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Abstract

Given a graph property P, we study the tradeoff between the pre-processing space
and the query time in the following scenario. We are given a graph G, a boolean func-

tion family F, and a parameter s which indicates the amount of space available for

storing a data structure D that contains information about G. The data structure D

satisfies the constraint that the value of each cell c in D corresponds to an application
of some function drawn from F. Our queries are of the form: "Does the subgraph

Gx induced by the vertex set X satisfy property P?" For various settings of F and

s, this model unifies many well-studied problems. At one extreme, when the space

s is unrestricted, we study the generalized decision tree complexity of evaluating P

on the entire graph G itself; each tree node stores a function in F applied to some

subset of edges. A special case of this model is the famous AKR conjecture (where

.F, contains merely the identity function g(x) = x) which states that any non-trivial
monotone graph property is evasive. At the other extreme, when the function family

F is unrestricted, our problem is an example of the classical static data structure

problem and we examine the cell probe complexity of our problem. We study graph

properties across this broad spectrum of computational frameworks. A central thesis
of our work is that "polynomial preprocessing space yields only a negligible (poly-
logarithmic) speedup". While proving such a result for an unrestricted F is unlikely,
we provide formal evidence towards this thesis by establishing near-quadratic (opti-

mal in many cases) lower bounds under a variety of natural restrictions. Our results

are built upon a diverse range of techniques drawn from communication complexity,
the probabilistic method and algebraic representations of boolean functions. We also

study the problem from an algorithmic viewpoint and develop a framework for de-

signing algorithms that efficiently answer queries using bounded space. We conclude

with a study of space-time tradeoffs in an abstract setting of general interest that

highlights certain structural issues underlying our problem.
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Title: Professor
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Chapter 1

Introduction

We study space-time tradeoffs for graph properties. Specifically, given a graph prop-

erty P, we study the tradeoff between the pre-processing space and the query time

in the following scenario. We are given a graph G, a boolean function family F,

and a parameter s which indicates the amount of space available for storing a data

structure D = {c 1, c2, ..., C,} that contains information about G. The data structure

D satisfies the constraint that the value of each cell ci in D corresponds to an appli-

cation of some g E F to a subset of edge variables. Our queries are of the form "Does

the subgraph Gx of G induced by the vertex set X satisfy the property P?" We

refer to this problem as the induced subgraph problem. A given query q is answered

by probing cells of D and the time t spent in answering q is the number of probes

made. Our goal is to study the worst-case time t = T,,,(P) needed to answer queries

as a function of the family F, space s, and the number n of vertices in the input

graph G. Our framework elegantly unifies several well-studied questions concerning

graph properties and data structures, hitherto studied in isolated settings. At one

extreme, when the space s is unrestricted, the time t = TF(P) measures the decision

tree complexity of evaluating P on the entire graph G itself; each tree node stores

a function in .F applied to some subset of edges. A well-known special case of this

model is the famous AKR conjecture (where .T, contains merely the identity function



g(x) = x) which states that any non-trivial monotone graph property is evasive.' The

conjecture is proven to within a constant factor i.e. every non-trivial monotone graph

property is known to be almost evasive [13, 5].

At the other extreme, when the function family F is unrestricted, our problem

becomes an example of the classical static data structure problem and the time t =

T(P) measures the cell probe complexity of induced subgraph problem. The static

data structure problem is defined in general for an arbitrary function f : Y x Q -+

{0, 1} (f is the property P in our case), where the first input y E Y is static (the

graph G), ly| = m, and the second input q E Q is a dynamic query (the induced

subset X), |q| = n. The objective is to determine the worst case number of probes

needed to compute f(y, q) using a data structure with s cells; the problem has been

well-studied in the literature ([1], [2], [8], [9], [10], [14]). Still, no explicitly defined

function f is known for which t = w(n) is proven when space s = poly(n). Showing

such a super linear bound for an NP function f (an NP graph property in our case)

would unconditionally separate NP from the class of read-twice branching programs

([11]); a long-standing question in complexity theory. Notice that the case when both

space s and family F are unrestricted is trivial as every query can be answered in

unit time.

We study graph properties across this broad spectrum of computational frame-

works, shedding some light on the combinatorial structure of many fundamental

properties. Our techniques for obtaining the lower bounds rely on the probabilis-

tic method, information-theoretic arguments such as the ones used in communication

complexity, algebraic methods for representation of boolean functions and combi-

natorial arguments that exploit the structure of minimal "certificates" for a given

property. The diverse nature of these techniques highlights various structural aspects

of graph properties that are interesting in their own right. A thesis central to our

work is that for any function family F, the time T,(P) = Q(n2/polylog(s)) for any

evasive graph property P, that is, polynomial preprocessing space yields only a neg-

'A function h : {0, 1}m -+ {0, 1} is said to be evasive (almost evasive) if any decision tree for h
has depth m (Q(m)).



ligible (poly-logarithmic) speedup. While proving such a result for unrestricted Y is

unlikely, as indicated in the preceding discussion, our work provides formal evidence

towards this thesis under a variety of natural restrictions. In what follows, we de-

scribe more precisely our results, motivations and techniques, organized across this

broad spectrum.

Restricted Space, Unrestricted Function Families: Since T is unrestricted,

we denote time simply by T. The best known lower bound for an explicitly defined

function, as indicated above, is Q(n/ log s). We match this bound for the induced

subgraph problem when the underlying property is any non-trivial monotone graph

property. We also show the same result for non-monotone property PARITY. The

result is shown using the connection between static data structure problems and

the communication complexity model, discovered by Miltersen [8], and essentially all

known bounds can be viewed as an application of this technique [11]. In contrast, a

simple counting argument shows that almost every function f : {0, 1}m x {0, 1}n _

{0, 1} requires t = Q(m) even with exponential space s = 2 n-1 [8]. Thus, a central

problem is to construct an explicit family of functions which is "hard" to speed-up.

We believe that induced subgraph problem for evasive graph properties is a candidate

function family towards this end.

We also study the asymmetric communication complexity [11] of our problem.

In this setup, instead of measuring simply the total number of bits exchanged, we

measure the number of bits sent by Alice and Bob individually. An [A, B]-protocol

is a protocol where Alice sends at most A bits and Bob sends at most B bits. A

lower bound of [A, B] means that either Alice must send Q(A) bits or Bob must send

Q(B) bits in order to compute the function. We show that when the underlying graph

property is PARITY (of edges), there is a [n2/ log n, n] lower bound. We conjecture that

the asymmetric communication complexity of induced subgraph problem for evasive

P is [n2 , n]. Thus, if Bob does not send almost the entire subset X to Alice, Alice

must send Bob almost the entire graph G.



Restricted Space, Restricted Function Families: Our interest here is to study

space-time tradeoffs when ci's are drawn from some general, yet not arbitrary, func-

tion family }" i.e. the measure 7T, , . We remark here that if " equals the family of

all monotone functions, it is "equivalent" in power to the unrestricted setting above.

This follows from the fact that any (non-monotone) function can be efficiently simu-

lated by monotone functions using the idea of "slice functions" [4]. In general, many

seemingly restrictive families can capture large classes of functions via efficient simu-

lation. Observe that even when restricting to some simple function families T, many

evasive properties are now expressible as a single cell function that takes as input

the entire graph. Consider the following evasive property P: Is G an empty graph?

Let F be simply the family of OR functions. Clearly, a single OR can express the

property on a given G. On the other hand, a cell storing an OR of all the edges

in the graph is of no use in determining whether an induced subgraph Gx satisfies

P. Intuitively speaking, the cells that are sensitive to "many" edges are useful for

answering only very few queries, while "short" cells might be good for many queries

but we need to read many of them to answer a "large" query. Indeed, we prove that

if F is restricted to only AND and OR functions, T,,(P) = Q(n2/ log 2 s) for any

evasive property P. Moreover, for many natural properties we show that the bound

is tight. We then non-trivially extend this result to a-CNF, a-DNF (for constant a)

and symmetric function families and show that T,,(P) = Q(n 2/polylog(s)) for any

evasive proeprty P. We also study the following curious question: What is the time

complexity of induced subgraph problem for a property P when the data structure

can only contain answers about whether an induced subgraph of the input graph has

property P. The interest in this question arises from the observation that indeed

many properties can be efficiently computed on an entire graph by simply evaluating

the property on various subgraphs. While any single query can now be answered

in one probe, we show Q(n2/ log 2 s) bound for any non-trivial "uniform" monotone

property. The central technique used in our results is a probabilistic argument which

shows that for any data structuring strategy, there exists an input graph G such that

(a) it "stabilizes" the value of any cell that is sensitive to many variables (where



"many" will depend on space s), and (b) still leaves a large subset X "untouched"

such that one can reveal the edges of Gx via an evasive strategy.2 Since the evasive

game is now only sensitive to cells with small number of variables, we get our desired

bounds. A variation of this technique has been used by Hellerstein et al [4] to study

graph reachability problem on bipartite graphs. An important distinguishing aspect

of their problem is that output to a query comprises of n bits rather than a single bit

of information.

Unrestricted Space, Restricted Function Families: At this end of the spec-

trum, our study essentially reduces to the following question: "how efficiently a graph

property P (on the entire graph) can be expressed using primitives from a function

family F ?" In other words, what is the decision tree complexity of P when the nodes

of the tree store functions from F? We denote this measure as T(P). Hajnal et al [3]

studied the measure 7ToR for specific graph properties such as connectivity and bipar-

titeness. We derive lower bounds on the measure T(P) when F. is the family AND,

OR or the family of small degree polynomials, and P is a non-trivial monotone prop-

erty. Specifcally, we initiate our study in an algebraic framework where we determine

the least degree of a multinomial over Z 2 that expresses a given monotone property

P. Building on ideas presented in the classic paper by Rivest and Vuillemin [13],

we establish the following general result. For any transitive function3 f on m = pk

variables s.t. f(0) # f(i), the degree of the (unique) multilinear polynomial Q over

Z, that computes f, is m. An implication of this result is that every non-trivial

monotone graph property requires a multinomial of degree Q(n 2) over Z 2, implying

the AKR conjecture to within a constant factor. Thus if each function in a family F

can be represented by a multinomial of degree at most d, we show TF(P) = (n2/d),

e.g. T,,,(P) = Q(n 2) for the XOR family. On the other hand, this approach does not

work for the two most natural extensions of the AKR setup, namely the AND and

OR function families, since the degree of these functions can be as large as Q(n 2). We

develop general techniques for studying these families by essentially reducing their

2An answering strategy that forces any probing algorithm to read all the edges of the graph
3See Section 5.1.1 for definition



decision tree complexity to a certain measure of standard decision trees. We then

develop several techniques to lower bound this measure and obtain Q(n 2 ) bound for

many properties. These techniques involve examining the combinatorial structure of

"graph certificates" and design of general answering strategies for monotone graph

properties. One of the techniques that we examine in detail is based on the analysis

of two greedy strategies for playing decision games in the AKR setup, namely, answer

"no" ("yes") unless forced to say "yes" ("no"). Our study of these strategies might

be of independent interest. As an aside, we demonstrate the exponential gap between

adaptive and oblivious complexities of computing the parity function using the family

of threshold functions.

Upper Bound Results: So far we saw that near-quadratic lower bounds can be

shown under certain restrictions - in line with our belief that polynomial preprocess-

ing space does not yield significant speedups. We now approach the induced subgraph

problem from an algorithmic viewpoint in an effort to improve upon the naive O(n 2)

bound. As our lower bound results might already suggest, it is unlikely to achieve

speedups better than a polylog(s) factor. However, as we shall see, even achieving

small speedups requires non-trivial new ideas. Our approach here is to develop canon-

ical techniques for improving upon the trivial bounds. To begin with, we develop a

representation scheme, called the standard graph representation which allows us to

"efficiently"4 perform useful operations on the graph induced by any query set. The

basic idea of this respresentation is to partition the graph into small clusters and

exhaustively store information within each cluster. To construct information about

any given induced subgraph, we simply combine together relevant pieces from within

each cluster. As an example, our representation scheme can be used to speed up

construction of breadth-first (depth-first) forests - an integral part of many graph

algorithms. We also develop a more efficient algorithm to compute the transitive clo-

sure of an induced subgraph; this allows us to efficiently compute properties such as

connecivity and bipartiteness. Finally, we define the notion of "speedup preserving"

4Here "efficient" and "speedup" signify only modest polylog(s) factor improvements.



reductions for induced subgraph problem which enable us to transform an efficient

algorithm for one property to one for another. An interesting aspect of our results is

that simple function families such as AND, OR and threshold functions, seem to be

all that one can use for a broad range of properties. We note here that a clustering

based representation scheme has also been used by Hellerstein et al [4] for a static

data structure problem on bipartite graphs.

The (s, t)-Spanning Set Problem: Finally, we examine space-time tradeoffs in

the following abstract setting that is interesting in its own right and further highlights

the combinatorial structure underlying our problem. Assume that we are given a set

M of pm elements with some operation * and M has some "basis" B of size m, i.e.

every element of M is uniquely "expressible" using elements of B. B is the smallest

set that can express every "query" element in M- possibly using all m elements in the

process. Now suppose that we are willing to store more than m elements in B and seek

to express any element of M using at most t << m elements drawn from B. If we find

such B of size s, this B is called a (s, t)-spanning set for M. More generally, we will

be interested in (s, t)-spanning set for some subset W C M. The question as usual is

what is the optimal tradeoff between s and t. We start our study by establishing some

general bounds. In particular, we show that t = E(m/ logP s) when W = M, that is,

only logarithmic speedup is possible using a polynomial size spanning set. Also, for

any random W C M with IW| = pn, we show that almost certainly t = E(m/ log, s)

for s = o(pn), i.e. asymptotically we cannot do better than building a spanning set

for entire M. Next we focus on the case when the set M = {0, 1}m and is equipped

with the union operation. We show that for any monotone function f, the non-

deterministic as well as oblivious complexity of evaluating f using AND/ OR function

families, can be characterized in terms of (s, t)-spanning set. This characterization

is then used to obtain lower bounds on the non-deterministic and oblivious variants

of TAND,S(P)/TOR,S(P) and AND (P)/7TR(P) for a monotone property P. For many

properties, including connectivity and bipartiteness, we show near-quadratic bounds

even when non-determinism is allowed. As an aside, we obtain a separation between

adaptive versus oblivious algorithms for AND/ OR-restricted data structures.



Organization: Chapter 2 gives notation and preliminaries, while chapters 3 through

7 correspond to the preceding paragraphs in order.



Chapter 2

Notation and Preliminaries

Let f : Y x Q -+ {0, 1} be a function we are trying to compute, y E Y, q c Q,

jy = m, Iql = n and n < m.

2.1 Generalized Cell Probe Model

The general cell probe model model of computation is the following. We pre-process

the static input y by computing s pre-specified functions gl,..., g, : Y -+ {0, 1}b. The

results we store in s cells of our database D. Given a dynamic input q we compute

f(y, q) by adaptively reading the cells D trying to minimize the number of probes we

make. Thus, the time w.r.t. to a given D is the worst case number of probes we have

make over all dynamic inputs. Unless otherwise stated, we will assume that the cell

size b = 1. Let F be some function family.

Definition 1 (.F-restricted Data Structure) An F-restricted Data Structure is

a database D where every cell corresponds to an application of some function in F to

an ordered subset of bits from the static input.

We will talk about F-restricted data structures for a variety of families of .F.

Some examples of function families that we study include AND, OR, XOR and a-

CNF/a-DNF (i.e. every clause in the formula has at most a literals) families. For

instance, the family AND consists of functions {gi}i>l where gi denotes conjunction



of i variables. F consisting solely of the identity function is called trivial. We will

also talk about the family of threshold or symmetric monotone functions. A threshold

function Tp,q (Fp,) is a function on p variables that is true iff at least (less than) q

out of p input variables are set to true. Clearly, Fq = Tp,q, so we can w.l.o.g. restrict

our attention to "upward" functions Tp,q when talking about the family of threshold

functions.

Thus, given a family 7 and space s, the task is to find the .F-restricted data

structure with the smallest query time over all the dynamic inputs. This measure is

denoted Ty,,(f).

Deterministic and Non-deterministic Computation: In the model described

above the algorithm deciding which probe to make next is deterministic. We can also

talk about non-deterministic models when the probing scheme is allowed to make

guesses. Since the complexity measure is just the number of probes made, the only

non-determinism is in guessing the right cells to read. There are 3 related non-

deterministic models: verifying f = 1 (analog of NP), verifying f = 0 (analog of

coNP) and guessing and verifying f (analog of NPncoNP). In verifying f = 1 (0) the

probing scheme has to reject all the guesses when f = 0 (1) and accept at least once

when f = 1 (0). The time complexity is the maximum number of cells read along any

non-deterministic branch. Guessing and verifying f can be thought as making guesses

and outputting 0, 1 or failed. When f = z, all non-failed branches should output z

and there should be at least one such branch. It is easy to see that the time to guess

and verify f is the maximum of the time to verify f = 1 and f = 0. In general, we

will use T to refer to deterministic time measures and fT - to non-deterministic.

When talking about verifying f = 1 (0) we use superscript 1 (0), e.g. AnT,,(f ) .

Oblivious Computation: Rather than letting the probing scheme determine the

next cell to read based on the values of the previous cells (this computation is called

adaptive), we can talk about oblivious computation. In this model, given a query q,

the algorithm has to specify in advance all t cells that it will read from the database



D. The time, as usual, is the number of cells read. We remark that obliviousness

is only a limitation for deterministic computation, since a non-deterministic probing

algorithm can (obliviously) make all possible guesses and reject the ones that it did

not like at the end. We use superscript obl when talking about oblivious time measures,

e.g. To(f).

Classical Data Structure Problem (Unrestricted F): When the function fam-

ily F is unrestricted, we can store absolutely arbitrary information about our static

input and the problem of computing f becomes the classical data structure problem

introduced by Yao [15]. This is the hardest case for proving strong lower bounds. We

omit the subscript F when the function family is unrestricted, e.g. T(f), AfTJl(f).

2.2 Decision Tree Complexity (Unrestricted s)

When the space s is unrestricted, we can probe at any moment the value g(y) for any

g E F.

Definition 2 (Decision Tree) Let h(yl,..., y,) : {0, 1}m - {0, 1} be any function

and . be a family of functions from {0, 1}m - {0, 1}. A decision tree T for h with

respect to .F is a binary tree where the leaves are labeled by 0 or 1, each internal

node is labeled by some function from .T and has two outgoing edges labeled by 0 and

1. Given an input y = yl ... ym we traverse T starting from the root and being at

an internal node labeled by g E . we always take an outgoing edge labeled by the

value of g(y). For every input y the value of the leaf we reach has to be h(y). The

(deterministic) decision tree complexity of h w.r.t. F, TT(h) is the minimum depth

of a decision tree w.r.t. F that computes h.

It is easy to see that when the space is unrestricted, the time to compute f is the

decision tree complexity w.r.t. indicated family F of computing f q=qo for the worst-

case query qgo. We will usually abuse the notation and simply talk about decision tree

complexity of f itself, identifying f with its restriction to the worst-case query. Thus,



we still use the notation T(f) to measure time when the space is unrestricted. The

reader is encouraged to view f as a function of a single variable y in such cases.

The non-deterministic and oblivious computation still make sense for unrestricted

space: we can view the database as consisting of all possible functions in F applied

to all possible subsets of input bits. We also omit the subscript , in such cases, e.g.

n/ (f), T7bl(f).

Simple Decision Trees, Certificates and Evasive Functions: A simple deci-

sion tree is a decision tree w.r.t. to trivial P, i.e. every node is labeled by some input

bit of y. The measures T(__) ,Ty(_), KT(_) are denoted simply by D(_), N(_), Nz(_)

in this case, and are called decision tree complexity, non-deterministic decision tree

complexity, z-non-deterministic decision tree complexity (i.e. reference to T is omit-

ted), where z E {0, 1}. When we talk about a decision tree without mentioning .F

explicitly, we refer the trivial F.

Definition 3 (Evasive Function) A function h(yl,..., ym) : {0, 1}m _ {0, 1} is

called (almost) evasive, if D(f) = m (Q(m)).

Evasive function has the property that any decision tree computing it has a long

computational path, where an adversary can always force the probing scheme to ask

about all the input bits of y. Such adversarial strategy is called an evasive strategy and

the whole interaction between the adversary and any probing algorithm - an evasive

game. Sometimes we loosely use the terms evasive strategy/game even for almost

evasive functions, corresponding to the strategy/game that forces to read almost all

the input bits. More generally, D(h) is the value of the decision game between the

algorithm that tries to compute h by asking the adversary about individual bits of y.

NZ(h) also has an alternative natural meaning.

Definition 4 (Certificate) A z-certificate Cz for h is a partial assignment that

already fixes the value of h to z. If no smaller partial assignment is a z-certificate,

then the Cz is called min-z-certificate. The size ICz I of Cz is the number of variables

it sets.



If we let Cz be the collection of all min-z-certificate for h, then it immediately

follows that NZ(h) = maxczecz ICI, i.e. the z-non-deterministic decision tree com-

plexity of h is the size of the largest min-z-certificate of h, which is also the largest

number of bits of y that is necessary to guess in order to verify that h(y) = z.

We will only talk about certificates for upward monotone f, in which case a min-

z-certificate always consists of a (minimal) subset of variables set to z that force the

function to z. We will often identify this certificate with the corresponding subset of

variables, since all the variables in this subset are set to z anyway.

The following is a folklore result:

Theorem 1 For any h, D(h) < No(h)N 1 (h) 5 (N(h))2 .

Thus, in the world of simple decision trees, "P = NP n coNP".

2.3 Communication Complexity Model

The two-party communication complexity model was introduced in a seminal paper

by Yao [16]. Again, we want to compute f : Y x Q F-+ {0, 1}, but instead of static

input y E D and dynamic input q E Q, we have two parties Alice and Bob who are

given y and q resp. They engage in a protocol, where they send each other some

messages about their inputs, until both of them are able to compute f(y, q). The

protocol proceeds in rounds where at each round Alice sends a message to Bob and

vice versa. There is no space limitation involved and the only measure of complexity

is the total number of bits t that they sent to each other. The messages are arbitrary

length and are sent in adaptive fashion one after another. The smallest worst-case

number of bits sufficient to be exchanged in order to compute f, is the deterministic

communication complexity Dc(f). Here the trivial protocol would be for one player to

send his entire input to the other one. If |yl = m, |q] = n, and m >> n, we clearly get

DC(f) < n + 1, corresponding to Bob sending Alice entire q and Alice replying with

1 bit answer f(y, q). An equivalent way to view a protocol is to view it as a general

decision tree where every internal node is labeled by an arbitrary function of either y



only (Alice's turn) or q only (Bob's turn), and has two outgoing edges labeled by 0

and 1. The leaves are labeled by 0 and 1. An execution is simply the traversal of this

tree until we reach a leaf - the value of f (y, q). The total number of bits exchanged

worst-case is the depth of the tree. The depth of the smallest depth protocol tree for f

is exactly D(f). We can also define non-deterministic communication complexities,

where Alice and Bob can make non-deterministic guesses. However, this measures

are easier to define combinatorially.

Definition 5 Let z E {0, 1}. An input (y, q) s.t. f(y, q) = z is called a z-input. A

rectangle is any set R = Y' x Q', where Y' c Y, Q' C Q. R is z-monochromatic if

it consists entirely of z-inputs. The z-cover number CC',(f) is the smallest number

of z-monochromatic rectangles covering (possibly with intersections) all z-inputs of

f. We define z-non-deterministic communication complexity Nc,z = logCcz(f) and

NC, = log(Cc,(f) + Cz,l(f)). Finally, we let the answer matrix Mf of f to be the

IY x QI matrix with Mf (y, q) = f (y, q).

An important observation in communication complexity is the fact that after

each round of communication the set of pair (y, q) that could produce the current

communication transcript always forms a rectangle R = Y' x Q', where Y' is the set

of y which are consistent with the messages that Alice sent to Bob and similarly for

Q'. In particular, a leaf labeled by z E {0, 1} in the protocol tree must correspond to

a z-monochromatic rectangle. This observation is a key to two basic and yet powerful

techniques for showing lower bounds on communication complexity.

The fooling-set technique says that if one can construct a set of input pairs H

s.t. for all (y, q) E H, f(y, q) = z for some fixed z e {0, 1}, but for any distinct

(Y1, q), (y2, q2) E H we have that at least one of f(yi, q2) and f(y 2 , q1) is different

from z, then DC(f) > Nc,z(f) > log JHI. The reason is that no two points in F can

be in the same z-monochromatic rectangle of f.

The second technique, provably more powerful but generally harder to analyze, is

the rank bound technique. It examines the structure of the answer matrix M1 . For any

field F (typically, we take the largest possible, say the reals), the rank bound states



that D(f) > log(2 -rankF(Mf) - 1). The technique is so powerful that it is a major

open problem in communication complexity of whether D(f) = (log(rankF(Mf))O(1)

for any f.

An analog of Theorem 1 holds for communication complexity as well.

Theorem 2 For any f : YxQ '-+ {0, 1}, DC(f) = O(Nc,o(f)Nc (f)) = O((Nc(f)) 2).

Asymmetric Communication Complexity: Miltersen et al [11] introduced a

finer notion of asymmetric communication complexity. Instead of measuring the total

number of bits sent by both players, we might measure the number of bits sent by

each player. Assuming n << m, for example, it is true that DC(f) < n + 1 since Bob

can send all his n bits to Alice. What, if Bob only sends o(n) bits? Can we show that

in this case Alice has to send significantly more than n bits? Define an [A, B]-protocol

to be a protocol where Alice sends Bob at most A bits and Bob sends Alice at most

B bits. An asymmetric complexity lower bound [A, B] means that either Alice has

to send Q(A) bits, or Bob has to send Q(B) bits in order to compute f.

One of the main techniques for showing lower bounds on the asymmetric com-

plexity introduced by [11] is the richness technique. As in the rank bound, we look

at the answer matrix Mf of f. If at least u rows of Mf contain v 1-entries each

(this property is called (u, v)-richness), but there is no (2- x 2  ) 1-monochromatic

rectangle for f, then there is no [A, B]-protocol for computing f. For example, to

show [m, n] lower bound on asymmetric complexity, one needs to show that there are

2cm inputs y s.t. for each of them there are at least 2 dn inputs q making f(y, q) = 1.

However, there is no rectangle in M consisting of all 1-entries of dimension 2
c' m x 2d'n

where 0 < c' < c < 1, 0 < d' < d < 1. For a much more detailed introduction to

communication complexity we refer the reader to [6].



2.4 Graph Properties and the Induced Subgraph

Problem

Let P be a graph property which means that P is a subset of n-vertex graphs invariant

under relabeling of vertices, i.e. P(G) = 1 implies P(G') = 1, for any G' isomorphic

to G. We usually denote a graph by G = (V, E). Given X C V, we let Gx = (X, Ex)

be the subgraph of G induced by X and Edgesx be the set of possible edges between

vertices in X. The induced subgraph problem is a function fp(G, X) = P(Gx).

Thus, the static input is the graph G of size m = (2) and the dynamic input in

X C V, it takes n bits to describe X, and the objective is to compute P on the

induced subgraph Gx. We slightly abuse the notation and apply our time complexity

measures to P rather than to fp, e.g. T1,,(P) rather than Ty,s(fp).

We will more often than not talk about a very rich class monotone graph properties,

which means that addition of edges cannot make the property go from true to false.

There are two trivial monotone properties corresponding to the property being always

true/false. We will exclude these 2 trivial properties from our consideration, so the

term "monotone property" always refers to a "non-trivial monotone property", which

means that P is false on the empty graph and true on the complete graph.

As we observed, when the space s is unrestricted, we talk about decision tree

complexity of computing the property P on the worst dynamic input. For the induced

subgraph problem this means that we compute the time to evaluate the property P

on the entire graph G. Thus induced subgraphs come into play only when the space

is bounded.

When FT is trivial, we talk about simple decision tree complexity of a given graph

property P. The famous Aandrea-Karp-Rosenberg conjecture (or the AKR con-

jecture) states that every (non-trivial) monotone graph property P is evasive. The

conjecture is proven to within a constant factor by Rivest and Vuillemin [13], i.e.

every every monotone property is almost evasive. Kahn et al [5] proved exact eva-

siveness for n being a prime power. A related result by Yao [17] states that every

(non-trivial) monotone bipartite property is evasive. Here bipartite property means



that it is defined only on bipartite graphs. Thus, the AKR conjecture provides the

"base" case for our study of the generalized cell probe complexity of the induced

subgraph problem, demonstrating T.7(P) = Q(n 2) for the trivial F for nay monotone

P.

Even though a lot of our results hold for general f : Y x Q - {0, 1}, we will

apply them mainly to the induced subgraph problem. Thus, we will frequently refer

to several common properties. These include CONNECTIVITY, BIPARTITE (G is bipar-

tite), FOREST (G is acyclic), CLIQUE (G is a complete graph), NON-EMPTY (G has

at least one edge), NO-ISOLATED-VERTEX (G has no isolated vertices), PARITY (the

parity of the number of edges of the graph), MAJORITY (G has more edges than non-

edges), k-CLIQUE (G has a k-clique). Except for PARITY, all mentioned properties

are monotone or anti-monotone (i.e. their negation is monotone).

We use the notation Cz to refer to the set of all min-z-certificates of a graph prop-

erty P on the entire vertex set. For example, for CONNECTIVITY a min-0-certificate

is a (missing) complete bipartite graph (this ensures that G is disconnected), so CO

is the set of complete bipartite graphs, No(P) = Q(n 2). C1 is the set of all trees,

so N 1 (P) = n - 1. For NO-ISOLATED-VERTEX, any Co E CO is a (missing) star

(No(P) = n - 1), while C1 E C1 is a union of mini-stars of size at least two each

that partition the n vertices of G. Such union of stars is the "minimal" way to en-

sure that there are no isolated vertices, since removal of any edge creates an isolated

vertex. Thus, N'(P) = n - 1 as well. For CLIQUE, C1 consists only of the complete

graph (No(P) = (')), while Co consists of (2) single edge graphs (N'(P) = 1). For

NON-BIPARTITE, Co E C' is a union of two (missing) cliques that partition the vertex

sets (No(P) = Q(n 2)), while C1 E C1 is any odd cycle, N'(P) _ n.



Chapter 3

Unrestricted Function Families

3.1 Unconditional Lower Bounds

We start by giving lower bounds when the function family TF is unrestricted, i.e.

bounds on T(P). For no static data structure problem for an explicitly defined

function, a bound better than Q( ' ) is known. Miltersen et al [11] showed that

obtaining an w(n) bound for a function in NP would separate NP from read-twice

branching programs - a long standing open problem. In contrast, we have the

following counting result of Miltersen [8]. For almost every random function, any

scheme with space s < 2n-1 requires t = Q(m) >> n ; observe that only doubling

the space to s = 2n yields t = 1. The result can be extended to non-deterministic

computation as well.

Lemma 1 [8] For a random function f : {0, 1}m x {0, 1}1n i- {0, 1} and for any

s < 2n- 1, with high probability T(f) > m - loglogs - 1 >> m/2 and NAT(f) >

V- 1 (f) > m-1
- logs

Proof: We use a counting argument. The number of databases cl,..., c, : {0, i}m

{0, 1} we can make is 22m,. For each of 2" queries we can make a separate decision

tree of depth t with vertices labeled by some ci. Number of such decision trees of

depth t is at most s2t. Thus, the overall number of databases and computations we

can have is 22m (s2t )2. If we can compute all 22m+n functions with space s and time



t, we must have

22ms(2t)2n 2 22m+n 2 ms + 2 t+n logs _ 2m+n + == 2t 2t-m log s 2 1 (3.1)

As -L < , the claim follows. The non-deterministic bound is identical except the

number of non-deterministic decision trees is 22 (3) < 2
't rather than s2, since we can

non-deterministically read any of the (') tuples of cells and have 2
t possible answers

for the cells we read and 2 possible answers for each of these 2t () traces. Proceeding

as before, the non-deterministic bound follows. *

So the best achievable lower bound with the current machinery is far from the

correct bound in almost all cases. Moreover, as was observed in [11], essentially all

lower bounds for the static data structure problem are obtainable via the connection

between the cell probe model and the communication complexity model, discovered

by [8]. For generality, we will talk about cell probe schemes with cell size b, i.e. each

stored function ci : {0, 1}m _ {0, 1}b. When making a probe, we read all b bits at

once. Given any cell probe scheme for computing f with cell size b, space s and

query time t, we can construct a communication protocol computing f where there

are t rounds of communication, and in each round Bob (the probing scheme) sends

log s bits (the index of the cell to be read) and Alice (the database) sends b bits (the

content of a cell). We simply view a probe as sending a log s bit index to the cell that

we want to read and the value read as sending b bits back.

Lemma 2 [8] Any cell probe scheme with space s, cell size b and time t for computing

f yields a [tb, t log s]-protocol for computing f. For the case of b = 1, we have DC(f) =

O(tlogs). Hence, T(f) = D(f) and AfT(f) = Q(I(f))

Since DC(f) n + 1, the best possible data structure bound obtainable this

way would be t = Q( n ). We next show that such a lower bound can indeed be

established for any non-trivial monotone graph property.

Theorem 3 For any non-trivial monotone graph property P, DC(P) > Nc(P)

Q(n). Thus T(P) > NfT(P)= ( )



Proof: We use the fooling-set method; fix a non-trivial monotone property P. Let

K[C, X] be the graph on the vertex set X that solely consists of a clique C C X.

We will slightly abuse the notation and use K[j, X] to denote an arbitrary member

of the collection {K[C, X] I C C X, ICI = j}. Denote by T(P) the least i such

that any (n/2)-vertex graph consisting solely of an i-clique satisfies P. Fix V to be

a set of n vertices. Now consider first the case j = T(P) > n/4. Take any A C V

with JAI = + J and let B = V\A, so BI = -j. For any C C A of size j, we

define a fooling-set pair (G = K[C, V], X = C U B). We observe that Xl = 1 and

the size of our fooling-set F is (Ii) = (j) (1 + )j 2 2"/4 , as j > n/4. To show

F is a fooling-set we check that P(Gx) = P(K[C, X]) = 1, as ICI = j = T(P), and

for any C1 $ C2, IC11 = 1C21 = j, we have P(G2X) = P(K[C1 n C2, X 1]) = 0, as

IC1 n C21 < j = T(P) (and similarly, P(GX2) = 0). Thus Nc,(P) > log IFI > n/4, if

j > n/4. We also observe that our fooling set induces an identity submatrix so the

rank bound could be used as well to get a bound on Dc(P).

Otherwise, j = T(P) < n/4, and we look at the dual (non-trivial monotone)

property P, which is true on G iff P is false on ?. Since on any set X of n/2

vertcies, P(K[j, X]) = 1 we have P(K[j, X]) = 0 which by monotonicity implies that

P(K[n/2 - j,X]) = 0, so T(P) > n/2-j > n/4, so we get Nco(P) = Nc'I(P) > n/4.

Hence, NC(P) > max(Nco(P), Nc,'(P)) = Q(n). *

The above result can also be established for a non-monotone property PARITY

using an idea quite similar to the one used in the known result for the inner prod-

uct function [6]. Let M be the answer matrix for PARITY, i.e. M(G,X) = P(Gx).

Let M' = MTM. We have that rank(M) > rank(M'). Let N be the total num-

ber of n-vertex graphs, i.e. N = 2n(n- 1 )/2. M'(X1,X 2) = P(Gx,)P(Gx2) =

|{GIP(Gx1) = P(Gx2) = 1}1. Assume both X, and X 2 are non-empty. If X, = X 2 =

X then exactly one half of the graphs will have parity 1 on X, so M'(X, X) = N/2.

If X,1 X 2 then we can assume w.l.o.g. that there is an edge e E Edgesx1 \Edgesx2.

N/2 graphs with parity 1 on X 2 can be partitioned into N/4 classes of size 2 where

the two graphs in a class will differ in exactly the edge e. Exactly one of the graphs

in each equivalence class will have parity 1 on X1, so M'(Xi, X 2) = N/4. Since



any K x K matrix with diagonal entries equal to a and off-diagonal entries equal

to b # a has full rank over the reals, we get rank(M) > rank(M') > 2" - 1, so

DC(PARITY) > n - 1 and hence T(PARITY) = Q( ').

3.2 Asymmetric Complexity

We examine next the asymmetric communication complexity of the induced subgraph

problem. Recall that an [A, B]-protocol is a protocol where Alice sends at most A

bits and Bob sends at most B bits. An asymmetric complexity lower bound [A, B]

means that either Alice has to send Q(A) bits, or Bob has to send Q(B) bits in

order to compute the function. Assume we have a lower bound [-, n] (r(n) < n)

for some property P. We saw that a cell probe scheme with query time t, space

s and cell size b produces a [tb, t log s]-protocol. Thus, applying this to P we get

t > Q(min( n, log)). This minimum is n/logs provided b < nlog. Thus, evenr ( b Ir(n)"

though we got the same bound on the number of probes needed, we can extend this

lower bound to schemes with cell size up to (nlogs)/r(n). We note that the actual

number of bits read is Q(n2 /r(n)), which is much closer to n2 especially if r(n) is

small. Even r(n) = n (which we have by Theorem 3) lets us make b = log s > log n,

but we would like to get r(n) = 1.

Conjecture 1 For any evasive property P we have [n2, n] lower bound on asymmetric

communication complexity for the induced subgraph problem.

As the first step, we prove a slightly weaker [ , n] lower bound for PARITY,

which already implies that t = Qt( n) even for b = n. We need the following lemma.

Lemma 3 Let M be a vector space of all the n-vertex graphs under the ( operation.

Then any collection of k non-empty cliques has Q(log2 k/ loglog k) linearly indepen-

dent cliques.



Proof: Let Kx denote a clique on X and let C be our collection of k cliques. We let

T(k) the worst possible rank of k non-empty cliques. We claim that for any 0 < a < 1

1
T(k) > min(log((1 - a)k) + T(ak), ) (3.2)

Assuming (3.2), we pick a = (we observe, it means different a at each level

of recursion). It is easy to prove then by induction that T(k) = Q(log2 k/ loglog k).

To show (3.2), take any a. Assume first that there is a vertex v E V such that

v belongs to r < (1- a)k cliques Kx,,..., Kx, in C. Let Hi be a star from v to

X\{v}. All Hi are distinct since all Xi are. Any collection of r vectors has rank at

least log r. Say H 1,..., Hiog, are linearly independent. It is easy to see then that any

collection C' of linearly independent cliques, each of which does not contain v, can

be augmented by Kx,,..., Kxjog to produce a still linearly independent collection.

This is because each Kx, contains Hi as a subgraph and no graph in C' contains v.

Thus, a linear combination being 0 implies that no Kx, are used, but this implies

that no graphs in C' can be used as well. Thus, by inductive assumption, the number

of linearly independent graphs would be at least log r + T(k - r), which is easily seen

to be dominated by log((1 - a)k) + T(ak), as r < (1 - a)k.

Otherwise, every v E V participates in more than (1 - a)k cliques in C. Thus

every edge e = (v, w) participated in more than (1 - 2a)k cliques in C. Take any

edge eo and let C1 to consist of all the cliques in C containing e0o. We then repeat the

following process. Pick any clique Ki E Ci, which is not a complete graph (it exists if

ICi2 > 1) and any edge ei Ki. Let Ci,+ contain all the cliques in Ci that contain ej.

Each time we eliminate at most 2ak cliques by our assumption, so we can repeat at

least 1/(2a) times. We claim that Ki produced are linearly independent. For assume

not and there are some ij,..., ij s.t. @ Ki = 0. Since all the cliques Ki contain

eo, we must have that j is even in order for eo to cancel. But then, ei, Ki, while

ei, E Ki2,... ,Ki. Since ei, has to cancel as well, we get that j has to be odd, a

contradiction. Thus we obtain 1/(2a) linearly independent cliques, and (3.2) follows.

0



Theorem 4 PARITY has [1-, n] lower bound on asymmetric communication com-

plexity.

Proof: We use the richness technique described earlier. Let M be the answer matrix

for PARITY, where the rows are the graphs and the columns are the subsets. First

we show that PARITY is (2(2) - 1, 2n-2)-rich. Take any non-empty graph G = (V, E)

and let e = (a, b) e E. We claim that at least 1/4 of the induced subgraphs have

parity 1. Partition all the subsets of V into equivalence classes of size 4. Given any

X' C V\{a, b} the equivalence class of X' consists of X', X'U {a}, X'U{b}, X'U{a, b}.

We claim that at least one one the four induced subgraphs in each equivalence class

has parity 1. Indeed, the e of the four parities counts every edge inside of Gx, four

times, every edge from a (b) to X' - two times, and edge e - one time, so the sum of

four parities is 1, as e E E. Thus, at least 1/4 of the induced subgraphs have parity

1, if G is non-empty.

Now we have to bound the size of the largest 1-monochromatic rectangle in M.

Assume it has size 2a x 2n/2. The 2n/2 subsets with parity 1 for their induced sub-

graphs define 2 n/2 linear equations. By Lemma 3, there are at least yn 2/ log n linear

independent equations in the system (for some 7 > 0), so the number of solutions

(graphs) can be at most 2 () - 7n2/gn, so a ( - 7nl2 /logn. Thus PARITY does

not have a [(n) - ((n) - yn 2 / log n), n - 2 - n/2] = [yn2 / log n, n/2 - 2] protocol. *

We remark that improving the bound in Lemma 3 to Q(log 2 k) (easily seen to be

the best possible) would give us [n2 , n] bound for PARITY.



Chapter 4

Restricted Function Families with

Restricted Space

We have thus far examined the inherent difficulties in obtaining unconditional super-

linear lower bounds. In this section, we study the problem under some additional

restrictions that would allow us to show much stronger lower bounds. Specifically,

we seek to limit the power of functions that we are allowed to store in our data

structure by talking about F-restricted data structures and studying the TF,,(P)

measure. At one extreme, when we are allowed to store just the edges of the graph,

it is the set-up of the AKR conjecture. For this setting, we immediately obtain an

Q(n 2 ) adaptive lower bound to compute any non-trivial monotone graph property

even on a fixed query set, namely, the set V. Intuitively speaking, in this case the

functions can not efficiently express the property even on a single query. At the other

extreme, when the function family T is completely unrestricted, we obtain again the

measure T,(_). Our goal here is to study T,,(_) when T" is some natural subclass

of boolean functions whose expressive power lies somewhere in between these two

extremes. As an elementary example, consider the OR family of functions. Any fixed

query concerning (evasive) graph properties such as connectivity and bipartiteness,

can be answered in O(n log n) probes using the OR family [3]. But can this family

be used to significantly speed-up the induced subgraph problem for these and other

evasive properties? The answer, as we show for many such function families, is "no"



We will show that irrespective of the efficiency in answering any single query, this and

many other function families, can not yield better than a poly-logarithmic speed-up.

4.1 Stabilization Technique

The central technique used is what we call the stabilization technique. In order to

explain the technique, we need two definitions.

Definition 6 (Gadget Graph) An (n, q(n))-gadget graph H(V, E) is a labeled clique

on n vertices such that: (a) each edge is labeled 0 (missing), 1 (present), or * (un-

specified), and (b) there exists a subset Q C V with IQI = q(n), such that Q induces

a clique with each edge labeled *. We refer to Q as the query set of H.

Definition 7 (Stabilizing Graph) Given an F-restricted data structure D of size

s, a graph H is called an (n, q(n), g(s))-stabilizing graph for D if: (a) H is a (n, q(n))-

gadget graph, and (b) every cell in D reduces to being a function of at most g(s) edge

variables on the partial assignment specified by H.

Now suppose for a function family .F we want to show T, 8(P) = Q(q2(n)/g(s)) for

every evasive property P. We start by showing existence of a (n, q(n), g(s))-stabilizing

graph GD for every F-restricted data structure D. Thus when GD is presented as the

static input, every cell in D reduces to be a function of at most g(s) edge variables.

At the same time, we have access to a query set Q whose every edge is unspecified as

yet. We present this set Q as the dynamic input to the scheme and play the evasive

game for property P on the subgraph induced by Q. Since each cell probe can reveal

at most g(s) edge variables, we obtain the desired (q2(n)/g(s)) lower bound. The

following theorem summarizes this argument.

Theorem 5 If every .F-restricted data structure of size s has a (n, q(n), g(s))-stabilizing

graph, then for any evasive property P, we have T, 8,(P) = Q(q2 (n)/g(s)).

Thus the heart of our approach is showing the existence of a (n, q(n), g(s))-

stabilizing graph with suitable parameters. In the remainder of this section, we



show existence of such stabilizing graphs for many function families. The families

that we study include AND, OR, a-CNF, a-DNF and symmetric monotone functions.

For each of these families, we show the existence of stabilizing graphs with typically

q(n) = Q(n) and g(s) = polylog(s). In other words, we show near-quadratic lower

bounds for each of these families. We observe here that these parameters are essen-

tially the best possible in general since many evasive graph properties can actually

be sped-up by a polylog(s) factor using these function families. We also study the

following question: What is the time complexity of induced subgraph problem for a

property P when the data structure is restricted to contain only answers about which

induced subgraphs of the input graph have property P. The interest in this question

arises from the observation that indeed many properties can be efficiently computed

on an entire graph by simply evaluating the property on various subgraphs. While

any single query can now be answered in one probe, we show an Q(n2 / log2 s) lower

bound for the induced subgraph variant of the problem, for any non-trivial "uniform"

monotone property. This bound is in fact tight for several evasive properties.

The common theme in obtaining the lower bounds for various families .F is the

use of the probabilistic method to show existence of stabilizing graphs. We start

by establishing a simple lemma and its corollary that we invoke frequently in our

analysis. The lemma shows that for any "large enough" set of edges, a random

balanced partition of the vertex set yields a balanced partition of the set of edges.

We need the following notation. Given a set S C V, we denote by Es v the set of

edge variables with at least one end-point in S. Also, let E(ci) denote the set of edge

variables that appear in the function stored in cell ci of a given data structure D.

Lemma 4 Let S be a random subset of V constructed by choosing every vertex in

V with probability 1/2. Then there are constants q71, 72 such that for any set of edge

variables Z such that IZI q log2 s, we have Pr[IZ n Esxyl 721Z|] >_ 1 - log s/s 2 .

Proof: Let H denote the subgraph defined by the edges in Z and let z = Z I. We

choose 71 = 212 and 72 = 1/16. We denote by Ai the set of vertices in H with degree

at least 2i and at most 2i+ 1 - 1. Define J1 (J 2) to be the set of indices i such that



|AI /-/2 (2i > Vf/2). An edge (u, v) in H is called bad if u E Ai, and v E Ai2

such that neither il nor i2 occurs either in J1 or J2 . The total number of bad edges

is upper bounded by the summation below:

A2+1 < / 2i+1 <
iJ1o,igJ2 --/2)

We will show that w.h.p. S gets a constant fraction of non-bad edges i.e. the

edges in Z \ Zo. Specifically, we show that (a) for every i such that JAi v/2,

w.h.p. at least 1/4-fraction of these vertices belongs to S, and (b) for every i such

that 2i > \/2, w.h.p. at least 1/4-fraction of this neighborhood belongs to S.

To show (a) and (b), we use Chernoff bounds. Observe that since V/z/2 > 32 log s,

using union bounds, we conclude that the probability that for some i E J1 U J2, we

fail to get the desired 1/4-fraction is bounded by logn(1/s 2) < log s/s2. Thus, the

number of edges guaranteed to be in S with probability at least 1 - log s/s2 is at least

>----1 EiJlUJ2 |Ai 2i 1 (IZ\ZoI) 1 (z) z
2 4 -2 4 -8 2 16

The following is an immediate corollary; the existence of the desired S is shown

by simply using the union bounds over all cells and observing that IS5 n/2 with

probability at least 1/2.

Corollary 5 For any data structure D, there exists a subset S of at most size n/2

such that for every ci with E(c) I > 71 log 2 s, we have |E(ci) n Esxl > 72 E(ci) for

some constants rh and 172

Finally, we define the notion of a partial assignment that fixes the value of a

function.

Definition 8 (Stabilizing Assignment) A partial assignment to the variables of

a boolean function is called stabilizing if it determines the value of the function to be

true or false, irrespective of the value that is assigned to the unspecified variables.



4.2 AND and OR Families

We start our study with AND and OR function families which in some sense constitute

the most simple and natural extension of the AKR conjecture model.

Lemma 6 Let F be the family of AND and OR functions. Then every F-restricted

data structure D has a (n, n/2, O(log2 s))-stabilizing graph.

Proof: By Corollary 5, we know that there exists a set S of size at most n/2

such that IE(ci) n Esxvl _ log2 s for every ci with at least 77 log2 s edges, for some

constant r7. Set each edge variable in Esxv to be 0/1 uniformly at random. There

is exactly one assignment that fails to stabilize any AND or OR function. Using the

union bound, the probability that some c with IE(ci) I 77 log2 s is not stabilized by

the random assignment is o(1). The result follows. m

Combining Theorem 5 with Lemma 6, we obtain the following theorem.

Theorem 6 For any evasive graph property P, 7{AND,OR},S(P) - Q(n 2/ log 2 s).

This result is the strongest possible general result; Chapter 6 shows that for many

evasive properties, {AND,OR},8(P) = O(n 2/ log 2 s) indeed.

4.3 a- CNF and a- DNF Families

We now extend the results of the previous section to a much richer class of functions,

namely, the a-CNF and the a-DNF formulas for any constant a. The AND/OR families

studied above correspond to the special case of a = 1. Our approach relies on the

following structural dichotomy of a-DNF formulas, which may be of independent

interest.

Lemma 7 Let f be an a-DNF formula on N variables and let 0 < r < 1 be a positive

real. Then

* either f has a decomposition of the form lofo + lifi + ... + ,lp-fp- where li's

are literals, fi 's are (a - 1)-DNF formulas, and p 5 ln(a2 N")/r, or



* f has at least q = (1/2ar) pairwise disjoint (i.e. no common variables) terms.

Proof: Let k denote the number of terms in f; clearly k is at most a2aN'. A

literal 1 in f is called frequent if it occurs in at least an r-fraction of the terms in the

formula. Consider the sequence {fi}i>o of formulas derived from f in the following

iterative manner: fo = f, and fi+l is derived from fi by finding a frequent literal li in

fi and deleting the set of all terms, say Ti, in which li occurs. The process terminates

when there are no more frequent variables; let f, denote the final formula in this

sequence. Since at each iteration we loose at least r-fraction of the terms, it is easy

to see that p < In(k)/r < ln(a2"Na)/r.

If f, is an empty formula, then we are done. Otherwise, suppose that f, contains

q terms. We build a collection C of pairwise disjoint terms as follows. Pick any

term F in f,; each of its literals appears in at most rq terms. Thus there are at

most (2arq - 1) terms that share any variables with it. Add P to C, delete all terms

that share a variable with it, and reiterate. Clearly, we can construct at least 1/2ar

pairwise disjoint terms in this manner. This completes the proof of the lemma. *

Intuitively speaking, the lemma above says that either f has a certain "compact"

decomposition or it has a "large" number of pairwise disjoint terms. The next lemma

shows that it is easy to stabilize a-DNF formulas with large number of pairwise disjoint

terms.

Lemma 8 Let f be an a-DNF formula with 4a224" log 2 s terms such that each vari-

able of f occurs in exactly one term in f. Let S be a subset of vertices constructed

by choosing each vertex in V with probability 1/2. Then assigning the value 0/1 uni-

formly at random to each edge variable in S x V stabilizes f with probability at least

1- 1/s 2 .

Proof: A set of vertices X is called the hitting set of a term t in f if every edge

variable of t occurs in the set X x V of edge variables and that X is a minimal such

set. Observe that a term can have many hitting sets, a fact critical to our analysis.

Also observe that any hitting set contains at most a vertices since we are working

with a-DNF formulas. We claim that f contains at least k = 2 2a+1 log s terms, say



t 1, t 2 , ---, tk such that one can assign a hitting set Xi to each ti with the property

that Xi n xj = 0 for i = j. We build such a collection iteratively. Suppose we

have picked i such terms so far and let Z denote the union of their hitting sets.

The total number of vertices in the hitting sets corresponding to these terms can

be at most ai. A term t in f is ruled out from being added to this collection if

and only if it contains an edge variable whose both end points are contained in Z.

Since X defines at most (a 2i2)/2 such edge variables (and each variable occurs in 1

term), at most so many terms can be ruled out. Thus the process can not terminate

before k iterations where k + (k2 a2)/2 > 4a 2 24a log 2 s; implying that k must at least

22,+1 log s. Now f' is satisfied if Xi C S for some 1 < i < k and the (at most) a edge

variables corresponding to its term are assigned the unique satisfying assignment; let

I4i denote this event. Observe that by our construction, il, ..., k are all independent

events and that Pr[#i] (1/2')2 since each of the two events comprising 4i has a

probability of success at least 1/21. Thus Pr[Ai--i] _ 1/s 2, giving the desired result.

Theorem 7 For any evasive property P and constant a, T7-CNF,a-DNF},s(P) =

log1 n log
2a 

s

Proof: First observe that it suffices to show the claimed lower bound for a-DNF

formulas only, since any a-CNF formula can be implicitly stored as an a-DNF formula,

namely, by storing its complement. By Theorem 5, it is enough to show the existence

of a (n, n/2, O(log - 1 n log2, s))-stabilizing graph for every a-DNF - restricted data

structure D. Towards this end, we will show that if S is a random subset, constructed

by choosing each vertex of V with probability 1/2, then setting each edge variables

in S x V to 0/1 uniformly at random either stabilizes any a-DNF formula or reduces

it to be a function of O(log' - 1 n log 2 a s) edge variables, with probability 1 - o(1).

Consider any a-DNF formula f in a given data structure scheme D. Define

r(a) = 1/a3 24 +3 10og 2 s. By Lemma 7, either f has 4a 224a log 2 s pairwise dis-

joint terms or it has a representation of the form lofo + llfi + ... + 1,_1f_1 where

P _ Pmax = In(an2a)/r(a) = O(log - l nlog2, s). In case of the first scenario, we



know by Lemma 8 that f will be stabilized "almost certainly". Otherwise, using the

compact decomposition of f and induction on a, we argue that almost certainly f will

have no more than h(a) = O(log' - 1 n log 2, s) variables. The case a = 1 follows from

the preceding section. Assume inductively that any a'-DNF formula with a' < a - 1

almost certainly reduces to a function of at most h(a - 1) variables. Since each fi

in the decomposition of f is an (a - 1)-DNF formula, by inductive assumption, it al-

most certainly contains no more than h(a - 1) distinct variables. Thus the following

recurrence is satisfied:

a-1

h(a) 5 Pmaxh(a - 1) + pmax : (Pmax)a-'h(1) + (Pmax)
i=1

Using h(1) = O(log2 s), it is easy to verify that h(a) = O(log - nlog2, s).

Probability Analysis: There are two distinct ways a failure can occur. One if

the probability that S is larger than n/2, and other, if the a-DNF formula f is left

with more than h(a) distinct variables. The probability of the first event is easily

seen to be bounded by 1/2. To analyze the second probability, denote by P(a) the

probability that a given a-DNF formula does not reduce to a function of at most h(a)

distinct variables. Then using Lemma 8, we have

P(a) < PmaxP(a - 1) + 2

Scaling h(1) by a suitably large constant, it is easy to see that P(a) can be

bounded by o(1/s) for any constant a. Since there are at most s a-DNF formulas to

be considered, the overall probability of failure is bounded by s[o(1/s)] + 1/2 < 1.

4.4 Symmetric Monotone Functions

The symmetric nature of AND and OR functions enabled us to obtain strong lower

bounds relatively easily. In contrast, the results of the preceding section illustrate the

difficulty in obtaining strong lower bounds when T contains "unstructured" functions.



In this section, we continue on to general threshold functions and show how symmetry

makes it easy to obtain strong lower bounds. Recall, a threshold function Tp,q (Fp,q) is

true if and only if at least (less than) q of its p inputs are set to true. Since Fp,q = T,,,,

we focus on T,,q only from now on. Our main result here is a Q(n 2/ log 2 s) lower bound

when F only contains threshold functions with q 5 (1 - e)p. Notice that in order

to express such functions as a-DNF or a-CNF formulas we need a = ((p) which can

be Q(n2) in our set-up. Yet, due to the symmetric nature of these functions, we can

obtain results that are much stronger than ones obtainable for arbitrary a-CNF and

a-DNF formulas.

Theorem 8 Let F be the family of all threshold functions Tp,q with "threshold ratio"

bounded away from 1, i.e. q < (1 - e)p. Then for any evasive property P, Ty,,(P) =

(n2/ log 2 s).

Proof: It suffices to show that there exists a (n, Q(n), O(log2 s))-stabilizing graph G

for every F-restricted data structure. We construct a sequence of sets S1 c V, S2 C

V\S 1,...,S, C V\ UI-1 Si by repeatedly applying Corollary 5; let S = U Si,

iSI _ (1 - 2-7)n. At each round every formula which still has more than qi1 log2 s

edges gets a constant fraction of its edges inside Si x V. Here q? = O(log(1/e)) is

a sufficiently large constant to ensure that every threshold function with Q(log 2 s)

edge variables has a (1 - e)-fraction of its edges in S x V. The stabilizing graph G is

created by inserting all edges in S x V; this clearly stabilizes every threshold function

with Q(log 2 s) edges, leaving a query set of size at least n/20 = Q(n). m

4.5 Computing P Using P

Definition 9 (Type-0 / Type-1) A monotone graph property P defined over the

space of n-vertex graphs is called type-0 (type-I) if every 0-certificate (1-certificate)

touches at least n/2 vertices. P is uniform if P is type-0 (type-1) for every n.

For instance, CONNECTIVITY is both type-0 and type-1, while CLIQUE is type-1 but

not type-0. It is easy to see that for each n, a monotone property is either of type-0



or type-1, since otherwise we can put two opposite certificates on two halves of V.

Uniformity naturally requires that the type does not change excluding artificial prop-

erties like "Does G have at least (n/2) + (-1)n(n/3) non-isolated vertices". Suppose

we are given a data structure scheme D such that each cell ci E D corresponds to

evaluating P on some induced subgraph G' of the static input G. While any fixed

query can now be answered in a single probe we show this does not help much for the

induced subgraph problem. We have already addressed this question for some specific

graph properties, such as CLIQUE and MAJORITY. Now, we study this question for the

class of "uniform" monotone graph properties We will not only allow to store answers

about uniform P of type-0 (type-1) on subgraphs Gx induced by some X C V, but

will also allow to fix any collection of edges of Gx to true (false) and store the answer

to this restricted property. We let Po (Pi) be the class of all uniform properties of

type-0 (type-1).

Theorem 9 Let P be a type-0 (type-1) non-trivial uniform property and let P be the

class Po (P ). Then Tp, (P) = Q( )n2

Proof: We show existence of a (n, Q(n), Q(log 2 s))-stabilizing graph G as follows.

Consider a set S constructed by picking at random vertices from V with probability

2/3 each. Using Chernoff bounds, it is easy to see that "almost certainly" any partic-

ular subgraph induced by Q(log s) vertices has half of its vertices in S. Now, if P (and

hence P) is type-0 then set to true all edge variables in S x V and set them to false

otherwise. This stabilizes the answer on every Q(log s) size induced subgraph stored

in the data structure - a "yes" if P is type-0 and a "no" otherwise, so all "surviving"

function depend on O(log2 s) edges. The results now follows by presenting Q = V \ S

as the query set and playing an evasive game on this query. m

4.6 Small Degree Polynomials

The stabilization technique has its limitations as illustrated by the family of ( func-

tions. Given any partial assignment specifying k out of 1 variables of an ( function,



we get back a function that is sensitive to each one of the remaining I - k variables.

The implication of this fact is that stabilizing graphs, cannot reduce every "large"

G function to an 6 function on "small" number of variables. On the other hand,

functions like e have a very nice structural property, namely, they can be expressed

as a small degree polynomial over Z2. We develop an algebraic approach to study

such function families Section 5.1.



Chapter 5

Restricted Function Families with

Unrestricted Space

We now turn our attention to the other extreme when the space s is unrestricted

and only the function family F is restricted, that is, to the measure Tr(_). Since

the space is not an issue, Ty(f) measures the decision tree complexity of computing

a function f w.r.t. F. In case of induced subgraph problem, TY(P) is the decision

tree complexity w.r.t. F of computing P on the entire vertex set V. When F

contains merely the identity function, it is the setting of the AKR conjecture and

Q(n 2 ) lower bound is known for any non-trivial monotone P [13, 5]. In this section

we examine what happens when we allow more powerful functions in F such as

AND, OR (more generally, threshold functions), and XOR (more generally, low degree

polynomials). Observe that since the space is not an issue, even these seemingly

simple function families efficiently capture many evasive properties. For example,

TAND(ALL-NEIGHBORS) = n, TOR(CONNECTIVITY) = O(nlogn) [3], ToR(PARITY) = 1.

Yet, we will show that for a large class of evasive properties, these families are no

more powerful than the trivial identity function.

We will also examine the effect of obliviousness, i.e. when the algorithm has to

specify in all Tbl(P) functions from F in advance. As a motivating example we

show that if F is a family of all threshold functions, we get T-F(PARITY) = log (n),



while 7Tbl(PARITY) (2) (even T,s(PARITY) O( loglog s), see Corollary 26),loglog s), see Corollary 26),

justifying the fact that obliviousness is a severe limitation. Later in Chapter 7 we will
study in detail TNA and -'bl measures, where we will again get adaptive/oblivious
study in detail 7•OR

separation for many properties.

5.1 Low Degree Polynomials

We start by examining the (non-monotone) family ,deg<k of all multivariate polynomi-

als over Z2 of degree at most k; the special case k = 1 gives the XOR family. We obtain

the strongest possible general bound by showing that for any monotone property P,

we have Tydeg<k(P) = (), e.g. TxOR(P) = Q(n 2 ). Thus, small degree polynomials

do not bring any significant computational advantage. In particular, having access to

2m possible XORs on the edges of a graph, do not bring any advantage over the setting

when we have access only to the edges of the graph. Our approach for establishing

this bound is to study the degree of a multi-linear polynomial q computing a boolean

function f over some ring R with identity, i.e. f(x) = q(x), Vx E {0, 1}m . Denote by

degR(f) the degree of this q. When R = Zr, we simply denote it by deg,(f), where

2 < r < oc (here Z = Zoo). The following lemma justifies this definition and states

some elementary facts that we will use.

Lemma 9

* For any f there is a unique multi-linear polynomial over R computing it, and

its degree is at most D(f).

* Let the characteristic char(R) of R be the smallest i E Z, i > 1 s.t. i x 1 = 0

(if no such i exists, char(R) = oo). Then degR(f) = degchar(R)(f), so the only

interesting rings to consider are Zr for 2 < r < oo00.

* For any 2 < r, s < oc, degr(f) 5 degrs(f).

Proof: Given A C [m] we denote by MA a monomial HieA x and by 1A, a 0/1

characteristic vector of A. Assume q, and q2 are 2 distinct multi-linear polynomials



computing f. Then q = ql - q2 computes the zero function and has some monomial

with a non-zero coefficient. Let MA be any such monomial of smallest degree with

coefficient c $ 0. Then q(1A) = c $ 0, because 1 A sets all other monomials to 0, a

contradiction.

To show the existence, we take any decision tree T for f (for example, a complete

binary tree of depth m). Let xi(a) = xi if a = 1 and 1 - xi if a = 0. For every

leaf 1 with the value of f equal to bl and values xi, = aj (1 < j < depth(l)) along

the path to 1, we let q,(x) = bl - J xij (aj) and q = -- ql. Then q is a multi-linear

polynomial that agrees everywhere with f, since given any x, the only contributing

ql corresponds to the leaf 1 arrived when traversing T on x, and q, = f(x). Since we

started from an arbitrary T, we immediately get degR(f) < D(f).

Let R' = {i x 1|i E Z}. Then R' is a subring of R. Moreover, R' . Zchar(R). From

the explicit construction of the polynomial from any decision tree for f, we see that

all the coefficients of q are in fact in R', so degR(f) = deg , (f) = degchar(R) (f).

If q = EAC[m] CAMA E Zrs[X] computes f, then it is easy to see that q' =

EAC[m](CA mod r)MA E Zr[x] also computes f, so degr(f) < degrs(f). N

Nisan and Szegedy [12] showed that D(f) < 16 deg (f) for any f . For monotone

graph properties, we obtain a much stronger tight relation:

Theorem 10 For any non-trivial monotone graph property P on n-vertex graphs,

deg 2(P) = Q(n 2).

The theorem is quite surprising, since any multi-linear polynomial over Z2 which

is invariant under relabeling of vertices (including the ones of very small degree)

computes some valid graph property. For example, (evasive) property PARITY is

computed by a polynomial of degree 1. The theorem asserts that for a monotone

property the degree has to be large even over Z 2. It is worthwhile to note that the

above theorem essentially gives a stronger version of the AKR conjecture. As a

simple consequence, we get

Corollary 10 For any non-trivial monotone graph property P, Tde:g<k(P)= ().

In particular, TXoR(P) = 2



Proof: We only need to show that deg2 (P) < kT-deg, k (P). Consider a decision tree

T of depth d that computes f w.r.t. -Fdeg<k. We will use T to obtain a polynomial

of degree at most kd that computes f. The construction is the same as in Lemma 9.

For any polynomial p we let po = 1 - p, pl = p, and let bl be the value of leaf 1. Now

for each leaf 1, construct a polynomial q, as follows. Let pl,..., Pd be the polynomials

that were queried along the path from root to 1 and let ai be the answer given by pi.

Define ql = bl j pi, and let q be the sum of all such leaf polynomials. Clearly, q is a

multinomial that computes f and has degree at most kd. n

The bound is best possible in general, for example, TYdeg<k (CLIQUE) = O(-).

Thus, we only need to prove Theorem 10.

5.1.1 Transitive Functions and Their Degree

To establish Theorem 10, we follow the approach used by Rivest and Vuillemin [13]

in resolving the AKR conjecture. Let Sm be the set of permutations on m elements.

Given a monomial e = cMA, a E Sm and a subgroup F C Sm, we let aA = {a(i)|i e

A}, ae = CMUA, eF = {(aeir E F}, and w(e) = IAI = deg e. eF is called the orbit of e.

Definition 10 For a function f on m inputs we let the stabilizer subgroup F(f) =

{a E SmlVa E {0,1} mf(a) = f(aa)}. A group F C Sm is transitive if Vi,j E [m]

3a E F s.t. a(i) = j. f is called transitive if F(f) is transitive.

Let p be a prime. Rivest and Vuillemin [13] proved that any transitive function

f on m = pk variables s.t. f(0) : f (I) is evasive. We strengthen this result (Theo-

rem 11) by following a similar, but more direct, argument which shows that in fact

degp(f) = m.

Lemma 11 If q is a multi-linear polynomial over R computing f and e is a monomial

in q, then q contains all the monomials in eF(f).

Proof: Let e' = ae for a E F(f) and let q'(x) = q(ux). We have for any a E

{0, 1}m that q(a) = f(a) = f(aa) = q(aa) = q'(a). By the uniqueness of polynomial



computing f (Lemma 9) we must have that q(x) - q'(x), and since q' has e', so does

q. 0

Lemma 12 If F is transitive, then for any monomial e we have

w(e). - eF = m - {e' E erle' contains xill (5.1)

In particular, m divides w(e) - ler|.

Proof: Let M denote the lel[ by m matrix whose rows are the characteristic vectors

of monomials in eF. We count the number of ones in M by rows and by columns.

The left side of (5.1) counts the ones by rows (each row has the same number of ones

as w(e) = w(ae)), the right - by columns, taking the number of ones in the first

column. Transitivity of F ensures that each column contains the same number of ones

(for any i, j c [m] there is a E F s.t. a(i) = j which produces a bijection between all

the monomials in eF containing xi and the ones containing xj). 0

We are now ready to prove the main theorem.

Theorem 11 If f is transitive, f(0) 0 f(1) and m = pk, then degp(f) = m.

Proof: Let q be the (unique) multi-linear polynomial over ZP computing f. Assume

deg q < m and let eo be free term (zero degree monomial) of q. Then f(O6) = eo. For

any monomial e, we have by Lemma 12 that m = pk divides w(e) - er(f) , so unless

w(e) = 0 or w(e) = m, we must have that p divides leF(f). In particular, since

by assumption q does not have a monomial of degree m, for any monomial e of q

other than eo we must have p I er(f)i. We now apply Lemma 11 and divide the

monomials of q into disjoint orbits of the form eF(f). We then compute f(l) = q(1)

on an orbit by orbit basis. If e $ eo has coefficient c(e) E Z, then the orbit of

e contributes c(e) . eF(f)l mod p = 0mod p, as p leF(f)l. Hence we get that

f(f) = q(1) = e0o = f (6), a contradiction. Thus, degp(f) = m. m

We observe that every condition in Theorem 11 is crucial. For example, it is easy

to see that MOD-p function which is 0 iff the number of true variables is divisible by

p has degp(f) = p - 1 << m. But it does not satisfy f(0) 5 f (I) when m = pk, and



does satisfy it for any m not divisible by p. This example also shows that we cannot

expect to bound D(f) by some function of degp(f), since MOD-p is evasive (have to

look at all the inputs given the all-zero input).

Rivest and Vuillemin [13] applied their analog of Theorem 11 to show the AKR

conjecture by reducing it to evasiveness of certain non-trivial transitive function on

2 k edges of the graph (which was a certain restriction of the given graph property

P). The identical reduction works in the case of degrees as well, as the degree of the

restricted function can be at most the degree of the original one. This completes the

proof of Theorem 10.

5.2 "Small Threshold" Family

The techniques of the preceding section do not apply to perhaps the most natural

extensions of the setup of AKR conjecture, namely, how efficiently can graph proper-

ties be computed when we are allowed to store an AND (OR) of any subset of edges.

The breakdown occurs because polynomial representations of AND and OR functions

require up-to OQ(n 2) degree. In fact, many monotone properties have TAND(P) much

smaller than n 2 , for instance, TAND(CLIQUE) = 1 and TA,,ND(ALL-NEIGHBORS) = n. On

the other hand, there are many other properties for which we have TAND (P) = (n2);

examples include (as we will show) CONNECTIVITY and BIPARTITE. The goal of this

subsection is to develop characterizations of properties for which the AND and OR

function families do not bring additional computational advantage. Our approach is

to reduce the question of lower bounding TAND(-) and ,,OR(-) to a certain measure of

simple decision tree complexity. We then develop several general techniques to bound

this measure from below. Since the technique we describe holds for any function f,

we present our results here in this more general framework. Assume throughout that

z ranges over {0, 1}.

Definition 11 Given a decision tree T, let d(T) denote the depth of T. Define the

z-depth of T, dz(T) to be the maximum number of edges labeled by z on a root-leaf

path. Given a function f, its simple z-decision tree complexity is the minimum of



dz(T) over all decision trees T computing f. For a function family F, D(Y) (resp.

D,(f)) is the maximum of D(g) (resp. D,(g)) over g E F.

The standard relation TTy(f) _ D(f)/D(.F) can be extended as follows

Lemma 13 For any function family F, Ty(f) D 0 where z E {0, 1}.

Proof: Consider an optimal decision tree T w.r.t. F that computes f in depth

Ty(f). Replace every node v of T labeled by some g E F by the optimal simple

decision tree of z-depth D (g) 5 D, z(F). The resulting simple decision tree computes

f and has z-depth at most T(f)D,(F). Hence, Dz(f) < T(f)Dz(F). *

The measures Do, D 1 will allow us to get strong lower bounds not only for AND

and OR, but more generally, for threshold functions with a "small threshold".

Corollary 14 Let Fk,1 = {Tp,q I q - k}, Fk,o = {Tp,q I p - q < k}. Then Tk,z (f) >
D(f) where z E {0, 1}. In particular, the case k = 1 yields TAND(f) 2 Do(f), ToR(f) >

Dl(f).

Proof: For any T,,q E Fk,o, Do(Tp,q) = q - p + 1 < k, so Do(Fik,o) = k. Similarly,

Di(Fk,1) = k. m

The next lemma shows that for AND and OR function families, the converse is

also almost true.

Lemma 15 For any f, TAND (f) < Do(f) logm, To-(f) Dl(f) logm. Formonotone

f, AND(f) 5 (Do(f) - 1) logm + 1, TR(f) 5 (Di(f) - 1) logm + 1.

Proof: We focus on AND functions; an analogous argument applies to OR functions.

Given a simple decision tree Tk for f of 0-depth k, we show how to build an AND

decision tree Tk for f of depth at most k log m ((k - 1) log m + 1 for monotone f).

We first look at the all 1 path in Tk. We make a binary search tree using ANDs

in Tk of depth at most log m that would either tell us that all the variables along

the path are true, or will give the first place where some xi is false. In the first

case, we just output the answer, in the second, we only have to deal with a simple



decision tree of 0-depth (k - 1) (the left subtree of xi), so by induction we get that

d(Tk) < (k - 1) log m + d(T). For general f, we can only bound d(T) by log m by

again doing a binary search. For monotone f, the only simple decision tree of 0-depth

1 is the one computing some AND function, so a single AND will suffice. s

Thus, to get optimal/near-optimal lower bounds on TAND or TOR, it suffices to

develop techniques to get good bounds on Dz. For this it is useful to look at an

equivalent definition of Dz(f) as a value of the simple decision game where the ad-

versary A tries to maximize the number of z-answers that he is able to give (rather

then the number of questions he is asked). So to show D_ > b we only have to give

a strategy for A allowing him to always give at least b answers equal to z. In the

remainder of this section, we study three technqiues that will allow us to lower bound

D, in this manner. We will only concentrate on monotone f (and graph properties

P) in our study.

5.2.1 "Dense Certificate" Technique

This is the most elementary technique - it uses the simple fact that D (f) must be

at least as large as any minimal z-certificate of f.

Lemma 16 For any monotone function f,

TAND(f) Do(f) _ No(f) - 07AD(f) and TOR(f) > Dl(f) > Nl(f) - Tl(f).

Proof: The answering strategy consistent with the largest min-z-certificate of f

would force at least NZ(f) z-answers before deciding f = z. Since our answering

strategy is non-adaptive, it's gives a non-deterministic lower bound. *

We can apply this to various monotone graph properties: TAND (CONNECTIVITY) >

No(P) = n2/4, oR(k-CLIQUE) _ NI(P) .(k) = Q(n 2 ) if k = Q(n). For some

properties, however, the bound is too weak. For example, P =NO-ISOLATED-VERTEX

has No(P) = n - 1, even though we will see that Do(P) = (2(n2). This is not

surprising, since we already observed that the bound is non-deterministic.



5.2.2 Evasive Path Technique

The next answering strategy we examine applies to evasive f only. Since f is evasive,

there is an evasive strategy A that would always force to ask all m inputs of f. Using

A as our answering startegy, we get that Dz(f) is greater than the least number of

z answers produced by A over all m! question orderings. We apply this to various

monotone graph properties. An important point to note here is that the AKR con-

jecture is proven only for n being a prime power. This, however, is sufficient for the

induced subgraph problem since we can take the largest subset X C V with a prime

power of elements and work on X.

For P =NON-BIPARTITE, every min-0-certificate has (a)+(n- a) >2 (n/2) edges and

thus Do(P) = Q(n 2). For P =NO-ISOLATED-VERTEX, it is readily seen that the graph

G produced by A after m - 1 questions has to be acyclic and hence Do(P) (n) - n.

To show that G cannot have a cycle, we can look at the last edge e of this cycle

queried. Querying of e is useless for NO-ISOLATED-VERTEX, as we already know that

none of the vertices of the cycle is isolated. Thus an optimal querying strategy will

never query e and decide P in at most m - 1 queries, contradicting the evasiveness

of P under A.

Even though potentially powerful, the evasive path technique is not easy to use

since it is hard to explicitly characterize evasive strategies. Thus, for instance, while

we know every non-trivial monotone graph property is evasive when n is a prime

power, for only a handful of properties we have an explict evasive answering strategy.

In such cases, we have to find some structural property or invariant of the evasive

strategy (like G is acyclic) that would let us conclude something without actually

knowing the strategy. For many properties, however, this argument is hard to find

(e.g. DI(TRIANGLE), where TRIANGLE is true if G has a 3-clique).

5.2.3 "YES/NO unless cannot" Technique

We now examine in detail two simple yet quite powerful answering strategies that

would often produce optimal bounds for a monotone function f. We find the exact



measure of how well they perform (including when they are evasive strategies) and

then translate the results into lower bounds for Do(f) and D 1 (f). The symmetric

strategies in question which we call "YES/NO unless cannot" are, naturally, "YES

unless cannot" and "NO unless cannot". As the name suggests, "NO unless cannot"

would try to answer "no" unless it is forced to say "yes", i.e. answering "no" in

conjunction with all the previous answers would force the monotone function to 0.

Only in such cases we answer "yes". By definition, at the end of the game under "NO

unless cannot" strategy, the answer is always going to be that f is 1. The picture is

symmetric for the case of "YES unless cannot".

We begin with the notion of a hitting set.

Definition 12 (hitting set) For a family W- of subsets we call a set H a hitting set

for W if H intersects ("hits") all members of -tW.

Let us view any 0-certificate (1-certificate) of a monotone f as a subset of variable

set to 0 (1). In this view, any min-0-certificate for f is a minimal hitting set for

C1 (all min-l-certificates for f) and vice versa. We next define a concept related to

certificates that would be central to our characterization of the efficacy of "YES/NO

unless cannot" strategies.

Definition 13 For a monotone function f and a min-1-certificate C1 of f we call

a subset of variables L leave-i-certificate for C1 if it is a hitting set for Cl\{C1}

and L n C1 = 0. L is minimal leave-i-certificate for C1 if no proper subset of L is

a leave-i-certificate. We let leave(Ci) be the (minimal) leave-1-certificate for Ca of

smallest size. We similarly define the concepts of leave-0-certificate for Co, minimal

leave-0-certificate for Co, leave(Co) for a min-0-certificate Co.

If we set the variables of some leave-i-certificate L for C1 to false, we "eliminate"

all the min-i-certificates except C1. So we almost force the value of f to be 0 -

the only way to force f to be 1 now is by setting all the variables in C1 to be true.

The subset leave(C1) is a minimum collection of variables that would "kill" all min-

i-certificates except C1. We contrast a minimal leave-i-certificate L for C1 with a



min-0-certificate Co: Co hits all the min-l-certificates while L hits all the min-1-

certificates except for a given C1. Naturally, adding any variable of C1 to L is a

0-certificate, so minc0 |Col 5 minc, Ileave(C1)l + 1. For example, for CONNECTIVITY

we have mincoco Co01 = n - 1 (missing star), but for any spanning tree C1, the only

leave-i-certificate L for C1 is all edges outside of C1. Indeed, if L does not contain

a single edge e ' C1, then we can add e to C1, delete some other edge e' of the

created cycle getting another spanning tree C' # C that is not hit by L. Hence,

Ileave(C)l = (n) - (n - 1).

Theorem 12 For any monotone function f, if we use the answering strategy "NO

unless cannot", then

* for any C1 E C1 there is a questioning (probing) strategy that asks Ileave(Ci) I +

IC11 questions and gets exactly Ileave(C1)l "no" asnwers.

* for any questioning (probing) strategy there is C1 E C' s.t. the number of

questions is at least Ileave(C1) + IC11, the number of "no" answers is at least

Ileave(Cl)l and the number of "yes" answers is at least IC11.

In particular, the smallest number of questions possible is minc1 (lleave(C1) I + C1I ),

and the minimum number of 0 answers possible is minc, Ileave(Ci) 1. A similar result

holds for "YES unless cannot".

Proof: Take any C1. Ask about all the variables in leave(C 1), getting all "no"

answers. Then ask about the variables in C1 , getting all the "yes" answers as C1 is

the only min-l-certificate left. For the converse we start from an arbitrary question

startegy. Let xl...xj be the variables that were answered to be 1. Since once the

variable is forced to 1 (i.e. setting it to 0 forces f to 0), it remains forced to 1, we can

safely ask the questions about xl... xj after we get all the 0 answers. Since at the

end we decide that f = 1, it means that xz ... xj contain some min-l-certificate C, of

f. So we can only reduce the number of questions and ask about the variables in this

C1 after we get all our 0 answers. Now, why would all the variables of C, be forced

to 1? It must be the case that the 0 answers contain a minimal leave-i-certificate L



for C1, since if at least one min-l-certificate C' : C1 is not hit, any variable xi with

i E CI\C' is not forced to 1, as C' is still a possibility. Moreover, we do not need to

ask the "no" questions outside of L, since L already forces all the variables in C1 to

1. N

The following is an immediate corollary.

Corollary 17 For any monotone f, 7TND(f) _ Do(f) > Lo(f) and ToR(f) Di(f)

Ll(f) where Lo(f) = minclCl Ileave(C1)I and Ll(f) = mincoeco Ileave(Co).

Theorem 12 also allows us to characterize the class of functions for which "YES/NO

unless cannot" gives an evasive strategy.

Corollary 18 For any monotone function f

* "NO unless cannot" is an evasive strategy iff Vx s.t. f (x) = 1 and Vi s.t. xi = 0

3j s.t. xj = 1 and making x' = x except swapping i = 1, xj = 0, still leaves

f(x')= 1.

* "YES unless cannot" is an evasive strategy iff Vx s.t. f(x) = 0 and Vi s.t.

xi = 1 3j s.t. xj = 0 and making x' = x except swapping xi = 0, xj = 1, still

leaves f(x') = 0.

Proof: We focus on "NO unless cannot"; an analogous argument holds for "YES

unless cannot". Assume "NO unless cannot" is evasive for f. Clearly, it is sufficient

to look only at x being some min-i-certificate for f. So let x = x, (meaning zk = 1

iff k E C1) and let xi = 0. By Theorem 12, the optimal question strategy takes time

minceci (|leave(C') + C'i ). Hence, by evasiveness, for every min-l-certificate C, we

have Ileave(C')I + |CI = m, including C1. As i E C1 = L, there is a min-0-certificate

C, C C1 U {i} with some j E Ci\C'. This j satisfies the claim, as min-i-certificate

CI C C1 U {i}\{j}. The converse is similar. *

As an example, we see that "NO unless cannot" is evasive for CONNECTIVITY,

since when adding an edge to a spanning tree we can always remove some other

edge of the cycle and still have a spanning tree left. We might hope that for any



non-trivial monotone property either "NO unless cannot" or "YES unless cannot"

forces ~(n 2 ) questions. However, it is not hard to see that for /-n--CLIQUE both

mincEcl(lleave(C1)l + IC1I) and mincoeco(lleave(Co)j + ICo) are O(n3 /2 ).

As a non-trivial illustration of Corollary 17, we apply it to NO-ISOLATED-VERTEX.

Take any C1, that is a union of stars on subsets X 1, ... , Xk partitioning V. We claim

that at most (k) edges outside of C1 do not have have to be in leave(Ci). Thus,

leave(C1)I > (2) - (n - k) - (k) _ 3n 2/8 - 3n/4 = Q(n 2), since k < n/2.

To show the claim, we let ci be the vertex that is the center of the star on Xi

(if Xil = 2 both vertices are the centers). We look at every edge e = (a, b) (where

a E Xi, b E Xj) outside of C1 and argue which e have to be in leave(Ci). The

argument has a format that "if this e V leave(C1) then there is some other min-1-

certificate C' C C1 U {e} which is a contradiction". This reduces to the case analysis.

(see Figure 5-1).

* Case 1: i = j, |Xil > 3 (then both a $ ci, b 5 ce). We delete a, b form Xi and

let them form a separate component using e. As we had lXil > 3, we still leave

at least 2 vertices in Xi.

* Case 2: i = j, IXil = 3 (then both a = ci, b / ci). Leave Xi the same but make

a (or b) a new center instead of the third vertex ci, thus adding only e as a new

edge.

* Case 3: i $ j, |Xi| > 2, IXjI > 2, a = ci, b $ cj. We delete a and b from Xi

and Xj, resp., and make a new component Xk+l on a and b with edge e. As we

had jXi| > 2, |Xjl > 2 we still leave at least 2 vertices in Xi and X j .

* Case 4: i : j, IXi | > 2, a : ci, b = cj (when |Xj| = 2 the condition b = cj is

satisfied). We simply switch a from Xi to Xj where we add e to connect cj = b

to a. As we had |X| > 2, we still leave at least 2 vertices in Xi.

* Case 5: i 5 j, IXil > 2, IXjl > 2, a = ci, b = cj. We don't know what to do

with such edges.



* Case 6: i : j, IXjl = 2, a = ci (includes case Ixil = 2). Let Xj = {b,b'}.

Again, e = (a, b) does not have to be in leave(C1), but at least one of (a, b) and

(a, b') does, as otherwise we can move both b and b' to Xi.

* Case 7: i #j, IXil = IXjl = 2. Let Xi = {a, a'}, Xj = {b, b'}. Again, e = (a, b)

does not have to be in leave(C1), but at least one of (a, b), (a', b') does, as

otherwise (a, b) and (a', b') can form two new stars. Together with Case 6, this

shows that at most 1 out of 4 edges between Xi and Xj may be missing in

leave(C1).

a b a b

Case 1 Case 2 Case 3
a b b a b a b

_b _ __ Ib,
a a' a' b'

Case 4 Case 6 Case 7

Figure 5-1: Various Cases for NO-ISOLATED-VERTEX

This shows that at most one edge between every pair of Xi and Xj (i : j) can be

missing from leave(Cl), so at most (k) edges overall.

Remark 1 The "Dense Certificate" and "YES/NO unless cannot" techniques are in

general orthogonal. We saw that for P =NO-ISOLATED-VERTEX, Lo(P) = (n2),

NO(P) = n - 1. For P = /u-CLIQUE, on the other hand, Lo(P) = O(n3 /2), while

N O(P) (n-/ii) = Q(n 2).

5.3 Oblivious versus Adaptive Bounds

We conclude by briefly examining the limiting effects of obliviousness. It is clear that

for any f and Y, Tbl (f) 27T(f), because we can take all the functions in an optimal



decision tree for f w.r.t. T as our oblivious collection of functions. We now show

that for certain scenarios this is the best that one can do, i.e. there is an exponential

gap between adaptive and oblivious decision tree complexities.

Lemma 19 Let .F be the family of all the threshold functions. Let f be the parity

function on m variables. Then Ty (f) = logm while Tbl(f) = m.

Proof: For the adaptive bound, we only need to use threshold functions of the

form Tm,_. We simply perform a binary search and count exactly how many variables

are set to true. Taking this number mod 2 yields the result in log m questions. The

lower bound follows from the oblivious bound below and Ty(f) 2 log Tbl(f).

For the oblivious bound we proceed by an induction on m. Let gl,..., gk be the

threshold functions used by the oblivious algorithm. We claim that at least one of

these functions must have threshold 1. For otherwise, these functions would not let

us distinguish between the all zero input (of parity 0) and any input with a single

one (of parity 1). Assume, gA is the function with threshold 1. Take any variable in

gk, say it is Xm, and fix its value to true. This fixes gk to true and makes it redun-

dant in obtaining any further information. The functions gl ,...,gk-1 now project

down to threshold functions hi,... , hk- 1. Now to compute xl @... ( m-l ( Xm =

(xi @ . . .( xm-1) ( 1 we need to compute xl E... .(~ m- using hi,.. ., hkl. By

the inductive assumption, k - 1 > m - 1, so k > m. m



Chapter 6

Upper Bounds Techniques and

Results

Until now we have focused on obtaining lower bounds for induced subgraph prob-

lem under a variety of different measures. We have seen that despite the inherent

difficulties in showing super-linear lower bounds in general, it is possible to show

near-quadratic lower bounds under certain restrictions - in line with our belief that

polynomial preprocessing space does not yield significant speedups. We now approach

the induced subgraph problem from an algorithmic viewpoint. For which properties

can we improve upon the trivial O(n2 ) upper bound? As our lower bound results

might already suggest, it is unlikely to achieve speedups better than a polylog(s)

factor. However, as we shall see, for many fundamental properties such as connectiv-

ity and bipartiteness, even achieving small speedups requires non-trivial new ideas.

Our approach here is to develop canonical techniques for improving upon the triv-

ial bounds. To begin with, we develop a representation scheme, called the standard

graph representation which allows us to "efficiently" 1 perform useful operations on

the graph induced by any query set. The basic idea of this representation is to parti-

tion the graph into small clusters and to exhaustively store some information within

each cluster. To construct information about any given induced subgraph, we sim-

'In this section, words such as "efficient" and "speedup" signify only a modest polylog(s) factor
improvements.



ply combine together relevant pieces from within each cluster. A clustering based

representation scheme has also been used by Hellerstein et al [4] for a static data

structure problem on bipartite graphs. We show that several classes of graph prop-

erties can be sped up as an immediate consequence of this representation scheme.

To capture some other properties such as connectivity and bipartiteness, we develop

an efficient algorithm to compute transitive closure of an induced subgraph. Finally,

we define the notion of "speedup preserving" reductions for induced subgraph prob-

lem which enable us to transform an efficient algorithm for one property to one for

another. An interesting aspect of our results is that simple function families such

as OR, AND and threshold functions, seem to be all that one can use for a broad

range of properties. In the remainder of this section, we assume that the space s is

super-linear (Q(m'+')) in the size m of the static input, and that it is sub-exponential

(2n6, 6 < 1/3) in the size n of the dynamic input. For example, log -- = (logs),

O(n2/ /log2 s + n logs) = O(n 2/ log 2 s).

6.1 Standard Representations

As a first step towards designing our algorithms, we develop a useful representation

scheme for graphs.

6.1.1 Standard Variable Representation (SVR)

Suppose we are given a set U of m boolean variables as a static input and a set B C U

of k boolean variables as dynamic input. Let A C B denote the subset of variables in

B which are set to true, JAI = a. We wish to determine A or perhaps some element

v E A, in an efficient manner. Our goal is to design a data structure using space s

that allows us to do that. Let us first do so for a fixed dynamic input B.

Definition 14 (Simple Standard Variable Representation (SVR))

An OR-restricted data structure scheme is called simple SVR of B if its cells corre-

spond to the nodes of a binary tree constructed in the following manner. The root



corresponds to an OR of all k variables of B. The two subtrees attached to the root

correspond to recursing this construction on a partition of variables into two equal

halves.

Lemma 20 Simple SVR can determine A in time t < 2a(1 + log k) + 1 using space

s = 2k - 1.

Proof: Traverse the underlying tree in a depth-first manner stopping any time we

see a node with value 0. In the worst case we end up examining completely the first

log a levels and then traversing at most a paths down, each being of length log a. An

easy computation gives the claimed bound; the space bound follows from the fact

that the tree has 2k - 1 nodes. m

The following corollary is an easy consequence.

Corollary 21 Using simple SVR we can

1. find some true variable in A (if A = 0) in at most 1 + log k steps;

2. for any fixed j determine either that j > a or find some j true variables in time

O(j log k);

3. if a = o(k), we can completely determine A in o(k) time.

Now we would like to extend this approach to efficiently determine A = A(B) for

arbitrary dynamic input B, given our space constraints.

Definition 15 (Standard Variable Representation (SVR))

An OR-restricted data structure is called a SVR of U if its cells correspond to the

following representation. Partition U arbitrarily into 1 = m/p clusters C1,... , C, of

size p = log(s/m) = e(log s) each. For every non-empty subset S of any cluster, we

store an OR of variables in S. Total space used is bounded by 12P < s.

Now given any subset B C U, we can use SVR to determine its subset of true

variables A = A(B) as follows. First determine for each i E [1], the ith projection

Pi = Ci n B. Define rm(B) = min(m/p, B ) = O(min(m/logs, IBI)); it clearly



upper bounds the number of non-empty projections. Since we have a simple SVR

for each Pi, we can use the preceding algorithm to determine the set Ai of true

variables in Pi. If we let ai = IA n Pi, the total time taken to determine each Ai is

0(1 + ai logp). Thus A(B) can be determined in time rm(B) + O(aloglogs). The

lemma below summarizes these observations.

Lemma 22 With space s, SVR can be used

1. to determine for any fixed j either that j > a or find some j true variables in

B in time ,m(B) + 0(j loglogs), which is O( -g) when j = 0 (logslogs). In

particular, we can determine whether A(B) = 0 in r (B) = O(- ) oblivious

probes;

2. to determine A(B) (and a) in time r,(B) + O(aloglogs), which is O(1 )

when a = O(ogs m)log loglog S

6.1.2 Standard Graph Representation (SGR)

We now turn our attention to how these representation schemes may be applied to

efficiently storing a graph G for the induced subgraph problem. Using m = (n), we

can directly use SVR as our representation scheme. But observe that our concern

is only subsets of edges generated by induced subgraphs. This observation allows us

to design what we call standard graph representation (SGR) which would allow us to

save a logs factor over the previous scheme. The basic idea is that now instead of

partition edges into clusters, we partition vertices into clusters. As a building block,

we need the following representation scheme that applies to a fixed bipartite graph.

Simple SGR for bipartite graphs: Let H(U, W, EH) be a bipartite graph. We

now construct a binary tree in a manner analogous to the simple SVR. The root

contain an OR of edges in EH. If either |UI or IWI is greater than one, say U, we split

it into two equal-sized partitions U1 and U2, and recursively proceed on the graphs

H,(U1, W, EH1) and H 2(U2 , W, EH2) where EH, = (EH) n (Ui x W) for i = {1,2}.



The two subtrees constructed above are attached to the root. Clearly, the total space

used is 21U1IW I - 1.

SGR for general graphs: We now show how to construct SGR of a graph G(V, E)

using space s. Partition V into 1 = n/p clusters V1, ..., V where each Vi contains

p = (1/2) log(s/n 2) = E(log s) vertices. First, for every subset U of each cluster, store

a simple SVR for the edge variables in the graph induced by U. Next consider any pair

of clusters, say Vi and Vj. For every Ui C Vi and Wj C Vj, store a simple SGR for the

bipartite graph induced by Ui and Wj. The total space used is s = p22P+2 2Pn2/p2 < s.

As an illustration of how SGR can be used, consider the NON-EMPTY property.

Let Xi = X n Vi be the ith projection and let F(X) = min(IXI, n/p) denote the upper

bound on the number of non-empty projections. For every non-empty projection Xi,

we use the simple SVR to check for the presence of an edge inside Ex, in 1 probe.

Next, for every pair (Xi, Xj) of non-empty projections, we do the same using the

simple SGR stored for the bipartite graph induced by Xi and Xj. Total time taken

is bounded by F(X) + (r(x)) = O(n 2/ log 2 s).

The following lemma summarizes some properties of SGR.

Lemma 23 Let X be a subset of V, Gx = (X, Ex) be the subgraph of G induced by

X and a = IEx . Using SGR we can

1. for any fixed j determine either that j > a or find some j edges in Ex in time

O(F2(X) + j loglog s + F(X) log2 s), which is O( ) when j = O( og2 gogs)

2. determine Ex (and a) in time O(F2(X) + a loglog s + F(X) log2 s), which is

(n
2  n

2

O(- ) when a = O( g2Sglg).

6.1.3 Some Extensions

We conclude our discussion of these representations by indicating some useful exten-

sions.



Representing Vertex Neighborhoods: In some applications, we will be inter-

ested in studying the neighborhood of a vertex v within a given query set X; let

Nx(v) denote this neighborhood. Observe that the standard graph representation

contains almost all the information that we need to efficiently determine Nx (v). The

only information that we lack concerns the neighborhood of v within its cluster C,.

So we augment SGR as follows: for each vertex v and subset S C C,, store an OR of

edges between v and S. It is easy to see that this augmentation requires only a slight

increase in space, namely n2P = o(s). We refer to this neighborhood information as

the vertex SVR of v.

Generalizing to arbitrary functions: Instead of storing an OR of some variables

in our representation, we can apply some function g : {0, 1}* -+ R to this subset of

variables and store the result. The resulting (simple) SVR (SGR) is called a (simple)

SVR (SGR) w.r.t. g (if we do not specify g, we assume it is OR). We observe that

we do not require g to be boolean, so the output of g might take more than 1 bit to

describe (however, it is less than the number of variables to which this g is applied).

For example, g can be integer addition, where both SGR and SVR will need cell size

O(loglog s). It is easy to see that the space (overall number of bits) required by a

SGR (SVR) w.r.t. g is still bounded by s, however. When talking about a "probe"

we mean reading the whole output of g, but the time is still the overall number of

bits read. The useful examples of functions g aside from OR and addition are AND

and XOR.

6.2 Optimality of SGR/SVR

In this section, we try to give some intuition on why SGR and SVR only use clusters

of size O(log s). For that, let us look at a class of representations where some function

g : {0, 1}* R is applied to certain s subsets of the static input. And let us identify

every cell in such a representation with the subset of variables to which g is applied.

SGR and SVR are two examples of such representations. We address two natural



conditions on such representations and show that SGR and SVR are optimal in terms

of meeting these conditions.

We already noticed that SGR (SVR) allows us to "store" s subsets and to parti-

tion every induced subgraph (every subset) of our static input into at most O( )

(O(m/ log s)) disjoint subsets that are "stored" in our representation. Such partition-

ing of the induced subgraph (subset) into disjoint "clusters" seems quite useful. For

example, this seems to be the most natural way to compute splittable functions (see

Theorem 13) over induced subgraphs (over subsets). We would like to address the

question of whether SGR (SVR) produces the most efficient way to make such a par-

tition, given the space constraint s. In other words, what is the minimal t s.t. one can

find s subsets of the static input allowing to partition every induced subgraph (every

subset) into at most t disjoint subsets. This is the (s, t)-spanning set question studied

in Chapter 7, where we can even relax the requirement that the subsets are disjoint

(i.e. we look at covers rather than partitions). We show in Theorem 17 (with p = 2

and the union operation) that to represent every subset of an m-element set we must

have t = Q(m/ log s), so SVR is optimal in this respect. Similarly, by Corollary 32,

to represent every induced subgraph we need t = Q( n ), so SGR is optimal in this

respect as well.

We also observe another property of SGR (SVR). Together with every subgraph

H of G (subset B of U) that it "stores", it also stores all distinct non-empty induced

subgraphs of H (all non-empty subsets of B). This also seems like a useful thing to

do. For example, when partitioning the induced subgraphs into a union of "stored"

subsets, we had one such partition E 1 ,..., Et (t = O(F )) for the whole edge set,

and every induced subgraph had a partition where we simply projected each Ei onto

this induced subgraph. Of course, we would like to have large subgraphs Ei so that

t would be small. Thus we examine what is the largest size of H (B) s.t. there are

less than s distinct non-empty induced subgraphs H' of H (subsets B' of B). The

subset question is very easy, the number of B' is 21BI - 1, so the largest B has size

IBI = O(log s). Thus, to cover any subset of Q(m) size by such subsets B, one would

need Q(m/ log s) "stored" subsets, and SVR exactly achieves that.



For the SGR we show

Proposition 24 If H has 2k non-isolated vertices than it has at least 2 k - 1 distinct

non-empty induced subgraphs.

Proof: It is easy to see that every graph with 2k non-isolated vertices has a vertex

cover F of size at most k. Then any subset of these 2k vertices that properly contains

F forms a non-empty induced subgraph, where all these subgraphs are distinct, since

every a F has an edge to F. The number of such subsets of vertices is 2 2k-IFI - 1 >

2k - 1. 0

Hence, H can touch at most O(log s) vertices, so it has O(log2 s) edges. Thus, to

cover any subgraph induced by a subset of size Q(n) one would need Q(- ) "stored"

subgraphs, and SGR achieves this.

6.3 Applications of SGR

SGR and its variants are extremely useful in getting non-trivial upper bounds for

various evasive graph properties. We now present some generic examples as well as

some problem-specific techniques.

6.3.1 Computing Splittable Functions

Definition 16 (Splittable Function) A function g : {0, 1}* - R is called split-

table if for any m and x E {0, 1}m, for any partition of the m variables of x into sub-

sets A 1,..., Ak we have that g(x) = h((g(A),..., g(Ak)), (A 1,..., Ak)), for some

function h.

In other words, we can reconstruct g(x) by knowing the values of g on an arbitrary

partition of x. Some examples of splittable functions are AND, OR, XOR, addition.

Theorem 13 Let g be a splittable function.

* Using SVR w.r.t. g and given a static input x of length m, we can compute

g applied to an arbitrary subset B of variables of x in rm(B) = O(m/logs)

oblivious probes.



* Using SGR w.r.t. g and given a graph G as a static input, we can compute g

applied to a subgraph induced by X in F2 (X) = O( ) oblivious probes.

Proof: SVR w.r.t. g stores g applied to at most Fm(B) non-empty projections

of x. Reading the value of g applied to those projections and using splittability of

g, the result follows. SGR w.r.t. g stores g applied to at most F(X) subgraphs

induced by non-empty projections of X and to at most (r(2)) bipartite subgraphs

induced by pairs of non-empty projections of X. This partitions Gx into at most

r2(X) subgraphs. Reading the value of g applied to these subgraphs and using

splittability of g, the result follows as well. Notice, both schemes are oblivious, since

the projections are known in advance. m

Corollary 25

To (NON-EMPTY), T ,(CLIQUE), T (PARITY)
OR, O -(ALL-NEIGHBORS) are 0 (ogs)

Tb (NO-ISOLATED-VERTEX) and TA, ALL-NEIGHBORS) are (a 2 ).

Proof: Bounds for NON-EMPTY, CLIQUE and PARITY are immediate using splitta-

bility of OR, AND and XOR. For NO-ISOLATED-VERTEX, we check for every vertex of

v E X that it is not isolated using the vertex SVR of v w.r.t. OR in O(I-) probes,

a total of O(-Q) oblivious probes. Similarly, for ALL-NEIGHBORS. *

Corollary 26 Using the family of threshold functions we can (adaptively) compute

the number of edges IEx for any X in O( o loglog s) time. In particular, MAJORITY

and PARITY can be solved in this time using threshold functions.

Proof: Storing k + 1 threshold functions Tk,_ and performing a binary search, we can

compute the number of true variables among k variables xl,. ., Xk in 1+log k probes.

On the other hand, we can compute |Exl in O( n) oblivious probes of O(loglog s)

bits each, by using SGR w.r.t. addition. Each probe returns the number of edges

in a small subgraph of O(log2 s) edges. We simply replace each O(loglog s)-bit cell

of the SGR containing the number of edges with O(log2 s) threshold functions. This

still uses space at most s as is easily seen. When we need the number of edges in



some subgraph, we perform the binary search using threshold functions in O(loglog s)

steps. 0

It is interesting to observe that by Lemma 19, for the family F of threshold

functions, Tbl(PARITY) = (), so adaptivity is crucial.

6.3.2 Edge-Separated Properties

Definition 17 A property P is called g(n)-edge separated if |E| > g(n) fixes the

property to true or false.

For example, TREE, FOREST, k-MATCHING, k-VERTEX COVER (for constant k)

are O(n)-edge separated properties. Using Lemma 23, we can either recognize that

lEx I is more than g(n) or obtain Ex in time O(n 2/ log 2 s+g(n) loglog s). This clearly

suffices to determine any g(n)-edge separated property. Thus we have the following

theorem.

Theorem 14 For any g(n)-edge separated P, TR,S(P) = O( + g(n) loglog s).

6.3.3 Computing BFS/DFS Forest

Computing BFS/DFS forest is often an integral part of many graph algorithms. Here

we show how they can be sped up using SGR.

Theorem 15 Using SGR (w.r.t. OR) we can compute a BFS or DFS forest of Gx

in time O( n 2 )

Proof: We just follow the standard BFS/DFS algorithm of greedily discovering

new vertices. Let us concentrate for BFS, for concreteness. Having a current set of

vertices Y C X in the forest and the frontier F, we look at each v E F and find all

its neighbors to X\Y. Using the vertex SVR of v, this takes at most n + nv loglog s

steps, where n, is the number of new neighbors discovered. Summing over all the

vertices and using the fact that E n, I X| < n we get 0( ) algorithm. Similarly,
for DFS log

for DFS. m



6.3.4 Transitive Closure Computation

The ability to efficiently compute transitive closure of a subgraph induced by a subset

of vertices is a useful primitive for many graph properties (e.g. connectivity). And

among other things, BFS/DFS forest gives us the transitive closure of Gx. On the

other hand, if we do not need the extra structure of the BFS/DFS forest, it turns out

that we can find the transitive closure faster by searching not vertex by vertex but

cluster by cluster!

Theorem 16 For any X C V, we can compute some spanning forest (and thus the

transitive closure) of Gx in time 0( n loglog s).

Proof: Let c < n/ log s be the number of non-empty projections of X, which we

call X 1,... ,X . We let Gi be the subgraphs induced by Xi and Hij - the bipartite

graph induced by Xi and Xj. First, we read one be one all the edges inside Gi, at

most cp2 = 0(n logs) = o(n 2/ log 2 s) of them. Then we find connected components

(including their spanning trees) of each Gi, initializing our spanning forest F to be the

union of all these spanning trees T1,..., Tt. The only possible connections between

Tk's that might contract our forest are now inside Hij, i $ j. In the procedure below,

we will continue to find an edge between two currently distinct trees in F (such edge

is called a contracting edge), thus contracting those two trees together, until no more

contracting edges exist. We will look for contracting edges by examining edges in all

Hij's in the order i = 1... (c- 1), j = (i+1) ... c. We continue examining the current

Hij until it has no new contracting edges. We strees that we update F whenever a new

contracting edge is found, so at most n - 1 contractions are possible. The correctness

of this algorithm is clear, we only have to describe how to look for a contracting edge

in Hij given the current state of F. Assuming for a second that we know how to find

a contracting edge in Hij (if it exists) in O(loglog s) steps, it is easy to justify the

running time. There will be at most n - 1 succesful searches overall and at most one

unsuccessful search for every Hij, a total of O(n + c2) = O(ln7 ) searches, proving

O(T7 loglog s) running time.



Thus, it remains to describe how to find a contracting edge. Assume w.l.o.g. that

i = 1, j = 2. We observe that for every Y C X 1 and Z C X2 , our SGR stores

the information on whether there is an edge between Y and Z. Let F consist of

trees T1,...,Tt, and Ck (Dk) be the set of vertices of Tk inside X 1 (X 2). Also let

L = {k|Ck $ 0} be the set on non-empty trees in X 1, R = {kIDk = 0} - in X 2.

Clearly, both L and R have at most O(log s) trees. The set of contracting edges is

exactly the set of edges between Ck, and Dk2 for k, , k2, kl E L, k2 e R. We observe

that there might or might not be an edge between Ck and Dk, but we really do not

care since they are not contracting. We can clearly "identify" all the vertices of non-

empty Ck (Dk) into a "single vertex", since they are parts of the same tree already.

Thus, every probe we are going to make can be thought as testing 2 disjoint subsets

A C L and B C R, corresponding to making Y = YA = UkEACk, Z = Z B = UkEBDk.

We require A n B = 0, since we do not want to include the same tree on both sides.

We call such a probe [A, B]. Once we get any such probe returning true, we can use

the simple SGR for the bipartite graph (YA, ZB), make a binary search and find the

contracting edge in O(loglog s) steps. So we can just describe how to partition all

possible contracting edges into few complete bipartite graphs (YA, ZB), A n B = 0.
First, we make two probes [L, R\L] and [L\R, R] which test for a contracting

edge between the trees present in X 1 but not X 2 and all the trees in X 2, and vice

versa. If any of them is true, we are done. Otherwise, if we let U = L n R (notice

[UI = O(log s)), the only possible contracting edges are exactly between "points"

Ck, and Dk2 for k1 , k2 E U, k, k2 . Thus, the queries we make will be of the form

[A, U\A], where A C U, and we need to find a sequence of queries A 1,..., , Aq, Ai C U,

s.t. Ai x (U\Ai) cover every point (kl, k2) for kl k2, k1, k2 E U. Hence, our problem

reduces to finding a small q s.t. there are sets A 1 ,..., Aq C U s.t. for any k1 , k2 E U,

kIl k2, there is Ai s.t. kl E Ai, but k2 0 Ai. Such a collection A 1 ,..., Aq is called a

separating family of U.

Lemma 27 A set U of size r has a separating family of size 2[logr] = O(logr).



Proof: Let / = [log r]. We can write any z E U in binary z = z(1), ... , z(/). We let

Ki = {zlz(i) = 0}, Ni = {zlz(i) = 1}, i E [P]. We claim that K1,...,Kp, Ni,...,Np

is a separating family for M. Take any a $ b. There is a bit position i where they

differ. Assume a(i) = 0, b(i) = 1. Then K separates a from b, as a E Ki, b V Ki.

Similarly, when a(i) = 1, b(i) = 0 we get that Ni separates a from b, as a E Ni,

b Ni. m

In our case r = IUI = O(log s), so there is a separating family for U of size

O(loglog s). Testing [A, U\A] for A in the separating family will complete testing for

a contracting edge in O(loglog s) steps. m

Corollary 28

70R,s (CONNECTIVITY), ToR,s (NO-ISOLATED-VERTEX), TAND,s (ALL-NEIGHBORS) are all

O( n loglog s).

Proof: Transitive closure of Gx is clearly sufficient for deciding CONNECTIVITY

and NO-ISOLATED-VERTEX. To deal with ALL-NEIGHBORS, we compute transitive

closure of Gx using AND instead of OR. m

We observe by Corollary 25 that T,(NO-ISOLATED-VERTEX) = O(L2). We will

come back to that in Chapter 7.

6.3.5 Speedup-Preserving Reductions

While the class of properties we were able to speed-up might seem too small, we now

develop the notion of speedup-preserving reductions will allow us to capture many

properties via the above framework. Speedup preserving reduction allows us to apply

efficient algorithms developed for one property to the other.

Definition 18 (Speedup-Preserving Reduction (S-Reduction)) A property P

is said to be S-reducible to a property P', denoted P cxs P', if there are maps g, h

and a constant c such that

* g takes as input a graph G(V, E) and outputs a graph G'(V', E') with IV'| < clVI,

and



* h: 2v -- 2V' is such that such that for any X C V, P(Gx) 4==> P'(G'(x)) (or

P(Gx) -= P'(G'(x)))

If P ocs P', then it is readily seen (as IV'I = O(IVI)) that 7(P) = O(T(P')).

As an example of an S-reduction, we sketch a reduction from graph bipartiteness

to graph connectivity. For any static input G, we construct a transform as follows.

Define a graph G' = (V', E'), where V' = V x {0, 1}, and E' only contains edges that

connect the "O-side" to the "l-side" as specified by E'([v, 0], [w, 1]) = E(v, w); notice

that G' is bipartite. The map h is given by h(X) = X x {0, 1}. We claim now that

Gx is not bipartite (has an odd cycle) if and only if for some [v, 0] e V', there is a

path connecting [v, 0] to [v, 1]. To see this, consider an odd cycle (v 1,..., v2k+l) in

Gx. Then G'(x) contains the path

[v 1, 0] -+ [v2 , 1] ...-- [V2k+1, 0]-+ [v1 , 1].

Conversely, stripping the second component from any path from [v, 0] to [v, 1] pro-

duces an odd cycle in Gx. Thus graph bipartiteness S-reduces to graph connec-

tivity. Moreover, since edges of G' are just some edges of G, we can say that

TOR,s(NON-BIPARTITE) = O(ToR,S(CONNECTIVITY)) = O(n2 loglog S). It is interest-
__2ing to observe that the two "more direct" algorithms for bipartiteness run in O( g )

time: one using DFS forest and then trying to detect an odd cycle by checking back

edges, the other - using BFS forest and checking for an edge between two vertices on

the same level.



Chapter 7

(s, t)-Spanning Set

In this section we study an abstract problem that highlights the issue of space-time

tradeoffs and is interesting in its own right. Here is the approximate description

of the problem. Suppose we are given a set M with some operation * and M has

some "spanning set" B of size m i.e. every element of M is "expressible" using some

elements of B. Minimal such B is usually called a basis. What a basis allows us

to accomplish is to "store" fewest possible elements needed to express every possible

"query" element, by possibly using all m elements of B. Assume now that we are

willing to store more than m elements in B but seek to express any element of M

using at most t elements of B, where t << m. If we find such a B of size s, we call

it a (s, t)-spanning set for M. More generally, we can talk about an (s, t)-spanning

set for some subset W C M. The question is what is the optimal tradeoff between

s and t. After obtaining some general bounds for the (s, t)-spanning set question,

we find how a particular version of it connects to non-deterministic and oblivious

cell probe complexity under the families of AND and OR functions. This will allow

us to give purely combinatorial descriptions of such measures as Af7ro,,(f), o (f),
T7Obl(f) (similarly, for the AND family). We then apply these results to the induced

subgraph problem.



7.1 Basic Setup and General Results

Let F be some set equipped with two operations: addition + and multiplication

*. Assume that addition is commutative, associative and has an additive identity

0, while multiplication is associative and has an identity element u E F. We also

assume the left distributive law a * (b + c) = (a * b) + (b * c) holds. We let M -

Fm be the mth power of F, i.e. M = {(al,...,am)jai C F}. We define addition

(al,..., am) + (bl,... , bm) = (al + bl, ... , am + bm) and multiplication by a scalar

a * (bl,..., bm) = (a * bl,..., a * bm). When F is a field, for example, M is just an

m-dimensional vector space over F, but we will not restrict ourselves to this case. We

say that v e M is expressible in terms of vl,..., Vk E M, if there are al,..., ak E F

s.t. v = a1 * V1 + ... + ak * vk. We observe that M has a basis B of m elements, i.e.

every v E M is uniquely expressible in terms of elements of B. An example of B is

the canonical basis, where "unit" vector ui E M has 0 in all positions other than i

where it has u, and v = (al,..., am) = E ai * ui.

Definition 19 An (s, t)-spanning set for W C M is a collection S of s elements

of M with the property that for any v E W, v is expressible in terms of at most t

elements of S (then we call v t-expressible in terms of S). When s = t we call S

simply a spanning set of W. S is minimum (s, t)-spanning set for W if s is optimal

given t.

The canonical basis of M is a (minimum) (m, m)-spanning set for M. Let IFI = p,

so ]MI = pm . We start with a sharp bound for s when W = M.

Theorem 17 Any minimum (s, t)-spanning set for M satisfies:

* If mP-1 < t < m and F is a group under addition, then s = m + 1.

* If 1 <t < m 1 then

1 tpm/ t < s < t(pmlt 1)
e(p - 1)

In particular, s = O(tpm/t), t = ( ). For F being a field, the upper bound

can be improved to s < t(pm/t - 1)/(p - 1).



Proof: Let mPl < t < m and F be a group under addition. Let S = {ul,... , um, b =

Ui +... + um}, ISI = m + 1. Take any v E M, v = (al,..., am). Since IFI = p,

at least m of ai's are the same, say, al = a2 = ... = am/p = a. Then v =p

a * b + (am/p+1 - a) * Um/p+1 + ... + (am/p+1 - a) * Um/p+1 (we can subtract a as

F is a group). Since t < m, it is impossible to have ISI = m, so S in minimum

indeed. Let 1 < t < m a !. For the upper bound we construct the following (s, t)-

spanning set. Divide canonical basis B into t blocks of size ! each. For each block

store in S all possible vectors expressible in terms of the elements of the block (except

u). This gives a total of t(pm/t - 1) elements in S. Then clearly every element of

M is (uniquely) expressible in terms of at most t of elements in S: simply take the

normal representation of v in terms of B and replace all basis vectors of each block by

a single vector. In the case when F is a field, we can split each block into equivalence

classes consisting of p - 1 vectors obtainable from each other by a non-zero scalar

multiplication, and store only 1 vector from each equivalence class.

For the lower bound, using the known inequality for the partial binomial sum (see

[7], pp. 55), the total possible number of elements expressible in terms of t out of

some s elements is at most (all logarithms below are base p)

k=t

E(p - 1)k (S t log(p-1)+s log s-t log t-(s-t) log(s-t) = A (7.1)
k=O

We must have A IMI = pm, since we want to express all elements of M. Hence we

need

logA = tlog(p - 1) + s logs - tlogt - (s - t) log(s - t) > m (7.2)

Assume, s = at -pm/t, where a = e(p We will show then that (7.2) is not satisfied.

Indeed,

log A = t log(p - 1) + atpm/t log(atpm/t) - t log t -

t(apm/t - 1)(log t + log(apm/t - 1))

t log(p - 1) + pm/tat(- + log a) + pm/tat log t - t log t(apm/t) -



t(apm/lt - 1) log(apm lt - 1))

= t log(p - 1) + pmlt(am + at log a) + t log(apm/lt - 1) -

tapm/t log(apm/t - 1)

= t log(p - 1) + t log(apm/t - 1) + pm/t(am + at log a - at(m + log a) -
1t

at log(1 - ))
apm/t

m 1
< tlog(p - 1) + t(loga + ) - pm/tatlog(1 -

t apm/t

< tlog(p- 1) + m+tloga+pm/t(at )loge
apm/t

=m + t log(p - 1) + t log a + t log e = m + t log(ae(p - 1)) = m

Hence, we cannot save more than logs factor in time by allowing more space.

Notice, in the lower bound proof, the only fact we used about M was that IMI = p.

So we get in the same way

Corollary 29 For t < m- 1, any (s, t)-spanning set for W C M with n = log, WI

satisfies s > (ptpl/t , i.e. t= (o

The bound in Corollary 29 is the best possible generic lower bound for W, since

we can take W to be the subspace spanned by ul,..., un and apply to it the upper

bound in Theorem 17. On the other hand, there are 2 trivial (s, t)-spanning sets for

any W: for t = 1 we can take s = IWI = p by storing all the elements in W, or we

can use the (s, t)-spanning set for the whole M as described in Theorem 17, getting

s = 8(tpm/t). What we show is that for a vast majority of W C M, logP IWI = n,

one of these two extremes is essentially optimal, so the lower bound of t = OQ(n/ log s)

is unachievable when n << m.

Theorem 18 For a random W C M, IW I = pn, with high probability, for any (s, t)-

spanning set for W,

* If t = O(1), then s = Q(IWI) = O(pn) (i.e. to get "small" t the trivial scheme

with s = IWJ, t = 1 is nearly optimal).



* If t = Q(m) then s = Q(tp"(m)/t) (i.e. it is nearly optimal to take the (s,t)-

spanning set for the whole M). Thus t = Q(l ).

Proof: When n > T, the bound in Corollary 29 already gives us the desired result

for all W, so let n I. There are (pm) possible collections S of s vectors, each of

them is capable of t-representing at most A vectors, as defined in (7.1). Those A

vectors contain at most () possible subsets W of size pn. Hence, using space s, the

total number of subsets W with an (s, t)-spanning set is at most (P )(pA) pmsApn*

On the other hand, the total number of W's is (p) n (P- )pn 2 pP, as n < m

Thus, if space s would be sufficient for all W of size pn, we must have pmsAP" 2 p ,

i.e. ms + pn logP A > jp or .- + " > . Hence, either s = Q(p") = Q(IWI), or

logP A = Q(m). In the second case, carrying out the same computation as in the proof

of Theorem 17, we would get s = Q(tpn(m)/t), as required. The threshold between

these two space bounds is t = E0(M). High probability part follows easily from above.

The result should not come as a surprise, since if W is irregular and unstructured,

we should not expect to have an "efficient" (s, t)-spanning set for W, other than 2

extremes: store W directly, or store an (s, t)-spanning set for the whole M. This

raises a question of getting optimal (s, t)-spanning set for some explicit M and W.

We will do it soon in connection with graph properties.

7.2 Computing Monotone Functions Using AND/OR

Families

We now describe how (s, t)-spanning set gives a combinatorial characterization of

non-deterministic and oblivious computations for evaluating a monotone function f,

under AND/OR-restricted data structures. From here on, we focus on (s, t)-spanning

set for M = F m where F = {0, 1} (i.e. p = 2), "addition" is the OR operation

and "multiplication" is the AND operation. Unwinding the definition, M is simply

the power set of [m] with the union operation on it. An (s, t)-spanning set for some



W C M is a collection S of s subsets of [m] such that every set A E W is a union of

at most t sets in S; we say that S (s, t)-covers W. When s = t we simply say that

S covers W. Let f : Y x Q -+ {0, 1} be a monotone (in y for any fixed q) function

that we wish to compute using an AND-restricted data structure D = {cl,...,c,S}.

Let E(ci) be the set of variables that occur in ci, and S(D) = {E(ci),..., E(c,)} be

the collection of subsets of {0, 1}m resulting from D.

Definition 20 For a function g : {0, 1}m -+ {0, 1}, let Cl[g] be the set of all min-

1-certificates for g viewed as subsets of [m]. Given a query qo E Q, we let C'(qo) -

Cl[f q=qo] and WAND = UqQ Cl(q). Analogous definitions can be made for OR case by

replacing min-1-certificates with min-0-certificates.

Lemma 30 Let D be any AND-restricted (OR-restricted) data structure scheme of

size s, and let f (y, q) and g(y) be two monotone functions. Then

* D can be used to non-deterministically check f(y, q) = 1 (0) in t probes for any

query q E Q if and only if S(D) (s, t)-covers WAND (WoR).

* D obliviously computes g(y) if and only if S(D) covers Cl[g] (Co[g]).

Proof: Suppose D can be used to non-deterministically verify f(y, q) = 1. Take

any qo c Q, C1 C Cl(q) and let yo = yl (i.e. just the variables in C1 are set to

true), so f(yo, qo) = 1. Assume cl,..., ct are the cells we guessed that let us verify

f (yo, qo) = 1. The value of ci is 1 if and only if E(ci) C C1. Assume such ci's are

c1,. . ,ck, k t. Let A= U E(ci), so A C C1 and y = YA is consistent with the

answers we got. If A # C then f(YA, qo) = 0, so we could not have concluded that

f = 1, so A = C, and S(D) is an (s, t)-spanning set for WAND. Conversely, if S(D)

is an (s, t)-spanning set for WAND, given any qgo we can guess C1 E C1 (qo) that makes

f = 1 (if one exist) and read the at most t cells that cover it in S(D). We accept if

and only if we get all 1 answers. Clearly, this correctly non-deterministically verifies

that f = 1. The oblivious case is essentially the same as above. M

As an immediate corollary we get the desired combinatorial description of non-

deterministic and oblivious cell probe complexities.



Theorem 19 For any monotone function f,

* .ATA'D,S(f) (AfT-oR, 8(f)) is a smallest t s.t. there is an (s, t)-spanning set for

WAND (WOR).

* TAb (f) (7ob ,(f)) is a smallest t s.t. there are s sets containing a spanning

set of size t for every C' (q) (Co(q)) where q E Q.

* bl  (g) (7ob (g)) is the size of the minimum spanning set for C1[g] (CO[g]).

An interpretation of this theorem is that when the computation needs to verify

all min-l-certificates (min-0-certificates), then the amount of work needed to be done

can be characterized combinatorially.

7.3 Applications To Graph Properties

We now apply Theorem 19 to the induced subgraph problem. We already saw in The-

orem 6 that for any evasive property, TR(P) = Q(n2 / log2 s); this was shown using the

stabilization technique. The same technique also yields K/7 R (P) = Q(No(P)/ log 2 s)

for any property P. For any non-trivial monotone property, we now re-establish this

result via a very different approach, namely, by using (s, t)-spanning set. One advan-

tage of this approach over the stabilization technique is that it applies to arbitrary

functions and not only induced subgraph problem. We will also show T7b (P) = Q(n 2)

bounds for many natural properties P. Some of these properties, e.g. CONNECTIVITY,

have 7R (P) = (n log n) [3] or even TOR, (P) = O( o loglog s). Thus, such proper-

ties are speedable adaptively using OR but not obliviously. Hence, we once again ob-

tain a separation between adaptive and oblivious computation, this time for AND/OR-

restricted function families. We conclude the section by showing that for P =

NO-ISOLATED-VERTEX we get To, (P) = 0( Qg) while TOR,S(P) = O(2 loglog s).

So this property is speedable both adaptively and obliviously, but one does better

adaptively. This will involve both stabilization technique and estimating the size of

a certain spanning set. In the sequel we will also develop general techniques on how

to show bounds on the size of the (s, t)-spanning set under the union operation. In



particular, we show how to get tight bounds on the (s, t)-spanning set for the set of

graphs isomorphic to a given one, which is of independent interest. The bounds we

obtain are tight and are generally better than the counting results of Corollary 29.

We now have m = (') and M is the set of all n-vertex graphs. In this case Cz (X)

is a collection of min-z-certificates for P on X, WAND = Ux C1(X), WOR = Ux Co(X).

We let Cz = Cz(V).

Definition 21 For a graph G = (V, E) we let I(G) be the set of all graphs isomorphic

to G (under relabeling of vertices of V). We call the set of non-isolated vertices in G

an active set and its cardinality - a touching number of G.

Because of invariance of any graph property under relabeling of vertices, we have

that if G E WAND, then I(G) C WAND (same for W,,). Also, G E Cz implies I(G) C Cz.

Above observations suggest that we should develop technique on finding an optimal

(s, t)-spanning set for W = I(G). We also observe the special property of the union

operation: the only graphs H that can be useful in representing G are subgraphs of

G. Thus, we expect that a "large" graph should be useful for (is a subgraph of) only

for a very small fraction of graphs in I(G). As an example, we let G be an !-clique.

Then any graph H touching k vertices is a subgraph of exactly all the 2-cliques whose

active set contains the active set set of H, which forms a (n/2-ki) n 2) 2 -k fraction

of !-cliques. In fact, similar bound turns out to be true for a much larger class of

graphs, but not for all, as is illustrated by the following example. Let G be the

complement of an !-clique. Then the "star" on n-vertices with touching number n is

nevertheless useful for n/2- (n/2) = fraction of graphs in W = I(G)! In fact, n

star graphs form an (n, n/2)-spanning set for I(G). As we will see, the problem with

this G is the fact that it has vertices of large degree.

Lemma 31 If G has maximum degree at most cn, for c < 1, then any graph H

touching k vertices occurs as a subgraph in at most 2 -O(k) fraction of graphs in I(G).

Proof: Let p be the fraction in question. Let H' be a graph on k (ordered) vertices

equal to H restricted to its k non-isolated vertices. As H' has no isolated vertices, it

has 1 > k/2 edges el... el in its spanning forest F. We can assume w.l.o.g. that H'



(and H) has no other edges except for el,... , el, as the fewer edges H has, the more

graphs it can be a subgraph of. We also choose a convenient order on ei's and on

vertices in H' by ordering them in the depth first search order each time we traverse

an edge of F in the DFS, we add this edge to the list of edges and add the new

endpoint to the list of vertices. When we go to a new component, we just add the

first vertex of this component to the list of vertices. Let Aut(G) C S, be the set of

automorphisms of G (r E S s.t. 7r(G) = G). Consider first the case k < -n. We

have:

p Pr (H {G' E I(G)IH C G'}I I{G' e I(G)|H C G'}I IAut(G)I
p Pr (H C G') = -

G'I(G) - I(G)I |I(G)| I Aut(G)J

|{x E SIH C 7(G)}|r H (G) - Pr (H Cr(G)) = Pr (r-(H) C G)
n! irES - rESn

= Pr (r(H) C G)= Pr (H' C Gx)= Pr (ei,..., el Ex)
7rESn XCV, IX=k XCV,IXI=k

I degree(a)
- xcvPr (ei E Exlei,...,e_ 1 E Ex) < (max der +1XCV, Ix=k aev n- k +1
i= l

< )I < ( 2c k/2 = 2-O(k)
n-k - 1+c

Let us elaborate on the above sequence of inequalities. Picking a random G' e I(G)

and testing it has H as its subgraph, is equivalent to picking a random isomorphism

7r of vertices and testing that H is a subgraph of 7r(G), since I{G' E I(G)IH C

G'}I - |Aut(G)| = j{rJH C 7r(G)}I, and II(G)I - IAut(G)| = ISI = n!. But H C r(G)

= r-1'(H) C G. Since 7r is random, so is 7r- 1, and applying a random permutation

to H touching k vertices is the same as choosing k (ordered) random vertices in V

forming a subset X, looking at the induced subgraph Gx, and testing H' C Gx, i.e.

all ei e Ex, which we then rewrite using the conditional probability. Next comes

the crucial observation. Since X is ordered, we can view a random choice of X as

choosing the k vertices of X one by one in the same DFS order as the vertices of

H' occur, and whenever H' had a new edge ei in its forest, we check that we get a

corresponding edge in G. Thus, the conditional probability estimates the following.

Assume we already chose some r < k vertices in V and we know the presence of



some edges between them. Let a be some special vertex among those r vertices. We

now choose a random b out of the remaining n - r > n - k + 1 vertices and ask the

probability that (a, b) form an edge in G. If we did not know anything about the

previous edges, this probability would be clearly bounded by degree(a) < degree(a) Butn-r - n-k+l '

the presence of some edges adjacent to a among the r previously selected vertices only

decreases the needed probability, so our probability is indeed bounded by degre(a)

Since we do not know what a is, we have to take the worst possible choice of a E V.

The remaining computations are clear, they use the facts that k < 1-'n, 1 > k/2,

and c < 1.

To get the desired bound for arbitrary k > l2-n, we simply let ft be the subgraph

of H induced by the first (1 - c)n/2 vertices in the DFS traversal of H. Clearly, H

touches f or f - 1 vertices and is a subgraph of H, where f = 1- > (1-)k Since a2 - 2

subgraph of H can be a subgraph of only more graphs in I(G), we get by the preceding

analysis that H, and thus H, is useful for at most 2- n(f) < 2 -Q((1-c)k/2) = 2 -Q(k)

fraction of graphs in I(G). m

The above lemma serves as a powerful tool for obtaining strong bounds for (s, t)-

spanning set when G satisfies a simple restriction.

Theorem 20 If G = (V, E) has maximum degree at most cn, for c < 1, then

* any (s, t)-spanning set S for W = I(G) has t = Q- s( )

* any spanning set S for W = I(G) has s = t = Q(|E|).

Proof: Take any G' e I(G). Since it has |E| edges and is the union of at most

t graphs in S, some graph H E S has at least IEI/t edges, and thus it touches at

least JrEl/t vertices. By Lemma 31, such a graph H is useful for at most 2-n'( )

fraction of graphs in I(G). Deleting all these graphs from I(G) and repeating the

process we get H' E S that is different from H and is useful for at most 2-n( IEI/t)

fraction of graphs in I(G). Continuing this way, ISI = s > 2n(II/t), i.e. t = Q(L).

For a smallest spanning set, one way to get some results is to use the above bound

with s = t. Assuming IE = Q(n"), we get s = t = Q(jl). However, this bounds



seems non-optimal, as in the proof we did not count all "small" graphs in S, and this

is too wasteful when s = t. In fact, we will show that s = t = Q(IEI). Let te be the

number of graphs in some spanning set S for W which have e edges, so t = Ze1l te-

Pick a random G' E I(G). For any H having e edges, since it touches at least v/e

vertices and using Lemma 31, we have Pr(H is useful for G') = 2-"(v/), so E(number

of edges of G' that H covers) = e - Pr(H is useful for G') = O(e2 - n ( )) = 0(1).

Summing over all H in our spanning set and counting covered edges with repetitions,

E(number of edges of G' covered by all H) = EH E(number of edges of G' that H

covers) = Ek tkO(1) = O(Ek tk) = O(t). On the other hand, the above expectation

has to be at least |EL, because if it is less than IEl, there is some G' E I(G), not

all of whose IEI edges are covered by some t sets in our spanning set, which is a

contradiction. Hence IE l> O(t), so t = Q(lEl). m

A useful corollary is as follows.

Corollary 32 The minimum (s, t)-spanning set for the collection of 2n clique graphs

has t = E( F ).

Proof: The lower bound comes from Theorem 20 by applying it to an a-clique

while the upper bound follows from Corollary 25. n

We are now ready to combine Theorem 19 and Theorem 20 in order to obtain our

main result.

Theorem 21 For any monotone property P,

* AT D,S(P = lo~ ) and ATo,,(P) = N(P).

Thus, NTAND,s(P) = AfToR,S(P) = Q(n 2 / log 2 s) when N 1 (P) = No(P) = Q(n 2).

* If there is a min-1-certificate C1 E C1 with maximum degree cn and Q(n 2) edges,

then TN,,(P) = Q(n 2 ). Similarly, if there is a min-O-certificate Co E CO s.t. C o

is of maximum degree cn and has Q(n 2) edges, then 7TAD (P) = Q(n 2).

Proof: Let N1 (P) = r(n). Take any X of size n/2 and let C1 be the min-i-certificate

for P on X with the largest number of edges (equal r(n/2) = Q(r(n)) = Q(NI(P)))1.

1We assume that P is "regular", so above holds.



Since G has maximum degree at most n/2 (it is a certificate on a subset size n/2), we

can apply Theorem 20 and conclude that any (s, t)-spanning set for I(G) C WAND has

t = ( ). The result follows by Theorem 19. The oblivious result is an immediate

corollary of Theorems 19 and 20. *

As an example, on the non-deterministic front, we get 7AfTR,S(P) 2) for

such P as CONNECTIVITY, NON-BIPARTITE, NON-EMPTY and NOT-FOREST. On the

side of oblivious bounds, we can apply it to P = CONNECTIVITY, since a (missing)

complete bipartite graph on n/2 vertices has maximum degree n/2 and n2/4 edges

and hence Tfbl (P) = OQ(n 2 ). As TOR(P) = O(n log n), this is an example of limitation

of obliviousness for the OR family. An identical result also holds for BIPARTITE.

We conclude by showing how to apply Theorem 19 to get an optomal bound on

Tobl(P) for P being NO-ISOLATED-VERTEX. rOR,Sob 

(p) = E) n2

Lemma 33 For P=NO-ISOLATED-VERTEX, W,(P) = (l), while ToR,,(P) =

O( n loglog s).

Proof: The oblivious O( L) upper bound follows from Corollary 25. To show the

lower bound we first apply stabilization. We claim that there exists a subset X of

size 1 s.t. if we set all the edges outside of X to 1, we fix to 1 all the ORs whose edges

touch Q (log s) vertices of V. This is a slightly stronger version of Lemma 6. If we

pick X by picking every vertex of V with probability 1/2, any H touching k > 2 log s

vertices will be stabilized with probability 1- 1/s2, as only when all k vertices touched

by H fall inside the query subset X, the OR defined by H is not going to be stabilized.

Using the union bound and the fact that IXI > n/2 with probability at least 1/2,

the needed X exists. We work on X as our query set and apply Theorem 19 to X.

CO(X) is 1 (missing) stars on X (each star connects v E X to X\{v}). Any H in the

spanning set S for Co(X) must be a subgraph of a star on X (otherwise it is useless),

and since H touches O(log s) vertices of a star graph, it must have O(log s) edges, i.e.

IHI = O(log s). Since the union of all the stars in Co(X) is Edgesx and S covers all

the graphs in Co(X), the union of graphs in S covers (IXI) = Q(n 2) edges of Edgesx.

Since each graph in S has O(log s) edges, ISI = t = (-IL). n
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