 7.30 For all processes pi and P2,

1. If their expertise levels are the same, then their updates sequences are consistent.

pl. expertise _level = P2. expertise _level =* p. updates < > P2. updates



2. If expertise level of pl is less than or equal to that of p2, then pl.safe is a prefix

of P2 .updates.

pl. expertise level < P2. expertise level = pl.safe < P2 .updates

3. If expertise level of pl is less than or equal to that of P2, and P2 is in normal
mode of a primary view, then pl.safe is a prefix of p2.safe.

(p. expertiselevel < p2. expertise _level)

(p2.mode = normal) = p.safe < p2 .safe

(p2.view E primaryviews)

Proof 7.30: The proof follows immediately from Invariant 7.22, which states the
correspondence between state variables of T and the derived expertise X, and from

Invariants 7.26, 7.28, and 7.29, which restate Invariant 7.30 in terms of the derived
expertise X. N

Corollary 7.31 For all processes pi and P2, safe prefixes of their updates sequences

are consistent.

Proof 7.31: According to part 2 of Invariant 7.30, safe prefix of a node is a prefix
of updates sequence of a node with a greater or equal expertise _level. Without loss
of generality assume that pl. expertiselevel is less than or equal to P2. expertise_level.

Then, pl.safe is a prefix of p2.updates. Applying the same part of Invariant 7.30 just

to P2, we have p2.safe is a prefix of p2 .updates. Therefore, pl.safe and p2 .safe are
consistent. U

Corollary 7.32 For any reachable state t, if (t, 7r, t') is a transition of T, then for

all p E P, t[p].safe 5 t'[p].safe.

Proof 7.32: The only interesting actions in the inductive proof are the last gprcv(x)p,,p
and safe(x)p,,p. The proof is straightforward. U



For simplicity, we introduce the following notation:

Definition 7.4 Let p.done denote p.updates[1..p.lastupdate].

Invariant 7.33 For all p E P, p.done < p.safe.

Proof : Straightforward proof by induction on the length of the execution sequence.

Relies directly on corollary 7.32. M

Corollary 7.34 For any reachable state t, if (t, 7r, t') is a transition of T, then for

all p E P, t[p].done < t'[p].done.

Proof 7.34: Follows directly from Invariant 7.33 and Corollary 7.32. U

Top-level Invariants 6.1 and 6.2 follow immediately from the corollaries above. Here

are the restatements of these top-level invariants:

Corollary 7.35 p.done < p.safe < p.updates.

Corollary 7.36 In any reachable state t of T, for any pi and P2, pl.done and

P2. done are consistent.



7.6 Coherence of Local Buffers

Two of the top-level invariants (Invariants 6.3 and 6.4) in Chapter 6 express coherence
properties of the server's map and pending buffers. One of the properties states that,
if an update request appears as safe at some server but has not been yet executed by
its native server, then it is still reflected in the native server's map and pending buffers.
The other property states that a server can have at most one unexecuted native update
request on its updates sequences. The non-triviality of the first property comes from
the fact that servers can remove update requests from their pending buffers not only
as a result of executing them, but also as a result of an expertise-exchange process that
moves these update requests for reprocessing. The second property is straightforward,
but one of its proof cases has to deal with the updates sequence being adopted from
another server during expertise-exchange process.

As is, these properties do not immediately allow for proofs by induction because their
critical actions are not grounded in inductive hypotheses. That is, for example, when
an update request is delivered to a server, there is no direct way to argue what the
prestate value of the updates sequence at that server is.

In order to prove these properties, we generalize them to include statements that
allow us to track the state of the system throughout its execution: from the time that
messages are submitted to the group communication layer, while they are in transit,
and until they are finally delivered to the replication layer.

Invariant 7.37 For all clients c E C, let p stand for c.proc . Then, the following
statements are true:

1. There exists at most one element of the form (c, u) in the following sequences:
pending[p, g], queueu[g][next[p, g]..], and p.updates[(p.lastupdate + 1)..], where g ranges
through all the views that are at least as large as the last normal primary view of p.

2. Moreover, if there is one such element, then (c, u) E p.map and c E p.pending.

Proof 7.37: By induction on the length of the execution sequence.

Basis: Straightforward since all buffers are empty in the initial state.

Inductive Step: We consider the following critical actions:



gpsnd(c, u)p: This action adds element (c, u) to pending[p, g]. For part one, we have

to show that, in the prestate, there are no such elements in the considered sequences.

This immediately follows from the precondition c V p.pending and the contrapositive

of part two of the inductive hypothesis. For part two, we have to show that this

element in reflected in its native map and pending buffers. This follows immediately

from the precondition (c, u) E p.map and the effect p.pending +- p.pending U c.

vsorder((c, u),p, g): This action moves (c, u) from pending[p, g] to

queueu[g][next[p, g]..]. The proposition follows from the inductive hypothesis.

gprcv(c, u),,,: This action moves (c, u) from queue[g][next[p, g]..] to

p.updates[(p.last _update + 1)..]. The proposition follows from the inductive hypothe-

sis.

update(c, u)p: This action removes (c, u) from p.pending, but it also advances

p.last_update to cover this element. Therefore, the proposition is vacuously true.

gprcv(x)p,,p: The only action of interest is the last action of the expertise exchange

process, when p adopts the updates sequence of an expert. We have to show that

there can be at most one element of the type (c, u) on that sequence, and if there is

one, that it is reflected in p's local buffers. The proposition follows from the inductive

hypothesis, once we notice that any adopted sequence of updates contains as a prefix

the safe prefix of p in its last normal primary view (Invariant 7.30); therefore, all

the remaining elements of this sequence come after that view and are covered by the

inductive hypothesis.

safe(x)p,,,: The only action of interest is the last action of the expertise exchange

process in a primary view p.view that removes (c, u) from p.pending. We want to

show that there are no elements of the type (c, u) in the sequences listed in the propo-

sition. This action makes p.view be the last normal primary view of p (Invariant 7.18).

Thus, there are only three sequences that we need to consider: pending[p, p.view.id],

queue, [p. view.id] [next[p, p.view. id]..], and p. updates [(p.last_update + 1)..]. The propo-

sition is true because p has not had a chance yet to send any update requests in its

present view (by the contrapositive of part 2 of Invariant 7.16) and because (c, u) is

removed from p.pending only if it is not on the p.updates sequence of p (according to

the condition in the code).

Top-level Invariants 6.3 and 6.4 follow straightforwardly from Invariant 7.37.



7.7 Coherence of Local Database Replicas

In this section, we show that the state of the local database replica at any server

corresponds to the sequence of executed update requests at that server. We use this

fundamental fact in the next section when we prove coherence of query processing.

Invariant 7.38 For all p E P, p.db = compose(p.updates.u[1..p.last_update]) (dbo)

Proof 7.38:

Basis: In the initial state, p.db = dbo, p.updates.u[1..p.last _update] = [],

and compose([ ])(dbo) = dbo. Therefore, the proposition holds.

Inductive Step: The critical actions are gprcv(c, u),,p, gprcv(x)p,,p, and update(c, u),.

gprcv(c, u)p,,p: The left side of the proposition is unaffected. The right side is also

unaffected because of Corollary 7.35. Therefore, the proposition is true.

gprcv(x)p,,p: Only the last action of expertise-exchange process is of interest. The

left side of the proposition is unaffected. The right side of the proposition is also

unaffected because of Corollary 7.34 and the fact that p.last_update is unchanged as

a result of this action.

update(c, u)p: Both sides change. The proposition follows immediately from the

inductive hypothesis and the definition of compose. Indeed,

t'[p].db = u(t[p].db), by an effect of update(c, u)p;

= t[p].updates[t[p].last_update + 1].u(t[p].db), by precondition on update(c, u),;

= t p]. updates[t[p] .last _update + 1].u(compose(t [p]. updates.u[ 1..t[p].last update]) ) ,

by the inductive hypothesis;

= compose(t[p].updates.u[1..(t[p].lastupdate + 1)]), by definition of composition;

= compose(t'[p].updates.u[1..(t'[p].last update)]), by an effect of update(c, u),.

U



7.8 Coherence of Query Processing

We conclude this chapter by proving top-level Invariant 6.5 which expresses coher-

ence properties of query processing. Parts (a) and (b) of this multipart invariant

claim that, when query answers arrive within the same view of their submission, the

corresponding query requests are still reflected in the map and pending buffers of

their recipients; This is similar to what we established before for update requests, but

is simpler because it concerns only single views. Parts (c), (d), and (e) claim that

query answers are correct in terms of both, the sequences of update requests at their

recipients and the last database states that their clients have witnessed.

As is, Invariant 6.5 does not immediately allow for a proof by induction because

its critical actions are not grounded in inductive hypotheses. In order to prove this

invariant, we generalize it to express coherence of query processing in its intermediate

stages (Invariants 7.40 and 7.42).

First, we state the following two auxiliary invariants:

The following invariant expresses a perhaps obvious fact that query_counter of any

process is equal to the number of queries delivered to this process in its current view.

Invariant 7.39 p.query_counter = Iqueueq[p.view.id] [1..(next[p, p.view.id] - 1)]I

Proof 7.39: Straightforward induction. U

The following invariant expresses the fact that for each entry in the p. queries buffer

of VStoDP there is a corresponding entry in the queue[p, p.view.id] buffer of VS.

Invariant 7.40 For any p, let (g, S) denote p.view. Then the following statements

are true:

1. If (c, q, 1) E p.queries then there exists i such that the following two statements

are true:

(a) ((c,q, 1), c.proc) = queue[g][i]

(b) rank(p, S) = i mod ISI



2. If (c, a, 1) E p.queries then there exists q, 1', and i such that the following four

statements are true:

(a) ((c,q, 1'), c.proc) = queue[g][i] and l' < 1

(b) rank(p, S) = i mod IS

(c) a = q(compose(p.updates.u[1..1]) (dbo))

(d) 1 < p.lastupdate

Proof 7.40: Straightforward induction. Relies on Invariants 7.38 and 7.39. M

Corollary 7.41 In any reachable state of the system, for any p and g, if (c, a, 1) e
p.queries or (c, a, 1, g) E in-transitp,c.proc, then 1 < X(p, g).su.

Finally, we are able to state and prove an invariant that generalizes Invariant 6.5 to

intermediate stages of query processing.

Invariant 7.42 For any client c E C, let p denote c.proc , g denote p.view.id, and

I denote p.last(c). Then, the validity of one of the following two statements:

1. (c, q, 1) E pending[p, g]

2. ((c, q, 1), p) = queue[g][i] for some i E Af and either one of the following

statements is true for p' such that rank(p', GtoS(g)) = i mod IGtoS(g) :

(a) next[p', g] i

(b) (c, q, 1) E p'.queries

(c) (c, a, 1') E p'.queries

where a = q(compose(p.updates.u[1..l'])(dbo))

(d) (c, a, 1', g) e in-transitp,,P

where a = q(compose(p. .updates.u[1..l']) (dbo))

and I < l' < p'.last_update

and I <P l1 p'.last_update

implies the validity of the following two statements: (c, q) E p.map and c E p.pending.

Proof 7.42: Straightforward induction. Relies on Invariants 7.38, 7.39, and 7.40

and Corollary 7.36. U

The proof of top-level Invariant 6.5 follows straightforwardly from this invariant.



Chapter 8

Correctness of Load Balancing

In the previous two chapters, we proved that automaton T implements automaton

S in the sense of trace inclusion. In this chapter, we accomplish the following three

tasks:

First, we complete the proof of Lemma 5.1, which states that automaton T' imple-

ments automaton T in the sense of trace inclusion. This result implies that automaton

T' also implements automaton S in the sense of trace inclusion (see Theorem 6.2).

Once we establish partial correctness of automaton T', we prove a liveness-related

claim that its servers are always enabled to advance their database states sufficiently

far to be able to process queries that are assigned to them.

Finally, we argue that, in any given view, each server is assigned the same (plus or

minus one) number of query requests as any other server of that view.

8.1 Correctness of T'

This section completes the proof that automaton T' implements automaton S in the

sense of trace inclusion. Recall from Chapter 5 pages 49-51 that what is left to be

shown is that the identity mapping from the reachable states of T' to the reachable

states of T holds when T' takes a newview action.

When T' executes a transition with a newview(v)p action, the corresponding execu-



tion sequence of T contains p.A actions of the form safe(c, u),,p, possibly separated
by actions of the form safe(c, q, )p,,p (which have no effect on the algorithm), followed
by a newview(v)p action. The fact that the simulation holds follows immediately once
we show that this execution sequence, call it a, is possible in T.

In order to show that a is possible, we have to show that p.A actions of the form
safe(c, u)p,,p are enabled in VS. In other words, if (g, S) denotes the current view
of p prior to the newview action, then we have to show that for each r E S the
sequence queue[g][next_safe[p, g]..(next[r, g] - 1)] contains p.A update messages.

However, this complicated condition is true, if we can show that there exists a member

p' E S such that the sequence queue[g] [next _safe[p, g]..(next_safe[p', g] - 1)] contains
p.A update messages. This is valid since part 13 of Invariant 7.1 states that the next
index of any member in any given view is bounded from below by the next_safe indices
of all the members in that view.

In order to show this result, we proceed with the following three steps: We first define a
collection of history variables that keeps track of the largest database states witnessed
by each process p in each view g. We then prove that in any reachable state t of T that
corresponds to a reachable state of T', if t[p].A is greater than zero, then the largest
database state known to the clients of p has been witnessed by p during its current
view. Finally, we show that, if t[p].A is greater than zero, then there exists a process

p' such that the sequence queue[g] [next safe[p, g]..(next_safe[p', g] - 1)] contains p.A
update messages.

8.1.1 History Variable

Recall the definition of the derived variables p.last_max and p.A from Definition 5.2
on page 50. Variable p.last_max represents an index to the largest database state

known to the clients of p. Variable p.A represents the difference between p.last_max

and p.safe toupdate if this difference is positive, and zero otherwise.

We define a history variable, lastmax[p, g] for each p and g, to keep track of the

largest database state witnessed by p during its participation in view g. The initial

value of each of these variables is 0. The history variables are set in an obvious way
at the places where variable last is modified:
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update(c, u)p
Pre: lastupdate < safe.toupdate

(c, u) = updates[last.update + 1]
Eff: lastupdate +- lastupdate + 1

db -- u(db)
if (c.proc = p) then
pending -- pending - c

map(c) +- ok
last(c) - last_update

if (lastupdate > lastmax[p, p.view. id])
then lastmaxz[p, p.view.id] +- lastupdate

ptprcv(c, a, 1, g)p,,p
Eff: if (g = view.id A c.proc = p) then

pending +- pending - c
map(c) 4- a
last(c) +-

if (1 > lastmaz[p, p.view.id])
then lastmax[p, p.view.id] +- I

8.1.2 Properties

We now present a number of properties involving the values of last_max[p, g].

First, we prove that, in any reachable state t of T that corresponds to a reachable

state of T', t[p].A can be greater than zero only due to the database indices that p

has witnessed during its current view. This result is stated in Corollary 8.2, which

follows from Invariant 8.1 and Lemma 8.1 stated below.

The following invariant states that the value of p.safe_to_update in a reachable state

of T' is greater than the values of last_max[p, g] for all previous views g of p.

Invariant 8.1 In any reachable state of T', for all p in P and all g in G,

if g < p.view.id, then last_max[p, g] < p.safe_to_update.

Proof : Straightforward induction. The only interesting action of T' is newview. Its

effect makes sure that p.safe to_update is at least as large as last_max[p, g]. U

The following is an auxiliary lemma that states that throughout an execution of T,

the values of last(c) are non-decreasing.

Lemma 8.1 For any reachable state t of T, if (t, 7r, t') is a transition of T, then, for

all p in P and all c in C such that c.proc = p, it follows that t[p].last(c) < t'[p].last(c).
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Proof 8.1: Straightforward induction. The critical actions are update and ptprcv.
The inductive step for the former is straightforward. The inductive step for the latter
follows immediately from part (d) of Invariant 6.5. N

From Invariant 8.1 and Lemma 8.1, it follows that, in any reachable state t of
T corresponding to a reachable state of T', if t[p].A > 0, then t[p].last_max =
t.lastmax[p, t[p].view.id]. Therefore, the following corollary is true:

Corollary 8.2 In any reachable state t of T corresponding to a reachable state of T',

if t[p].A > 0, then t[p].A = t.lastmax[p, t[p].view.id] - t[p].safe_to._update.

The following invariant states that last_max[p, g] can surpass X(p, g).su only when
g is primary and normal at p. Moreover, there always exists a member p' of GtoS(g)
such that lastmax[p, g] is bounded from above by X(p', g).su.

Invariant 8.3 In any reachable state of T, for all p in P and all g in G,
if X(p, g).su < last_max[p, g], then

1. g E normal_viewids(p)

2. g E primaryviewids

3. 3p' E GtoS(g) . last_max[p, g] < X(p', g).su

Proof : Straightforward induction. The only interesting action is ptprcv. The proof
relies on Corollary 7.41 and Invariant 7.42. U

From this invariant it is straightforward to show the following corollary:

Corollary 8.4 In any reachable state of T, for all p and all g, if X(p,g).su <
last max[p, g], then there exists p' E GtoS(g) such that

Iqueue, [g][nextsafe[p, g]..(next_safe[p', g] - 1)]1 _ (lastmax[p, g] - X(p, g).su)

Proof : Straightforward. Relies on Invariant 8.3 U
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Finally, we are able to conclude that the identity refinement from T' to T holds when

T' executes a transition with a newview action.

Lemma 8.2 If t is a reachable state of T corresponding to a reachable state of T',

then the corresponding execution sequence a is enabled and the mapping is preserved.

This completes the proof of Lemma 5.1 that T' implements T in the sense of trace

inclusion. Therefore, Theorem 6.2 holds, and the implementation automaton T' is

partially correct with respect to the specification automaton S.

8.2 Properties of T'

Notice that all invariants of T are the invariants of T'. This is true since T' implements

T in the sense of trace inclusion and since the refinement mapping from T' to T is

identity.

Using a very similar argument to the one used in the previous section, we can show

that servers of T' are always enabled to advance their database states sufficiently far

to be able to process the queries assigned to them.

Finally, we observe that the number of query requests assigned to each particular

server during its participation in a certain view is the same (plus or minus one) as

the number of query requests assigned to any other server during its participation in

that view. This property follows immediately from the fact that each server sees a

prefix of the total order on query requests delivered within the same view and from

the properties of the mod function.
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Chapter 9

Conclusions and Future Work

Group communication services provide powerful abstractions upon which it is possible

to construct highly fault-tolerant applications, such as replication and load-balancing

systems that tolerate partitioning and merging of the underlying network. Unfortu-

nately, the lack of formalism at the level of group communication services had impeded

the development of systematic and formal approaches for the design of applications

that use these services.

In an effort to remedy the lack of good specifications for group communication ser-

vices, Fekete, Lynch, and Shvartsman recently proposed a simple automaton specifi-

cation for a view-synchronous group communication service [13].

In this thesis, we have used this specification as a building block to formally model

an intricate and important application that integrates replication and load-balancing,
guarantees sequentially consistent behavior, and tolerates network partitioning.

Using the I/O automaton model of Lynch and Tuttle, we have presented a specifica-

tion and an implementation automata for this service, and have given a hierarchical

proof that the latter implements the former in the sense of trace inclusion.

The specification automaton defines a sequentially consistent data service, in which

update requests are performed with respect to the latest data states. Query requests,

on the other hand, are performed with respect to the data states that are not neces-

sarily the latest ones, but that are at least as advanced as the last states witnessed

by the queries' clients.
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The implementation automaton is composed of a collection of identical automata
specifying a state machine of each server, the VS specification automaton for a group
communication service, and a collection of automata specifying reliable reordering
channels between any two servers. The implementation automaton models a repli-
cated service in which update requests are processed in the same order at all servers,
thus guaranteeing mutual consistency of data replicas, and in which query requests are
processed at single servers determined by a load-balancing strategy which equalizes

the number of queries assigned to each member of the same group.

The hierarchical proof of correctness establishes that all traces of the implementation
automaton are valid traces of the specification automaton. This proof relies on a
number of high-level invariants, which we have proved assertionally. The proof of
these invariants is based on an interesting approach: we have invented a derived
function X that expresses recursively the highest state reached by each server in each

group. In a sense, this function presents a law according to which the replication
part of the algorithm operates. As seen in Section 7.4, the recursive nature of this
function makes proofs by induction easy: proving an inductive step simply involves
unwinding a recursive step of the derived function X.

We have also proved a liveness-related claim that the load-balancing part of the
algorithm is uniform and non-blocking. For uniformity, we have shown that each
member of a group is assigned the same number of query requests as any other
member of that group. For non-blockage, we have shown that the servers are always
able to sufficiently advance the state of their replicas in order to process the queries
assigned to them.

In addition to presenting a novel algorithm that integrates replication and load-
balancing, this work has the following two important implications:

First, it demonstrates that VS specifies a powerful service capable of supporting im-
portant applications. Moreover, it demonstrates that the style of the VS specification

is formal enough to support rigorous modeling of applications and is simple enough to

provide intuitive understanding of the group communication service. We note that the

VS specification can be easily extended to include other potentially useful properties.
Based on our experience with the load-balancing part of the presented algorithm, we

identify the following two useful extensions to VS: a version of multicast without safe
notifications, and a version of within-view unicast.
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Second, our work exhibits a number of general approaches that can be used to formally

model other replication and load-balancing algorithms based on formally specified

group communication services.

In order to keep the discussion and the correctness proof tractable, we have chosen

to omit secondary functionality from our algorithm, such as support for non-blocking

clients and for updates that return data values (instead of ok). However, the algorithm

and the proof can be straightforwardly extended to accommodate this functionality.

Another straightforward extension to the algorithm would be to implement propaga-

tion by eventual path [2, 1], a strategy in which servers of non-primary views share

their update requests with the other members of their views. As a result of this shar-

ing, update requests can reach primary groups and be executed faster than if they

remained known only to their original servers. This strategy makes more sense when

it is less important to notify clients that their requests have been performed than

to actually perform them. In particular, this strategy makes less sense when clients

block, which is why we did not implement it in our algorithm.

Regarding future work, an important direction would be to investigate liveness of the

presented algorithm. While this thesis has dealt solely with the safety properties of the

algorithm, it is important to consider its performance and fault-tolerance properties,

which are stated conditionally to hold in periods of good behavior of the underlying

network. In particular, it would be interesting to analyze conditions under which the

load-balancing part of the algorithm performs adequately compared to other load-

balancing schemes.

Another important direction for future research would be to investigate the suit-

ability of multicast group communication systems for other, possibly adaptive, load-

balancing schemes. These schemes could take advantage of powerful multicast primi-

tives provided by the underlying group communication service to yield good schedul-

ing strategies. To offset the extra computation and communication costs associated

with multicast, these schemes could, for example, pack several tasks on one message.

Finally, it would be interesting to adopt the algorithm presented in this thesis to a

dynamically evolving set of processes by using a variant of a dynamic view-oriented

group communication service presented in [25], instead of VS. This adaptation would

be similar to the way a static totally-ordered broadcast application of [13] has been

adopted to its dynamic version in [25].
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