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Abstract

This thesis presents fast and practical methods for generating randomly distributed
pairs of the form (x, gX mod p) or (x, xe mod N), using precomputation. These gen-
eration schemes are of wide applicability for speeding-up public key systems that
depend on exponentiation and offer a smooth memory-speed trade-off. The steps
involving exponentiation in these systems can be reduced significantly in many cases.
The schemes are most suited for server applications. The thesis also presents security
analyses of the schemes using standard assumptions. The methods are novel in the
sense that they identify and thoroughly exploit the randomness issues related to the
instances generated in these public-key schemes. The constructions use random walks

on Cayley (expander) graphs over Abelian groups.
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Chapter 1

Introduction

Modular exponentiation is a basic operation widely used in cryptography and consti-

tutes a computational bottleneck in many protocols. This work presents a method

to significantly speed up modular exponentiation.

In practice, two versions of modular exponentiation are most frequent: In factoring

based schemes, xe mod N must often be computed for fixed N = pq (p, q primes),

fixed e and many randomly chosen x. Many discrete log based schemes compute

terms of the form gx mod p, for a fixed g E Z* and many random x.

The well known square-and-multiply algorithm for modular exponentiation re-

quires, on average, 1.5 n modular multiplications for an n-bit exponent. In the case

of 512-bit integers, the algorithm performs, on average, 766 modular multiplications

of' 512 bit numbers. Several authors [29, 11, 17] describe alternative algorithms for the

discrete log case which reduce the number of multiplications per exponentiation by

means of precomputation and table lookup. These algorithms allow a time-memory

trade-off. For 512-bit numbers, the number of multiplications can be reduced to about

100, using a modest amount of memory and precomputation time.

We present new methods to reduce the cost of exponentiation even further. In

the discrete log case, our scheme may need significantly fewer multiplications than

even the improved algorithms of [29, 11, 17] (depending on the parameter choices; cf.

Chapter 5). This improvement is even more pronounced when compared to square-

and-multiply. Note that the algorithms of [29, 11, 17] apply only to the discrete log



case. To the best of our knowledge, our scheme is the only available method to speed

up exponentiation in the factoring case, and research into variants may be of interest.

The key to these performance improvements lies in abandoning the basic input-

output relation the known algorithms adhere to: unlike these algorithms, our scheme

does not receive x as its input but generates a random x together with gX mod p,

or xe mod N, respectively. While this joint generation makes it possible to reduce

the number of multiplications noticeably, it also limits the direct applicability of our

scheme to protocols in which a party generates a random x and computes gX mod p

or xe mod N. Still, there are many cryptographic protocols which involve exactly

these two steps and which, in some cases, are speeded up significantly by our genera-

tion scheme. We present some examples: Diffie-Hellman key exchange [12], ElGamal

encryption [13], ElGamal and DSS signatures [13, 14], Schnorr's schemes for authen-

tication and signatures [25, 26], and versions of the RSA [221 cryptosystem which we

define here.

The simplest version of our generator is based on a subset sum or subset product

construction. The set of possible outputs x is determined by the set of possible subsets

which can be generated given the parameters of the generator. A second version of

the generator combines the basic version with a random walk on an expander which

is a Cayley graph of an Abelian group. The random walk component expands the set

of possible outputs incrementally and spans the entire underlying group. We remark

that our methods depend only on the group structure of the underlying domain and

are thus also applicable to elliptic curve based schemes.

The main part of the thesis is devoted to analyzing the security of protocols

under the distribution of outputs produced by our generators. This is necessary since

correlations in the generator's outputs can introduce potential weaknesses which do

not arise in [29, 11, 17]. A scheme for fast generation of pairs of the form (x, gX mod p)

was proposed by Schnorr [25] for use in his authentication and signature scheme. It

was broken by de Rooij for the small parameters suggested by Schnorr [9], and fixed

by Schnorr [26]. This version was also broken by de Rooij [10]. De Rooij's attack

easily extends to any discrete-log based signature scheme for which an equation linear



in the random parameter can be written (e.g. ElGamal, DSS, and Brickell-McCurley).

De Rooij's attack is based on linear relations between the consecutive outputs and the

tables of Schnorr's generator. We note that an attack of this sort cannot be applied

to our generator.

1.1 Models of Analysis

Instead of using a restricted adversary model, such as the 'black box model' of Nechaev

[20] or Shoup [27], our analysis considers general adversaries. It proceeds either

without additional assumptions or invokes standard complexity assumptions (e.g.

hardness of factoring). We believe that this approach, by treating more general

adversaries, can yield better optimizations.

1.2 RSA-based schemes

We present some RSA-like systems for applications with large encryption exponent.

Commonly, the RSA public key exponents are chosen to be small in order to reduce

encryption times. Consequently decryption takes far longer than encryption. In RSA

signature schemes, the situation is reversed. It may be desirable to decrease the

asymmetry of loads on the two ends and to have roughly similar costs for encryption

and decryption. For example, a server which is networked with many small clients that

form frequent short-lived sessions may be overloaded. Formally, our speedup scheme

can only be applied to the encryption of messages. Decryption times can be reduced

by using small decryption exponents d, which should be chosen according to Wiener's

recommendations [28] (also discussed later). We also note that certain attacks on

RSA exploit low exponents, and some future applications appear to require large

exponents [3, 7]. We analyze the generation schemes using standard assumptions.



1.3 Lattice attacks on subset sum problems

Subset sum constructions have been so successfully attacked by lattice reduction

[16] based methods [5, 15, 8] that it is often considered risky to base cryptographic

constructions on them. Our experiments show that the L3 algorithm can be expected

to solve subset sum problems up to about n = 40, where n is the size of the set from

which subset sums are formed. Let £ be the length of the integers in this set. As n

becomes larger than 40, L3 finds the shortest vector only if £/n (or n/i) exceeds some

threshold to. The value to itself grows rapidly with n.

At present, the most successful attack on subset sum is described in [24, 23]. It

combines the L3 algorithm with a branch-and-bound search for the shortest vector

and search pruning heuristics. Algorithms of this kind can be expected to solve subset

sum problems for all values of £ up to about n = 100. Based on our own experiments,

we observe that as n is increased far beyond 100 - 200 the behavior of the algorithms

becomes qualitatively similar to that of L3 for n > 40: The shortest vectors are found

only if £ is sufficiently larger (or smaller) than n. In practice, all known attacks break

down at n around 200 for the more difficult SUBSET SUM problems (£ not much larger

than n). Furthermore, the attacks do not appear to profit significantly from the fact

that only K-subset sums (as opposed to arbitrary subset sums) have to be solved,

unless r is extremely small. Typical applications of our generators correspond to

n > 500 (the length of discrete log or factoring moduli) and K = 64. The known

methods appear to require excessive amounts of time to solve subset sum problems of

this size. Furthermore, it is important to note that the problem arising in connection

with our generators is not even a standard subset sum problem. A key property of

our generators is the fact that the adversary sees only the subset sums (which are

generated internally). The subset sum weights are secret. There is no reason to reveal

them. It appears that attacks on the generator need to cope with the complications

due to the hidden weights. For further discussion of the hidden subset sum problem,

the reader is referred to [4].



1.4 Conventions and outline

Given an integer x, let Ix denote its length in bits. We use O(N) to denote the size

of the multiplicative group Z*. We use [a, b] to denote the set {a,..., b}, where a, b

are integers.

Chapter 2 describes our generation scheme for pairs of the form (x, xe

mod N). Chapter 3 describes and analyzes applications of this scheme to RSA-

like public-key systems. Chapter 4 describes the generator for pairs of the form

(x, gX mod p) and its application in several protocols, including signature schemes.

Chapter 5 discusses parameter choices and presents some performance results.



Chapter 2

The Generator for (x, xe mod N)

2.1 The basic generator

The generators in this section are targeted towards speeding up protocols in which

a party must generate a random x e Z7* and Xe mod N (below all computations,

if not specified otherwise, are done modulo N), for a given N = pq, where p, q are

primes, and e E Z+ of length m. The generator has two parameters n, K. Its outputs

correspond to K-subsets of a set of n random numbers ai. We choose the parameters

n, K such that (') (the number of possible K-subsets) is sufficiently large to make

the corresponding subset product problem intractable, and to make birthday attacks

infeasible (cf. Chapter 5).

Generation algorithm G:

* Preprocessing Step: Generate n random integers ai E Z* . Compute / =

(ai)e mod N for each i and store both ai's and Pi's in a table.

* Whenever a pair (x, ze) is needed: Randomly generate S C [1, n] such that

ISI = K. Let k = fliEs ai mod N. Let K = 1His 0i mod N. Return (k, K) as

the result of G.

Obviously, K = ke. The preprocessing takes O(mn) multiplications. Subse-

quently, each output (x, Xe) is computed with only 2K multiplications. Similar ideas



have been used previously in [1]. G can be used in many schemes and analyzed with-

out further assumptions. We now present computationally simple modifications of

the generator that improve its performance. We will state the security proofs for the

simple generator. They can be easily adapted for the full generator.

Remark 1. Note that the table is internal to the user, and no external updates or

synchronizations for the schemes we discuss are needed.

2.2 Randomness Properties of the Basic Genera-

tor

Claim 1. The outputs of G with distinct subsets S are pairwise independent.

Proof. For a set S, let s(S) = lies ai. Let S 1 and S2 be any subsets of size K, such

that S1 = S2. Denote xj = flis, ai for j = 1, 2. We show that x1 is independent of

x 2, i.e., for any yl and Y2, Pr[xi = Y I X2 = Y2] = Pr[xi = y1], where the probability

is over the choice of ai. Since S1 and S2 are not equal, and they are of the same size,

neither of them is the subset of the other. In particular, S1 - S2 4 0. Let h be an

element of S1 - S 2 .

Pr[x1 = yj1 x2 = y2] = Pr[ah = yls(Sl - {h})-s I s(S 2 ) = Y2].

Since ah is uniform and independent of all the variables appearing in the condition

s(S 2) = Y2 and of all the variables in the right-hand side yls(S1 - {h}) - 1, it follows

that Pr[ah = yis(Si - {h})- I s(S 2) = Y2] = 1/ (N). Also,

Pr[xi = yi] = Pr[ah = yis(Si - {h}) - 1 ] = 1/4(N).

Thus Pr[xi = yl 1x 2 = Y2] = Pr[xi = Yl]. E

Corollary 2. s : (ai)n1 x S + fies ai is a universal hash function.



Claim 3. Denote by S the set of all possible outputs of G for a particular choice of

ai, 1 < i < n. Then (assuming that 4(N) is sufficiently large)

(;)E[ISI] >
I + O(O(N) -  k)'

where the expected value is over the choice of ai, 1 < i < n.

Proof. For a subset S, ISI = . let n(S) denote the number of subsets S' 0 S, |S'I = ,

such that s(S) = s(S'). Let n'(x) be the number of subsets S such that s(S) = x.

Note that if s(S) = x, then n'(x) = 1 + n(S). It is easy to see that

S n'(x) 1
n'(x) 1 + n(S)

(x,xe)ES Sc[1,n],S=K

For any subsets S $ S' of size r., s(S) and s(S') are uniformly and independently

distributed over [1, ord(g)]. Therefore, Pr[s(S) = s(S')] = 1/q(N). It follows that for

any such S, E[n(S)] = ((n) - 1)q(N)- 1. Assuming proper choice of parameters to

ensure convergence, one gets E[ 1] 1o . We therefore have

I (")E[ISI] > ()
S 1S + O((N)-1 ()) 1+ O((N) - ())

sc[1,n],SI=K k

We note that since the choice of S in each round of G is uniform and indepen-

dent, even an information-theoretic adversary, given access to an unlimited number

of outputs of G, will not be able to guess which element of S will be output next.

2.2.1 Achieving Statistical Indistinguishability

In this section we show that for sufficiently high values of parameters, the outputs of

the generator are almost indistinguishable from random pairs (x, Xe).

We will need the following definitions from [18].



Definition 1 (Renyi entropy). Let X and Y be independent and identically dis-

tributed random variables. Define the Renyi entropy of X as

entRen(X) - log( Pr [X = Y]).
X,Y

It is easy to see that if X Eu S, i.e., X is uniformly distributed over a set S, then

entRenX = log |S|.

Definition 2 (statistically distinguishable). The statistical distance between dis-

tributions D, and 4, over {0, 1}) is

1
dist(Dn, En) = - S I Pr[X = z]- Pr[Y = z]I.

zE {o,1}-

We say nD, and ,En are at most e(n)-statistically distinguishable if dist(D, 9n) _ e(n).

Claim 4. The outputs ki of G are at most 2- (e+1) statistically distinguishable from

uniform, where e = (log (n) - mn).

Proof. Let A denote the table (ai)=l1 . A is chosen uniformly from among all possible

tables (ai). S is chosen uniformly from among all (n) possible ,-subsets of [1, n], so

the Renyi entropy of S is log ('). It now follows from corollary 2 and the Smoothing

Entropy Theorem [18] that (SA(S), A) is at most 2- e+1 distinguishable from uniform.

Therefore, ki = sA(Si) are at most 2- (e+ l1) statistically distinguishable from uniform.

Thus the bigger (n), the closer will the outputs of G be to uniform. Take, for

instance, m = 512, n = 1024, and r = 167 (in this case there is a factor of 4.5

speedup over square-and-multiply exponentiation). Then the output of G will be at

most 2- 70 statistically distinguishable from uniform, so no algorithm will be able to

distinguish it from uniform in less than - 270 steps.

We emphasize that these high values of parameters need only be used if one wishes

to have security that does not rely on computational assumptions.



2.3 The Full Generator: Introducing a Random

Walk

Our full generator combines a random walk on expanders based on Cayley Graphs on

Abelian groups with the outputs of G. For standard references on expanders, rapid

mixing and their set hitting properties see [19]. Notable are "Chernoff Bounds" for

random walk sequences that allow remarkable statements about passing general sta-

tistical (e.g. arbitrary moment) tests on the output numbers. For our applications, we

need expanders on specific domains over which discrete log and factoring are defined.

Fortunately these graphs exist: It is sufficient to select a small set of generators at

random. The resulting Cayley graph is an expander with high probability [2].

In G the number of multiplications needed to generate a pair is K. If K is too

small, the return time of G will be very short. In order to decrease K while preserving

randomness, we will make use of expanders:

Definition 3 (expander). A graph H is called a c-expander if for every set of ver-

tices S, IF(S)! > clS|(1 - SI/IHI), where F(S) is the set of all neighbors of S.

Definition 4 (Cayley graph). The undirected Cayley graph X(A, S) of a group A

with respect to the set S of elements in A is the graph whose set of vertices is A and

whose set of edges is the set of all unordered pairs {{a, as} : a E A, s E S}.

The following result is shown in [2]:

Theorem 5. For every 1 > E > 0 there exists a c(E) > 0 such that the following

holds. Let A be a group of order N, and let S be a random set of c(e) log N elements

of A. Then the Cayley graph X(A, S) is an E-expander almost surely.

Generation algorithm Gexp: Let N, e, n, K be as in G. There is an additional

parameter ne = clog O(N) for some constant c (e.g. c = 0.5 or c = 1).

Preprocessing Step: Generate n random integers ai E Zy .Compute fi = a'

for each i and store the ai's and /i's in a table.



Generate a random subset Se C Z* of size ne. For each di E Se, 1 < i < ne, set

Di = d and store (di, Di) in a table. Set r to a random element of Z* and R

to re.

* Whenever a pair (x, xe) is needed: Randomly generate S C [1, n] such that

ISI = r. Select a random j E [1, ne]. Set r := r - dj and R := R - Dj. Let

k = r - RiEs ai. Let K = R -Hs Oi and return (k, K) as the result of Gexp.

2.4 Randomness Properties of the Full Generator

Theorem 6. (Resistance to Birthday attacks) The expected number of repetitions in

a run of length f is at most

(2(2) + log n (2.1)
q(N) ( 1- 2-c c

for some constant c and sufficiently large N, n.

Proof. The following theorem is a version of results obtained in [1].

Theorem 7. The probability that any particular number output by the full generator

repeats after exactly m steps is at most

min () ' q(N) ±2

(for some constant c > 0).

If there exists an integer m < £ such that 1/(N) + 2-c m < 1/(n) then let 6 be the

smallest such integer. Otherwise, let 6 = f. Let the random variable C denote the

number of collisions. Then

E[C] = Pr(xi =xj) 1 + + 2-(J-i)

ij i<j;j-i<+ Kj>-i

< (- ( (1) + 5 2-c(j-), (2.2)
r ')i<j;j-i>b



where xi is the i-th element in the output sequence and the sums go over all ordered

pairs (i, j) such that 1 i <j < £ and either j - i < 6 or j - i > 6.

By the definition of 6, we obtain 6 < [- log D/c], where D = ()-1- (N)- 1

For sufficiently large (n), the second term of (2.2) is at most

£6D < D[log(1/D)/c] < - log ,

because the function x log(l/x) is increasing for sufficiently small x > 0. Concerning

the third term of (2.2), it is easily seen that

2 - ca 6 1
2 -c(j-i) <1- 2 1f 26 <

1 - 2-c ("} 1- 2-c

as 2-c < () -1. The theorem follows by combining these bounds with (2.2). O

The first term of (2.1) is the expected number of repetitions in an ideal sequence

whose elements are independent random elements of Z*T and is negligible for feasible

runs of the generator. The point to note is that the second term-which represents

the additional collisions due to our generator-contains £ only as a linear factor. In

contrast, the goal of a birthday attack is to increase the expected number of collisions

proportional to £2. The constant c depends on the parameters of the expander, which

can easily be chosen such that c = 1.

Achieving similar security against birthday attacks without the expander would

require , to be almost doubled reducing the speed by a factor of 2. At the expense

of the additional storage for the (di, Di) table, the expander component requires only

two additional multiplications per output. In addition, it improves the randomness

properties of the output numbers substantially (see [1]). Here it makes the outputs

look like subset sums of size approximately 2K.



Chapter 3

RSA-Based Schemes

Our generators do not speed up RSA-based schemes in a general way, but open some

new possibilities. The generator cannot be applied directly to RSA since it requires

exponentiation of a given message rather than a random one. We analyze versions of

the following scheme, in which f is an appropriately chosen function. The schemes

defined in this section will use either f(x) = x or consider f as a random oracle.

* Key generation: The public and private keys (e, d), as well as the modulus N

are generated as in RSA. That is, a party generates two large random primes

p, q, sets N = pq, computes e, d such that ed - 1 mod O(N), and publishes e

and N.

* Encryption: A message M is encrypted as E(M) = E(M, x) = (Xe, f(x) E M),

where (x, Xe) is an output of G or Gexp.

* Decryption: Given a pair a, b, output D(a, b) = f(ad) D b.

We note that this scheme is actually quite close to the way that RSA encryption is

used in practice. In most applications, RSA encryption is applied not to the message

itself, but rather to a random session key. The session key is then used in conjunction

with a symmetric encryption scheme to encrypt the message. In our construction

x is the session key and M -+ f(x) E M plays the role of a symmetric encryption

function. It is interesting to note that for a stream cipher, such as the commonly



used RC4 algorithm, the symmetric encryption transformation has exactly the form

M i-+ f(x) e M, where f is a pseudorandom number generator. This can be modeled

by considering f as a random oracle.

Our generator speeds up encryption, when the encryption exponent is large. We

also discuss how the decryption times may be reduced. In comparison with ordinary

RSA, the length of the ciphertext is doubled. We can prove that the scheme is secure

by relating it to RSA and by analyzing it in the random oracle model.

3.1 Random Oracle Model

The random oracle model (e.g. [6, 21] and references therein) provides an idealized

view of cryptographic hash functions. Protocols are allowed to use a random oracle,

i.e. a publicly available function f whose values f(x) are determined independently at

random for each input x. In the absence of better analysis, one often extrapolates the

security results from random oracles to existing hash functions by using a heuristic

assumption that some secure hash function behaves like a random oracle. We view

this as a strong assumption warranting caution, but such analysis seems to yield

better results than without it.

In the random oracle model, we choose f(x) = h(x), where h(x) is a random

function. We will assume that there are no repetitions in the output sequence of the

generator. This is, xi $ xj for all i $ j. This can be ensured with high probability by

choosing the parameters of the generator appropriately. In particular, for the basic

generator (without the random walk component), the table entries have to be reset

sufficiently often. For the full generator (including the random walk component), we

refer to Theorem 6.

Theorem 8. Let xz,... ,xk (k > 1) be successive outputs of G such that Xk Xi

for all 1 < i < k. Let M1, ... , Mk be a sequence of messages of the adversary's

choice. Then distinguishing E(Mk, Xk) from an encryption of a random message,

given (M1 , E(MI , x)) , ... , (Mk-1_, E(Mk-l, Xk-)), Mk is as hard as inverting x F-+ xe

(i.e. RSA) on random inputs.



Proof. Suppose the statement of the theorem is not true, i.e., there exists a pair of

probabilistic poly-time algorithms A1 and A2 such that A1 can generate a sequence

i,... , Mk, and A 2 , given

I = [(M 1, E(MI, xl)), ... , (Mk-1, E(Mk-l, Xk-1)), Mk],

can distinguish E(Mk, Xk) from the encryption of a random message. More formally,

Pr[A2 (I, {E(Mk, Xk), E(R, Xk)}) = E(Mk, Xk) I (M 1 ,... ,Mk) - Al] > E

for some nonnegligible c. The probability is taken over R and the coins of A1, A 2,

and G, with the constraint that Zk = xi for all 1 < i < k.

Let's now construct an algorithm B that would invert z -+ ze with nonnegligible

probability. Suppose we are given ze . Start by running A 1 to obtain (MA,..., Mk) (if

A1 makes any queries to the oracle, return uniformly distributed independent random

answers for new queries, or stored answers for repeated queries, and store the queries

and answers in a table). Generate random ,-sized subsets Sj, for 1 < j 5 k. Let

h be a random element of Sk. Let r be a random number. Set Ph to reze and

set ah to undefined. Now, for i E [1, n] \ {h}, set ai to be uniformly distributed

independent (both of each other and of r) random numbers in Z*v, and set i = a.

Let yj = fiEs, /i for 1 < j < k.

For j from 1 to k, set oj as follows:

1. If A, has asked the random oracle a query x such that xe = yj, then set oj to

be the answer given to that query.

2. If 1 < j < k and yj = yi for some 1 < i < j, then set oj = oi.

3. Otherwise, set oj to be a uniformly distributed independent random number in

Z7*.



Compute

I = [(MI, (y7, o e I 1)), ... , (Ak-1, (Yk-1, Ok-1 ie k-1)), 7k]

Now run A 2 (I, {(yk, Ok E Mk), (yk, Ok e R)} for a random R.

If A 2 queries the random oracle for a value of f(x), x E Z* , the following procedure

is followed:

1. If xe = yj for some j E [1, k], then return oj.

2. If x has been queried before, return the original answer to that query.

3. Otherwise, generate and return a new uniformly distributed independent ran-

dom answer.

It is easy to see that the distribution of the inputs given to A 2 is the same as the

original distribution of I, x 1, ... , Xk, and the outputs of f. Therefore, by assumption,

A 2 will distinguish between ok E Mk and ok D R with a nonnegligible probability.

However, ok is uniformly distributed random and independent of I, Yk, and R, and

the only way it could be obtained by A 2 is by sending a query x to the random

oracle such that Xe = Yk. Therefore, A 2 must send such a query x to the oracle

with nonnegligible probability. We can monitor the queries that A 2 makes to get the

value of x (we can efficiently check whether a query is equal to x using the equality

Xe = Yk).

We have

( jx e _ Yk A e iESk _e.

r i6Sk-{h} iei re RESk-{h} i iESk P

Thus, given x, we can compute z as

r iESk-{h} ai

It is easy to see that the algorithm B shown above computes z from ze with

nonnegligible probability. O



3.2 xe, x M

In practice, we cannot assume that a random oracle is available. However, even in

the simple case f(x) = x, our scheme can be shown to have a certain level of security.

Theorem 9. Let xl, . . . , Xk (k > 1) be successive outputs of G. Then computing Mk,

given E(M 1 ),... , E(Mk- 1), E(Mk) for uniformly distributed independent random M1 ,

... , Mk, is as hard as inverting x 4 xe (i.e. RSA) on random inputs.

Proof. Suppose the statement of the theorem is not true, i.e., there exists a proba-

bilistic poly-time algorithm A which, given

I = [E(MI,xi),... ,E(Mk, xk)],

can compute Mk. More formally,

Pr[A(I) = Mk I M1,... , Mk - Z] >

for some nonnegligible e. The probability is taken over the choice of M1 , . , Mk and

over the coins of A and G.

Let's now construct an algorithm B that would invert z '-4 ze with nonnegligible

probability. Suppose we are given ze. Generate random -sized subsets Sj, for 1 <

j < k. Let h be a random element of Sk. Let r be a random number. Set 3 h

to reze and set ah to undefined. Now, for i E [1, n] \ {h}, set ai to be uniformly

distributed independent random numbers in Z* , and set 3i = a. Let yj = 1ies, 3 i

for l j < k.

Generate uniformly distributed independent random or, ... , Ok. Compute

I= [(yI,ol),..., (yk, Ok)].

Run A(I). It is easy to see that the distribution of the input given to A is the same as

the original distribution of I. Therefore, A will with nonnegligible probability return

Mk such that (yk, Ok) is an encryption of Mk. Then x = Mk ® O k has the property



x e = Yk. We now have

Sfe Yk _ e  i Sk ) ze

r iESk-{h} i  
re iSk-{h} P iESk

Thus we can compute z as

x

r 1icSk-{h} ai

It is easy to see that the algorithm B shown above computes z from ze with

nonnegligible probability. O

3.3 Small decryption exponents

Use of G speeds up encryption for any exponent. Decryption still requires an ex-

ponentiation with the decryption exponent d. Decryption can be speeded up by

choosing d and e such that d is small. The most efficient attack against RSA with

small decryption exponent is the Diophantine approximation method of Wiener [28].

The attack breaks down if d > N1/4+6 (6 > 0), or if e is replaced by e' = e + r(N)

such that e'I > 1.5 INI, where r is a random number.



Chapter 4

Discrete Log Based Schemes

In this section, we present a modification of our generation scheme which makes it

suitable for speeding up protocols based on the discrete logarithm problem. These

include ElGamal, DSS, and Schnorr signatures, Diffie-Hellman key exchange, and

E1Gamal encryption.

4.1 Generators

All versions of the generator presented in Chapter 2 can be translated into the discrete

logarithm framework. Results of sections 2.2 and 2.4 (in particular, Theorem 6) can

be easily adapted to the discrete log versions of the generators.

Let p be a prime of length m, and let g E Z with order ord(g) (we note that the

exact order of g does not need to be known, and it is sufficient for ord(g) to be a

multiple of the order). The task is to generate a random k and compute gk mod p-

as required by many protocols. In the remainder of this chapter, all operations are

done modulo p. Again, the purpose of the generator is to speed up the modular

exponentiation.

Generation algorithm G':

* Preprocessing Step: Generate n random integers ai E Zord(g). Compute

0i = g0 for each i and store both ai's and Pj's in a table.



* Then, whenever a pair (x, gx) is needed: Randomly generate S C [1, n]

such that ISI = K. Let k = Eijs ai mod ord(g). If k = 0, stop and start again.

Let K = Heis fi and return (k, K) as the result of G'.

Generation algorithm Gexp: Let ne = clog ord(g) for some constant c (e.g. c = 0.5

or c = 1).

* Preprocessing Step: Generate n random integers ai E Zord(g). Compute

0i = goi for each i and store the al's and /i's in a table.

Generate a random subset Se C Zord(g) of size ne. For each di E Se, 1 < i < ne,

set Di = gd, and store (di, Di) in a table. Set r to a random element of Zord(g)

and R to gr.

* Whenever a pair (x, gX) is needed: Randomly generate S C [1, n] such

that ISI = K. Select a random j E [1, n,]. Set r := (r + dj) mod ord(g) and

R := R- Dj. Let k = (r + EiEs ai) mod ord(g). Let K = R 1-ies /i and return

(k, K) as the result of G'exp

4.2 Speeding up Discrete-log-based Schemes

Our first theorem outlines a main aspect of our generator, which stems from the fact

that the precomputation tables are chosen by the generator and kept secret. Below

we denote by p the distribution of the outputs of G'. Note that all the results shown

here for G' can be easily extended to G'exp

Theorem 10. Fix some £ and let I := (gk )i +- G'(.) be a run of £ outputs from the

generator. Assume that there exists an algorithm that, given I, computes the discrete

log of the next output of G' with success rate E . Then there is an algorithm to compute

discrete log on arbitrary inputs in expected time O(1/e).

Proof. Suppose it is possible to compute the discrete log of an output of G' after

seeing a sequence of f outputs. In other words, suppose there exists i E [1, £] and an



algorithm A such that for I = {gk }J=o generated by G', A(I) = ki. Without loss of

generality we can assume i = f. Let A's success rate be E.

We construct an algorithm BA such that, given any y = gX, BA(y) = x with

success rate E. BA would work as follows. Generate random it-sized subsets Sj, for

1 < j < f. Let h be a random element of Se. Let r be a random number. Set fh to grgx

and set ah to undefined. Now, for i E [1, n] \ {h}, set ai to be uniformly distributed

independent (both of each other and of r) random numbers, and set Pi = g",. Let

Kj = 0iJs, /i. Let z = A({K },). Compute X = z - r - EiEs,\{h} a ji Return X.

Next, we show that the Kj's produced by BA have the correct distribution. Since

r is uniformly distributed and independent of 3 i for i E [1, n] \ {h}, and since the Oi's

(for i E [1, n] \ {h}) are uniformly distributed and independent of each other, Oi for

all i E [1, n] are uniformly distributed and independent. The Sj's for 1 < j < f are

also random and independent. Since the distribution of the outputs of G' depends

only on the distributions of the 3's and S's, the sequence {Kj} generated by B has

the same distribution as the output of G' with completely random tables. Hence A

has success rate E on such input. Suppose that A is successful. By assumption on A

we have gZ = K = es, fi = fih HiES\{h} }i,

X _ -rZ-ES\{h a- g h i-{} = gXT g iES,\{h} g 1, r HiES\{h} /i

It follows that X = x, and that A would find the discrete log in expected 1/e

steps. 0

Despite the small number of multiplications used in G', for all but a negligible

fraction of the choices of the initial precomputation tables, computing the discrete log

of any new output of the generator is as hard as solving the full discrete log problem,

namely given arbitrary y = gX compute x. Note that the attack algorithm never sees

the discrete log of any element from the list of its outputs. In practice this means that

it suffices to ensure that in any run of practical interest its outputs do not repeat.

More complicated issues will arise when the discrete logs are used to generate some



outputs. This is the case in many signature schemes.

4.3 Signature Schemes

Our generators can be used to speed up several signature schemes. The signature

schemes we consider use pairs (k, gk) in two contexts. For example, in the ElGamal

scheme, a signer generates one pair (x, y = gX), publishes y and keeps x secret. This

pair is generated only once and corresponds to the generation of a private and a

public key. We do not use our generator to speed up the generation of this pair. Our

generator is only used to speed up the generation of the random pairs (k, gk) which

are needed every time a message is to be signed. However, given y, a third table

containing (ya)i<n can be added to our generator. Thus, the computation of yk can

also be speeded up. This does not raise further security issues.

Let a(M, k) be some discrete-log based signature of message M using a random

number k. Suppose there exists an attack algorithm A such that A(y, _M,I)= U(M, k)

for some k, where I = {(Mi, a(Mi, ki))}i=1, with ki generated by G'. Note that A

does not query the signing algorithm. It is simply given a sequence of signatures and

messages. The messages given to A can be arbitrary. This corresponds to a known

message attack.

4.3.1 ElGamal signatures

E1Gamal signatures [13] are defined as follows. x is the secret key, y = gX is the public

key. a(M, k) = (r, s), where r = gk mod p, s = (M - xr)k- 1 mod (p - 1). To verify

the signature, one checks whether r = gMy-r

For ElGamal signatures the condition k = 0 in G' is replaced by gcd(k, p - 1) - 1.

Let us show that ElGamal signatures with k and r generated by G' are as secure

against known-message attacks as if k were uniformly distributed independent random

numbers.

Lemma 11. (Security against known message attacks) Assume ElGamal Signatures



with intermediate random numbers k generated by G' is insecure against known mes-

sage attacks. Then one can construct BA such that for all M, M, k, and some k,

BA(y, M, (M, a(M, k))) = a(M, k).

That is, given access to A and a single message-signature pair, BA can forge the

signature of a new message. This would be a serious known message attack of size one

on ElGamal signatures. To use A, the algorithm BA has to fake the generation of I

above with ki distributed identically as the outputs of G'. The next claim which is a

known attack on ElGamal signatures, addresses this. The messages whose signatures

are being faked this way, would be distributed almost randomly.

Claim 12. Given y, (M, u(M, k)) = (r, s) for any M and k such that gcd(r, p - 1) =

1, and any c E Zp_1, it is possible to compute a(M', ck) for some M' 7, M without

knowing x or k.

Proof. Let a(M, k) = (r, s). All the inverses below are modulo p - 1. We have

o(M', ck) = (r', s') for

r' = rc mod p,

s' = c-lr'r-ls mod (p - 1),

M' = r'r-1 M mod (p - 1),

Then, r' ' = gkcc- lr'r-1(M- x r)k - 1 = gM'-xr' mod p.

Proof of the Lemma. Let us construct BA to work as follows: Let (r, s) = a(M, k).

If gcd(r,p - 1) = 1 (which happens with constant probability less than 1), BA fails.

Otherwise, it would generate random aj and ki as in G' (without computing ,j

or Kj). BA can then compute a(Mi, kik), 1 < i < £, using the above method.

A(y, FI, {a(Mj, kik)} >, ) = a(M, k) is returned.

The sequence given by BA to A looks as though it was produced by G' with the

table a' = ajk. Since aj are random, a' are random. Therefore, we have:

Claim: the input to A from BA has the distribution a, (i.e., the distribution on

outputs of a with k distributed by p).



It follows that BA will have the same success rate as A.

4.3.2 DSS signatures

DSS signatures are defined as follows. q is a large prime divisor of p - 1, and g has

order q in Zp. x is the private key and y = gX is the secret key. a(M, k) = (r, s),

where r = (gk mod p) mod q and s = (M + xr)k- 1 mod q. Verifying a signature is

done by checking if ((gMyr) s-1 mod p) mod q = r.

Lemma 13. If DSS signatures with k generated by G' are insecure against known-

message attacks, then an arbitrary DSS signature can be forged using only the public

key.

Let us first prove the following:

Claim 14. For any c and d in Z* such that ycgd 7 1, it is possible to compute

a(M', (cx + d) mod q) for some M' knowing x

Proof. Let

r' = (yCgd mod p) mod q,

s' = r'c -1 mod q,

M' = r' c - d mod q.

It is easy to see that (r', s') = a(M', (cx + d) mod q). Ol

Proof of the lemma. Suppose there exists A such that A(y, M, I) = a(M, k) for some

k, where I = {(Mi, a(M, k))}i=1, with ki and gki generated by G'. Let us construct

BA such that BA(y, M) = a(M, k) for some k.

BA would work as follows. It would fix some co and do in Z* such that ycogdo / 1.

Then it would generate random aj and ki as in G' (without computing 3j or Ki).

BA can then compute I = {a(Mi, (cokix + doki) mod q)}=, using the above method.

A(y, M, I) = a(M, k) is returned.



It is easy to see that the sequence given by BA to A looks as though it was produced

by G' with the table a' = aj(cox + do). Since aj are random, a are random, and so

we have:

Claim: The input of A in BA has distribution a,.

It follows that BA will have the same success rate as A. O

4.3.3 Schnorr signatures

Schnorr signatures [26] are defined as follows.1 q is a large prime divisor of p- 1, and g

has order q in Zp. s is the private key and v = g-S is the public key. a(M, k) = (r, y),

where r = h(gk, M) E [0, 2 t - 1], h is a hash function (not necessarily one-way), and

y = (k + sr) mod q. Verification is done by computing t = gYv r and checking whether

r = h(., M).

We will prove that using G' with Schnorr signatures is secure for t = Iql. We will

consider h defined by h(x, M) = (x + M) mod q. This h satisfies the requirements

given in [26], as it is uniform in x, depends on at least Iql bits of x, and, if M is

the output of a one-way hash function on the signed message, one-way with respect

to the original message (in any case, the last requirement is not needed if one is not

concerned about chosen-message attacks).

Lemma 15. For t and h specified above, Schnorr signatures with G' used to generate

k are as secure against known-message attacks as Schnorr signatures with independent

k.

Proof. Suppose there exists A such that for any M and I, and for some k, A(v, M, I) =

a(M,k), where I = {(Mi,a(Mi, ki))} 1, with ki and gk, generated by G'. Let us

construct BA such that for any M and for some k, BA(v, M) = a(M, k). Thus, BA

could forge any signature after seeing just the public key.

1The definition given here is similar to DSS and ElGamal signatures in that it does not perform
one-way hashing on M. Just as in DSS and ElGamal, chosen message attacks become possible, but

they do not present any real threat since the messages signed would be random. In practice, M

would be the one-way hash of the actual message. Note that in [26] one-way hashing of the message

is part of the definition.



BA would work as follows. Fix some ro and yo. Generate random aj and ki as in

G'. Then compute

ri = kiro mod q,

Yi = kiYo mod q,

Zi = gYivrz,

Mi = (ri - xi) mod q.

The result of A(v, M, {(Mi, (ri, Yi))} i=) is returned.

We have xi = gk(yo-sro). It is easy to see that the sequence given by BA to A

looks as though it was produced by G' with the table aj = a (yo - sro). Since aj are

random, a' are random, and so we have

Claim: The input of A in BA has distribution a,,.

It follows that BA will have the same success rate as A. O

4.4 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange is defined as follows. Alice generates a random a E Zord(g)

and sends ga to Bob. Bob generates a random b E Zord(g) and sends gb to Alice. Now

they share a secret gab = (gb)a = (ga)b. Alice and Bob can use G' to generate (a, ga)

and (b, gb), respectively.

Lemma 16. Diffie-Hellman key exchange with G' used to generate (a, ga) is as secure

as Diffie-Hellman key exchange with independent a 's.

Proof. Suppose that Diffie-Hellman key exchange using G' is not secure, i.e., an ad-

versary can guess the secret key of a particular session after seeing f key exchanges. In

other words, there exists an algorithm A such that for any I and any a, A(I, ga) = gakt,

where I = {gk}, = is generated by G' (messages gbi sent by Bob are not included in

I since they are not correlated with gk,). Let us construct an algorithm BA such that

for any a and b, BA(ga, gb) = gab, which would contradict the security of the standard

Diffie-Hellman scheme.



BA would work as follows. Generate ai randomly and independently and let

pi = g%'. Generate random Si, for 1 < i < f. Let h be a random element of Sj. Let

r be a random number independent of ai's. Set Ph to grgb and set ah to undefined.

Let Ki = HjEs, j. Let z = A({Ki}=, ga). Now compute X = z/(ga)r+EzESt-e{h}t

Return X.

Claim: The sequence {K} generated above has the distribution p .

Therefore, A would have a non-negligible success rate on such input. Suppose

that A is successful. By assumption on A we have

z =- ak_ = (K,), = ( 0 ) a - (3h)a 1 (,3i)a

iESI iES-{h}

Therefore,

z Sh} a gargab iS-{h}) a gab.

(ga)r+E Es-{h} a, gar iESI-{h} gaS, gar iES-{h} ( i)a

4.5 ElGamal Encryption

E1Gamal encryption [13] is defined as follows. x is the secret key, y = gX is the public

key. A message M is encrypted as E(M, k) = (gk, Myk). We speed up the scheme by

using G' to generate k and gk for each encryption. G' is not used to compute x and

y.

Lemma 17. ElGamal encryption with G' used to generate (k, gk) is secure against

ciphertext-only attacks if standard Difie-Hellman is secure.

Proof. Let I denote a sequence e(Mi, ki), 1 < i < £, with ki and gk, computed by

G'. Suppose there exists A such that for any I, A(y, I) = Mi. Let us construct A' A

such that for any ' = gk,}=1 generated by G', and for any a, A'(I', ga) = gaki. It

would then follow from lemma 16 that there exists BA' such that for any a and b,



BA' (ga, gb) = gab, which would contradict the security of the standard Diffie-Hellman

scheme.

A'A would set y to ga and generate uniform and independent random numbers ri.

Let M = A(y, {(gk,, ri)= 1 ). A' returns re/M as the result.

Since e(Me, ke) = (gk, re), M = re/yk. Therefore, re/M = yke yk gakt. E



Chapter 5

Performance results

The time and storage requirements as well as the security of our generators depend on

the choices of the parameters n, K, n,. For the purpose of making direct performance

comparisons with existing algorithms and based on our analysis, we consider concrete

parameter choices for two broad classes of applications:

If the security of the protocol using our generator depends on the hardness of the

hidden subset sum problem (i.e. for schemes or modes of attack for which security

was not proved to be preserved), the parameters should be chosen such that solving

the hidden subset sum problem is infeasible. If the security of the protocol using our

generator does not depend on the hardness of the hidden subset sum problem (e.g.

Diffie-Hellman key exchange, or any other scheme for which a security proof has been

given above), it is only necessary to choose the parameters large enough to avoid

birthday attacks. In this case, the number of multiplications per exponentiation can

be made extremely small.

Table 5.1 gives the storage requirements and average number of multiplications

using various methods to generate random pairs (x, gx mod p) and (x, x~ mod N) for

512-bit numbers. For protocols of the first kind (hardness of subset sum is important),

it appears that n = n, = 512 and K = 64 (or K = 32 for the expander version) should

provide sufficient security. For certain protocols of the second kind, it appears that K

can be chosen to be as small as 6 or 16 and n = 256. Table 5.1 displays the resource

requirements for these parameter choices as well as those for the algorithms of [29,



Table 5.1: A comparison of methods of generating pairs (x, gX mod p) and (x, Xe mod

N) for Ipl = 512, |ord(g)l = 512, INI = 512, lel = 512. Storage requirements are in
512-bit numbers. Times are in multiplications per exponentiation.

(x, gX mod p) (x, Xe mod N)
Storage Time Storage Time

Square-and-multiply 0 766 0 766
Brickell et al. [29] 512 100 not applicable
Brickell et al. [29] 10880 64 not applicable
Lim and Lee [17] 317 100 not applicable
Lim and Lee [17] 13305 52 not applicable
de Rooij [11] 64 128 not applicable
G (n = 512, K = 64) 1024 63 1024 126

Gexp (n = ne = 512, = 32) 2048 33 2048 66

G (n = 256, , = 16) 512 15 512 30

Gexp (n = ne = 256, K = 6) 1024 7 1024 14

11, 17] and square-and-multiply. For the algorithms of [29, 17], we display examples

with small and large storage requirements. Using comparable amounts of memory,

our generators need fewer multiplications than the other algorithms, especially in the

case of Gexp, G'exp.
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