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ABSRACT

Let G be a classical group of type I. For an irreducible unitary representation, Howe defined
the notion of rank in analytic terms. On the algebraic side, there is the theory of primitive
ideals and associated variety. In the first part of this thesis, we relate Howe’s rank with the
associated variety.

In the second part, We study the Bargmann-Segal model of the oscillator representation. Based
on this model, we construct an analytic compactification of the symplectic group. We also
construct an analytic compactification of the orthogonal group. All the compactifications are
compact symmetric spaces.

In the third part, we define semistable range in the dual pair correspondence, and give an
explicit construction of the dual pair correspondence in the semistable range. Finally, we
prove the nonvanishing theorems of the dual pair correspondence in the semistable range for
(Op,q> Sp2n(R)). Our proof is based on some density theorems on some compact symmetric
spaces.
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The LORD is my shepherd; I shall not want.
He maketh me to lie down in green pastures:
he leadeth me beside the still waters.
He restoreth my soul:
he leadeth me in the paths of righteousness for his name’s sake.
Yea, though I walk through the valley of the shadow of death, I will fear no evil:
for thou art with me; thy rod and thy staff they comfort me.
Thou preparest a table before me in the presence of mine enemies:
thou anointest my head with oil; my cup runneth over.
Surely goodness and mercy shall follow me all the days of my life:
and I will dwell in the house of the LORD for ever.

—Psalm 23

For with much wisdom comes much sorrow;
the more knowledge, the more grief.

——Ecclesiastes 1:18

But Jesus called the children to him and said,
“Let the little children come to me,
for the kingdom of God belongs to such as these.
I tell you the truth,
anyone who will not receive the kingdom of God like a little child will never enter it.”

—Luke 18:16-17
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1 Introduction

Let G be a connected semisimple noncompact group. Let G be the unitary dual of G, and Gad
be the admissible dual of G. Langlands gave a nice classification of G4 for linear semisimple
groups. Currently, there are two important unsolved problems in the representation theory of
G. One is to classify all the irreducible unitary representations. Another is to construct these
representations. There are two major techniques to construct an admissible representation,
namely, parabolic induction and cohomological induction [Vogan0]. In a lot of cases, unitarity
can be determined once the construction is under way. However, there is one class of myste-
rious representations, the so called unipotent representations that can not be constructed in
either approach. Originally, this thesis was aimed at a better understanding of the unipotent
representations. One available tool to study the unipotent representation is the dual pair cor-
respondence of Howe. In this thesis, we study Howe’s rank and dual pair correspondence in
hoping that these studies could lead to a better understanding of unitary representations in
general and unipotent representations in particular.

1.1 Dual Pair Correspondence and Lower Rank Representations

The oscillator Representation (also called symplectic spinor, metaplectic representation) is prob-
ably the most intensively studied unipotent representation. It was studied by Bargmann, Segal,
Shale and Weil in the sixties. The oscillator representation is a unitary representation of the
metaplectic group, the double covering of the symplectic group Sp. Two major models of the os-
cillator representation were built along the way, namely the Schrédinger model and Bargmann-
Fock-Segal model. We denote such a representation by w. We always have w(e) = —1, where
{1,€} is the preimage of the identity under the metaplectic covering. In this thesis, if G is a
subgroup of Sp, we will use G to denote the preimage of G under the metaplectic covering.

Following the work of Siegel, Weil reformulated the theory of theta-series in order to study
automorphic forms. Roughly speaking, a pair of reductive subgroups (G1,G2) of Sp(V,Q) is
said to be a reductive dual pair if each of G; and Gy is the centralizer/(_)fihe other. Let (w,P)
be the Harish-Chandra module of the oscillator representation of Sp(V,). Let R(G,w) be
the space of irreducible admissible representations of G which occur as quotient of w (in a
proper category). Howe proved that, for classical real groups, ’R(C/v’_lz’/g, w) yields an one-to-one
correspondence between 72(671, w) and R(G3,w). This is often called Howe’s correspondence or
the dual pair correspondence [Howel]. We denote it by w. Howe proved that for 7 € R(G1,w),
w(m) can be regarded as a unique quotient of a natural module wo(7).

The first success of using the dual pair correspondence to construct unipotent represen-
tations came about in J-S Li’s thesis. Li constructed a class of interesting singular unitary
representations often called lower rank representations in the sense of Howe. Roughly speaking,
we say (71 is in the stable range of G if the rank of g,¢ is less or equal to thg real rank of

Gy. Let G be the preimage of G under the metaplectic covering of Sp, and G(e) be those
unitary representations satisfying 7(e) = —1. Li proved that for type I dual pairs the dual pair

correspondence yields a one to one correspondence between the unitary dual a(e) and the
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lower rank unitary representations of Ga(€) up to a central character [Lil] [Li2]. By utilizing
the nice geometry of the stable range dual pairs, Li succeeded in constructing Howe’s quotient
using Mackey’s theory and proved the unitarity using the mixed model of the oscillator rep-
resentation. Of course, for nonstable range dual pairs, Mackey’s theory and the mixed model
would not work.

1.2 Invariants Associated with a Representation

Generally speaking, classification problems are approached by constructing invariants. In rep-
resentation theory, some of the natural objects to study are the invariants associated with an
equivalence class of irreducible representations. Of course, one hopes that these studies could
shed some lights on the classification and construction of unitary representations. The first
and foremost important invariant is the infinitesimal character, studied by Harish-Chandra and
others. Then along this line, Langlands studied the growth condition on the matrix coeffi-
cients of an irreducible representation and gave a classification of all the irreducible admissible
representations. However, the problem of constructing irreducible representations is still not
completely understood.

To unveil the algebraic structure of an irreducible representation, Vogan studied the Gelfand-
Kirillov dimension for Harish-Chandra modules. Along this line, one can build a few geometric
invariants, for example, associated variety, asymptotic cycle and wave front set. Of course all
these invariants are tied up with the orbit method developed by Kirillov, Kostant and Vogan
which we will not discuss here. It suffices to say that associated variety is the right object to
study in order to understand the unipotent representations.

Roughly speaking, for every irreducible admissible representation m, there is a Harish-
Chandra module V;; associated with it. This module is irreducible as a U(g) module. Associated
with V is the annihilator Ann(V;). Since U(g) has a natural filtration, Ann(V;) inherits a fil-
tration from U(g). The associated variety V(Ann(V;)) can be defined as the associated variety
of gr(Ann(Vy)) in g¢. For a reductive Lie algebra gc, It is well-known that for 7 irreducible,
V(Ann(V;)) is a closure of a single nilpotent orbit in g¢. Since gf can be identified with g¢
through an invariant bilinear form on gc, sometimes we will regard V(Ann(V;)) as a subvariety
of gc. We use R(O) to denote the set of irreducible representation 7 such that V(Ann(V;)) is
equal to O.

Thus it is now an interesting problem to see what are the possible associated varieties for
lower rank representations constructed by J-S Li. It is even more interesting to see if dual pair
correspondence can produce all the unipotent representations.

1.3 Associated Variety and Howe’s Rank

The notion of rank of a unitary representation was introduced by Howe for G = Sps,(R). Let
N be the (Abelian) nilradical of the maximal parabolic subgroup P corresponding to the roots
{e1 —e3,... ,en_1 — en}. In this case, N can be regarded as the space of symmetric bilinear
forms. For a unitary representation m of G, we consider its restriction on N. According to
Stone’s theorem, 7|y is uniquely determined by a spectral measure py (7). Howe defined the
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notion of N-rank of 7 to be the highest rank of the support of py(7) regarded as symmetric
bilinear forms. Later, Jian-Shu Li extended the ZNj-rank to all the type I classical groups
(see Definition 2.1). For type II classical groups, namely, GL(n, D) (D = R, C, H), the unitary
dual is more or less well-understood (see [Vogan]). In this thesis, We will only consider type I
classical groups. We prove the following theorem relating Z Ni-rank with associated variety.

Theorem 1.1 Let (w,H) be an irreducible unitary representation of a type I classical group
G. Then

1. for G = Span(R),U(p,q), ZNy-rank of (v, H) equals min(k,rank(V(Annyg)(7))));

2. for G = Opgq, ZNi-rank of (m,H) equals min(k,rank(V(Annyg)(7)))) if k is even,
min(k — 1, rank(V(Annyg)(7)))) if k is odd;

3. for G = O*(2n), Sp(p,q), ZNg-rank of (v, H) equals min(k, %rank(V(AnnU(g) (™N));
4. for G = Sp(n,C), ZNy-rank of (m,H) equals min(k, rank(V(Anny ) (r))));

5. for G = O(n,C), ZNg-rank of (m,H) equals min(k, %rank(V(AnnU(g)(ﬂ')))) when k is
even, and min(k — 1, irank(V(Annyg)(r)))) when k is odd.

Since g 1s a classical Lie algebra, its complezification gc can be regarded as a matriz Lie algebra.
rank(V(Anny g)(r))) here is defined to be the mazimal rank of the elements in V(Anny g (r)).

Now for G = Sp2,(R), we know that the set of complex nilpotent orbits is in one to one
correspondence with the partitions of 2n

k
A>de. =2 XN>0, Y N=2n
1

such that odd parts occur with even multiplicities. We call such a partition a symplectic
partition, we denote the nilpotent orbit corresponding to such partition by Oy. Very briefly,
the lower rank representations are the unipotent representations attached to those nilpotent
orbits Oy with k& > n.

Also one can easily observe that if we write a sympletic partition as (the rows of) a Young
diagram. By deleting the first column, we obtain a (smaller) orthogonal partition. Here an
orthogonal partition is a partition where even parts occur with odd multiplicities. Conversely, by
deleting the first column of an orthogonal partition, we obtain a (smaller) symplectic partition.
One remarkable phenomenon proved by Przebinda is that dual pair correspondence in the
stable range actually descends to a correspondence between the nilpotent orbits of sympletic
groups and nilpotent orbits of orthogonal groups (see [Przebindal). Explicitly, for the dual
pair (Op g, Spon(R)) with n > p + g, the orbit correspondence takes an arbitrary orthogonal
partition of p+ g to a symplectic partition of 2n by adding a first column of size 2n—p—¢ > n.
Therefore even if we assume a complete description of O, 4, we can only hope to construct those
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irreducible unitary representations attached to the nilpotent orbits Oy with k > n. Thus it is
necessary for us to study the dual pair correspondence in non-stable range. If the dual pair
correspondence was well-understood in the non-stable range, one may hope to build a zig-zag
construction model for each unipotent representation via dual pair correspondence.

1.4 Dual Pair Correspondence in the Semistable Range

For a nonstable range dual pair, not much is known about Howe’s correspondence. For instance,
we do not know much about R(G,w), we do not know how to construct w(n) from 7, and we
do not know whether unitarity is preserved. The main theme in my thesis is to search for those
irreducible representations occuring in R(G,w) and to finish the construction of w(r) for 7 in
a certain range. B

Let (G,G") C Sp(V,Q) be a reductive dual pair. Let 7 € R(G,w). Following J-S Li, we
define formally the averaging operator

ﬁé PRV, — Homg’k('P,Vw)

by
Lo ®0)(@) = [[(poldi)rahds (WP PEPE)

We observe that the image of the averaging operator is in fact a (g’, K')-module. The first
problem settled in this thesis is when L5(P° ® V) is well-defined. Roughly speaking, we say
that 7 is in the semistable range of (G, G") if L is well-defined and m(e) = —1. In this thesis,
we give a precise description of the semistable range for (Span,Op4) in terms of the growth

condition on the matrix coefficients. Then the Langlands parameters in the semistable range
can be read off from the growth condition. We will prove that

Theorem 1.2 (Construction) Suppose that 7 is in the semistable range of G. If L does

not vanish, then ™ € R(@, w). The converse is also true. Furthermore, the image of L
1s irreducible and isomorphic to the dual representation of w(w) (in the category of Harish-
Chandra modules).

From this theorem, our construction of w(w) will be complete if we can prove nonvanishing of
L for a particular 7. In this thesis, we will prove

Theorem 1.3 Suppose p+q < 2n+ 1. Let m be an irreducible admissible representation of
5;;1 such that each of its leading exponents v satisfies that Re(v) +2p — (n,... ,n) is a strictly
negative combination of simple roots. Here 2p is the sum of restricted roots (with multiplicity).
Suppose ©w(e) = —1. Then 7 is in the semistable range. In addition, either m € R((,);,:],w) or
TRX € R(é;:],w), and the dual Harish-Chandra module of w(m) or w(w®x) can be constructed
using the averaging operator. Here x is a one-dimensional character of (/);1.

14



The case of averaging over Spo,(R) to obtain representations of 6,:, is a little subtle. Roughly
speaking, one can no longer expect that the dual pair correspondence in the semistable range
be an injection for an individual dual pair (Sp2n(R),Opq). One easy counterexample is when

Op,q is compact. However, we can consider the disjoint union of R(Oypq,wp,q) where p+q=m
is fixed. In this thesis, we will prove

Theorem 1.4 Suppose p+ q > 2n. Let m be an irreducible admissible representation of %
such that w(e) = —1. Suppose that each of its leading ezponents v satisfies that Re (v) + 2p —
(‘%‘1, et ,*’%‘1) is a strictly negative combination of simple roots. Then 7 is in the semistable
range. Let wyq be the underlying oscillator representation for (Span,Opgq). Then there exists

p+¢ = p+gq, such that 71 € R(Span,wp q). Hence, the dual Harish-Chandra module of
wyr g (m) can be constructed using the averaging operator.

Certainly, these two theorems can help us to get our hands on the dual pair correspondence in
the semistable range. Also semistable range seems to be the right range to study for unipotent
representation. However, our investigation is far from complete.

1.5 Compactification of SO, , and Sp;,(R) and Some Density Theorems
Let X be an analytic manifold. We say that (i, X) is an analytic compactification of X if there

exist a compact ananlytic manifold X and an analytic embedding
i: X=X
such that 4(X) is dense in X. In this thesis (Chapter 6), we prove that
Theorem 1.5 (Compactification of Spa,(R)) There ezists an analytic embedding:
H : Span(R) — U(2n)/Om(R)

The image is open dense in U(2n)/O(R). If f is a K-finite matriz coefficient of an irre-
ducible unitary representation of Span(R), then f can be extended into a continuous function
on U(2n)/O2,(R).

Theorem 1.6 (Compactification of O, 4) There ezists an analytic compactification (H1, Opyq)
of Opq.

This theorem is proved as Theorem 10.3. We shall remark here that the compactification we
defined here is different from the construction of T.Oshima [Oshima).

One of the main ideas in proving the nonvanishing theorems is to relate Howe’s dual pair
correspondence to the harmonic analysis of compact symmetric spaces. Roughly speaking, the
integration kernel of G in the Bargmann-Segal model yields a compactification from the group
G to a compact symmetric space. Thus many questions about dual pair correspondence can
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be converted into questions about this compactification and questions about functions on the
compact symmetric space.
For example, for every X,Y € Mat(p + q,n,C), we define a function on the compact group
SOp+q by
FX,Y(g) = Tr(thY), (g€ Sop+q)

Let R, be the linear span of the functions
{Fiy | X,Y € Mat(p+q,n,0),i € N}

The nonvanishing of Lz for G = SO, , is closely related to the density of R, in L*-functions
of SOp4q. In this thesis, we prove that

Theorem 1.7 (Density theorem for SO,.,) Let Oso,,, be the space of regular functions
on SOpyq. If n > ﬁg——l, then R, = Oso

pta”
Notice that U(2n)/O2, can be identified with
Son = {UU' | U € U(2n)}
For X € Mat(2n,p,C), we define an algebraic function on S by
Fx(s) = Tr(X'sX) (s € San)
Let R, be the linear span of
{F% | X € Mat(2n,p),i € N}

and R, be its conjugation. Let R, ® R, be the space of functions on Sy, spanned by the product
of functions in Ry and R,;. The nonvanishing of Lz for G = Spa,(R) and G’ = O, 4 is closely
related to the density of R, ® R, in the space of L®-functions on S,. In this thesis, we prove

Theorem 1.8 (Density Theorem for S,,) Ifl > n, then @éZORL- ® R;—; is equal to Og,,.
In fact we develop a model for the ring of regular functions on S,,.

Theorem 1.9 The ring of regular functions on Sy, is spanned by the functions of the following
form:

Tr(XisX1)" ... Tr(XgsXe)*Tr(X} s Xpp1)*+1 .. . Tr(XisX,)n  (ij €Z,s€ §,X; € CY)

To summarize, the dual pair correspondence is defined algebraically. We study the dual pair cor-
respondence using the analytic tool L. Then we use compactification to convert the questions
about Lz to some purely algebraic questions about the density of some function space.

The following is what is covered in this thesis. In Chapter 2, we present the structure theory
of parabolic subgroups for a type I classical group. In Chapter 3, we investigate the relationship
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between the associated variety of M and the H-associated variety of M where M is a U(g)
module. In Chapter 4, we study the Lie algebra action under the framework of direct integral
for Abelian Lie groups. We show that for a unitary representation of a connected Abelian Lie
group G, the associated variety is the algebraic closure of the support of its spectral measure.
In Chapter 5, we compute the Z Ng-rank using associated varieties. In Chapter 6, we review the
Bargmann-Segal model and construct the analytic compactification of Spa,(R). In Chapter 7,
we review the dual pair correspondence of Howe. In Chapter 8, we study the growth condition of
the matrix coeflicients of the oscillator representation. We also investigate the growth condition
for the convergence of L. In Chapter 9, we study the algebraic properties of the averaging
operator L and prove the construction theorem. In Chapter 10, we study the compactification
of Op 4 and prove the density theorem for SOp, 4, thus the nonvanishing of E?o:’q' In Chapter

11, we we prove the density theorem for U(n)/O, and investigate the nonvanishiflg of L SR’
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2 Structure Theory on Classical Groups of Type I

In this section, we summarize some results about the structure of parabolic subgroups of a
classical group of type L.

2.1 Type I classical Groups
Definition 2.1 A type I classical group G(V') consists of the following data.

o A division algebra D of a field F with involution §, and a*b* = (ba)!;

o A (right) vector space V over D, with a nondegenerate (D-valued) sesquilinear form (,).,
e ==+1, z.e.,
(u,v) = E(U,’u,)ﬁ (u,'v € V)

(uX,v) = (u,v)A (u,v € V, A € D);
e G is the isometry group of (,), i.e.,
g-(uA) = (g-u)A (N DyueV,geq)
(u, gv) = (u,v) (u,v € V).

Here we allow f§ to be trivial. We call the identity component of G connected classical group
of type I. For F = C, { trivial, we obtain all the complex simple groups of type I, namely,
Spon(C), and O(n,C). If D = H, F = R, f§ the usual involution, we obtain Sp(p, ¢) and O*(2n)
depending on the sesquilinear form. For F = R, D = C and § the usual conjugation, we obtain
U(p,q) depending on the signature of the Hermitian form. For F = R, D = R with trivial
involution, we obtain Sps,(R) and O, 4(R). If (V,(,)) is implicitly understood, we write G or
G(n) if V = D". Let V; be a linear subspace of V, we write V' for the orthogonal complement
of Vp in V. If (,) is nondegenerate on Vy, we let G(Vp) denote the subgroup of G consisting of
elements which acts by identity on Vj-. from our scope.

2.2 Flags and Parabolic Subgroups

Definition 2.2 A flag F of V = D™ is a sequence of strictly increasing (D-)linear subspaces
of V
0=VHGWGnhs..GWsGV

such that
Vit = Vi

Suppose dim(V;) = d;. F is said to be a flag of type

I=0<di<dy<...<dr<n) (di € N).
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We denote the space of flags of type Z by Bz. We fix once for all a maximal set of linearly
independent vectors
{e1,€2,...,€r,€],€5,...,€r} (ei,e; € V)

such that
(ei,ej) =0 = (e’{,e;), (ei,e;) = (5ij
where r is the real rank of G. For each integer 1 < ¢ < r, we let X; be the linear span of
{e1,-.. ,ei}, and X} be the linear span of {e],... ,ef}. We set W; = X; & X;. We define a
map 7 € G as follows
T(e;) = €}, T(e}) = ee; (i € [1,r]),

Let p={0<1<2<...<r<n—-r<n-r+1<...<n—-1<n}. Wefixaflag
Fo={0SX:1C..C X, CXS...C X SV}

For an arbitrary A = (A1,... ;) € (RY)", we define a linear isomorphism A(A) € GLp(V) as
follows,
A()\)e, = )\iei; A(A)ef = )\1:_16: (2 € [1,’!‘])

ANu=u (u € W).

It is easy to check that A()\) € G(V). Let A be the group consisting of all A(X). Then A is a
maximal connected split Abelian subgroup of G(V).
For h = (h1,... ,h;) € R", we may also define a(h) € Endp(V') such that

a(h)e; = hie;, a(h)el = —h;e] (te(1,r])

a(h)u = u (u € Wih).

It is easy to see that the Lie algebra a of A consists of all a(h). Let A(g,a) be the restricted
root system. For a € A(g,a), let g, be the root space. Then we have

T(ga) = 9-o  (a € A(g,0)).

Theorem 2.1 The isotropy group Py = Gx, is a minimal parabolic subgroup of G. Its Leuvi
factor is

MA=FnN T(Po)
={geGV)|g.Xi=Xi, 9.X; =X}, gW} =W} (2.1)
={g € G(V)| g.(e:D) = &;D, g.(e}D) = e}D, g.W;* = W;'}
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Similarly, we can define a flag F7 of type

I={0<i<ig...<ix<n}

by
_k+1
V; = X;, (JST)
_k+1
V=X, (G>2=)

Of course, we assume that for every j € [1,k], i; + ix41—; = n.

Theorem 2.2 Pr = Gx, are all the parabolic subgroups containing Py. If G # O;1,0(2,C)
(in these two cases, no proper parabolic subgroup exists), the mazimal parabolic subgroups cor-
respond to Z = {0 <k <n—k <n}.

Proof: We will only sketch a proof here. Obviously Pr O FP,. Now we observe that for
G # 01,1,0(2,C), Pz and Pp are different if Z # Z'. The cardinality of all the Z’s is 2". But
the cardinality of parabolic groups containing Py is also 2". Thus Pz exhaust all the parabolic
subgroups containing P.

Observe that Pr O Pr if and only if Z’ is a refinement of Z. Therefore the maximal parabolic
subgroups correspond to Z = {0 < k <n—k <n}. QE.D.

2.3 Maximal Parabolic Subgroups and Grading
We denote the maximal parabolic subgroup Pjo<k<n—k<n} by Pr-
Theorem 2.3 The Levi factor M7z Az can be given by
Prnt(Pr)={g€G(V) | 9.Xi, = X;;9.X] = X;'}
For P, mazimal parabolic, let My Ay Ny be the Langlands decomposition. Then Ay is 1-dimensional.
A ={an,t €R | a(t)lx, = talt)lxy =t Ha®)lwe =1}
MyAx ={g € G(V) | 9.Xx = Xi; 9Xj = X} = GLp(k) x G(Wit)

Now we fix an hy € ag, such that hy is identity on X, and —1 on X}, and zero on Wkl
Then V' can be decomposed into eigenspaces of hy

Va=X; Vi=Xp Vo=Wi
Thus g can be decomposed into eigenspaces of hj, as follows.

9=9 209109001 D go
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where
go={zecg|zXy C Xp;2.X} C X};2.Wit C Wit}

gr={ze€g|zXy=0;zWi C Xp;2.X} C Wi}
g2 ={zr €g|zXy=0;z.Wi =0;z.X; C Xy}
g-i=71(g) (1=1,2)

Moreover
go=mx Doy g1 D g2 =1

Notation: Since our argument is valid for every k, g; will denote the i-eigenspace of ad(hy)
for a fixed (implicit) .
Notice that

T E gy = l'le@WéL =0; (z.u,v) + (u,z.v) =0 (V u,v € Xj)

If we define a sesquilinear form on X to be
B (u,v) = (z.u,v) (u,v € Xj)

then
By (u,v) = —eBg(v,u)?

Therefore gy can be identified with a space of sesquilinear forms (,)_ on X}. Similarly, g5 can
be identified with a space of sesquilinear forms (,)_. on Xj.
Now for every z € g1, we define C; € HomD(Wkl,Xk) to be the restriction of z on WkJ-

Since
(z.u,v) + (u,z.v) =0 (u € Wit,v € X})

Then for each v € X}, x.v can be uniquely determined by
(u, z.v) = —(z.u,v) = —(Czu,v) (u € W) (2.2)

because that (,) restricted to W is nondegenerate. Conversely, for each C; € Hom p(Wit, Xy),
we may define an z € Homp(V, V') such that

.’E.Xk = 0, a:lWEL ES Cz
and Equation 2.2 holds. To summarize, we have shown that
C: g1 = Homp(Wi, X3)

is an isomorphism.
Similarly, for each = € g;, we may define D, € Homp (X}, W,CJ-) to be the restriction of z

on X;. We also have
D : g1 = Homp (X}, Wi")
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Theorem 2.4 Let C be the restriction of g1 on W,;L Let D be the restriction of g1 on X}.
Then C : g1 — Homp(Wit, Xx) and D : g1 & Homp(X}, Wit) are bijections. Moreover

[z,y] = CzDy — CyDy (z,y € g1)

Theorem 2.5 Let Gy be the Levi factor of the mazimal parabolic subgroup Py as defined in
Theorem 2.3. Then g; is an irreducible Go-module. Suppose go # {0}. Then go is the center

of g1 ® go-

Proof: Recall that go = Endp(X}) ® g(W,cl) The adjoint action of Gy on g, can be identified

with the action of GLp(X}) x G(Wi') on Homp(X},W). But X} as an GLp(X})-module

is irreducible, and W;- as a G(W;")-module is also irreducible. Thus Hom p(X}, W) is an

irreducible GLp(X}) x G(Wit)-module. In other words, g; is an irreducible Go-module.
Since g is a Lie algebra, we have

(81, 92] = g3 = {0}, (92, 92] = g4 = {0}

Thus g5 is in the center of g; ® g2. Observe that Z(g: @ g2) N g1 is a BGp-module. Thus either
Z(g1 ®g2)Ng1 = g1, i.e., g1 Abelian, or Z(g1 & g2) Ng1 = {0}. Suppose that g; is Abelian. Let
o be the simple restricted root such that g_, is not contained in gg. Then g, C g1 @ g2. From
root decomposition, either g, C g1 or go C g2. If g, lies in g;, and g; Abelian, then go = {0}.
This is a contradiction. Otherwise g, lies in go. This implies that g; = {0}. In both cases, we
have

Z(g1 ©® g2) Ng1 = {0}

Thus
Z(g1 @ g2) = 92

Q.E.D.

Theorem 2.6 Py acts on g5 with finitely many orbits. The orbits are uniquely determined by
the rank and the signature of the corresponding sesquilinear form.

Proof: It is well-known that a Hermitian or (skew-Hermitian) sesquilinear form on D* can be
determined by its signature and rank up to the action of GLp(k). But GLp(k) C My A, and
G(W}) acts trivially on X, k» X, thus trivially on g5. In addition, from weight decomposition,
ng has to act trivially on g5. Thus N, acts trivially on g5. Therefore Py acts through GLp(k)
on gz, and the orbits are determined by their rank and their signature of the corresponding
sesquilinear forms. Q.E.D.

We define the rank of any subset S of g4 to be the maximal rank of the elements of S
regarded as sesquilinear form.
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3 Associated Variety under Restriction

A filtered (noncommutative) algebra D over C is an algebra endowed with a filtration {D;}:cz
such that
D;-D; CDiy; (4,7€Z)

Let gr(D) = @D;+1/D; be the associated graded algebra. Let o; : D; = D;/D;_1 be the natural
projection. Throughout this paper, our filtered algebra will be assumed to have the following

property:
1. Dy = C1, where 1 is the identity element;
2. D_; = {0}
3. gr(D) is a commutative affine algebra.

Notice that gr(D) being commutative is equivalent to

[D;, Dj] € Diyj

3.1 Associated Variety and Restrictions

Definition 3.1 Let spec(D) be the mazimal spectrum of gr(D). Suppose that I is a (left)
ideal of D. Then I inherits a filtration from D, i.e.,

,=D;,NnT (ieN)

Let gr(Z) be the graded algebra of Z. Then gr(ZI) is an ideal of gr(D). Let V(ZI) be the set of
mazimal ideals in gr(D) containing gr(Z). V(Z) is called the associated variety of T.

Now suppose that C is a subalgebra of D with identity. C inherits a filtration from D. Thus
we have an injection:
j:gr(C) = gr(D)
Suppose that gr(C) is an affine, (automatically) commutative algebra. Then the associated map

on the spaces of spectrum is
3* : spec(D) — spec(C)

Theorem 3.1 Let M be a D-module, N a linear subspace of M. Let C be a subalgebra of D.
Let Annp(N) be the annihilator of N. Then Annp(N) is a left ideal of D and

7*V(Annp(N)) C V(Annc(N))

Proof: Let I = gr(Annc(N)), and J = gr(Annp(N)). Suppose f € I is homogeneous of degree
k. Then there exists U € Ann¢(N) C Annp(N), such that

or(U) = f
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This implies that
i(f)ed
Therefore j(I) C J. Let L be the ideal generated by j(I) in gr(D). It follows immediately that

V(L) 2 V(J)
By inspection of the definitions, this amounts to
@) VD) 2 V()

This is equivalent to
v(I) 2575 (V(J))

Q.E.D.

3.2 Associated Variety of U(g)-modules

Now let D = U(g) be the universal enveloping algebra of g with complex coefficients. Since
U(g) has a natural filtration

C-1CUi(g) Clz(g) S...Cli(g) C ...
the associated graded algebra gr(U(g)) can be identified with the symmetric algebra S(g). Thus
spec(U(g)) = g¢

Here gz is the complex dual of g. Let h be a subalgebra of g. Then j* is simply the projection
of g¢ onto bg. (through restriction). Under this setting, we have

Theorem 3.2 Let M be a g-module. Let N be a linear subspace of M. Then
7 (V(Annyg)(N))) € V(Anny ) (N))
Now we are interested in the following equation.
c(j* (V(Annyg)(N)))) = V(Anny ) (N))

At this stage, we only have a very limited understanding about the behavior of j* for associated
varieties. Nevertheless, we have the following theorem.

Theorem 3.3 Suppose a is a semisimple element in an arbitrary Lie algebra g with only real
eigenvalues, i.e., ad(a) possesses an eigenspace decomposition:

=97 ®D...0gr

Let r be the mazimal eigenvalue. Suppose r > 0. Let h = g,. Then b is Abelian. Let M be a
g-module, and N a subspace of M such that a.N C N. Then

V(Anny ) (N)) = (" (V(Annyg)(N))))
where cl(5*(V(Annyg)(N)))) is the algebraic closure of j*(V(Annyg) (N))).
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Proof: First of all, under the eigendecomposition of ad(a), we have
(or, 9r] = g2r = {0}
Therefore h = g, is Abelian. Now it suffices to show that
V(Anny)(N)) € (5" (V(Annyg)(N))))

Suppose that f € S*(h) vanishes on cl(j*(V(Annyg)(N))))- In other words, j(f) = f vanishes
on V(Annyg)(N)). Thus there exists n € N, such that f* € gr(Annyg)(N)). Therefore,

IPeUyu(g)N AnnU(g)(N),P =P+ P

where
Py € Upni(h), PL € Upni—1(8), oni(Po) = f"

Since ad(a) is semisimple, Uy, (g) is completely reducible as ad(a)—module. Also notice that
N is an a-module. Thus Annyg)(N) is also an ad(a)—module. Now Uyi(g) N Anng(g)(N)
possesses an eigen (weight) decomposition with respect to ad(a)

Uni(g) N Annyg)(N) = ®ker(Uni(9) N Annyg)(N))k

This implies that every eigencomponent of P with respect to ad(a) is again in Anny g (N).
Since b is of the highest weight in g, by comparing the weight of Py with the weights of
Uni-1(g), we can see that the highest weight component of P is Fy. Thus

Py e AnnU(h) (V)

In addition,
oni(Po) = f* € gr(Anny ) (N))

This implies that f vanishes at V(Anny @) (N)). Q.E.D.
Now under the setting from section (1), we have the following theorem.

Theorem 3.4 Let gc be the classical Lie algebra of type I. Let M be a g-module. Let j* be
the canonical projection from gg onto g,c*. Then

V(Anny g,) (M) = cl(5" (Anny g)(M)))
We will end this section with the following definition.

Definition 3.2 Let N be a connected closed subgroup of G. Let m be a unitary representation
of G. We call V(Anny(n)(m)) the N-associated variety.

Let Ng(N) be the normalizer of N in G. One can easily see that the N-associated variety is
Ng(N)-stable.
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4 Associated Variety and Support: Abelian Case

Let G be a locally compact Abelian group. Let G be the set of unitary characters of G
endowed with the Gelfand topology. Then Gisa locally compact Abelian group under pointwise
multiplication. Let H be a unitary representation of G. Then the Lie algebra g acts on the
smooth vectors in H*°. On the one hand, we have the theory of abelian harmonic analysis
available. We can study the support of H as a closed subset of . On the other hand, we also
have the theory of commutative algebras available. We can study the associated variety of H*®
as a Zariski-closed subvariety of g.. In this chapter, we will see how these two invaraints are
related.

4.1 Stone’s Theorems and Spectral Integrals

Theorem 4.1 (Stone) If H is a Hilbert space and i a regular projection-valued Borel measure
on G, then the equation

7, [ o)  Ge6) (4.3)

defines a unitary representation T of G on H. Conversely, every unitary representation of G
determines a unique regular projection-valued Borel measure p on H such that Equation 4.3
holds.

We define the support of a unitary representation H of G to be the (closed) support of the
projection-valued measure p. In other words, suppg(w) is the complement of the biggest open
subset U of G such that u(U) = 0. Equivalently, suppg(r) is the smallest closed subset K of
G such that p(K) = id. Of course if we remove the closedness of suppg(m), suppg(r) is only
unique up to a set of measure zero.

Theorem 4.2 Make the same assumption as in Stone’s theorem. For any v € H, there exists
a vector valued reqular Borel measure p, such that

Ty(v) = /G E@)dun(€) (g€ G)

For every u,v € H, there exists a complez regular Borel measure p, , such that
Tyw.0) = [ €@dune) (g€ C)

Proof: For arbitrary Borel measurable set K C G, we define



It is easy to check that both measures inherit regularity. Q.E.D.
Suppose G is a connectedAAbelian Lie group and g is the (real) Lie algebra of G. Let g* be
the real dual of g. Each £ € G corresponds to a smooth function £(g) on G. We can define

d
§(z) = Z&(exp(tz))  (z €9)
This defines a map from G to g¢- Since

{(exp(tz))é(exp(tz)) = 1

Thus

£(z) +&(z) =0

This implies that £(z) € :R. We denote the pure imaginary dual by ¢g*. Then we have defined
a map from G to ig*. Now, we want to study the Lie algebra action m of g. We recall the
following definition of spectral integral.

Definition 4.1 Let (u,X) be a projection-valued spectral measure on a Hilbert space. Let
f: X — C be a p-measurable function. Then we may find a sequence {A,} of pairwise disjoint
measurable sets such that

o UPA, =X;
e f is u—essentially bounded on each Ay

Let H,, = range(P,), T, = fAn fdu. Then there exists a unique normal operator T = XT,, on
®H,. T is often written as [ fdu, called the spectral integral of f.

Now we begin with the following theorems in page 118 of [Fell&Doran].

Theorem 4.3 Suppose f : G—-Cisa p—measurable function. Let

Ty = / fap
G
Then v € Dom(T}) if and only if

[ 15©Pdsate) < o0

In this case,

1Ty = / 1F(6) o (€)

(Tyv,u) = / F©)dual€)  (we H)
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Theorem 4.4 Let f,, f2 be p-measurable functions on G. Then

(/fldu)(/bdu) C /f1f2d,u
(/fldﬂ)* =/ﬁd#

4.2 Abelian Lie Algebra Action

In general, derivative can be defined in a Banach space. Suppose ¢(t) is a continuous curve in
a Hilbert space H. If there exists a vector v in H such that

VYu€H, (v,u) = %lt:ﬂ(c(t)au)

We say c(t) is differentiable at 0 and v is said to be the derivative of ¢(t) at 0. Now we can
prove the following theorem.

Theorem 4.5 Let (w,H) be a unitary representation of a connected Abelian Lie group G.
Let p be the projection-valued regular Borel measure from Stone’s theorem. We denote the Lie
algebra g actions by w. Then

[ e@aue) cx(x)  (Xeq)
Proof: Let Tx = [z &(X)du(é). Suppose u € Dom(Tx). First we want to show that V v € H,
(Txw,v) = & (r(exp(tX))u,v)
We would like to interchange the integration and differentiation, obtaining
G r(exp(t0)u,v) =3 [ E(exp(tX)dins(©
— [ GEexp ()l (49)
= [ €COdunte
To show that the integration is interchangeable with the differentiation, first we observe that
e = | expte(X))] < €] (€ € O,

For a complex measure 1, we define |u|(U) to be the supremum of {372, |(E;)|}, where {E;}
is any measurable partition of U. Since

|((@)u, 0)[* = |(p(@)u, p(O))1* < Ol
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we have
|Nu,v|(U)2 < lﬂu,Ul(U)le,vl(U) = ,“u,u(U)ﬂ'v,v(U)

Therefore

( / 1€ (X)ldlanl(€))2 <( / €0X) Pdptn u (€)) / Aty 0 (6))
—( / 1€ () 2dptan (©) 101

From Theorem 4.3, u € Dom(Tx) implies that
[1600P (o) < oo

Hence £(X) as a function on G is absolutely integrable with respect to p, ,. But a‘-’;{ (exp(tX))
is dominated by |£(X)|. Thus integration and differentiation are interchangeable. We obtain

%(n(exp(tX))u,v) = (Tzu,v)

Of course, here we have not proved that u € Dom(n(X)). In fact we have

|2 (rlexp (), 0P < ([ 1EONal ) < ([ 1600 Pt 0l

From here we see that 7(X)u can be defined abstractly as a linear functional on H such that
d
(7(X)u,v) = — (w(exp(tX))u,v) (Vv € H)

Now 7(X)u € H is well-defined. Therefore u € Dom(n(X)). Q.E.D.
Now for X1, Xs,..., X, € g, we define

T Xa X = /G E(X1)E(Xa) . .. £(Xn)dp(€)

We can extend this definition by linearity to all D € U(g). One can easily obtain the following
theorem about the universal enveloping algebra U(g).

Theorem 4.6 Let (v, H) be a unitary representation of a connected Abelian Lie group G, and
p its projection-valued regular Borel measure. Suppose X1,Xs,...,X, € g. Then

Tx,Tx,...Tx, C7(X1X2... Xp)
Tx.x,..x, O Tx,Tx, - .- Tx,

Since U(g) is commutative, we may identify it with S(g). Thus for every ¢ € g*, D € U(g),
£(D) is well-defined. We will also denote ¢(D) by D(€), just to indicate the fact that D can be

regarded as a function on g*.
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4.3 Spaces of Smooth Vectors
Theorem 4.7 If u € Dom(Tp) for every D € U(g), then u is smooth. Furthermore,

m(D)u = Tpu
Proof: Suppose u € Dom(Tp) for every D € U(g). Then we know that

(BB + - X Kerr) - €00 < ITTECK;)|

By a similar argument of interchanging integration with differentiation from Theorem 4.5, we
have

d d

d
(m(X1X2...X5)u,v) :d_tld_tg e d_t,; /G &(exp(X7t:i X)) dpsu,v (€)

(4.6)
:/f(Xle . Xn)dﬂu,v(f)

Thus u is smooth and n(D)u = Tpu. Q.E.D.

Before we continue on, we want to examine the definition of the annihilator of a unitary
representation for an arbitrary Lie group G.

Theorem 4.8 Let (m, H) be a unitary representation of a Lie group G. Let M be any dense
subset of the space of smooth vectors H®. Then

Anny g)(H®) = Anny (g (M)
Proof: If D € U(g), and n(D)H* = 0, then 7(D)M = 0. Thus
Anny(g) (M) 2 Anngg) (H™)

If D € Annyg)(M), then
YueMve H® (n(D)u,v) =0

Since g act as skew-adjoint operators, i.e.,
VXegnX)=n(-X)

we have
(m(D)u,v) = (u,w(D)*v) =0 (u e M,v e H®)

Since M is dense in H*, M is dense in H. Hence 7(D)*v = 0. We have

(r(D)u,v) = (u,7(D)*v) =0 (u € H*®,v € H™)
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Thus for every u € H*®, n(D)u = 0 Therefore
D¢ A’n’nU(g)(Hoo)

This implies that
AnnU(g) (M) Q AnnU(g) (Hoo)

Q.E.D.
Thus we may define Anngy g () to be the annihilator of any smooth dense subset M of H.
In particular, in our context, for G an Abelian Lie group, we choose

M= { /G F(€)duu8) | F € Be(G),u € H}

~

where B.(G) is the space of bounded measurable functions with compact support. M here has
some property similar to Garding space.

4.4 Associated Variety and Support

Theorem 4.9 Let (m,H) be a unitary representation of a connected Abelian Lie group G, p
its projection-valued regular Borel measure. Then M is dense in H, and M C H*. Suppose
D e U(g) = S(g) such that

D) =0 (£ € suppg(m))

Then D € Annyg)(r).

Proof: We will show that M C Dom(Tp) for every D € U(g). ¥ f € B.(G),u € H,D € 5(g),
let v = ([ f(€)dp(€))u. Then for every U C G measurable, we have

on(U) = ( /U dp(€)v, v) = /U 1F(€)Pdptnn(€)

This implies that
d/‘v,v(g) = |f(§)|2dﬂ'u,u(§)

We have
[10©Pdu(6) = [ ID() £ (€) Pdptun(€) (4.7)

coverges since f is compactly supported. Thus

( / F(&)du®)u € Dom(Tp) C Dom(x(D)) (VD € U(g))

Therefore [ f(&)dp,(¢) € H*®. We have



Notice that 1 can be approximated by bounded functions {f;}{° with compact support. Since
p is regular, u € H can be approximated by [ fi(€)du,(£). Therefore M is dense in H. Now
suppose

D) =0 (V&€ suppg(n))
Then we have
w(D)( [ £@)aue)u = ([ DOV [ 7©du©)u = ([ DOFOdu©)u=0
Hence D € Annyg)(M) = Annyg)(7). Q.E.D.

Theorem 4.10 Let (7, H) be a unitary representation of a connected Abelian Lie group G, u
its projection-valued reqular Borel measure. If D € AnnU(g)(w), then

D(suppg(m)) =0
Proof:
1. First, we want to show that

D(suppg(m)) =0  (a.e.p)

Suppose not. Then there exist a complex number a # 0, a compact K C suppg(~),
u(K) # 0, such that

D(E) —al < lal  (E€K)

It follows that
I D©du(©) = autk)ll =1 [ (D)~ a)aute)]
<Il [ 1D(©) = alaute)]
<l [ Fleldu(o))

1
<5 lalllu(K)

(4.8)

Thus [, D(€)du(§) # 0. On the other hand, for every v € H, ([, du(€))v € Npev(g)Dom(Tp),
we have

0 = n(D)( /K dp(€))v = Tn( /K du(€))w = ( /K D(€)du(€))w

This 1s a contradiction.
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2. Therefore, we have u(zero(D) Nsuppge (7)) = id. Notice that for a connected Abelian Lie
groupAG , the Gelfand topology is just the induced Euclidean topology. Thus zero(D) =
{¢€ € G| D(¢) = 0} is closed. Therefore zero(D) N suppg(w) is closed. According to the

minimality of suppg(w), we have
zero(D) N suppg(m) = suppg(m)
Thus zero(D) 2 suppg(m). Hence
D(suppg(m)) =0

Q.E.D.
What we have shown is that for D € U(g),

D(suppg(m)) = 0 <= D € Annyg)(7)

But
D € Annyg)(7) <= D(V(Annyg)(m))) =0

Thus we have

Theorem 4.11 Suppose that (w, H) is a unitary representation of a connected Abelian Lie
group G. If we identify G with a subset of ig*, then

V(AnnU(g)(ﬂ')) = cl(suppg(m))
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5 N-spectrum and N-associated variety

In this chapter, we introduce the notions of N-spectrum and rank. We will prove Theorem 1.1.

5.1 Spectrum, Associated Variety and Rank

Let G be a locally compact Lie group, H be a closed subgroup. Let G be the unitary dual
of G. Suppose that G and H are type I groups. Take a unitary representation (w, H) of G
and consider its restriction to H. According to the direct integral theory [Wallach0] Ch 14.9
and 14.10, 7| is equivalent to a projection-valued Borel measure pz () on H. R. Howe called
such a measure the H—spectrum of n. Under the Fell topology, the (closed) support of ()
is called the geometric H-spectrum [Howe0]. Let Ng(H) be the normalizer of H in G. Then
supp(pp (7)) is Ng(H)-stable.

To study H-spectrum, we have to have a well-understood unitary dual H. For H nilpotent
or solvable of type I, H is well-understood to some extent. For H connected Abelian, H can
be identified with a subset of ¢h*. In this chapter, we will identify it with a subset of h*.

In spite of the fact that the unitary dual G is difficult to understand, the associated variety
of a representation is well-understood. In particular, we have

Theorem 5.1 (Borho-Brylinski-Joseph) Suppose g is a reductive Lie algebra, M a simple
g-module. Then V(Annyg)(M)) is the closure of a single coadjoint orbit.

Now concerning a linear reductive Lie group G with finitely many components, we can employ
Mackey machine to show that for any irreducible unitary representation (7, H) of G, 7 splits
into finitely many irreducible representations when restricted to the identity component Gy,
namely,

T=T1 DD ...Dn,

Furthermore, G /G permutes these irreducible factors. A more careful examination shows that
the Harish-Chandra modules of 7;’s are related by the algebra isomorphisms of U(g) defined by
the adjoint action of G/Go. Thus V(Annyg)(m;)) are related by automorphisms of g defined by
G/Go. Infact, V(Anny g)(m)) is exactly the union of G/Go-orbit on any chosen V(Anny g)(;)).
More precisely, we have

V(Anny g) (7)) = Uzgoea/coAd(z) (V(Anny g)(m)))

Thus, for the rest of this paper, even though some of the classical Lie groups G are not connected,
we may prove our results for the identity component Gg first. Then all the results can be
generalized to G.

Recall that the H-associated variety is Ng(H)-stable. Thus one may investigate the rela-
tionship between the H-associated variety and the H-spectrum. According to Theorem 4.11,
we have

Theorem 5.2 Let (w,H) be a unitary representation of a type I classical group G. Then the
Z Ng-associated variety of m is the algebraic closure of the geometric Z Ny.-spectrum of =.
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Since g is a reductive linear Lie algebra, g* can be identified with g. If we regard g as a subset
of Homp(V,V), then j* can be regarded as the (eigen)-projection of g onto g_o = 7(2ng). For
any subset S of g*, we define rank(S) to be the max{rankp(X) | X € S}.

Recall that the parabolic subgroup Py acts on 3n; with finitely many orbits and that 3n; can
be identified with a subspace of sesquilinear forms. Howe and Li defined the Z Ng-rank to be the
rank of supp(uzn, (7)) regarded as sesqulinear forms. Notice that for each z € Homp(Xy, X))
the rank of the linear transform z is the same as the rank of the bilinear form B, defined in
chapter 1. Therefore the ZNj-rank coincides with rank(supp(pzn,(7))). In the rest of this
paper, we will compute the Z Ni-rank using associated variety.

5.2 Complexification and C-Rank

Now for a type I classical group G(V), for every = € g, we may define a sesquilinear form B,
such that
B, (u,v) = (z.u,v) (u,v € V)

Then
Bz(ua U) = —€B; (’U, u)ﬂ

Thus g can be identified with a space of sesquilinear forms. Compatibly, we have the following
list regarding g_o and its complexification:

1. G =U(p,q), 3n} is the space of k x k skew-Hermitian matrices, its complexification is the
space of k x k complex matrices;

2. G = Opq, 30} is the space of k x k real skew-symmetric matrices, its complexification is
the space of k x k complex skew-symmetric matrices;

3. G = Spau(R), 3ny is the space of k x k real symmetric matrices, its complexification is
the space of k x k complex symmetric matrices;

4. G = O0*(2n), 3n}, is the space of sesquilinear forms on H*, such that
(u,v) = (v, u)" (u,v € HF)
Let (u,v) = A(u,v) + jB(u,v) with A and B complex-valued. Then
A(v,u) + jB(v,u) = (A(u,v) + jB(u,v))" = A(u,v) — jB(u,v)

Therefore

A(u,v) = A(v,u) B(u,v) = —B(v,u)

Now B(u,v) is a (right) C-bilinear form. If we fix a basis {(e;, je;)}¥ for HF, 3n} can be
identified with
u Vv t 11t
{< v U)'U =-UV =V}
Thus the complexification of 3nf can be identified with the space of 2k X 2k complex
skew-symmetric matrices.
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5. G = Sp(p,q), 3n; can be identified with a space of 2k x 2k symmetric matrices, its
complexification is the space of 2k x 2k complex symmetric matrices.

6. G = O(n,C), sn; is the space of k x k complex skew-symmetric matrices. It can be
identified with

{< g ZxB ) | A' = —A,B' = —-B, A, B € Endg(RF)}

Therefore 3n;¢. can be identified with

{( g ;13 ) | A'= —A,B' = —B, A, B € Endc(CF)}

7. G = Sp(n,C), 3n; can be identified with

{( g ;1B ) | A' = A,B* = B, A, B € Endg(RF)}

and 3n,¢ can be identified with

{( g JZB ) lAt :A,Bt —_—B,A,B EEndC(Ck)}

For any S C jn.¢, we write rankc(S) for the maximal rank of the elements in S under this
setting. We call it the C-rank of S. Thus, we have

rank(supp(uzn, (7)) = rankc(supp(uzn, (7)) (G =U(p,q),0pq, SP2n(R)) (5.9)

2rank(supp(pzn, (7)) = rankc(supp(pzn, (7)) (G = Sp(n,C),0(n,C), Sp(p, g), O*((2n)))
5.10

In this setting, taking the algebraic closure of a subset of sesquilinear form would not change
C-rank of such a subset.
But, from Theorem 4.11, V(Anny ;) (7)) is the algebraic closure of supp(pz, ()). There-
fore
rankc(V(Anng (g, () = ranke(supp(uzy, (r)))

Again, from Theorem 3.4 V(Anny;n,)(7)) is the algebraic closure of j*(V(Anny g (7))), where
7% : gc = (3nx)¢ is the canonical projection. Thus

rankc(supp(pzn, (7)) = rankc(5* (V(Annyg) (1)) (5.11)
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5.3 Rank and Associated Variety: Real Groups

Now we restrict our attention to those non-complex groups, Op 4, U(p,q), Span(R), O*(2n),
Sp(p,q). We will deal with complex groups at the end. According to [C-M] Ch 5.1, each
nilpotent orbit in a (complex) simple Lie algebra g(m) C Endc(C™) is parametrized by a
certain partition

/\=(>\12)\22...2/\l>0)

of m. We denote the adjoint orbit corresponding to A by Oy. Then
rankc(Oy) =m —1
Theorem 5.3 Let S C g(m). Then
rankc(5*(S)) < min(rg, rankc(S))
where v, = rankc(3n;). In particular,
rankc(7*(0Oy)) < min(rg, rankc(O)))
Proof: It suffices to show that
rankc(5*(5)) < rankc(S)
Recall that V = X} & X} © W,g- Let P:V — X; be the canonical projection. Notice that

rankc(j*(S)) = max{rankc(j*(z).Xx) | z € S}
=max{rankc(P(z.Xy)) | z € S}

<max{rankc(z.X}) | z € S} (5.12)
<max{rankc(z.V) |z € S}
=rankc(S)

Q.E.D.
Now we have to treat Type A,C and Type B, D Lie algebras differently. We will follow the
convention in [C-M] Ch 6.2 regarding the order of nilpotent orbits.

Theorem 5.4 (Type A,C gc) rankc(j*(0,)) = min(k, rankc(O,))
Proof: If rankc(O,) > k, then A > (1""2’“,2’“). Thus

cl(Ox) 2 cl(Om-z2x o1y)
Since g_o is nilpotent and satisfies

rank(X)<k; X2=0 (VY X €g_2)
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we have
g2 C cl(O@m-2x or))

Therefore
c(77(0x)) 2 57 (cd(04)) 2 5 (cl(Om-2x 2v))) 2 7™ (8-2) 2 g2
Hence rankc(j*(Oy)) = k. If rankc(Oy) = s < k, then A > (1™72%,29). Therefore
Cl(O,\) 2 Cl(O(lm—h,Qs))

Thus
c(77(0x)) 2 5 (c((Ox))) 2 7" (cl(Oam-2s 25)))

But rankc(cl(Om-2s 25)) N g-2) = s, because the elements in g_» of rank s are all contained
in O(ym-2s 9s). Therefore

rankc(5*(O0))) > rankc(5* (cl(Om-2s 25))) N g—2) = rankc(cl(Opm-2s 25))) Ng-2) = s
Combined with Theorem 5.3, we have
rankc(j*(Ox)) = min(k, rankc(0,))
Q.E.D.

Theorem 5.5 (Type B,D gc) rankc(3*(O,)) is always even and it is equal to min(rg, rankc(0))).

Proof: For O, 4, the Crank of a real skew-symmetric form is always even. For O*(2n), the
C-rank of an H-sesquilinear form is also even. Thus rankc(j*(0,)) is always even. Recall that
the partitions corresponding to Type B, D nilpotent orbits satisfy that even parts occur with
even multiplicity. In other words, if we delete the first column in the Young diagram, then odd
parts occur with even multiplicity. Therefore, rankc(O)) has to be even as well. The rest of
the proof is the same as the proof for type A, C groups. Q.E.D.

5.4 Rank and Associated Variety: Complex Groups

Now we want to deal with complex groups O(n,C) and Sp(n,C). In these cases, gc is not
simple. However, once we regard g as a real matrix Lie algebra, gc is still a matrix algebra.
Thus the Grank of V(Annyg)(n)) is still valid. Let WF(r) be the wave front set of = as
defined in [Howe4]. Recall that

(W F(m)) = V(Annyg)(r))
We will use these ideas to prove the following theorem.
Theorem 5.6
rankc(j* (V(Anny g)(7)))) = min(ry, rankc(V(Anny g (r))))

where T, = rankc(3ng).
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Proof: First of all, W F(n) is already a finite union of complex nilpotent orbits in g. From the
real cases in the last section, we see that in the complex Lie algebra g

rankc(5* (W F(r))) = min(rankc(3n), rankc(W F()))

Now in the complexification gc, every quantity in this equation is doubled. Therefore this
equation still holds in gc. Notice that

cd(j*(WF(n))) = cl(5* (l(WF(m)))) = (7" (V(Annyg)(7))))
We obtain
rankc(5* (V(Anny g (7)))) = min(rankc(sng), rankc(V(Anny g (m))))

Q.E.D.
From Equation 5.11, we see that

rankc(supp(pzn, (7)) = rankc(5* (V(Annyg)(7))))
We come to our conclusion.

e For G = Span, U(p,q), according to Equation 5.9 and Theorem 5.4, Howe’s Z Ny-rank
of (m, H) equals min(k, rank(V(Anny g (r))))-

e For G = Op 4, according to Equation 5.9 and Theorem 5.5, Howe’s Z Ni-rank of (w,H)
equals min(k, rank(V(Anny g (r)))) for k even, and min(k — 1, rank(V(Annyg)()))) for
k odd.

e For G = Sp(p,q), according to Equation 5.10 and Theorem 5.4, Howe’s ZNy-rank of
(, H) equals min(k, irankc(V(Annyg)(r)))).

e For G = O*(n,C), according to Equation 5.10 and Theorem 5.5, Howe’s Z Ng-rank of
(m, H) equals min(k, irankc(V(Annyg)(r)))).

e For Sp(n,C), according to Equation 5.10 and Theorem 5.4, Howe’s Z Nj-rank of (m, H)
equals min(k, rankc(V(Annyg)()))).

e For G = O(n,C), according to Equation 5.10 and Theorem 5.5, Howe’s Z Nj-rank of
(7, H) equals min(k, trankc(V(Annyg)(x)))) when k is even,
and min(k — 1, %rankc(V(AnnU(g)(n)))) when & is odd.

Thus Theorem 1.1 is proved.
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6 Compactification of the Symplectic Group

First of all, let X be an analytic manifold. We say (i, X) is an analytic compactification of X,
if X is a compact analytic manifold and

i: XX

is an embedding, such that i(X) is open dense in X. Let G be the standard symplectic group.
Then G has a KAK decomposition, where K is U(n) = Spop(R) N SO, (R) and A = R".
Let K° be the opposite group. Then G has a K° x K action. For the symmetric space
Y = U(2n)/O2,(R), one can also define a K x K action on Y, where K x K is embedded
diagonally into U(2n). We define a group isomorphism 7: K° x K =+ K x K by

7(k1, ko) = (k71 k2) (k1,k2 € K)

Thus K° x K can be identified with K x K through 7. In this chapter, we prove the following
theorem.

Theorem 6.1 There ezists an U(n) x U(n)-equivariant analytic embedding:
H : Span(R) = U(2n)/02,(R)

The image is open dense in U(2n)/02,(R). If f is a K-finite matriz coefficient of an irre-
ducible unitary representation of Span(R), then f can be extended into a continuous function

on U(2n)/O2,(R).

Bargmann-Segal model is the “minimal” unitary representation of the double covering of
Span(R). The underlying Hilbert space is the space of L?-analytic functions with respect to the

Gaussian measure. Then the group action of Sps,(R) can be expressed as integration operators.
We observed some nice structure in the integration kernel which leads to the compactification
H.

In fact, U(2n)/Oz2, can be realized as a space of matrices. Let Sy, be the space of symmetric
unitary matrices of the following form

{X'X | X €eU(2n)}
If 2n is fixed, we will write S. Now g € U(2n) acts on S by
7(g) : s = gsg* (s€es8)
We compute the isotropic subgroup at the identity,
U@2n); = {U'U =1|U €U(2n)} = Oy,

Therefore S can be identified with U(2n)/O2,. Hence the compactification of Spa,(R) can be
represented by S.
In this Chapter, we provide the exact formula for the compactification of Sps(R) = SL(2, R).
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Theorem 6.2

o b (a—3)+(b+§)i —2i
a —(c—b)z d)—(c—b)1
(e ap-( 5 EEEg ) es
latd)—(c—b)i (atd)—(c—b)i

6.1 Bargmann-Segal Model

Let V be an n—dimensional complex Hilbert space with the standard inner product (*,*). Let
{e1,e2,... ,en} be an orthonormal basis of V. We write

(u,v) = Re(u,v) + iIm(u,v) (u,v €V)
Then Q(u,v) = Im(u,v) is a real symplectic form on V. Notice that
iQ(iej, ex) = iIm(iej, ex) = i6;-“
Thus we may fix a R—basis
{ie1,i€a,... ,ien,e1,... ent = {&1,8&2,.-. ,&én,€1,--- ,€n}

If we regard V as a real vector space under such a basis, then 2 is the standard symplectic
form, and Re(,) is the standard (real) inner product. From now on, whenever we regard V as
a complex space, we will add a subscript C. For a linear endomorphism g of V', without the
subscript C, g will be a real linear transform. However gc will be a complex linear transform
of V.

Let O3, (R) be the subgroup of GL(V) fixing Re(, ), and Sp2,(R) be the subgroup of GL(V)
fixing ©2(,). Let U(n) be the subgroup of GL(V) fixing the (complex) inner product (,). Then

U(n) = Oz, (R) N Span(R)

In terms of real basis, the complex multiplication by imaginary ¢ can be identified with left

multiplication by
O I
=(%0)

For arbitrary g € Span(R), g can be decomposed into
g=Cy+ A

where Cy commutes with J, A, anticommutes with J. Thus C; € Endc(V'), and 4, is complex-
conjugate linear. Explicitly,

1 1
Cy=§(9—JgJ) Ag=§(9+JgJ)

It is known that Cy € GLc(V) [R-R]. Let IIc(V) be the set of T € G Lc (V) for which Re(Tv, v)
is strictly positive for all nonzero v € V. According to [Blattner], IIc(V') is a contractible open
domain of the identity in GLc(V). Consequently, there is a unique continuous function

det? : (V) — C
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such that

det2(id) =1  (detz(T))2 =detT (T € Ic(V))

Notice here detT is the determinant of T as a complex matrix, since T € IIc(V). Now we
define
Zy=Cy'Ag (g€ 5p(V, Q)

It can be shown that [R-R]
Theorem 6.3 I — Z, Z,, € lIc(V') for g1,92 € Sp(V, Q).

Let Mp(V,Q) be the double cover of Sp2,(R), called the metaplectic group. Sometimes, we
denote it by Spa,(R). There is in fact a nice way to represent this group [R-R].

Theorem 6.4
Mp(V,Q) = {(X\9) | g € Sp(V,Q),X € C, \* detc(Cy) = 1}

In addition, the multiplicative structure is given by
(M, 90)(42,92) = i do(detd (I — Zg, Z,1)) ™, 192)
Now we will construct the Bargmann-Segal model. Let dz be the Euclidean measure on V. Let
du(z) = exp(~5 (¢, 7)) dz

be the Gaussian measure. Let P, or simply P be the polynomial ring on V. We define an
inner product on P by

(f.9) = /V f@)s@du(z)  (fg€P)

Let ||f||?> = (f, f). Let F be the completion of P under || * ||. Then F is exactly the space of
square Gaussian integrable analytic functions. In particular, || * ||-covergence implies pointwise
convergence.

Theorem 6.5 (Bargmann-Segal model) Let (\,g) € Mp(V,Q). For every f € F, we
define

GADF@) = [ Aexp 1(C; 0) = (2, 2y-12) - (Zyw,w)f(w)d(w)
Then w is a faithful unitary representation of Mp(V,Q). Let
H(g,z,w) = 2(Cg_lz,w) —(2,Z4-12) = (Zgw,w)
If g # ¢', then as functions of complex variables z and w

H(g, z,w) # H(g', z,w)
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Proof: A proof of the first part of the theorem can be found in [R-R]. Suppose g # ¢’, but
H(g, z,w) = H(q, z,w)

Then Cy = Cy. Let A € C, such that

A detc(C,) =1
Then (A, g), (), ¢') € Mp(V,Q), and

w(X,g) =w(Xg)
This implies that g = ¢’, a contradiction. Q.E.D.
6.2 Some structure theory
Since K = U(n) is a maximal compact subgroup of Spa,(R), we can choose

A = {diag(\1,--- 2 AT D) [ eRYY

to be the maximal split Abelian subgroup. Then Sp2,(R) possesses a K AK decomposition.

Theorem 6.6 For g € Span(R), let g = kiaks be a KAK decomposition. Let a = exp(H),
H € a. Then we have

Cy = k1 cosh(H )ky; Ay = ky sinh(H)k;

Z, = ky ' tanh(H)ky; Zy-1=—k tanh(H)k;

where
H) +exp(-H)

2 7
tanh(H) = (cosh(H)) ™! sinh(H)

exp(H) — exp(—H)
2

cosh(H) = exp( sinh(H) =

Proof: In Sps,(R), the action of K commutes with J. Thus

1
Cy =§(9 — JglJ)

1
=—(kiako — JkiakoJ
2( 10k 10kaJ) (6.13)

=% (klakz - liaJkQ)

Similarly, we have
Ay = k1Azks
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Thus
Zy = Cy'Ag = (k1Coka) ™ (k1 Acka) = k3 1 (Cy 1 Aa) ko

1

Since g7 = kz_la‘lkl_l, we have

Z

-1 = k1(Com1) "t A1 kT

Now a simple computation shows that

JaJ = —a~! (a € A)

Thus o o
C, = exp(H) +2exp(— ) = cosh(H)
4, = &) ";XP(“H ) _ sinn(&)
Z, = C;'A, = tanh(H)
Z4-1 = tanh(—H) = — tanh(H)
Therefore
Cy = k1 cosh(H)ky; Ay = ki sinh(H)ky
Z, = ky ' tanh(H)ky; Zy-1 = —ky tanh(H)k; "
Q.E.D.
We define

sech(H) = (cosh(H))™! , coth(H) = (tanh(H)) ™!

Combined with Theorem 6.5, we have
Theorem 6.7 Let (A, g) € Mp(V,Q) and g = k1 exp(H)ka in Spop(R). Then
H(g, z,w) = 2(sech(H)k] 'z, kaw) + (ki 'z, tanh(H)k;'2z) — (tanh(H)kow, kaw)
In particular, the right hand side does not depend on the KAK decomposition.
Recall that C, is always complex linear, and A, complex-conjugate linear. Suppose
H = diag(H:,... ,Hp,—H,...,—Hy,) (H; e R)

We write
H(C = diag(Hl,Hg, e ,Hn)

Then
(sech(H)z,w) = (sech(Hc)z,w)
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Now we want to compute (tanh(H)z,w). Let z = iy + z with z,y € R*. Then
tanh(H)z = tanh(H)(z + iy) = i tanh(Hc)y — tanh(Hc)z = — tanh(Hc)Z

Therefore
(tanh(H)z,w) = —(tanh(Hc)Z, w)
(z,tanh(H)w) = —(z, tanh(Hc)w)
Now
(g, 2, w) =2(sech(Hc )k 2, kaw) — (ki L2, tanh(Hc)ky ') + (tanh(He)kaw, kaw)
=2Msech(Hc)kl_1z — 2%k; tanh(H)k[ 'z + wt_kgtanh(Hc)kz—w

et () ) (ot i) (% %) (5)

Definition 6.1 We define

(kO tanh(Hc) —isech(Hc) k70
’H(kl exp(H)kz) - ( 01 k_é) ( —isech(IS«;) tanh(Hc)C ) ( 6 E)

(6.14)

Notice that kq, ko are unitary. One critical observation is that the images of H are symmetric
unitary matrices. Therefore this definition of H is the uniquely determined by the following
equation

H(g, 7,w) = (12", W) H(g) ( e ) (6.15)

Theorem 6.8 The map H is a continuous injection from Spa,(R) into U(2n).
Proof: First of all, if #(g) = H(g'), then
H(g,z,w) =H(g,z,w) (Y z,weV)

According to Theorem 6.5, we have g = ¢g’. Therefore H is an injection. Since that the maps
g — Cg_l, g = Zy, and g = Zy-1 are all continuous, for every z,w € V, g = H(g, z,w) is
continuous. From Equation 6.15 and by linearity, every entry of the matrix #{(g) is a continuous
function of Spo,(R). Therefore, H(g) is continuous as well. Q.E.D.

6.3 Analytic Properties of H
We define T,, in U(2n) to be the space of matrices of the following form

diag(cosf,... ,cos6y) diag(—isinfy,... ,—isin6y) ) 0= 6,))

diag(—isinfy,... ,~isin6,) diag(cosby,... ,cosby)

7(6) = (
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We want to analyze the map x : A — T", defined to be the restriction of # on A. Without loss
of generality, let n = 1. Then

tanh H —isechH
k(exp H) = ( —isechH tanh H ) €T

% can be regarded as a homeomorphism from R to (0,#). Therefore, # can be regarded as a
continuous function of H, and H can also be regarded as a continuous function of #. Notice
that from tanh H = cos 6, we obtain

(sech(H))?dH = — sin0df

Therefore

0 dH
d—Hz——sech(H)géO E——CSCO#O

Since all these functions are (real) analytic, x is an analytic embedding from A to T". From
here one may guess that # is in fact an embedding. However, nothing can be proved since
K°® K acts on Spa,(R) with singularities.

Let S = {U'U | U € U(2n)} be a subset of U(2n). x(A) is contained in S. Thus H(Sp2,(R))

is in fact contained in S. We obtain

Lemma 6.1 e Let U(2n) act on S by
g— UtqU (g e S,U €U((2n))
Then S = U(2n)/Oa, (R);
o H is a continuous map into S;

e Let U(n)° be the opposite group of U(n). Let U(n)°xU(n) act on Spon(R) by left and right
multiplications respectively. Let 7 : U(n)° x U(n) — U(n) x U(n) be a group isomorphism
defined as follows:

T(k17k2) = (kl_lag)
If we identify these two groups through T, then H is equivariant with respect to these two
group actions.

Now we want to compute dH : T'Spa,(R) — T'S. Let g(t) be a germ of a smooth curve
near g € Spon(R). Let dg be the tangent vector represented by this germ g(t). Here Spo,(R)
is contained in the space of 2n x 2n matrices. We may engage all our discussion in the space
of 2n x 2n matrices. Thus the tangent vector dg in Sps,(R) can be identified with a 2n x 2n
matrix. This is the perspective we take in interpreting all the equations here. From gg~! = 1,
we obtain

(dg)g™" +g(dg™") =0

Therefore

dg~' = —g~}(dg)g™!

We have the following lemma.
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Lemma 6.2 1. dg~! = —g~ldgg™!;

2. dZy = —C’;lngZg + Cg‘ldAg; where
1 1
dCy = §(dg — J(dg)J) dAg = E(dg + J(dg)J)

3. dZyr = —C; LdCy-1Zg-1 + C; hdAg-;

4. dC;t = -C;ldC,CrY;

5. dCy1 = —3(g7 (dg)g™! — Jg~ (dg)g™" J);
6. dAg—1 = —3(g7 (dg)g~" + Jg~ ' (dg)g~"J)

Now we can compute dH. Let ¢ ® p = g be the Cartan decomposition with K = U(n). In
fact, it can be shown that

Lemma 6.3 € is complex linear, and p is complez-conjugate linear as morphisms of V.

For an arbitrary g € Spa,(R), let g = kexp p with p € p. Because of the action of U(n)° x U(n),
without loss of generality, we may assume that g = exp H, H € a. Now we have the following
theorem.

Theorem 6.9 (dH)gy : Ty(Sp2n(R)) — Ty(g)(S) is bijective.

Proof:

1. First notice that

2n(2n + 1)

dim(S) = dim(U(2n)) — dim(Oy, (R)) = 3

= dim(Sp2n(R))
It suffices to show that the kernel of (dH), is trivial.

2. Let dg be the equivalence class of the germ gexptk with £ € &. Then we may write

dg = gk.
1
dC, =§(dg — J(dg)J)
1
=—(gk — JgkJ
39k = JgkJ) (6.16)
1
=59 = JgJ)k
=Cy4k
Similarly,
dCy-1 = —kCy-
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dAg = Ak dA,1 = —kAg

Thus
dC, ' = —C;1(dCy)Cy ' = —kC,

dZy = —C; 1 (dCy) Zy + C;  (dAg) = —kZy + Zgk
dZg-1 = —C; 4 (dCy-1)Cr i Ag-1 + O hdAg-1 = C kA1 — O kA1 =0
Therefore
d(z,Z4-12) =0 (6.17)
dH(g,z,w) = 2(—kCy ' z,w) + ((kZy — Zok)w, w) (6.18)
Since Cy € GLc(V'), we can see that

dH(g, z,w) =0 (V z,w € V) = (—kC;'2,w) =0 (Vz,w € V) <= k=0 (6.19)

. On the other hand, let dg be the equivalence class of the germ gexp tp with p € p. Then
we may write dg = gp. We have pJ = —Jp. Thus

1 1 L
dCy = 5(dg — JdgJ) = 5(gp — JgpJ) = 5(g9p + JgJp) = Agp
2 2 2

dAg = Cyp dAg-1 = —pCy-1 dCy-1 = —pAy—

Then
dC;t = —CyH(dCy)Cy 't = —Z,pC, !

dZ, = —Cg—l(dcg)zg + Cg‘l(dAg) = —ZpZy+p

dZg-1 = —=C(dCy-1)Zy-1 + C,  d Ay
= CpAg-1Z4-1 — C,hpCyn (6.20)
= C;_llp(Ag—ng-l - Cg—l)
Suppose g = exp H, H € a. Then
Ag-1Z4-1 — Cy-1 =sinh(H) tanh(H) — cosh(H)
=(cosh(H))~!(sinh(H)? — cosh(H)?) (6.21)
= — (cosh(H))™!

because a is commutative. Therefore

d(2,Zy-1z) = (2, —sech(H)(p)sech(H)z) = —(z,sech(Hc)(p)sech(Hc)z)
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Suppose under the real basis {ie;, €;}7,

p=(g IfA), (A = A, B = B) (6.22)
Therefore
p(yi +a) = i(Ay + Bz) + (By — Az) = (Bi — A)(z —iy) = (Bi — A)(z + iy)
We see that

d(z, Zy-12) = — (z,sech(Hc)psech(Hc)z)
= — (2z,sech(Hc)(Bi — A)sech(Hc)Z)

6.23
= — z'sech(Hc)(—Bi — A)sech(Hc)z (6.23)
=z'sech(Hc)(A + Bi)sech(Hc)z
Since A + Bt is a symmetric matrix and sech(Hc) is invertible, we have
d(2,Z4-12) =0 (V2€V) <= A+Bi=0<=p=0 (6.24)

4. For an arbitrary X =k +p € g, g = exp H, Let g(t) = gexp(tX) be a fixed germ. Let p
be defined as in Equation 6.22. Suppose that dH(g, z,w) = 0. Then from Equation 6.17
and Equation 6.23, we see that

d(z,Zg-12) = z'sech(Hc)(A + Bi)sech(Hc)z
Thus
d(z,Z4-12) =0(V2€V)=p=0

Now X = k. From Equation 6.19, we see that K = 0. Therefore, X = 0. Thus we have

proved that
dH(g,z,w) =0 (Vz,weV)= X =0
This implies that
dH(g)=0= X =0

5. Since Span(R) is a Lie group, the tangent space Ty(Sp2n(R)) can be identified with those

germs
gexp(tX) (X € g)

Thus
dH|g : Ty(Span(R)) — Tye)(S)

is injective. Because of the left and right K-action, this is true for all g € Sp2,(R).
Q.E.D.

This shows that # is an immersion, locally homeomorphism. It is also one-to-one. Thus H
is a homeomorphism from Sps,(R) onto an open submanifold of S.
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Theorem 6.10 H : Spop(R) — S is analytic.

Proof: In this proof V' will be regarded as a real vector space. Then S is an analytic submanifold
of B(V @ V,C), the space of symmetric complex-valued bilinear forms on V & V. It suffices to
show that

H: Span(R) — B(Vea V,C)

is analytic. Recall that under the real basis {ie;,(j = 1,... ,n),e;,(j =1,... ,n)}, multiplica-
tion by 7 can be regarded as left multiplication by J, and taking conjugation can be regarded

as left multiplication by
-1 0
o= (4 1)

2(C; ' z,w) = 0'C, 2 = 20'C;  (— )iz

Therefore

(2, Zg-12) = 28241 2 = —(i24) BZ, 1 (i2)
(Zyw,w) = wlZyw = wtZ,Bw
Since the maps g — ¢!, g — Cy 1. g — Z, are all real analytic, we conclude that
H: Span(R) = B(VeV,C)
is analytic. Q.E.D.

Now we have shown that d#{, is bijective and H : Sp2,(R) — S is analytic and one-to-one.
From the classical theorem on inverse functions (see page 21 [Varadarajan]), we have

Theorem 6.11 7 : Spa,(R) — S is an analytic embedding.
Now, we obtain

Theorem 6.12 Let G be an arbitrary group with a faithful representation into Span(R). Sup-
pose the closure of H(G), denoted by G, is a compact smooth submanifold of S. Then (H|g,G)
is an analytic compactification of G.

6.4 Generalized Cartan decomposition and Some Remarks

For a subgroup H of G, let Ng(H), Zg(H) be the normalizer and centralizer of H in G. For a
Lie subalgebra h of g, let Ng(h) and Zg(h) be the normalizer and centralizer of b in G. Suppose
G is a compact connected Lie group. Let o, 7 be a pair of commuting involutions of G. Let
K and H be the fixed point sets of o and 7 respectively. Let p be the —1 eigenspace of o, and
g the —1 eigenspace of 7. Let t,q be the maximal Abelian subspace of p N q. Let Ty, be the
analytic group of t,q. We define the Weyl group to be

Wiq = Nk (tyq)/Zk (tpg) = NH(tpq)/ZH(qu)
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Theorem 6.13 (Generalized Cartan Decomposition) G possesses a KTpyqH decomposi-
tion. In other words,
m: K xTyg = G/H

is surjective. In addition, for g = kth, t is unique up to Wyq and a multiplication of Tpq N
Zk (tpq) ZH (tpq)-

This theorem is essentially due to Hoogenboom (see page 194 in [H-S]). Now for G = U(2n),

let
a(x)=<{)" gIn)x({; Eln) (¢ € U(2n))

() =% (z e U(n))

It is obvious that

T0 =0T
and
K=Um)xU(n) H=0y(R)
=1 5 o )14}
q={iB| B'*=B,B € gl(2n,R)}
Thus

pra={( i ¢ ) I4€anR)

We may choose Tpq = T C U(2n). Then

L 0 —diag(ify, ... ,i6a) \ | ,
tha = {to = ( _diag(i6s,... ,i6n) O ) | 0: € [0, 21}

Then W), is simply the Weyl group of type B, Lie algebra. More precisely, Wy, acts on tg
by permuting 6;’s and changing the sign of 6;’s. We identify T" with (T)". According to the
generalized Cartan decomposition, we obtain,

Theorem 6.14 U(2n) possesses an KT"H decomposition, where K = U(n) x U(n) embedded
diagonally, and H = Oz, (R). In addition, for g = kth, t = exp ty is unique up to a reordering
of @ and sign changes of 0;’s. If we define : K x T" —- S by

Yk, t) = ktk' e S=U@2n)/H (k€ K,teT")

then v is surjective.
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In particular, due to the action of Weyl group, we may assume that siné; > 0, i.e.,
6; € [0, 7]
We observe that
Im(H) = (K x (H(A)) = (K x {ty | 0; € (0,m)})

is dense in S. Combined with Theorem 6.11 we have shown

Theorem 6.15 (Compactification of Spy,(R)) H : Spen(R) — S is an analytic compacti-
fication.

Let dsp,,g be a Haar measure of Spo,(R). Let dy(an)s be a U(2n)-invariant measure of S.
Then both measures can be regarded as volumes forms. In addition, these volume forms are
nondegenerate over every point because of the group action. Thus we may pull back dy(aps to

a volume form H*(dy(2n)s) on Span(R). We define %‘flg) to be the unique function satisfying

_ d#H(g)

Since H is an analytic embedding, d};(g) is an analytic function, and it is always positive.

Conversely, since S — H(Sp2n(R)) is of measure zero with respect to dyon)s, we can write

dH(g)

dsp;, 9 = (_dg )" H dyanys
Theorem 6.16 For every g € Spa,(R),
d#H(g)
dg >0

Finally, we will derive some applications of this compactifiaction. For any function, f €
C(Span(R), let f be the push-forward, defined to be

F(&)=fHs), (s eIm(H))
and zero otherwise.

Theorem 6.17 Let (7, H) be a nontrivial irreducible unitary representation of Spon(R). Let
f(g) = (n(g)u,v) be a matriz coefficient, with u,v K—finite. Then f is continuous, and real
analytic over Im(H).

Proof: Since u,v are K-finite, f(g) is real analytic (See [Knappl] page 210). It suffices to show
that if _ _ '
lim s* = s, (s €S —Im(H),s" =H(g"))

[ dee]
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then ‘
lim f(g') =0
11—

Let K = U(n) be the maximal compact subgroup in Spe,(R). Let g = kexpp be the Cartan
decomposition. We define

llgll = T'race(pp)
Let g = ky exp Hky = kykg exp(Ad(ky ') H). Then
n

lgll = Trace(H?) =2 H?

i=1
We say g* — oo if ||g}|| = oo. Notice that we have the following commutative diagram

K°x K x A X2K, Spon(R)

ym l% (6.25)

KxKxT —25 s

Let st = b((ki, k%), %), s = ((k1,k2),t). Then #* = exp(ty:) and ¢ = exp(tg) can be chosen
such that

lim ¢t; =t
1—00

Since s ¢ Im(H), t = exp tg ¢ Im(H). This simply means that for some j € [1,n], sin(8;) = 0.
This implies that .
lim sin(67) = 0
1—00
Recall that sin(theta;) = cosh(H;). Thus
lim H;(6%) = oo
100
Therefore "
lim ||¢’|| = lim E:H;C(Oi)2 > lim H;(6%)% = o
1—00 1—00 k=1 1—00
Thus g; — co. From Theorem 5.4 [Borel-Wallach|, we know that f vanishes at co. Therefore
lim f(g*) =0
1—00
Thus f is continuous. Q.E.D.

We will compute exactly the compactification of Spa(R) = SL(2,R).

Theorem 6.18

. o I I
m( ey )- ( (G G s T ) es,
(a+d)—(c=b): (at+d)—(c—b)
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Proof: Let
[ a b -1 d —b
9=\ ¢ d 9 T\ —¢ a
C _1 a+d b-—c A __}_ a—d b+ec
9792\ ¢c—b a+d 972\ b+c d—a

a?+ b+ +d?>+2ad—2bc o’ + b2+ c2+d? +2
4 B 4

Then

‘We obtain

det Cy =

Let £ = a® 4+ b% + ¢ + d? + 2. We have

C"l—g a+d c—b 7 —C-14 _1(a®—d®+c -0 2(ab+cd)
9 T ¢\ b-c a+d 9779 79T e 2(ab + cd) b2 —c? + d? — a?

Recall that the real basis of V = C is i, 1. We obtain

_ 4 N —41 N
2(C, Lyw) = E((a +d) + (c—b)i)zw = Grd T 0o c)i(zz)w
_1 —Pad?—a a .ww_(b-i-az')Q—i‘(d+ci)2 _(d—a)+ (c+b)i
(Zgw,w) = 5((b2 +d?—a?)4+2(ab+cd)i)Tw = ¢ ww = @7 a)—(c= b)iww

By interchanging a <> d,b 4> —b,c <> —c, we obtain

_(a—d)—(c+b)i__
e Al P (R T

Thus
)+ (b+c)i

(a—d
(a+d)+(b-c)

(2, Zg-12) = (Zg-12,2) = 2z

Therefore, from
H(g, z,w) = (iz,W)H(g) ( 12,7 )

We obtain that

(e—d)+(b+c)i —2i
a+d —c)t a —c)i
H(g) = ( (at )jg(,-b 2 édi“ﬂiélc’%gi )
(a+d)+(b—c)i (d+a)+(b—c):
It is easy to check that H(g) € S. Q.E.D.
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7 Dual Pair Correspondence

In this chapter,we will review the fundemental theory on the dual pair correspondence of Howe
[Howe2]. We will use (7, H,) to denote the Hilbert representation and (7, V;) to denote its
Harish-Chandra module. We will refer to = for both Hilbert representation and Harish-Chandra
module. In all cases g = L(G) is the Lie algebra of G, and gc is the complexification of g.

Let .
1 1 1
0(X)=§( L )X( L ) (X € Span)
be a transform from Spa,(R) to Spa,(C). We write
Sp = C(Span(R)) = 5p2a(C) NU(n,n)

throughout this chapter. In the later chapters, Sp will be the standard symplectic group.

7.1 Dual Pairs

We follow the definition in [Howel]. Let (G, G’) be a pair of subgroups of the symplectic group
Sp(W). We say (G,G") is a reductive dual pair if

1. G and G’ act absolutely reductively on W;
2. G is the centralizer of G', G’ is the centralizer of G in Sp(W)

If (G, G') is a reductive dual pair in Sp(V, ), and if V =V, @V is a direct sum decomposition
such that Q(V3,V2) = 0 and V}, V5 are G - G’ invariant, then we say that (G,G’) is reducible.
Here Q|y, is automatically nondegenerate. If we restrict (G,G’) to Vi, we obtain a dual pair
(Gi, G%) in Sp(Vi,y,). Then G can be identified with G; x G2 and G’ can be identified with
G x GS. We say that (G,G’) is the direct sum of (G1,G}) and (G2, G5). Essentially, every
reductive dual pair can be decomposed as the direct sum of irreducible ones. All the irreducible
dual pairs are classified in [Howel].

Theorem 7.1 There are two types of irreducible reductive dual pairs. (G,G') is a dual pair of
type I means that there exist

1. a division algebra D over F,with involution {;

2. D-modules V and V', with non-degenerate f§-sesqulinear form (,) and (,)’; one §-hermitian,
and the other f-skew-Hermitian; G and G’ are the isometry groups respectively;

3 W=VepV', <a®bc®d>=Trp/r((a,c)1(b, d)g), then <,> is a symplectic form on
W, and Sp = Sp(W) is the isometry group of <,>

(G,G") is a dual pair of type II means that there exist two GG'-stable Langragian subspaces X
and Y such that W = X ®Y and there exist

1. a division algebra D over F;
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2. left D-module Vi and right D-module Va;

3. X =V1®p Vo

4. (G, @") is identified with GLp(V1), GLp(V2) in Sp(W)

For real classical groups, all the dual pairs were made explicit in [Howe2].

Theorem 7.2 (Howe) There are seven families of dual pairs.
1. D =R, §=id, (O(p,q),Sp2n(R)) C Spo(ptq)n

D =C, § =1d, (O(p,C), Sp2.(C)) S Spapn

D =C, § = conjugation, (U(p,q),U(r,s)) C Spap+q)(r+s)

D = H,§ = conjugation, (Sp(p,q), 0" (2n)) C SPan(p+q)

D =R, (GL(m,R),GL(n,R)) C Sp2nm

D =C, (GL(m,C),GL(n,C)) C Spamn

NS S

D =H, (GL(m7IHI)’ GL(n’ H)) - SpSmn
The first four are type I classical groups, and the last three are type II classical groups.

Let % be the metaplectic cover of Sp. For any subgroup G of Sp, we use G to denote
the preimage of G under the metaplectic cover, regardless of the fundamental group of G. Let
{1, €} be the preimage of the identity in Sp. Let (w,?#,) be the oscillator representation. Then
we will always have

w(e) = —1

Thus we may use G (¢) (é’ad(e))to denote the unitary (admissible) dual of @ such that m(e) = —1
holds. We shall keep in mind that this equation is always true in this thesis.

Definition 7.1 (stable range) A type I dual pair (G,G’) is in the stable range if the real
rank v of G is greater or equal to dimp(V').

7.2 Structure Theory on Dual Pairs of Sp
1. We fix a Cartan decomposition sp =u & S.

v={( 7y ) I XeUm
(5 wh

A+iB 0
uz{( 0 A_Z.B)|At=—A,Bt=B€gln(R)}
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w={(4 ) 1acamo}
s:{(Afw A;w)|M:AJﬁ=B6mMM}

|

It

We shall notice here that

) | At = A,complew}

Lo ©O
co ©On

) | A = A,comple:z}

S={7=Xt|X€Sc}
Later we will use this structure to identify p.
. Let e; j be the 2n x 2n matrix with 1 on its (4, j)-th entry and 0 otherwise. Let
Xi—j =€ij —entjntir  Xij =€intjt+€inti,  X_ij=enyijt+enyj

. Let P be the polynomial algebra of n variables (z;,22,... ,2,). Let P<™ be the polyno-
mials of degree less or equal to m. There exists an action w of U(spa,) on P, often called
Fock model.

1
w(Xi—j) = 2:02j + 50i;
w(Xij) = —2izj
w(X_i—j) = 02,02;
This representation splits into two irreducible subrepresentation Py, P_, the spaces of
even polynomials and odd polynomials.

. Let (G,G") be an irreducible dual pair. There exists a Cartan involution 8 of Sp, such
that 0|, 0] are Cartan involutions of G and G'. This allows us to write

K=UNQG, p=Sng, t=ung
K'=Und, p=8ng, ¥=ung
. Fact: There exist reductive dual pairs (K, M’), (K’, M) in Sp, furthermore
KCGCM, KcGcM
For an exhaustive proof of this fact, see [Howe2],Ch 5. Let

m%zmcﬂs%, m(%zm(cﬂu(c
meE =meNSE,  mg =meNuc
We have
nt _ (ob\K o _ K
me = (S(c) ) me = (uc)
+ +\K’ 0 _ K’
mg =(Sg)",  mg=(uc)
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6. Fact: Let M° = UX', and M"® = UK. Then (M°, M'?) is a dual pair in Sp, and
K g MO, KI g MI,O

Furthermore,
m¢ @ mg = pc @m¢ = pec ®mg

1+ L= __ 1 L+ .7 1,—

This fact was also proved in [Howe2] Ch 5.

7.3 Structure of P

For a compact group K C Sp, let R(Iz , P) be the set of K types in P. For a pair of commuting
compact groups (L,L') C Sp, 0 € R(L,P), o' € R(L',P), we use o0 ® ¢’ to denote the tensor

/
)

product of o and ¢’ regarded as a representation of LL’. Notice here
15 {(1,1),(e,e)} > LxL' — LL -1

is an exact sequence. And
ole) ®a'(e) = (-1)(-1) =1

Therefore o ® o’ is indeed a representation of LL'. We use P, to denote the o-isotypic subspace
of P. For arbitrary L-module V', we denote the o-isotypic subspace by V,. The main reference
here is [Howe2].

1. For any 7 € R(M?",P), there exists a unique 7’ € R(WO,P) such that
Prerer
We often denote 7’ by w(7). The map
w: R(MP, P) — R(M™, P)

is a one to one correspondence. The inverse map is given by interchanging M° with M'0,
In particular,

P = GBTER(MO,?)PT = O cr(aro,p)T @ w(r) = EBreR(MO,17)737,w(r)
2. For o € R(K,P), we have
Py =0 Q@ w(o) (7.26)

where w(o) is an irreducible unitary Harish-Chandra module of M’. In other words, we
have
P =®,criz,p)? ®w(o)
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3. Recall that (S7)K = m/~. Let
HK)={peP|w(x)p=0 Vz em' ™}

Also notice that the K-invariant algebraic differential operators on P with constant coef-
ficient are generated by m”~, and under the oscillator representation m” ™ is all the 2nd
order K-invariant differential operators with constant coefficient(see [howe3],Theorem 2).
Thus we may call H(K) the K-harmonic functions.

Theorem 7.3 (Howe) For o € K, P, = U(g)H(K),. H(K), consists of homogenous
polynomials of lowest degree (denoted by deg(o)) in Py. In addition,

37 e RIMY,P), HEK), 2o (7.27)
For a proof, see [Howe2] Prop 3.1.
4. Theorem 7.4 (Howe) There ezists a unique o' € R(K',P), such that
H(K)e NH(K') 2o Q0
We denote such a space by H, o . We have
(o € R(K,P),d’ € R(K',P),7 € R(MO, P), 7' € R(M", P))

mutually determine one another under the relationship we have defined in Equations 7.26
and 7.27.

See [Howe2]| Ch 3.

5. Theorem 7.5 (Howe)
P =U(g)U(g")(H(K) NH(K'))

Let N be an arbitrary (g, g’,I?I?’) submodule of P. Suppose P<"1 C N, but P<¢ ¢ N.
Then

d = min{deg(c) | o € R(K,P/N)} = min{deg(c’) | o’ € R(K',P/N)}
If o is of minimal degree, then
Hoo ZoQ0' € R(I?I?’,P/N)

and o' is of minimal degree as well. In addition, no other irreducible representation of K’
occurring in H(K), occurs in P/N.

See [Howe2] Ch 4 for proof.

59



7.4 Howe’s Correspondence

Definition 7.2 Let R(g, K, P) be the set of isomorphism classes of irreducible (gﬁzl?)-modules

which can be represented as P/N, for some (g, K) submodule N'. For m € R(g,K,P), let Ny
be the intersection of all such N satisfying PN = V. Then P/N; is a (g x ¢’, KK')-module.
We write

P/Nz = 7w Q wy(r)

where wo(r) is a (g, K')-module.

Notice that this definition is consistent with our earlier definition of w for the dual pairs
(M°, M"%) and (K, M') where w = wy.

Theorem 7.6 (Howe) The (g', K')-module wy(r) is finitely generated, admissible, quasisim-
ple. It has a composition series of finite length. wo(m) has a unique irreducible quotient w(mw).
The correspondence

wiw =7

defines a bijection from R(g, K, P) to R(g’,I?’,’P).

A proof of this theorem can be found in [Howe2]. w is often called Howe’s correspondence, or
dual pair correspondence. Sometimes we will write R(g, K,P) as R(G,w).

Theorem 7.7 Let o € ’R(I?,’P/J\/,T) be of minimal degree in P. Then M, . generate P/Ny
as (g,9') module, and o' € w(r).

Proof: The first statement was proved in [Howe2]. Let N’ D N, be the unique (g, g’) module
such that
P/N =7 @ w(n)

To show that ¢’ € w(n), it suffices to show that
Moo NN = {0}
Otherwise, since H, 4, is an irreducible K x K' module,
Hoo CN

This implies that P C N, which contradicts our assumption. Q.E.D.
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8 Matrix Coeflicient:Convergence

Let (G,G") be a reductive dual pair in Sp. Let w be the oscillator representation of 3‘; Let
(m,H) be an irreducible representation of G. Let P be the Harish-Chandra module of w and
V be the Harish-Chandra module of 7. We define a bilinear form (,) on PQV @ P Q V€ as

follows.

($® % @)y = /é(w(gw, Dr(@u)dg (b €PuveV)

We will examine the convergence of this integral. Roughly speaking, 7 is said to be in the
semistable range of (G, G’) if this integral converges for every (u,v, ¢,1). We will only restrict
our attention to real reductive groups with compact center.

8.1 Structure Theory

Let G be a real reductive group with compact center. Let K AN be its Iwasawa decomposition
and a the Lie algebra of A.

1. G = K exp p—the Cartan decomposition, §—the Cartan involution;

2. (,)—invariant real bilinear form on g, positive definite on p and negative definite on &;
¥ t—Positive restricted roots with respect to N;

A—Simple roots;

at = {afa) >0|a e A};

af = {Re(a(a)) > 0| a € A};

At =exp(a®);

g = @g,; g, root spaces;

© e N S otk W

p= % Z,\ezj dim(gx)A;

10. a > B if a — B = Xq4,eania; for n; non-negative integers or one of n; is not an integer;
11. a > Bif a = B+ Zgeacioy for ¢; nonnegative; o > 3 if at least one ¢; > 0;

12. M = Zk(a), the centralizer of a in K;

13. b is the maximal torus in m;

14. W(a, g)—the Weyl group;
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Theorem 8.1 (KAK Decomposition) Every g € G has a decomposition of the form kiako
with k1,ks € K,a € A. The element a is often written as a(g) or exp(H(g)), and it is unique
up to conjugation by Weyl group W(a,g). When a € A, g is called regular. Under the KAK
decomposition, the Haar measure

dg =[] (exp(A(H)) — exp(=A(H))) "™ o dkydHdk
Aexi

In short we will write
dg = A(H)dk,dHdks

Furthermore,

AH)#0 (Headh)

The Haar measure of the singular(non-regular) elements is zero.

The K AK decomposition can be computed as follows. According to Cartan decompostion,
for any g € G, we may decompose it uniquely as k(g) exp(p(g)). And p(g) € p can be written
as Ad(k)H(g), where H(g) € a. Thus, we obtain the K AK decomposition of g:

9 = k(g)k exp(H(g))k™"
One advantage of this definition is that we can define a norm on g € G, namely
lgll = (p(9),p(9)) = (H(g), H(g))

One immediate result is that
Theorem 8.2 The set {g € G, ||g|| <} is compact.

Now we may speak of g, — oo if ||g,|| = co. For H € at, it can be proved that

A(H) < cexp(2p(H))
If g is not regular, i.e., a(g) ¢ AT, we say g is on the wall.
Theorem 8.3 Under NAK decomposition, the Haar measure is given by
dg = exp(2p(log(a))dndadk (g = nak)

where da, dn, dk are Haar measures of A,N,K respectively. The measures da and dn can be
tdentified by the exponential mappings with Lebesque measures on a and n.
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N e & s

8.2 Matrix Coeflicient

We will always assume that the Hilbert norm on H, is K-invariant.

Definition 8.1 Let (7, H.) be a representation of a real reductive group G. For (u,v) € H,,
we define

7"'u,v(g) = (W(g)uav)
Tup 5 called a matriz coefficient. We will assume u,v lie in the Harish-Chandra module V;
from now on.

Now let (71,U),(m2,V) be the finite dimensional K-modules generated by u,v respectively.
We may define my v (9) € Homc(U, V), a matrix-valued matrix coeflicient by

muv(g)(u) = Pym(g)u  (u€U)

where Py is the projector (of Hilbert spaces) onto V' C V;. Since Py commutes with 7(K), we
have

wu,y (kraks) =Py (ki)w(a)m(k2)
=n(ky)Pyn(a)m(k2) (8.28)
=11 (k1) Py 7(a)m2(k2)

We will write 7 = ((71,U), (12, V')) for the pair of representations of K, and 7, = my,y : G —
Homc(U,V). Let H, be an irreducible admissible representation with infinitesimal character
X. Let x» be the corresponding character of U(g)?. Then =, satisfies a class of differential
equations defined by

m(z)mr(9) = x(N)(2)mr(g9), z2€U(9)%,9€G
Suppose A = {a1,as,... ,a,}. For H € a, we define
a(H) = (a1 (H),a2(H), ... ,ar(H))
We have the following theorem:

Theorem 8.4 ( [Knappl] Theorem 8.32) For a pair (11, 72), matriz coefficient 7. has the
following asymptotic expansion

mr(exp(H)) =Y Fy_plexp(H))  (H €a*)

Fy_plexp(H)) = Y cyqo(H) exp((v — p)H),  (cog € Hom(U,V))
geNr

Here the summation is over finite number subset of N'. This exzpansion converges on a%,
converges absolutely on any compact subset of a™.
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If Fy_,(exp(H)) # 0 for some H € a%, then v — p is said to be an exponent of 7,. A leading
exponent v — p is an exponent of 7, such that v > v’ for any exponent v’ — p of m,. The
corresponding term F,_, in the asymptotic expansion will be called a leading term of =,.

Theorem 8.5 ( [Knappl] Theorem 8.33 ) Suppose that m is an irreducible admissible rep-
resentation of G with infinitesimal character X\, T a pair of finite dimensional subrepresentation
of V. If v — p is a leading exponent of -, then

v=w.\q

for some w € W (ac @ bc; gc)

We say that v — p is a leading exponent of 7 if v > ¢’ for every exponent v’ — p of any .

8.3 Asymptotic Behaviors

Theorem 8.6 ( [Knappl] Theorem 8.47) Suppose 7 is an admissible representation of G.
Then the following conditions on a weight vy € a* are equivalent:

1. We have Re (v) <X vg for every leading exponent v — p of «;

2. There is an integer ¢ > 0 such that for every u,v € V;, there exists a constant C such
that
Tup(exp(H)) < Cexp((vo — p)H)(1 + |HID?,  (V H € a)

3. There is an integer ¢ > 0 such that for every u,v € V;, there exists a constant C such
that

Tuu(9) < Cexp((vo — p)(H(9)) L+ H (D  (Yg€G)

From now on, C or ¢ will be used as symbolic constant. Let L and R represent left and right
regular representation of G. According to [Knappl] 8.47,

Theorem 8.7 Suppose 7 is an admissible representation of G and vy satisfies one of the
conditions in Theorem 8.6. Let x € U(g). Then the estimates of Theorem 8.6 hold for every
L(z)myy and R(z)my .

Now let f(g) be a (smooth) function on G. We would like to give a necessary condition on
f such that

Vseg, /G L(z)f(g)dg = 0

Theorem 8.8 For z € [g,g|, suppose that f and L(z)f satisfy the property that
1 (9)ll < cexp(vo(H(g)))(1 + || H||)
IL(z) f(g)ll < c(z)exp(vo(H(9))(1+[|H[)? VY z€lgg]
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c(z),c,q > 0 are constants and
vo+20= ) cio, (ci <0)
o, €A
Then
LL(x)f(g)dg =0

Proof:

1. First we use KAK decomposition to show that L(z)f(g) is integrable with respect to
Haar measure of G. From our assumption, we have

/ L(z)f(g)dg < c / exp(vo(HD) (1 + lgl)7A (H)dK1dH dk
G KA+tK

<c / expl(uo + 20)H)(1 + | HI)"dH

(8.29)
<cf exp( Y cios(H))(1 + [ H|)IdH
a1(H)<0,...,a-(H)<0 o, €A
converges absolutely
2. We claim that there exists a ¢y < 0 such that
VHeat  allH|72 Y cies(H); (8:30)
a, EA

Notice that
Z ¢;a;(H) = nonzero constant
a, €A

a;(H)>0 (4 €A)
define a convex compact polytope, and this polytope does not contain 0. Thus we can
choose
Ea,' €A Ciai (H) }
1
I H]|=

in this polytope. Since the numerator and denominator are homogenous of degree 1, this
co satisfies equation 8.30.

co = max {

3. Now let z; € n. Since the curve exp(t;z1) is always closed, exp(t121)g is closed for every
g € G. In addition, exp(¢;z;)g is homeomorphic to R*. On the other hand, for r > 0,
the set

Cr={9€G:|f(g)l =7} S {g€G:cexp((vo+2p)H(9))(1 +|lgll)? =}
C {9 € G:cexp(allgl)(L + llgll)? =7}
Cl{geCG:|gll <}
is compact.

(8.31)
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Therefore C, N {exp(t1z1)g9} = {|| exp(t1z1)g]| > r} is compact. Hence

flezp(d>_tiz1)ak)| TR =0

4. We will use NAK decomposition to compute [ L(x1)f(g)dg. Notice that there exists a

parametrization
n = exp(t1z1) exp(taza) - - - €xp(tmTm)
With
n = ®Rz;, (t1,t2,... ,tm) € R™
such that
dn = dxridzs...dz,
Thus

/ L(zy) f (nak) exp(2p(loga))dndadk
G
=/ Ectl—f(exp(tlxl)...exp(tmxm)aK) exp(2p(loga))dt; ... dt;,dadk
1
=/dk/da/dt2dt3...dtm/%f{exp(tlxl)...exp(tmwm)ak)dtl(Fubini's theorem)
1

=/dk/da/f(exp(Ztimi)ak){fgdtQ...dtm
=0

(8.32)

5. We can change our choice on n by a conjugation of £ € K. Thus for every k € K, z; € n,
| Badwa) f)dg =0

Since [g, g] is the linear span of {Ad(k)z:||z1 € n,k € K}, we have for every = € [g, g],
| 2@ista)dg =0

Q.E.D.
This is the hard part. In fact, we have shown that

Theorem 8.9 Suppose that that L(x)f is integrable with respect to dg for every z € [g, g, and
[ is bounded by a positive function I1(g), such that, for arbitrary r >0, {g € G : I(g9) > r} is
compact. Then

v z gl /G L(@)f(g) =0
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On the other hand, recall that for each K-finite smooth function f on K, according to
Peter-Weyl theorem, f can be written as

fzz.fa

a'ek

where f, € C(K),. Here K acts on C(K) by left translation, C(K), is the c—isotypic subspace
of C(K). If o is not trivial on Ky, the identity component of K, we have

/ L(z)f,(k)dk =0 zct
K

If o is trivial on Ky, we will still have

/ Lz)f,(k)dk =0 zct
K
Thus we have the following theorem

Theorem 8.10 Suppose x € t , f € C(G) is K-finite, and L(z)f is integrable with respect to
the Haar measure. Then

/ L(z)f(g)dg = 0

Proof: Notice that every integral of L(z)f over Kg for a fixed g € G vanishes. According to
Fubini’s theorem,

/ L(z)f(g)dg = /K . /K L(z) f (kg)dkd]g]
-0

(8.33)

Here d[g] is the right G-invariant measure on K\G. Q.E.D.

We have proved that

Theorem 8.11 Let G be a real reductive group with compact center. For every x € g, suppose
that f and L(z)f satisfy

I (9l < cexp(vo(H(9)))(1 + [ HI)?
I L(z)f (9)ll < c(=) exp(vo(H (9)))(1 + [|HI)?

for some constants c(z),c,q > 0 and

U+ 2p = Z CiQ; (C,‘ < 0)
o, EA
Then,

/ L(z)f(g9)dg =0
G
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8.4 Matrix coefficient of the Oscillator Representation

Definition 8.2 (Schrédinger Model) There exists a unitary representation w of % on
L?(R") such that

1 .
w(Xk,_j) = l‘ka’Bj + 55,]6,
w(Xg,j) =izkzi (K #J)  w(Xkk) = ixi
w(X_k,—j) =0z 0z; (k #3j)  w(X k)= 5329%
Let GL(n) be the subgroup of Span(R) of the following form

(5 o)

GL(n) = {(9,¢) | g € GL(n),&* = det g}
w(g,&)(f)(z) = £f (¢'z)

See [Wallach] Ch 5.3 and 5.5 for more details. The isometry between the Schrédinger Model
and the Segal-Bargmann model was discovered by Bargmann in [Bargmann]. _

Let K = Spo,(R) N O2,(R) be the maximal compact subgroup. Then K the maximal
subgroup of S’;) is also connected. Thus the K-finite vectors are those E-finite vectors.

Then

Theorem 8.12 Let yu(z) = exp(—3||z||?). Then the Harish Chandra module in the Schrédinger
model is given by pu(x)P, where P is the polynomial algebra of n real variables.

Proof: We want to show that {X; _; — X; _;}7, {X;; — X_;—;}7 act on P<™.
For p(z) € P, and 7 # j, we have
(ziz) — 0zi0x;)(u(z)p(z)) =ziz;u(z)p(z) — ziz;u(z)p(z) + zip(2)0;p(2))
+ zjp(z )@p( ) 1(z)0,0;p(z) (8.34)
=(:0)p(z) + z;0ip(z) — 8;0;p(z))1(z)
Thus P<™ is preserved by the action of {zizj — 02;0x;}ixj.
For 7 = j, we have,
(aF — 8%2;) (p(z)p(2)) =2} p(e)p(2) + p()p(z) — o} p(z)p(z) + Tipa(2)Oip()
— p(2)8?p(2) + ziu(z)d;p(x) (8.35)
=(2z:0ip(x) + p(z) — 8;p(z)) (=)

Again, P<™ is preserved. Therefore, P<™ is preserved by {Xi; — X_i—,}. Notice that
Xi,—j — Xj,—i acts homogeneously on P. Thus P<™ is preserved by ¢ It is well-known that
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the Harish-Chandra module of the oscillator representation can be decomposed as the direct
sum of irreducible highest K-module with highest weights (n + %, %, %, e ,%), where n is a
nonnegative integer. From the equations we acquire, it is easy to see that the highest weight of
PEmP<™ is exactly (m + %, %, %, ceey -;—) Therefore u(z)P is the Harish-Chandra module of

the Schrodinger model. Q.E.D.

Even though the Schrodinger model has certain properties similar to the Fock model, their
Harish-Chandra modules are different. For example, it is difficult to write down exactly the
K-types in Schrodinger model, since the K action does not preserve homogeneity. Let g be
an element of G. For simplicity, we use g to denote any preimage of g under the metaplectic
covering when it causes no confusion. Now we can compute the matrix coefficients of the
Schrédinger model. We follow the multi-index convention.

Theorem 8.13 Let a = diag(a;,as,... ,an,al_l,... ,a ) € AT C Spop, t.e.,
ar>ar>...>ap>1

and let

n

(a,6) € Span (€2 =[] )

1
Then A = (A,+1). We write sgn(a,£) = sgn(£). Then

wa,5(@) = (w(@)z*u(z), 2% ()

n
P —B.~1/2 —2\— .
= sgn(a)cq,p Hai b=/ (1+a;?) (e +Bi+1)/2

i=1 (8.36)
n
= sgn(@)ca,p [ [ af* T3 (1 + a?)~(@HAHD/2
i=1
These formulae yield the asymptotic expansions for {(a1,... ,a,) | a; > 1} and {(a1,... ,an) |

a; < 1} respectively. Both domains contain n! Weyl chambers of A. Moreover, the leading
exponent of the oscillator representation 1is

1 1 1
(—5,_5,”. 7_5)

and the infinitesimal character is given by
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Proof: Let Co = [ z°u(z)dz. Then

0(@) =sgn(£)(ﬂ @)} (@a” exp(—3 3 afad), P (z)

=sgn(€ al % a+p exp(—l (a? +1)z?)dx
2 (3 1

—eom(©)l H R GRS ) ER O (8.37)
=1 i=1
—ogn(@)cass [ @)+ (a2 + )54

i=1

=sgn(¢)cars [ [ (@) 2 (a7” + 1)
i=1

o, +8,+1
2

Thus the unique leading exponent of the oscillator representation is

1 1 1
v = (_Ea—_éa a_i)
Therefore the infinitesimal character is given by

v+p=( 1n 3 l)
p—n 27 27"-72

Q.E.D.
Finally, we will give a theorem on the growth condition of the matrix coefficients of the
Schrodinger model.

Theorem 8.14 Let g = kyexp(H(g))ks with H(g) € at be the KAK decomposition of

Spon(R). Then for every u,v in the Harish-Chandra module of the Schodinger model, there
ezists a constant ¢ such that

lwu,0(9)] Scexp(—%zﬂz‘(g)) (H(9) = diag(H1(9),- .. , Hn(g), —Hi(g), ... — Hn(9)))
i=1

The same estimates hold for every L(z)wyy(g) and R(z)wyy(g), where z € g and L and R
represent the left and right regular actions.

Proof: We only sketch a proof here. For an arbitrary w € u(z)P, since {z*u(z)}aenn is a basis

for p(z)P, we write
w= Z waz®u(x)

wup(9) = (w(g)u,v) = (w(exp(H(9)))w(ke)u, w(ki*)v)

Notice that
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Suppose the finite dimensional K-subspace spanned by u and v is contained in u(z)P<™.
According to the previous theorem, for every pair (w(ko)u,w(ky*)v), there exists a constant
C(kg, k1) such that

(@lexp(H (@) (ko) w(ki )] < Clka, ba) expl—3 3 Hilg))

=1
Here we may choose
Clha, k) = ) |@lk2)w)all@(kT)0)8]Cos
{812 e <m, 3= B;<m}

Now since (k2, k1) € K x K is compact, and C/(kg, k1) is a continuous function, ¢ = max{C(kz, k1) |
ks € K, k; € K} exists. Then we have

n

lexp(H(g)) (k2 )u, w(ky o) < cexp(—3 - Hilo)

=1

The first statement is proved. Since w is unitary,
L(z)(w(g)u,v) = (w(x)w(g)uvv) = ”(w(g)u’w(w)”) = —wu,w(z)v(g)

R(z)(w(g)u,v) = (w(g)w(z)u,v) = ww(z)u,v(g)

Then the first statement implies the second statement. Q.E.D.
For oscillator representation, the growth condition estimate in this theorem is in fact stronger
that the growth condition in Theorem 8.6.

8.5 Convergence

We will study the restriction of the matrix coeflicients of the oscillator representation to the
dual pair (G, G’). For a representation 7 of G, for ¢, € P, u,v € V, we may formally define
a bilinear form on (P ® Vi, P¢ ® V¥) as follows

(% ® v, 6 ®u)y = /é(w(gw, $)(n(g)v, u)dg (8.38)

Now we want to study the convergence of this integral.
In general, let V,, and V, be two Harish-Chandra modules of an arbitrary reductive group
G. Let {z®} be a fixed orthonormal basis of V,, and {v;} be a fixed orthonormal basis of V.
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Observe that
W ®v,¢®u)
- /G (@(9), #)(n(g)v, u)dg

=/ (w(kr)w(exp(H))w(ka), ¢)(m (k1) (exp(H))w (k2 )v, u) A(H)dk,dHdks
KxatxK (8.39)

— [ Atman [ (lexp(H))o(ho ), (ki )6) (e(exp(H))m(ka)o, m{kT )b

— [ AEDAH Y (@lexp(H)%, o) (rexp(H))vi, 0 H (w6, 3)H (5, v: )
at @B,

where

S H(gu 8,0)2" @, = / w(k)$ ® m(k)udk
B K

Z H(p,v;a,1)z% @v; = / w(k)y @ n(k)vdk
o, K

Once we choose an orthonormal basis of the K-types of V;, there are only finite number of
(a,B,4,7)’s such that H(v,v;a,1) and H(¢,u;,j) are non-zero. Thus the integral ( 8.38)
converges for all u, ¢, v, 9 if and only if

I ,i,3) = [ (@lexp(E)a®,a®) n(exp(H))ui, o)A (H)dH

a

converges for all a, 3,7 and j.
Let G = O, 4 be the orthogonal group fixing the symmetric form defined by

0, 0 I,
L 0 o,

and G’ = Sps, be the standard symplectic group. Now as a dual pair in SP2(p+q)n> W€ may
choose R?"P+9) to be M(p + g,2n), such that G acts by left multiplication and G’ acts by
(inverse) right multiplication. We denote both actions on M(p + q,n) by m. We may realize
the Schrodinger model on

LY (M(p + q,n)) =L*(zij,i=1,...,p+¢qj=1,...,n)
Now let a = diag(a1,a2,...ap,1,... ,l,al_l,... ,a;l). We define
At={ala1>a2>...>a,>1}CG
Let b= diag(b;',b,%,... ,b;1,by,... ,b,). We define

AV ={b|by>by>...>b, >1}C G
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Thus we have

ae;; 1=1,...,p

m(a)ei,j = € j i=p+1,...,q
ajle;; i=q+1,...,p+q
m(b)e; ; = bje; ; t=1,...,p+q)i=1,...,n)

These formulae indicate that the embedding of A and A’ into GL(M (p + g,n)) are simply the
left multiplication and the (inverse) right multiplication.

aibjei,j 1= 1,... , D

m(ab)ei,j = bjei,j i=p+1,...,q
ai_lbje,-,j t1=q+1,... ,p+q

We can easily deduce the following theorem from Theorem 8.13.

Theorem 8.15
p,n

~ ~ Qu,y— Qi 1 @iy F g,y +1 2 _GagtBijtl 5 o _Og+i,jtBgti i+l
wa,p(ab) = sgn(ab)ca g H a; "’ q+”bj” T (afbj +1) P (a;°b; +1) 3
i=1,j=1
kil 1 o, +Bi,+1
i+ 5 12 [ I Bl 7% M
II o7+
i=p+1,7=1
pn
~ ~ —(egtry+Bi;+1) , — _%ijtogiythiy HBgt )2
wa’ﬁ(a) =Sgn(a)ca’5 H a‘i( g+1,7 0,5 )(ai 2 +1) 5
i=1,j=1

@i jtog iy +By j+Bgti,j+2
2

p,n
wa80) =sgn(B)cas [ 770052 + 1)

i=1,7=1
q,n
-Bl,j_% —2 _M
I & (b;"+1)7 7 2
i=p+1,j=1

(8.40)

Combined with Theorem 8.14, we obtain

Theorem 8.16 Let g = ki exp(H(g))ky with H(g) € at+ be the KAK decomposition of 6;:(1.

Let ¢’ = K\ exp(H(g'))k}, with H(g') € o't be the K'A'K' decomposition of Spon(R). Then
there exists a constant ¢ such that

¥4
|wu,w ()] < cexp(—nZHi(g)) (9 € G, Hy(g) = Ina;(g))

=1
P+av ~
lwuo(@)] < cexp(=——= > _Hj(9)) (9 € G’ Hj(g) =Inb;(g))
Jj=1
The same estimates hold for L(z)wy(g) and R(z)wuw(g') for every x € spon(piq)-
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By abuse of notation, we write n = (n,n,... ,n). Now we can prove the following theorem
concerning I(a, 8,1, 7).

Theorem 8.17 Suppose that for every leading exponent v of an irreducible admissible repre-
sentation w of Opq, 2p + Rev — n is a strictly negative combination of the simple roots, i.e.,

20+ Rev —n =< Zciai=)\ (ci <0)
a, EA

Then I(a, B,1,7) converges for every a,B,1,j. Thus, (,)r is well-defined.
Proof: Recall that for arbitrary matrix coefficient, we have
|((exp(H))vs, v;)| < cexp((A —2p +n)(H))(L+ |H|)?  (H €a™)

Thus

I(eB,i,3) < [ capexp((h =2+ m(EN)(1L+ |
p,n p,n

exp(— Y (agrij+Bij +VH) ] (exp(—2H;) +1)

i=1,j=1 i=1,j=1

oy g tegti j By +Bg 4, j+2
p)

A(H)dH

p
< /+ cexp((A —2p +n)(H))(L + | H|)? exp(~ Y nH;) exp(20(H))(L + | H||)*dH

=1

< [ _cexp\(HN)(1 + 1HI)'dH

p
- / cexp(3 cias(H)) (1 + | H||) don H . .. dey(H)
a1 (H)>O0,... ,ap(H)>0 -

<00
(8.41)

Thus I(a, 3,14, ) is always well-defined. And (, ), is well-defined as well .
Q.E.D.

Definition 8.3 We say that 7 is in the semistable range of the dual pair (Opq, Span), if for

——

every leading exponent v of an irreducible admissible representation © of Op 4, there exist ¢; <
0(i =1,2,...,p) such that

2p+ Re(v) —n =< Z iy
a;EA

We denote the set of representations in the semistable range by Ry5(Op q, SP2n)-
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At this moment, we do not know whether Rs(Op g, Sp2r) is contained in ’R,(Op ow). We will
show later that under a natural condition

Rss(opqumn) CR( D,q) W w)

(up to a central character). The question of whether an irreducible representation 7 belongs to
R(Op,q,w) can be read off from the Langlands parameters of .

Theorem 8.18 For every leading exponent v of an irreducible admissible representation w of
Spon, if —’—’—}g + Re (v) + 2p is a strictly negative combination of the simple roots, i.e.,

+
p2q+R()+2pj zciai=)\ (ci <0)
o, €A
then I(a, B,1,3) converges for every a, 3,%,j. Thus, (,)r is well-defined.

Proof: Notice that from Theorem 8.6 we have
+
|(m(exp(H))vi, v:)| < cexp(A — 20+ 2 q)(H)(l +[H|)?  (Hea")

From Theorem 8.15

(wap(exp(H)| < cexp(~212 ()
Therefore,
i) < [ cexp((n =20+ ()1 + 1) exp(- 22 ) AH)

< [, cexp(m)@ + =Y

-/ cexp(Y cvo(H))den (H) ... da (H)
a1 (H)>0,...,an(H)>0 1

(8.42)

<00
Thus, I{c, 8,1,7) is well-defined. And (, ), is also well-defined. Q.E.D.
Definition 8.4 Let w be an irreducible admissible representation of Span(R). If there exists
¢; <0, such that
.+_
_PTe + Re (v) +2p < Z ciay;
2
a, €A
for every leading exponent v of m, then we say that 7 is in the semi-stable range of (Span, Op,q)-
We denote the space of representations in the semistable range by Rss(Sp2n,Op,q)-

Notice that from this definition semistable range only depends on p + ¢, not on the pair (p, g).

Thus if 7 is in the semistable range of Op 4, then it is also in the semistable range of Oy o for
p'+q' = p+q. For this reason, sometimes we will denote the semistable range by Rs(Span, p+q).
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9 Semi-stable range

In this chapter, we will define the averaging operator
Lz:P°®Vy — Homc(P,Vr)

for a fixed 7 in the semi-stable range. And we will further show that if L& # 0, the image of Lz

is always irreducible as a (g/, K' ) module. Throughout this chapter, for an arbitrary g-module
W with a K action, Wk will be the subspace of K-finite vectors. Here all the homomorphisms
are complex linear.

9.1 Averaging Operator

For a Harish-Chandra module (7, V'), let (¢, V¢) be the same real module as V', with C acting
from the right conjugate linearly. Let (7", V?) be the Hermitian dual, and (7*, V*) the complex
dual. We have

Vi = (V)= (V)k

(V)% =V = (VQ)k
From our definition of semistable range,
7 € Rs(G,G') & m° € Rys(G,G")
(ﬂ-*, (V;)K) € Rss(G, G’) S T e Rss(G, GI)

In general, (7, V") will stand for the Hermitian dual space with the Hermitian dual action.
(m*,V*) will stand for the dual linear space of V' with the dual action. Occasionally, we will just
use 7" and 7* to denote the dual spaces of (m,V) is the category of Harish-Chandra modules.

Definition 9.1 We define i : P ® V; — Hom(P,V,) by

(p@v)(d) = (A¥)v (Y, ¢ E€P,vEV;)

g acts on the left by w°(g) ® 7(g), acts on the right by (w)*(9) ® 7(g); ¢ acts on the left by
w®(g'), acts on the right by (w)*(g').

Since P¢ < (P)* is an embedding of (g, g’) modules, 7 is a map of (g, g’) modules. Frequently, we
will neglect the map ¢ when we identify “vector valued” functions in P°®V, with certain“vector
valued” distributions in Hom (P, V).

Definition 9.2 Formally (to be made precise later), we define the averaging operator
Lg:P°®Vy — Hom (P,V;)

as follows

Lol ®v)(¢) = /G (0@P)r(gvdg (@, deP,veVy)
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Theorem 9.1 Suppose (7, Vy) is an irreducible admissible Harish- Chandra module of G with a
K —invariant inner product (,) and (w,P) a unitary Harish-Chandra module of G. Suppose that
()t (PRVy)®(P®Vy)¢ — C is well-defined. In other words, the integral ( 8.38) converges for
all ¢,,u,v. Let o be a K-type in w, P, be the projector from V; onto its o-isotypic subspace.
Then

Le@ov)p=3 / (6,(9)) Py (n(g))

oeK ¢

is well-defined. Moreover, Lo does not depend on the choice of the inner product (,) on V.

Proof:
1. First we define L}, : P¢ ® V; — Hom (P, V) by

L8, (ov)pu) = / (6,0(9)) (n(g)v, u)dg = / @B P u)ds,  ($dEPvucVy)
G G

Since L% (¥ ® v)¢ is a conjugate linear functional on Vp, it lies in Vh.

2. Next, L% is K-equivariant.
L5 ® o) R)A)W = [ W(k)gw(aW)n(e)e,u)dg
= [ @l 9)u)(x(a)v, wdg
= [ @@ atkaw,udg

- /G (6,w(0)) (n(g)v, m(k~"Yu)dg
—( (k) LS ® 0) ()

Thus £ : P ® Vz — Hom g (P, V}"). But P are K-finite vectors, therefore LY @ v)¢
lies in (V).

(9.43)

3. If we identify (V,*)x with V; under the inner product (,), we can define Lg as the
composition of L2, with this identification. More precisely, for a fixed o € K, and ¢ € P,
we define

Lol ®v)p = /G (6,0(9)%) P (r(g)v)dg

It is easy see that, for all u € V;, we have

LEW @ v)u) = (Le(p ®v)pu) (€ Po)

7



4. In general, we define

UEDIEDS /G (6, w(9)%) Py (n(9)) (9.44)

oEK

Since for any ¢ € P, ¢ is K-finite. Therefore ¢ is contained in a finite direct sum of P,’s.
Thus only finitely many terms occur in the direct sum (9.44). Hence L¢ is a well-defined
map from P¢ Q@ V; to Hom (P, V).

5. Since the projector P, does not depend on the choice of the K-invariant inner product
(,)on Vi, Lg: P¢QV, — Hom (P, V;) does not depend on the choice of (,) on V.

Q.E.D.

Notice that we do not assume (m, V;) is unitary here. However we assume 7|k is unitary.
In fact, if we define the matrix coefficients of 7 to be of the form ¢ — d(w(g)f) with § €
(Vi)k,f € Vg, then we do not need the inner product structure on V,. Nevertheless, we

stick with our original definition of matrix coefficient, since it is more commonly used in the
literature. Suppose that 7 € Rs5(G,G’). Then (), is well-defined. Immediately, we obtain

Theorem 9.2 If 7 is in the semistable range of (G,G'), then

Lo e =Y [0 w0 Prriguds

c€EK

1s well-defined.

I should remark here that the concept of averaging operator is not new in the compact Lie group
theory. In fact, various forms of averaging operators are used in studying the geometry and
topology of homogenous spaces. However, for noncompact Lie groups, the concept of averaging
operator is less commonly used due to the difficulty in determining the convergence. In the
next section, we will examine the properties of the averaging operator we have defined.

9.2 Properties of the Averaging Operator

We will assume that 7 is in the semistable range from now on unless stated otherwise.

Theorem 9.3 Let Py be the projector onto the trivial K -type of P¢ ® V. Then

‘CG:EGOPO
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Proof: We have

Lawbp @ m(k0)@) = 2 [ (6w(ahlkss) Py (ro)r(kdg

oceK

=> /~(¢,W(Q)T/’)Pa(7r(g)v)dg (9.45)
veit

=L5(¥ ®v)(4)

Thus
La(w(k)y @ m(k)v) = Lz(¥ @)

Therefore L is only nonzero for the trivial K-types of P¢ ® V,.. We have
Loz=LzoRK
Q.ED.

Theorem 9.4 L is a map of (g’,I?’) modules.

Proof: For z' € g, we have

L@y ®u)(9) =3 /éu»,w(g)w(mW«/z)Pa(w(g)v)dg
aEI:("
- /é(qs,w(w')w(g)w)Pg(n(g)v)dg

ceK

=% [l ). wle)) P (rla)ds
UEIL{

=(w*(z") Lg% ® v))(¢)

For k € K, a similar statement can be proved. Therefore, Lzisa (¢, K') map. Q.E.D.

(9.46)

Theorem 9.5 If 7 is in the semistable range of (G,G'), then
[:5 PRQVy — (Hom g,I?(P’ Vﬂ'))f{"

In particular, if L5(P°® Vi) # 0, then 7 € R(g, K,P).

Proof: From Theorem 9.1, L5 is K equivariant. From Theorem 9.3 wee see that under L5
only the trivial isotypic space is mapped nonzero. Thus

ﬁé('Pc ® Vz) € Hom (P, Vi)
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Now it suffices to show that V z € g,

L& @ v)(w(z)g) = () (Lz(¥ @ v)¢)

This is equivalent to V u € V,
/~(W(-’B)¢,w(g)1/))(7f(g)v,U)dg = /~(¢,w(g)ll))(ﬂ(w)ﬂ(g)v,U)dg
G G
< /5 i(qﬁ,w(exp(tx))w(9)¢)(W(exp(tfv))ﬂ(g)v,U)dg =0 (9.47)

o / w(g)) (n(g)v, u))dg = 0

Here L is the left regular action of g on the smooth functions on G. We write F(g) =
wy.¢(9)my.u(g). We will prove

/~ L(z)F(g)dg =
G

for the dual pair (Op 4, Sp2n(R)). For all the other pairs, we can proceed similarly. From the
semistability, there exist v, € a* and ¢; < 0 such that

vo+20—n= Z cioy
a, €A

From Theorem 8.6, we have

|7v,u(9)] < cexp(vo(H(9)))(1 + [ H(g)lI)?

According to Thorem 8.7, we have

|L(z)my,u(9)| < cexp(vo(H(9)))(1 + |1 H(g)II)?

From Theorem 8.16, we have

lwy,6(g9)] < cexp(—n(H(g)))

|L(z)wy,¢(9)] < cexp(—n(H(g)))
Thus,
|F(9)] < cexp((vo — n)(H(g)))(1 + ||H(g)])*

|L(z)F(g)| < cexp((vo — n)(H(9)))(1 + | H(g)]})?
According to theorem 8.11,

/L(w)f(g)dg =0

Now we have shown that

G(PC®V)CH0m 7(P, V)
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Since L is a (g, K')-map, and P¢ is K'-finite,

Ls: PRV — (Homg,k(P, Vﬂ—))k,
Finally, if L5(P¢ ® V) # 0, then (Hom (P, Va)) g #0. Thus m € R(g, K,P). QED.
Later we will give more precise information about the nonvanishing of £z under some quite
general assumption. Just as a byproduct, we have
Theorem 9.6 For every z € g, ¢ € P°,v € V, we have
La(w(z)p@v+ypm(z)v) =0
In other words, w(z) ® v+ ¢ ® n(z)v € ker(Lg).

Proof: Use R(z) instead of L(z) in the proof of the last theorem. Q.E.D.

9.3 Howe’s Quotient and its Dual

In representation theory, sometimes it is easier to deal with submodules than quotients. For
Howe’s quotient, we have

Theorem 9.7 = € R(g, K, P) if and only if (z*, (V) %) can be embedded as a (g, K)-submodule
of P*.
Proof: Suppose there exists a (g, K ) module map:

1:P—=>Vy
such that P/Ker(i) = n. Thus 7* = (P/ker(i))*. But (P/ker(i))* C P*. Therefore,
(7*,(Vy) % can be embedded as (g, K)-submodule of P*. On the other hand, suppose there
exists a (g, K)-submodule

J:(Vi)g =P
Let N = Nye(v;)zker(j(v)). Then (V) %) lies in (P/N)*, and
i: PIN = (V)%
is an embedding of (g, K )-modules. Since P/N is K-finite, thus the image of 4 sits in ((V;* );’%) 7=

Vz. But V; is already irreducible, so

PIN 2V,

Q.E.D. Let
(=W CWVNCWHC---CV=V

be a composition series of Harish-Chandra modules, such that V;/V;_ is irreducible. Then
Vi =V/Vo)k 2 (V/IV))k 2+ 2 (V/Va1)k 2 (V/Va)k = {0}

is a composition series, with each subquotient irreducible.
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Theorem 9.8 If(m, V;) is the unique irreducible quotient of a Harish-Chandra module (mo, Vy,)
of finite length, then (7*,(V})k) is the unique irreducible submodule of (g, (V) k)-

Theorem 9.9
) & Hom ,~(73,V7r)

wo(7r

A% (w))K, = @, cr(i P)Hom #(Por, Vi)

Proof: First let ® € Hom o R(P7 Vz). Then ker ® D N; as defined in Definition 7.2. Thus ®
can be regarded as an element in

Hom (P/Nﬂ'v Va ) Hom (V ® Vwo(w))V ) = (Vwo(ﬂ))*

On the other hand, for every ® € Hom k(P/N’,r, V), there exists a unique (still denoted by)
® € Hom (P, Vx) such that ®(N) = 0. Therefore,

= Hom , (P, Vx)

wo(ﬂ) -
For the second statement, we can simply take the K'-finite subspace. We have

( 4:0(77))1? = GBG’GR(I?',P)Homg,I?(PU’,V7r)
Q.E.D.

Notice that
Hom gy[?(rpo% V?T) = (Ho'm g,f{'(’P7 V?r))a'*

For every ® € H om g #(Por, V), because of the direct sum decomposition, we may extend it
to an element in H om #(P,Vz). In our future discussion, we will identify Hom . 7#(Pot, Vi)
with its extension in H om o (P, Va).

Lemma 9.1 (Reciprocity) Let (o,V,) € R(K,V;) be of minimal degree in P. Let (o', V)
be as in Theorem 7.4. Then

dim(Hom z(Vs, Vx)) = dim(Hom g, (Vor, Viy(m))) = dim(Hom g, (Vor, Viyg(m)))
Proof: Notice that P, = U(g)H(K'),s. Thus the restriction from P, to H(K'),
Res : Hom | (Pgr, Vi) & Hom 7#(H(K )1, V)
is injective. From section 7.3,

I7eR(M°,P)  HEK)y 2V, 0V,
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and if a € 'R(Iz' ,Vx)and a # 0 in I? , then according to Theorem 7.5
o ¢ R(K, ™)
Thus, we can further have an injection (still denoted by Res)
Res : Homg’;((’Par, Vi) = Hom z(Ho o, Vo) 2V, @ Hom (Vi Vi)

Therefore we have
dim(Hom z,(Vor, Voo (ry)) = dim(Hom g, (Vy, (Vu’)’o(,r))k,))
= dim(Hom g (V},(Homg,f((’P,V,r));(,))
= dim(Hom g, (V;

Vi, Hom | 2(Pyr, Vi) (9.48)
< dim(Hom g, (V}5, V) @ Hom (Vy, V)

~

o’

For more or less the same reasons, we have
dim(Hom z(Vo, Vig(w(r)))) < dim(Hom gz, (Vor, Vo))
< dlm(HO’l’n (Va' ng(ﬂ')))
< dim(Hom z(Vy, V) = dim(Hom g(Va, Vogu(ry))
S dlm(HO’In K(V0'7 Vwo(w(w))))

(9.49)

Thus,
dlm(Hom (Va, V, )) dim(Hom 7% (Val, Vw(r))) = dim(Hom R,(Vo”’ Vwo(w)))
Q.E.D.

Corollary 9.1 The map

Res : Hom #(Pot, Vi) = Hom g(Ho o, Vz)

is a bijection. In other words, every map ¥ in Hom (Hs 4, Vr) can be extended to a map T
in H om #(Pot, Vr) such that

Tly, , =0

Since (wo(m), Voy(r)) is a finite generated quasisimple (¢, K’ )-module with a unique irreducible
quotient V,,(x), (wo(m)*, (Hom (P, Vx)) 7+) is also a finitely generated quasisimple (g’, K')-
module with a unique irreducible submodule equivalent to (V, (W)) 7~ For notational purpose,
we will denote such a submodule by (Vuj‘(w)) R
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Corollary 9.2 (Homg 7#(P, V) is a finitely generated quasi-simple (g’,I?’) module. There
exists a unique irreducible submodule w(vr)’;?,. Let 0 € V;, such that deg(o) is minimal among

all the I?-types of m. Let o' be the unique I?’-type such that
Hoo = H(K)NH(K)s
Then (V*

w(,r))_,;,, is generated by Homg #(Por, Va) as a U(g') module.
Proof: From the last Lemma, we have
Hom | z(Por, Vi) = (Vo (m)or= = (Viimy))or

wo(m) w

Thus Homn #(Psr, Vr) is contained in the irreducible submodule (V:(ﬂ)) - But (V;(ﬂ)) 7 is
already irreducible. Therefore, it is generated by Hom s #(Por, Vz). QE.D.

9.4 Irreducibility

Now we come back to the averaging operator £. To show that the image of our averaging
operator is irreducible in (Hom . #(P,Vz)) ., it suffices to show that the image is exactly

( :(W)) 71 or alternatively, Lx(P° ® V;) is generated by Hom o #(Por, V). We shall focus on

the K'-type ¢’ of minimal degree.

Lemma 9.2 Suppose 7 is in the semi-stable range of (G,G') and L& #0. Leto € ’R,(IA{',W)
with minimal degree in P. Then
L(Pr)*®@Vz)#0
Proof: Since Lz is a K'-equivariant map, by taking the (0')¢-isotypic submodule, we have
['é 1 (Pe)* ®Vz — Hom G,E(Pa’v Va)
If L&((Py)¢ ® Vi) = 0, in other words,
Im([,é) N Hom g’f{(Pal,Vﬂ-) = {0}
then
Im(Lg) N (Vim) g = {0}
But (V;( Tr)) 7 18 the unique irreducible submodule of (Hom . #(P,Vz)) - Thus
Im(Lz) =0

This contradicts that L5 # 0. Q.E.D.

We shall make one comment here. In our proof, we identified (P,/)¢ with (P€)ge just

for simplicity. In general, (¢, V¢) only differs from (7, V) in the complex structure, they are
identical as (g, K)-modules.
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Lemma 9.3 Suppose 7 is in the semistable range of (G,G') and L5(P ® Vi) # 0. Then the
Hermitian dual (ﬂ'h,VI%) € R(g,K,P) and the dual (W*’V;{) € R(g, K, P°).

Proof: We define Eé : P = VF® Hom g,}?(P’ m) by

L@ = [[(olawinlondy PSP vEV)
Notice that Lé is (g,f( )-equivariant with respect to (P¢, V), and (g ,I?’)-equivariant with
respect to (P¢, Hom (P, m)). Thus
ﬁé :PC— (V;)I? ® (Homgf{('P,Tr))f{.,
Lz # 0 implies that L% # 0. Therefore
(", (V) ) € R(s, K, P°)

Thus _
(7", (V! z) € R(g, K, P)

This is equivalent to _
(", V2) € R(g, K, P°)

Q.E.D.

Theorem 9.10 (Irreducibility) Suppose 7 is in the semi-stable range of (G,G') and L5 # 0.
Then

Im(Lg) = (Vi)

18 irreducible.

Proof: From the lemma, we have (V)% € R(g, K, P¢). Let P¢/N be the maximal quotient
defined in Definition 7.2. Since L is a (g, K) map from P¢ to

(V)% ® (Hom , 2(P,m)z
L%, descends to a map from P°/N to
(Vi g ® (Hom , (P, )z

Let o € 7 be a K-type of minimal degree in P. Then o* = ¢¢ € R(K,*) is of minimal degree
in P¢. Thus P¢/N is generated as a (g’ x g, K K')-module by (H, )¢ according to Theorem 7.7.
Therefore Elé(’P") is generated as a (g x g’, KK')-module by Llé( Go1), as a (¢', K')-module
by Elé((Par)c). Notice that

L&((Por)* ® Vi) = LE((Por)*) (V) € (Hom | z(P,m))(o)e = Hom ; z(Por, V) (9:50)
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But (VL:(F)) % is generated by Hom  z(Pyr,Vr). L5(P°® V) is contained in (V;( 7r)) 7~ But

(VJ(W)) 7 is already irreducible, and Im(Lz) # 0. Therefore
Im(Lg) = (Vi) g
Q.ED.

9.5 Invariant Hermitian Structure

Let m be a unitary representation of G. This is equivalent to say that there exists an inner
product on V; such that

Vke K, u,veVy (ku, kv) = (u,v)

VzeEg, u,veVy (zu,v) + (u,zv) =0
Let R = ker(Lg) be the radical. Then

Ls: (P°®Vi)/R — Hom (P, Vy)

is injective. Since Im (L) is irreducible and isomorphic to (V) 7, (P°® Vz)/R is irreducible

w(m)
and isomorphic to ( J(W)) e

Definition 9.3 We define an Hermitian form on (P°® V;)/R by

(@ ul,[p ®]) = /aw,w(g)@(w(g)u, v)dg

We can easily show that

L ([¢@u],[p ®v]) = (Lg(¢ ® u)p,v)
2. (,) on (P°® V;)/R is Hermitian.

([p@ul[p®v]) = ([¥ ®v],[¢ ®u])

3. () on (P°® V;)/R is ¢ invariant.
Vo g, (w(z)¢@ul [ ®v]) + (¢ @ ul,w(z)y ®v]) =0

Theorem 9.11 Suppose L5(P°®V) # 0. If w is unitary and in the semistable range of (G, G'),
then the Hermitian form (,) on (P*® V;)/R = (Vo) i 18 g’ invariant.

86



10 Non-Vanishing Theorem for (O, 4, Span(R))

The dual pair correspondence for real reductive pair (Op g, Sp2n(R)) is a one-to-one correspon-

dence between R(é;:,,w) and R(Sp2n(R),w). Philosophically speaking, this provides a tool
to study representations of a “bigger” group through representations of a “smaller” group. In
this chapter, we will assume p + ¢ < 2n + 1. Thus we regard Op 4 as the smaller group and

—~—

Span(R) as the bigger group. However, one essential question that needs to be answered here is
what representations are contained in R(Op 4, w). In this chapter, we will show that roughly all
the representations (up to a central character) in the semistable range Rs;(Op q, Sp2n(R)) are

contained in ’R(a;:q,w). We will first study the Bargmann-Segal model (see Ch 1,2 [R-R]) in
the frame of the dual pair (Op 4, Sp2n(R)). Then we will proceed to show that for m within the
semistable range and p+q < 2n+ 1, either [‘6;’ (P®Vy) or L5— (P°®Vzgy) is not vanishing.

g p,q

Here x is a central character of 6;:1. Thus according to Theorem 9.10, L5(P°€® Vz) yields an
irreducible representation of G’, namely (w(m)*,( c:(7r)) 7)- Throughout this chapter, we will
fix p,g,n.

10.1 Bargmann-Segal Model and (O, 4, Sp,) pairs

Let Spq = ( Ié’ —OIq ), and W = ( _O}‘n é: ) Let Vi be a real vector space of p + ¢

dimension. Let (,); be the nondegenerate form
(z,9) ='Spqy  (z,y € VA)
Let (V2,w) be a symplectic space such that
w(z,y) = o'Wy (z,y € Vo)
1. Let V = Homg(V1,V2) = Mat(p + ¢,2n,R). Let
QX,Y) =Tr(Sp YWX!) =Tr(X'SpYW)  (X,Y € Mat(p +g¢,2n,R))

Then
(Y, X) = -Q(X,Y)

and ) is nondegenerate. Thus V is a symplectic space. Let Sp(V, ) be the symplectic
group fixing 2. We define the left multiplication

L:0pq— Sp(V,Q)
and the right multiplication
R: Spoa(R) — Sp(V, Q)

It is easy to check that L(Op4) and R(Span(R)) fix Q. And L(O,4) commutes with
R(Sp2n(R)). Therefore (Op 4, Sp2n(R)) is a dual pair in Sp(V, Q).
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. Suppose p < q. Let
¥ = ( X1 X2 ) c ( M(p,n) M(p,n) >
Xo1 Xoo M(q,n) Mi(q,n)
Then
QX,Y) =Tr(Xi2V — XYy — X0V + Xo1Ys)

. Let Vg = Mat(p,n,C) & Mat(q,n,C). Here V¢ is not the complexification of V. It is V
itself regarded as a complex linear space. The exact identification will be discussed later.
For v € V¢, we may either write v = (v1,v2) or v = v; + v where v; € Mat(p,n,C) and
Vo € Mat(q,n,C). Let v; = Re(v;) + iIm(v;). We define

(u,v) = Tr(uv}) + Tr(uvl)
It can be computed that
Re(u,v) = Tr(Re(u1)Re(v}) + Im(u;)Im(v}) + Re(ug) Re(vh) + Im(ug)Im(vh))
Im(u,v) = Tr(Im(u;)Re(v}) — Re(u1)Im(vt) + Im(uz) Re(vh) — Re(ug)Im(vh))
Now in order that Q(u,v) = Im(u,v), we let
Im(u1) = X2 Re(vy) = Y11 Im(vi) =Y12  Re(w) =Xn
Im(uz) = Xo1  Re(va) =Yan  Im(wvs) =Yar  Re(us) = X2
Thus we may identify V' with V¢ as follows:

0 Pl )

_ X X . .
c1. ( X;i X;z ) — (X11 +1X12,X22+ZY21)

. Now the complex multiplication as linear transform in V' can be written as

Re(u1) Im(uy) ~Im(u1) Re(uy)
(frte) mbuad ) oy (pmelis) Rl )

_ Re(u1) Im(uq)
= 5pa ( Im(uz) Re(us) ) v

I, 0
0 '—'In

(it e )= (o )
=500 (o) o) ) 4

Let A, = ( ) Then the complex conjugation can be written as
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5. Now we fix a maximal split Abelian subalgebra a; of 0,4

OP A Op,q—p
a={HN=| XA 0 Opgp | |A=diag(rs,...,Np)
0

q—p,p Oq_pvp Oq-—-p
Then the positive Weyl chamber ai" is given by those A such that
AL>A > > >0

For Op p, we do need the disconnectedness of O, 4 in order to produce such a Weyl Cham-
ber. The maximal split Abelian subgroup is of the following form

coshA sinhA 0
L(expH(A\)) =L | sinhA coshA 0
0 0 I,p

Here L indicates how O, , is embedded into Sp(V,2). From now on we regard all the
L(g) (g € Opyq) as elements in Sp(V,Q) abstractly, and g as a standard matrix form
representing L(g). In all cases, our discussion will be in Sp(V,(2), our matrix or group
manipulation may be based on Op 4.

6. We also fix a maximal split Abelian subalgebra ay of sp,, (R)

a2={(g (iu ) | b= diag(p1, .. ,Mn)}

Then the positive Weyl chamber aJ is given by those u such that

1> pe > >0

The maximal split Abelian subgroup is of the following form

Rexp() = (0 0 )

Now let (w, H) be the Bargmann-Segal model for Sp(V, §2) and P be the Harish-Chandra module
of H.

10.2 Bargmann-Segal kernel for O,

We continue on with the structure theory. Let g = k) exp H(A)k be the KAK decomposition
of Op 4, where K = Op x Oy. Let k; = (Ui, Vi) € O, x O,

1. Recall that J is the complex multiplication of ¢ on V. We compute

J(L(9))J(z) = Sp,q(L(g)Sp,geW)W = L(—5p,495p,4)T (zeV)
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2. For L(\) € a, we have

—coshA sinh A 0
J(L(exp H(A smh A - cosh A0
—Ij—p
3.
cosh A0 0
CLexp HN) = cosh A0
Igp
We denote it by L({cosh ).
4.
sinhA 0
AL(exp HQ\) = smh)\ 0 0
0
We denote it by L(sinh ).
5.
tanh(\) 0
ZL(exp H(\) = tanh (A) O 0
0

We denote it by L(tanh \).
6. Zp(exp(—x)) = —L(tanh X).
Let z = (21, 22),w = (w1, ws) € V. Recall from Theorem 6.7 that
H(g, z,w)) = 2(sech(H)ki 'z, kow) + (k7 2, tanh(H)k; ' z) — (tanh(H)kow, kow)
In our setting, we have

sechA 0
0 Ig—p

—Tr (@' Usech AU} 2)) + Tr(whV ( Se‘(’)h’\ ; ) Viz)
q—p

(L(cosh )"kt 2, kow) =(sech(\) U 21, Usw; ) + (( ) Vi 29, Vawy)

(10.51)

To compute L(tanh(})), first we consider u = (uy,us).

0 tanh(A) 0
Re(uy) Im(up) \ _ Re(uy) Im(uq)
L(tanh(})) ( Im(u;) Re(u;) >_ ( tanh()) 0 g) ( Im(u;) Re(u;) )

0
(tanh A O)I u2) (tanh A, 0)Re(u2)
= ( ( tanh A ) ( talz)h)\ >Im(u1) )
(10.52)
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Thus in terms of u € V¢, we have

L(tanh \)(u) = (i(tanh A, 0)g, i ( ta‘gh* ) )

Now we obtain

(k7'z, L(tanh M)k 2) =(U 21, 4(tanh X, 0) V{1 23) + (V1‘1z2,2'( taIg‘)‘ ) Ur'lz

canh A (10.53)
= — 2%4Tr(AW; ( a’% ) Utz)
Similarly, we obtain
_ o T/t tanh A —_—
(L(tanh A)kow, kow) = (kow, L(tanh X\)kow) =2iTr(ws Vs 0 Uswn)
(10.54)
=2iTr(wtUs(tanh A, 0)Vowz)
To sum up, we have
. sechA —tanhXA O Uts
H(g,z,w) =2Tr (w{Ué’, ——izéVl) tanh A sechA 0 ( he il )
0 0 Io_p Vw2
. sechA tanhA O U
=2Tr (szl,iwszt) —tanh A sechA 0 ( 20 )
0 0 I, —iViz
sechA\ tanhA 0
-\ (U1 O U, 0 wy
_ t 7 1 _ 2 1
=2Tr ((zl,z'wQ) ( 0 v ) ( ta:)nh)\ Eech)\ IqO_p ) ( 0o v ) ( iz ))
(10.55)

We observe that
sechA tanhA O
—tanh A sechA 0 € Opyq
0 0 I,
Definition 10.1 We define Hi : Op g — Opyq by
sechA tanhA 0
Hilg) = U Ot —tanh A sechA 0 U2 Ot
0 V; 0 W
0 0 Iy

where g = ki exp H(A)kz, and k; = (U;, Vi) € Op x Oy
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Thus for g € O, 4, we have

—129

H(g, z,w) = 2Tr ((zg{w_g) H1(g) ( wi )) (10.56)
Therefore, the group action of (£, g) € (/);:1 on H is given by

w(e.01¢) = [ cop (5 (iwf) 1) ( 1)) stwhduto)

—iZQ

Since wy, wy, 21, 22 can all be chosen arbitrarily, (g, z,w) determines H;(g) uniquely, and
vice versa. From Theorem 6.7 and Theorem 6.5, we see that #H; is well-defined and injective.
Let Oy, 07 be the opposite group of Oy, O,. We define a group involution

7:0p x Oy X Op X Og = Op x Og x Op x Of
by 7(U1,V1,Us, V2) = (U, V4,02, V{). Then we may identify O, x O, x O x Of with Op x
Oq¢ x Op x Og through 7. In that sense H; is a Op X Oy x Op x Og-equivariant map.
10.3 The Compactification H;

We shall prove here that 7, is an analytic compactification of Op 4. Let T, be a compact torus
consisting of elements of the following form

cos(f) sin(6) 0
( —sin(f) cos(d) O ) (60 € (—m,7]P)
0 0 Ig—p

T() =

For each 6;, we may define an element

cosf; sinb;
( —sinf; cos6; ) €T

Then T, can be identified with direct product of p copies of T;. We set

sechA tanhA 0 cos(d) sin(d) O
—tanhA sechA 0 = | —sin(d) cos(d) 0
0 0 Iy 0 0 Ip

Since cos 8;(X;) = sechA; > 0, 6;(\;) can be regarded as a smooth homeomorphism from R! to
(=%, 5). Therefore 6 can be regarded as a smooth homeomorphism from RP to (=5, 5)P. We
observe that #; is a “map” from the “reductive symmetric pair” (Op 4,0, X O,) (of noncompact
type) to the “reductive symmetric pair” (Op4q,Op % O,) (of compact type). We would like to
see if H; is an analytic compactification of Op,q- We recall some definitions and basic facts
about symmetric spaces from [Helgason] Ch 4.3.
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Definition 10.2 (symmetric pair) Let G be a connected reductive Lie group, H a closed
subgroup. Let o be an involution of G such that

(G CHCG’

where G is the fized point set of o, (G?)o the identity component of G°. The pair (G, H) is
called a reductive symmetric pair. If Adg(H) is compact, (G, H) is said to be a Riemannian
reductive symmetric pair.

We will only be interested in Riemannian symmetric pairs and Riemannian symmetric spaces.
According to [Helgason] Ch 4.3, a Riemannian reductive symmetric pair yields a Riemannian
globally symmetric space G/K, and every Riemannian reductive globally symmetric space can
be obtained from a Riemannian reductive symmetric pair.

Definition 10.3 (Weyl group) Let (G, K) be a Riemannian reductive symmetric pair. Let
<,> be an invariant real symmetric bilinear form on g such that (,)e is negative definite. Let
p = ¥ Let by be a mazimal Abelian subspace of p. Let H = exphy be the corresponding
Abelian subgroup. Let M, M' be the centralizer and normalizer of by in K respectively. In other
words,
M ={k e K| Ad(k)h = h Vh € by}
M' = {k € K | Ad(K)hy C by}

W(G,K) = M'/M s called the Weyl group of (G, K).

Definition 10.4 (Regular and Singular Points) Let (G, K) be a Riemannian reductive sym-
metric pair, and X = G/K. Let %(g,by) be the root system, T positive roots of 5. We define

®:K/M xH — G/K
as follows.
V [kl e K/M,he H  ®([k],h) = [Ad(k)h]k

Then for a generic point x € G/K, ®~(z) is finite. We call such a point regular. We use X,
to denote the set of regqular points. If ®~1(x) is not finite, we say x is singular.

Theorem 10.1 (Symmetric decomposition) FEvery Riemannian reductive symmetric pair
(G, K) induces a decomposition of G into KHK. For an arbitrary x € G, H(z) is unique up
to a conjugation of W(G, K) and a multiplication of K N H.

Most of the proof can be found in [Helgason2] Ch 1.5, section 2 and [Helgason] Ch 7.3.
and [Helgason3] Ch 7.8. Notice for G noncompact, this decomposition is nothing more than
KAK decomposition, and the results are well-known. In all cases, we will use dgg to denote
the Haar measure of G, and dgz to denote a fixed G—invariant measure of X.
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Now back to our pair (Opyq,O0p X Oy), let S(Op x Oy) be the normal subgroup of O, x O,
with determinant 1. Then we obtain an injective map

50p+4/5(0p % Og) = Op44/O0p x O4

It is not difficult to see that this map is in fact surjective. Thus we may identify Op4/Op % Oy
with SOp14/S(0p X Og). The symmetric decomposition holds for (Op4q, Op x Oy)-pair. We fix
H =T, and K = Op x Oq4. Observe that

e HNK = (Z/2Z)P. More explicitly, let A = diag(+1,+1,... ,£1) € Op. Then diag(A, A, I;—,) €
HNK.

® W(Op4q,0p x Oy) acts on T, = Ty x Ty X ... x T; by permutations and transposes on
each factor T;.

Theorem 10.2 (KT,K decomposition) Everyg € Opiq can be decomposed into kT (6(g))k2,such
that
T/2 2 61(g) = 02(g) = ...0,(9) 20

Proof: First of all g can be decomposed into k17" (6)k2. Applying a multiplication of H N K on
T'(0), we may assume that cos(6;) > 0, i.e.,

w[2>6; > —m/2 (t=1...,p)
Again, applying a conjugation by W (Op44,0p X Oy), we may assume that
71'/2201292220,,20

Q.E.D.
Now the image of H; consists of

{RT(O)kz | k1, k2 € 0y x Oy, 0 € (=7, 2)°}
Since the set {T'(6) | 6; € [0,F)} is already dense in

{T(0) | 7/2 > 61(9) > 62(g) > ...0,(g) >0}
according to the KTy K decomposition, H1(Op ) is dense in Op;4. We may further prove that
Theorem 10.3 H; is an analytic compactification from Op g4 to Opyq.

Proof: Let (#,S) be the compactification of Sp(V, ) as defined by Equation 6.15. Then we
have for g € Oy 4

(i, W) H(g) ( g ) = 2Tr(2}, iwb)H1 (g) ( u )

—i22
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Therefore there exists a smooth embedding
1 Op+q )
such that the following diagram commutes

0pq —=— Sp(V,9Q)
l’“ l% (10.57)
Op+q —l'—') S

Now, i(Op+4) is automatically a closed analytic subvariety of S. Thus the closure of H(L(Op,))
is exactly i(Op4q). Therefore according to Theorem 6.12, #; is an analytic compactification
of Opq. Q.E.D.

Now we summarize some properties of H; which we are going to use in the following corollary.

Corollary 10.1 The closure of H1(SOpq) is SOp1q. Therefore SOpq is an analytic compact-
ification of SOp 4.

Corollary 10.2 Let do, g and do,, g be the Haar measure of Op,q and Opyq. Then under the
compactification Hi, for every g € Op g,

dH1(g)
dg 70

where

dH
dOp+q Ha (g) = dlg(g) dOp,q g

Same holds for SOy 4.

Notice here, if we regard the Haar measures of O, , and O,, as invariant volume forms, then
g Pq p+q
9%1(9) i5 simply the ratio (a function) between the pull back of the invariant volume form of
foldl ply p
o) and the invariant volume form of O,,. It is not equal to zero at any point since dH;
p+g g

is nondegenerate. In the future, we will denote such a function by det H;. Of course, for the
inverse, we will simply have

do, .9 = (det Hi")do,,,(H1(g))

Here
(det H11)(Ha(g)) = (det Ha(g)) ™" (9 € Opgq)
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10.4 Nonvanishing theorem

Recall that the dual pair correspondence is a one-to-one correspondence between R((/);,:,,w)

and R(Sz/);;(/R),w). We have shown that for 7 in the semistable range R,5(Op q, Sp2n(R)), if
Eof;/q (P° ® Vi) is not vanishing, then 7 € R(Op 4,w). Of course, one can easily see that

Lom (P®Va) =0V ¢, €P,uv €V, /ON (6, w(g))(m(g)v,u)dg = 0

Through the preparation in the last few sections, we are ready to study this bilinear form (, ),
in details.
Let us look at the following commutative diagram:

1 —— SO,, y Opg —2s {41} —— 1

” wT FT (10.58)

1 —— 80,, — Opy —X— {£1} —— 1

———

Since SO, 4 is a normal subgroup of Op 4, SO, 4 is a normal subgroup of 5;,;. This uniquely
defines a character

——

X:0pq— £1
We begin with the following lemma.

Lemma 10.1 The followz'ng are equivalent.
2) E (PC ® V 7) #0

Proof: Since x is a central character, we may regard the Harish-Chandra module Vg, as V,
with the same underlying space but different actions.

1. We will prove that [ZN(PC ® Vi) = 0 if and only if L5 (Pc ®V;) =0 and £~ (Pe®

Vzex) = 0. Let gg be an arbitrary element in Op,q but not in SOp,q, P,¢ € Pand v € V.
Then we have

L5, (600 = [ Glo e
= /@vmw(g)w(w(g)v) +(8,0(0wlo0)d) (rlg)n(go)odg (1059

= Lo (¥ ®v) () + Lo (w(g0)¥ ® m(go)v)(¢)
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2. Similarly, for 7 ® x, v € Vzxy, we have

Lo ($®V)(9) = /~ (6, w(g)%) (7 ® X)v

p,q

= /N(sb, w(g)¥) (7 @ x)(g)v + (¢, w(g)w(g0)¥)((m ® x)(9) (7 ® Xx)(go)v)dg

50p,q

- /N (6, w(g)p)(g)v — (&, w(9)w(90)$) (7 (g)7(90)v)dg

505,
=Lo— (¥ ®v)(¢) — L5 (w(go)y ® m(go)v)()
(10.60)

3. Suppose that LZS’C;/ (P ® V;) = 0. Then from the computation above, we have
p.q

['5;:, (P®@Vy)=0
‘CO’;:, (Pe® VW@X) =0

4. Suppose that
ﬁ ~ (PC ® VT") = O
Op,q

Then we will have

2 /N (6,w(9))(n(g)v)dg = /~ (6, w(g)b)m(g)vdg + /O~ (6,w(g)$)(r ® x)vdg = 0

SOP:‘I Op,q
Thus
;Cgb\; (PC ® V7r) =0
Q.E.D.

Of course, there may be much easier but more abstract way to prove this lemma by using

the direct sum decomposition with respect to SO, 4. We chose this proof just to illuminate what
is behind the abstract approach. Now this lemma allows us to reduce the study of Lé;'q to the

study Lz5—. For a measure space (X, ), let L}(X,du) be the space of integrable function on
pP,q
X.

Theorem 10.4 (Nonvanishing Theorem) Suppose  is in the semistable range Rss(Op g, Sp2n(R)).
Ifn> &3;17 then

LS/O\;;(PC ®V;)#0

— —

Thus either m € R(Opq,w) or ™ ® x € R(Opq,w). In addition the dual representation under
the dual pair correspondence can be constructed through E(qu .
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Proof: We will prove this theorem by contradiction. We write G = SO, 4.

1. Let § be an element of G. We can write § = (€, 9) with detc(Cr(y)) = ¢ 2and g € SO, .
Suppose L5(P¢® Vi) = 0. In other words, we have

V a,8 e NPt 4 v eV,

/6(zﬂ,w(§>za>(vr(a)u,v)d§: 0

Taking conjugation, we have

0= [(w(mza,zﬂ)(v,w@)um&
G

(10.61)
_ [ / K (2, w, §)w*z0du(2)du(w)dg
G Jz,weCn(pt+aq)
where
K(ev0,) = €@ enp (377 oz @ (7))
= F@)W(Zaw,g) (1062)

F(§) = £(v,7(5)u)
W .9) = exp (7oL swsato) (1))

—izQ
Notice that €(,g) = (=&, g). Since we always assume that w(e) = —1,
F(g) = ¢(v, m(g)u) = (=€) (v, m(eg)u) = F(eg)

Thus F(g) and K(z,w,g) can be regarded as functions on SO, 4, we will write as F(g)
and K(z,w,g).

2. Claim: The integration du(z)du(w) and dg in Equation 10.61 are interchangeable.

From Fubini’s theorem, it suffices to show that K (z,w, g)w®z? is integrable with respect
to du(z)dp(w)dg. Since Hi(g) € SOp4yq, we have

Iro(et o) (L)
<o, ) 7, i)
=Vl + TPl + TP

1
<5 Ulzll® + flwall® + llz2l® + flwy %)

(10.63)
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Therefore, .
W (2,w,9)|l <exp Z(IIZII2 + [lwl?)

Hence W (z,w,g)w®Z? is integrable with respect to du(z)du(w). On the other hand,
suppose that g = k; exp H(A\)ke with H()) € a*. Recall that

coshx 0 0
CL(exp H(\) = L 8 SOSh A ! 0
q-p

detc(Crexp(H(N))) H cosh(\;)" H cosh(A H cosh(\

Therefore

Hence

€l = Hcosh (M) < CHexp(—n)\ = Cexp(—nH()\))

i=1
Because of the semistable condition, we have

|F(9)] = [€(v, 7(@)u)| € L (SOp,g,d50,,,9)

Thus
W (z,w, g)F(9)w*7?| = |K (2, w, g)w*Z’| € L' (dp(z)dp(w)dg)

We have
0= / ( / K (2, w, 9w dg) du(z)ds(w)
Crlp+9) xCnlr+e) JG

. Claim: |, ¢ K (2, w, g)dg is holomorphic with respect to z and antiholomorphic with respect
to w.

It suffices to show that fG K(z,w,g)dg is infinitely differentiable with respect to z and
w. Notice that K(z,w,g) is infinitely differentiable with respect to z and w. We shall
examine the following equation

d
o / K(z,w,9)dg —/Gd—K(z w, g)dg

Here z; is a single complex variable in z.
For (z,w) in a compact set, 3 C such that

K2y 0,9)| = 1F(0) - W (z,0,9)]

< |F(9)lll(z,w)ll exp le(z,w)ll2 (10.64)
< C|F(g)|

Iz, w)ll = VlIzlI* + [jwlf?
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But
|F(g)| € LI(SOP,Q’dSOP,qg)

By the dominated convergence theorem, the integration and differentiation are inter-
changeable. And similarly, we can show that fGK (z,w, g)dg is infinitely differentiable
with respect to z and w.

4. Claim: For each z,w € V, [, K(z,w,g)dg = 0.

Notice that fG K (z,w, g)dg possesses a power series expansion, namely
/ K(z,w,9)dg =Y k(X p)2 o
G
We obtain V «, 8 € N(P+a)n

o=/ (| K(ew,g)dgyw Zduta)dutw) = 3 [ 5O, p)u" 20" du(a)du(w)
Cn(p+9) xCnlp+a) JG M G

The interchangeability can be guaranteed by an integrable function which dominates the
power series

Z E(\, p)wezPwH 2>
Ap
We choose

1
exp 2(ll]I* + Ilwl|2)(/G |F(9)ldg)|w®||z°| € L} (C"P+) x C*®*D), du(z)dp(w))

Then, according to orthogonality of the basis {w®,2%} (see [Bargmann]), we have
Va,B, k(a,8) =0
This implies that [, K(z,w,g)dg = 0.

5. Now, we fix (z,w). We have
0=/ K(z,w,g)dg
G

=/GF(g) exp (%Tr(%,iwit)?'h(g)( _22 )) dg

_ 1 o
- [, Fo @) e (3rret s
S0p+q
. 1 W
=/ F(g)exp (iTr(z{,iw_gt)g ( __u.]l )) dg
SOp+q tz2
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where F(g) = F(’Hl_l(g))ii—&;# is a function defined on #;(G). Q}—L;;ﬂ =detH !is

continuous and positive on H1(G). Thus F(g) is continuous on #(G). Moreover

Flo) = Foru) 52 eo)

We will use this fact in the proof. Let z = 0,w = 0. Then we have
F(g) € L'(G,dg)

Finally, one may “polarize” Equation 10.65 by changing (z1,w2) to (sz1,s,2) where
s € R*. We obtain

0= /S o F(g) exp (S%Tr(z'{,iﬁ)‘ﬁt)g ( w1 )) dg (s €RY) (10.66)

129

. - - 7 \.,
. Claim: Vm, fsop+q F(g)(Tr(z{,zwgt)g( _2,22 )) dg=0

It suffices to prove that

Lemma 10.2 Suppose X is compact and i is a Borel measure on X. If ¢ € L (X, du),
P € C(X), such that

Vs>0; /X ¢(z) exp syp(z)dp =0

then
v m /X $(2)p (@)™ dp(z) = 0

Proof: Since we have map(z)™
s™Y(z
exp sy(z) = Z o
and this power series is bounded absolutely by exp(s max(||s)(z)||)), we can interchange

the power series expansion with integration

0= [ 43 C@rds =305 [ gle)pie)mdua)
This implies that for all m,
| d@ptermdut@) = o0
Q.E.D.
By applying this lemma to Equation 10.66, we obtain

w1
—1z

vmen [ F(g)(Tr(zi,iw—zt)g( ))mdg=o
SOp+q 2
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7. Now we quote the density theorem which we will prove in the next section.

Theorem 10.5 (Density Theorem) Suppose 2n + 1 > p+ q. Then the linear span of

wy

(rrctmass () 1awevimeny

is equal to Oso,,, -

From this density theorem, we see that the linear span of

(zrtctmzrs ( 7)) o

—129

is dense in C(SOp,44) under the uniform norm. Thus we have

V 4 € C(SOp1y), / F(g)p(g)dg = 0

This implies ~
F(g) =0 a.e.

Otherwise, suppose the measure of {g € SOp4, | F(g) # 0} is not zero. Then we may
construct a C*® compactly supported function ¢, such that

/ ) ¢(9)F(g)dg # 0

Therefore F (G) is zero almost everywhere. But F is continuous on #:1(G). Hence F =0
on H,1(G). Then for every g € G

F(g) = F(%l(g))d”Tlg("-) ~0

Recall that for g = (¢,9), F(g) = é(v,n(9)u) and £ # 0. Therefore
Vied, (um(@u) =0
Since u, v are arbitrary, this contradicts the fact that = is a representation of G. Thus

ﬁga;;('Pc®7r) #0

8. By the last lemma, we have either

E@(Pc®7r)760 or £5;;1(7”®7r®x)7é0

Thus either 7 € R(é;,:,,w) or m®x € ’R(é;,,w). Furthermore, if m € ’R(é;,,w), the
corresponding w(7) can be constructed by taking dual of 55; (P° ® V) in the category

9

—

of Harish-Chandra modules. The same is true if 7 ® x € R(Op 4, w).
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QE.D. ~
In fact, we have proved that if F(g) is a continuous function of G, F(eg) = —F(g), and

/~(w<§)za,zﬂ)F@d§ —0 (Va8 eNPrOn)
G
then F(g) = 0.

10.5 Density Theorem

Now we would like to prove the density theorem. Let Oso,,, be the space of regular functions on
SOp+q. Let SOp14 act on Osp,,, by left translation. Then Oso,,, is the space of SOy 4-finite
functions on SOp44. For every X,Y € Mat(p + g,n), we define a function

Fxy(9) =Tr(X'gY), (g9 € SOp4)

in C(SOp+q). Of course Fxy can also be regarded as a function on Mat(p + ¢,p + g). Here
the base field can be either R or C. Let R, be the linear span of

{Fiy | X,Y € Mat(p + g,n),i € N}
Since we can define a filtration,
Mat(p + q,n) — Mat(p + q,n + 1)

by mapping Mat(p + ¢,n) into the first n columns of Mat(p + ¢,n + 1), and seting the last
column to be zero. This induces a natural filtration
RiC...CR,C...C0Os0

pt+q

On the other hand, if n = p+ ¢, then {Fxy | X,Y € Mat(p + q,p + q)} as functions on
Mat(p + q,p + q) exhaust all the linear functions on Mat(p + ¢,p + q). Therefore

{Fiy | X,Y € Mat(p+q,p+q),i € N}
spans the space of regular functions on Mat(p + q,p + ¢). Thus
Rpiq= 050p+q
Therefore there exists an “n” such that
Ry =050,,,;  Rn-1# 0s0,4,

We will restate the density theorem.

Theorem 10.6 (Density Theorem) If2n+1 > p+gq, then R, = Oso,,-
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We will use mainly the highest weight theory to prove this theorem. Let us first recall a
lemma [Kumar], also known as the Parthasarathy-Ranga Rao-Varadarajan Conjecture.

Lemma 10.3 (Kumar) Let V) and V), be the irreducible representations of the complez semisim-
ple Lie algebra g with highest weight A\ and p respectively. Let W(g) be the Weyl group of g.
Let w1 be an arbitrary element in W, and we € W such that n = wa(X + wi(p)) is dominant.
Then V) ® V,, contains an irreducible subrepresentation V;, of highest weight 7, i.e.,

V, CWA®V,

There is actually a stronger conjecture of Kostant, also proved by Kumar, about the multi-
plicity of V. Since our argument will be based on Kumar’s lemma and highest weight compu-
tation, we will not give a special name for this chosen V;, in V) ® V,. Since the highest weights
are different in type B and type D groups, we will treat them differently. We will always use

S(V') to denote the symmetric algebra of V and S*(V) to denote the i—th symmetric power of
V.

Theorem 10.7 (SO2m+1) Let C*™*! be the standard representation of SOqpmi1. We choose
the standard Cartan subgroup and dominant chamber {A\; > Xy > --- > A\, > 0}. Then every
irreducible representation Vy of SOqpmi1 with the integral highest weight A = (A; > Aa... Ay >
0) can be realized as a subrepresentation of SIM(@™(C2™+1)). Here

m
A ="\
1

Proof:

1. Let v, be the highest weight vector for C>™*!. Then vi\l is a highest weight vector of
SA(C?™+1), Thus there must exist an irreducible submodule Viao,...,0) of S2(C¥m+1)
with highest weight (A1,0,...,0).

2. Recall that
S™(@™(CP™)) = @nybrger-snmen O S™ (C2H)

Here n; € N could be zero. We will proceed inductively on 7 to show that there exists
‘/()\1 >Az2->A,,0,:--0) - ®§S)‘k ((C2m+1)
3. Suppose that A\; > Ay > --- > X\; > A1 >0 and

Viazaz-3,0,.0) C @18 (CH)

And also we know that

Vi .0y C M1 (CPmLy

i+1,0,.
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According to Kumar’s lemma, if we choose w; to be the permutation (1 i+ 1) in the
Weyl group, then there exists

‘/(Al > A >Ais120) & ®§+1S/\k (C2m+1)

4. Thus by induction, for every A\; > ... > A, > 0, there always exists

Viuz..2am>0 € QT SM (C?m+1) C Sl (@™ (C?m+1))

Q.ED.
For SOy, the integral highest weights are given by

A:(AIZ)Q---Z)\m—lZ‘/\mD (M €eN)

Theorem 10.8 (SOy,,) Every irreducible representation of SOop, with the highest weight A =
(A1 > A2... = Am—1 = |Am]|) occurs as a subrepresentation of Sl (@™ (C?m)).

Proof:

1. Actually the same argument from the proof for SO, 41 proves that for every A = (A\; >
... > Ay > 0), there exists a subrepresentation

Vi ¢ sl @™ (™))

2. Let Ob, be the other component of Oy,. Notice that SIM(@™(C?™)) is automatically
a representation of Og,. We may look at O Vi C SIM(@™(C?™)) which is also a
representation of SOs,,. In fact,

Oémv’\ = ‘/v(AI)AZ)-",Am—ly—Am)
Thus Vix, as,.. . Am—1,—Am) alSO OCCUTS in Sl (@™ (C?™)).
3. To sum up, for every A = (A1 > A2... > Am_1 > |Am|), Vi occurs in S(&(C*™)).

Q.E.D.
One major fact that motivates this proof is that, unlike the other exterior products of c?m
which are irreducible, the m-th exterior product of C*™ splits. In fact,
A™C™) 2 Vg, 10 @ Vi, 1,-1)

Now we can sum up the results for type B and D groups in the following theorem.

Theorem 10.9 (Type B,D) Supposen > p++_1. Every irreducible representation of SOp1q
occurs as a subrepresentation of the i—th symmetric power S*(M(p + g,n)) for some i.
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We will spend the rest of this section to prove the density theorem. Mat(p + ¢,n) will be
denoted by M. For a fixed i, we write R’ for the linear span of
{Fg(,y | X,Y € M}. If we define F' : M x M — C(SOp4) by

FYX,Y)=Fxy

then R} is simply the space of matrix coefficients of the standard representation of .S Op4q- Now
we can further define F* : M x M — C(SOp4,) to be

Fi(X,Y) = (Fxy)*
For i > 2, F' is no longer linear. However, we have the following commutative diagram.

1A’><A’ H (10.67)
(M) ® (M) —L— C(SOptq)

where A is the diagonal map, and F* is the linear extension of F*. F* can be written explicitly
as follows

F(X1®X;...0X)®(Y18Y2...9Y)) = Fx, v, Fxoys - -- Fx, v; € Os0,., (X;,Y; € M)
It is easy to see that the linear span of A*(M) in ®(M) is S*(M). Therefore
R, = F'(S'(M) ® S'(M))
It is easy to see that F* is a linear S Op4g-equivariant map. Now we need a lemma.
Lemma 10.4 R, is equal to the linear span of matriz coefficients of S*(M).
Proof: We define an inner product on @M
i —
(V10Y:0...0Y, X108 X ®...X;) = [[TrXly;  (X;,Y; €M)
j=1

Then this inner product is invariant under SOpy,. For simplicity, we use g.v to denote the
action of SOp44 on M, and ®'g to denote the action on the tensor product ®'M. Notice that

F(X10X2...0X;)® (Y1®Y2...9Y)))(9)

— — (10.68)
=(g.Y1®g.Y2®...®g.Yi,X1®X2®...®Xi)

Therefore the function F)i(,Y is precisely given by the matrix coefficient

(') (Y Y ®...0Y), XX ®...X))
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Since S*(M) is the linear span of
Y®Y®..0Y (YeM)

R! is contained in the linear span of matrix coefficients of S*(M). By the same argument, one
can check easily that the converse is also true. Q.E.D.

One direct implication is that R,, is spanned by the matrix coefficients of S(M). From our
Theorem 10.9, every irreducible representation of SOp44 can be embedded as a subrepresen-
tation of S(M) = S(®"CPtY) if n > Iig:—l- Thus the matrix coefficients of every irreducible
representation occur in R, for n > Iig:_l Thus R, contains the matrix coefficients of every
irreducible representation of SOp14. According to the Peter-Weyl theorem, Oso,,, is spanned
by the matrix coefficients of all the irreducible representation. Therefore R, = Oso,,, and R,
is dense in C(SOp44). This finishes the proof of the density theorem. Q.E.D.

Finally, we want to formulate a conjecture along this line.

Conjecture 1 Ifp+q > 2n +2, then R, # Oso,,,-

10.6 Some Conjectures

We say that 7 is an irreducible admissible representation of 5;,:, with bounded matrix coeffi-
cients if for every u,v € Vg, there exists a constant C, , such that

|(w(g)u,v)| < Cuppy,  (u,v € Va)
Theorem 10.10 If (Op 4, Sp2s) is in the stable range, i.e.,
nzp+gq
and 7 is an irreducible admissible representation of é\p; with bounded matriz coefficients, then
T € Rys(Op,q, SP2n)

Proof: Recall that the half of the sum of the positive roots of Op 4
g-p
ppa =D (5 +i=Dei  (a(H)=H)
1=1

and the simple roots are given by
(ep—ep——hep—l —€p—2,--- » €2 _61761)7 (p#q)

(ep—ep_l,ep_l —€p—2,... ,€2 —€1,€1 +62), (p=q)

Then

2pp,q—n=((p+q—-2)—n)ep+((p+q—4)—n)ep_1+...+(q—p—n)el
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Sincen+2—-p—q > 2, (n+2—p— q)ep is already a strictly positive combination of simple
roots, and it is easy to see that n — 2p, 4 can be written as a strictly positive combination of
simple roots. Thus 2p, ; — n can be written as a strictly negative combination of simple roots.
From the boundedness of matrix coefficients of 7, each of its leading exponents v has to satisfy:

Rev <0
Therefore Rev + 2pp 4 — n is still a strictly negative combination of simple roots. Thus
s E Rss(Op,q, szn)

Q.E.D.
Thus we proved that

Theorem 10.11 Suppose n > p + q and © is an irreducible Harish-Chandra module of 6;,:1
with bounded matriz coefficients. Then either m € R(Opq,w) or m @ x € R(Opq,w).

Once we confine our attention to unitary representations, there is a stronger result of Li [Lil]
[Li2], which stated that the dual representations under the dual pair correspondence for different
(unordered) pairs p+ ¢ < n and p' + ¢’ < n are different. Therefore these dual representations
(also called lower rank representations) can be classified by a pair (p,q) such that p+q < n
and an irreducible unitary representation of O, q.

Motivated by Li’s result, we formulate the following conjecture:

Conjecture 2 Suppose p+q=m < 2n+1, andp < q. Let wpy : R(f):,;,,w) — ’R(%,w)
be the dual pair correspondence. Then wpm—p(Rss(Opm—p,w)) does not intersect with other
Wp' m—p! (Rss(Opr,m_pl,w)), i.e.,

—

wp,m—p(Rss(Opm—p, w)) N Wp' m—pr (Rss(Opm—pr,w)) =0 (p+p' #m,p#p')
A stronger conjecture can be formulated as follows.

Conjecture 3 If the unordered pair (p,q) # (»',¢') and p+q<p' +q <2n+1, then

—~— —~—

wp,g(Rss(Op,q,w)) N wy',g1(Rss(Opr g7, w)) = 0

Of course I am less positive about it.
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11 Nonvanishing theorem for (Spa,, Oy4)

Let G be the unitary dual of G, and G4 the admissible dual of G. The proof of nonvanishing
theorem of the dual pair correspondence in the semistable range of (Op 4, Sp2n) relies on matrix
coefficient estimation and manipulation of a “compact” kernel K(z,w, g). From now on we will
assume p + q > 2n. We will regard O, 4 as the “bigger” group and Sp2,(R) as the “smaller”
group. One might conjecture that a similar result as Theorem 10.4 holds for (Span,Op,q)-

Conjecture: Let 7 be in the semistable range of (Sp2n,Opgq). If p+ g > 2n, then
— C
Eszn(P @m)#0

In particular, o
7w € R(Spon,w)

Rss(sp2na Op,q) g R(%,w)

However, this conjecture turns out not to be true. For example, we can take Oy, 4 to be the
compact Oq. Then the irreducible representations of (A); are parametrized by integrable highest
weights. We let

p=0, g=4n+2

Then
PSpo, = N€1 + (n - 1)62 +...€1 (e,(H) = H,)

+
_.p.Tq + 2psp2n = —(en + 3en_1 4+ ...+ (2’n, - 1)61)

Thus —# + 2psp,, is a strictly negative combination of simple roots. Suppose 7 is an irre-
ducible unitary representation of Spa,(R). Then each of its leading exponent v satisfies

Rev <0

Thus Rev — 252 + 2pgp,, is a strictly negative combination of simple roots. This proves that

Sp2n (5) - Rss(SPQn, O4n+2)
However, there exists no one-to-one map between %(e) and Ogn42. This shows that there
exists no injective map

——

w: 7233(5172117 O4n+2) = Oun2

On the other hand, dual pair correspondence is a one to one correspondence

—
—_—

w: R(gz\)g/n,w) — Opy2
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Therefore o
Rss(SPQna O4n+2) ,¢_ R(SPQna w)

Recall that the definition of semistable range of (Sp2,,Op4) only depends on the pair
(n,p + q). This suggests that instead of individual O, 4, we may consider the disjoint union of
representations of the real forms of O(p + ¢,C), i.e.,

—
—

Rss(Span,m) > Uptq=mOp.q,aq

We will first compute the integration kernel K (z, w, g) and derive some properties of K(z,w, g).
Then we will establish the relation between nonvanishing theorems and density theorems. Fi-
nally, we will prove some density theorems. The ideas used in this chapter are similar to the
ideas used in last chapter.

11.1 Setting

To begin with, we want to focus on the Spy,(R) action on V = Mat(p + ¢,n,R). However, in
the setting from the last chapter, Spa,(R) acts from the right. Because of the right action, we
need to recompute everything we have done in the last chapter. Thus we choose to look at the
left action 7 of Spon(R) on Mat(2n,p + q,R). Let V = Mat(2n,p + ¢, R) and

X = Xll X12 c Mat(mP’R) Mat(n’Q7R)
T\ X1 Xo Mat(n,p,R) Mat(n,q,R)

We define

1. The symplectic form

QX,Y) = -Tr(X'WYS,,)

- _Tp Xh X5 0 I Yu Yo I,
X, X -1 0 Yo Yoo 0

= —Tr(X}1Ya1 — X5 Y11 + X5,Y12 — X{,Ya0)

0
I

) (11.69)

2. Complex multiplication of %

3. Identification of V' with Mat(n,p, C) & Mat(n,q,C) by

X =(X1,X3) & X = ( Re(X1) Im(Xa) )

Im(Xl) RC(XQ)

X1 = X11 +iXon; Xo = Xoo +1X12
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4. Inner product on M(2n,p + q) regarded as a complex vector space
(X,Y) =Tr(X{Y1 + XiY2)

=Tr(Xt +iX5) (Y11 —iYa) + Tr(iXi, + X5,) (Yoo — iYi2)
=Re(X,Y) +iQ(X,Y)

We use 7 to denote the action of Spa,(R) on Mat(2n,p + ¢, R).

1. The maximal split Abelian subgroup of Spa,(R) consists of

_ [ expA O o
epo-( 0 exp—)\) (A = diag(A1,A2,... yAn))

n= (3 %)

Jot(g)o J(X) =Wg(WXS,0)Sp X = (WgW)X = 1(WgW)X

where

2. Let g € Spa,(R). Then

In particular

—exp(—=A) 0

Jr(expH)J =71 ( 0 — exp A

) = r(-exp(-)

3. We have

1 coshA 0
C‘r(exp H) = E(T(exp H) - JT(eXp H)J) =T ( 0 cosh A )

We denote it by 7(cosh H). We denote 7(cosh H)™! by 7(sechH).

4. We have
1 sinhA 0
Ar(exp iy = 5(7(exp H) + J7(exp H)J) = 7 ( 0  —sinhX )
We denote it by 7(sinh H).
5. We have B
1 _ tanh(A) 0O
Zr(exp H) — C’7-(exp H)A"'(exp H)=T ( 0 - tanh()\) )

We denote it by 7(tanh H).
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6. Now k € U, C Span(R) can be represented by
A -B .
( B A ), (A+iB €U(n))

Now we have

7_( A -B ) ( X1 X2 ) _ ( AXy1 — BXoy AXy2 — BXa )

B A Xo1 Xo9 BXi1+ AX91 BXip+ AXo
Thus
A -B .
T(( B A ))Xl = (AX11 —BX21)+2(BX11+AX21)

. . . 11.71
=(A+1B)X1; +i(A+1iB) X9 ( )
=kX;

A -B )
7( B A ) X2 = i(AX12 — BX2) + (BX12 + AX29)

. . 11.72
= (A —1iB)(Xa2 +1X12) ( )
= kX

7. We have
C X = cosh AX11 coshAXio
7(exp H) coshAXa; cosh AXyo
Thus
C‘r(exp H)Xl = cosh AXl; CT(exp H)Xg = cosh )\Xz
8. We have
7 X = tanh()\)Xu tanh(A)Xlg
Texp H) =\ _tanh(A\) Xy — tanh()) X0
Thus

Z‘r(exp H)Xl = tanh()‘)—)(_l
ZT(exp H)X2 = — ta,nh()\)ng +1 tanh()\)Xu = — tanh()\)Yz

11.2 Integration kernel of Sps,(R)

Let g € Span(R) and 7(g) € Sp(V, ). We will ignore the 7, and regard g as element in Sp(V, Q).
Let g = (§,9) be a preimage of g under the metaplectic covering. Then the Bargmann-Segal
kernel of the oscillator representation is given by

£ exp(H (9,7 w))
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where
H(g, z,w) = 2(7(sechH)k 2, kaw) + (ki 2, 7(tanh H)k;'z) — (7(tanh H)kyw, kow)

We shall make a remark here that (g, z, w) is in fact #(7(g), 2z, w). This should not be confused
with the #(g, z,w) for g € Span(R) and z,w € C** in Theorem 6.7.

1. We have

(7(sech H)ky 'z, kaw) =(sech k] 121, kowy) + (sechAH_lzz,k_zwg)

B — — . ____ (11.73)
=T7r(2; k1sechAkowt) + T'r(z5k1sechAk2W3)

2. We have

(ki 'z, 7(tanh H)k;'2) =(ki 21, tanh( Nk 21) + (k1" 22, — tanh (V)& ' 22)
=(k 21, tanh(N)kiZ7) + (ki 22, — tanh(A)ky '22) (11.74)
=Tr(zik; tanh(A)kT 21) — Tr(zbk: tanh(A)kt 2)

3. We have
(7(tanh H)kow, kaw) = (kaw, tanh(X)kaw)
= Tr(wtki tanh(\)kgwy) — Tr(whk;y ' tanh(A\)kaws)  (11.75)
= Tr(wik; " tanh(A\)kawt) — Tr(whks' tanh())kyw3)

4. Recall the definition of the compactification of Spa,(R)

kL 0 )( tanh(Hg) —isech(Hc) ) ( k7o )

H(klexp(H)kz)z( 0 k_é —isech(Hc) tanh(Hc) 0 &

Therefore, we can simplify H(g, z,w) as follows.
H(g, z,w) =2Tr (2 krsech(A\)kzwr) + Tr(2tk; tanh(A)ky 21) — Tr(wik; ! tanh(\)k2w7)
+ 2Tr (2t kisech(N) kaw3) — Tr(zbky tanh(\) k! 25) + Tr(whky' tanh(\)kow3)

=Tr ((zg,iw_i)ﬂ(g) ( sk )) +Tr ((-”5’“’_5)%( - ))
(11.76)

11.3 On the Vanishing of Averaging Operator

Since the density theorems are a little cumbersome to deal with, we will first investigate the
vanishing of the averaging operator and establish some equivalence relation between the density
theorems and the nonvanishing theorems. The ideas and techniques are similar to the proof of
Theorem 10.4. Let G = Spo,(R) and S = {UU? | U € U(2n)}.
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Theorem 11.1 We fiz a group Op4 and an irreducible representation m in the semistable
range of (Sp2n(R),0pq). Suppose that

LP®Vr)=0
For u,v € V; and g = (£,9) € %(R) where €2 = detg' Cr(y), let
F(g) =&v,m(gu); (9= kiexp H(A)k,)
Then F descends to a function on Spa,(R). Let H be the analytic compactification of Spon(R),

and let d ()
F(H()) = F(g)(%

Then F is a smooth function defined on H(Sp2n) and

™! (9 € Sp(R))

/ F(s)(Tr(a"sz)) (Tr(y'5y)"dyenys =0; (v € Mat(p,2n,C);y € Mat(q,2n,C),l,m €N)
s

Proof: We will just give an outline here, and skip the details. Essentially, the details were given
in the proof of Theorem 10.4.

1. For each u,v € Vi, o, 8 € N¥P19) | we have
L 0@:) r(@u,v)dg =0
Taking conjugation we have

0= /é(w@za,z%,w@)u)dg
=L (A5 W)t P o @ ()G (1177
- /@F@ /@(p+q)x@(P+q) exp(3H(g, 2 w))w 2 du(w)du(z))dj

Since €(¢,9) = (=¢,9) and
(’U, 7r(e§)u) = ﬁ(v7 "T(g)u)

F(g) = &(v,m(g)u) descends into a function of G. We may write all our integrals as
integration over Spo,(R).

2. Claim:

x l 2. w))w*ZPdu(w z
/G(/<cn(p+q)xC"(P+q) F(g)e p(4H(g, ’ ))w g d'u( )dﬂ( ))dg (11.78)

N /cn<p+q) Crlp+a) (/G F(g) eXP(i‘H(Q, z,w))w®ZP dg)dp(w)du(z)
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It suffices to show that

F(g)exp(;

Recall that for g = k; exp Hko (H € a™), we have
CT(exp H)Xl = cosh AXl; Cr(exp H)X2 = cosh AXQ

H(g, z,w))w*Z" € L' (dgdp(w)du(z))

Therefore n

| detC(CT(g))| = I det@(c‘r(exp H))I = H(COSh )‘i)p-{-q
=1

Hence
n

|§|=H(cosh)\ <CHexp ——A)
i=1
From our assumption on semistable range,

F(g) € L'(dg)
On the other hand , we have
| exp H(g,z w)w*z’| < exp(y (||21||2+|lw1|I2+Ilz2||2+||’tU2ll NlizlP|lw||* € L (dp(z)dp(w))

Thus 1
F(g) exp(3H(g, 2,w))w"z’ € L' (dgdps(w)dpu(2))

Combined with 1), we have
1 —
/Cn(pH) ot (/G F(g) exP(ZH(Q, z, w))wazﬁdg)dp,(w)du(z) =0 (11.79)
X

. The integral [ F(g) exp(%?—[(g,z,w))dg is holomorphic with respect to z, and antiholo-
morphic with respect to w.

. Combined with Equation 11.79, we have

vz, /G F(g) exp(~H(g, 2,w))dg = 0

| =

. Very similar to theorem 10.4, we have

1
0= / F(g) exp(H(g, 7 w))dg
SPZn(R)

1, — 21 1, ., —_ ([ —izg \\dHI(s)
/F exp(4(z{,zw§)s( T ))exp(z(—zzé,wg)s( T ))—J;—dU(zn)S
= s 21 1 . “Fh— —’i22
= [FoenG s (2 ) ew-ias (22 Dduens
(11.80)
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6. Finally, Taking z = 0 and y = 0, we obtain,
ﬁ(s) € Ll(Sa dU(Zn)s)

Since § is compact, it can be shown that ¥ m,n € N,

/ F(s)(Tr(asz))™(Tr(y'5y))"dy@nys =0;  (z € Mat(2n,p,C);y € Mat(2n,q,C))
s
Q.E.D.
In the next section, we will prove that the linear span of
{(Tr(ztsz))™(Tr(y'5y)) | z € Mat(2n,p,C);y € Mat(2n,q,C);p + g = 2n;m,l € N}

is dense in C(Sp2n(R)). Thus if £ STR) (Pp,q ® V) vanishes for every p + g = 2n, then

(m(@u,v) =0 (u,v € Vy)
here (wpq,Pp,q) is the Harish-Chandra module of the oscillator representation for dual pair

(Sp2n(R), Op,q)'

11.4 Spherical Functions and Helgason’s Theorems

Now let Og be the U(2n)-finite functions on S. For X € Mat(2n,p,C), we write
Fx(s) = Tr(X%sX) (s€8)
Then Fx(s) € Os. Let R, be the linear span of
{F% | X € Mat(2n,p),i € N}
and R_p be its conjugation. By a little multilinear algebra, we can show that
Theorem 11.2 R, is spanned by
{(X1sX1)" (X3sX2) ... (X}sXp)® | X1,...,Xp € CP" iy .. iy € N}
Proof: Let X = (X1, X2,...,Xp), and X(t) = (t1X1,%2X>,... ,t,Xp), where t € CP. Now
(Fx@)' = (5t2X!isX;) € R,

P 4%

j=1t; ~ in the above expansion, we get

For 4y +1i2 +...1, = 1, if we take the coefficient of II
I§(X!sX;)% € R,

On the other hand, every F can be written as a linear combination of IT}_, (X}sX;)% (i; € N).
Therefore R, is spanned by

(XtsX))u(XksXo)2 . .. (X;sXp)iP;
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Q.ED.

The first theorem we state here is actually equivalent to the nonvanishing theorem for the
stable range dual pair correspondence.

Theorem 11.3 Suppose p > 2n,q > 2n. Then the multiplication
m:R,® R_q — Og
is surjective.

Proof: This can be shown by using the Stone-Weierstrass Theorem. We skip the proof here.
This theorem is just a special case of Theorem 11.11 which we are going to prove. Q.E.D.

Before we continue on to improve the theorem above, we want to give a description of Og
first. The ring of regular functions on a compact symmetric space was studied by Helgason.
We will recall some definition and theorems here.

Definition 11.1 Let (G, K) be a reductive symmetric pair. A finite dimensional representation
7 of G is called spherical if there exists a K-fized vector v € m. Such a K-fized vector is called
a spherical vector. We use Gk to denote the set of spherical representations.

If the representation is irreducible, then the spherical vector is unique up to a scalar.

Theorem 11.4 (Helgason) Let U be a compact connected Lie group, and K fized point set
of an involution . Let p be the —1 eigenspace of g, and t, be a mazimal abelian subspace in
p. Let Ty be the Lie group corresponding to t,. Let T 2 T, be a Cartan subgroup of U, and t
be its Lie algebra. Let M be the centralizer of t, in G. Then (T N M), is the mazimal torus in
M. Let © be an irreducible representation of highest weight vector vo. Then w is spherical if

and only if
m(M)vg = vo

A proof for semisimple groups can be found in [Helgason2] Theorem 5.4.1. The same proof
applies for compact connected groups.

Theorem 11.5 (Helgason) For a symmetric space X = U/K, let Ox be the space of U-finite
functions on X. We have the following decomposition

Ox = @Ael}KC)‘(X)

where Cy(X) is an irreducible spherical representation. Let § be a K-fized vector for Vy'. Then

C\(X) consists of functions
uK — 6(u"lv) (veVy)

Let e be a spherical vector in Vy. Then the spherical vector in Cx(X) is given by a multiple of

uK — 6(u"le)
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This is proved in [Helgason2] Theorem 5.4.3.
Now let U = U(2n), K = O(2n).

fp = {diag(iﬂl,iﬁg, R 2927,) t 0; € R}
The Weyl group W (U, K) is simply the permutation group on 2n elements.
M = {e = diag(ey,€2,... ,e2,) | € = £1} C Ty,

Let V) be the irreducible representation of U(2n) with the highest weight X\. Of course we will

have
AL > A2 2.0 2 Aoy

Thus for vy as the highest weight vector of (7, V)),
m(€)vo = 12", (e:) v
Therefore V), is spherical if and only if A is all even, i.e.,
Ai even ; (¢ € [1,2n])
Therefore we obtain the following theorem from Helgason’s theorem.

Theorem 11.6
OS = ®) evenC/\(S)

where C)(S) is the irreducible representation with highest weight
A= (A1 2 A2... 2 A2p) (Ai even)

We denote the unique spherical vector associated with each )\ by f\. Here we assume fy(eK) =
1.

11.5 Density Theorems and Nonvanishing Theorems

We will study R; first. Then from Theorem 11.2 R, can be manipulated through the multi-
plication map
m: RMORI Q... Ry —)Rp

We have the following decomposition theorem for R;
Theorem 11.7 Let S = U(2n)/Oqy, and V = C?*. R, can be decomposed as

®ienC2i0,... 0)(S)
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Proof: We define (by abuse of notation)
Tr: %V = Os

as follows. .
Tr(vy @ v, ... ®vy)(s) = H;=1Tr(v§svi+j) (s€S8)

Now it is easy to see that .
F':V - Os

defined by . .
FY(X) = (Tr(X!sX)) (XeV,ses8)

is the composition of the diagonal map A% and Tr. In other words, F* can be written as
Fiov A% g%y I og
All these maps are U(2n)-equivariant. It is well-known that
S*(V) = Viaig,... o)
is already irreducible. But F*(V) # 0. Thus the image of F* is isomorphic Vi2i,.,... 0)- Hence
Ry =2 ®&:V(2ip,... 0)

From Helgason’s theorem,
R; = @:Caip,... 0)(S)

Q.E.D.

In fact, the image Tr(S%(V)) is C(2i,0,..,0)(S)- Next we want to compute the exact formula
for the spherical functions in C(9; ... 0)(S)-

Theorem 11.8 Let _
firg—=Tr(g'9)* (9€U(2n))

Then f; is a spherical vector in Cg; 0, 0)(U(2n)/O2n).
Proof:

o We fix an ¢ first. Since
fi(kg) = Tr(¢'k'kg) =Tr(¢'9) (9 € U(2n),K € Ozn)

fi is spherical. Now it suffices to show that f; lies in C(g;0,... 0)(U(2n)/Oz2n).
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e If i = 1, one spherical vector in S*(V) = V{5 o is given by
e%+e§+...+egn

where {e;} is the standard orthonormal basis of C>*. On the other hand, let {§;} be the
dual basis, i.e., {e;} itself. Then a spherical vector in (C?")* is again given by

e%+e%+...+e§n
Now according to Helgason’s theorem, a spherical function can be constructed as follows.
filg) =(ef + €3 +... + €3, g7 (el + b +... + b))

2n
=Y (e, (g7"e))

1,7=1

2n
=) (ei,g7'ej)?

',j—l

— Z g lej)(elge;) (11.81)

,Jl

= Z g e] Jgel)

7]1

= Z elg'ge:)
:Tr(g 9)
e Since f; € Tr(S%(V)), f; € Tr(S%(V)). Therefore,
fi € Caip,... 0)(U(2n)/O2n)

Q.E.D.

In fact, all the theorems we have proved in this section hold for S, = U(n)/0,. Next we
will prove a theorem for S,. Just for the sake of the proof, we denote S, by S. For the rest of
this thesis, S will still be Sa,,. Let W = W (U, K) be the Weyl group. Let T be the fixed torus
T, in U. Let C(T)" be the space of smooth W-invariant functions on T'. Let Op be the space
of T—finite functions on T. Let O:,W and OTM be the W —fixed and M —fixed functions of Or.

Let OTVY M O N OM. 1t is well-known that the restriction of OX onto T yields a bijection
from O¥ onto OIVY M

Theorem 11.9 Let f;(g) = Tr(g'g)* (9 € U(n)/On). Then OF is spanned by
fisfin oo firFipn - Fin (G EN
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Proof: It suffices to show that the restriction of
filfiQ...fikfikH...E (’ij EN)

to T span OivY "M Notice that
Or = @qcznCexp ia(f)

Thus
OM = @gcz-Cexp 2ic(0)
Let (z1,%2,... ,7n) = (exp(2i61), ... ,exp(2i0,)). Then we may identify O;V’M with
R = P(z1,22... ,:L'n,wl"l,x;l, e ,x;l)w

the space of symmetric Laurent polynomials. We define the signature of a monomial z in R to
be a pair of integers (p, g) where p is the number of positive o;’s and g is the number of negative
a;’s. We may write sgn(a) or sgn(z®). The signature of « is invariant under the action of W.
Let R; be the symmetric Laurent polynomial such that each term contains at most j negative
exponents. In other words,

Rj = RN (®j<j Bitj'<n Dsgn(a)=(i,j)CT*)
Observe that
fj(exp(i0)) = Tr(exp(2i6))’ = Tr(exp(2ij0)); (6 € R*,5 > 0)

Thus in terms of elements in R, f; can be identified with s; = > ka1 zi, and f_] with s_; =
E;cl:l l';].

Claim: Ry = @i,zocnyﬂ Si;

Notice that R is simply the space of symmetric polynomials. Let o; be the classical sym-
metric functions on (z; ... ,zy), i.e.,

J
g; = E H Ty,

(il;ﬁiz...;ﬁi_,)g[].,n] k=1

Then by the classical symmetric function theory
Ro = ®i] ENCO.? 0';2 . O'fl"

We may look at the following symmetric polynomials of degree [,
n
s, 1Y =L, eN
Jj=1
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The number of such polynomials is given by the number of
n
0sh<h<.. <L) =0

Also these polynomials are all linearly independent. On the other hand, the number of linearly
independent symmetric polynomials of degree [ is given by the number of

n
{(Z.l,i2a"' 7Zn) | Z]ZJ = l,Z] € N}

=1

Both numbers equal the number of partitions of / into a sum of no more than n positive integers.
Thus we must have

n
Ro = ®i,enC H 8i
Jj=1
Similarly, for an arbitrary o € Z", let @ be the ordered n-tuple, namely

(1207 >...>ap)

with sgn(a) = (p, ¢) and we set all the middle n — p — ¢ to be zero. Let Rf;,;l with¢ >0, 7 <0
be the linear span of

Mv

{ Y «|sgn(a) = , Y @ >4}

afized k: k=n—q+1

Here ¢ is simply the total positive degree of Laurent monomial, and j is the total negative
degree of Laurent polynomial. Now we fix a nonnegative integer pp < n, a nonnegative integer
¢ and a nonpositive integer j.

Claim: ®p<pq<n—poRpy is spanned by

{Hslk H st [l > lg e 20y 200> Loy > .. >ln,Zlk<z Z I, > j}

k=1 r=po+1 r=po+1

First of all, the set above is linear independent, since each one has a characteristic term, namely

I, 12 Ipg lpg+1 l
Ty Ty - Tpg -+ Tpgiq +-- Ty
Also the linear span of such set is contained in @p<pyq<n—poRpy- Finally, the cardinality of
such set equals

Z #(partitions of k into less or equal to py parts)
0<k<i
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multiplied by

Z #(partitions of k into less or equal to n — pgy parts)
0<k<—j

This is exactly the dimension of Gapgpo,qgn_po’l?,f,’,{,. The claim is proved. Since every element
of R is contained in some R;%, R is spanned by

n
{H si, | ik € Z}
k=1

This implies that
(O1)Y"M = @< i >0C (fir fia - - - fip Fipgr - - Fin) T

Q.E.D.
We will prove the following theorem:

Theorem 11.10 Suppose p+q=12>2n. Then
M : @pyq=1fp ® Ry = Os
is surjective.
Proof: It suffices to prove the theorem for [ = 2n. We write
Ryy=m(R,®R;);  R=®pig=mm(Rp, ® Ry)

These two spaces are subspaces of Os. Notice that if the spherical vector fy € R, then C)(S) €

—

R. Tt suffices to show that f) € R for every V) € U(2n), . Since fy is T—finite and K-fixed,
/> is contained in Ofg . From the last theorem, we see that O? is spanned by

f“fwf,kfl—H_IE (ij EN)

and according to Theorem 11.2 each of these is already in R. Thus OX C R. This implies
fr € R. QE.D.

From the same argument, a stronger statement can be proved.

Theorem 11.11
m: @3’;[_2”(]2,, Q Ri_p) = Os (I > 2n)

m : Rop ® Rap — Os

is surjective.

Now we have proved the following theorem concerning Os, for

S ={XX'| X €U(n)} 2U(n)/On
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Theorem 11.12 (Density Theorem) Og, is spanned by

Tr(XisX1)" ... Tr(XgsXp)*Tr(X} 1sXgp1) %+ ... Tr(XEsX,)™ (i EN,s € Sp, X; € CY)
Now combined with Theorem 11.1, we have the following theorem.

Theorem 11.13 Suppose m > 2n. Let wp 4 be the dual pair correspondence of (Span(R), Op q).
Let Py 4 be the Harish-Chandra module of the oscillator representation of Mp(V, Q) with respect
to (Span(R),Opq). Then

—_———

Rss(Span(R), m) C Uptg=mR(SP2n(R), Wp.q)
We define

—
—_—

w : Rss(Span(R), m) = @pig=mOp,guq
by letting o

wpq(m) = [: (R)(PC ® Vr) (m € R(Sp2n(R),wp q))

wp,g(m) =0 (m & R(Sp2n(R),wp,qg))
Then w is injective.

We only sketch the proof here. Let F(g) = £(v,7(g)u) be a matrix coefficient of Spay, (R). Then
F is an integrable function on S. Suppose that

Loy (Pog®Vr)=0  (Vpt+g=m)
From the density theorem and Theorem 11.1, the integration of F' against any Ogs is zero.
Therefore F must be almost everywhere zero on § and F' must be almost everywhere zero on
Span(R). Then (v, 7(g)u) must be identically zero for all g € Spe,(R). This is a contradiction.
Thus there exists pg + go = m, such that

Q.E.D.
If 7 € Rs5(Spon(R), m), then E & )('PC Vz) # 0 if and only if
(Pep® V) #0

pan(R)

In other words, m € R(Sp2,(R),wpq) if and only if = € R(SM),wq,p). Therefore, we can
further show that

—
P

w : Rs(Span(R), m) = @ptg=mp<¢Op,guq
is injective.
We can further generalize Theorem 11.13.
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Theorem 11.14 Suppose m > 2n. Then

——
—~——

. m
Ris(Sp2n(R),m) = &b, 2.0pm—psg (I =min(m — 2n, L; 1)
1s injective.
11.6 A conjecture on Unitarity

For a stable range dual pair (G, G’) with G the smaller group, it is shown by Li that unitarity
is preserved under the dual pair correspondence from R(G,w) to R(G',w). We formulate the
following conjecture.

Conjecture 4 Suppose (G,G’) is a reductive dual pair and (w,V;) is an irreducible unitary
representation of G. If Lz is well-defined and nonvanishing, then w(m) is unitary.
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