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ABSTRACT

We study the moduli surface for pairs of elliptic curves together with an isomorphism between
their N-torsion groups. The Weil pairing gives a "determinant" map from this moduli surface
to (Z/NZ)*; its fibres are the components of the surface. We define spaces of modular forms
on these components and Hecke correspondences between them, and study how those spaces
of modular forms behave as modules for the Hecke algebra. We discover that the component
with determinant -1 is somehow the "dominant" one; we characterize the difference between
its spaces of modular forms and the spaces of modular forms on the other components using
forms with complex multiplication. Finally, we show some simplifications that arise when
N is prime, including a complete determination of such CM-forms, and give numerical
examples.
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1 Introduction

Let X,(N) be the curve over C parameterizing elliptic curves together with a basis for their

N-torsion that maps to some specified N'th root of unity under the Weil pairing.' It is

Galois over the curve X,(1) with Galois group SL 2 (Z/NZ)/{+1}. Let SL 2(Z/NZ) act on

the product surface X,(N) x X.(N) via the diagonal action; we can then form the quotient

surface, which we shall denote by X,I 1 (N). More generally, if c is an element of (Z/NZ)*

and if SL 2(Z/NZ) acts on the first factor via the natural action but on the second factor

via the automorphism

(a b) 4 a E-1b)
(cd C 

then we denote the quotient surface by X,,,(N). And we set

X, (N) = 1 X , (N).

E(Z/NZ)*

These surfaces can also be constructed in another fashion, as degenerate Hilbert modular

surfaces: let b, be the upper half plane, with F(1) = SL 2 (Z) acting on it via fractional linear

1This curve is traditionally denoted by X(N); however, we have chosen to use the notation X(N) to
denote the (geometrically reducible) curve coming from the adelic mod N principal congruence subgroup,
and have changed all notation accordingly.



transformations. Then 17(1) x r(1) acts on ) x 4); if we denote by F,(N) the subgroup of
r(1) x F(1) given by

al a 2  (mod N),((a bl a 2 b2 ) bl = Eb2  (mod N),
cl di ' c2 d2  Cl -1= c2 (mod N),

dl d 2  (mod N)

then the quotient r,(N)\5 x 45 is an open subset of X,,(N), and if we denote by 45* the
space 4 IJ pl1 (Q) then Fr, (N)\)5* x 4* is all of X_,,(N).

The surface X,,,(N) (or, more properly, the open subset given by using ) x Y) instead of
45* x b)*) is a coarse moduli space for triples (El, E 2, q) where the Ei's are elliptic curves and
q is an isomorphism from El[N] to E 2[N] such that A2¢ raises the Weil pairing to the E'th
power. The modular parameterization is given as follows: let (71, T2) E ) x 4) and let Ei be
the elliptic curve given by the lattice with basis {1, ri}. Also, let e be an integer that reduces
to E mod N. We then have the map q from El[N] to E 2 [N] that sends rj/N to eT2 /N and
1/N to 1/N; it raises the Weil pairing to the E'th power, the group of elements of 7(1) x (1)
that preserve q is the subgroup r, (N) defined above, and every triple (El, E 2, 0) arises in
this fashion.

Using this modular interpretation of these surfaces, we can think of them as Hilbert
modular surfaces corresponding to the order (Z x Z)-(N) of conductor N in Z x Z, defined
as

(Z x Z)-(N)={(a, b)EZxZ Ix Z a b (mod N)}.

Let (El, E 2, q) be a point on X,,, (N). If we let H be the subgroup of (El x E 2 )[N] consisting
of all points of the form (x, O(x)) then E 1 x E2/H has real multiplication by (Z x Z)=(N)-
This curve has a natural principal polarization iff E = -1 (c.f. Frey and Kani [3]): if A
is an abelian variety and H is a subgroup of A[N] then (A/H)V is isomorphic to AV/HV,
where Hv C AV[N] is the set of points orthogonal to H under the Weil pairing, and in
the case at hand we have H = HV iff E = -1. We shall see other reasons below why the
surface X_,_i(N) is the most important of the X,,,(N)'s to study; see Sections 5 and 6 in
particular.

The above gives a construction for the surfaces X-, (N) over C; since the moduli problem
makes sense over Q, there should be a construction of X,,E(N) over Q as well. It is given as
follows: let X(N) be the moduli space of pairs (E, s) where E is an elliptic curve and 4 is an
isomorphism of group schemes from E[N] to Z/NZ x Z/NZ. This curve is defined over Q,
it is Galois over X(1) with Galois group GL2 (Z/NZ)/{I1}, and all of those automorphisms
are defined over Q. Thus, the surface GL 2(Z/NZ)\X(N) x X(N) is defined over Q, where
GL 2(Z/NZ) acts via the diagonal action, and it is a moduli space for triples (El, E2, q) as
above but without any condition on what q does to the Weil pairing. This surface (which is
our X,(N)) isn't connected, however: there is a map from it to Aut(pp) = (Z/NZ)* which
sends (El, E 2, 4) to the ( such that 4 raises the Weil pairing to the C'th power. The fibre of
that map over c is then X_,,(N), and it is defined over Q.



The structure of the X_,,(N)'s as complex surfaces has been studied by Hermann in [7]
and by Kani and Schanz in [8]; our X,,,(N) is Hermann's YN,,-1 and Kani and Schanz's

ZN,,-.2 In particular, Kani and Schanz give explicit formulas and tables computing various
invariants of the X,, (N)'s, such as the dimensions of various cohomology groups. They
also give explicit minimal desingularizations of the surfaces.

The goal of this paper is to study spaces of modular forms on the surfaces X,(N) and
X ,,(N), and the interplay between the spaces on the various surfaces. In many ways,
X,(N) turns out to be the most natural object to study; to prove results on the X,, (N)'s,
one has to pass via X, (N), using the surface X_, 1 (N) as a linchpin. In particular, we study
how the X,,,(N)'s differ as c varies; one might naively expect them all to be isomorphic,
but it turns out that X_,,(N) and X,,,,(N) are isomorphic in general only if e and e'
differ by a square. The surface X,-_1(N) is somehow the most important of the surfaces
X,, (N); we characterize the difference between spaces of modular forms on it and spaces of
modular forms on the other X,, (N)'s in terms of forms with complex multiplication. We
also consider the case where N is prime and show that various simplifications occur there,
allowing us to give a complete determination of the CM-forms that arise; we end by giving
numerical examples of such forms.

While the study of the surfaces X_,E(N) is interesting in its own right, they can also
be seen as a first step towards exploring the wealth of level structures that should occur on
higher-dimensional Hilbert modular varieties that don't have analogues on modular curves.
In particular, if K is a real quadratic extension of Q and if p is a prime in Q that splits in
K then we have level structures on the Hilbert modular surface associated to K that are
completely analogous to the X_,E (p) level structures; to the extent that the calculations in
this paper are local, they should carry over to that situation as well.

I would like to thank Fred Diamond, Jordan Ellenberg, Steven Kleiman, and Barry
Mazur for the help that they have given me while writing this; and the M.I.T. Department
of Mathematics and the N.D.S.E.G. Fellowship Program for the support that they have
provided.

2 Spaces of Modular Forms

Let f: 4) x 4) -+ C be a holomorphic function; let 7 = (71, 72) be an element of GL+ (R) x
GL+ (R), where GL + (R) is the set of elements of GL 2(R) with positive determinant; and
let k = (kl, k 2) be a pair of natural numbers. We define the function flk,,: 4 x 4) -+ C by

flk,,(z, z2) = f(71(Zl), 72(z2))j(71, Z1)-kj (72, z2) - k 2

where, if a = (c d) is an element of GL+(R), then a(z) = (az + b)/(cz + d) and

j(a, z) = (ad - bc)-1/ 2 (cz + d).

2We replaced their E by c- to simplify the normalizations given in Section 7; since X,, (N) and X-,,- 1 (N)
are isomorphic, this is an unimportant change.



We write fl, instead of flk,- if k is clear from context.
Defining 17(1) to be SL 2(Z), we say that a subgroup F of F(1) x F(1) is a congruence

subgroup if it contains the group ,,(N) x ,,(N) for some N, where 1,(N) is defined to
be the set of matrices in SL 2(Z) that are congruent to the identity mod N. A function
f: Y) x b) -4 C is a modular form for r7 of weight k if flk, = f for all y E F and if f is
holomorphic at the cusps. To explain this latter condition, assume that F,(N) x r,(N) C
1. Then f(zl + N, z 2) = f(z 1 , z 2 ) for all (Z1 , z2) E S) x J); so setting qi = e2 --- zi/N, we
can write

f(zl,z2) = Cm (f)(z2 )qm

mEZ

for some functions cm (f). If cm (f) is zero for all m < 0 and if a similar condition holds if we
do a Fourier expansion in z 2 , we say that f is holomorphic at infinity. And f is holomorphic
at all of the cusps if, for all y E F(1) x F(1), flk,, is holomorphic at infinity.

A modular form is a cusp form if it vanishes at all of the cusps; that is to say, if whenever
we take a Fourier expansion of flk,y in either variable as above, co(f) is zero. We denote
the space of all modular forms of weight k for F by Mk(F); we denote the space of all cusp
forms by Sk(F).

The space M(kl,k2 ) (r, (N)) is zero unless k1 - k 2 is even: this follows from the fact that
(( 01 2), (1 2 )) is in _,,,(N).

If r = i x 12, with each Fi a congruence subgroup of F(1), then there is a natural map
from Mk 1 (1) 0 Mk 2 (F2) to M(k,k 2 )(F1 X F2) which sends fi 0 f2 to the function

(Z1, z2) - fi(zl)f 2(z 2 ).

Furthermore, this map sends cusp forms to cusp forms. It is in fact an isomorphism in either
the modular form or cusp form case:

Proposition 2.1. If S is a subset of 4)* or -)* x 8* and 1 is a congruence subgroup of F(1)
or F(1) x r(1), let Mk(IF,S) be the set of forms in Mk(r) that vanish on the points in S.
Then for any congruence subgroups I1 and r2 of F(1) and subsets S 1 and S 2 of 4*, the
natural map

Mk 1(rl, S 1) Mk2 ((r2, S 2 ) - M(kl,k 2 )(rl x F2, (S1 x )*) u (4* x S 2))

is an isomorphism.

Proof. We prove the Proposition by induction on the dimension of Mk (I1, Si). Set S =
(S1 x 4*) U (5)* x S2), and assume that dim Mk (r1, Si) is zero. Let f be an element of

M(ki,k 2 )((F1 X F2 , S). For any z2 E 5)*, the function z - f(z, z 2) is an element of Mk (F1, Si),
which is therefore zero, so f is the zero function.

Now assume that dim Mk, (F1, S1) is positive, and let z' be an element of 5)* such that,
setting S' = S1 U {z},

dim Mkj (1, S,) = dim Mk (171, Si) - 1.



Let S' = (S' x .r*) U (,3* x S 2 ); we will construct a commutative diagram

0 Mk (F1,S) 0 Mk 2 ( 2, S2) Mk (r, Sl) Mk 2, S2) Mk 2(r2, S 2 ) - 0

1 1 II
o Mkl,k2) (rl x r 2 , S') --- Mk,k) (r X r 2 , S) ) Mk 2(r 2 ,S 2 ) - 0

with exact rows. This will prove our Proposition: the left vertical arrow is an isomorphism,

by induction, and the right vertical arrow also is, so the middle vertical arrow is one as well.

The left horizontal arrows are the obvious injections. The right arrow on the top row

sends fl 0 f2 to fl (z)f2; the definition of S' and the choice of z shows that this makes the

top row exact.

Similarly, we define the right arrow on the bottom row by having it send f to the function

sending z to f(z, z), which is in Mk2 (r 2 , S 2). This map is surjective: if we pick a function

f E Mk1 (I 1, Si) such that f' (z) = 1 then we can get a splitting for this map by sending f2

to the image of fl 0 f2 under the middle vertical arrow. The exactness of the bottom row

then follows immediately from the definitions. O

Corollary 2.2. Given any natural numbers k1 , k 2 , and N, we have isomorphisms

M(k,k 2 ) (r,(N)) = (Mk (Fw(N)) Mk 2 (F (N)))SI (Z/NZ)

and

S(k,k 2 ) (r,(N)) = (Ski (rw(N)) 0 S k 2 (rw(N)))SL2(Z/NZ)

where SL 2(Z/NZ) acts on the first member of the tensor product in the natural fashion and

on the second member via the automorphism 0,.

Proof. By the Proposition,

M(k,k 2 ) (w (N) x w (N)) = (Mkl (w (N)) Mk 2 (w (N)));

that SL 2 (Z/NZ)-invariants correspond to forms in M(k,,k2 )(F-,(N)) follows from the defi-

nitions. The cusp form case is similar, setting S and S2 in the Proposition to be equal to

Pl(Q). 0

This allows us to express the dimension of the space S( 2 ,2 )(F-,(N)) in terms of data

given in Kani and Schanz [8]:

Corollary 2.3. The dimensions of the spaces S( 2 ,2 )(rF,(N)) and H 2 (X_, (N), OX-,,(N))
are equal, and they are also equal to the geometric genus of a desingularization of X,, (N).



Proof. We have the equalities

dim S(2,2) (F, (N)) = dim (S 2 (X, (N)) 0 S2 (Xw(N))) SL2 (z/NZ)

= dim(H 1 (Xw(N), OX,(N)) 0 HI(Xw(N), OX.(N)))SL (Z /NZ )

= dim H 2 (X,(N) x X,(N), Oxxx)SL 2 (Z/Nz)

= dim H 2 (SL 2 (Z/NZ)\(X(N) x X,(N)), OSL2\xXX)

= dim H 2 (X ,C(N), OX ,,(N))

by the fact that S2 (X,(N)) is dual to H'(X,(N), Ox,(N)), the Kiinneth formula, and Kani
and Schanz [9], Proposition 2.7 (which allows us to translate between invariants under a
group and quotients by that group). The fact that this is equal to the geometric genus is
part of Kani and Schanz [9], Proposition 3.1. OE

Of course, this isn't too surprising: weight 2 cusp forms should correspond to holomorphic
2-forms.

If f is a modular form on F,,, (N), it has a Fourier expansion

f(zi, z 2)= Cm,m 2 (f)q7lq 2

m ,m2>0

where qi = e2"v/xz'/N. There is one thing that we can say immediately about the Fourier
coefficients cml,m 2 (f):

Proposition 2.4. For all f E M(k,k 2 ) (F,,(N)), the Fourier coefficient cm 1 ,m 2 (f) is zero
unless Eml + m 2 - 0 (mod N).

Proof. Let e be an integer congruent to E mod N and let

Then

f f1-

- > Cm 1l,m2 (f)e2R'---ml(zi+e)/N e2r V - m2(z2 + 
1)/N

ml ,m2 >0

- Cm ,m2 (f)e27\ -Tml z1/Ne2r v Tm 2z 2/N Ne27rVx (mle+m2 )/N

ml,m2>0

= cm,m2 12(f)qm12\ e+ m 2

ml,m2 O0

where (N = e27rv //N. But this implies that

Cm 1m, (f) = Cmlm 2 Y(f) le+2

SO Cmi,m 2 (f) is zero unless ml + m 2 0 (mod N). O



Thus, most of the Fourier coefficients are "missing". This turns out to make it natural
to also study modular forms on the surface X, (N), even when we are only interested in one
of the individual X,,,(N)'s; we shall elaborate on this theme in Section 5.

One way to produce forms on X,,(N) is to consider forms on X_,,(N/d) to be forms
on X_,,(N), for d a divisor of N. Such forms have Fourier coefficients Cm,,m 2 equal to zero
unless d divides mi (and hence m 2, by Proposition 2.4). The converse is also true:

Theorem 2.5. Let f be a modular form of weight k on r, (N), and assume that, for some

dIN, we have Cm,,m, (f) = 0 unless dim1 . Then f is an element of Mk(r,,,(N/d)).

Proof. The fact that cmi,m2 (f) = 0 unless dlmi is equivalent to having f be invariant under

Thus, we have to show that the smallest subgroup r containing both (( N , Q 0)) and

F_,,e(N) is F,(N/d). Furthermore, we can take the quotient by F,(N) x rw(N), and thus
consider all matrices to be elements of SL 2(Z/NZ). If 7 = 1, 72) is an element of r then

Y = (71" 01 (72-1), 1) ( - 72), 72)

which expresses y as an element of (G x {( o)}). F , (N), where

G = {y- . 1 (721) 1 (1y, 2)y E ) ,

and conversely any element of (G x {( Q )}). F,,(N) is also an element of F. But for that
to be a subgroup of SL 2(Z/NZ) x SL 2 (Z/NZ), it is necessary for G to be a normal subgroup
of SL 2(Z/NZ). Thus, we have to show that the smallest normal subgroup of SL 2(Z/NZ)

containing the matrix = (f1 N/d) is the kernel of the natural map from SL 2(Z/NZ)

to SL 2(Z/(N/d)Z). Furthermore, we can assume that d is a prime p, and by the Chinese
remainder theorem we can assume that N = pl for some 1.

First, assume that 1 = 1, so we want to show that the smallest normal subgroup G
of SL 2(Z/pZ) containing r1 = (1 I) is the entire group. We first look at the image of

G in PSL2 (Z/pZ). If p > 3 then this latter group is simple, so the image of G is all of
PSL2 (Z/pZ). If p = 3 then this latter group is isomorphic to A 4 and rl is an element of
order 3; but since the only proper normal subgroups of A 4 contain only elements of order
1 and 2, we again have that the image of G is all of PSL2(3). Similarly, if p = 2, then
PSL2 (Z/2Z) is isomorphic to S3 and r1 has order 2, so again our image must be all of
PSL2 (Z/2Z).

This implies that G must either be all of SL 2 (Z/pZ) or a subgroup of index two which
projects onto all of PSL2 (Z/pZ). But if p = 2 then SL 2 (Z/2Z) = PSL2 (Z/2Z) so we're
done; if p = 3 then SL 2 (Z/3Z) has only two non-trivial one-dimensional representations,
whose kernels are of index 3; and if p > 3 then SL 2(Z/pZ) has no non-trivial one-dimensional



representations, so again has no subgroups of index 2. (See Fulton and Harris [4], Section 5.2
for the facts about PSL2(Z/pZ) and SL 2(Z/pZ) used here.)

Finally, assume that I > 1, and that we have a normal subgroup G containing rq, where
q = p-1. Note that q2 is zero in Z/plZ, which greatly simplifies calculations. We then
have to show that G contains all matrices of the form (1+aq bq) with determinant 1; this
condition on the determinant is equivalent to having a equal to -d in Z/pZ.

First, we have all of the powers of rq, so we have the matrices (O e1 ) for all e. Conjugating
by (0 - ), we also have the matrices (1q 0) for all f, and multiplying those together, we

have the matrices ( eq).

On the other hand, conjugating rq by ( 1a a-1), we see that for any a we have a matrix
l-aq b'q ) for some b', c'. But now if we have any matrix 1+aq bq ) that we wish toc q lbaq cq -aq

show is in G, it is enough to show that 1+aq bq 1-aq 1bq is in G; and that matrix is

of the form (1q ), hence in G by the previous paragraph.

We hope that the following stronger result is true:

Guess 2.6. Let f be a modular form on F , (N) such that cml,m 2 (f) = 0 unless (mi, N) >
1. Then f can be written as a sum of modular forms fj on r,, (N/p) where the pj 's are
the prime divisors of N. Furthermore, if f is a cusp form then the fj can be chosen to be
cusp forms.

Of course, Theorem 2.5 implies Guess 2.6 for N a prime power. They are both analogous
to results proved as parts of Atkin-Lehner theory on the curves X 1(N). (See Lang [10],
Chapter VIII, in particular Theorem 3.1.) While we don't yet know how much of Atkin-
Lehner theory on X 1 (N) carries over to the surfaces X,, (N), not all of it does: in particular,
while there are operators

t d: Sk(Fl(M)) -4 Sk(1 (N))

for each dIN/M, there is in some sense only one natural way to produce a form on X_,,,(N)
from a form on X,,(M) for MIN. We shall give a precise statement and proof of this as
Proposition 7.2.

We let Sk(F,,(N)) be the quotient of Sk(F,,(N)) by the subgroup of forms f whose
Fourier coefficients cm,m 2 (f) are zero unless (mi, N) > 1. In the Xi(N) case, this would
have the effect of replacing Sk(Fl (N)) by a space with the same Hecke eigenspaces but where
each eigenspace is one-dimensional, generated by the newform in that eigenspace; we shall
see in Theorem 5.6 that Hecke eigenspaces in Sk(F,, (N)) are also one-dimensional. Finally,
we let

Sk,!(N)= 1- Sk (r-,(N)),
EE(Z/NZ)*



and we let

Sk,-- (N) = (H k(ZZ(N)).
EE(Z/NZ)*

Note that in the definitions of Sk(F ,(N)) and Sk, (N) it's enough to assume that the

Fourier coefficients are zero unless (ml, N) > 1 (or unless (m2, N) > 1), by Proposition 2.4.

Proposition 2.7. The spaces S(2,2)((r,E(p)) and S( 2 ,2)(F, (p)) are equal, as are the spaces

S( 2 ,2),_(p) and S(2,2),_(P).

Proof. We have to show that if f is an element of S(2, 2)(r_,,(p)) such that cmI,m 2 (f) = 0
unless pimi then f is zero. Theorem 2.5 implies that such an f is in fact a form on F ,,(1).

By Corollary 2.2, f can be considered to be an element of S 2 (F(1)) 0S 2 (F(1)). But S 2 (F(1))

is zero, so f is zero. O

Proposition 2.8. If p is a prime then

I

dim Sk(F,(pl)) = dim S(k (F,(p)).
j=o

Proof. This follows immediately from Theorem 2.5. O

Guess 2.6 would imply a similar statement for forms of arbitrary level.

3 Hecke Operators on X,,,(N)

Set

( ( a , (a2  b2)
(c, diC2 d2/I

ai, bi, ci, di E Z,
aidi - bici > 0,

(aidi - bici, N) = 1,
al a2  (mod

bl - Eb2  (mod

eel C c 2  (mod
dl d2 (mod

We can partition A*,,(N) into double F,,,E(N)-cosets; each double coset is called a Hecke

operator. They act on the spaces of modular forms as follows:
Let y = (7y1,72) be an element of A.,,(N), and let

r

A, (N) = N),

N),
N),
N)

r,,,(N)7F,,,(N)



be a decomposition of the double coset generated by y into left cosets. Then for a form f
in M(k,k 2)(F,,(N)), we define

fl(kl,k2),r-, (N)-yF-,(N) = det(yi)(kl / 2 )- 1 det(7 2)(k2/2 ) - 1 Y fl(k,k 2),-Yj

We see as in Shimura [14], Chapter 3, that f (k1 ,k2 ),-,E(N)-r(N) is an element of the space
M(k,k2) (N)), that cusp forms are transformed into cusp forms, and that the product
of two Hecke operators is a sum of Hecke operators.

Let Tn~,s, be the operator given by the sum of the double cosets containing elements
(7y1, 2) where det(yi) = ni. This is zero unless ni - n2 (mod N) and (ni, N) = 1. Left
coset representatives for it are given as follows:

Proposition 3.1. Let (ni, n 2) be a pair of positive integers that are congruent mod N and
that are relatively prime to N. The set of elements of A*,, (N) that have determinant (ni, n2 )
then has the following left coset decomposition:

F76 (N) ( a, bNdl 2 a 2 b2 N
a 1 ,> (o d 2  d2al,a2>0

O<b, <d,

where, for a E (z/NZ)*, 0a is any matrix in F(1) that is congruent to (a -
' 0) mod N.

Proof. First, note that the above cosets do indeed occur in Tn, n~. Thus, we have to see that
the representation is disjoint and that it gives us all of Tn,n2 . To lighten notation in the
proof, we use the following convention: whenever we use an expression of the form (xi)i=1 ,2 ,
we mean a pair of expressions (X 1, X2 ).

To see disjointness (as left F(1) x F(1)-cosets, hence as left r, (N)-cosets), assume that

F(1) X F(1) (a, (0 db i=1,2 (a i=1,2

For this to be the case, we need the matrices

(ai biN\ (a ba N
(0 di 0 d ) TZ

to be elements of F(1), which is true if and only if the matrices

(ai biN a' b N
0 di 0 d$J

are. But that product is equal to

1 (ad N(abi - aib )

ni 0 a~di



Since aidi = aid( = ni, and ai, ai > 0, the fact that the diagonal terms are integral forces
ai = a and di d .But then we need ni to divide Nai(bi - b ); since (N, ni) = 1, this is
equivalent to having dijbi - b, which forces bi = b by our hypotheses on bi and b. Thus,
the given cosets are indeed all disjoint from one another.

Now we have to show that they cover all of T,n2. So let (1, 62) be an element of
A*,,(N) with determinant (nl, n 2). By Shimura [14], Proposition 3.36, we can multiply S1

on the left by an element of F(1) to get it into the form 0d , with a, > 0, aid = n1,
and 0 < bl < dl. Subsequently multiplying it on the left by an element of the form ( T)

will put it into the form ( bN) , but possibly with a different bl. (We can still force b1 to

be in the range 0 < bl < dl, however.) And since a, is an element of r(1), we have shown

that there is an element 71 of r(1) such that 71Y6 is of the form a1 (a0i dC -
We can choose an element 72 of F(1) such that (71,72) is in r,,E(N): reduce 71 mod N,

apply 0, to it, and lift it back to F(1). Multiplying (S1, 62) on the left by (71,72), we can

thus assume that 61 is of the form a1 ( ia01 bN. But then the congruence relations force 62
to be congruent to the matrix

(10)-( 0 O (mod N).

Now that we have fixed S1 to be of the correct form, we still have to force 62 to be of
the correct form, and we are only allowed to multiply 62 on the left by elements of F,(N).

Thus, we need to find an element 7y of F,(N) such that 762 is of the form o2(aa2 b2 NdN

However, 62 is in what Shimura calls A' (see Shimura [14], p. 68), so we can indeed find
such a 7~ by Proposition 3.36 of Shimura [14]. O

From now on we follow the notational convention used in the above proof: whenever we
use an expression of the form (Xi)i= 1,2, for any expressions xi, we mean a pair of expressions

(x 1, x2). In particular, i will only be used to refer to an element of the set {1, 2}.
The action of the Hecke operators T 1, 2, descends to the spaces Sk(,N)):

Proposition 3.2. If f is a form in Sk(F,(N)) such that cm,2 (f) = 0 unless (N, mi) > 1

then T,,,n2 f has the same property for all n l - n2 (mod N).

Proof. For dIN, define the operator id by

id(f) = cm,,m2 (f)q7 l q2m
ml ,m2>0
dlml ,m 2

We then have the alternative definition of id as

1

d (1 0) 1 Ne/d
0<e<d 1 (0 1



since

SS ml 21 ir2(z2 Ne/d)/N
1 0m, 1 Ne/d d C mm 2 m 2 ( N/d)/N

0<e<d 0 1 0 1 e,m1 ,m2

1- Cm,,m (f)qm qM e2,7 m  /d
ScmC,m 2 1 2

e,m 1 ,m2

= id(f).

(Note that if dm 2 then also dlml, by Proposition 2.4.) By the principle of inclusion and
exclusion, the statement that Cm ,m, (f) = 0 unless (N, mi) > 1 is equivalent to having

f = ip(f) - i 1 (f)+...,
PlN p,p2 IN

Pl<P2

and we want to show that if that is the case for f then it is also the case for T",,n2f. It is
therefore enough to show that Tn1, 2 commutes with any id. But

(1 eN/d 
a2 a2 b2N

0 1 20 
d2

is congruent to

a 2 b2 N " en 2 N/d

(0 d2 0 1

mod N, so by Proposition 3.1, commuting with T 1,n 2 simply permutes the e's that occur
in our alternate definition of id. 0

Proposition 3.2 would be an easy corollary to Guess 2.6.

Proposition 3.3. For all (61, S 2 ) E A*, (N), the double cosets ,, (N) (61, 62 ) _, (N) and
F,,:(N)(I, 6) ],,(N) are equal, where

(a b " d - )

Proof. We need to find matrices (71, 72) and (7y, 7c) in F,, (N) such that

(11, 722) =- (J171,272).

Since S1 and 6 have the same elementary divisors, we can choose a 71 and y' that give us
equality on the first coordinate. Now pick 72 and 7 such that (71, 72) and (7j, 7() are in

F,,,(N). Then 72J2 - &-Y' (mod N). But by Shimura [14], Lemma 3.29(1), we can then
change 72 and 7' by elements of F,(N) so that 7262 = J"7 , as desired. O

= t 2")'2, aS desired. [



We can define a Petersson inner product on the space of weight (ki, k2) cusp forms just
as in the one-variable case:

= f(zi)g(zi)y,-2 k2- 2 dx y dX2 dy dy2(f'g i _,. (N)\3 x Y1 Y2

(where zi = xi + v/-ZTyi); then just as in Shimura [14], Formula (3.4.5), we see that the
Hecke operators Fr, (N) (51, 2) r,, (N) and r,(N)(l, 6) r, (N) are adjoint with respect
to that inner product. Thus:

Corollary 3.4. The Z-algebra generated by the Hecke operators is a commutative alge-
bra; the Hecke operators are self-adjoint with respect to the Petersson inner product on

Sk (r-,(N)) and simultaneously diagonalizable.

Proof. The self-adjointness follows from Proposition 3.3 by the above discussion; the commu-
tativity follows from Proposition 3.3 and Shimura [14], Proposition 3.8, and the simultaneous
diagonalizability follows from the self-adjointness. O

The effect of Hecke operators on Fourier expansions is given as follows:

Proposition 3.5. Let f be an element of M(k,,k2) (rk2 ,(N)); if a is an element of (Z/NZ)*,
let f( o)) have the Fourier expansion

fI(a, (0)) (Z1, Z2) = ca,m ,m 2q qm m2
m ,m2>0

If we set

Tn,n2f(zl, z2) = d,m qi 2 2

ml ,m2 >0

then the dm1,m 2 's are given by

d k -1 k 2 -1
dmi,m 2 -- 1 a 2  C(a1/a 2 ),minl/a ,m 2 n 2 /a 2

al,a2>0
a,l (m,,n,)

Proof. Let fa = f(fa(lo )) For any a, a2 E (Z/NZ)*, we have

f I ,, I 0a2) = fI ( 'a,/a2, (1 o) .



Thus, using Proposition 3.1, we have:

Tnl,n 2 f(Z1, z2) nki/ 2 - 1 k2 /2-11 n 2 E f2 a , b,N) (Z1 Z2)

al,a 2 >0 Ua, 0 d,
a,d,=n, t=1,2
O<b,<d,

Sn/2-1 k2/2-1 fal
1 , N2

a,,b,,d, 0 d, )
*----1,2

S(a-l),m ,m
1d d e2 r --Fim,(a,z,+bN)/d,

ml,m 2 >0 i=1,2
a,,b,,d,

- 1(al2) 2 nk-ld k,+le27-:m,az,/d,

a,,d,,m,,d, m, i

- C(all/a2 ),dimi,d 2m 2 n k k,+1e2 mazz,
a,,d,,m, i

kl-l k2 -1 mlal m2a2a- > 2  C(al/a 2),dlml,d2 m2 qE1 q2
a,,d,,m,

Comparing coefficients gives the desired result.

Note that the matrices (aa, (0 0)) don't normalize r,E(N). This is
introduce the functions fa instead of simply diagonalizing Mk( f_,(N)).

In particular, the following is true:

Corollary 3.6. Let f E Mk( P,,(N)) be a simultaneous eigenform for
operators. Then if Am,,,m 2 (f) is the eigenvalue for Tms,m2, we have

why we have to

all of the Hecke

Cml,m2 (f = A 1 ,m 2 (f)C,(f)

Unfortunately, this Corollary isn't quite as useful as one might hope, since the above
coefficients are all zero by Proposition 2.4 unless E = -1! However, in that situation, we do
get the following result:

Corollary 3.7. If f and g are elements of Sk(F,-1l(N)) that are eigenfunctions for all

Tnl,n 2 's with the same eigenvalues then, considered as elements of Sk(F,-1(N)), they differ
by a multiplicative constant.

Proof. By Proposition 2.4 and Corollary 3.6, if c = cl,i(f)/cl,l(g) then cm,m 2 (f - cg) is
zero unless (mi, N) > 1. Ol

This can be restated as follows: let Tk,,(N) be the C-algebra of endomorphisms of

Sk(F,(N)) generated by the Hecke operators Tnl,n2 for nl n 2 (mod N). Then:



Proposition 3.8. The space Sk(r,,-(N)) is a free module of rank one over Tk,-1(N).

Proof. By Corollary 3.4, we can find a basis for Sk(F_,-1(N)) consisting of simultaneous

eigenforms for all of the elements of Tk,-1(N). Furthermore, by Corollary 3.7, no two of

those eigenforms have the same eigenvalues. This implies our Proposition. OE

Similarly, we define T*,(N) to be the C-algebra of endomorphisms of Sk (r,E(N)) gen-
erated by the Hecke operators Tn1 ,n 2 for nl = n 2 (mod N). Proposition 2.7 tells us that

the spaces S(2,2 )(F_,E(p)) and S( 2 ,2)(V ,1(p)) are equal; thus, the above Proposition has the

following Corollary:

Corollary 3.9. The space S(2,2) (F,-1(p)) is a free module of rank one over T2,2 ),- 1 (p)

With a little bit more care, we can use the above techniques to prove similar facts for
E = -k 2 instead of just E = -1. (This isn't too surprising, since X,,_ 1 (N) and X_,-kk2(N)

are isomorphic.) They are in fact true for arbitrary e; the proof demands different techniques,
and will be given as Theorem 5.6. It does seem, however, that X ,_ 1 (N) is somehow the

"dominant" X,(N); see Sections 5 and 6 for further discussion of this matter.
Finally, we let T*- (N) denote the free polynomial algebra over C with variables Tn,,n 2

for every pair nl,n 2 of positive integers that are relatively prime to N and congruent mod
N. This algebra acts on the spaces Sk(F,,,(N)) and Sk(F,,,(N)) for all k and e; its image

in the endomorphism rings of those spaces gives us the algebras Tk,,(N) and Tk,,(N) that
we defined above.

4 Hecke Operators on X (N)

The Hecke operators T,,,n defined above have the following modular interpretation: let

(El, E 2 , 4) be a point of X,, (N), and let ri: Ei - E( be maps of elliptic curves of degree
ni, where (ni, N) = 1. Then € induces a map from E'[N] to E2[N] which is an isomorphism
of group schemes; Tur,n 2 sends our point to the sum of all points (E', E, 4) that arise in

such a fashion. Why, then, do we impose the restriction that nl be congruent to n 2 mod
N? The answer is that, if r: E -4 E' is a map of degree n (with (n, N) = 1) then 7r doesn't
preserve the Weil pairing:

(wx, 7y)= (x, 7 rry)

= (x, [n]y)

= (x,y).

So if € raises the Weil pairing to the e'th power then, if we push it forward via maps of order
ni as above, the resulting map raises the Weil pairing to the En2/nl power. This explains
why we had to assume that nl = n2 (mod N) for the Hecke operators to act on the surfaces
X,,(N). However, we should have Hecke operators Th,,n 2 for arbitrary ni with (ni, N) = 1
which act on the surface X_(N).



The above considerations, when translated into matrices, lead us to the following defi-
nition: for any c, e' in (Z/NZ)*, set

ai, bi, ci, di E Z,
aidi - bici > 0,

, (N) (al (a 2  2)) (aidi - bici, N) = 1,
A = , 2 d a1  a2  (mod N),

bl  e'b2  (mod N),
eC1 - C2  (mod N),
edi - E'd2  (mod N)

It is obvious from the definitions that A*,, = A*, and one easily checks that

These facts imply in particular that A,,, is invariant under multiplication by Fr,,,(N) on
the left and by F,,,(N) on the right; thus, A*, can be partitioned into Hecke operators
that send forms on X,,,(N) to forms on X,,,(N). For any nl and n2 with (ni, N) = 1 and
with enl e t'n 2 (mod N), we define the Hecke operator Tn1,n 2 to be the sum of the double
cosets Fr,, (N) (yi, 7 2) I,' (N) occurring in A ,, for which det(7i) = ni. This does depend
on C, but it has a natural set of left coset representatives that is independent of e:

Proposition 4.1. Let nl and n 2 be positive integers that are relatively prime to N, and let
E and c' be elements of (Z/NZ)* such that en, e'n 2 (mod N). Then the set of elements
of A E,(N) that have determinant (nl, n 2) has the following left coset decomposition:

1H r,, (N) (al a bdN Ora2 d2 bN

al,a2>0 d2

ad,'=n,
O<b,<d,

where, for a E (Z/NZ)*, ca is any matrix that is congruent to (s' o) mod N. Furthermore,
the above left cosets are also disjoint as 1(1) x 17(1) cosets.

Proof. The proof is the same as the proof of Proposition 3.1. [

Recall that we defined

Sk,2,(N) = f Sk (F, (N))
CE(Z/NZ)

and made a similar definition for Sk,~ (N). Also, if f is an element of Sk,~ (N), we write f, for
its e'th component. We then define Hecke operators Tl,n2 acting on the space Sk,_(N) by
setting (Tni,n 2f)c = Tn1 ,n2 (fc 2/~1); Proposition 4.1 shows that that action "looks the same"
for all E. The following Proposition shows that the action of these Hecke operators descends
to the spaces Sk(r,E(N)), and hence allows us to similarly define an action of them on the
space Sk, (N):



Proposition 4.2. If f is a form in Sk(F,,e(N)) such that Cmi,m 2 (f) = 0 unless (N, mi) > 1

then T,, ,,2 f has the same property for all ni relatively prime to N.

Proof. The proof is the same as the proof of Proposition 3.2. O

The action on Fourier expansions is also as expected from Proposition 3.5, with the same

proof:

Proposition 4.3. Let f be an element of M(kl,k 2)(Fr,,(N)); if a is an element of (Z/NZ)*,
let f 1 o)) have the Fourier expansion

f (a,(10)) (zl, z2) = C a,ml,m 2qm' lq 2

If we set

Tnl,n22f(zl,z 2 ) dml,m 2 q2m2

ml,m2 10

then the dmI,m 2 's are given by
d ki-1 a k2-1

dmi,m 2  1 2 C(al/a 2 ),mln/anlm
2 n 2 /a2

al,a 2 >0
a,l(m,,n, )

This Proposition (or Proposition 4.1, which it is a corollary of) allows us to translate

theorems about forms on X,(N) into theorems about forms on X_(N): if f is a form

on some X, ,(N) and we have a Hecke operator Tni ,2, we can consider f to be form on

X,(N) x X,(N) and apply Tn, x Tn2 to it there. This gives us a form on X,(N) x X,(N);

but by Proposition 4.1, that has the same effect as directly applying the T,,,,n that we have

defined above to f considered as a form on X,,,(N), so our resulting form, which is a priori

only a form on X,(N) x X,(N), is really a form on X n,,n,/n2 (N). Thus, the fact that the

Hecke operators Tn (with (n, N) = 1) on X,(N) commute implies that our Hecke operators

T,,,,2 commute. Similarly, we can define a Petersson inner product on Sk,_(N) by taking

the orthogonal direct sum of the inner products on the Sk(r,,(N))'s; our Hecke operators

are then normal with respect to that inner product because the Hecke operators on X, (N)

are.
It is frequently useful to encapsulate this relation between forms on X (N) and forms

on X,(N) by defining a map E: Sk,s(N) - Sk, (r (N)) 0 Sk2 (,(N)) which sends f E

Sk, (N) to Ee(Z/NZ)* f. By Sk, (rw(N)) we mean Sk, (F(N))/V where V is the space

of forms f E Sk, (r,(N)) such that cm(f) = 0 unless (m, ki) > 1; it is a module over the

Hecke algebra generated by the operators Tn with (n, N) = 1, and its eigenspaces for that

algebra are one-dimensional. The following two Propositions then sum up the discussion of

the previous paragraph:



Proposition 4.4. The map from Sk,, (N) to Ski (Fr(N)) 0 Sk 2 (F,(N)) that sends a form
f to - (Z/NZ)* fe commutes with the action of Hecke operators. It descends to an injection

~: Sk,:(N) -4 Skl(rw(N)) Sk2 (Fr(N)); if f E Sk,_(N) then

fe= cm,m2 (f)q 1 q 2

ml,m 2 >0

em+m2 =O(modN)
(m,,N)=1

Proof. The only parts that remain to be proved are that the last map is an injection and
that f, can be recovered in the given manner. First, we note that, for all mi, m2 with
(mi, N) = 1,

Cm1 ,m 2 (f) = Cml,m2 (f)

eE(Z/NZ)*

But Proposition 2.4 says that cm,m,2 (fl) = 0 unless c= -m 2/mi (mod N); cmi,m2 (f)
therefore equals cmx,m 2 (f-m 2 /m,). This together with Proposition 2.4 immediately implies
our formula for f,. And if Ef = 0 then this implies that, for all E and for all mi such
that E= -m 2 /ml (mod N), cm,m 2 (fl) is zero. But that implies that f, = 0 by using
Proposition 2.4 again. O

Proposition 4.5. The Z-algebra generated by the Hecke operators Tn1,n 2 acting on Sk,_ (N)
is a commutative algebra; the Hecke operators are normal with respect to the Petersson inner
product on Sk,_ (N) and simultaneously diagonalizable.

Proof. This follows from the above reduction of these facts to facts about forms on X,(N)
and from Shimura [14], Theorem 3.41. O

Let f be an element of Sk, (N), and let m, and m 2 be integers relatively prime to N.
We define cm,m 2 (f) to be equal to cmi,m 2 (f-m 2 / M). We also make the same definition
for f E Sk, (N). If we set f = Ce(Z/NZ)* f, then f is a form on X,(N) x X,(N), and

Cm,m 2 (f) = Cmlm 2 (f), by Proposition 2.4, as noted in the proof of Proposition 4.4.

Proposition 4.6. Let f be an element of Sk,, (N); for a E (Z/NZ)*, let fa be defined by

(fa)c = f(a-2 10))•

Then for all n1, n2 with (ni, N) = 1 and for all ml, m2 with (mi, N) = 1, we have

f)(m2 1 a k 1 -1 k2 -1 2cmm2(Tnan 2 fa =a 2 -Cmin/a,m 2 n 2 /a (fa,/a 2 ).
al,a~>0

aProof. This is a corollary of Propositio(m,,n, 4.3. )

Proof. This is a corollary of Proposition 4.3. El



We define T*(N) to be the free polynomial algebra over C with generators T,,,, for

each pair ni, n2 of positive integers that are relatively prime to N. We define T_,_ (N) to

be its image in the endomorphism ring of Sk, (N); we define Tk, _(N) to be its image in

the endomorphism ring of Sk,_ (N).

Corollary 4.7. If f E Sk, (N) is a simultaneous eigenform for all Hecke operators T,,,n2
in T, (N) with eigenvalues , 1 , 2 (f) then, for all m I and m 2 with (mi, N) = 1, we have

Cmi,m 2 (f)= XmI,m2 (f)Cl,
1

(f)

F1

Thus, if f is a non-zero element of Sk,_(N) that is an eigenform for all the T,,,n2 's then

cl,i(f) is also non-zero; we call such an f a normalized eigenform if c1,i(f) = 1.

Corollary 4.8. The space Sk, (N) is a free module of rank one over Tk, (N).

Proof. By Proposition 4.5, we can find a basis for Sk,_ (N) consisting of simultaneous eigen-

forms for all elements of Tk,~(N); the previous Corollary shows that the eigenspaces are

one-dimensional, implying this Corollary. O

Corollary 4.9. The space S(2,2),,(p) is a free module of rank one over T( 2,2),().

Proof. This follows from Corollary 4.8 and Proposition 2.7. O

We should also mention a special class of operators that are contained in our Hecke

algebras T ,(N). Given elements E and a of (Z/NZ)*, we have

(1, aa)-l F_,(N)(1, aa) = r_,a-2C(N )

The action of (1, Oa) therefore gives an isomorphism from Sk (r,(N)) to Sk(F ,a-2(N)),

denoted by (a). However, the action is the same if we multiply (1, 0a) by ((0 0), ( 0 )); but if

we consider it as an operator on X,(N) x X,(N), as in the discussion before Proposition 4.4,
then this, up to a constant, is the product of the identity with the Hecke operator T(a, a).

By Shimura [14], Theorem 3.24(4), T(a, a) is in the Q-algebra generated by the T(n)'s, so

(a) is in T ,(N). Thus:

Proposition 4.10. For all a E (Z/NZ)*, the operator (a) given by the action of (1, aa)
is an isomorphism from Sk(F,E-(N)) to Sk(LF_,a-2,(N)); furthermore, it is contained in
T* (N). 1

As with the operators Tni,n2, (a) extends to the spaces Sk,= (N) and Sk, ,(N) via the

definition ((a)f), = (a)(fa2).



5 Relationships between the Spaces Sk,_(N), Sk(I ,(N)), and

When trying to prove that Hecke eigenspaces in Sk(F-,,(N)) are one-dimensional, we ran
into problems because forms are "missing" Fourier coefficients: in particular, they don't have
a (1, 1) Fourier coefficient unless e = -1 (mod N), so we couldn't simply use Corollary 3.6.
However, the space Sk,_(N) doesn't have that problem, and there is a natural projection
map from Sk,_(N) to Sk(,,(N)). This gives us a replacement for the missing Fourier
coefficients; it also gives us a framework for seeing how the spaces Sk(F,,(N)) differ (as
T*- (N)-modules) as E varies.

The key Lemma here is the following:

Lemma 5.1. The space Sk(r,,,(N)) has a basis consisting of simultaneous Tk, (N)-eigen-
forms f that are of the form f, for simultaneous Tk,~ (N)-eigenforms f E Sk,= (N).

Proof. If f E Sk,,(N) is a Tk,,(N)-eigenform then it is certainly an eigenform for those
Hecke operators Tni,n 2 where nl - n2 (mod N); its E-component f, is therefore an eigenform
for those operators as well. The Lemma then follows from the fact that Sk,_ (N) has a basis
of eigenforms, by Proposition 4.5. Ol

It is possible for two different Tk,, (N)-eigenforms in Sk,~(N) to project to the same
Tk,,(N)-eigenform in Sk(F,,(N)); we shall discuss this in Theorem 5.3. Also, some eigen-
forms in Sk,_ (N) project to zero for some choices of E: see the comments after the proof of
the following Proposition and Section 6. We shall state a slightly stronger version of this
Lemma as Corollary 5.8.

Proposition 5.2. Iff Sk(_F,(N)) is a Tk,,(N)-eigenform then there is an Tk,-l(N)-
eigenform g E Sk(r ,1(N)) such that c 1 ,m2 (g) = Am, ,2 (f) for all mi - M2 (mod N).

Proof. By Lemma 5.1, there is an eigenform f E Sk, (N) such that Am,m 2 (f) = Am,M2(f)
for all m -- m 2 (mod N). (We might a priori not be able to assume that f, = f; however, f
is a linear combination of eigenforms projecting from Sk, (N), so those eigenforms must have
the same eigenvalues as f.) We can assume that f is normalized. We then set g = f-1; it is a
normalized eigenform contained in Sk(F_,-(N)), and Am,m 2 (g)= Am,m 2 (f)= Am1,m 2 (f).
But Corollary 3.6 then tells us that cm ,m 2 (g) = mi,m2 (f).

Define Kk,,(N) to be the subspace of Sk(F,_-1(N)) generated by eigenforms whose
eigenvalues are those of an eigenform in Sk(F,,(N)); define Kk, (N) to be the subspace of

Sk(F',-1(N)) generated by eigenforms which do not arise in such a fashion. The Hecke al-

gebra Tk,E (N) is isomorphic to the image of Tk,-1 (N) in the endomorphism ring of Kk, (N):
both actions are diagonalizable, so the rings are isomorphic iff the same eigenvalues occur,
which is the case by the definition of Ik,,(N) and by Proposition 5.2. In fact, the spaces

Ik,E(N) and Sk(1,-(N)) are isomorphic as T*(N)-modules, because the eigenspaces in



Sk(F,(N)) are one dimensional; we shall prove this fact later as Theorem 5.6. Thus,
Kk,,(N) measures the difference between Sk(r,_1(N)) and Sk(r,,(N)); we shall study
this space in Section 6.

Since the proof of Proposition 5.2 involved lifting eigenforms in Sk(r,F (N)) to eigen-
forms in Sk,_ (N), we'd like to see how ambiguous the choice of such a lifting is. The following
Theorem answers that question:

Theorem 5.3. Let f be an eigenform in Sk,_(N), and let H C (Z/NZ)* be the set of E

such that f_- ~ 0. Then:

1. H is a subgroup of (Z/NZ)*.

2. H depends only on f_ 1 .

3. Every element of (Z/NZ)*/H has order one or two.

4. If g is another eigenform in Sk, ,(N) then g_ 1 = f 1 if and only if there is a character

X on H such that g_, = X(E)f-, for all E E H.

First, we prove two Lemmas that we shall need during the proof of the Theorem.

Lemma 5.4. Let f be an eigenform in Sk,_(N) and E an element of (Z/NZ)* such that

f, $ 0. For any positive integers m, and m 2 there exist positive integers nj and n2 such that
Enl + n2 - 0 (mod N), (ni, mi) = 1 for i E {1, 2}, and c,,n2 (fl) $ 0.

Proof. By Proposition 4.4, Ef is an eigenform in Sk (r,(N)) 0 Sk2 (F,(N)). Since the
eigenspaces in Sk, (r1(N)) are one-dimensional, there must exist fi E Sk, (r(N)) such that
Ef = fi f 2.

For any e' E (Z/NZ)*, set

= n .

firf' = cn(fi) q
n>O

nE' (mod N)

It is also an element of Sk, (FF(N)). (This follows easily from Shimura [14], Proposition 3.64.)
Then

f,= f, f2,-CE',

E'E(Z/NZ)*

by Proposition 4.4.

Since f, $ 0, there exists C' E (Z/NZ)* such that fi,,, and f2,-c' are both nonzero.
By Lang [10], Theorem VIII.3.1, there exist ni such that (ni, Nmi) = 1 and that cn, (f,,,')
and cn2 (f2,,,) are both non-zero. But Proposition 4.4 then implies that ce,,, 2 (fe) 5 0, as

desired. O



Lemma 5.5. Let f G Sk, (N) be an eigenform such that, for some e, fe is non-zero. Then
for all j, f_,, is non-zero. In particular, f_-1/, is non-zero.

Proof. We can assume that f is a normalized eigenform. Since f_- is non-zero, there is some
coefficient A= cm,m 2 (f) that is non-zero, where (mi, N) = 1 and em 1 = m 2 (mod N). We
therefore have Tml,m2 (f) = Af, by Corollary 4.7, so for all E' E (Z/NZ)*,

Af_E = (Tm,,m 2 f)-

= Tm,m2 (f-/m 2 m,)

= Tm,,m2 (f ).

In particular, setting e' = E , we see that

Af_, = Tml,m 2 (f63+1),

so if f_, is non-zero then, since A also is, f_,,+ is as well, and we have our Lemma by
induction. OE

Proof of Theorem 5.3. We can assume that f is a normalized eigenform. To show that H is
a subgroup, let el and E2 be elements of H. Thus, there exist nl,, and n 2,i (for i = 1, 2) such
that c,,tl,2,t (fE,) is non-zero; by Lemma 5.4, we can assume that (ni, 1, ni, 2 ) = (n 2 ,1, n 2 , 2 )
1, and by Proposition 2.4, inl,i - n 2 ,i (mod N).

By Corollary 4.7, cn,,,2,, M(f)= Al,,,n2,, (f). But

Anl,11n,2,n2,1n2,2 (f) = (),n 2,1 (f) A ,2 n 2 ,2 (f),

by our assumption that (ni,1 , ni,2) = 1, and is therefore non-zero, as is the corresponding
Fourier coefficient of f. This is a Fourier coefficient of fE for

E --(n2,1n2,2/n1,1n1,2)

-(n 2,1/n1,1) (n 2,2 /ni, 2)

Thus, E1E2 E H, so H is a subgroup of (Z/NZ)*.
To see that every element of (Z/NZ)*/H has order one or two, pick a E (Z/NZ)* and let

f E Sk, (N) be an eigenform. Then ((a)f)- = (a)(La2). Since (a) is an invertible operator
contained in Tk,,_(N), by Proposition 4.10, the fact that f_1 : 0 implies that ((a)f)_1  0
as well, so so fZ2 : 0 and a2 E H.

To show that H depends only on fl, it's enough to prove the last part of the Theorem.
We shall prove that if g is an eigenform such that g-1 = f_ 1 then there is a character X
on H such that g_, = X(c)f_,; the converse (i.e. that g's constructed in that fashion are
eigenforms) follows easily from the definition of T,,,,,f as (Tn,, ,f) E = T,,,, (f,,2/n,).

Thus, assume that we have normalized eigenforms f and g such that f_ 1 = gl; let E be
an element of H, so fL, 0. By Lemma 5.5, f_(1/,) is also non-zero. There then exist mi



and m 2 relatively prime to N such that m i - Em2 (mod N) and cm,,m 2 (f) : 0. Therefore,
AmI,m2 (f) is also non-zero. And

Ami,m 2 (f)f-e = (TmI,m 2 f)-f

= TmI,m 2 (f-Em2 /mi)

= Tm,,m2 (f-l)

= Tm,,m 2 (g-1)

= AmI,m 2 (g)g-E.

Since Aml,m 2 (f) and f_L are both non-zero, this implies that Am1,m2(g) and g-, are also both
non-zero, and that if we define X(c) = Am,m 2 (f)/Am,m 2 (g) (for any choice of mi such that

m i - em 2 (mod N) and such that Cmi,m2 (f._/) 5 0) then g_ = X(c)fL_, as desired. We
then only have to show that X is a character, not just a function; that follows by using the
same arguments that we used to show that H was a subgroup, using the multiplicativity of
Am1,m 2 and Lemma 5.4. O

We now have all the tools necessary to prove that the spaces Sk(r,,,(N)) are free of
rank one over Tk,E(N) for all c E (Z/NZ)*.

Theorem 5.6. For all f E (Z/NZ)*, all of the Tk,E(N)-eigenspaces in Sk(Fm(N)are
one-dimensional, and the space Sk (r,,, (N)) is a free module of rank one over Tk, (N).

Proof. Pick a Tk,,(N)-eigenspace in Sk(F,(N)). By Lemma 5.1, it has a basis consisting
of eigenforms of the form fE where f is a normalized eigenform in Sk,_ (N). Thus, we need
to show that if f and g are normalized eigenforms in Sk, _(N) such that f, and g, are in
the same eigenspace then f, and g, are in fact constant multiples of each other. However,
AnI,n2 (fc) = Xnl,n2(f) = Cnl,n2(f), for all n1 -- n 2 (mod N), so the fact that fE and g, have
the same eigenvalues simply means that f 1 and g_1 are equal. Theorem 5.3 then implies
that f, and g, are multiples of each other. Thus, the eigenspaces are one-dimensional, and

Sk(r,,(N)) is indeed a free Tk,E(N)-module of rank one. O

The basic idea behind the proof of Theorem 5.6 is that, if we have a form in Sk (F_,(N)),
we can use Lemma 5.1 to fill in the Fourier coefficients that are forced to vanish by Propo-
sition 2.4. Of course, it's often easiest just to work with Sk,~ (N) and X, (N) directly. As
usual, we have the following Corollary:

Corollary 5.7. For all E E (Z/pZ)*, the space S( 2 ,2 )(F_,e(p)) is a free module of rank one
over T2,2),

Proof. This follows from Theorem 5.6 and Proposition 2.7. O

We also have the following slight strengthening of Lemma 5.1:

Corollary 5.8. For every eigenform f Sk (,,, (N)) there exists an eigenform f E Sk,_(N)

such that fE = f.



Proof. By Lemma 5.1, Sk(P,(N)) has a basis consisting of such eigenforms. Since the
eigenspaces are one-dimensional, however, every eigenform must be a multiple of one of
those basis elements. O

-v

And, finally, we have the facts that Kk, (N) and Sk(F,,s(N)) are isomorphic as T*_(N)-
modules and a geometric consequence of that fact:

Corollary 5.9. For allf E (Z/NZ)*, Sk (F_,-1 (N)) is isomorphic to Kk,(N)ESk (r, (N))
as a module over T* (N).

Proof. By definition, Sk(r,-_l(N)) = k,e (N) EK,E(N). But Kk, (N) is a T* (N)-module
that is a direct sum of one-dimensional spaces corresponding to the Hecke eigenvalues oc-
curring in Sk(Fr,e(N)); the Corollary then follows from Theorem 5.6. O

Corollary 5.10. If N is a power of a prime then the geometric genus of (a desingularization
of) X ,E(N) is maximized when e = -1.

Proof. Corollary 2.3 and Proposition 2.8 allow us to reduce this Corollary to showing that,
for all e and for all MIN, the dimension of S(2,2)(r-,-1(M)) is at least as large as the
dimension of S( 2 ,2)(V, (M)). This in turn follows directly from the above Corollary. O

This Corollary is in fact true for all N < 30, as can be seen by examining the tables
at the end of Kani and Schanz [8]. Guess 2.6 would imply this Corollary for all natural
numbers N, since in that case Proposition 2.8 would be true for all N.

6 The Hecke Kernel

In the previous Section, we saw that, for all E E (Z/NZ)*, we can write Sk(11_,-1(N))
as Kk,e(N) e Sk(F,-,(N)). Thus, the key to understanding modular forms in all of the

Sk(F,(N))'s is to understand the space Sk(F,-_(N)); once we have that, we then need
to understand its subspaces Kk,,(N). The goal of the present section is to study those
subspaces, which we call "Hecke kernels". Note that Corollary 5.10 gives us a geometric
interpretation of these spaces in some situations.

We first give the alternate following characterizations of forms in Kk,,(N):

Proposition 6.1. Let f be an eigenform in Sk(F__,- 1 (N)) and let c be an element of
(Z/NZ)*. The following are equivalent:

1. f is in Kk, (N).

2. For any or all eigenforms f E Sk,_ (N) such that f_ 1 = f, fE = 0.

3. For all n, n 2 such that en1 + n2 - 0 (mod N), T, 1 , 2 f = 0.

4. For all mi, m2, nl, and n2 with nlml - n2 m 2 (mod N), enl + n 2 -0 (mod N), and

(ni, mi) = 1 for i E {1, 2}, we have Cnml,n2 m 2 (f) = 0.



Proof. We can assume f is a normalized eigenform. First we, show the equivalence between 1

and 2: let f be an eigenform in Sk,, (N) such that f_ 1 = f, which we can find by Corollary 5.8.
By Theorem 5.3, f, only depends on the choice of f up to a non-zero constant multiple. If

f, 5 0 then fE is an eigenform in Sk(F,,,E(N)) whose eigenvalues are the same as those of

f, hence are the same as the Fourier coefficients of f, so f isn't in Kk,,(N). Conversely, if

f isn't in Kk,,(N) then there exists an eigenform g E Sk(F,(N)) whose eigenvalues are
the Fourier coefficients of f. Corollary 5.8 allows us to pick an eigenform g E Sk, (N)
such that g, = g; multiplying it (and g) by a constant factor, we can assume that g is a
normalized eigenform. Then g, and g_1 have the same eigenvalues, so g_1 is a multiple of
f, by our assumption on g; g therefore gives us an eigenform in Sk,_ (N) such that g_1 = f

and g, : 0, as desired. By Theorem 5.3, this is independent of the choice of g, justifying
our use of the phrase "any or all".

Next we show that 2 and 3 are equivalent. Thus, we have normalized eigenforms f E

Sk(F_,-1(N)) and f E Sk,_(N) such that f = f_ 1 and we want to show that fE = 0 iff, for

all nl and n2 such that cnl + n2 - 0 (mod N), T,,,,,2 f = 0. First assume that f, = 0. By

Lemma 5.5, fl/, = 0. Then for all ni as above,

Tnn, f = Tni,n2 (f-1)
= (Tni,n2f)-n,/n2

= (Tn,,n2f)1/E

= An,n,2 (f)fl/

= 0.

Conversely, if T1 I, 2 f = 0 for all ni with e n + n2 = 0 (mod N) then the above series

of equalities shows that Anx,n2(f)f 1l/ is always zero, or equivalently (by Corollary 4.7),
Cn,n2 (f)fl/, = 0. If f: : 0 then there exist such ni such that cl,n2, (f) $ 0; thus, fl/, = 0, so

f, is zero after all, by Lemma 5.5.
Next we show that 3 implies 4. Assume that, for all nl and n2 with enl + n2 - 0 (mod

N), Tnl,n2f = 0. Then, for all m I and m 2 with (mi, ni) = 1, we have Tminl, 2 n 2 (f)

TmI,m 2 (Tn 1,n(f)) = 0, so in particular that is true for mi with (mi,ni) = 1 and with
m i ni m 2n 2 (mod N). But Corollary 3.6 then implies that cm,,n,m 2 n2 (f) = 0.

Finally, we show that 4 implies 2, so let f be a normalized eigenform such that all
such coefficients cmini,m2 n 2 (f) are zero, and let f E Sk,_(N) be a lift of f. Assume that
f, $ 0. Thus, there exist ni and n2 with c, 1 ,2 (f) $ 0, or, equivalently, An,,n2(f) $ 0.
Then for all m, and m 2 with (mi, ni) = 1 and with mlnl m 2n 2 (mod N), or equivalently

(1/C)mi + m 2 - 0 (mod N),

O = Ammn2 (f)

= Am,m2 (f)An, 2 (f)

so Am,,m 2 (f) = 0 for all mi with (mi, ni) = 1 and (1/e)m1+m 2 - 0 (mod N). By Lemma 5.4,
fi/E = 0; by Lemma 5.5, f, = 0, a contradiction. Thus 4 implies 2. O



For an arbitrary form in Kk,,(N), it is necessary for those coefficients specified in part
4 of Proposition 6.1 to vanish. The following Proposition shows that even more coefficients
of elements of Kk,E(N) vanish:

Proposition 6.2. For all a and E in (Z/NZ)*, the spaces KIk,,(N) and Kk,a2,(N) are equal.

Proof. Let f be an eigenform in Kk,,(N); we want to show that f is in Kk,a2,(N). Let f be

a lift of it to Sk,(N). By Proposition 6.1, f, = 0. Thus, ((a-1)f)a2, = (a-1 )(f,) is also zero.
But by Proposition 4.10, (a - 1) is in Tk, _(N), so ((a-1)f) is a multiple of f, which is non-zero
since (a - ') is invertible. Thus, f,2, = 0, so f is in IKk,a2,(N), by Proposition 6.1. Ol

Thus, if f E Sk,, (N) is a normalized eigenform such that f, is zero for some e, or
equivalently that f-1 is in Kk,,(N), then fa2E is also zero for all a C (Z/NZ)*. So if we let
f = Ef then lots of the Fourier coefficients of f are zero. This leads one to suspect that
f might be related to forms with complex multiplication, where we define an eigenform g
on X,(N) to have complex multiplication if there exists a non-trivial character ¢ such that
0(p)Ap(g) = Ap(g) (or, equivalently, Ap(g) = 0 unless 0(p) = 1) for all primes p in a set of
density one, where Ap(g) is the Tp-eigenvalue for g. (This is as in Ribet [12], §3, except that
we don't require g to be a newform.) We also say that g is a CM-form. It is indeed the case
that such forms are linked to elements of the Hecke kernel:

Theorem 6.3. An eigenform f is in K(k,,k 2),(N) if and only if there exist eigenforms

fi E Sk, (X(N)) such that, for all nl - n2 (mod N) with (ni, N)= 1,

Cnl,n2 (f) = Cn, (f)Cn2 (f2)

and such that the fi have complex multiplication by some character q such that 0(-e) = -1.
Furthermore, K(k,k 2 ),(N) is spanned by such forms.

Proof. Let k = (kl, k 2 ), and let f E Sk(FI-,(N)) be an eigenform. Pick an eigenform

f E Sk,,_(N) such that f_l = f and let H be the subgroup of E' E (Z/NZ)* such that Lf_, : 0,
as in Theorem 5.3. By Proposition 4.4, Ef is an eigenform in Sk, (1(N)) 0 Sk2 (®rw(N)); but
eigenspaces in that latter space are one-dimensional, so Ef = fi of2, where fi E Sk/, (, (N))
is an eigenform. We wish to relate f's being an element of Kk,E(N), i.e. having fE = 0, to
the fi's being CM-forms.

For all mi and m 2 with (mi, N) = 1, cm,,m 2 (f) = cm, (fi)cm2 (f2). If 'H, i.e. f_, = 0,
then, for all mi such that e'ml -- m 2 (mod N), cm,,m 2 (f) = 0, so cm, (fi) = 0 or cm2 (f2) = 0.
Since the fi are eigenforms, their first Fourier coefficients are non-zero; thus, setting m 2 = 1,
cm, (fi) = 0 for mi - 1/E' (mod N) where e'rH. Since H is a subgroup, this means
that cm, (fi) = 0 for m 1 H (where we project m, to an element of (Z/NZ)*). Similarly,
cm2 (f2) = 0 for m 2 _H.

First, assume that f E Kk,,(N), i.e. that f~ = 0, or that -e H. Pick a non-trivial
character ¢ of (Z/NZ)* that is trivial on H and such that 0(e) : -1. The previous



paragraph shows that fi and f2 both have complex multiplication by 0. By part 3 of

Theorem 5.3, 0 has order two; thus, 0(-c) = -1, as desired.
Conversely, assume that there exists a character q such that the forms fi have complex

multiplication by 0 and such that 0(-E) = -1. Pick m, and m 2 such that Cml + m2 M 0

(mod N). Then -c m 2/mi (mod N); since 0(-c) = -1, either q(mi) or q(m 2) is not
equal to one. Thus, either c,, (fi) or cm2 (f2) is zero, so cm,,m 2 (f) = 0. This is true for all
such mi, so f, = 0, i.e. f E Kk,c(N).

Finally, the fact that Kk,,(N) is spanned by such forms follows from the fact that it has
a basis of eigenforms, which is obvious from the definition of Kk,e(N). O

For p prime we define K (p) to be the subspace K( 2 ,2),,(p) of S(2,2 )(,E(p)) for any E E
(Z/pZ)* such that -E is non-square, where we identify S(2, 2 )(Fr2,(p)) with S( 2,2 )(F_,E(p)) by
Proposition 2.7. (For this to make sense, we should assume that p 0 2; since S(2,2) ],e (2))
is zero for all E, this isn't very important.) This is independent of the choice of E by
Proposition 6.2; its dimension is the difference between the geometric genera of X,_ 1,(p)

and X,,,(p), by Corollary 5.10. We shall give an explicit basis for this space in Sections 9
and 10.

7 The Adelic Point of View

As we have seen in Section 4, to get a satisfactory theory of Hecke operators, we had to
consider the surface X (N), not just the surfaces X_,,(N). In fact, to even construct the
surfaces X_,(N) (at least when working over Q), we passed via the surface X_(N), as
mentioned in the Introduction. To explain these facts, it helps to look at X_(N) from the
adelic point of view. Thus, we review some of definitions from that theory and explain their
relevance to our context. For references, see Diamond and Im [2], Section 11.

Let A" denote the finite adeles, i.e. the restricted direct product of the fields Q, with
respect to the rings Zp. Let U be an open compact subgroup of GL 2(A"). We define the
curve Yu to be GL+ (Q)\() x GL 2 (Ac*))/U. Here, GL (Q) is the set of matrices in GL 2 (Q)

with positive determinant, acting on B via fractional linear translations and on GL 2 (AOO)
via the injection Q - A; U acts trivially on 5j and acts on GL2 (A) via multiplication
on the right. This defines Yu as a non-compact curve over the complex numbers; it has a
canonical compactification X given by adding a finite number of cusps. The curves Xu
and Yu in fact have canonical models over Q which are irreducible; over C, however, the
number of their components is given by the index of det U in Z x. If U and U' are open
compact subgroups of GL 2 (A"0) and if g is an element of GL 2(A") such that g-1Ug C U'
then multiplication by g on the right gives a map g*: Xu - X5; it descends to the models
over Q.

We define a cusp form of weight k on Xu to be a function f: -) x GL2 (Ac) -+ C such
that

1. f(z, g) is a holomorphic function in z for fixed g.



2. f (yz, yg) = j(y, z)-kf(z, g) for all y E GL+(Q).

3. f(z, gu) = f(z, g) for all u E U.

4. f(z, g), considered as a function in z, vanishes at infinity for all g.

We denote by Sk(U) the space of all such forms. If g-1Ug C U' then we get a map

g.: Sk(U') -+ Sk (U) by defining (gf)(z, h) to be f(z, hg).
Each U-double coset in GL 2 (A) gives a Hecke operator, which acts on Sk(U). If

U = GL2 (Zp) x U p then the Hecke operator Tp is generated by the elements of M 2 (Zp) whose
determinant is in pZp; defining the Hecke operator Sp to be the double coset generated by

(p0) in the GL 2 (Qp) component, the ring of Hecke operators consisting of those double

cosets generated by elements in GL 2 (Qp) is generated by Tp and S: .
If we define Sk(C) to be the direct limit of the Sk(U)'s as U gets arbitrarily small then

the above maps g. make this into an admissible representation of GL 2 (A"); the original
spaces Sk(U) can be recovered from that representation by taking its U-invariants. The
main fact that we need is the following adelic analogue of Atkin-Lehner theory:

Theorem 7.1 (Strong Multiplicity One). If 7r and 7r' are two irreducible constituents

of Sk(C) such that 7p, and 7r' are isomorphic for almost all p then 7 and rr' are equal. (Not
just isomorphic.) Furthermore, if f and f' are elements of 7r and 7r' then this is the case iff f
and f' have the same eigenvalues for almost all Tp and Sp; in this case, they have the same
eigenvalues for all p such that f E Sk(U) for some U of the form GL 2 (Zp) x UP. E

The subgroups that we shall be concerned with are

Uw(N) = gE GL2(Z) g ( ) (mod N)

and

U(N) = gE GL2(Z) g ) (mod N) .

These define the modular curves X,(N) and X(N), respectively. The modular interpre-
tation of X(N) is given as follows: for each C E (Z/NZ)*, choose a matrix g E GL 2 (Z)
congruent to ( -1 o) mod N. The strong approximation theorem for GL2 implies that every
point in Y(N) has a representative of the form (z, g,) for some unique choice of E; we let
this point correspond to the elliptic curve C/(z, 1) together with the basis for its N-torsion
given by (ez/N, 1/N). We then have an action of GL2 (Z/NZ) on X(N) that sends a matrix

Y E GL 2(Z/NZ) to the map (g-1 )*: X(N) -+ X(N), where g is any lifting of g to GL 2 (Z);
it has the modular interpretation of preserving the elliptic curve and having g act on the
basis for its N-torsion on the left.

Note that, in contrast, the action of SL 2(Z/NZ) on X,(N) can't easily be defined
adelically; this is one reason why it's hard to define such an action over Q, and thus why



we find it convenient to use the curves X(N) rather than X,(N) at times. However, with
a bit of care it is possible to use the action of GL 2 (Z/NZ) on X(N) to extract information
about the action of SL 2(Z/NZ) on X,(N); we shall do this in Section 9.

Now we turn to the surfaces X (N). Definitions similar to the above go through, replac-
ing 4 x GL 2(A) by 5) x 4 x GL 2(A) x GL 2 (A) and putting in two copies of everything
else. We then recover our surfaces X_(N) and spaces Sk,~(N) of cusp forms by using the
following subgroup:

U_(N) = (g1,g2) E GL2 (Z) x GL2() g91 92 (mod N)}.

The above definitions of Hecke operators pass over immediately to our situation; in partic-

ular, it is easy to check that Tpl,p is Tp, x T2 (for (p, N) = 1) and (p) is 1 x S, (again for
(p, N) = 1; note that S, x 1 is (p- 1)). Using these definitions, we also easily see that that,
as claimed,

X,(N) = GL2 (Z/NZ)\(X(N) x X(N)),

where GL 2(Z/NZ) acts diagonally with the action given above.
In contrast with this situation, there does not exist a subgroup U__, (N) that would allow

us to define X,,,(N) in the same way. This explains why we couldn't naturally define a
Hecke operator Tn,,n 2 acting on X,,,(N) unless nl - n 2 (mod N), and why we have to go
to a bit of work to define those surfaces over Q. Of course, it isn't hard to see which points
on X_(N) are on X,,,(N) for some e: they are the points that have a representative of the
form (z1 ,z 2, 91, g 2) with gi E GL2(Z) and with det g1 _ detg 2 (mod N). And if we are
given f E Sk (U (N)) = Sk,=(N), we can recover f, from it by letting

fE(zl, z2) = f(zl, z2, 1, ge).

With these definitions in hand, we can show that there is no obvious way to map forms
in Sk, _(N/d) to forms on Sk,(N) other than composing an automorphism of Sk,= (N/d)
with the natural injection. We consider the "obvious" maps to be maps of the form g..

Proposition 7.2. The only g E GL2(A") x GL 2 (A") such that g-U_(N)g C U_(N/d)
are those in Z(GL2 (A") x GL 2(A)) -U (N/d), where Z(G) denotes the center of G.

Proof. This is a local computation, so we can replace GL 2(A) x GL 2(A) by GL2(Qp) X
GL 2(Qp), U2_(N) by U_(pk) n (GL 2(Qp) x GL 2(Qp)), and U,(N/d) by a similar statement
with p3 in place of pk (for some j _< k). Assume that g = (gl, g2). One easily sees that the
only matrices h in GL 2(Qp) such that h-IGL2(Zp)h C GL 2(Zp) are in Z(GL2(Qp)).GL2 (Zp);
this handles the case j = k = 0. Also, since U_(pi) C GL2(Zp) x GL 2(Z) and since any
matrix in GL 2(Zp) is the first coordinate of a matrix in U_(pk), we can assume that, after
multiplying them by an element of Z(GL 2(Qp) x GL 2(Qp)), the gi are both in GL2 (Zp). We
then have to show that gl - g2 (mod pi). Multiplying both gl and g2 by g- 1, we can even
assume that gl is the identity matrix.



Thus, we have to characterize those g2 E GL 2(Zp) such that, for all (hi, h2 ) E GL2 (Zp) x
GL 2 (Z) such that hi - h2 (mod pk), hi - g-1h2g 2 (mod pi). Since j 5 k, hi and h2 both
reduce to the same matrix matrix h E GL 2 (Z/(pJ)Z), and our assumption is then that,
after reducing mod pJ, g92 normalizes h. Thus, the image of g2 mod p3 is in the center of
GL 2 (Z/(pJ)Z); so, after multiplying g2 by an element of Z(GL2 (Zp)), g, and g2 are congruent
mod p3, i.e. (g91, g2) E Z(GL 2 (Zp) x GL2 (Zp)) - U (pi), as desired. O

Finally, we note the following simple fact about Hecke operators:

Proposition 7.3. Let G equal GL 2 (A o ) or GL2 (A") x GL 2(A'), and let U = Ip Up be
a compact open subgroup of G. If gi and g2 are elements of G such that, for some choice
of primes pl $ P2, the p'th component of gi is the identity unless p = pi, then the Hecke
operators UgiU and Ug2U commute.

Proof. We can write UgiU as a disjoint union of left cosets Ugi,3 where the p'th component
of gi,j is the identity unless p = pi. The Proposition then follows from the fact that gl,j and

g2,j' commute. O

8 Hecke Operators Dividing the Level

In defining our Hecke operators Tni,n2 above, we have assumed that (ni, N) = 1; this has
led to a theory that is exactly parallel to the theory of Hecke operators Tn on X,(N) with

(n, N) = 1. Indeed, they look exactly the same locally when considered adelically (other
than the obvious fact that we have to index them by two integers instead of one). When
considering Hecke operators Tnl,,, with (ni, N) > 1, the situation becomes much more
delicate. We can restrict ourselves to considering double cosets generated by matrices in
GL 2 (Qp) x GL 2(Q p) for p N prime; however, in contrast to the situation for (p, N) = 1, the
algebra generated by such double cosets no longer has an obvious, small set of generators
and is no longer commutative. This problem arises in the modular curve case; there, it is
traditional to restrict oneself to a smaller algebra of double cosets, hoping to find an algebra
which is large enough to have useful operators in it but small enough to be tractable.
The goal of this section is to define such an algebra in our case and to begin studying its
properties.

For purposes of this section, p will be a prime dividing N, and p will be the highest
power of p that divides N.

We define A,(N) to be the set of matrices (g91,g2) E M 2 (Z) x M 2 (Z) such that gi - g2

(mod N), and we define the Hecke algebra Tk,, (N) to be the algebra of endomorphisms

of Sk, (N) generated by double cosets contained in A (N). Furthermore, for nl and n 2
positive integers and for c E (Z/NZ)*, we define the Hecke operator T,,,,2,, to be the set

of double cosets of matrices (gl, g2) E A,(N) such that the ideal generated by det gi is niZ
and such that q(detgl)/ni - (detg2 )/n 2 (mod N). (Note that (detgi)/ni is in Z.) If
(ni, N) = 1 then this is zero unless yr = nl/n 2 , in which case we recover our old operator



Tnl,, , . If pIN, however, there may be multiple r such that Tp,,,p,,,,, is nonzero; note that it
is always zero unless either jl = j2 or both ji are at least as large as j.

When translating this back to our earlier point of view, we find that the set of Hecke
operators that send forms in Sk (F,,, (N)) to form in Sk (r,,,t (N)) are given by taking double
cosets in the following set:

aj, bi, ci, di E Z,

aidi - bici > 0,
(a bl (a2 b2 ) al a2  (mod N),
c, di' c2 d2 bl - E'b 2  (mod N),

el -- c2  (mod N),
Ed Ec'd2  (mod N)

This is the same as the definition of A*,= ,, except that we remove the condition on the
determinant; it contains T,1,2, iff r = c'/c. This has the following modular interpretation:
if we let 77 = E'/c then T,, ,,, , sends a triple (El, E 2 , 0) to the sum of all triples (E', E2, 0')
such that there exist isogenies ri: Ei -+ E of degree ni such that the following diagram
commutes:

El [N] E2[N]

E'[N]  E'[N]

We define Tk,E(N) to be the algebra of endomorphisms of Sk(,,(N)) generated by the

Tni ,n2, S.

The operators Tn1,, 2 for (ni, N) > 1 are a good deal more difficult to study than the

Tn,2 for (ni, N) = 1. It's harder to get coset representatives, and it's impossible to get a
complete set of upper-triangular coset representatives, which makes studying the action of
these operators via Fourier coefficients much more difficult. The case Tp,p,l already begins
to illustrate some of the difficulties and surprising features that appear:

Proposition 8.1. Let p be a prime dividing N, let e be an element of (Z/NZ)*, and let
e be an integer congruent to e mod N. Then the set of elements of A_,,(N) that have

determinant (p, p) has the following left coset decomposition:

( M , (N) (i eb) (I b+pkN)) U , (N) 0 ) N o
O<b<p O l0<p

\O k<p

Proof. Let (S1, 62) be an element of A_,E,E(N) with determinant (p, p). By multiplying 71
on the left by an element of F(1), we can assume that 61 is either of the form ( eb ) or of the



form (P 0). This forces 62 to be congruent to ( ) or to (C o). Assume that 61 is (1 e')
the other case is similar and easier. We can further change 62 by multiplication on the left
by an element of F,(N); we have to show that, by doing so, we can get to exactly one of
our putative representatives.

Assume that

62 = (1+a'N b+b'N
c'N p + d'N'"

The fact that its determinant is equal to p is equivalent to the statement that

d' + a'p + a'd'N - bc' - b'c'N = 0. (8.1)

I claim that there is a unique k between 0 and p such that 62 and b+kN) generate the

same left F,(N)-coset, or equivalently such that

1 + a'N b + b'N (1 b +kN-
c'N p + d'N) 0 p

1 + a'N -kN/p - a'bN/p - a'kN2 /p + b'N/p
c'N 1 - bc'N/p - c'kN 2/p + d'N/p

is an element of F,(N). Using the fact that pIN, this reduces to the pair of equations

b' - k - a'b 0 (modp) (8.2)

d' - bc' 0 (mod p). (8.3)

But (8.3) is an immediate consequence of (8.1); and we can choose a unique k mod p such
that (8.2) is satisfied. This proves our desired existence and uniqueness. Ol

We'd like to use Proposition 8.1 to determine the action of T,,p on Fourier coefficients.
Unfortunately, the matrices (IN 0) aren't upper triangular for 1 0 0, which causes problems
in understanding how they affect Fourier expansions. We could perhaps get around that
by introducing some sort of operator which encapsulates the effect of those matrices (just
as we introduced the action of the oa's when considering the action of Hecke operators in
Sections 3 and 4); however, it's not clear that doing so would be useful. Instead, we shall

simply note the following fact:

Lemma 8.2. Let f be an element of Sk(F ,(N)), let p be a prime dividing N, and let

Te E I0
O<l<p (P)1 (IN 1)

Then cma,m2 (g) = 0 unless plmi.



Proof. This is equivalent to showing

(0), (1 NP)). Thus, for each 1, we

that g is invariant under the action of the matrix

need to find a unique 1' such that

1

is in F,(N). But this matrix is equal to

( 1 - l'N 2/p
IN/p - l'N/p - ll'N 3/p 2

1+ IN2/p

so choosing l' = 1 works. O

Using this, we can get partial information about the Fourier coefficients of Tp,p(f):

Proposition 8.3. Let f be an element of Sk(F,,(N)), and let p be a prime dividing N.
Then if (mi, p) = 1, we have

Cm1 ,m2 TVP ))i Cpm 1 ,pm2 (f)
.~,.,,,~,f,=~ 0

if ml1 + m 2 - 0
otherwise.

Proof. Let k = (kl, k2 ). By Lemma 8.2, we can ignore the matrices ((P ), ( o)). Thus,
we have to determine the Fourier expansion of g, where g is defined as

g(zi, z 2) = p k/2-1pk2 /2

p-2
O<b,k<

O<ml ,m2

b,mi ,pIm 2

-1
b+kN (z1,z 2 )

Ok eb p

05k<p

C m 2 (f) e27r m--m (zi +eb)/pNe2lrV
--- fm2 (z2+ b+ kN)/pN

p
<00

cm,,m 2 (f) e2rI/ Ym l
(z +eb)/pN 21rr---m 2 (z2+b)/pN

By Proposition 2.4, Cm,m 2 (f) is zero unless Em1 + m 2  0 (mod N). Thus, plm2 implies
that pjm. Letting m = mi/p, we then have N/p dividing em' + m', and

m m2 2rx/ -fb(em i +m')/Ng(zl, z 2) = p-1 > Cpm, ,pm ' (f)qlqme1 2 2 b(

b,m'

= > CpmI,pm/ (f)q 2mq
pm 1 P 1 m2

erm +m =O(mod N)

which is what we wanted to prove.

(mod N),

IN 1 0 1 'N0



Thus, Tp,p, 1 pulls out the Hecke coefficients that are multiples of p, and makes sure that
the ones that Proposition 2.4 forces to be zero are zero.

I don't know a good set of coset representatives for arbitrary Tl,n2 's. However, as
Proposition 8.3 showed, we don't need a complete set of coset representatives to get par-
tial information on how the Hecke operators acts on Fourier coefficients. A partial set of
representatives for the operators Tp 1 ,pJ2,, is given by the following Proposition:

Proposition 8.4. Let p be a prime dividing N, let E and e' be elements of (Z/NZ)*, let jl
and j2 integers such that e'pl E jq 2 (mod N), and let e' be an integer congruent to e' mod
N. Then the set of elements of A,,l(N) that have determinant (pJl,p2) can be written as
S IJ T where S has the following left coset decomposition:

b Z V~,(N) (1 e'b)1 (1 b+kN)

bEZ/pJlZ
kEZ/p

3
2 Z

where we can choose b and k to be elements of an arbitrary set of integer representatives for
the Z/p j Z 's, and where T is such that, considered as an operator sending modular forms to
functions, then for all f E Sk(F,, (N)), we have cm,m 2 (f IT) = 0 unless pi m.

Proof. Let (61,62) be an element of A , ,e of determinant (p , p32). By multiplying S1 on
the left by an element of F(1), we can assume that it is equal to (0 eb), where ad = p.
Furthermore, the choice of a, b, and d is unique up to changing b by a multiple of d. We
define S and T by saying that (61, 62) E S if a is equal to 1 (hence d = p") and (S1,62) E T
otherwise; we then have to show that S and T have the desired properties.

First assume that a = 1, so that6 1 1= e' In that case, 62 is equal to c'N 2 +d'N
for some a', bl, c', and d', and we have to show that 62 is in the same left F,,(N) coset as

Sb+kN ) for a unique k E Z/p32Z. The fact that 62 has determinant p32 is equivalent to

the statement that

d' + a'p j
2 + a'd'N - bc' - b'c'N = 0. (8.4)

We want the matrix

1 + a'N b+ b'N 1 b+kN -1

c'N pj2 + d'N 0 p2

+1 +a'N -kN/p j2 - a'bN/pj2 - a'kN2 /p2 +b'N/p2
c'N 1 - bc'N/pi2 - c'kN 2/p2 + d'N/p2

to be an element of F,(N). This reduces to the pair of equations

b'- - a'b - a'kN_ 0 (mod p 2 ) (8.5)

d' - bc' - c'kN - 0 (mod pJ2 ). (8.6)



There is a unique k E Z/pi2Z such that (8.5) is true: the coefficient for k in the equation is

-(1 + a'N), which is invertible in Z/pJ2Z since pIN and Z/pi2Z is a local ring. We need to
show that, for that k, (8.6) is also true. We shall show this by induction, by showing that

d' - bc' - c'kN - (-a'N)l(d' - be' - c'kN) (mod pi2) (8.7)

for all 1: since pIN, (-a'N)l is congruent to zero mod p32 for 1 sufficiently large, so this

implies (8.6). Furthermore, (8.7) is trivially true for 1 = 0; for the induction step, we then
have to show that

d' - bc' - c'kN - (-a'N)(d' - be' - c'kN) (mod p3 2 ). (8.8)

But

d' - bc' - c'kN b'c'N - a'd'N - c'kN by (8.4)

b'c'N - a'd'N - c'N(b' - a'b - a'kN) by (8.5)

-a'd'N + a'bc'N + a'c'kN 2

= (-a'N)(d' - bc' - c'kN),

proving (8.8).
Now assume that b1 = (a e'b) with pla. In that case, (61, 62) must be an element of T.

So we just have to show that, for all f E Sk(r,(N)), Cm,m 2(f IT) is zero unless plmi. To

do this, we have to show that the action of T is preserved under right multiplication by

1 N/P), (0)). Thus, we'll be done if we can show that

1 N/I.P)

is congruent to S1 mod N. But that is equal to

(a e'b 1 N/p a e'b+aN/P)

(0 d) 0 1 =0 d

which is congruent to 61 mod N by our assumption that pla. O

As with Proposition 8.3, this gives us partial information about Tp31 ,p2, 's action on
Fourier coefficients:

Proposition 8.5. Let p be a prime dividing N, let E and E' be elements of (Z/NZ)*, let

jl and j2 integers such that EJpl = elpJ2 (mod N), let ' = '/c, and let f be an element of
Sk(r,,(N)). Then if (mi,p) = 1, we have

Cm1,m 2 Tp1,p2,7f7 = cpJ,m,(f) if E'ml + m 2  0 (mod N),
0 otherwise.



Proof. We need to study f S, where S is the operator given by Proposition 8.4. Let q be
the greatest common divisor of p" and N, which is also equal to the g.c.d. of p 2 and N by
our assumption on the ji's. Then the integers b' + Nb", for 0 < b' < q and 0 < b" < p" /q,
provide a complete set of representatives for Z/p I Z. Also, we simply take the integers k
between 0 and p 2 as our representatives for Z/pJ2Z. Then, ignoring coefficients not prime
to p, we have

Tpp2, f(1i Z2) pj1(k/2-1)+j2(k2/2-1) " 1 e'b'+Ne'b" 1 b+Nb"+Nf (Z1, Z2)

O<bl/<p 
1/q

O<k<pJ2

S +bNb" z 2 +b'+N(b"+k)

p-(jlj2) CM1 m2 (f)e2x m p3N +m2 pJ2N /

O<b'<q
O<b"<p

Jl 
/q

O<k<p2
0<mI ,m2 <0

S mzl+elb+Netbl m 2 z2 + b++Nb")= p -- 1 cm2,m e 2(7r -- 
m1 pJ1 N M2 p2 N

b',b",ml,m2
p32 Im2

Write m 2 as P 2. Then since cm 2 (f) is zero unless m 1 + m 2  0 (mod N) and since
p'2 iM2 , we can write m1 as qm'. Also,

e2,7xr - f m 2 Nb"/p32N - e2 x / - mb" 1

so we can ignore that term. The above is therefore equal to

p-j1 Cq,p 2 m (f)2r (qm' (z+e'b'+Ne'b")/p'1 N+m' (z2+b')/N)

b',b",m ,m 2

= q 1  >i Cqm ,p2m f2x-(qm (zl+e'b')/p1lN+mi(z2 +b')/N)

bm 2m

(p2 /q) m

We can then write m' as (p" /q)m", or equivalently mn1 = p-- m'. Since we can assume that
Em +M2 _ 0 (mod N) and since cp"i -~ 'lp2 (mod N), we have c'm" +m 0 (mod N/q).

So the above is equal to

-1 m: e2-- --(e 'm 'L +m )b'/N m1 mqm p 2 Cplim,p2m (f)ql l q2 ,

b',mn',m m" ,m
NJ(m"'+e'm )

as desired. EO

This allows us to determine the image of Tp31,p2,f in S (F,7,/(N)) for any form f E

Sk(F17,e(N)). (Note that Tpis,p2,7 is not well defined as a map from Sk(F,e(N)), just as a
map from Sk(,l(N)).)



9 The Case of Prime Level

In this Section, we discuss facts that are special to the case of weight (2, 2) forms on prime

level. The main fact here is that we can ignore Fourier coefficients that are multiples of p,
as stated in Proposition 2.7; this in turn implies that certain spaces of cusp forms are free
of rank one over their Hecke algebras. This is encapsulated in the following Theorem:

Theorem 9.1. For all primes p, the natural map from S( 2 ,2),_(p) to S( 2,2 ), (p) is an iso-

morphism; identifying those spaces, the algebras T(2,2),(p), T2,2 )(p), and T(2,2), (p) are

all equal as algebras of endomorphisms of S(2,2),_(p). Similarly, for all c E (Z/pZ)* the nat-

ural map from S( 2 ,2)(F,(p)) to S( 2 ,2)(F_,e(p)) is an isomorphism; identifying those spaces,
the algebras T( 2 ,2)E(),( T(2,2 ),e(p), and T( 2,2 ),(p) are equal as algebras of endomorphisms of

S(2,2) (F, (p)). The spaces S(2,2),~ (p) and S(2,2) (F_, (p)) are free of rank one over T( 2 ,2 ), (p)
and T( 2,2 ), (p), respectively.

Proof. The claimed isomorphisms of spaces are Proposition 2.7. We give the proof of the
first set of equalities of algebras; the proof of the second set proceeds in exactly the same

fashion. The last sentence then follows from the previous ones by Corollaries 4.9 and 5.7.
The fact that T2,2),~(p) and T( 2,2 ),_,(p) are equal follows from Proposition 2.7. Corol-

lary 4.9 says that S(2,2),_(p) is a free rank one module over Ti2,2), (p). Furthermore,
Proposition 7.3 implies that the operators T,,,n 2 with (ni,p) = 1 commute with Hecke
operators associated to double cosets of GL 2 (A) x GL 2 (A) generated by element of

GL 2 (Zp) x GL 2 (Zp). But if R is a commutative ring and M a free rank one R-module then
the only R-module endomorphisms of M are given by multiplication by an element of R.
Thus, those extra operators are contained in T*2,2) I(p), so T( 2 ,2),(p) 2,2),_(p). O

This implies that, for example, there is an expression for Tp,p,1 in terms of the operators

Tni,n2 with n, - n 2 (mod p) and (ni,p) = 1 as operators on S(2 ,2)(F,E(p)); it would be
interesting to find a natural such expression. In the rest of this Section, we shall present some

general calculations that lead us towards methods for calculating the spaces S(2,2)( 2,E(p));
in the next Section, we shall give some explicit constructions of forms.

Since

S(2,2) ( )) = (S2 (w (p)) 0 S2 (rw())) SL2 (ZIP)

to understand S(2,2)(F~,E(p)) we should understand the representation theory of SL 2 (Z/pZ)
on S2 (Fw(p)). Since (01 01 ) acts trivially on S2 (Fr(p)), we can look at the representation

theory of PSL2(Fp) instead. We shall start by considering arbitrary weights and levels, and

adding the assumptions of weight 2 and level p as it becomes convenient.

The basic fact about representations of groups on spaces of cusp forms is the Strong

Multiplicity One Theorem. This tells us how to pick out the irreducible representations

of GL 2 (A") that are contained in Sk(C): they are just the Hecke eigenspaces. Tak-

ing GL 2 (Z/NZ)-invariants, this breaks up Sk(U(N)) into smaller subrepresentations of



GL 2(Z/NZ). (Of course, these smaller subrepresentations may not be irreducible as repre-
sentations of GL 2 (Z/NZ).) To apply this, we need to relate Sk(U(N)) and its eigenspaces
to spaces that we understand better.

First we recall that 0) 1 ') ,(N) (N 1) C FI(N 2 ). This allows us to pass from

forms on X,(N) to forms on XI(N 2 ): the image of Sk(rw(N)) is the direct sum of the
spaces Sk(ro(N 2),X) where X is a character on (Z/NZ)*. A form f = E cmqm, where
q = e27rV --- z/N, gets sent to a form with the same Fourier expansion except that q is now equal
to e27v /-- z. Furthermore, if b is a character on (Z/NZ)* then the form f,, which is defined
to have Fourier expansion Ecmo(m)q m , is still a form in Sk(rw(N)), by Shimura [14],
Proposition 3.64.

We now turn to producing forms contained in Sk(U(N)). A form f E Sk(U(N)) is a
function from -0 x GL 2 (A) to C with those properties listed in Section 7; it then follows
easily that if, for e E (Z/NZ)*, we define f, by setting f,(z) = f(z, g,) (where g, is a matrix
in GL 2 (Z) that is congruent to (o' 0) mod N) then each of the f 's is a form in Sk(rw N)).
By the Strong Approximation Theorem, a choice of such fE's determines f uniquely. Thus,
we can think of forms on Sk(U(N)) as q(N)-tuples of forms on Sk (r(N)).

This allows us to determine the Hecke eigenspaces in Sk(U(N)). The dimension of
Sk(U(N)) is O(N) times the dimension of Sk(Fr(N)), so the hope is that each eigenform
on Sk(F,(N)) will somehow give us O(N) different eigenforms on Sk(U(N)). This is indeed
what happens, as we shall see in Proposition 9.4:

Lemma 9.2. Let f be an element of Sk(U(N)) and let q be a prime not dividing N. Then,
for all C E (Z/NZ)*, (Tqf), = Tq(fpq) and (Sqf), - Sq(fq2).

Proof. This follows from tracing through the definitions; alternately one can use the mod-
ular interpretation of points on X(N) and Hecke operators together with the fact that if
7: E --+ E' is an isogeny of degree N then (xX, wy)E' = (x, y)n, where (,)E denotes the Weil
pairing. Ol

Corollary 9.3. Let g E Sk(rw(N)) be an eigenform, with eigenvalues {aq, X(q)} (for Tq
and Sq respectively, as q varies over primes not dividing N). Let 0 be a character of
(Z/NZ)*. Then the form f(g, 0) E Sk(U(N)) defined by f(g, ), = $(E)g is an eigenform
with eigenvalues {t(q)aq, 02 (q)X(q) }.

Proof. Write f for f(g, 4). By the Lemma,

(T, f) , = T, (fEq)

= T,(O(cq)g)

= 0(q)0(c)aqg

= O(q)aqfE.

The calculation for Sq proceeds in exactly the same manner. Ol



This allows us to produce a basis of eigenforms for Sk(U(N)) in terms of a basis of
eigenforms for Sk(F (N)):

Proposition 9.4. Let {gj} be a basis of eigenforms for Sk(Fr(N)). Then the set of forms

{f(gj, )}, as gj varies over elements of the basis and b varies over characters of (Z/NZ)*,
give a basis of eigenforms for Sk(U(N)). Every set {aq,x(q)} of eigenvalues for Tq and
Sq (as q runs over primes not dividing N) that occurs in Sk(U(N)) occurs in Sk(lw,(N)).

A basis for the set of eigenforms in Sk(U(N)) with eigenvalues {aq, X(q)} is given by tak-

ing the forms f(g, b) where 0 varies over the characters of (Z/NZ)* and where, once 0
is fixed, g varies over a basis for those eigenforms in Sk(rI(N)) which have eigenvalues

f{aq,-'(q), x(q)0-2(q)}.

Proof. Assume that we have an expression of linear dependence involving the forms f(gj, b).

Looking at the first coordinate, the fact that the forms {gj} form a basis for Sk(F,(N))

implies that we can assume that our relation involves only forms f(g, b) for some fixed form
g. But those forms are linearly independent since characters are linearly independent. This

gives us O(N) -dim Sk(Fr(N)) forms; but that's the dimension of Sk (U(N)), so those forms

give a basis for Sk(U(N)) that consists of eigenforms.
Every set of eigenvalues on Sk(U(N)) is therefore of the form {4(q)aq, 0 2 (q)x(q)}, where

{aq, x(q)} is the set of eigenvalues of a form g E Sk (F(N)), by Corollary 9.3. But those are

the eigenvalues of gp, which is also an eigenform in Sk(Fr(N)). The last statement of the

Proposition follows in a similarly direct manner from the first paragraph of the proof and

Corollary 9.3. O

To restate the last sentence of the above Proposition: assume that g E Sk(rF(N)) is a

newform with eigenvalues {ap, X(p)}. A basis for the eigenforms in Sk(U(N)) with those

eigenvalues is given by the forms f(g,-1, 0) together with the forms f(h, 0) where h runs
over oldforms with the same eigenvalues as gp- 1.

Let us now fix k = 2 and N = p prime. We may assume that p > 5, since S2 (F,(p)) is zero
otherwise. Pick a set A = {aq, X(q)} of eigenvalues. Let g E S 2 (F1(p)) be a newform with
those eigenvalues; we wish to calculate the dimension of the space SA of forms in S 2 (U(p))
with eigenvalues A. For each character 0, we can produce an element of SA all of whose

components are multiples of gp - 1; this gives us (p - 1) forms. Furthermore, when g,-1 is an

oldform, we can produce extra forms. Since S 2 (F(1)) is zero, we can produce at most one

extra form for each b this way: this happens when the eigenvalues {aq 1-l(q), x(q)1-2(q)}

occur in S 2 (FI(p)).
For how many 0 does an extra form arise in this way? By the Strong Multiplicity

one theorem, studying SA reduces to the study of irreducible representations of GL2 (A)
and their U(p)-invariants. Factoring those representations, we have to study irreducible
representations of GL2(Qq) and their U(p)q-invariants. If q 5 p then U(p)q = GL 2(Zq);
since the space of GL2(Zq) invariants of an irreducible representation of GL2(Qq) is either
zero- or one-dimensional, we can therefore concentrate on the irreducible representations of



GL 2 (Qp), and in particular calculating the dimension of their U(p)p-invariants, where

U(p) = gEGL2(Zp) g ') (mod p)

A description of the irreducible representations of GL2(Qq) is given in Diamond and Im,
Section 11.2; their classification breaks them up into principal series, special, and supercus-
pidal representations. From the description of principal series representations given there,
one easily calculates that the space of U(p)p-invariants of a principal series representation is
either zero- or (p+ 1)-dimensional and that the space of invariants of a special representation
is either zero- or p-dimensional. Furthermore, Diamond and Im state that the conductor of
a supercuspidal representation is at least p2 , which means that no oldforms can occur among
the g¢-l's, so by the discussion in the previous paragraph, the dimension of the space of
invariants must be (p - 1)-dimensional. Thus, we have two, one, or no extra dimensions of
oldforms arising in the principal series, special, and supercuspidal cases, respectively.

Let us now turn towards the space S2(F,(p)). The group PSL 2(Fp) acts on this space;
we wish to determine its irreducible representations. Since this action is not given adeli-
cally, we can't just apply the theory of irreducible GL 2 (A")-representations and the Strong
Multiplicity One Theorem to get the answer. However, we can use the adelic action to get
information about this representation as follows: let g be an element of S 2 (r (p)) and let
f be an element of S2 (U(p)) such that fx = g. Let 7 be an element of PSL2 (Fp) and let 7
be an element of GL2 (Z) projecting to it. Then 7 sends g to (y, 1'g) 1, as can be seen by
tracing through the definitions. (Note that we need to make the action contravariant, since
the action g -+ g., is; thus, it isn't surprising that we have to act by 7;1.) In particular,
we get representations of PSL 2 (Fp) on S2(Fw(p)) by projecting the representations given in
the previous paragraphs down to their first coordinate.

The map from S 2 (U(p)) to S 2 (Fw(p)) sending f to fl is injective unless there is a 4b such
that g = g,, by Proposition 9.4, i.e. unless g is a CM-form, in which case all of the forms
in the representation are CM-forms, and the dimension of the representation in S2 (Fr(p))
is half of the dimension of the representation in S 2 (U(p)). Thus, we have decomposed

S 2(F (p)) as a direct sum of representations that are either of dimension p - 1, p, p + 1,
(p - 1)/2, or (p + 1)/2.

These representations may not be irreducible, however. Most of the time, they do turn
out to be irreducible; we can see this by looking at the character table of PSL2 (Fp). The
dimensions of the irreducible representations of PSL2 (Fp) are 1, p - 1, p, p + 1, and either
(p - 1)/2 (if p _ 3 (mod 4)) or (p + 1)/2 (if p = 1 (mod 4)). Furthermore, the only one-
dimensional representation of PSL2 (Fp) is the trivial one, which doesn't occur in S2(Fw(p))
(since that would be equivalent to having a form that is invariant under PSL2 (Fp), i.e.
a form in S2 (F(1))). There are no 2-dimensional representations, either, so by comparing
dimensions, we see that the representations that we have constructed above are either trivial
or the direct sum of two representations of dimension (p - 1)/2 or (p + 1)/2.



To make the situation more concrete, we first consider the case where p 1 (mod 4).
In this case, the character table of PSL2 (Fp) is

(10) (11) (1w) ( 0 (1 XWY)
01 01 0 1 0-1Y X

U 1 1 1 1 1

V p 0 0 1 -1

Wa p + 1 1 1 Ca(x) + a(x- 1) 0
Xp p- 1 -1 -1 0 - (P(() + (P))
W' P+x: 1+NP 1- VP a()+asq(X-') 0

WI p-1 - /P 1+VP csq(x))+casq(x- I ) 0
2 2 2 2

This is in Fulton and Harris [4], Section 5.2; w is a non-square element of Fp, = x + y / ,
a is a character of F; whose square isn't the identity, 3 is a character of the elements of
norm one in Fp2, and as, is the non-identity character of Fp whose square is the identity.

If two irreducible representations R 1 and R 2 both occur in S 2 (r (p)), we want to see how
many forms they contribute to S(2, 2)(F_, (p)), i.e. the dimension of forms in R 1 0 (R 2 o e,)
that are fixed under PSL2(Fp). Let Xi be the character of Ri; then we need to calculate

(X1 0 (X2 o OE), 1) = (X1, X2 0 O). But all of the characters above are real; furthermore, they
are invariant under composition with 0, unless the representation is W' or W" and E is a
non-square, in which case the characters of W' and W" get swapped. Thus, this is almost
always (X1, X2), which is 1 if X1 = X2 and 0 otherwise; however, if c is a non-square and

X2 = XW' (resp. Xw") then we get 1 if X1 = xw" (resp. xw,) and zero otherwise.
In particular, the only contribution to the dimension of S(2 ,2) (F,(p)) that depends on E

is the contribution that comes from the representations W' and W" occurring in S2(r,(p))
Assume that W' occurs n' times and that W" occurs n" times. In that case, we see that
those representations combine to contribute (n')2 + (n") 2 to the dimension of S(2,2) ,E (P
if c is a square and 2n'n" if E is a non-square. The difference of these two numbers is

(n' - n") 2; since -1 is a square, the dimension is maximized when e = -1, as predicted by
Corollary 5.10.

This is a bit misleading, however, because in this case n' and n" are equal, so the
dimension of S(2,2)(Fr2,(p)) is the same for all E. We can see this by calculating n' and n"
using Ligozat [11], Proposition 11.1.3.2.1: the characters of W' and W" only differ in matrices
that are conjugate to (1 1), and the only place that such matrices occur in the formula
given there is in the term a mod p X((1 )), which equals (p + 1)/2 both for x = Xw' and

X = Xw".
As a corollary, this implies that there are no CM-forms in S2 (F1(p)) for p - 1 (mod 4).

For if there were such a form g, it would generate an irreducible representation Rg C
S2(Fw(p)), all of whose elements would be CM-forms; there would then be a form in Rg 0
(Rg o 8_1) that is invariant under PSL2(Fp). But such a form would be a CM-form in

S(2,2) (,-l(p)), so Theorem 6.3 would then imply that the dimension of S(2,2)(r,(p)) for
c a non-square is strictly smaller than the dimension of S(2,2)(F,-1 (p)), contradicting our
calculations above.



Let us now turn to the case where p - 3 (mod 4). The character table of PSL 2(Fp) is
then

(10) (1) (1w) (X O) ( X WY)

01 01 0 1 ( -1 (Y
U 1 1 1 1 1

V p 0 0 1 -1
W p + 1 1 1 a(X) + a(X - 1) 0
Xp p- 1 -1 -1 0 -(P(() + )((P))

X/ p-1 - V-P -1- 0 -(Psq(()'0sq((P))
2 2 2 2

X P-
1  0 -(3sq(C)+3sq( P

2 2 2 2

The notation is as before, but now ,,q is the unique non-trivial character of the elements of
norm one in F 2 whose square is trivial.

This time, all of the characters are real except for the characters of X' and X"; and
all are invariant under composition with 0, except for the characters of X' and X", whose
characters get swapped. So the only contribution to the dimension of S(2 ,2)(F,E(p)) that
depends on E is that that comes from representations isomorphic to X' or X"; if they occur
n' and n" times, respectively, then they contribute 2n'n" to the dimension of S(2,2) e(P))
when E is a square and (n') 2 + (n") 2 when c is a non-square. Thus, S(2 ,2 ) (r_,(p)) is largest
when e is a non-square, and when 6 is a square, the dimension shrinks by (n' - n")2. Since

-1 is not a square, this again agrees with Corollary 5.10.
This time, however, n' - n" is non-zero. We can't calculate it as easy as we calculated

it in the previous case, because the method used there calculates the number of times a
representation occurs plus the number of times that its complex conjugate occurs, and here
the character is no longer totally real. Instead, we refer to Hecke [6], where he proves that
the difference is equal to the class number h(-p) of Q(-p). Thus,

dim S(2,2)(_,-1 (p)) - dim S(2,2 ) (F,1 (p)) = h(-p) 2

As before, this implies that there are exactly h(-p) - (p - 1)/2 CM-forms contained in

S 2 (F1w(p)); they have been constructed by Hecke in [5]. We shall review his construction in
Section 10, and use them to write down the Hecke kernel K I(p) explicitly. We shall also
show how to use the theory outlined in this Section to perform explicit calculations of spaces

S(2,2)(r ,c(p)) for small primes.
To recap:

Theorem 9.5. If p is a prime congruent to 1 mod 4 then there are no CM-forms contained
in S2(r (p)) and the Hecke kernel K, (p) is zero. If p > 3 is congruent to 3 mod 4 then there
are h(-p) - (p - 1)/2 CM-forms contained in S2(1 (p)) and K, (p) has dimension (h(-p))2,
where h(-p) is the class number of Q(V/-p). O

The existence of those representations consisting of CM-forms (or, more precisely, the
fact that there are h(-p) of them) is the only really interesting bit of arithmetic information



in S 2 (F~ (p)), considered as an abstract representation of PSL2 (Fp), for any prime p. (Of

course, there's always lots of arithmetic information contained in the cusp forms themselves,
just not in the space considered solely as a representation.) To see this, note that for any

irreducible representation V of PSL2 (Fp), if we write nv to refer to the multiplicity of V in

S 2(F,(p)), then we can easily calculate nv + nV , where V is the complex conjugate of V,
using Ligozat [11], Proposition 11.1.3.2.1, as mentioned above. The answer turns out to be

a polynomial in p (essentially; the actual polynomial that you get depends on the value of

p (mod 24)). However, V = V unless V equals X' or X". Thus, the only delicate question

here is finding nx, and nx"; or equivalently, to find nx, - nx,,, since nx, + nx,, is easy to
determine.

10 Examples

X, - (7)

The first X,,,(p) to have a non-zero (2, 2)-cusp form is X,-_1(7), as can be seen by looking

at Table 1 in Kani and Schanz [8] (and using Corollary 2.3 above); in fact, we see that

dim S(2 ,2)(F_,-1(7)) = 1. We can explicitly determine a non-zero form in this space as
follows:

Conjugating F,(7) by (7 0), we can consider X,(7) to lie between the curves Xo(49)

and X1(49). The former is an elliptic curve (after choosing a base point); its L-series gives

rise to a weight two cusp form

f(z) = Cmq m

m>O

on Xo(49) and X,(7). (Here, q = e2r vnz - Z if we are thinking of f as a form on Xo(49) and

q = e2 r V - _1z/7 if we are thinking of f as a form on X,(7).) If X is a non-trivial character on
(Z/7Z)* such that x(-1) = 1 then the functions

fx (z) = E cmX(m)q m

m>O

and

fX2 (Z) = E cmX2 (m)qm
m>O

are also modular forms in S 2(r,(7)), by Shimura [14], Proposition 3.64; since the latter
space is three-dimensional, {f, f, fx2} forms a basis for it. For n E (Z/7Z)*, we have

fx19a = X 2 (a)fx and fX21a, = x(a)fX2.

To produce an element of S(2,2 )(F ,-1(7)), we have to find a form contained in S 2(F,(7))0

S 2 (Fw(7)) that is fixed by PSL 2 (F7 ) (acting on the second factor via 0_1). For our form to
be fixed by the matrices (Ua, ca), it has to be of the form

ao -f 0 f + al - fX f a2 fX2 fX.



And for our form to be fixed by the matrix (( 1 ), (1 )), we must have ao = a, = a2.
(We shall carry out this argument more carefully in the proof of Theorem 10.1.) However,
those constraints leave us with only a one-dimensional space of possible cusp forms, and
since S(2 ,2 )( ,-1 (7)) is non-empty, we see that it must be generated by the form

9 1= (f 0 f + fx f X2 2 (9 f2) = C2lCm q M2

mi -m2 (mod 7)

where the ci's are the coefficients of f as above.
Now that we've got our form g in hand, we'd like to relate it to some of our general

theorems about forms in Sk(,F(N)). Note that g has lots of Fourier coefficients that are
zero: not only is cm1,m 2 (g) zero unless ml - m 2 (mod 7), but it's also zero unless the mi's
are squares mod 7. This follows from the fact that the elliptic curve Xo(49) has complex
multiplication by Q(v-'-7). By Proposition 6.1, our form is therefore in K,(7); indeed,
S(2 ,2)(F,1 (7)) is trivial.

X,_, (p) for p - 3 (mod 4)

The above may look like a general recipe for producing forms on X,,,(p) out of forms on
Xo(p 2), but it isn't. To see why, note that the transition involved two steps: matching
up characters, which involved checking invariance under the matrices (a,, ia), and making
sure that certain Fourier coefficients were zero, which involved checking invariance under
the matrices ((1 j), (0 )). Thus, we checked that our putative form is invariant under the
subgroup B(p) of upper-triangular matrices, not all of PSL2 (Fp). The reason why we could
get away with that above was that we knew a lot about S 2 (F (7)) and that the dimension
of S(2,2 )(F ,-1(7)) is 1.

Fortunately, all is not lost for more general p. To see why, we have to look at the equation

S(2,2) W(,( )) = (S2 (w (p)) 0 S2 ()))PSL2(Fp)

more closely. Let pl and p2 be irreducible representations occurring in S2 (Fw(p)), and let Xi
be the character of Pi. Then the representation pi (p2 0 0) occurs in S2 (Fw (p)) S 2 (F (p));
the dimension of the space of elements in it fixed by PSL 2(Fp) is just

(Xl " (X2 O 0), 1PSL 2(F))PSL2(Fp) = (X1, X2 0 9OCPSL 2(Fp).

Since we assumed that the pi's were irreducible, this equals one if X1 = X2 0 0, and zero
otherwise.

Assume that it is in fact the case that X1 = X2 o Of. If pi is also irreducible considered
as a representation of B(p), then we shall also have

(Xi " (X2 o G0), 1B(p)B(p) = (Xl, X2 O )B(p) 1



But this says that there's only a one-dimensional space of vectors in pi 0 P2 that is fixed by
B(p), and since there is also a one-dimensional space of vectors in pl 0 P2 that is fixed by
PSL 2(Fp), they must be the same space. Thus, under the hypothesis that our representation
is irreducible when considered as a representation of B(p), we can test to see whether an
element of Pl 0 P2 is a cusp form on X,,, (p) simply by making sure that it is invariant under

(an, an) and ((1 ),(1)).
To make this concrete, assume that p is congruent to 3 (mod 4) but not equal to 3 and

that E = -1. The character table for PSL2(Fp) is given in Section 9; checking the non-trivial
characters listed there, we see that X' and X" remain irreducible when restricted to B(p).
Thus, if we can produce representations isomorphic to X' or X" in S2 ( (p)), we'll be able
to explicitly write down forms in S(2,2) (F,-1 (p)). We saw that there should be h(-p) such
representations coming from CM-forms; they would be good ones to look for.

Fortunately, those representations are produced in Hecke [5]. They are defined as follows:
let I be an integral ideal in Q( )/--) with norm A and let p be an element of I. We define
a theta series as follows:

OH(z;p,I,V-)= e" r ' 7 z pA,

p_-p(mod I-

where Cj is the complex conjugate of p. We easily verify the following facts: for p, - P2
(mod Ij-),

OH (Z; P1, I, ) = Z; P2, I, /-;

for all p, I, we have

OH(Z;-p, I, V/-P) = -OH(z; p, I, V/-);

and if A is an element of K such that AI is also an integral ideal then

OH(Z; Ap, I, rv ) = AOH(; p, I, 7 /).

Letting VI be the vector space generated by the functions OH(z; p, I, 1VFi) for p E I, the
above shows that VI only depends on the ideal class of I and that it is generated by setting
p = ja where a is a fixed element of I\I/J-p and j is an integer with 1 < j < (p - 1)/2.

By Hecke [5], Satz 8, these OH's are in fact modular functions of weight 2 on F,(p). By
Hecke [5] §4, Formulas I and II, the spaces VI are preserved by the operations z -+ z +1 and
z ~ -1/z; since the matrices (Q ) and (0 -1) generate PSL2(Fp), this implies that VI is a
representation of PSL2(Fp). One checks that the representation is non-zero and that it is in
fact an X' by means of Hecke [5], Satz 7. This gives us our desired h(-p) different copies of
X'.

Now that we have our representations, we follow the same program as in the X_,_1(7)
case:



Theorem 10.1. Let p be a prime congruent to 3 mod 4. For each ideal class of Q(V/-p),
fix an integral ideal I in that class and an element a of I that's not contained in I/- p .
Let

fi= O H(z;a( )a c IIVFi)
aE(Z/pZ)*

have the Fourier expansion

fi(z) = ci ,mqm,
m>O

where q = e2"1r--Tz/p. If I1 and 12 are (not necessarily distinct) ideal classes then the function

fll,I2 (Z1, Z2 ) = CI,ml CI 2 ,m 2 q 1 
2qm

ml-m2(modp)

is an element of S( 2,2 )(F_,-1(p)) contained in K,(p); furthermore, the fix,i 2 's give a basis
for K, (p) as 11 and I2 vary over the ideal classes of Q (- ).

Proof. First, we verify that the forms fI are indeed CM-forms. By definition,

cm (9H(; p, I, j) = > /,

p_-p(mod I---p)
,-fa=mA

where A is the norm of I But [t7 is a square mod p for all p in the ring of integers of

Q(--), as is A, so Cm is zero unless m is a square mod p. Thus, every element of VI
is invariant under twisting by the quadratic character of (Z/pZ)*, hence a CM-form. We
have therefore produced h(-p) different irreducible representations consisting of CM-forms;
Theorem 9.5 shows that those are all such representations.

By the above discussion and the discussion in Section 9, a basis for K,(p) is therefore
given by picking a non-zero element of V, 0 VI2 invariant under PSL 2(Fp) for each pair
(I1, 12). By the irreducibility of these representations under B(p), to check whether or not
a form is invariant under PSL2 (Fp) it's enough to check whether or not it is invariant under
the matrices ad (for (d, p) = 1) and (01 ).

First, pick an ideal class I. By Hecke [5], Satz 7, we have

OH(Z; p, I, V ) Id = OH(z; a()pI,V/--p)

where ad _ 1 (mod p). Therefore, the form fI defined in the statement of the Theorem is
indeed invariant under the matrices ad. If X is a character of (Z/pZ)*, let

fl,X = > X(m)c,mqm.
m>O



This is also in VI:

f,x(z) = X-'(aZ~/A) x2 (a)OH(z; ap )a,I, V .
aE(Z/pZ)*

(The point of that formula is that we can pull out the Fourier coefficients of fI whose indices

are congruent to some fixed element of (Z/pZ)* by taking a suitable linear combination of

the forms fi (1 b); combining the resulting forms appropriately gives us fi,x.) Shimura [14],

Proposition 3.64 implies that fi, ,, = X2 (d) f,x. Thus, fi,x and fi,x, are linearly indepen-

dent unless X2 = (X') 2 ; if we restrict X by assuming that X(-1) = 1 then the forms fi,x are

linearly independent, and hence form a basis for VI. Thus, the elements of V 1, 0 VI2 that

are invariant under the matrices ad are the linear combinations of the forms fil,x 0 fI 2 ,x-

as X varies over the characters of (Z/pZ)*/{+l}.
There is then exactly one linear combination of those forms which is invariant under the

matrix (1 1). Forms invariant under that matrix are characterized by Proposition 2.4: they

have Cm1 ,m 2 = 0 unless mi = m 2 (mod p). Let 0 be a primitive character of (Z/pZ)*/{+l},
and define

p-1

fi, 2  p- 1
j--1

Then

p-1
2 2

j=1

= 21 (m 1) -i(M2) Cm ),ICm2,I2

Sp (m/m2) Cm,ICm 2,12.

But 0 is a character of order (p- 1)/2, so 03j (ml/m2) is zero unless m 1 and m 2 project to

the same element of (Z/pZ)*/{l1}, i.e. unless mi ±- m 2 ; in that case, the sum is (p- 1)/2.

Since -1 is a non-square and since cm,,1, = 0 if mi is a non-square mod p, Cm1 ,I1 Cm 2,I2 is
zero if mi --m2 (mod p), so in fact the sum is zero unless m - m 2 (mod p). Thus,
the fi,,I2 that we have defined here is the same as the one defined in the statement of the

Theorem, and is invariant under the matrices ad and ( 1). It is therefore an element of

S(2,2) 1,1(p)) as desired. O



The next prime level to consider is level 11. Table 1 in Kani and Schanz [8] and Corollary 2.3
show us that

dim S(2,2) ) 3 if - is a square
d2 otherwise.

By Corollary 5.9, to understand the structure of S( 2 ,2 ) (r,,,(11)) as a T( 2,2),E(11)-module, it's
enough to give a basis of eigenforms for S(2 ,2)(F,- 1 (11)) and to say which of those eigenforms
are in K_(11). The latter question is answered by Theorem 10.1; since h(-11) = 1, K,(11)
is one-dimensional, agreeing with our dimension count above. The rest of this section will
be devoted to finding the other two eigenforms contained in S(2 ,2 )(F_,-(11))

The first step is to have a basis of eigenforms for S 2 (w (11)) and to understand the latter
as a PSL 2 (F 11)-representation. Fortunately, Ligozat [11] provides a fairly complete answer
to this question. The space S 2 (rP(11)) is 26-dimensional and decomposes into a sum of
three irreducible representations: an 11-dimensional one (isomorphic to the representation
we called V in Section 9), a 10-dimensional one (isomorphic to Xp where P is a character of
order three), and a 5-dimensional one (isomorphic to X'). The 5-dimensional one is made
up of the CM-forms in S 2 (I7(11)); we have discussed that in the previous example. There
is also one PSL2 (F 1 1)-invariant vector in V (V o0_1) and one in Xp ® (Xp o0_1); our goal
is to determine those vectors, which are the eigenforms that we are looking for.

Let fi(z) = T2 (z/11)r12 (z) and let f 2(z) = r(z/11)r12(z)T(11z). If we let

91(z) = fi(11z)

92(z) = fi(z) - fi(llz)

g3 (z) = -2f 2 (z) - 3T 2 f 2 (z) - 2T 4 f 2 (z) - Tsf 2 (z)

94(z) = 2f 2(z) - T 4 f 2 (z) - Tf 2(z)

95(z) = -2f 2(z) + T4 f 2 (z) - Tsf 2(z)

then the forms gi are all eigenforms with trivial character; if 0 is the quadratic character
of F*1 then g2,, = 93, 94,7 = 95, and vice-versa. (This is in the first part of Ligozat [11];
we have chosen our g2 so that c1 ,1 (g2 ) = 0.) Furthermore, all eigenspaces in S 2(r,(11)) are
one-dimensional except for the one spanned by gi and g2. Thus, if X is a primitive character
of F* then the 11-dimensional representation is spanned by gi and by the g2,x"'S and the
10-dimensional representation is spanned by the g4,x's.

As in the previous example, we can easily determine those forms in V 0 (V o 0_1) that
are invariant under the Borel subgroup B(11) of upper-triangular matrices fairly easily.
Unfortunately, that space is no longer one-dimensional: it's three-dimensional, with a basis



given by the following forms:

hi = gi 0 gi

1 10

h2 j 1 92 ,X3 0 92,X-3
j=1
10

j=1

Thus, we have to find which linear combination of these forms is invariant under PSL2(F 11)
or, equivalently (given that they're invariant under B(11)), invariant under the matrix
(0 -1)

Let h4 be the form that we are looking for, and let h E Sk,_ (ll) be an eigenform such
that h4 = h- 1. By Proposition 4.4, Eh is also an eigenform; but

h4 = cml,m2 ( 1 h)q q 2

ml,m2>0
mi-m 2 (mod11)

In other words, the projection of h4 into S 2( ( (11)) 0 S 2(Iw(11)) is given by taking one of
the eigenforms in the latter space and stripping away the Fourier coefficients whose indices
aren't congruent mod 11. However, no linear combination of h2 and h3 arises from an
eigenform in that manner other than h2 and h3 themselves. Thus, either h4 = c- hi + h2 or
h4= c. h1 + h3 for some constant c. (We have to allow an arbitrary multiple of h, because
hi is zero as an element of S2 (F(11)) 0 S 2(Fw(11)).) We shall therefore test such forms to
see whether they are invariant under (o 1 ).

The basic fact that we shall use is the transformation law for 7r under that matrix: for
all z E i,

Yr(-1/z)= (-iz)1/2?(z),

where we take the branch of the square root that is positive on positive real numbers.
(This is Apostol [1], Theorem 3.1.) Using this, we see that f I(o -1i)(z) = -11fi(llz) and

1 0/

that f2 ( -1 (z) = -f2(z). Since the action of (1o ') and the action of Hecke operators

commute by Proposition 7.3, this shows that (0 -1) sends gi to -g1 - -g2, it sends g2

to -- 21gi + 1g2, and it sends g3, g4 , and g5 to their negatives.

Unfortunately, it's not so easy to see what (0 -1) does to twists of the gi's. The sav-

ing grace is that it sends eigenforms to eigenforms and that a ( o 1 ) _ ( 1 )a 1 , s o it

sends eigenforms with character Xk to eigenforms with characters X- k. Thus, if we diago-

nalize S 2 (F(11)) 0 S 2 (Fr(11)) with respect to the action of the matrices aa 0 1a, then it's

sufficient to show that there's only one choice for h whose trivial component (under that

diagonalization) is preserved by the action of (o - ).



Assume first that h4 = c - hi + h3 . Then the trivial component of h 4 is c - gl 0 g9 +
(1/10)(g2 g93 g93 g92), which transforms under (o 1) to

c 1 1
12(91 + 92) D (91 + 92) + (120g, - g2) 0 93 + 93 0 (120g, - g2).121 1210 1210

This includes terms of the form gi 0 g3 and g3 0 g9, which didn't occur in the original trivial
component, so it's impossible for that to be fixed by the action of (0 1).

Now assume that h4 = C . hi + h2.The trivial component is now c g 91 gi + (1/10)(g2 0
g2 + 93 0 93); this transforms to

c 1 1
12(91 + 92) 0 (gl + 92) + (120g, - g2) 0 (120g - g2) + -93 0 93121 1210 10

c 1440 c 12 c 12 c 1 1
( + )91091+( )91 92 + - )92 91 +(- )92092 + 93093-121 121 g 12121 1 121 12 1  121 1210 10

This is our original trivial component iff c = 12; thus, the normalized eigenform arising from
the 11-dimensional representation is

10
h4 = 12gl 0 gl + 1-0 i, 92,-

j=1

We now turn to finding the normalized eigenform h5 that arises from the 10-dimensional
representation. If we take invariants under B(11), we find a two-dimensional subspace, and
we see as above that h5 is one of the following forms:

10

h6 = g4,x3 9 g4,chi-3
j=1

10

h7 = 1 g4,x3 94,chi5- "

j=1

Unfortunately, we can't eliminate either of the forms by looking at the trivial component of
the representation (under its diagonalization with respect to the matrices Ca 0 aa,), since
those components turn out to be invariant under the action of (o ol). Thus, we look at the

X2  X-2-component instead. The form g4,x (o -1 ) must be an eigenform with character x,
(1 0

so it is either a multiple of g4,x-1 or a multiple of g4,X-6. Calculations using
that it equals c g4,x-1 for some constant c. Similarly, g4X61 (0 -1) '

constant c' - c.3

GP/PARI show

94,x-6 for some

3While these numerical calculations are only approximate, and thus they give us only an approximate
value for c and c', the approximations are good enough to make it clear that g4,x[(o -1) is a multiple of

g4,x-1 rather than of g4,x-6 and that c : c'. It presumably wouldn't be at all difficult to prove those facts
rigorously using appropriate error estimates.



The X- 2 0 X2-component of h6 is

10 (4,X-1 ® g4,X g4, - 6 0 g4,x6)

This gets sent under (0 01) to

11 1 1
10 '19x ( cg4,X -1 + g4 X6 0 Cg 4 6) = 10 94,X 94,X-1 4, 6 0 g4, -6).

But this is the X2 0 X-2-component of h6. The X- 2 0 X2-component of h 7 is

110(g4,-1 0 4,x 6 + g4,x - 6 g4,X)*

This gets sent under (o 0i) to

1 1 1 1 c' co 4,X 0 c'94,X 1 4 ,X- + 1
46 0 c94,X-1) = c 4,x 0 94,x-1 + g4,X6 0 g4,x-6).

Since c : c', this is not equal to the X2 0 X-2-component of h7. Thus, the normalized
eigenform h5 that we are looking for is h6.

Finally, we note that h4 is an eigenform for T1 1,11,1 with eigenvalue 12: since T1 1,11,1
commutes with the action of operators in T*-(11) by Proposition 7.3, T11,1, 1h4 must be a
T*(11)-eigenform with the same eigenvalues as h4 , hence a multiple of h4 . Proposition 8.5
shows that its leading coefficient must be c11,11(h 4) = 12; since h4 is normalized, it is
therefore an eigenform for T11,11,1 with eigenvalue 12. The fact that cii,11(h 5) = 0 similarly
shows that T11,11l,h 5 = 0; we also see that Tp,p,lf1 1 ,I2 = 0 for the forms fi,,I2 constructed in
Theorem 10.1.
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