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ABSRACT

Let G be a classical group of type I. For an irreducible unitary representation, Howe defined

the notion of rank in analytic terms. On the algebraic side, there is the theory of primitive

ideals and associated variety. In the first part of this thesis, we relate Howe's rank with the

associated variety.

In the second part, We study the Bargmann-Segal model of the oscillator representation. Based

on this model, we construct an analytic compactification of the symplectic group. We also

construct an analytic compactification of the orthogonal group. All the compactifications are

compact symmetric spaces.

In the third part, we define semistable range in the dual pair correspondence, and give an

explicit construction of the dual pair correspondence in the semistable range. Finally, we

prove the nonvanishing theorems of the dual pair correspondence in the semistable range for

(Op,q, SP2n (R)). Our proof is based on some density theorems on some compact symmetric

spaces.

Thesis Supervisor: David Vogan
Title: Professor of Mathematics





The LORD is my shepherd; I shall not want.
He maketh me to lie down in green pastures:

he leadeth me beside the still waters.
He restoreth my soul:

he leadeth me in the paths of righteousness for his name's sake.
Yea, though I walk through the valley of the shadow of death, I will fear no evil:

for thou art with me; thy rod and thy staff they comfort me.
Thou preparest a table before me in the presence of mine enemies:

thou anointest my head with oil; my cup runneth over.
Surely goodness and mercy shall follow me all the days of my life:

and I will dwell in the house of the LORD for ever.

--- Psalm 23

For with much wisdom comes much sorrow;
the more knowledge, the more grief.

-- Ecclesiastes 1:18

But Jesus called the children to him and said,
"Let the little children come to me,

for the kingdom of God belongs to such as these.
I tell you the truth,

anyone who will not receive the kingdom of God like a little child will never enter it."

-- Luke 18:16-17





Acknowledgement

First of all, I wish to thank my advisor David Vogan for his generosity in his ideas, for his

patience in "editing" my thesis, and his kindness in many aspects. I am very grateful for not

only learning mathematics from him, but also honesty and sincerity.

I wish to acknowledge my gratitude to Professors Michael Artin, Sigurdur Helgason, Victor

Kac, Jian-Shu Li, George Lusztig, Henrik Schlichtkrull, Irving Segal, Yum Tong Siu and Dan

Strook for teaching me mathematics and answering my questions.

There are many individuals whom it would be appropriate to thank. Nevertheless, I want to

thank Colin Ingalls and Giuseppe Castellacci for helping me with algebraic geometry, Huazhang

Luo for helping me with geometry, Helen Gaubert and Monica Nevins for helping me read part

of A.Weil's "Sur certains groupes d'operateurs unitaires", Linda Okun and Jan Wetzel for help-

ing me keep the graduation and job application matters in order, and my collegues Dihua Jiang

and Shi-Kai Chern during my years at Ohio State for keeping me interested in mathematics.

Of course, the Lie group people, Peter Trapa, Wentang Kuo, Dana Pascovici and Diko Mihov

also helped me in various ways.

I also want to thank Rex Beck from Harvard and Song Lin from Northeastern for their compan-

ionship in the Lord, and Philip and Betty Yaghmai for their care. Finally, I should thank my

parents for their priceless love and care. Due to visa problems, they were not allowed to come

to share the joy with me at MIT's 132nd commencement. Therefore, it is both my obligation

and my privilege to dedicate this dissertation to them.

Above all, living in a confused age, I found the divine words the light for my feet and ever

shining on my way....





Contents

1 Introduction 11
1.1 Dual Pair Correspondence and Lower Rank Representations . ........... 11

1.2 Invariants Associated with a Representation . .................. .. 12

1.3 Associated Variety and Howe's Rank ................... ...... 12

1.4 Dual Pair Correspondence in the Semistable Range . ................ 14

1.5 Compactification of SOp,q and Sp2n(R) and Some Density Theorems ...... . 15

2 Structure Theory on Classical Groups of Type I 18

2.1 Type I classical Groups ................................ 18

2.2 Flags and Parabolic Subgroups ............................ 18

2.3 Maximal Parabolic Subgroups and Grading . .................. .. 20

3 Associated Variety under Restriction 23

3.1 Associated Variety and Restrictions ......................... 23

3.2 Associated Variety of U(g)-modules ...................... . . . . . 24

4 Associated Variety and Support: Abelian Case 26

4.1 Stone's Theorems and Spectral Integrals ................... .... 26

4.2 Abelian Lie Algebra Action ............................ 28

4.3 Spaces of Smooth Vectors ............................. 30

4.4 Associated Variety and Support ............................ 31

5 N-spectrum and N-associated variety 34

5.1 Spectrum, Associated Variety and Rank ................... .... 34

5.2 Complexification and C-Rank ........................... 35

5.3 Rank and Associated Variety: Real Groups . .................. .. 37

5.4 Rank and Associated Variety: Complex Groups . .................. 38

6 Compactification of the Symplectic Group 40

6.1 Bargmann-Segal Model ................................ 41

6.2 Some structure theory ...................... ........... 43

6.3 Analytic Properties of - ................... . . . . . . . . . . . . 45

6.4 Generalized Cartan decomposition and Some Remarks . .............. 50

7 Dual Pair Correspondence 55

7.1 Dual Pairs ........ .. . . . ...... ............ . . . . . . . . . . . 55

7.2 Structure Theory on Dual Pairs of Sp ........................ 56

7.3 Structure of P . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . .. . 58

7.4 Howe's Correspondence ................................ .... 60



8 Matrix Coefficient:Convergence 61
8.1 Structure Theory .............. ...................... 61
8.2 M atrix Coefficient ............ ..... ................. . 63
8.3 Asymptotic Behaviors ................... ............. 64
8.4 Matrix coefficient of the Oscillator Representation . ............ . . . . 68
8.5 Convergence ........................................ . 71

9 Semi-stable range 76
9.1 Averaging Operator .................................. .. 76
9.2 Properties of the Averaging Operator ............. . . ....... . 78
9.3 Howe's Quotient and its Dual ............. . . . . . . .... .......... 81
9.4 Irreducibility . . .. . . . . . . . ... . ... . . .. . . . . . . . . . . . . . . . 84
9.5 Invariant Hermitian Structure ................... .......... 86

10 Non-Vanishing Theorem for (Op,q, SP 2n(IR)) 87

10.1 Bargmann-Segal Model and (Op,q, Sp2n) pairs ................... . 87
10.2 Bargmann-Segal kernel for Op,q ............................ 89
10.3 The Compactification 7 i1 ............................... 92
10.4 Nonvanishing theorem ................ .. .............. 96
10.5 Density Theorem ................. ................... 103
10.6 Some Conjectures ................... ................. 107

11 Nonvanishing theorem for (Sp2n, Op,q) 109
11.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.2 Integration kernel of Sp 2 n(R, ) ............................. 112
11.3 On the Vanishing of Averaging Operator ........... . . ... ..... . .113
11.4 Spherical Functions and Helgason's Theorems ................... . 116
11.5 Density Theorems and Nonvanishing Theorems . ............... . . . 118
11.6 A conjecture on Unitarity .......... ..... ............... 125



1 Introduction

Let G be a connected semisimple noncompact group. Let G be the unitary dual of G, and Gad
be the admissible dual of G. Langlands gave a nice classification of Gad for linear semisimple

groups. Currently, there are two important unsolved problems in the representation theory of

G. One is to classify all the irreducible unitary representations. Another is to construct these

representations. There are two major techniques to construct an admissible representation,
namely, parabolic induction and cohomological induction [VoganO]. In a lot of cases, unitarity

can be determined once the construction is under way. However, there is one class of myste-

rious representations, the so called unipotent representations that can not be constructed in

either approach. Originally, this thesis was aimed at a better understanding of the unipotent

representations. One available tool to study the unipotent representation is the dual pair cor-

respondence of Howe. In this thesis, we study Howe's rank and dual pair correspondence in

hoping that these studies could lead to a better understanding of unitary representations in

general and unipotent representations in particular.

1.1 Dual Pair Correspondence and Lower Rank Representations

The oscillator Representation (also called symplectic spinor, metaplectic representation) is prob-

ably the most intensively studied unipotent representation. It was studied by Bargmann, Segal,
Shale and Weil in the sixties. The oscillator representation is a unitary representation of the

metaplectic group, the double covering of the symplectic group Sp. Two major models of the os-

cillator representation were built along the way, namely the Schrodinger model and Bargmann-

Fock-Segal model. We denote such a representation by w. We always have w(e) = -1, where

{1, e} is the preimage of the identity under the metaplectic covering. In this thesis, if G is a

subgroup of Sp, we will use G to denote the preimage of G under the metaplectic covering.

Following the work of Siegel, Weil reformulated the theory of theta-series in order to study

automorphic forms. Roughly speaking, a pair of reductive subgroups (G1, G2 ) of Sp(V, Q) is
said to be a reductive dual pair if each of G1 and G 2 is the centralizer of the other. Let (w, P)

be the Harish-Chandra module of the oscillator representation of Sp(V, Q). Let R(G, w) be

the space of irreducible admissible representations of G which occur as quotient of w (in a

proper category). Howe proved that, for classical real groups, 7Z(G 1 G2 , w) yields an one-to-one

correspondence between R7(Gi, w) and RZ(G 2 , w). This is often called Howe's correspondence or

the dual pair correspondence [Howel]. We denote it by w. Howe proved that for 7r E R(Gi, w),

w(7r) can be regarded as a unique quotient of a natural module wo(r).
The first success of using the dual pair correspondence to construct unipotent represen-

tations came about in J-S Li's thesis. Li constructed a class of interesting singular unitary

representations often called lower rank representations in the sense of Howe. Roughly speaking,
we say G1 is in the stable range of G2 if the rank of g1c is less or equal to the real rank of

G 2 . Let G be the preimage of G under the metaplectic covering of Sp, and G(e) be those

unitary representations satisfying r(c) = -1. Li proved that for type I dual pairs the dual pair

correspondence yields a one to one correspondence between the unitary dual Gi(e) and the



lower rank unitary representations of G2 ( ) up to a central character [Lil] [Li2]. By utilizing
the nice geometry of the stable range dual pairs, Li succeeded in constructing Howe's quotient
using Mackey's theory and proved the unitarity using the mixed model of the oscillator rep-
resentation. Of course, for nonstable range dual pairs, Mackey's theory and the mixed model
would not work.

1.2 Invariants Associated with a Representation

Generally speaking, classification problems are approached by constructing invariants. In rep-
resentation theory, some of the natural objects to study are the invariants associated with an
equivalence class of irreducible representations. Of course, one hopes that these studies could
shed some lights on the classification and construction of unitary representations. The first
and foremost important invariant is the infinitesimal character, studied by Harish-Chandra and
others. Then along this line, Langlands studied the growth condition on the matrix coeffi-
cients of an irreducible representation and gave a classification of all the irreducible admissible
representations. However, the problem of constructing irreducible representations is still not
completely understood.

To unveil the algebraic structure of an irreducible representation, Vogan studied the Gelfand-
Kirillov dimension for Harish-Chandra modules. Along this line, one can build a few geometric
invariants, for example, associated variety, asymptotic cycle and wave front set. Of course all
these invariants are tied up with the orbit method developed by Kirillov, Kostant and Vogan
which we will not discuss here. It suffices to say that associated variety is the right object to
study in order to understand the unipotent representations.

Roughly speaking, for every irreducible admissible representation r, there is a Harish-
Chandra module V, associated with it. This module is irreducible as a U(g) module. Associated
with V, is the annihilator Ann(V,). Since U(g) has a natural filtration, Ann(V,) inherits a fil-
tration from U(g). The associated variety V(Ann(V,)) can be defined as the associated variety
of gr(Ann(V)) in g. For a reductive Lie algebra go, It is well-known that for 7r irreducible,
V(Ann(V,)) is a closure of a single nilpotent orbit in g . Since g* can be identified with 0c
through an invariant bilinear form on gc, sometimes we will regard V(Ann(V,)) as a subvariety
of 9c. We use R(O) to denote the set of irreducible representation 7r such that V(Ann(V,)) is
equal to 0.

Thus it is now an interesting problem to see what are the possible associated varieties for
lower rank representations constructed by J-S Li. It is even more interesting to see if dual pair
correspondence can produce all the unipotent representations.

1.3 Associated Variety and Howe's Rank

The notion of rank of a unitary representation was introduced by Howe for G = Sp 2n(R). Let
N be the (Abelian) nilradical of the maximal parabolic subgroup P corresponding to the roots

{el - e2, ... , n-1 - en}. In this case, N can be regarded as the space of symmetric bilinear
forms. For a unitary representation 7r of G, we consider its restriction on N. According to
Stone's theorem, IrN is uniquely determined by a spectral measure PiN(r). Howe defined the



notion of N-rank of ir to be the highest rank of the support of AN(r) regarded as symmetric
bilinear forms. Later, Jian-Shu Li extended the ZNk-rank to all the type I classical groups

(see Definition 2.1). For type II classical groups, namely, GL(n, D) (D = R, C, H), the unitary
dual is more or less well-understood (see [Vogan]). In this thesis, We will only consider type I
classical groups. We prove the following theorem relating ZNk-rank with associated variety.

Theorem 1.1 Let (r, H) be an irreducible unitary representation of a type I classical group
G. Then

1. for G = Sp2n(R), U(p, q), ZNk-rank of (7, H) equals min(k, rank(V(Annu(g)(r))));

2. for G = Op,q, ZNk-rank of (r,H) equals min(k, rank(V(Annu(g) (7r)))) if k is even,
min(k - 1, rank(V(Annu(g)(lr)))) if k is odd;

3. for G = O*(2n), Sp(p, q), ZNk-rank of (r, H) equals min(k, rank(V(Annu(g)(r))));

4. for G = Sp(n, C), ZNk-rank of (7r, H) equals min(k, rank(V (Annu(g)(7r))));

5. for G = O(n, C), ZNk-rank of (-r,H) equals min(k, rank(V(Annu(q)(r)))) when k is

even, and min(k - 1, rank(V(Annu(g)(r)))) when k is odd.

Since g is a classical Lie algebra, its complexification gc can be regarded as a matrix Lie algebra.
rank(V(Annu(g) (r))) here is defined to be the maximal rank of the elements in V(Annu(9 )(7r)).

Now for G = Sp2n (R), we know that the set of complex nilpotent orbits is in one to one
correspondence with the partitions of 2n

k

Al >A 2 ... >Ak > 0, E A=2n
1

such that odd parts occur with even multiplicities. We call such a partition a symplectic
partition, we denote the nilpotent orbit corresponding to such partition by 09. Very briefly,
the lower rank representations are the unipotent representations attached to those nilpotent
orbits Ox with k > n.

Also one can easily observe that if we write a sympletic partition as (the rows of) a Young
diagram. By deleting the first column, we obtain a (smaller) orthogonal partition. Here an
orthogonal partition is a partition where even parts occur with odd multiplicities. Conversely, by
deleting the first column of an orthogonal partition, we obtain a (smaller) symplectic partition.
One remarkable phenomenon proved by Przebinda is that dual pair correspondence in the
stable range actually descends to a correspondence between the nilpotent orbits of sympletic
groups and nilpotent orbits of orthogonal groups (see [Przebinda]). Explicitly, for the dual
pair (Op,q, Sp2n( R) with n > p + q, the orbit correspondence takes an arbitrary orthogonal
partition of p + q to a symplectic partition of 2n by adding a first column of size 2n - p - q > n.
Therefore even if we assume a complete description of Op,q, we can only hope to construct those



irreducible unitary representations attached to the nilpotent orbits ), with k > n. Thus it is
necessary for us to study the dual pair correspondence in non-stable range. If the dual pair
correspondence was well-understood in the non-stable range, one may hope to build a zig-zag
construction model for each unipotent representation via dual pair correspondence.

1.4 Dual Pair Correspondence in the Semistable Range

For a nonstable range dual pair, not much is known about Howe's correspondence. For instance,
we do not know much about RZ(G, w), we do not know how to construct w(7r) from ir, and we
do not know whether unitarity is preserved. The main theme in my thesis is to search for those
irreducible representations occuring in 7(G, w) and to finish the construction of w(ir) for 7r in
a certain range.

Let (G, G') C Sp(V, ) be a reductive dual pair. Let cE RI(G,w). Following J-S Li, we
define formally the averaging operator

£ : Pc 0 V, -4 Hom k(P, V)

by

L( 0 v)() = (, w(g)4V)7r(g)vdg (4 E PC, EP7, v E V)

We observe that the image of the averaging operator is in fact a (g', K')-module. The first
problem settled in this thesis is when £((P 0 V,) is well-defined. Roughly speaking, we say

that 7r is in the semistable range of (G, G') if £L is well-defined and 7r(e) = -1. In this thesis,
we give a precise description of the semistable range for (SP2n, Op,q) in terms of the growth
condition on the matrix coefficients. Then the Langlands parameters in the semistable range
can be read off from the growth condition. We will prove that

Theorem 1.2 (Construction) Suppose that 7r is in the semistable range of G. If C£ does

not vanish, then 7r E R(G,w). The converse is also true. Furthermore, the image of £L6
is irreducible and isomorphic to the dual representation of w(7) (in the category of Harish-
Chandra modules).

From this theorem, our construction of w(ir) will be complete if we can prove nonvanishing of
L£ for a particular 7r. In this thesis, we will prove

Theorem 1.3 Suppose p + q < 2n + 1. Let 7 be an irreducible admissible representation of

Op,q such that each of its leading exponents v satisfies that Re(v) + 2p - (n,... , n) is a strictly
negative combination of simple roots. Here 2p is the sum of restricted roots (with multiplicity).

Suppose 7r(E) = -1. Then 7r is in the semistable range. In addition, either r E RZ(Op,q, W) or

7r x E 7Z(Op,q,w), and the dual Harish-Chandra module of w(r) or w(rox) can be constructed

using the averaging operator. Here X is a one-dimensional character of Op,q.



The case of averaging over Sp2n (R) to obtain representations of Op,q is a little subtle. Roughly

speaking, one can no longer expect that the dual pair correspondence in the semistable range

be an injection for an individual dual pair (SP2n (R), Op,q). One easy counterexample is when

Op,q is compact. However, we can consider the disjoint union of R(Op,q, wp,q) where p + q = m

is fixed. In this thesis, we will prove

Theorem 1.4 Suppose p + q > 2n. Let 7r be an irreducible admissible representation of Sp2n
such that 7r(e) = -1. Suppose that each of its leading exponents v satisfies that Re (v) + 2p -

( 2,. ,Pq) is a strictly negative combination of simple roots. Then 7r is in the semistable

range. Let Wp,q be the underlying oscillator representation for (Sp2n, Op,q). Then there exists

p' + q' = p + q, such that r E 7(Sp2n,wp',q'). Hence, the dual Harish-Chandra module of

Wp,,q, (r) can be constructed using the averaging operator.

Certainly, these two theorems can help us to get our hands on the dual pair correspondence in

the semistable range. Also semistable range seems to be the right range to study for unipotent

representation. However, our investigation is far from complete.

1.5 Compactification of SOp,q and Sp 2n(R) and Some Density Theorems

Let X be an analytic manifold. We say that (i, X) is an analytic compactification of X if there

exist a compact ananlytic manifold X and an analytic embedding

i : X -+X

such that i(X) is dense in X. In this thesis (Chapter 6), we prove that

Theorem 1.5 (Compactification of Sp 2 n (R)) There exists an analytic embedding:

W : Sp 2n (R) - U(2n)/02n(R)

The image is open dense in U(2n)/0 2n(R). If f is a K-finite matrix coefficient of an irre-

ducible unitary representation of Sp2n(IR), then f can be extended into a continuous function

on U(2n)/02n(R).

Theorem 1.6 (Compactification of Op,q) There exists an analytic compactification (7-1i, Op+q)

of Op,q.

This theorem is proved as Theorem 10.3. We shall remark here that the compactification we

defined here is different from the construction of T.Oshima [Oshima].

One of the main ideas in proving the nonvanishing theorems is to relate Howe's dual pair

correspondence to the harmonic analysis of compact symmetric spaces. Roughly speaking, the

integration kernel of G in the Bargmann-Segal model yields a compactification from the group

G to a compact symmetric space. Thus many questions about dual pair correspondence can



be converted into questions about this compactification and questions about functions on the
compact symmetric space.

For example, for every X, Y E Mat(p + q, n, C), we define a function on the compact group

SOp+q by
Fx,y(g) = Tr(XtgY), (g E SOp+q)

Let Rn be the linear span of the functions

{Fy I X, Y G Mat(p + q, n, C), i E N}

The nonvanishing of Ld for G = SOp,q is closely related to the density of Rn in Le-functions
of SOp+q. In this thesis, we prove that

Theorem 1.7 (Density theorem for SOp+q) Let Osop+q be the space of regular functions

on S O p+q. If n > +q-1, then Rn = Osopq

Notice that U(2n)/02n can be identified with

S2n = {UUt I U E U(2n)}

For X E Mat(2n, p, C), we define an algebraic function on S by

Fx(s) = Tr(XtsX) (s E S2n)

Let Rp be the linear span of

{F I X E Mat(2n, p),i E N}

and Rp be its conjugation. Let Rp 0 Rq be the space of functions on S2n spanned by the product
of functions in Rp and Rq. The nonvanishing of L£ for G = Sp2n (R) and G' = Op,q is closely
related to the density of Rp 0 Rq in the space of L'-functions on S2,. In this thesis, we prove

Theorem 1.8 (Density Theorem for Sn) If I > n, then Ei=oRi 0 Rl-i is equal to Os(.

In fact we develop a model for the ring of regular functions on Sn.

Theorem 1.9 The ring of regular functions on Sn is spanned by the functions of the following
form:

Tr(XfsXI) i ... Tr(XksXk)1k Tr(X isXk+l)ik+1 ... Tr(XtnsXn) in (ij E Z, s E S, Xj E C)

To summarize, the dual pair correspondence is defined algebraically. We study the dual pair cor-
respondence using the analytic tool L£. Then we use compactification to convert the questions
about £L to some purely algebraic questions about the density of some function space.

The following is what is covered in this thesis. In Chapter 2, we present the structure theory
of parabolic subgroups for a type I classical group. In Chapter 3, we investigate the relationship



between the associated variety of M and the H-associated variety of M where M is a U(g)
module. In Chapter 4, we study the Lie algebra action under the framework of direct integral
for Abelian Lie groups. We show that for a unitary representation of a connected Abelian Lie

group G, the associated variety is the algebraic closure of the support of its spectral measure.

In Chapter 5, we compute the ZNk-rank using associated varieties. In Chapter 6, we review the

Bargmann-Segal model and construct the analytic compactification of SP2n(R). In Chapter 7,
we review the dual pair correspondence of Howe. In Chapter 8, we study the growth condition of

the matrix coefficients of the oscillator representation. We also investigate the growth condition

for the convergence of £5. In Chapter 9, we study the algebraic properties of the averaging

operator L£ and prove the construction theorem. In Chapter 10, we study the compactification

of Op,q and prove the density theorem for SOp+q, thus the nonvanishing of £s- . In Chapter

11, we we prove the density theorem for U(n)/On and investigate the nonvanishing of L-
SP2n (R)



2 Structure Theory on Classical Groups of Type I

In this section, we summarize some results about the structure of parabolic subgroups of a
classical group of type I.

2.1 Type I classical Groups

Definition 2.1 A type I classical group G(V) consists of the following data.

* A division algebra D of a field F with involution 0, and a b = (ba) ;

* A (right) vector space V over D, with a nondegenerate (D-valued) sesquilinear form (,),,
e = +1, i.e.,

(u, v) = e(v, u) (u, v EV)

(uA, v) = (u, v)A (u, vE V, A CD);

* G is the isometry group of (,), i.e.,

g.(uA) = (g.u)A (A E D,u E V,g E G)

(g, gv) = (u,v) (u ,v V).

Here we allow 0 to be trivial. We call the identity component of G connected classical group
of type I. For F = C, 0 trivial, we obtain all the complex simple groups of type I, namely,
Sp2n(C), and O(n,C). If D = H, F = R, 0 the usual involution, we obtain Sp(p,q) and O*(2n)
depending on the sesquilinear form. For F = IR, D = C and 0 the usual conjugation, we obtain
U(p, q) depending on the signature of the Hermitian form. For F = R, D = JR with trivial
involution, we obtain Sp2n(IR) and Op,q(R). If (V, (,)) is implicitly understood, we write G or
G(n) if V - D n . Let V0 be a linear subspace of V, we write VoL for the orthogonal complement
of Vo in V. If (,) is nondegenerate on Vo, we let G(Vo) denote the subgroup of G consisting of
elements which acts by identity on Vol. from our scope.

2.2 Flags and Parabolic Subgroups

Definition 2.2 A flag .T of V = D n is a sequence of strictly increasing (D-)linear subspaces
of V

0 = Vo y V V2 . C Vk C V

such that

V 1i = Vk + l - i .

Suppose dim(Vi) = di. -T is said to be a flag of type

I = (0 < dl < d2 < ... < dk < n) (di N).



We denote the space of flags of type I by Bz. We fix once for all a maximal set of linearly

independent vectors
{el,e2, ... ,er, e , e*,... ,e } (ei,ef G V)

such that

(ei, ej) = 0 = (e , e*), (ei, e) = 6ij

where r is the real rank of G. For each integer 1 < i < r, we let Xi be the linear span of

{el,... , e}, and X* be the linear span of {eT,... , e*}. We set Wi = Xi D X*. We define a

map T E G as follows
T(ei) = e*, T(e*) = cei (i E [1, r]),

T7WIW = id.

Let Zo= {0 <1<2<...<r< n-r<n-r+1<...<n-1<n}. We fix aflag

o0 = (0 C X1C...CX c c X XX C V1

For an arbitrary A = (A1,... Ar) E (R+)r, we define a linear isomorphism A(A) E GLD(V) as

follows,
A(A)ei = Aiei; A(A)e* = A~le* (i [1, r])

A(A)u = u (u E W).

It is easy to check that A(A) E G(V). Let A be the group consisting of all A(A). Then A is a

maximal connected split Abelian subgroup of G(V).

For h = (hi,... ,hr) E Rr, we may also define a(h) E EndD(V) such that

a(h)ei = hiei, a(h)e* = -hief (i E [1, r])

a(h)u = u (u E W,-).

It is easy to see that the Lie algebra a of A consists of all a(h). Let A(g, a) be the restricted

root system. For a E A(g, a), let 9 be the root space. Then we have

T(~a) = 0 (a E A(g, a)).

Theorem 2.1 The isotropy group Po = Gy~- is a minimal parabolic subgroup of G. Its Levi

factor is

MA =Po n T(P)

={g E G(V) I g.Xi = Xi, g.X7 = X*, g.Wr = Wjr} (2.1)

={g E G(V) I g.(eiD) = eiD, g.(e*D) = e*D, g.Wjr = W'}



Similarly, we can define a flag Fz of type

Z = {O < il < i2... < ik < n}

by
k+1

Vj = XiJ (j < )

2
V = XJ (j >k ).= i k+1- j - 2

Of course, we assume that for every j E [1, k], ij + ik+l- j  -n.

Theorem 2.2 Pt = G z are all the parabolic subgroups containing Po. If G 01,1, 0(2, C)
(in these two cases, no proper parabolic subgroup exists), the maximal parabolic subgroups cor-
respond to Z = {0 < k < n - k < n}.

Proof: We will only sketch a proof here. Obviously Pt 2 Po. Now we observe that for
G 01,1, 0(2, C), Pt and Pz, are different if I ZI'. The cardinality of all the I's is 2r . But
the cardinality of parabolic groups containing Po is also 2r . Thus Pt exhaust all the parabolic
subgroups containing Po.

Observe that Pz 2 Pz, if and only if I' is a refinement of I. Therefore the maximal parabolic
subgroups correspond to I = {0 < k < n - k < n}. Q.E.D.

2.3 Maximal Parabolic Subgroups and Grading

We denote the maximal parabolic subgroup P{o<k<n-k<n} by Pk.

Theorem 2.3 The Levi factor MzAz can be given by

Pt n r(Pi) = {g E G(V) I g.Xi= Xi 3 ; g.Xi = XZ*

For Pk maximal parabolic, let MkAkNk be the Langlands decomposition. Then Ak is 1-dimensional.

Ak = {at, t E R+ I a(t)IxK = t;a(t)Ix- = t- 1 ;a(t) Iw = 1}

MkAk = {g E G(V) I g.Xk = Xk;gX = X} - GLD(k) x G(Wk)

Now we fix an hk E ak, such that hk is identity on Xk, and -1 on XZ, and zero on WkI

Then V can be decomposed into eigenspaces of hk

V_ 1 = Xk V = Xk Vo = WkI

Thus g can be decomposed into eigenspaces of hk as follows.

g = 9-2 E 0-1 f 9g1 0 92



where

go = { e g I X.Xk Xk; .X C X;x.WL C W-}

gi = {( E g I X.X = 0; x.WL C Xk; .XZ C Wk}

2 = {x E gI z.Xk = 0; x.Wk = 0; x.X C Xk

O-i = T(oi)

go = mk E ak

Notation: Since our argument is valid for every k, gi will denote

for a fixed (implicit) k.
Notice that

the i-eigenspace of ad(hk)

x E 2 zx xkwl = O; (x.u, v) + (u, x.v) = 0 (V U, v E X;)

If we define a sesquilinear form on XZ to be

Bx(u, v) = (x.u, v) (u, vE X )

then
Bx(u, v) = -EBx(v, u)

Therefore 92 can be identified with a space of sesquilinear forms (,)- on XZ. Similarly, 0g can

be identified with a space of sesquilinear forms (,)-_ on Xk.

Now for every x E gi, we define Cz E HomD(W , Xk) to be the restriction of x on Wk-.

Since

(x.u, v) + (u, x.v) = 0 (u E WV c vX )k i k1t lc

Then for each v C XZ, x.v can be uniquely determined by

(u, x.v) = - (x., v) = - (CXu, v)

because that (,) restricted to Wk- is nondegenerate. Conversely,
we may define an x E HomD(V, V) such that

for each Cz E HomD(Wk-, Xk),

z.Xk = 0, X'WkI = CX

and Equation 2.2 holds. To summarize, we have shown that

C: gi - HomD(W, , Xk)

is an isomorphism.

Similarly, for each x E g1, we may define Dz E HomD(Xk*, W7L) to be the restriction of x

on XZ. We also have

D il - HomoD(X;, W-)

Moreover

(i = 1, 2)

01 g 92 = nk

(u W ) (2.2)



Theorem 2.4 Let C be the restriction of gi on WL. Let D be the restriction of g1 on X*.
Then C : g -+ HomD(W, Xk) and D : g -+ HomD(X*, W ) are bijections. Moreover

[x, y] = CxDy - CyDx (x,y E g1)

Theorem 2.5 Let Go be the Levi factor of the maximal parabolic subgroup Pk as defined in
Theorem 2.3. Then g, is an irreducible Go-module. Suppose 02 $ {0}. Then 02 is the center

of 01 E 02-

Proof: Recall that go0 EndD(XZ) D g(Wk). The adjoint action of Go on 01 can be identified
with the action of GLD(Xk*) x G(W) on HomD(X, W,-). But XZ as an GLD(XZ)-module
is irreducible, and Wf- as a G(W -)-module is also irreducible. Thus Hom D(Xk, W7) is an

irreducible GLD(X) x G(W )-module. In other words, g1 is an irreducible Go-module.
Since g is a Lie algebra, we have

[91,g9] = g3 = {0}, [92,2] = g4 = {0}

Thus 0 2 is in the center of 01 E 02. Observe that Z(g 1 ( 92) n g1 is a 50-module. Thus either

Z(0 1 @ 02) n 1 = 1g, i.e., g1 Abelian, or Z(g 1 g 2) n1l = {0}. Suppose that g1 is Abelian. Let
a be the simple restricted root such that -0a is not contained in go. Then g0, 91 !g2. From
root decomposition, either g0, g1 or g9 C 02- If g0, lies in g1, and g1 Abelian, then 02 = {0}.
This is a contradiction. Otherwise 9g lies in 02. This implies that gi = {0}. In both cases, we
have

Z(g 1 E 92) ng1 = {0}

Thus

Z(0 1 G B2 ) = 02

Q.E.D.

Theorem 2.6 Pk acts on g* with finitely many orbits. The orbits are uniquely determined by
the rank and the signature of the corresponding sesquilinear form.

Proof: It is well-known that a Hermitian or (skew-Hermitian) sesquilinear form on Dk can be
determined by its signature and rank up to the action of GLD(k). But GLD(k) C MkAk, and
G(W ) acts trivially on Xk, XZ, thus trivially on 6g. In addition, from weight decomposition,
nk has to act trivially on g*. Thus Nk acts trivially on 9g. Therefore Pk acts through GLD(k)

on 92, and the orbits are determined by their rank and their signature of the corresponding
sesquilinear forms. Q.E.D.

We define the rank of any subset S of g* to be the maximal rank of the elements of S
regarded as sesquilinear form.



3 Associated Variety under Restriction

A filtered (noncommutative) algebra D over C is an algebra endowed with a filtration {Ti}ieZ

such that
Di- Dj C Th (i, j E Z)

Let gr(D) = EDi+l/Di be the associated graded algebra. Let ai : Di -+ Di/Di-1 be the natural

projection. Throughout this paper, our filtered algebra will be assumed to have the following

property:

1. Do = C1, where 1 is the identity element;

2. D_ 1 = {0};

3. gr(D) is a commutative affine algebra.

Notice that gr(D) being commutative is equivalent to

[Di, Thj] c i+j-l

3.1 Associated Variety and Restrictions

Definition 3.1 Let spec(D) be the maximal spectrum of gr(D). Suppose that I is a (left)

ideal of D. Then I inherits a filtration from D, i.e.,

zi = Ti ni (iN)

Let gr(I) be the graded algebra of Z. Then gr(I) is an ideal of gr(D). Let V(I) be the set of
maximal ideals in gr((D) containing gr(Z). V(I) is called the associated variety of I.

Now suppose that C is a subalgebra of D with identity. C inherits a filtration from D. Thus

we have an injection:
j : gr(C) -+ gr(D)

Suppose that gr(C) is an affine, (automatically) commutative algebra. Then the associated map

on the spaces of spectrum is
j* : spec(D) -+ spec(C)

Theorem 3.1 Let M be a D-module, N a linear subspace of M. Let C be a subalgebra of 7D.
Let AnnE)(N) be the annihilator of N. Then Ann-D(N) is a left ideal of D and

j*V(Ann (N)) C V(Annc(N))

Proof: Let I = gr(Annc(N)), and J = gr(Annv(N)). Suppose f E I is homogeneous of degree

k. Then there exists U C Annc(N) C Annv(N), such that

k(u)= f



This implies that

j(f) C J

Therefore j(I) C J. Let L be the ideal generated by j(I) in gr(D). It follows immediately that

V(L) 2 V(J)

By inspection of the definitions, this amounts to

(j*)-l(V(I)) 2 V(J)

This is equivalent to

V(I) D j*(V(J))

Q.E.D.

3.2 Associated Variety of U(g)-modules

Now let D = U(g) be the universal enveloping algebra of g with complex coefficients. Since
U(g) has a natural filtration

C.1 CU 1 (g) U2 () C ... C Ui(g) C ...

the associated graded algebra gr(U(g)) can be identified with the symmetric algebra S(g). Thus

spec(U(g)) = g*

Here g* is the complex dual of g. Let j be a subalgebra of g. Then j* is simply the projection
of g* onto ig (through restriction). Under this setting, we have

Theorem 3.2 Let M be a g-module. Let N be a linear subspace of M. Then

j*(V(Annu(,)(N)) ) C V(Anne(4)(N))

Now we are interested in the following equation.

cl(j* (V(AnnU(g)(N)))) = V(Annu()(N))

At this stage, we only have a very limited understanding about the behavior of j* for associated
varieties. Nevertheless, we have the following theorem.

Theorem 3.3 Suppose a is a semisimple element in an arbitrary Lie algebra g with only real
eigenvalues, i.e., ad(a) possesses an eigenspace decomposition:

g = -r (D ... ED Or

Let r be the maximal eigenvalue. Suppose r > 0. Let [ = Or. Then is Abelian. Let M be a
g-module, and N a subspace of M such that a.N C N. Then

V(Annu() (N)) = cl(j*(V(AnnU() (N))))

where cl(j*(V(Annu() (N)))) is the algebraic closure of j*(V(Annu() (N))).



Proof: First of all, under the eigendecomposition of ad(a), we have

[0r, 9r] = 92r = {0)

Therefore b = gr is Abelian. Now it suffices to show that

V(Annu(4)(N)) C cl(j*(V(AnnU(g)(N))))

Suppose that f E S'i() vanishes on cl(j*(V(AnnU(g)(N)))). In other words, j(f) = f vanishes
on V(Annu(g)(N)). Thus there exists n E N, such that fn E gr(Annu(g)(N)). Therefore,

3 P E Uni(g) n Annu(g) (N), P = Po + P

where
Po E Uni(b), Pi Uni-l(9), ni(Po) = fn

Since ad(a) is semisimple, Unz(g) is completely reducible as ad(a)-module. Also notice that
N is an a-module. Thus Annu(g)(N) is also an ad(a)-module. Now Uni(g) n Annu(g)(N)
possesses an eigen (weight) decomposition with respect to ad(a)

Uni(g) n Annu(g)(N) = aEkJR(Uni(g) n AnnU(g)(N))k

This implies that every eigencomponent of P with respect to ad(a) is again in Annu(g) (N).
Since I) is of the highest weight in g, by comparing the weight of Po with the weights of
Uni-1(g), we can see that the highest weight component of P is P0o. Thus

Po E Annu()(N)

In addition,
ani(Po) = fn E gr(Annu(4)(N))

This implies that f vanishes at V(Annu(4)(N)). Q.E.D.
Now under the setting from section (1), we have the following theorem.

Theorem 3.4 Let g9 be the classical Lie algebra of type L Let M be a g-module. Let j* be

the canonical projection from g onto g2 c*. Then

V(Annu(q2)(M)) = cl(j*(Annu(g)(M)))

We will end this section with the following definition.

Definition 3.2 Let N be a connected closed subgroup of G. Let 7r be a unitary representation

of G. We call V(AnnU(,)(lr)) the N-associated variety.

Let NG(N) be the normalizer of N in G. One can easily see that the N-associated variety is

NG(N)-stable.



4 Associated Variety and Support: Abelian Case

Let G be a locally compact Abelian group. Let G be the set of unitary characters of G
endowed with the Gelfand topology. Then G is a locally compact Abelian group under pointwise
multiplication. Let H be a unitary representation of G. Then the Lie algebra g acts on the
smooth vectors in '". On the one hand, we have the theory of abelian harmonic analysis
available. We can study the support of H as a closed subset of 0. On the other hand, we also
have the theory of commutative algebras available. We can study the associated variety of H'
as a Zariski-closed subvariety of g*. In this chapter, we will see how these two invaraints are
related.

4.1 Stone's Theorems and Spectral Integrals

Theorem 4.1 (Stone) If H is a Hilbert space and p a regular projection-valued Borel measure
on G, then the equation

T = ( (g)dLp() (g E G) (4.3)

defines a unitary representation T of G on H. Conversely, every unitary representation of G
determines a unique regular projection-valued Borel measure p on H such that Equation 4.3
holds.

We define the support of a unitary representation H of G to be the (closed) support of the
projection-valued measure p. In other words, suppG(r) is the complement of the biggest open
subset U of G such that p(U) = 0. Equivalently, supp(lr) is the smallest closed subset K of
G such that M(K) = id. Of course if we remove the closedness of supPG(r), suPPG(r) is only
unique up to a set of measure zero.

Theorem 4.2 Make the same assumption as in Stone's theorem. For any v E H, there exists
a vector valued regular Borel measure ,v such that

Tg(v) = J((g)dlv( () (g E G)

For every u, v E H, there exists a complex regular Borel measure pu,v such that

(Tg(u), v) = J (g)dpu,v(6) (g E G)

Proof: For arbitrary Borel measurable set K C G, we define

Pv(K) = p(K).v

AI,(K) = (p(K)u, v)



It is easy to check that both measures inherit regularity. Q.E.D.

Suppose G is a connected Abelian Lie group and g is the (real) Lie algebra of G. Let g* be

the real dual of g. Each ( E G corresponds to a smooth function ((g) on G. We can define

(x) = d(exp(tz)) (x C g)

This defines a map from G to 9~. Since

((exp(tx))((exp(tx)) = 1

Thus

(x) + (x) = 0

This implies that ((x) E iR. We denote the pure imaginary dual by ig*. Then we have defined

a map from G to ig*. Now, we want to study the Lie algebra action r of g. We recall the

following definition of spectral integral.

Definition 4.1 Let (, X) be a projection-valued spectral measure on a Hilbert space. Let

f : X -+ C be a p-measurable function. Then we may find a sequence {An} of pairwise disjoint

measurable sets such that

* U'An = X;

* f is p-essentially bounded on each An

Let Hn = range(Pn), Tn = fAn f dM. Then there exists a unique normal operator T = ETn on

(Hn. T is often written as f f dp, called the spectral integral of f.

Now we begin with the following theorems in page 118 of [Fell&Doran].

Theorem 4.3 Suppose f : C - C is a M-measurable function. Let

Tf = fd

Then v C Dom(Tf) if and only if

f (()12dpv,.( ) < oo

In this case,

IITfVI 2  I f( )12dpv,v( )

(Tv, u) = J f()dpv,u(() (u E H)



Theorem 4.4 Let fl, f2 be e-measurable functions on G. Then

( fidp) ( f 2 dp) C f ff2du

(J fid)* = Jf dp

4.2 Abelian Lie Algebra Action

In general, derivative can be defined in a Banach space. Suppose c(t) is a continuous curve in
a Hilbert space H. If there exists a vector v in H such that

V u E H, (v,u) = d t=o(c(t), u)

We say c(t) is differentiable at 0 and v is said to be the derivative of c(t) at 0. Now we can
prove the following theorem.

Theorem 4.5 Let (7r, H) be a unitary representation of a connected Abelian Lie group G.
Let p be the projection-valued regular Borel measure from Stone's theorem. We denote the Lie
algebra g actions by 7r. Then

J/~ (X)dp() C 7r(X) (X E g)

Proof: Let Tx = fd (X)dp((). Suppose u E Dom(Tx). First we want to show that V v E H,

(Txu, v) = d (r(exp(tX))u, v)
dt

We would like to interchange the integration and differentiation, obtaining

d(r(exp(tX))u, v) d f(exp(tX))dyu,,(()

= (exp(tX))d,,,v() (4.4)

= (X)dl,, (()
To show that the integration is interchangeable with the differentiation, first we observe that

d d
I ((exp(tX)) = I- exp(t(X)) I<(X)l ( E G).
dt dt

For a complex measure p, we define IpI(U) to be the supremum of {ETL Ip(Ej)I}, where {Ej}
is any measurable partition of U. Since

I(p(U)u, v) 2 = 1(A(U), 1(U)v) 2 < ii(U)u|112 ,(U)112



we have

Ibu,v(U) 2 < Ii-Lu,u(U)IPv,vI(U) = ,2(U)v,v(U )
Therefore

(J ((X) dlpU,, (())2 <(I |(X)| dpu,())(I d,,,(())
(4.5)

=( f(x)12dpu,u(IV) 2

From Theorem 4.3, u E Dom(Tx) implies that

I 1 (X)12dpuu( ) < OO

Hence ((X) as a function on ( is absolutely integrable with respect to Au,v. But d (exp(tX))
is dominated by I (X)j. Thus integration and differentiation are interchangeable. We obtain

d (r(exp(tX))u, v) = (Txu, v)dt

Of course, here we have not proved that u E Dom(7r(X)). In fact we have

id(lr(exp(tX))u, v)12 (J I(X) dJpu,v ())2 < (J |(X) 2du,u(()) vl2

From here we see that 7r(X)u can be defined abstractly as a linear functional on H such that

(Tr(X)u, v) = -(r(exp(tX))u, v) (V v E H)
dt

Now ir(X)u E H is well-defined. Therefore u E Dom(r(X)). Q.E.D.
Now for X 1,X 2,... ,Xn E g, we define

Tx 1xx2...Xn = f (X1I(X2) ... ((Xn)dp(()

We can extend this definition by linearity to all D E U(g). One can easily obtain the following
theorem about the universal enveloping algebra U(g).

Theorem 4.6 Let (7r, H) be a unitary representation of a connected Abelian Lie group G, and
p its projection-valued regular Borel measure. Suppose X 1, X 2 ,... ,Xn E g. Then

Tx 1Tx2 ... Tx C 7r(XiX 2 ... Xn)

Tx 1 x 2 ...Xn D TX 1 TX 2 ... TX n

Since U(g) is commutative, we may identify it with S(g). Thus for every ( E g*, D E U(g),
6(D) is well-defined. We will also denote 6(D) by D(6), just to indicate the fact that D can be
regarded as a function on g*.



4.3 Spaces of Smooth Vectors

Theorem 4.7 If u E Dom(TD) for every D E U(g), then u is smooth. Furthermore,

7(D)u = TD

Proof: Suppose u E Dom(To) for every D C U(g). Then we know that

d
I df(exp(tX 1 +... tjXj))(Xi+1)...dti

By a similar argument of interchanging integration with differentiation from Theorem 4.5, we
have

d d
(7r(XlX2 ... Xn)u, v) =d

dt2 dt2

d..df
dtn 6 (4.6)

= J (XiX 2 ... Xn)dpu,()

Thus u is smooth and 7r(D)u = TDu. Q.E.D.

Before we continue on, we want to examine the definition of the annihilator of a unitary
representation for an arbitrary Lie group G.

Theorem 4.8 Let (7r, H) be a unitary representation of a Lie group G. Let M be any dense
subset of the space of smooth vectors H". Then

Annu(,)(H') = Annu(g)(M)

Proof: If D E U(g), and 7r(D)H' = 0, then 7r(D)M = 0. Thus

Annu(g)(M) 2 Annu(g)(H"c)

If D E Annu(g)(M), then
V u M, v E H" , (r(D)u, v) = 0

Since g act as skew-adjoint operators, i.e.,

V X E g, 7r(X)* = ir(-X)

we have
(7r(D)u, v) = (u, 7r(D)*v) = 0 (u E M,v c HI)

Since M is dense in HOO, M is dense in H. Hence w7(D)*v = 0. We have

(7r(D)u, v) = (u, 7r(D)*v) = 0

S(Xn) I |ll 2(Xj)l

Vexp(rntiXi))d1L." ( )

(u E H , v E HOO)



Thus for every u E H', 7r(D)u = 0 Therefore

D E Annu(g)(H")

This implies that

Annv(g)(M) C Annv(g)(H' )

Q.E.D.
Thus we may define Annu(g)(7r) to be the annihilator of any smooth dense subset M of H.

In particular, in our context, for G an Abelian Lie group, we choose

M = {J f(()dp~u() If E Bc(G), u E H}

where Be(G) is the space of bounded measurable functions with compact support. M here has
some property similar to Girding space.

4.4 Associated Variety and Support

Theorem 4.9 Let (7r, H) be a unitary representation of a connected Abelian Lie group G, /I
its projection-valued regular Borel measure. Then M is dense in H, and M C H'. Suppose

D E U(g) = S(g) such that
D(() = 0 (( E suppG(r))

Then D E Annu(g)(7r).

Proof: We will show that M C Dom(TD) for every D E U(g). V f E Bc(G),u E H,D E S(g),
let v = (f f(()dtp(())u. Then for every U C G measurable, we have

v'v(U) = (J d(()v, v) = j f ( )|2dyU( )

This implies that
dpv,v(6) = If(6)12du,u,(6)

We have

/ID()1 2 d,,() = JD(~)f ()2d (4.7)

coverges since f is compactly supported. Thus

(/Jf()dp(/())u E Dom(TD) C Dom(7r(D)) (V D U(g))

Therefore f f(6)dpu(6) E H'. We have

MC HOO



Notice that 16 can be approximated by bounded functions {fi} with compact support. Since
p is regular, u E H can be approximated by f fi( )dpu,((). Therefore M is dense in H. Now
suppose

D(() = 0 (V E suppG())

Then we have

(D) (J f (()dp())u = ( D(()dpi(6)) ( f ()dp())u - = ( D(() f ()dp())u = 0

Hence D E AnnU(g)(M) = Annu(g)(lr). Q.E.D.

Theorem 4.10 Let (ir, H) be a unitary representation of a connected Abelian Lie group G, p
its projection-valued regular Borel measure. If D E Annu(g)(7r), then

D(suppG(7r)) = 0

Proof:

1. First, we want to show that

D(suppG(7r)) = 0 (a.e.pu)

Suppose not. Then there exist a complex number a 4 0, a compact K C SUppG(r),
p(K) # 0, such that

1
ID() - al < 1lal (6 E K)

It follows that

1Ki D()dp() - ap(K) =11 (D () - a)dp( )

<1S| IO(()- aldp(()||
K D( - (4.8)

<lal i(K) II
22

Thus fK D(6)dp() = 0. On the other hand, for every v E H, (fK dp(6))v e nDEU(g)Dom(TD),
we have

0 = lr(D)( d'(6))v = TD( di'(6))v = (J D(6)dp(6))v

This is a contradiction.



2. Therefore, we have 1p(zero(D)n suppG(0r)) = id. Notice that for a connected Abelian Lie

group G, the Gelfand topology is just the induced Euclidean topology. Thus zero(D) =

{( G I D(6) = 0} is closed. Therefore zero(D) n suppG(X) is closed. According to the

minimality of suppG(7r), we have

zero(D) n suppG(r) = supc(r)

Thus zero(D) D suppG(r). Hence

D(suPPG(,r))= 0

Q.E.D.
What we have shown is that for D E U(g),

D(suppG(,r)) = 0 4== D E Annu(q)(lr)

But
D E Annu(g)(lr) = D(V(Annu(g)(lr))) = 0

Thus we have

Theorem 4.11 Suppose that (7, H) is a unitary representation of a connected Abelian Lie

group G. If we identify G with a subset of ig*, then

V(Annu( g )(w)) = cl(suppG(7r))



5 N-spectrum and N-associated variety

In this chapter, we introduce the notions of N-spectrum and rank. We will prove Theorem 1.1.

5.1 Spectrum, Associated Variety and Rank

Let G be a locally compact Lie group, H be a closed subgroup. Let G be the unitary dual
of G. Suppose that G and H are type I groups. Take a unitary representation (7r, H) of G
and consider its restriction to H. According to the direct integral theory [WallachO] Ch 14.9
and 14.10, 7IH is equivalent to a projection-valued Borel measure LH(7r) on H. R. Howe called
such a measure the H-spectrum of Ir. Under the Fell topology, the (closed) support of LH(7r)

is called the geometric H-spectrum [Howe0]. Let NG(H) be the normalizer of H in G. Then
supp(p H(Tr)) is NG(H)-stable.

To study H-spectrum, we have to have a well-understood unitary dual H. For H nilpotent
or solvable of type I, H is well-understood to some extent. For H connected Abelian, H can
be identified with a subset of il*. In this chapter, we will identify it with a subset of 1*.

In spite of the fact that the unitary dual G is difficult to understand, the associated variety
of a representation is well-understood. In particular, we have

Theorem 5.1 (Borho-Brylinski-Joseph) Suppose g is a reductive Lie algebra, M a simple
g-module. Then V(Annu(g)(M)) is the closure of a single coadjoint orbit.

Now concerning a linear reductive Lie group G with finitely many components, we can employ
Mackey machine to show that for any irreducible unitary representation (r, H) of G, r splits
into finitely many irreducible representations when restricted to the identity component Go,
namely,

S= 7r 1 Ei 7r2 E ... f 7rs

Furthermore, G/Go permutes these irreducible factors. A more careful examination shows that
the Harish-Chandra modules of ri's are related by the algebra isomorphisms of U(g) defined by
the adjoint action of G/Go. Thus V(Annu(g)(wi)) are related by automorphisms of g defined by
G/Go. In fact, V(Annu(g)(7)) is exactly the union of G/Go-orbit on any chosen V(Annu(g) (ri)).
More precisely, we have

V(Annu(g) (r)) = UxGoEG/GoAd(x) (V(Annu(g) (rl )))

Thus, for the rest of this paper, even though some of the classical Lie groups G are not connected,
we may prove our results for the identity component Go first. Then all the results can be
generalized to G.

Recall that the H-associated variety is NG(H)-stable. Thus one may investigate the rela-
tionship between the H-associated variety and the H-spectrum. According to Theorem 4.11,
we have

Theorem 5.2 Let (w, N) be a unitary representation of a type I classical group G. Then the
ZNk-associated variety of 7r is the algebraic closure of the geometric ZNk-spectrum of r.



Since g is a reductive linear Lie algebra, g* can be identified with g. If we regard g as a subset

of HOmD(V, V), then j* can be regarded as the (eigen)-projection of g onto o-2 - r(znk). For

any subset S of g*, we define rank(S) to be the max{rankD(X) I X E S}.
Recall that the parabolic subgroup Pk acts on 3n* with finitely many orbits and that 3n* can

be identified with a subspace of sesquilinear forms. Howe and Li defined the ZNk-rank to be the

rank of supp(1zNk k(r)) regarded as sesqulinear forms. Notice that for each x e HomD(Xk, X)
the rank of the linear transform x is the same as the rank of the bilinear form Bx defined in

chapter 1. Therefore the ZNk-rank coincides with rank(supp(zNk (7r))). In the rest of this

paper, we will compute the ZNk-rank using associated variety.

5.2 Complexification and C-Rank

Now for a type I classical group G(V), for every x E g, we may define a sesquilinear form Bx

such that
Bx(u, v) = (x.u, v) (u,v E V)

Then
Bx(u, v) = -EBz(v, u)

Thus g can be identified with a space of sesquilinear forms. Compatibly, we have the following

list regarding 9-2 and its complexification:

1. G - U(p, q), 3n is the space of k x k skew-Hermitian matrices, its complexification is the

space of k x k complex matrices;

2. G = Op,q, 3n* is the space of k x k real skew-symmetric matrices, its complexification is

the space of k x k complex skew-symmetric matrices;

3. G = Sp2n(IR), 3an is the space of k x k real symmetric matrices, its complexification is

the space of k x k complex symmetric matrices;

4. G = O*(2n), 3n* is the space of sesquilinear forms on Hk , such that

(U, v) = (v, U) (u, vE )

Let (u, v) = A(u, v) + jB(u, v) with A and B complex-valued. Then

A(v, u) + jB(v, u) = (A(u, v) + jB(u, v))O = A(u, v) - jB(u, v)

Therefore
A(u, v) = A(v, u) B(u, v) = -B(v, u)

Now B(u, v) is a (right) C-bilinear form. If we fix a basis {(ei, jei)} for IHk, 3n can be

identified with
{ U V = -u, r = v t }

Thus the complexification of n*b can be identified with the space of 2k x 2k complex

skew-symmetric matrices.



5. G = Sp(p, q), 3n* can be identified with a space of 2k x 2k symmetric matrices, its
complexification is the space of 2k x 2k complex symmetric matrices.

6. G = O(n, C), 3n* is the space of k x k complex skew-symmetric matrices.
identified with

-B At = ABt = -B,A,B E EndR(Rwk)}

Therefore 3nk* can be identified with

{ -B At =-A,B = -B,A,B E Endc(Ck

7. G = Sp(n, C), 3n* can be identified with

-B At = A,BtA] A = B, A, B E EndR(Rk)}

and 3nk* can be identified with

A At = A,Bt
= B, A, BE Endc(Ck)}

For any S C 3nk*, we write rankc(S) for the maximal rank of the elements
setting. We call it the C-rank of S. Thus, we have

rank(supp(MzNk (7r))) = rankc(supp( zNk (7r))) (G = U(p, q), Op,q, Sp,

2 rank(supp(pazNk (r))) = ranko(supp(pzNk (7r))) (G = Sp(n, C), O(n, C), S

in S under this

In (R)) (5.9)

p(p, q), O* (2n))

(5.10)

In this setting, taking the algebraic closure of a subset of sesquilinear form would not change
C-rank of such a subset.

But, from Theorem 4.11, V(Ann( 3 n) (7)) is the algebraic closure of supp( zNk (7)). There-
fore

rankc(V(Ann(nk) (7))) = rankc(supp(pzNk (r)))

Again, from Theorem 3.4 V(Annu( 3n)(7r)) is the algebraic closure of j*(V(Annv(g)(r))), where
j* : gC -+ (3nk)* is the canonical projection. Thus

rankc(supp(pLZNk (7r))) = rankc(j* (V(Annu(g) (7r))))

It can be

SA

2

(5.11)



5.3 Rank and Associated Variety: Real Groups

Now we restrict our attention to those non-complex groups, Op,q, U(p,q), Sp 2n (R), O*(2n),
Sp(p, q). We will deal with complex groups at the end. According to [C-M] Ch 5.1, each
nilpotent orbit in a (complex) simple Lie algebra g(m) C Endc(Cm ) is parametrized by a

certain partition
A = (A1 A2 >... > A1 > 0)

of m. We denote the adjoint orbit corresponding to A by 0 ,. Then

rankc(O,) = m - l

Theorem 5.3 Let S C g(m). Then

rankc(j* (S)) 5 min(rk, rankc(S))

where rk = rankc(3n*). In particular,

rankc(j*(OX)) 5 min(rk,rankc(O.))

Proof: It suffices to show that

rankc(j*(S)) < rankc(S)

Recall that V = Xe Xk D W,. Let P: V -+ X* be the canonical projection. Notice that

rankc(j*(S)) =max{rankc(j*(x).Xk) I x E S}

= max{rankc(P(x.Xk)) I x E S}

_ max{rankc(x.X) I x E S} (5.12)

< max{rankc(x.V) I x E S}

=rankc (S)

Q.E.D.
Now we have to treat Type A,C and Type B, D Lie algebras differently. We will follow the

convention in [C-M] Ch 6.2 regarding the order of nilpotent orbits.

Theorem 5.4 (Type A,C gc) rankc(j*(OA)) = min(k, rankc(OA))

Proof: If rankc(OA) _ k, then A > (1m-2k, 2k). Thus

cl(Ox) ) l(O(1m-2k, 2 k))

Since 9-2 is nilpotent and satisfies

rank(X) < k; X 2 =0 (V X E - 2 )



we have

g-2 C Cl(O(lm-2k, 2 k))

Therefore

cl(j*(OA)) D j*(cl(Ox)) 2 j*(cl(O(lm- 2 k, 2 k))) D j*(9-2) D -2

Hence rankc(j*(O)) = k. If rankc(OA) = s < k, then A 2 (1m-2s, 2). Therefore

cl(O ) 2 Cl(O(lm-2ss))

Thus

cl(j*(OA)) D j*(cl((OA))) D j*(cl(O(lm-2s,2s)))

But rank(cl(O(lm-2s,2s)) n g-2) = s, because the elements in g-2 of rank s are all contained
in O(lm-2s,2). Therefore

rankc(j*(OA)) rankc(j*(cl(O(lm-2s,2s))) n 9-2) = rankC(cl(O(lm-2s,2 s))) 9g-2) = s

Combined with Theorem 5.3, we have

rankc(j* (OA)) = min(k, rankc (O))

Q.E.D.

Theorem 5.5 (Type B,D gc) rankc(j*(O)) is always even and it is equal to min(rk, rankc(O)).

Proof: For Op,q, the C-rank of a real skew-symmetric form is always even. For O*(2n), the
C-rank of an IH-sesquilinear form is also even. Thus rankc(j*(OA)) is always even. Recall that
the partitions corresponding to Type B, D nilpotent orbits satisfy that even parts occur with
even multiplicity. In other words, if we delete the first column in the Young diagram, then odd
parts occur with even multiplicity. Therefore, rankc(OA) has to be even as well. The rest of
the proof is the same as the proof for type A, C groups. Q.E.D.

5.4 Rank and Associated Variety: Complex Groups

Now we want to deal with complex groups O(n, C) and Sp(n, C). In these cases, gc is not
simple. However, once we regard g as a real matrix Lie algebra, gc is still a matrix algebra.
Thus the C-rank of V(Annu(g)(r)) is still valid. Let WF(r) be the wave front set of 7r as
defined in [Howe4]. Recall that

cl(WF(Tr)) = V(Annu(g)(lr))

We will use these ideas to prove the following theorem.

Theorem 5.6

rankc(j* (V(Annu(g) (ir)))) = min(rk, rankC(V(Annu(g) (r))))

where rk = rankc(3n*).nrllnm m.- mr~711~~k



Proof: First of all, WF(ir) is already a finite union of complex nilpotent orbits in g. From the

real cases in the last section, we see that in the complex Lie algebra g

rankc(j*(WF(7r))) = min(rankc(3nk), rank(WF(7r)))

Now in the complexification go, every quantity in this equation is doubled. Therefore this

equation still holds in gc. Notice that

cl(j*(WF(r))) = cl(j*(cl(WF(r)))) = cl(j*(V(Annu(g)(-))))

We obtain

ranko(j* (V(Annv(g) (r)))) = min(rank( (3nk), rank (V (Annu(g) (T))))

Q.E.D.
From Equation 5.11, we see that

rankC(supp(pzNk (-r))) = rankc(j* (V(Annu(g) (7r))))

We come to our conclusion.

* For G = SP2n, U(p, q), according to Equation 5.9 and Theorem 5.4, Howe's ZNk-rank

of (r, H) equals min(k, rank(V(Ann(g) (7)))).

* For G = Op,q, according to Equation 5.9 and Theorem 5.5, Howe's ZNk-rank of (7r, H)

equals min(k, rank(V(Annv(g) (7)))) for k even, and min(k - 1, rank(V(Annv(, ( r))) for

k odd.

* For G = Sp(p, q), according to Equation 5.10 and Theorem 5.4, Howe's ZNk-rank of

(ir, H) equals min(k, rank( (V(Annu(g) (7r)))).

* For G = O*(n, C), according to Equation 5.10 and Theorem 5.5, Howe's ZNk-rank of

(r, H) equals min(k, lrankO(V(Ann( g)(7r))))).

* For Sp(n, C), according to Equation 5.10 and Theorem 5.4, Howe's ZNk-rank of (7r, H)

equals min(k, ranko(V(AnnU(g) (7r)))).

* For G = O(n,C), according to Equation 5.10 and Theorem 5.5, Howe's ZNk-rank of

(7r, H) equals min(k, rankC(V(Ann(g)(,)))) when k is even,
and min(k - 1, rankC(V(Ann(g)(7r)))) when k is odd.

Thus Theorem 1.1 is proved.



6 Compactification of the Symplectic Group

First of all, let X be an analytic manifold. We say (i, X) is an analytic compactification of X,
if X is a compact analytic manifold and

i:X: X

is an embedding, such that i(X) is open dense in X. Let G be the standard symplectic group.
Then G has a KAK decomposition, where K is U(n) = Sp 2n (R) n SO 2n(R) and A n .

Let Ko be the opposite group. Then G has a Ko x K action. For the symmetric space
Y = U(2n)/O2(I(R), one can also define a K x K action on Y, where K x K is embedded
diagonally into U(2n). We define a group isomorphism 7 : Ko x K - K x K by

T(kl, k2 ) = (k , k2 ) (k, k 2 E K)

Thus Ko x K can be identified with K x K through 7. In this chapter, we prove the following
theorem.

Theorem 6.1 There exists an U(n) x U(n)-equivariant analytic embedding:

S: Sp2n(R) -+ U(2n)/02(R)

The image is open dense in U(2n)/O 2n (R). If f is a K-finite matrix coefficient of an irre-
ducible unitary representation of SP2n ( RI), then f can be extended into a continuous function
on U(2n)/O2n(R).

Bargmann-Segal model is the "minimal" unitary representation of the double covering of

SP2n (R). The underlying Hilbert space is the space of L2 -analytic functions with respect to the

Gaussian measure. Then the group action of Sp2n (R) can be expressed as integration operators.
We observed some nice structure in the integration kernel which leads to the compactification
NH.

In fact, U(2n)/02n can be realized as a space of matrices. Let S 2n be the space of symmetric
unitary matrices of the following form

{XtX X C U(2n)}

If 2n is fixed, we will write S. Now g E U(2n) acts on S by

-(g) : s - gsgt  (s E S)

We compute the isotropic subgroup at the identity,

U(2n)i = {UtU = I I U E U(2n)} = 02n

Therefore S can be identified with U(2n)/02n. Hence the compactification of Sp 2n(R) can be
represented by S.

In this Chapter, we provide the exact formula for the compactification of Sp 2 (R) r SL(2, R).



Theorem 6.2

(a b (a+d)-(c-b)i a+d)-(c-b)ic d (a-d)+(b2c)i -2i 2

(a+d)-(c-b)i (a+d)-(c-b)i

6.1 Bargmann-Segal Model

Let V be an n-dimensional complex Hilbert space with the standard inner product (*, .). Let

{el, e2 ,... , en} be an orthonormal basis of V. We write

(u, v) = Re(u, v) + ilm(u, v) (u,v E V)

Then Q (u, v) = Im(u, v) is a real symplectic form on V. Notice that

iQ(iej, ek) = im(iej, ek) = i

Thus we may fix a R-basis

{iel,ie2,... ,ien,e,... ,en} = 1, 2, ... ,n, el, ... , en}

If we regard V as a real vector space under such a basis, then Q is the standard symplectic

form, and Re(,) is the standard (real) inner product. From now on, whenever we regard V as
a complex space, we will add a subscript C. For a linear endomorphism g of V, without the

subscript C, g will be a real linear transform. However gc will be a complex linear transform
of V.

Let 0 2n(R) be the subgroup of GL(V) fixing Re(,), and SP2n(IR) be the subgroup of GL(V)
fixing (, ). Let U(n) be the subgroup of GL(V) fixing the (complex) inner product (,). Then

U(n) = 02n(IR) n Sp2 (R)

In terms of real basis, the complex multiplication by imaginary i can be identified with left

multiplication by (oI)
J= -I 0

For arbitrary g E SP2n(R), g can be decomposed into

g = Cg + Ag

where Cg commutes with J, Ag anticommutes with J. Thus C E Endc(V), and Ag is complex-

conjugate linear. Explicitly,

1 1
C 9 = (g - JgJ) A = (g + JgJ)

It is known that C, E GLC(V) [R-R]. Let Hc(V) be the set of T E GLc(V) for which Re(Tv, v)

is strictly positive for all nonzero v E V. According to [Blattner], HII(V) is a contractible open

domain of the identity in GLc(V). Consequently, there is a unique continuous function

1
det2 : Jc(V) -4 C



such that

1 1
det2(id) = 1 (det -(T))2 = detT (T E fIC(V))

Notice here det T is the determinant of T as a complex matrix, since T E Ic (V). Now we
define

Z, = C-'1 A (g E Sp(V, Q))

It can be shown that [R-R]

Theorem 6.3 1 - Zg, Z92 E H (V) for 91, g2 E Sp(V, Q).

Let Mp(V, Q) be the double cover of Sp2, (R), called the metaplectic group. Sometimes, we

denote it by Sp2n (RI). There is in fact a nice way to represent this group [R-R].

Theorem 6.4

Mp(V, Q) = {(A,g) I g C Sp(V, Q), A E C, A2 detc(Cg) = 1}

In addition, the multiplicative structure is given by
1

(A1, g)(A2 ,9 2) = (AIA 2(det (I - ZgZg1))-l,g9192)

Now we will construct the Bargmann-Segal model. Let dx be the Euclidean measure on V. Let

1
dp(x) = exp(--(x, x))dx

2

be the Gaussian measure. Let P, or simply P be the polynomial ring on Vc. We define an
inner product on P by

(f ,g) = f(x)g(x)dp(x) (f, g C P)

Let If 112 - (f, f). Let F. be the completion of P under 11 * 11. Then F is exactly the space of
square Gaussian integrable analytic functions. In particular, 1 * |I-covergence implies pointwise
convergence.

Theorem 6.5 (Bargmann-Segal model) Let (A, g) C Mp(V, Q). For every f E .F, we
define

w(A,g)f (z) JA exp (2(Cgz, w) - (z, Zg-1z) - (Zw,w))f (w)dp(w)

Then w is a faithful unitary representation of Mp(V, Q). Let

-(g, z, w) = 2(C z, w) - (z, Zg- z) - (Zgw, w)

If g 5 g', then as functions of complex variables z and w

(g, z, w) (g', z, w)



Proof: A proof of the first part of the theorem can be found in [R-R]. Suppose g $ g', but

W(g, z, w) = n(g', z, w)

Then C = Cg,. Let A E C, such that

A2 detc(Cg) = 1

Then (A, g), (A, g') e Mp(V, Q), and

w(A, g) = w(A, g')

This implies that g = g', a contradiction. Q.E.D.

6.2 Some structure theory

Since K = U(n) is a maximal compact subgroup of Sp2n(R), we can choose

A = {diag(A,,... , A7, Al ,... , XA) I Ai E R

to be the maximal split Abelian subgroup. Then S2n(R) possesses a KAK decomposition.

Theorem 6.6 For g E Sp 2n (R), let g = klak2 be a KAK decomposition.

H C a. Then we have

Let a = exp(H),

C, = kl cosh(H)k2 ;

Z = k2 1 tanh(H)k2 ;

where
exp(H) + exp(-H).

cosh(H) = 2

A, = kl sinh(H)k2

Z-1 = -ki tanh(H)k-1

exp(H) - exp(-H)
sinh(H) =

tanh(H) = (cosh(H))- 1 sinh(H)

Proof: In Sp2n(R), the action of K commutes with J. Thus

C9 = (g- JgJ)
2
11 (kak2 - Jklak2J)
2

=-(kak 2 - klJaJk2 )
2

=kCak2

Similarly, we have
A, = kiAak2

(6.13)



Thus
Zg = Cg,-Ag = (kiCak2 )-l(klAak 2 ) = k2 1 (C,- 1 Aa)k 2

Since g-1 = k2 a- 1 kj, we have

Z,-1 = ki(Ca-1)-1 Aa- 1kl 1

Now a simple computation shows that

JaJ = -a - 1  (a E A)

Thus
Ca exp(H) + exp(-H) cosh(H)

2

exp(H) - exp(-H)
A, = = sinh(H)2

Za = Ca 1 Aa = tanh(H)

Za-1 = tanh(-H) = - tanh(H)

Therefore
C, = kl cosh(H)k2; Ag = kl sinh(H)k2

Z = k21 tanh(H)k2 ; Zg-1 = -ki tanh(H)kl 1

Q.E.D.

We define
sech(H) = (cosh(H))- , coth(H) = (tanh(H))-l

Combined with Theorem 6.5, we have

Theorem 6.7 Let (A, g) E Mp(V,Q2) and g = k exp(H)k2 in Sp 2n(R ). Then

li(g, z, w) = 2(sech(H)kl 1 z, k2 w) + (kj lz, tanh(H)klc1 z) - (tanh(H)k2 w, k 2w)

In particular, the right hand side does not depend on the KAK decomposition.

Recall that Ca is always complex linear, and Aa complex-conjugate linear. Suppose

H = diag(HI,... ,Hn, -HI,... ,-Hn) (Hi E R))

We write
H 0 = diag(H1, H 2 ,..., Hn)

Then

(sech(H)z, w) = (sech(Hc)z, w)



Now we want to compute (tanh(H)z, w). Let z = iy + x with x, y E R n . Then

tanh(H)z = tanh(H)(x + iy) = i tanh(Hc)y - tanh(Hc)x = - tanh(Hc)

Therefore
(tanh(H)z, w) = -(tanh(Hc)i, w)

(z, tanh(H)w) = -(z, tanh(HC)ii)

Now

W(g, z, w) =2(sech(Hc)k 1 z, k 2 w) - (ki z, tanh(Hc)kl z) + (tanh(Hc)k2w, k2 w)

=2wtktsech(Hc)k z - ztkl tanh(Hc)kl z + wtkt tanh(Hc)k2w (6.14)

=(izt k 0 t a n h (H C )  -isech(Hc) k 0 iz

-isech(Hc) tanh(Hc) 0 k 2  U

Definition 6.1 We define

W(ki exp(H)k2)= ( i ) (0 tanh(Hc) -isech(Hc) ) kI  0O

0 k t  -isech(HC) tanh(HC) 0 k2

Notice that k1 , k 2 are unitary. One critical observation is that the images of 1 are symmetric

unitary matrices. Therefore this definition of 7- is the uniquely determined by the following

equation

7(g,z,w) = (izt, wt)7(g) ( (6.15)

Theorem 6.8 The map W is a continuous injection from Sp2n (R) into U(2n).

Proof: First of all, if 7(g) = W(g'), then

R(g, z, w) = W(g', z, w) (V z, w V)

According to Theorem 6.5, we have g = g'. Therefore 71 is an injection. Since that the maps

g -+ Cgl , g -+ Zg, and g -+ Z-1 are all continuous, for every z,w E V, g -+ H(g,z,w) is

continuous. From Equation 6.15 and by linearity, every entry of the matrix 7(g) is a continuous

function of Sp2n(IR). Therefore, 1(g) is continuous as well. Q.E.D.

6.3 Analytic Properties of 7

We define Tn in U(2n) to be the space of matrices of the following form

T(9) = diag(cos 01,... ,cosOn) diag(-isin 01,... ,-isin9n) (0 = (01, .. On))
diag(-isin 0,..., -isin0n) diag(cos 1,... ,cos On)



We want to analyze the map . : A -+ fTn, defined to be the restriction of 7 on A. Without loss
of generality, let n = 1. Then

( tanhH -isechH T

-isechH tanh H

. can be regarded as a homeomorphism from R to (0, 7r). Therefore, 0 can be regarded as a
continuous function of H, and H can also be regarded as a continuous function of 0. Notice
that from tanh H = cos 0, we obtain

(sech(H))2dH = - sin Od0

Therefore
dO dH
dH= -sech(H) 0 d = -cscO 8 0
dH dO

Since all these functions are (real) analytic, K is an analytic embedding from A to Ti". From
here one may guess that 71 is in fact an embedding. However, nothing can be proved since
Ko 0 K acts on Sp2n(R) with singularities.

Let S = {UtU I U E U(2n)} be a subset of U(2n). tI(A) is contained in S. Thus W7(Sp 2n(IR))
is in fact contained in S. We obtain

Lemma 6.1 * Let U(2n) act on S by

g -+ UtgU (g E S, U E U(2n))

Then S - U(2n)/02n ();

* 7 is a continuous map into S;

* Let U(n)o be the opposite group of U(n). Let U(n) x U(n) act on Sp 2n (R) by left and right
multiplications respectively. Let 7 : U(n)° x U(n) - U(n) x U(n) be a group isomorphism
defined as follows:

T(kl, k 2 ) = (kJ 1, k 2 )

If we identify these two groups through 7, then 7 is equivariant with respect to these two
group actions.

Now we want to compute dt : TSP2n (R) -+ TS. Let g(t) be a germ of a smooth curve
near g E Sp2n(R). Let dg be the tangent vector represented by this germ g(t). Here Sp 2n(R)
is contained in the space of 2n x 2n matrices. We may engage all our discussion in the space
of 2n x 2n matrices. Thus the tangent vector dg in Sp 2n(R) can be identified with a 2n x 2n
matrix. This is the perspective we take in interpreting all the equations here. From gg-1 = 1,
we obtain

(dg)g - 1 + g(dg- 1 ) = 0

Therefore

dg - 1 = -g-l(dg)g-1

We have the following lemma.



Lemma 6.2 1. dg- ' = -g-ldgg- 1 ;

2. dZg = -Cg,- d C Zg + C;,dAg; where

1  1
dCg = 2(dg - J(dg)J) dAg (dg + J(dg)J)

3. dZg-1 = -C-dC-iZg-1 + C-ldAg-1;

4. dC- = -C dCgC-1;

5 . dCg-1 = - (g-(dg)g-1 - Jg-l(dg)g-1J);

6. dA = -(g-l(dg)g-+Jg-(dg)g 1 + J(d-1J)

Now we can compute d7-. Let t p = g be the Cartan decomposition with K = U(n). In
fact, it can be shown that

Lemma 6.3 t is complex linear, and p is complex-conjugate linear as morphisms of V.

For an arbitrary g C Sp2n(R), let g = k expp with p E p. Because of the action of U(n)0 x U(n),
without loss of generality, we may assume that g = exp H, H E a. Now we have the following
theorem.

Theorem 6.9 (d-li)9 Tg(Sp2n(R)) -+ Tt(g)(S) is bijective.

Proof:

1. First notice that

2n(2n + 1)
dim(S) = dim(U(2n)) - dim(O 2 n(R)) = 2 = dim(Sp2())

It suffices to show that the kernel of (d") 9g is trivial.

2. Let dg be the equivalence class of the germ g exp tk with k E t. Then we may write
dg = gk.

dC9 =2(dg - J(dg)J)
2

=(gk - JgkJ)
2 (6.16)
1

=-(g - JgJ)k
2

=Cgk

Similarly,
dC,-1 = -kC,-1



dA 9 = Agk dAg- 1 = -kA- 1

Thus
dC- = -Cl(dC)C- 1 = -kC, 1

dZ, = -C,-l(dC,)Z, + C;,-(dA) = -kZ, + Zk

dZg-1 = -C-l (dCg-1)C-_l Ag-i + C dA-1 = C_lkAg- 1 - Cg-l kAg-1 = 0

Therefore

d(z, Zg,-z) = 0 (6.17)

dcl(g, z, w) = 2(-kClz, w) + ((kZg - Zgk)w, w) (6.18)

Since Cg E GLc(V), we can see that

dW-(g, z, w) = 0 (V z, w E V) == (-kCglz, w) = 0 (V z, w E V) ==> k = 0 (6.19)

3. On the other hand, let dg be the equivalence class of the germ g exp tp with p E p. Then
we may write dg = gp. We have pJ = -Jp. Thus

1 1 1
dOC= (dg- JdgJ) = (gp- JgpJ)= (gp + JgJp) = Agp

2 2 2

dA 9 = Cgp dA,-1 = -pCg-1 dCg-1 = -pAg-

Then
dCg,- = -C l(dCg)C-1 = -ZpC- 1

dZg = -C -l(dCg)Zg + C -l(dAg) = -ZpZg + p

dZg-1 = -C-_ll (dCg-1)Zg-1 + C- 1 dA - 1

= C-1pA-Zg-1 - C,--pCg-1 (6.20)

= C--_p(A9 - Zg-1 - C,-1)

Suppose g = exp H, H E a. Then

Ag-1 Zg-1 - Cg- 1 = sinh(H) tanh(H) - cosh(H)

=(cosh(H))- 1 (sinh(H)2 - cosh(H) 2 ) (6.21)

= - (cosh(H)) - 1

because a is commutative. Therefore

d(z, Zg-z) = (z, -sech(H)(p)sech(H)z) = -(z, sech(Hc)(p)sech(Hc)z)



Suppose under the real basis {iej, ejI,

p=( B A)' (At = A, Bt = B) (6.22)

Therefore

p(yi + x) = i(Ay + Bx) + (By - Ax) = (Bi - A)(x - iy) = (Bi - A)(x + iy)

We see that

d(z, Zg-z) = - (z, sech(Hc)psech(H) z)

= - (z, sech(Hc)(Bi - A)sech(Hc)) (6.23)(6.23)
= - ztsech(Hc)(-Bi - A)sech(Hc)z

=ztsech(Hc)(A + Bi)sech(Hc)z

Since A + Bi is a symmetric matrix and sech(HC) is invertible, we have

d(z, Zg-iz) = 0 (V z E V) 4= A + Bi = 0 4 p = 0 (6.24)

4. For an arbitrary X = k + p E g, g = exp H, Let g(t) = g exp(tX) be a fixed germ. Let p

be defined as in Equation 6.22. Suppose that dl7(g, z, w) = 0. Then from Equation 6.17

and Equation 6.23, we see that

d(z, Zg-lz) = ztsech(Hc)(A + Bi)sech(Hc)z

Thus
d(z, Zg-z) = O(V z E V) =-= p = 0

Now X = k. From Equation 6.19, we see that k = 0. Therefore, X = 0. Thus we have

proved that
dl(g, z, w) = 0 (V z, w V) Z== X = 0

This implies that
d7(g) = 0 = X = O

5. Since SP 2n(IR) is a Lie group, the tangent space Tg(SP2n(R)) can be identified with those

germs
g exp(tX) (X E g)

Thus

d7 g : Tg(Sp2n(R)) - T1(g)(S)

is injective. Because of the left and right K-action, this is true for all g E Sp 2 n (R).

Q.E.D.

This shows that 7 is an immersion, locally homeomorphism. It is also one-to-one. Thus 7-

is a homeomorphism from Sp 2n(IR) onto an open submanifold of S.



Theorem 6.10 7 : SP 2n(R) -+ S is analytic.

Proof: In this proof V will be regarded as a real vector space. Then S is an analytic submanifold
of B(V E V, C), the space of symmetric complex-valued bilinear forms on V e V. It suffices to
show that

7 : Sp2n(R) --+ B(V E V, C)
is analytic. Recall that under the real basis {ie3 , (j = 1,... , n), ej, (j = 1, ... , n)}, multiplica-
tion by i can be regarded as left multiplication by J, and taking conjugation can be regarded
as left multiplication by B -1 0B=(' ~)

Therefore
2(Clz, w) = wtC;lz = 2tCg-l(-J)iz

(z, Z-1)= ztZ -1 z = -(izt)BZ-1 (iz)

(Zw, w) = wtZgw = wtZgBw

Since the maps g - g-, g _+ C-1, g _+ Z are all real analytic, we conclude that

7 : S2n(R) -+ B(V D V, C)

is analytic. Q.E.D.

Now we have shown that dW, is bijective and 71 : Sp2n(R) -+ S is analytic and one-to-one.
From the classical theorem on inverse functions (see page 21 [Varadarajan]), we have

Theorem 6.11 71 : SP 2n (R) -+ S is an analytic embedding.

Now, we obtain

Theorem 6.12 Let G be an arbitrary group with a faithful representation into Sp2n (R) ). Sup-
pose the closure of 7(G), denoted by G, is a compact smooth submanifold of S. Then (7IGc,G)
is an analytic compactification of G.

6.4 Generalized Cartan decomposition and Some Remarks

For a subgroup H of G, let NG(H), ZG(H) be the normalizer and centralizer of H in G. For a
Lie subalgebra j of g, let NG([) and ZG(() be the normalizer and centralizer of j in G. Suppose
G is a compact connected Lie group. Let a, T be a pair of commuting involutions of G. Let
K and H be the fixed point sets of a and 7 respectively. Let p be the -1 eigenspace of a, and
q the -1 eigenspace of T. Let tpq be the maximal Abelian subspace of p n q. Let Tpq be the
analytic group of t pq. We define the Weyl group to be

Wpq = NK(tpq)/ZK(tpq) - NH(tpq)/ZH(tpq)



Theorem 6.13 (Generalized Cartan Decomposition) G possesses a KTpqH decomposi-
tion. In other words,

m: K x Tpq -+ G/H

is surjective. In addition, for g = kth, t is unique up to Wp, and a multiplication of Tpq n

ZK(tpq)ZH(tpq).

This theorem is essentially due to Hoogenboom (see page 194 in [H-S]). Now for G = U(2n),
let

U(x) = ( \0 S)(In0I) x 0
o0

7(x) = Y (2 E U(n))

It is obvious that
7"= O7

K = U(n) x U(n) H = 0 2n (R)

P ( -A t  I A Egl(n,C)}
(-A'

q = (iB I Bt = B,B E gl(2n, R)}

Thus

pn q = { iA 0 I A E gl(n, R)}

We may choose Tpq = Tn C U(2n). Then

tpq = {to = (
0

-diag(i01,... ,iOn) I Oi e [0, 2r]}

Then Wp, is simply the Weyl group of type Bn Lie algebra. More precisely, Wpq acts on to
by permuting Oi's and changing the sign of Oi's. We identify T~n with ('IT). According to the
generalized Cartan decomposition, we obtain,

Theorem 6.14 U(2n) possesses an KTnH decomposition, where
diagonally, and H = 02n (IR). In addition, for g = kth, t = exp to
of 0 and sign changes of Oi's. If we define O : K x Tn -+ S by

O(k, t) = ktkt E S - U(2n)/H (k E K, t

then b is surjective.

and

(x E U(2n))

K = U(n) x U(n) embedded
is unique up to a reordering

E Tn)

-diag(i01, ... , iOn)



In particular, due to the action of Weyl group, we may assume that sin 0i 2 0, i.e.,

Oi E [0, r]

We observe that
Im(t) = (K x (W(A)) = /(K x {to I Oi E (0, 7r)})

is dense in S. Combined with Theorem 6.11 we have shown

Theorem 6.15 (Compactification of Sp 2n(R)) 71 : Sp2n(R) -+ S is an analytic compacti-
fication.

Let dsp2,g be a Haar measure of Sp 2n (R). Let du(2n)s be a U(2n)-invariant measure of S.
Then both measures can be regarded as volumes forms. In addition, these volume forms are
nondegenerate over every point because of the group action. Thus we may pull back dU(2 n) s to
a volume form 7"*(du(2n)s) on Sp2n(,(). We define g) to be the unique function satisfying

d (g)
/H*(dU(2n)70)(g ) dSp ?.9

Since W is an analytic embedding, d is an analytic function, and it is always positive.

dN(g)Conversely, since S - 7-t(Sp2n(IR)) is of measure zero with respect to du(2n)s, we can writedSP2n dt(g) )-1_*dU(2n)S

Theorem 6.16 For every g E Sp2n( ),

di(g) > 0
dg

Finally, we will derive some applications of this compactifiaction. For any function, f C

C(Sp2n(R), let f be the push-forward, defined to be

f(s) = f ( 1 (s)), (s E Im(1))

and zero otherwise.

Theorem 6.17 Let (r, H) be a nontrivial irreducible unitary representation of Sp2n(R). Let
f (g) = (ir(g)u, v) be a matrix coefficient, with u, v K-finite. Then f is continuous, and real
analytic over Im(7-1).

Proof: Since u, v are K-finite, f(g) is real analytic (See [Knappl] page 210). It suffices to show
that if

lim si = s, (s S - Im(-),s2 = 11(gS))
i-400



then

lim f (gi) = 0

Let K = U(n) be the maximal compact subgroup in Sp 2 n(IR). Let g = kexpp be the Cartan

decomposition. We define
IIgl| = Trace(pp)

Let g = kl exp Hk 2 = klk 2 exp(Ad(kiL)H). Then

n

11gl = Trace(H2 ) = 2 H ?
i=1

We say gi -+ co if Ig i I -+ oo. Notice that we have the following commutative diagram

Ko x K x A -Ag SP 2n(R)

trOn tn (6.25)

KxKx Tn __ > S

Let si = 0((k, kg), ti), s = 0((kj,k 2),t). Then ti = exp(toe) and t = exp(to) can be chosen
such that

lim ti = to
i- 0O

Since s V Im(1-), t = exp t o V Im(Wt). This simply means that for some j E [1, n], sin(Oj) = 0.
This implies that

lim sin(0,) = 0
i-+oo

Recall that sin(thetaj) = cosh(Hj). Thus

lim H (8) = oo

Therefore

lim Ilgil = lim I Hk(0i)2 > lim Hj(0i)2 = cc
i-+00oo -+0 2-+00

k=1

Thus gi -+ co. From Theorem 5.4 [Borel-Wallach], we know that f vanishes at oo. Therefore

lim f (gi) = 0

Thus f is continuous. Q.E.D.

We will compute exactly the compactification of Sp 2 (R) = SL(2, R).

Theorem 6.18
(a-d)+(b+c)i -2i 1( a b (a+d)-(c-b)i a+ d -c-b)i S2

c (d-2i (a-d)-(b+c)i 2S (a+d)-(c-b)i (a+d)-(c-b)i



Proof: Let

-

1
C=

2
a+d
c-b

d
-c

b
d

b-c

a+d)

a 2 + b2 + C2 + d2

-b)
a

b+c)
d-a

+ 2ad - 2bc a2 + b2 + C2 + d2 +2

Let = a2 + b2 + c2 + d2 + 2. We have

S A 1 ( a2 - d2 + C2 - b2

Zg 9- l = 2(ab + cd)

2(ab + cd)

b2 - c 2 + d2 _ a2

Recall that the real basis of V = C is i, 1. We obtain

4 -4i
2(C-lz, w) = -((a + d) + (c - b)i)zw = (iz)w

~9 (a + d) + (b - c)i

(Zg, w) = (b2_c2 +d 2 -a 2 )+2(ab+cd)i)ww
(b + ai)2 + (d + ci) 2  (d - a) + (c + b)i

= w = ww
(d + a) - (c- b)i

By interchanging a +- d, b + -b, c ++ -c, we obtain

(Zg-lZ Z) = (a - d) - (c + b)i

(a + d) - (b - c)i z

Thus
(a - d) + (b + c)i(z, Zg-iz) = (Zg-lZ, Z) = +d) + (b-c)i z

(a + d) + (b - c)

Therefore, from

N(g, z, w) = (iz, w)n(g) ( iz, w )

We obtain that

It is easy to check that 7-1(g) E S. Q.E.D.

Then

We obtain

det Cg =

C;I 2
9 (

a + b-cd
b-c a+d

( (a-d)+(b+c)i(a+d)+(b-c)i
(g) -- 2i

(a+d)K(b-c)i

-2i
(a+d)+(b-c)i
(d-a)+(c+b)i
(d+a)+(b-c)i

1 (a-d
- b + c



7 Dual Pair Correspondence

In this chapter,we will review the fundemental theory on the dual pair correspondence of Howe

[Howe2]. We will use (r, 71,) to denote the Hilbert representation and (r, V,) to denote its

Harish-Chandra module. We will refer to ir for both Hilbert representation and Harish-Chandra
module. In all cases g = L(G) is the Lie algebra of G, and 9C is the complexification of g.

Let 1 li 11C(X) = 1 X (X E SP2n)

be a transform from Sp 2n(IR) to Sp2n(C). We write

Sp = C(Sp2n(IR)) = Sp2n(C) l U(n, n)

throughout this chapter. In the later chapters, Sp will be the standard symplectic group.

7.1 Dual Pairs

We follow the definition in [Howel]. Let (G, G') be a pair of subgroups of the symplectic group

Sp(W). We say (G, G') is a reductive dual pair if

1. G and G' act absolutely reductively on W;

2. G is the centralizer of G', G' is the centralizer of G in Sp(W)

If (G, G') is a reductive dual pair in Sp(V, Q), and if V = V e V2 is a direct sum decomposition

such that Q(V, V2 ) = 0 and V1 , V2 are G. G' invariant, then we say that (G, G') is reducible.

Here QIv is automatically nondegenerate. If we restrict (G, G') to Vi, we obtain a dual pair

(Gi, G') in Sp(V, Q1v). Then G can be identified with G 1 x G2 and G' can be identified with
G' x G'. We say that (G, G') is the direct sum of (G 1 , G') and (G 2 , G'). Essentially, every

reductive dual pair can be decomposed as the direct sum of irreducible ones. All the irreducible

dual pairs are classified in [Howel].

Theorem 7.1 There are two types of irreducible reductive dual pairs. (G, G') is a dual pair of

type I means that there exist

1. a division algebra D over F,with involution g;

2. D-modules V and V', with non-degenerate 0-sesqulinear form (,) and (,)'; one 0-hermitian,
and the other 0-skew-Hermitian; G and G' are the isometry groups respectively;

3. W = V OD V', < a 0 b, c 0d >= TrD/F((a, c)l(b, d)2), then <, > is a symplectic form on

W, and Sp = Sp(W) is the isometry group of <, >

(G, G') is a dual pair of type II means that there exist two GG'-stable Langragian subspaces X

and Y such that W = X E Y and there exist

1. a division algebra D over F;



2. left D-module V1 and right D-module V2 ;

3. X = V1 OD V2;

4. (G, G') is identified with GLD(V1), GLD(V2 ) in Sp(W)

For real classical groups, all the dual pairs were made explicit in [Howe2].

Theorem 7.2 (Howe) There are seven families of dual pairs.

1. D = R, = id, (O(p,q),Sp2 n(R)) C Sp2(p+q)n

2. D = C, = id, (O(p, C), Sp2n (C)) C Sp4pn

3. D = C, 0 = conjugation, (U(p, q), U(r, s)) c Sp2(p+q)(r+s)

4. D = H, = conjugation, (Sp(p, q), O*(2n)) C SP4n(p+q)

5. D = R, (GL(m, R), GL(n, R)) 9 SP2nm

6. D = C, (GL(m, C), GL(n, C)) Sp4mn

7. D = H, (GL(m, H), GL(n, H)) _ Spsmn

The first four are type I classical groups, and the last three are type II classical groups.

Let Sp be the metaplectic cover of Sp. For any subgroup G of Sp, we use G to denote
the preimage of G under the metaplectic cover, regardless of the fundamental group of G. Let
{1, e} be the preimage of the identity in Sp. Let (w, 7o) be the oscillator representation. Then
we will always have

w(e) = -1

Thus we may use G(E) (Gad(E))to denote the unitary (admissible) dual of G such that ir(e) = -1
holds. We shall keep in mind that this equation is always true in this thesis.

Definition 7.1 (stable range) A type I dual pair (G, G') is in the stable range if the real
rank r of G is greater or equal to dimD(V').

7.2 Structure Theory on Dual Pairs of Sp

1. We fix a Cartan decomposition sp = u E S.

U = A- iB AOBU( gln (

U ( A + iB iB At = -AB = Be gln(R)



uc = { A t  I A E gln(C)

S = AOiB A +iB At = A,Bt = B E gln(R)

S = 0 A At = A, complex

S = A 0 At = A, complex

We shall notice here that
s= { = xt E Sc

Later we will use this structure to identify p.

2. Let eij be the 2n x 2n matrix with 1 on its (i,j)-th entry and 0 otherwise. Let

Xi,-j = ei,j - en+j,n+i, Xi,j = ei,n+j + ej,n+i, X-i,-j = en+i,j + en+j,i

3. Let P be the polynomial algebra of n variables (zl, z2,... , zn). Let P<m be the polyno-

mials of degree less or equal to m. There exists an action w of U(sp2n) on P, often called
Fock model.

1
w(Xi,-j) = ziozj + 6i,j

w(Xi,j) = -zzi3
w(X_i,_j) = 8ziazj

This representation splits into two irreducible subrepresentation 7+, P_, the spaces of

even polynomials and odd polynomials.

4. Let (G, G') be an irreducible dual pair. There exists a Cartan involution 0 of Sp, such

that 0IG, 0 IG, are Cartan involutions of G and G'. This allows us to write

K=UnG, p=Sng, t=ung

K' = U n G', p' = Sn 9', t' = un g'

5. Fact: There exist reductive dual pairs (K, M'), (K', M) in Sp, furthermore

KCGCM, K'CG'CM'

For an exhaustive proof of this fact, see [Howe2],Ch 5. Let

m mc n S±, m~ = mc n uc

m± = m n s, m 0 = mc n uc

We have
m+ (S± K 1,0

m (s) , mc = (uc)K

m =(S )K' = (u)K'c 0 M



6. Fact: Let Mo = UK', and M',o = UK. Then (MO, M',o) is a dual pair in Sp, and

K C M, K' C M',o

Furthermore,

me E m - =Pc e m+ = Pc e me

m C PC ED m- PC E) m-

This fact was also proved in [Howe2] Ch 5.

7.3 Structure of P

For a compact group K C Sp, let R(K, P) be the set of K types in P. For a pair of commuting
compact groups (L, L') C Sp, a E RI(L, p), a' E R(L', P), we use a a o' to denote the tensor

product of a and a' regarded as a representation of LL'. Notice here

1 -+ {(1,1),(,e)} - L x '-+ L' - 1

is an exact sequence. And

a(c) 0 a'(c) = (-1)(-1) = 1

Therefore a 0 a' is indeed a representation of LL'. We use P, to denote the a-isotypic subspace
of P. For arbitrary L-module V, we denote the a-isotypic subspace by V,. The main reference
here is [Howe2].

1. For any r E R(M , P), there exists a unique T' E R(M"o, P) such that

P,-- - () T

We often denote -' by w(r). The map

w.: R(o p) __ R(M o, p)

is a one to one correspondence. The inverse map is given by interchanging Mo with M, 0 .
In particular,

P = ER(M O,p)P- = ®iER(7(o,p)T 0 w(T) = DrER(MO,P)PT,w(T)

2. For a E R(K, P), we have

P, = a 0 w(a) (7.26)

where w(a) is an irreducible unitary Harish-Chandra module of M'. In other words, we
have

E=E1(k,-)a 0 W(a)



3. Recall that (S-)K - m ' -. Let

n(K) = {p E P I w(x)p = 0 VX Em"-}

Also notice that the K-invariant algebraic differential operators on P with constant coef-

ficient are generated by m"' - , and under the oscillator representation m"' - is all the 2nd

order K-invariant differential operators with constant coefficient(see [howe3],Theorem 2).

Thus we may call W7-(K) the K-harmonic functions.

Theorem 7.3 (Howe) For a E K, P, = U(g')W(K),. W7(K), consists of homogenous
polynomials of lowest degree (denoted by deg(a)) in Pa. In addition,

3 71 e R(M ', -7), Wl(K), a 0 T' (7.27)

For a proof, see [Howe2] Prop 3.1.

4. Theorem 7.4 (Howe) There exists a unique a' E R(K', P), such that

-(K), n -(K') - a a'

We denote such a space by 7,,,'. We have

(a E 7(K,P),a' E 7z(K',7P),T e 7z (M 0 ,P),T' E 7(M',, ))

mutually determine one another under the relationship we have defined in Equations 7.26
and 7.27.

See [Howe2] Ch 3.

5. Theorem 7.5 (Howe)

P = U(g)U(g')((K) n -(K'))

Let n be an arbitrary (g, g', KK') submodule of P. Suppose p<d-1 C K, but Md ..R.

Then

d = min{deg(a) Ia E R(K, P/N)} = min{deg(a') I a' E 7(K', P/K)}

If a is of minimal degree, then

7i ,1, C- a 0 a' E (KK', P/A)

and a' is of minimal degree as well. In addition, no other irreducible representation of K'

occurring in 7t(K), occurs in P/A.

See [Howe2] Ch 4 for proof.



7.4 Howe's Correspondence

Definition 7.2 Let R(g, K, P) be the set of isomorphism classes of irreducible (g, K)-modules
which can be represented as P/K, for some (g, K) submodule N. For 7r E R(g, K, P), let .N,
be the intersection of all such K satisfying P/ 2- V,. Then P/N, is a (g x 0', KK')-module.
We write

where wo(-r) is a (g', K')-module.

Notice that this definition is consistent with our earlier definition of w for the dual pairs
(M, M ',0) and (K, M') where w = wo.

Theorem 7.6 (Howe) The (g', k')-module wo(7r) is finitely generated, admissible, quasisim-
ple. It has a composition series of finite length. wo(7) has a unique irreducible quotient w(w).
The correspondence

w : -7r -+7

defines a bijection from R(, K, P) to (g', K', P).

A proof of this theorem can be found in [Howe2]. w is often called Howe's correspondence, or
dual pair correspondence. Sometimes we will write R(g, K, P) as R(G, w).

Theorem 7.7 Let a E R(K, P/IN,) be of minimal degree in P. Then W,,,, generate P/,,
as (g, g') module, and a' E w(ir).

Proof: The first statement was proved in [Howe2]. Let K D Kfr be the unique (g, g') module
such that

To show that a' E w(r), it suffices to show that

,,,,, n n = { 0}

Otherwise, since -,,,, is an irreducible K x K' module,

This implies that P C K, which contradicts our assumption. Q.E.D.



8 Matrix Coefficient:Convergence

Let (G, G') be a reductive dual pair in Sp. Let w be the oscillator representation of Sp. Let

(Ir, 7-) be an irreducible representation of G. Let P be the Harish-Chandra module of w and

V be the Harish-Chandra module of ir. We define a bilinear form (,), on P 0 V 0 pc 0 Vc as

follows.

(0 0 u, v) = ((g) ,, E P,u,v G V)

We will examine the convergence of this integral. Roughly speaking, 7r is said to be in the

semistable range of (G, G') if this integral converges for every (u, v, q, 4). We will only restrict

our attention to real reductive groups with compact center.

8.1 Structure Theory

Let G be a real reductive group with compact center. Let KAN be its Iwasawa decomposition

and a the Lie algebra of A.

1. G = K exp p-the Cartan decomposition, 0-the Cartan involution;

2. (,)-invariant real bilinear form on g, positive definite on p and negative definite on t;

3. E+--Positive restricted roots with respect to N;

4. A--Simple roots;

5. a+ = {a(a) > 0 I a E A};

6. a+ = {Re(a(a)) > O a E A};

7. A + = exp(a+);

8. g = gt ; o root spaces;

9. p = EaE+ dim(gx)A;

10. a >2 if a - p =E, Eaniai for ni non-negative integers or one of ni is not an integer;

11. a __/3 if a = P + iEaaciai for ci nonnegative; a >- / if at least one ci > 0;

12. M = ZK(a), the centralizer of a in K;

13. b is the maximal torus in m;

14. W(a, g)-the Weyl group;



Theorem 8.1 (KAK Decomposition) Every g E G has a decomposition of the form kIak2
with k,k 2 E K,a c A. The element a is often written as a(g) or exp(H(g)), and it is unique
up to conjugation by Weyl group W(a, g). When a E A + , g is called regular. Under the KAK
decomposition, the Haar measure

dg = J (exp(A(H)) - exp(-A(H)))dimgxdkidHdk2

In short we will write

dg = A(H)dkdHdk2

Furthermore,
A(H) : 0 (H E a + )

The Haar measure of the singular(non-regular) elements is zero.

The KAK decomposition can be computed as follows. According to Cartan decompostion,
for any g E G, we may decompose it uniquely as k(g) exp(p(g)). And p(g) E p can be written
as Ad(k)H(g), where H(g) E a. Thus, we obtain the KAK decomposition of g:

g = k(g)k exp(H(g))k - 1

One advantage of this definition is that we can define a norm on g E G, namely

11gIl = (p(g),p(g)) = (H(g),H(g))

One immediate result is that

Theorem 8.2 The set {g E G, |Ig|| < r} is compact.

Now we may speak of gn -+ oc if ggn[] -+ oc. For H E a+ , it can be proved that

A(H) < cexp(2p(H))

If g is not regular, i.e., a(g) A + , we say g is on the wall.

Theorem 8.3 Under NAK decomposition, the Haar measure is given by

dg = exp(2p(log(a))dndadk (g = nak)

where da, dn, dk are Haar measures of A,N,K respectively. The measures da and dn can be
identified by the exponential mappings with Lebesgue measures on a and n.



8.2 Matrix Coefficient

We will always assume that the Hilbert norm on 7, is K-invariant.

Definition 8.1 Let (7r, ,) be a representation of a real reductive group G. For (u, v) E 7r,

we define
7ru,v(g) = (r(g)u, v)

ru,, is called a matrix coefficient. We will assume u,v lie in the Harish-Chandra module V,

from now on.

Now let (1i, U),( 2 , V) be the finite dimensional K-modules generated by u,v respectively.

We may define ruy,v(g) E Homrn c(U, V), a matrix-valued matrix coefficient by

ruy,v(g)(u) = Pvr(g)u (u E U)

where Pv is the projector (of Hilbert spaces) onto V C V,. Since Pv commutes with ir(K), we

have

wU,v(kiak2) =Pyr(k)r(a)(k 2 )

=r(ki)Pv7r(a)w7(k 2 ) (8.28)

=1 (k)Pv-x(a)T2 (k 2 )

We will write 7 = ((ri, U), (72, V)) for the pair of representations of K, and rr, = C7,v : G -+

Horn c(U, V). Let 7, be an irreducible admissible representation with infinitesimal character

A. Let xx be the corresponding character of U(g)g . Then 7r, satisfies a class of differential

equations defined by

ir(z)Ir,(g) = X(A)(z)7r,(g), z E U(g) 9,g E G

Suppose A = {al, a2,... , r}. For H E a, we define

a(H) = (al(H),a2 (H),... , r(H))

We have the following theorem:

Theorem 8.4 ( [Knappl] Theorem 8.32) For a pair (T1, 72), matrix coefficient r, has the

following asymptotic expansion

ir(exp(H)) = Fv_p(exp(H)) (H E a+ )

F_p(exp(H)) = 1: Cv,,a(H)q exp((v - p)H), (cv,q E Hom (U, V))

qENr

Here the summation is over finite number subset of 1Y. This expansion converges on a+

converges absolutely on any compact subset of at.



If Fvp(exp(H)) 5 0 for some H C a+ , then v - p is said to be an exponent of 7r,. A leading
exponent v - p is an exponent of 7r, such that v > v' for any exponent v' - p of 7r,. The
corresponding term Fv-p in the asymptotic expansion will be called a leading term of 7r,.

Theorem 8.5 ( [Knappl] Theorem 8.33 ) Suppose that 7r is an irreducible admissible rep-
resentation of G with infinitesimal character A, T a pair of finite dimensional subrepresentation
of V,. If v - p is a leading exponent of 7rT, then

v = w.Ala

for some w E W(ac e be; gc)

We say that v - p is a leading exponent of 7r if v > v' for every exponent v' - p of any r1,.

8.3 Asymptotic Behaviors

Theorem 8.6 ( [Knappl] Theorem 8.47) Suppose 7~ is an admissible representation of G.
Then the following conditions on a weight vo E a* are equivalent:

1. We have Re (v) - vo for every leading exponent v - p of ir;

2. There is an integer q > 0 such that for every u, v E V,, there exists a constant C such
that

rU,v(exp(H)) < Cexp((vo - p)H)(1 + ||H ) q , (V H E a+)

3. There is an integer q > 0 such that for every u, v E V, , there exists a constant C such
that

7u,v(g) < Cexp((vo - p)(H(g)))(1 + I H(g)11)q, (V g E G)

From now on, C or c will be used as symbolic constant. Let L and R represent left and right
regular representation of G. According to [Knappl] 8.47,

Theorem 8.7 Suppose 7 is an admissible representation of G and vo satisfies one of the
conditions in Theorem 8.6. Let x E U(9). Then the estimates of Theorem 8.6 hold for every
L(x)ru,v and R(x) ,r,.

Now let f(g) be a (smooth) function on G. We would like to give a necessary condition on
f such that

V x g, G L(x)f(g)dg = 0

Theorem 8.8 For x C [g, g], suppose that f and L(x) f satisfy the property that

If (g)JI cexp(vo(H(g)))(1 + IIHII)q

IL(x)f (g)| 5 c(x) exp(vo(H(g)))(1 + |Hi ) q V x E [g,g]



c(x), c, q > 0 are constants and

vo + 2p = cai, (ci < 0)
a'EA

Then

IG L(x)f(g)dg = 0

Proof:

1. First we use KAK decomposition to show that L(x)f(g) is integrable with respect to

Haar measure of G. From our assumption, we have

GL(x)f(g)dg cfK exp(vo(H))(1 + |g| )qA(H)dKldHdk2

5 c exp((vo + 2p)H)(1 + |jH)qdH.a+ (8.29)

< c exp( 1 ciai(H))(1 + IIHII)qdH

converges absolutely

2. We claim that there exists a co < 0 such that

V H E a+  collHII 2> S ciai(H); (8.30)
a, EA

Notice that

ciai(H) = nonzero constant
a, EA

aj(H) > 0 (ai E A)

define a convex compact polytope, and this polytope does not contain 0. Thus we can

choose
Ece-EA Ciai (H)

co = max { i(H)

in this polytope. Since the numerator and denominator are homogenous of degree 1, this

co satisfies equation 8.30.

3. Now let x1 E n. Since the curve exp(tlil) is always closed, exp(tlxl)g is closed for every

g E G. In addition, exp(tlxl)g is homeomorphic to Rt. On the other hand, for r > 0,
the set

Cr = {9 E G : If (g)I r} C {g E G : cexp((vo + 2p)H(g))(1 + 11g)q > r}

C {g E G: cexp(coflgll)(1 + 111) q  r} (8.31)(8.31)
C {g G: g Ig Cr}

is compact.



Therefore Cr n {exp(tlxl)g} = {| exp(tlxl)gll > r} is compact. Hence

f(exp(E  tix)ak) i = 0

4. We will use NAK decomposition to compute fG L(xl)f(g)dg. Notice that there exists a
parametrization

n = exp(tlXl) exp(t 2x 2 ) ... exp(tmXm)

With

n = Ri, (tl,t2, .. ,tm) E m

such that

dn = dxld2 ... dxm

Thus

G L(xi) f(nak) exp(2p(loga))dndadk

= f (exp(tlil) ... exp(tmxm)aK) exp(2p(loga))dtl ... dtmdadkj dt,

Sdk da dt 2 dt . dtm df (exp(tlzx) .. . exp(tmxm)ak)dtl (Fubini's theorem)

= dk da f (exp( tixi)ak) +dt 2 ... .dtm

=0

(8.32)

5. We can change our choice on n by a conjugation of k E K. Thus for every k E K, xl E n,

G L(Ad(k)xl) f (g)dg = 0

Since [g, g] is the linear span of {Ad(k)xlll II1 n, k E K}, we have for every x E [9, g],

I L(x) f (g)dg = 0

Q.E.D.
This is the hard part. In fact, we have shown that

Theorem 8.9 Suppose that that L(x)f is integrable with respect to dg for every x E [g, g], and
f is bounded by a positive function I(g), such that, for arbitrary r > 0, {g E G: I(g) > r} is
compact. Then

V xE[, g] IG n(x)f(g) = 0

66



On the other hand, recall that for each K-finite smooth function f on K, according to

Peter-Weyl theorem, f can be written as

f= f,

where f, E C(K),. Here K acts on C(K) by left translation, C(K), is the a-isotypic subspace

of C(K). If a is not trivial on K 0 , the identity component of K, we have

1KL(
If a is trivial on K 0 , we will still have

KThus we have the following theorem

Thus we have the following theorem

x)f,(k)dk = 0

x)f,(k)dk = 0

Theorem 8.10 Suppose x E t , f E C(G) is K-finite, and L(x)f
the Haar measure. Then

JL(x)f (g)dg = 0

Proof: Notice that every integral of L(x)f over Kg for a fixed g

Fubini's theorem,

SL(x)f (g)dg =1\G L(x)f (kg)dkdg]
=0

Here d[g] is the right G-invariant measure on K\G. Q.E.D.

We have proved that

Theorem 8.11 Let G be a real reductive group with compact center. For every x E g, suppose

that f and L(x)f satisfy

If (g)JI - cexp(vo(H(g)))(1 + [IHII) q

IIL(x)f(g)II 5 c(x) exp(vo(H(g)))(1 + IH H )

for some constants c(x), c, q > 0 and

vo + 2p = E ciai

(aEA

Then,

L(x)f (g)dg = 0

xEt

is integrable with respect to

E G vanishes. According to

(8.33)

(ci < 0)



8.4 Matrix coefficient of the Oscillator Representation

Definition 8.2 (Schridinger Model) There exists a unitary representation w of Sp2n on
L2(IRn ) such that

1

w(Xk,-j) = Xkox + 2

w(Xk,j) = iXkXj (k $ j) w(Xk,k)= 1k

w(Xk,_j) = ioXkOXj (k 5 j) (X-k,-k) = a2k

Let GL(n) be the subgroup of Sp2n(R) of the following form

0 (A- 1 )t

Then
GL(n) = {(g, ) I g E GL(n), 2 = det g}

w(g, )(f)(x) = f(g tx)

See [Wallach] Ch 5.3 and 5.5 for more details. The isometry between the Schrodinger Model
and the Segal-Bargmann model was discovered by Bargmann in [Bargmann].

Let K = Sp2n(IR) n O2n(R) be the maximal compact subgroup. Then K the maximal
subgroup of Sp is also connected. Thus the K-finite vectors are those e-finite vectors.

Theorem 8.12 Let u(x) = exp(- x 1ll2). Then the Harish Chandra module in the Schrodinger
model is given by p(x)P, where P is the polynomial algebra of n real variables.

Proof: We want to show that {Xi,_j - Xj,_}, {Xi,j - X-i,-j}" act on Pm
For p(x) E P, and i $ j, we have

(xix 3 - Oxiaxj)(p~(x)p(x)) =xixjlL(x)p(x) - xixjp(x)p(x) + xi/L(x)jp(x))

+ xj P(x)ip(x) - p(x)020jp(x) (8.34)

=(xiap(x) + zjaip(x) - aiajp(x))P(X)

Thus P: m is preserved by the action of {xixj - OiOxj}isj.
For i = j, we have,

(x2 - O2 xi)(P(x)p(x)) =x 2 p(x)p(x) + (x)p(x) - xp(x)p(x) + xi,(x)Oip(x)

- A(X)ai2p(X) + x,(X)aOip(X) (8.35)
=(2xiOip(x) + p(x) - O2p(x))p(x)

Again, p m is preserved. Therefore, P'm is preserved by {Xi,j - X-i,-3}. Notice that
Xi,-j - Xj,-i acts homogeneously on P. Thus p:m is preserved by t. It is well-known that



the Harish-Chandra module of the oscillator representation can be decomposed as the direct

sum of irreducible highest K-module with highest weights (n + , , ... , ), where n is a

nonnegative integer. From the equations we acquire, it is easy to see that the highest weight of

p<m/p<m is exactly (m + 1 1 1 , , ). Therefore p(x)P is the Harish-Chandra module of

the Schrodinger model. Q.E.D.

Even though the Schr6dinger model has certain properties similar to the Fock model, their

Harish-Chandra modules are different. For example, it is difficult to write down exactly the

K-types in Schr6dinger model, since the K action does not preserve homogeneity. Let g be

an element of G. For simplicity, we use to denote any preimage of g under the metaplectic

covering when it causes no confusion. Now we can compute the matrix coefficients of the

Schrodinger model. We follow the multi-index convention.

Theorem 8.13 Let a = diag(al, a2,... , an, a 1,... ,- 1 ) A+ C Sp 2n , i.e.,

al > a2 > ... > an > 1

and let

(a,) E SP2 (2 = fai)

Then A~ (A,±1). We write sgn(a,() = sgn((). Then

w ,,(a) = (w(a)x~,a(x), zA0(x))
n

n

= sgn()c,H aa,+1/2 -(1 a?)1
i=1

These formulae yield the asymptotic expansions for {(al,... ,an) I ai > 1} and {(al,... , an)
ai < 1} respectively. Both domains contain n! Weyl chambers of A. Moreover, the leading

exponent of the oscillator representation is

11 1

2' 2"' 2

and the infinitesimal character is given by

1 3 1
(n- ,n- -... )2' 2 2''



Proof: Let Ca = f xzp(x)dx. Then

n 1 1 2
wao.( ) =sgn( a)(H a  ( a ' x ' exp(- 2 2) PX

i=1
n

=sgn(()( ai) aa z x exp(- (a + 1))dx

n n
=sgn()(n(ai)) (a2 + 1)- + + 1 ( x ) d x  (8.37)

i=1 i=1
n

=sgn()ca+ ( (ai)a+ 2(a i + 1) -  2

i=1
n

=sgn()c+0 f(ai)-- 2(a + 1)-

i=1

Thus the unique leading exponent of the oscillator representation is

1 1 1

2' 2'' 2

Therefore the infinitesimal character is given by

1 3 1
v+p= (n - ,n- ,... , )

Q.E.D.
Finally, we will give a theorem on the growth condition of the matrix coefficients of the

Schrodinger model.

Theorem 8.14 Let g = klexp(H(g))k2 with H(g) G a+ be the KAK decomposition of

SP 2n(R). Then for every u,v in the Harish-Chandra module of the Schodinger model, there
exists a constant c such that

IWu,,(g) |_ cexp(- 2 Hi(g)) (H(g) = diag(Hi (g),.. , Hn (g), -Hl (g),... - Hn(g)))
i=1

The same estimates hold for every L(x)wu,v(g) and R(x)w,,,(g), where x E g and L and R
represent the left and right regular actions.

Proof: We only sketch a proof here. For an arbitrary w E p(x)P, since {xa/p(X)}a EN is a basis
for p(x)P, we write

W = ZwaxaM(x)

Notice that

Wu,v(g) = (w(g)u, v) = (w(exp(H(g)))w(k2 )u, w(k 1 )v)



Suppose the finite dimensional K-subspace spanned by u and v is contained in [(x)< m.

According to the previous theorem, for every pair (w(k 2 )u,w(k 1)v), there exists a constant

C(k2, kl) such that

|(w(exp(H(g)))w(k2)u, w(k)v) C(k2, kil)exp(-2 Hi(g))
i=1

Here we may choose

C(k 2 , ki) = I(w(k 2)u)all(w(k 1 )v),3 C,,3

{a,lE3 a t <m,Z Ej<m}

Now since (k2 , k1 ) E KxK is compact, and C(k 2 , k) is a continuous function, c = max{C(k2 , kl) I
k 2 E K, ki E K} exists. Then we have

I(w(exp(H(g)))w(k2)u, w (k))l < cexp(- Hi(g))
i=l1

The first statement is proved. Since w is unitary,

L(x)(w(g)u, v) = (w(x)w(g)u, v) = -(w(g)u,w(x)v) = -wu,w(x)v(g)

R(x)(w(g)u, v) = (w(g)w(x)u, v) = ww(x)u,v(g)

Then the first statement implies the second statement. Q.E.D.
For oscillator representation, the growth condition estimate in this theorem is in fact stronger

that the growth condition in Theorem 8.6.

8.5 Convergence

We will study the restriction of the matrix coefficients of the oscillator representation to the

dual pair (G, G'). For a representation ir of G, for P, E 7, u, v E V,, we may formally define

a bilinear form on (P 0 V,, Pc 0 Vc) as follows

(V 0 v, q 0 u), = (w(g)', ¢)(7r(g)v, u)dg (8.38)

Now we want to study the convergence of this integral.

In general, let V, and V, be two Harish-Chandra modules of an arbitrary reductive group

G. Let {xa } be a fixed orthonormal basis of V, and {vi} be a fixed orthonormal basis of V,.



Observe that

= (w(g) ', ¢) (r(g)v, u)dg

= K (w(kl)w(exp(H))w(k2), )(7r(kl )r(exp(H))r(k 2 )v, u)A(H)dkidHdk2
Kxa+xK (8.39)

= A(H)dH K (w(exp(H))w(k2)',w(k 1 ))(7(exp(H))7r(k 2 )v, r(k- 1 )u)dkldk2

= A(H)dH E (w(expg(H))v, x)(,r(exp(H))vi, vj)H(, u; 3, j)H(, v; a, i)
+ a,3,i,j

where

E H(0, u; ,, j)x 0 v3 = J w(k) 0 7(k)udk
/,j

H(i, v; a,i)a 0 vi = J w(k)7 0(k)vdk
a,i

Once we choose an orthonormal basis of the K-types of V,, there are only finite number of

(a,/, i,j)'s such that H(, v;a,i) and H(, u;,3,j) are non-zero. Thus the integral ( 8.38)
converges for all u, q, v, 4 if and only if

I(a, 3, i, j) = j (w(exp(H))xa, x)(r(exp(H) ( )v, v)A(H)dH

converges for all a, ,, i and j.
Let G = Op,q be the orthogonal group fixing the symmetric form defined by

oP 0 IP
Ip,q= o0 q-p o

Ip o Op
and G' = Sp2n be the standard symplectic group. Now as a dual pair in SP2(p+q)n, we may

choose R2n(p+q) to be M(p + q, 2n), such that G acts by left multiplication and G' acts by
(inverse) right multiplication. We denote both actions on M(p + q, n) by m. We may realize
the Schrodinger model on

L2(M(p + q, n)) = L2(xij,i = 1,... ,p+qj = 1,... ,n)

Now let a = diag(al, a2,... ap, 1, ,1, al 1  ap 1 ). We define

A + = {a I al > a2 >... > ap > 1} C G

Let b = diag(b- 1, b21,... , bn 1, bl, . . . , bn). We define

A ' + = {b Ib > b2 > ... > bn > 1} C G'



Thus we have

m(a)ei,j =

m(b)ei,j = bjei,j

ei,j
-1

ai ei,j

i= 1,... ,p
i =p+1,... ,q
i=q+1,... ,p+q

(i = 1,... ,p+q)(j = 1,... ,n)

These formulae indicate that the embedding of A and A' into GL(M(p + q, n)) are simply the
left multiplication and the (inverse) right multiplication.

aibjei,j
m(ab)ei,j bjei,j

a ,lbjei,j

i= 1,... ,p
i=p+ 1,... ,q

i=q+1,...,p+q

We can easily deduce the following theorem from Theorem 8.13.

Theorem 8.15
pn

sgn(ab)ca,o H
i=1,j=1

01 +0- -+1 ag+i,j +1g+i j +1

aztl Q+%3 ba, (a,?q+tv a bj2 + 1)- 2 a- b2 + 1) 2
3 i i

(,+,, + ,, )(a2 ai,j + + ,i + 
3
q+z,3 +

2

(a( q+ ,3 +,3 'j+1)( a 2 + l 1) -~ i, +O ,

) g c i,j+ ,q9+ j,3 ,j+)3+i,j+2
wa,3(b ) =sgn(b)c

3, b( +i "+l)(b2 -1)- 2

i=l,j=1

H b j"-2 (b 2 + 1)

i=p+l,j=l

Combined with Theorem 8.14, we obtain

Theorem 8.16 Let g = ki exp(H(g))k 2 with H(g) E a+ be the KAK decomposition of Opq.

Let g' = k' exp(H(g'))k' with H(g') E a'+ be the K'A'K' decomposition of Sp 2n(R). Then

there exists a constant c such that

(g E G, Hi(g) = Inai(g))

(g E G', Hj(g) = Inbj(g))

The same estimates hold for L(x)w,,(g) and R(x)wu,,(g') for every x E SP2n(p+q)"

wa, p(ab) =

q,n

i=p+1,j=1

bi (b j + + + 1

b " (b + 1) - 2 3

p,n

w.,p(2i) =sgn(i)c, II
i=1,j=1

(8.40)

p

nW,v(g)l < cexp(-n Hi(g))
i=1

IWu, v ( ' )l < cexp(-P+ H(g))
j=1



By abuse of notation, we write n = (n, n,... , n). Now we can prove the following theorem
concerning I (a, 3, i, j).

Theorem 8.17 Suppose that for every leading exponent v of an irreducible admissible repre-
sentation 7r of Op,q, 2 p + Re v - n is a strictly negative combination of the simple roots, i.e.,

2p + Re v - n -< Y ciai = A (ci < 0)

Then I(a, 0, i, j) converges for every a,/,i,j. Thus, (,), is well-defined.

Proof: Recall that for arbitrary matrix coefficient, we have

1(7r(exp(H))vi, vj)I 5 cexp((A - 2p + n)(H))(1 + I lH11) (H E a+ )

Thus

I(a,3,i,j) <5Ja+ ca,P exp((A - 2p + n)(H))(1 + IIHj|)q

p,n

exp(- E (aq+i,j + 3 i ,j + 1)Hi)
i=1,j=1

1. a. +aLg+i,j +O,3 +q+z,j +2

1 (exp(-2Hi) + 1) 2 A(H)dH
i=l,j=l

< cexp((A - 2p + n)(H))(1 + IH| )qexp(- nHi) exp(2p(H))(1
a+ i=1

1 cexp(A(H))(1 + jIHII)dH
Ja+

= . cexp( ciai(H))(1 + IIHII)qdaH... dap(H)
J (H)>O,... ,a(H)> 1

<oo

Thus I(a, /, i, j) is always well-defined. And (, ) is well-defined as well .
Q.E.D.

Definition 8.3 We say that 7r is in the semistable range of the dual pair (Op,q, SP2n), if for

every leading exponent v of an irreducible admissible representation ir of Op,q, there exist ci <
0(i = 1, 2,... ,p) such that

2p + Re(v) - n t cag

We denote the set of representations in the semistable range by Rss(Op,q, SP2n).

+ IIHII)qdH

(8.41)



At this moment, we do not know whether RZss(Op,q, Sp 2n) is contained in R(Op,q,W). We will

show later that under a natural condition

lss(Op,q, Sp2n) c R7(O,q,w)

(up to a central character). The question of whether an irreducible representation 7r belongs to

R(Op,q, w) can be read off from the Langlands parameters of 7r.

Theorem 8.18 For every leading exponent v of an irreducible admissible representation 7r of

Sp2n, if - + Re (v) + 2p is a strictly negative combination of the simple roots, i.e.,

p + q+Re (v) + 2p ciai = A (c, < 0)
a, EA

then I(a, , i, j) converges for every a, /, i, j. Thus, (,), is well-defined.

Proof: Notice that from Theorem 8.6 we have

(7r(exp(H))vi, vi)I < cexp(A - 2p + )(H)(1 + IIH ) q  (H E a+ )

From Theorem 8.15

IWa,,(exp(H))I < cexp(- q(H))

Therefore,

I(a, /3, i, j) + cexp((A - 2p + p )(H))(1 + IIHII ) exp(-P + H)A(H)

f cexp(A(H))(1 + H)qdH
Ja+ (8.42)

= cexp(E ciai(H))da (H) ... dan(H)
acl(H)>O,...,an(H)>O 1

<oo

Thus, I(a, /, i, j) is well-defined. And (,), is also well-defined. Q.E.D.

Definition 8.4 Let 7r be an irreducible admissible representation of Sp2n(R). If there exists

ci < O0, such that
p +q + Re (v) + 2p - ciai

aEA

for every leading exponent v of 7r, then we say that r is in the semi-stable range of (SP2n, Op,q).

We denote the space of representations in the semistable range by R,,s(Sp2n, Op,q).

Notice that from this definition semistable range only depends on p + q, not on the pair (p, q).

Thus if 7r is in the semistable range of Op,q, then it is also in the semistable range of Op',q' for

p'+q' = p+q. For this reason, sometimes we will denote the semistable range by Rss (Sp2n, p+q).



9 Semi-stable range

In this chapter, we will define the averaging operator

£5 : Pc 0 V, --+ Hom C(P, V,)

for a fixed r in the semi-stable range. And we will further show that if £C = 0, the image of £L

is always irreducible as a (g', K') module. Throughout this chapter, for an arbitrary g-module
W with a K action, WK will be the subspace of K-finite vectors. Here all the homomorphisms
are complex linear.

9.1 Averaging Operator

For a Harish-Chandra module (ir, V), let (7c, Vc) be the same real module as V, with C acting
from the right conjugate linearly. Let (irh, Vh) be the Hermitian dual, and (ir*, V*) the complex
dual. We have

vK = (Vk)l= (Vc)*

(Vk) = V =(V)*

From our definition of semistable range,

r e Rss(G, G') E sc e Rss(G, G')

(r*, (V*)K) E 7ss(G, G') 4= 7r E Rss(G, G')

In general, (7rh, Vh) will stand for the Hermitian dual space with the Hermitian dual action.

(7r*, V*) will stand for the dual linear space of V with the dual action. Occasionally, we will just
use 7rh and 7r* to denote the dual spaces of (7r, V) is the category of Harish-Chandra modules.

Definition 9.1 We define i : P' 0 V, -+ Hom(P, V,) by

i( 0 v)(0) = (0, )v (0, k E , V E V7)

g acts on the left by wc(g) 07r(g), acts on the right by (w)*(g) 0 r(g); g' acts on the left by
wC(g'), acts on the right by (w)*(g').

Since Pc "_ (p)* is an embedding of (g, g') modules, i is a map of (g, g') modules. Frequently, we
will neglect the map i when we identify "vector valued" functions in Pc V, with certain"vector
valued" distributions in Hom (P, V).

Definition 9.2 Formally (to be made precise later), we define the averaging operator

LG : P V, --4 Hom (P, V,)

as follows

L£G( 0 v)(b) = (, w(g)4)ir(g)vdg (, q E 7', v V,)



Theorem 9.1 Suppose (7r, V,) is an irreducible admissible Harish-Chandra module of G with a

K-invariant inner product (,) and (w, P) a unitary Harish-Chandra module of G. Suppose that

(,), : (POV,)0(POV,)c -+ C is well-defined. In other words, the integral (8.38) converges for
all 0, 0, u, v. Let a be a K-type in ir, P, be the projector from V, onto its a-isotypic subspace.

Then

LG(¢ 0 v)q = G (,w(g) i)P.(7r(g)v)

aEK

is well-defined. Moreover, LG does not depend on the choice of the inner product (,) on V, .

Proof:

1. First we define L : P c 0 V, - Hornm (P, V,h) by

Co(Ov)q(u) = j(0,w(g)))(7(g)v, u)dg = ((g) , ) (r (g)v, u)dg, ( , ~ , v,u e V,)

Since £O 0( v)¢ is a conjugate linear functional on V,, it lies in Vh .

2. Next, L~ is K-equivariant.

£(z 0 v)(w(k)5) (u) = (w(k) , w(g))(r(g)v, u)dg

= (, w(k - 1 g)O)( ' (g)v, u)dg

= ( , w(g)) (7r(kg)v, u)dg (9.43)

= ( J , w(g) )(7(g)v, 7(k- )u)dg

=(7h(k) L°(V ® v)(0))u

Thus L : Pc 0 V, -* Hom K(P, Vh). But P are K-finite vectors, therefore L£ (V 0 v)O

lies in (V h )K-

3. If we identify (V,h)K with V, under the inner product (,), we can define LG as the

composition of L. with this identification. More precisely, for a fixed a E K, and q E ,,
we define

£G 0 v) = IG(,w(g) )P ((g)v)dg

It is easy see that, for all u E V, , we have

£o(0 0 v)¢(u) = (CG('O 0 v)q, u) (E Po)



4. In general, we define

£G( 0 v)0 = S jG( ,w(g)b)P,(lr(g)v) (9.44)

Since for any q E P, q is K-finite. Therefore ¢ is contained in a finite direct sum of P,'s.
Thus only finitely many terms occur in the direct sum (9.44). Hence LG is a well-defined
map from Pc 0 V, to Hom (P, V,).

5. Since the projector P, does not depend on the choice of the K-invariant inner product
(,) on V,, L G : P' 0 V, - Horn (P, V,) does not depend on the choice of (,) on V,.

Q.E.D.

Notice that we do not assume (7r, V,) is unitary here. However we assume rK is unitary.
In fact, if we define the matrix coefficients of nr to be of the form g -4 6(i(g)f) with 6 E

(V,*)K,f f V,, then we do not need the inner product structure on V,. Nevertheless, we
stick with our original definition of matrix coefficient, since it is more commonly used in the
literature. Suppose that r E Zss,,(G, G'). Then (,), is well-defined. Immediately, we obtain

Theorem 9.2 If 7 is in the semistable range of (G, G'), then

( 0 v)q5 = w(g))P, (g)vdg

aCK

is well-defined.

I should remark here that the concept of averaging operator is not new in the compact Lie group
theory. In fact, various forms of averaging operators are used in studying the geometry and
topology of homogenous spaces. However, for noncompact Lie groups, the concept of averaging
operator is less commonly used due to the difficulty in determining the convergence. In the
next section, we will examine the properties of the averaging operator we have defined.

9.2 Properties of the Averaging Operator

We will assume that ir is in the semistable range from now on unless stated otherwise.

Theorem 9.3 Let Po be the projector onto the trivial K-type of P7c  V,. Then

L£ = L£ o Po



Proof: We have

(w(k) 0 r(k)v)(b) = J( ,w(g)w(k) )P.(r(g)x(k)v)dg
aEK

= J( , w(g)P)P, (r(g)v)dg (9.45)

aEK

0 v)()

Thus

£4C(w(k)4 0 7r(k)v) = L£(o 0 v)

Therefore £5 is only nonzero for the trivial K-types of pC 0 V,. We have

L£ = L, o Po

Q.E.D.

Theorem 9.4 £L is a map of (g', K') modules.

Proof: For x' E g', we have

5(w(x') 0 v)(q) = 0 J(, w(g)w(x')')P~,((g)v)dg

aEK

= , w(')w(g)) )P (r(g)v)dg
e K (9.46)

= ~S, ( - w (x ' ) , w(g ) )PP (r (g )v )dg

aEK

=(w*(xI')c6( 0 v))(q)

For k E K', a similar statement can be proved. Therefore, £ is a (g', K') map. Q.E.D.

Theorem 9.5 If 7 is in the semistable range of (G, G'), then

£ : PC V, -+ (Homg(P, Vr))kg,

In particular, if I£(Pc0 V,) # 0, then r c R(, K, P).

Proof: From Theorem 9.1, L£ is K equivariant. From Theorem 9.3 wee see that under £L

only the trivial isotypic space is mapped nonzero. Thus

L£, ( c & V,) c Horn (P, V)



Now it suffices to show that V x E g,

sP 0 v) (w()) = 7r(x) to V 0 v)¢ )

This is equivalent to V u E V,

(W X) ,w((g) )(7(g)v, u)dg =

( 7r, w(exp(tx))w(g)#)(Tr(exp (t) )ir(g)v, u)dg = 0

L(x) ((0, w(g)# ) (7r(g)v, u))dg = 0

Here L is the left regular action of g on the smooth functions on G.

w,(g)irv,u(g). We will prove

J6 L(x)F(g)dg 
= 0

(9.47)

We write F(g) =

for the dual pair (Op,q, SP2n (R)). For all the other pairs, we can proceed similarly. From the
semistability, there exist vo a* and ci < 0 such that

vo + 2p-n= E ciai

From Theorem 8.6, we have

I7rv,u(g)j cexp(vo(H(g)))(1 + IH(g) |)q

According to Thorem 8.7, we have

IL(x)7rv,u(g)| 5 cexp(vo(H(g)))(1 + IIH(g)|j)q

From Theorem 8.16, we have

jwV,(g)| 5 cexp(-n(H(g)))

jL(x)w,¢(g)j < cexp(-n(H(g)))

Thus,

IF(g)l 5 cexp((vo - n)(H(g)))(1 + IIH(g)| )q

IL(x)F(g)| < cexp((vo - n)(H(g)))(1 + ||H(g)[ )q

According to theorem 8.11,

Now we have shown that

L(x)f (g)dg = 0

£(pc 0 V,) C Hom g(P,, V)

j(0, w(g)) (r(x)-x(g) v, u)dg



Since L£ is a (g', K')-map, and pc is K'-finite,

P : pc 0 V, --+ (Homrn g(P, V,))k,

Finally, if L g(P c 0 V,) # 0, then (Hom ,K (P, Vr))k, O0. Thus r E R(, K, P). Q.E.D.

Later we will give more precise information about the nonvanishing of £d under some quite

general assumption. Just as a byproduct, we have

Theorem 9.6 For every x E g, 0 E Pc,v E V, we have

L (w(x) 0 v + 0 r(x)v) = 0

In other words, w(x)' 0® v + 0 i r(x)v E ker(£L).

Proof: Use R(x) instead of L(x) in the proof of the last theorem. Q.E.D.

9.3 Howe's Quotient and its Dual

In representation theory, sometimes it is easier to deal with submodules than quotients. For

Howe's quotient, we have

Theorem 9.7 7r E T(g, K, P) if and only if (7r*, (V,*)K) can be embedded as a (g, K)-submodule

of P*

Proof: Suppose there exists a (g, K) module map:

i: P -+Vr

such that P/Ker(i) 7 r. Thus lr* - (P/ker(i))*. But (P/ker(i))* C p*. Therefore,

(r*, (V,*)k can be embedded as (g, K)-submodule of P*. On the other hand, suppose there

exists a (9, K)-submodule
i : (V*)k - +P*

Let A/ = n,E(v;)ker(j(v)). Then j((V,*)k) lies in (P/N)*, and

i : PIA( 4 (V*)*-

is an embedding of (g, K)-modules. Since P/A is K-finite, thus the image of i sits in ((V,*)*) R -
V,. But V, is already irreducible, so

Pl / t V,

Q.E.D. Let

{0} = Vo C V C V 2 C ... C Vn = V

be a composition series of Harish-Chandra modules, such that Vi/Vi-1 is irreducible. Then

V = (V/Vo)* D (V/Vi)* D ... D (V/Vn- 1)*K (V/V)* = {0}

is a composition series, with each subquotient irreducible.



Theorem 9.8 If (7r, V,) is the unique irreducible quotient of a Harish-Chandra module (iro, Vo)
of finite length, then (7r*, (V*)K) is the unique irreducible submodule of (7r*, (V*o)K).

Theorem 9.9
V* - Homrn, (P Vr)

(VJo(7r)) ' c- CE( ',K)Hom ,k(P0,,' V,)

Proof: First let 4) E Hom g,(P, V,). Then ker 4) 2 '. as defined in Definition 7.2. Thus 4)
can be regarded as an element in

Hom g (P/Ar , V ) Horn ( V o( ) , Vo( ) (Vwo(W)~ )

On the other hand, for every 4) E Hom gk(P/N'r, V), there exists a unique (still denoted by)

) E Homrng k(, V,) such that 1)(KNf) = 0. Therefore,

Vo(*) Horn g,k (P, V)

For the second statement, we can simply take the K'-finite subspace. We have

(VUJo()) E oE((K',P) Homrng(P W , ' , V)

Q.E.D.

Notice that

Hom, g(P,, V,) - (Hom g (P7, V)),,

For every () E Hom g (P , V), because of the direct sum decomposition, we may extend it

to an element in Hom k(p, V1,). In our future discussion, we will identify Homg,(P,, V,)

with its extension in Hom gr(P, V,).

Lemma 9.1 (Reciprocity) Let (a, V,) c R(K, V,) be of minimal degree in P. Let (a', V,,)
be as in Theorem 7.4. Then

dim(Hom k (V,, V,)) = dim(Hom k, (VM, Vw(r))) = dim(Hom , (Va, VW,0(,)))

Proof: Notice that Pa, = U(g)7-(K'),1. Thus the restriction from P,, to 71(K'),,

Res : Homg ( , V,) -+ Hor k ( (K'), , V,)

is injective. From section 7.3,

3 r R(M , ) -(K'), Va, 0 V



and if a E R(K, V) and a =c in K, then according to Theorem 7.5

a R R(K, r)

Thus, we can further have an injection (still denoted by Res)

Res: Hom k(T(P,, V) -+ Hom k (t-,,', Vr) V,* 0 Hom k(V,, V,)

Therefore we have

dim(Hom k,(V, Vo(,))) = dim(Hom k, (V*,, (Vwo(7r))K,))

= dim(Hom k, (V,*,, (Hom K(P', V )),))

= dim(Hom k, (V,*, Hom , (PW,, V))) (9.48)

< dim(Hom k, (Vj,, V*, Hom (V,, V,)))
= dim(Hom k (V,, V,))

For more or less the same reasons, we have

dim(Hom k(V,, V o((x)))) _< dim(Hom k,(V,, Vw(7)))

Sdim(Hom k, (V, Vwo())) (9.49)
< dim(Hom k(V,, V)) = dim(Hom k (V, Vw(,w(r))))

" dim(Hom k(V,, Vo(P())))

Thus,

dim(Hom k(V,, V)) = dim(Hom k, (Va,, Vw(,))) = dim(Homrn , (V,', V,,o(,)))

Q.E.D.

Corollary 9.1 The map

Res : Homrn g,(P,, Vr) -+ Horn (,,', V)

is a bijection. In other words, every map I' in Horn k(-,,, V,,) can be extended to a map TI
in Hom g,(Pa' , V) such that

Since (wo(7r), V 0(,,)) is a finite generated quasisimple (g', k')-module with a unique irreducible

quotient V,(r), (wo(7lr)*, (Homrn, (P, V,))k,) is also a finitely generated quasisimple (g', K')-

module with a unique irreducible submodule equivalent to (V )),.* For notational purpose,

we will denote such a submodule by (V :()) ,.



Corollary 9.2 (Hom gk(P, V)) , is a finitely generated quasi-simple (g', K') module. There

exists a unique irreducible submodule w(7r) ,. Let a C V,, such that deg(a) is minimal among

all the K-types of r. Let a' be the unique K'-type such that

T',, = 7-(K') nl (K),

Then (V*(I))k, is generated by Hom ,(P,,,V,) as a U(g') module.

Proof: From the last Lemma, we have

Horn, ,(Pa', V) (V, ))), (V j))o,

Thus Hom ,k(P,, V,) is contained in the irreducible submodule (V r))k,. But (V (,))k, is
already irreducible. Therefore, it is generated by Homrn g,(P', V). Q.E.D.

9.4 Irreducibility

Now we come back to the averaging operator L. To show that the image of our averaging
operator is irreducible in (Homk(P, V,))k,, it suffices to show that the image is exactly
(V*)) ,, or alternatively, £6(Pc 0 V,) is generated by Hom ,(P,, V). We shall focus on

the K'-type a' of minimal degree.

Lemma 9.2 Suppose 7r is in the semi-stable range of (G, G') and 4 0. Let a E R(K, 7r)

with minimal degree in P. Then

LI((P,,) 0 V, ) 7 0

Proof: Since £5 is a K'-equivariant map, by taking the (a')C-isotypic submodule, we have

£ : (p ,)c 0 V, -+ Homrn k(P , V,)

If L£((P,,)c 0 V,) = 0, in other words,

Im(£5L) n Hom , k (Pa,,, V) = {0}

then
Im(£L) n (V 7 ), = {0}

But (Vw()) , is the unique irreducible submodule of (Hom ,(P, V,)) k,. Thus

Im(Ld£) = 0

This contradicts that $ 4 0. Q.E.D.

We shall make one comment here. In our proof, we identified (P, )C with (Pc),c just
for simplicity. In general, (7r , Vc) only differs from (wT, V) in the complex structure, they are
identical as (g, K)-modules.



Lemma 9.3 Suppose ir is in the semistable range of (G, G') and L£(P 0 V,) $ 0. Then the

Hermitian dual (7rh, VA) E R(g, K, P) and the dual (r*, V) E R(g, K, PC).

Proof: We define L : P -+ V* 0 Hom gk(P, r) by

GJG5(=)(v)() J (,w()')lr(g)vdg (4'E pc, q E P, v E Vr)

Notice that LL is (g, )-equivariant with respect to (pc, V,*), and (g', K')-equivariant with

respect to (pc, Hom , k(P, 7r)). Thus

£ : p-c (V) k 0 (Hom k(P, )) k,

L£4 0 implies that L£ # 0. Therefore

(r*, (V~)) )E R(, K, P c )

Thus

(irh, (Vh)k) E R(g, K, P)

This is equivalent to

(r*, V) E R(g, K, pC)

Q.E.D.

Theorem 9.10 (Irreducibility) Suppose 7r is in the semi-stable range of (G, G') and £ # 0.

Then

Imn(I) -(V ,)),

is irreducible.

Proof: From the lemma, we have (V*)k c R (, K, PC). Let Pc/sf be the maximal quotient

defined in Definition 7.2. Since L£ is a (g, K) map from pc to

(V*)k 0( (Hom , (P, 7)) k,

LL descends to a map from pc/nf to

(V*) 0 (Hom g, (P, 7)) k,

Let a E 7r be a K-type of minimal degree in P. Then a* r ac E R(K, 7r*) is of minimal degree

in pc. Thus Pc/N is generated as a (g' x g, KK')-module by (I7,,,)c according to Theorem 7.7.

Therefore LL (Pc) is generated as a (g x g', KK')-module by L as a , , '')-module

by L£((P,,)c). Notice that

L£((P,)c 0 Vr) = L£((Po,)c)(Vr) C (Hom j(p, r))(,)c = Hom g,(P,, V) (9.50)
G ,k M 70) (o,)c ,k (Pa', V70



But (Vw*)) k, is generated by Hom g'(P,, V7r). £C(Pc 0 V1,) is contained in (V*(,) K,. But

(V*(,))k, is already irreducible, and Im(L£) O0. Therefore

Ira(£C) = (V,())k,

Q.E.D.

9.5 Invariant Hermitian Structure

Let 7r be a unitary representation of G. This is equivalent to say that there exists an inner
product on V, such that

V k K, u, vE V,

Vx E g, u, vE CV,

(ku, kv) = (u, v)

(xu, v) + (u, xv) = 0

Let R = ker(£) be the radical. Then

£ : (pc 0 V,)/R. - Homg 'k(P, Vr)

is injective. Since Im(£5) is irreducible and isomorphic to (Vr))k, (pc 0 V,)/R is irreducible

and isomorphic to (V()).

Definition 9.3 We define an Hermitian form on (pc 0 V,)/R by

([0 & u], [ 0 v?]) =

We can easily show that

1. ([Q 0 u], [ 0 v]) = (Ld(q 0 u)O, v)

2. (,) on (c 0 Vr)/lR is Hermitian.

([Q 0u], [ 0v]) = ([ 0v], [0 0u])

3. (,) on (pc 0 V,)/R is g' invariant.

Vx E g', (w(x)[ 0 u], [0 9 v]) + ([ 9 u], w(x)[0 9 v]) = 0

Theorem 9.11 Suppose £5(Pc0V) 5 0. If 7r is unitary and in the semistable range of (G, G'),
then the Hermitian form (,) on (PC 0 V)/R (V (,))k, is g' invariant.

f(l, w(g)O)(r(g)u, v)dg



10 Non-Vanishing Theorem for (Op,q, SP2 n(I]))

The dual pair correspondence for real reductive pair (Op,q, Sp2n (IR)) is a one-to-one correspon-

dence between R(Op,q,w) and R(Sp2n(R),w). Philosophically speaking, this provides a tool
to study representations of a "bigger" group through representations of a "smaller" group. In
this chapter, we will assume p + q < 2n + 1. Thus we regard Op,q as the smaller group and

Sp2n (IR) as the bigger group. However, one essential question that needs to be answered here is

what representations are contained in R(Op,q, w). In this chapter, we will show that roughly all
the representations (up to a central character) in the semistable range Rss(Op,q, SP2n(R)) are

contained in R(Op,q, w). We will first study the Bargmann-Segal model (see Ch 1,2 [R-R]) in
the frame of the dual pair (Op,q, Sp2n(IR)). Then we will proceed to show that for 7r within the
semistable range and p + q 5 2n + 1, either Lp (pc 0 V,) or Lo- (pC 0 V ®) is not vanishing.

Here X is a central character of Op,q. Thus according to Theorem 9.10, £(Pc 0 V,) yields an
irreducible representation of G', namely (w(7r)*, (V (r))k,). Throughout this chapter, we will
fix p, q, n.

10.1 Bargmann-Segal Model and (Op,q, Sp 2n ) pairs

Let Sp,q = ( , and W = On In Let V be a real vector space of p +q

dimension. Let (,)1 be the nondegenerate form

(x,y) = XtSp,qy (x, Y V 1 )

Let (V2, w) be a symplectic space such that

w(,y) = XtWy (x,y E V2 )

1. Let V = Hom (V1,V 2) = Mat(p + q, 2n, R). Let

Q(X, Y) = Tr(Sp,qYWX t) = Tr(XtSp,qyW) (X, Y E Mat(p + q, 2n, R))

Then
Q(Y,X) = -Q(X,Y)

and Q is nondegenerate. Thus V is a symplectic space. Let Sp(V, Q) be the symplectic

group fixing Q1. We define the left multiplication

L : Op,q -+ Sp(V, Q)

and the right multiplication

R: Sp2n(R) - Sp(V, Q)

It is easy to check that L(Op,q) and R(Sp2n(IR)) fix Q. And L(Op,q) commutes with
R(Sp2n(R)). Therefore (Op,q, SP2n(Ri)) is a dual pair in Sp(V, Q).



2. Suppose p _ q. Let

X= X21
X21

X12 M(p, n) M(p, n)
M(q,n) )

Then

Q(X, Y) = Tr(X1 2 Y 1 - X 11 Yt 2 - X 2 2Y2tl + X 2 1Y2t2 )

3. Let VC = Mat(p, n, C) E Mat(q, n, C). Here VC is not the complexification of V. It is V
itself regarded as a complex linear space. The exact identification will be discussed later.
For v E VC, we may either write v = (Vi, v2) or v = vl + v2 where vl E Mat(p, n, C) and
V2 E Mat(q, n, C). Let vi = Re(vi) + ilm(vi). We define

(u, v) = Tr(uiv,) + Tr(u2v
t )

It can be computed that

Re(u, v) = Tr(Re(ul)Re(v) + Im(u)Im(vt) + Re(u 2 )Re(v2) + Im(u 2 )Im(v2))

Im(u, v) = Tr(Im(u1)Re(v ) - Re(ui)Im(vt) + Im(U2)Re(v2) - Re(u 2)Im(v'))

Now in order that Q(u, v) = Im(u, v), we let

Re(vl) = Y,

Re(v2 ) = Y22

Im(vi) = Yi 2

Im(v 2 ) = Y 21

Re(ul) = X11

Re(u 2 ) = X22

Im(ul)
Re(u 2 ) )

C- 1  21
X21

4. Now the complex multiplication as linear transform in V can be written as

Im(ul) -Im(ul) Re(ul)
Re(u 2 ) Re(u 2 ) -Im(u 2 )

( Re(ui) Im(ul)
= SPq Im(u 2 ) Re(u 2 ) W

.). Then the complex conjugation can be written as

Im(ui)
Re(U2) )

Re(ui)
--Im(u 2 )

Sp, ( Re(u)
S Im(u 2 )

-Im(ul)
Re(u 2)

Im(ui)
Re(u2)

)An

Im(u1) = X12

Im(u 2 ) = X21

Thus we may identify V with VC as follows:

C : (U, u2) -4 IRe(u2)
(Im(U2)

( Re(u1 )
Im(u 2 )

Let An = 0

Re(u1 )

Im(u 2 )

X1 2 (X +XX2)
1 )--+ (Xll + iX121 X22 + %Y21)

X22



5. Now we fix a maximal split Abelian subalgebra al of Op,q

a, = H(A) = A
Oq_p,p

Op Op,qp A = diag(Al,... ,Ap)

Oq-p,p Oq-p

Then the positive Weyl chamber a+ is given by those A such that

A1 > A2 > "' > Ap > 0

For Op,p, we do need the disconnectedness of Op,q in order to produce such a Weyl Cham-
ber. The maximal split Abelian subgroup is of the following form

L(exp H(A)) = L

cosh A
sinh A

0

sinh A 0
cosh A 0

0 Iq-p

Here L indicates how Op,q is embedded into Sp(V, Q). From now on we regard all the

L(g) (g E Op,q) as elements in Sp(V, Q) abstractly, and g as a standard matrix form

representing L(g). In all cases, our discussion will be in Sp(V, Q), our matrix or group

manipulation may be based on Op,q.

6. We also fix a maximal split Abelian subalgebra a2 of SP2n(IR)

a2 P 
0  

p = 
d i a g (

p
l

,... ,P
n )

Then the positive Weyl chamber a+ is given by those p such that

T1 > m2 > Ab.a Pn > 0

The maximal split Abelian subgroup is of the following form

R(exp(p)) = (exp(p)
0

0
exp(- p)

Now let (w, I7) be the Bargmann-Segal model for Sp(V, Q) and P be the Harish-Chandra module

of 7.

10.2 Bargmann-Segal kernel for Op,q

We continue on with the structure theory. Let g = kl exp H(A)k 2 be the KAK decomposition

of Op,q, where K = Op x Oq. Let ki = (Ui, Vi) E Op x Oq.

1. Recall that J is the complex multiplication of i on VC. We compute

J(L(g))J(x) = Sp,q(L(g)Sp,qxW)W = L(-Sp,qgSp,q)X (X E V)



2. For L(A) E a, we have

((-coshA sinhA

J(L(exp H(A)))J = L sinh A - cosh A
0 0

CL(exp H(A)) = L

We denote it by L(cosh A).

AL(exp H(A)) - L

We denote it by L(sinh A).

cosh A
0
0

0
sinh A

0

0
cosh A
0

sinh A
0
0

0
0

Iq-p

o0
0/
0

ZL(expH(A)) = L((

0
tanh(A)

0

tanh(A) 0\\
0 o0
0 0/

We denote it by L(tanh A).

6. ZL(exp(-A)) = -L(tanh A).

Let z = (zi, z2 ),w = (W1,W2) E VC. Recall from Theorem 6.7 that

7t(g, z, w)) = 2(sech(H)kl z, k2w) + (ki z, tanh(H)k1 z)-(tanh(H)k2w, k2w)

In our setting, we have

(L(cosh A)-lk z, k 2w) =(sech(A)Ullzi, U2 wl) +( sechA 0 )V 1 z 2, V2 W 2)
o Iq p 

=Tr(U-jtU2sechAUfzl) + Tr(V2 ( sech 0 z 2 )

To compute L(tanh(A)), first we consider u = (ul, u2).

L(tanh(A)) ( Re(ul)
( Im(U2)

Im(uzl)
Re(u 2 ) )

0
= tanh(A)

0

tanh(A) 0
0 0
0 0

Re(ui)
Im(u 2)

Im(ul)
Re(u 2 ) )

(tanh A, O)Im(u 2 )( tanh ) R e (u l )
(tanh A, O)Re(u 2 )

tanh A ) Im (u l)
0 I~x

0

-Iq-p))
-!q--p

(10.51)

(10.52)



Thus in terms of u E Vc, we have

L(tanh A) (u) = (i(tanh A, O)U-i, i tanh A ))

Now we obtain

(ki z, L(tanh A)kz) =(UT zi, i(tanh A, O)Vg i) + (V'z 2 , i ( tanh Uz-)

=- 2iTr(zVi ( tanhA )Ufz 1 )

Similarly, we obtain

(L(tanh A)k 2 w, k2 w) = (k 2w, L(tanh A)k 2w) =2iTr(w-V ( tanh A 1)

=2iTr(w Ut (tanh A, 0)V 2 F)

(10.53)

(10.54)

To sum up, we have

(sechA - tanh A 0
7(g, z, w) = 2Tr (waU, -izVi tanh A sechA 0 Uiz2

=2Tr zUi, iwV2) - tanh A sechA 0U2

=2Tr tanh A sechA 0 0 V -iU2

0 V2 0 0 I

(10.55)

We observe that

sechA tanh A-tanh A sechA
0 0

Definition 10.1 We define Wi : Op,q -+ Op+q by

( sechA- tanh A
tanh A 0U2

0 q-p )
o 9_-o u

where g = kl exp H(A)k 2 , and ki = (Ui, Vi) E Op x Oq.

0

0 E Op-,

Iq_ p

H(g) = (



Thus for g E Op,q, we have

W(g, z, w) = 2Tr z , iw (g ) (10.56)

Therefore, the group action of ((, g) E Op,q on -1 is given by

w((, g) f (z) = jexp (1 (, iW2 i(g)( )) f (w )dp (w )

Since w 1,W 2, w2, Z 2 can all be chosen arbitrarily, 7(g, z, w) determines 7ti (g) uniquely, and
vice versa. From Theorem 6.7 and Theorem 6.5, we see that W1 is well-defined and injective.

Let Op, Oq be the opposite group of Op, Oq. We define a group involution

T7:Op X Oq X OpX Oq+ Op X OqX Op X OO

by r(Ui, V, U2 , V2 ) = (U1,V2, U2 , Vt). Then we may identify Op x Oq x O' x O with Op x
Oq x OP x O through 7. In that sense 1i is a Op x Oq x Op x O-equivariant map.

10.3 The Compactification 7 1

We shall prove here that Il is an analytic compactification of Op,q. Let Tp be a compact torus
consisting of elements of the following form

(cos(O) sin(O) 0
T() = -sin() cos() 0 (0 E (-7r, 7r]p)

0 0 Iq_-p

For each Oi, we may define an element

( cosOi sinOi T

- sin Oi cos i E i

Then Tp can be identified with direct product of p copies of T1. We set

SsechA tanhA 0 cos(9) sin(O) 0
-tanhA sechA -sin() cos(O) 0

0 0 I _p 0 0 Iqp

Since cos Bi(Ai) = sechAi > 0, Oi(Ai) can be regarded as a smooth homeomorphism from R 1 to
(- , 2). Therefore 0 can be regarded as a smooth homeomorphism from RP to (- E, f)P. We
observe that W1 is a "map" from the "reductive symmetric pair" (Op,q, Op x Oq) (of noncompact
type) to the "reductive symmetric pair" (Op+q, Op Oq) (of compact type). We would like to
see if W1 is an analytic compactification of Op,q. We recall some definitions and basic facts
about symmetric spaces from [Helgason] Ch 4.3.



Definition 10.2 (symmetric pair) Let G be a connected reductive Lie group, H a closed

subgroup. Let a be an involution of G such that

(G')o C H C Go

where G" is the fixed point set of a, (G')o the identity component of Ga . The pair (G, H) is

called a reductive symmetric pair. If AdG (H) is compact, (G, H) is said to be a Riemannian

reductive symmetric pair.

We will only be interested in Riemannian symmetric pairs and Riemannian symmetric spaces.

According to [Helgason] Ch 4.3, a Riemannian reductive symmetric pair yields a Riemannian

globally symmetric space G/K, and every Riemannian reductive globally symmetric space can

be obtained from a Riemannian reductive symmetric pair.

Definition 10.3 (Weyl group) Let (G, K) be a Riemannian reductive symmetric pair. Let

<, > be an invariant real symmetric bilinear form on g such that (,)e is negative definite. Let

p = t±. Let bp be a maximal Abelian subspace of p. Let H = exp p be the corresponding

Abelian subgroup. Let M, M' be the centralizer and normalizer of bp in K respectively. In other

words,
M = {k E K IAd(k)h = h Vh E 4p}

M' = {k E K Ad(k)4 p C 4p}

W (G, K) = M'/M is called the Weyl group of (G, K).

Definition 10.4 (Regular and Singular Points) Let (G, K) be a Riemannian reductive sym-

metric pair, and X = G/K. Let E(g, 4p) be the root system, E + positive roots of E. We define

: K/M x H -+ G/K

as follows.
V [k] E K/M,h e H, ([k], h) = [Ad(k)h]K

Then for a generic point x E G/K, 1 -l(x) is finite. We call such a point regular. We use X,

to denote the set of regular points. If 4 - (x) is not finite, we say x is singular.

Theorem 10.1 (Symmetric decomposition) Every Riemannian reductive symmetric pair

(G, K) induces a decomposition of G into KHK. For an arbitrary x E G, H(x) is unique up

to a conjugation of W(G, K) and a multiplication of K n H.

Most of the proof can be found in [Helgason2] Ch 1.5, section 2 and [Helgason] Ch 7.3.

and [Helgason3] Ch 7.8. Notice for G noncompact, this decomposition is nothing more than

KAK decomposition, and the results are well-known. In all cases, we will use dGg to denote

the Haar measure of G, and dGx to denote a fixed G-invariant measure of X.



Now back to our pair (Op+q, Op x Oq), let S(Op x Oq) be the normal subgroup of Op x Oq
with determinant 1. Then we obtain an injective map

SOp+q/S(Op x Oq) -+ Op+q/O x Oq

It is not difficult to see that this map is in fact surjective. Thus we may identify Op+q/Op X Oq
with SOp+q/S(Op x Oq). The symmetric decomposition holds for (Op+q, Op x Oq)-pair. We fix
H = Tp and K = Op x Oq. Observe that

* HnK - (Z/2Z)P. More explicitly, let A = diag(l, ±1,... , ±l) E Op. Then diag(A, A, Iqp) E
Hn K.

* W(Op+q, Op x Oq) acts on Tp ' T x Ti x ... x T1i by permutations and transposes on
each factor TI.

Theorem 10.2 (KTpK decomposition) Every g E O p+q can be decomposed into kT(O(g))k2 ,such
that

r/2 > O1(g) 2 92(9) >. . Op (g) > 0

Proof: First of all g can be decomposed into klT(0)k2 . Applying a multiplication of H n K on
T(O), we may assume that cos(0i) > 0, i.e.,

7r/2 2 Oi > -7r/2 (i = 1... p)

Again, applying a conjugation by W(Op+q, Op x Oq), we may assume that

7r/2 > 01 > 02 > ... > Op > 0

Q.E.D.
Now the image of 7-li consists of

{kiT(0)k 2 I ki,k 2 E Op x 0 q, 0 E (-2' 2)

Since the set {T(0) I O2 E [0, !)} is already dense in

{T(0) 7r/2 2 01(g) 02(9) > ... Op(g) > 0}

according to the K TpK decomposition, 'I (Op,q) is dense in Op+q. We may further prove that

Theorem 10.3 W7-l is an analytic compactification from Op,q to Op+q.

Proof: Let (7-, S) be the compactification of Sp(V, Q) as defined by Equation 6.15. Then we
have for g E Op,q

(iz,wt (g) z = 2Tr(z, iiw)Wi(g) -(iz1,2 - 2



Therefore there exists a smooth embedding

i: Op+q - S

such that the following diagram commutes

Op,q L S(v )

tI1 Pw (10.57)

Op+q S

Now, i(Op+q) is automatically a closed analytic subvariety of S. Thus the closure of Jt(L(Op,q))
is exactly i(Op+q). Therefore according to Theorem 6.12, 1i is an analytic compactification

of Op,q. Q.E.D.
Now we summarize some properties of W1 which we are going to use in the following corollary.

Corollary 10.1 The closure of Wi (SOp,q) is SOp+q. Therefore SOp+q is an analytic compact-

ification of SOp,q-

Corollary 10.2 Let do,q,g and dop+g be the Haar measure of Op,q and Op+q. Then under the

compactification 7 1, for every g E Op,q,

d7ti (g)
dg

where
d7/l(g)dop,+q l(g) = dg dop,,

Same holds for SOp,q.

Notice here, if we regard the Haar measures of Op,q and Op+q as invariant volume forms, then

dwl(g) is simply the ratio (a function) between the pull back of the invariant volume form ofdg

Op+q and the invariant volume form of Op,q. It is not equal to zero at any point since d7- 1
is nondegenerate. In the future, we will denote such a function by det 7i1. Of course, for the
inverse, we will simply have

do,,qg = (det 7t l)dop+, (7 1(g))

Here
(det Wl )(7l 1 (g)) = (det /l 1(g)) -1 (g E Op,q)



10.4 Nonvanishing theorem

Recall that the dual pair correspondence is a one-to-one correspondence between R(Op,q, W)

and R (Sp2n(R),w). We have shown that for 7 in the semistable range Rss(Op,q, SP2n(IR)), if

£P, ('pc V,) is not vanishing, then w E R(Opt, w). Of course, one can easily see that

L (p' 0 V,) = 0 V , E P,u,v V, (, w(g)V)(r(g)v, u)dg = 0

Through the preparation in the last few sections, we are ready to study this bilinear form (,),
in details.

Let us look at the following commutative diagram:

1 - + SOp,q - Op,q {±1} - 1

7r 1r (10.58)
1 + SOp,q ) Op,q - {±1} -+ 1

Since SOp,q is a normal subgroup of Op,q, SOp,q is a normal subgroup of Op,q. This uniquely
defines a character

: Op,q -+ ±1

We begin with the following lemma.

Lemma 10.1 The following are equivalent.

1) L6- (P' cV,) # 0 or (PC' V,,gx) # 0o
2) Ls (pc 0 V, 7 ) 5o

Proof: Since X is a central character, we may regard the Harish-Chandra module V,®x as V,
with the same underlying space but different actions.

1. We will prove that - (,q 0pc  Vr) = 0 if and only if £o- (' 0pc V) = 0 and Lo (pc

V,(x) = 0. Let 90 be an arbitrary element in O,q but not in SOp,q, 0, E P and v E V,.
Then we have

L -( v) () = j (q,,w(g) )(i(g)v)dg

= _(q, w(g)4)(r(g)v) + (¢, w(g)w(go)4) (r(g)7r(go)v)dg (10.59)

=L , ( v) (¢) + L- (((go)® V) S7r(go) v)



2. Similarly, for 7r 0 X, v E Vx, we have

( v)(q) = j_ (,w(g) )(r 0 X)V
Op, q

= 7 (,w(g)( 0 X)(g)v + (, w(g)w(go)¢ ) ((7r 0 x)(g) (7r x)(go)v)dg

=Jip (' W(g)4)Ir(g)v - (q, w(g)w(go)/)('(g)Ir(go)v)dg
J SOp,q

=£ v ( )(s) - -,q (w(90)l 0 ir(g90) v)(()

(10.60)

3. Suppose that Ls3- (p 0 Vr) = 0. Then from the computation above, we have

L&- (P 0 V) = 0

LoP (Pc 0 V7rx) = 0

4. Suppose that
L,5 (P'g7®r) = 0

Lo£ (Pc 0 Vo) = 0

Then we will have

2 ( , w(g)'i)(r(g)v)dg = ($, w(g)/)r(g)vdg+ j(,w(g))(ir 0 X)vdg= 0
JSOpq Op,, JOp,q

Thus

C- (pc 0 ) = 0

Q.E.D.
Of course, there may be much easier but more abstract way to prove this lemma by using

the direct sum decomposition with respect to SOp,q. We chose this proof just to illuminate what

is behind the abstract approach. Now this lemma allows us to reduce the study of Lo- to the

study £ q-. For a measure space (X, M), let L'(X, dp) be the space of integrable function on

X.

Theorem 10.4 (Nonvanishing Theorem) Suppose ir is in the semistable range Rs (Op,q, SP2n(I )).

If n > pq-1 then
s- (PC V ) 0

Thus either 7r E R(Op,q,w) or r O X E R(Op,q,w). In addition the dual representation under

the dual pair correspondence can be constructed through £-,q-



Proof: We will prove this theorem by contradiction. We write G = SOp,q.

1. Let be an element of G. We can write g = ( , g) with detc(CL(g) ) (-2
Suppose LC(P 0 V,) = 0. In other words, we have

V a 7, E N n ( p + q ) , U, v E Vr

(zO, w(J z)((g)u, v)d = 0o

Taking conjugation, we have

0 = (w()za , zO)(v, i()u)dgJG

and g E SOp,q.

(10.61)

= I Jz,wECn(p+q)

where

K(z, w,~) = (v, Ir()u)exp (-Tr(zl,

= F(-) W(z, w, g)

F(g) = ((v, i()u)

W(z,w,g) = exp 1-Tr(zl,i 7 t) l(g)
(2

(10.62)

W1
-iZZ 2

Notice that E(, g) = (-, g). Since we always assume that 7r(E) = -1,

F(g) = ((v, 7(g)u) = (-()(v, 7r(~g)u) = F(eg

Thus F( ) and K(z, w, g) can be regarded as functions on SOp,q, we will
and K(z, w, g).

write as F(g)

2. Claim: The integration dp(z)dp(w) and dg in Equation 10.61 are interchangeable.

From Fubini's theorem, it suffices to show that K(z, w, g)w-f 3 is integrable with respect
to dp(z)dp(w)dg. Since il(g) E SOp+q, we have

|Tr(zl, it g ( -i

1 (Z, iW1111W1, --i z2_||(zl, iw2) 1 ( - i2)
) 1

(10.63)
= V/ Iz 1ll2 V + w2 1 2 w 1 + 11z21 2

<2(I|z 2112 2+ 1z2 112 + IIW1112)

K (z, w, )wa-P d l (z ) d p (w ) d

-W1z2
-it2 2



Therefore,

IW(z, w, g)II 5 exp 4(llz2 + 11W112)

Hence W(z,w,g)wa-fl is integrable with respect to dp(z)dlp(w). On the other hand,
suppose that g = kl exp H(A)k 2 with H(A) E a+ . Recall that((coshA 0 0

CL(expH(A)) = L 0 cosh A 0

0 0 Iq-p

Therefore

detc(CL(exp(H(A)))) = H cosh(Ai)n JJ cosh(Ai) = cosh() = sh() 2n

i=1 i=1 i=1

Hence
P p

| = cosh(Ai)n < C lexp(-nAi) = C exp(-nH(A))
i=1 i=1

Because of the semistable condition, we have

IF(g)| = ((v, I r( )u) e L 1 (SOp,q, dsop,qg)

Thus

IW(z, w, g)F(g)w a-" I = IK(z, w, g)wa-z E Ll(dp(z)dM(w)dg)

We have

0 = () K ( z, w, g)wa-Pdg)dI(z)dp(w)

3. Claim: fG K(z, w, g)dg is holomorphic with respect to z and antiholomorphic with respect

to w.

It suffices to show that fG K(z, w, g)dg is infinitely differentiable with respect to z and

i. Notice that K(z, w, g) is infinitely differentiable with respect to z and U7. We shall

examine the following equation

dZ K(z,w,g)dg =f j d K(z, w, g)dg

Here zi is a single complex variable in z.

For (z, w) in a compact set, 3 C such that

Sd K(z, w,g) = F(g) dW(z, w, g)I
dz, dzi

IF(g)I (z, w) l exp !Il(z, w)112 (10.64)

< CIF(g)I

II(z, w)II = I||zt + 11W211



But

IF(g)l E L(SOp,q,dsop,qg)

By the dominated convergence theorem, the integration and differentiation are inter-
changeable. And similarly, we can show that fG K(z, w,g)dg is infinitely differentiable
with respect to z and U.

4. Claim: For each z, w E V, fG K(z, w, g)dg = 0.

Notice that fG K(z, w, g)dg possesses a power series expansion, namely

IGK(z, w, g)dg = k(A, p)z7

We obtain V a, , E N( p +q) n

o =( K(z, w, g)dg)w Ydpu(z)dp(w) = kJ (A, p)wYP1zAdp(z)dp(w)
C(p+q) xCn(p+q) A, JG

The interchangeability can be guaranteed by an integrable function which dominates the
power series

W (A, P,)wQaiiI0zA

We choose

exp ( 2 2+ wIIw2)( jF(g)jdg) wa E L1(C n (p + q ) X C n (p+q), dp(z)dp(w))

Then, according to orthogonality of the basis {wa, zO} (see [Bargmann]), we have

V a, 0, k(a, )= 0

This implies that fG K(z, w, g)dg = 0.

5. Now, we fix (z, w). We have

O = K(z, w, g)dg
G1

G F(g) exp (-Tr(zl , it) (g) (

= F (g)) exp 1 Tr (z , t ( dW )) (g)-1 dg (10.65)

o - ( 2 i  -iz2 dg

S Fop+q (g) exp 1Tr(z t dg
Jsop, (2 g zZ2

100



where F(g) = F( - 1(g)) dW- l (g) is a function defined on Wi(G). d'(g) = det-1 is
continuous(g) is continuous on (G). Moreover

continuous and positive on )-1(G). Thus F(g) is continuous on 7(G). Moreover

F(g) = F(7l(g)) d?=(g)
dg

(g e G)

We will use this fact in the proof. Let z = 0, w = 0. Then we have

F(g) E L(G, dg)

Finally, one may "polarize" Equation
s E R+ . We obtain

0 = Opq
g) ep tF(g) exp s- Tr(zl, i -t g

6. Claim: Vm,
2-1
-iz2

10.65 by changing (z 1 , w2 ) to (szl, s2) where

dgSiz2

))"dg = 0

It suffices to prove that

Lemma 10.2 Suppose X is compact and p is a Borel measure on X. If q E L 1 (X, dp),
' E C(X), such that

V s > 0; J O(x) exp sV(x)dlL = 0
JX

then

Proof: Since we have

V m Ix (x)(x)m dj(x) = 0

expso(x) = Es(X)mexp s () =
and this power series is bounded absolutely by exp(s max(|11(x) l)), we can interchange

the power series expansion with integration

This implies that for all m,
This implies that for all m,

m  
S
m

4()md.x m!M! M

/ (x)?)(x)
m dp(x) = 0

Q.E.D.

By applying this lemma to Equation 10.66, we obtain

VmEN
ISOPq

(s e R+ ) (10.66)

-i2

)) m dg = 0

fsop+q F(g)(Tr(z, i -t) (

JX x)V)(x(mdlL x)

F(g)(Tr(z , iU-t)g (



7. Now we quote the density theorem which we will prove in the next section.

Theorem 10.5 (Density Theorem) Suppose 2n + 1 > p + q. Then the linear span of

-iz2 z, w e V, m E N}

is equal to Osop+q,

From this density theorem, we see that the linear span of

{Tr(zi, iUF-)g ))z,w,m

is dense in C(SOp+q) under the uniform norm. Thus we have

V O E C(SOp+q), F (g)#(g)dg = 0

This implies
F(g) = 0 a.e.

Otherwise, suppose the measure of {g E SOp+q I F(g) $ 0} is not zero. Then we may
construct a C' compactly supported function q, such that

op+q 
$(g)F(g)dg 0

Therefore F(G) is zero almost everywhere. But F is continuous on W, (G). Hence F = 0
on WJ1(G). Then for every g E G

F(g) = F(Nl(g)) dl (g) = 0
dg

Recall that for = ((,g), F(g) = ((v, ir()u) and ( $ 0. Therefore

V E G, (v, 7( )U) = 0

Since u, v are arbitrary, this contradicts the fact that r is a representation of G. Thus

L- q(Pc 0 r) 40

8. By the last lemma, we have either

po q (Pc 0 7 0 X) , 0

Thus either r E R(Op,q, w) or ir 0 X E R(Op,q, w). Furthermore, if r E R(Op,q, w), the
corresponding w(w) can be constructed by taking dual of l ,o (pc 0 V,) in the category

of Harish-Chandra modules. The same is true if x 0 X E R(O,q, w).
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Q.E.D.
In fact, we have proved that if F(g) is a continuous function of G, F(Eg-) = -F(g-), and

S(w(g-)za, z)F(-) = 0 (V a,/3 E N(p+q)n)

then F(g) 0.

10.5 Density Theorem

Now we would like to prove the density theorem. Let Oso+q, be the space of regular functions on

SOp+q. Let SOp+q act on Oso,+, by left translation. Then Oso,+, is the space of SOp+q-finite

functions on SOp+q. For every X, Y E Mat(p + q, n), we define a function

Fx,y(g) = Tr(XtgY), (g E SOp+q)

in C(SOp+q). Of course Fx,y can also be regarded as a function on Mat(p + q,p + q). Here

the base field can be either IR or C. Let Rn be the linear span of

Fj,y I X, Y C Mat(p q, n), i N}

Since we can define a filtration,

Mat(p + q, n) '+ Mat(p + q, n + 1)

by mapping Mat(p + q, n) into the first n columns of Mat(p + q, n + 1), and seting the last

column to be zero. This induces a natural filtration

R 1 C ... C Rn C ... C OsoP+q

On the other hand, if n = p + q, then {Fx,y I X,Y E Mat(p + q,p + q)} as functions on

Mat(p + q,p + q) exhaust all the linear functions on Mat(p + q,p + q). Therefore

{Fjc, I X, Y E Mat(p + q,p + q), i N}

spans the space of regular functions on Mat(p + q, p + q). Thus

Rp+q = OSOp+q

Therefore there exists an "n" such that

Rn = Osop+q; Rn- 1 $ Osop+q

We will restate the density theorem.

Theorem 10.6 (Density Theorem) If 2n + 1 > p + q, then Rn = Osop+q,
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We will use mainly the highest weight theory to prove this theorem. Let us first recall a
lemma [Kumar], also known as the Parthasarathy-Ranga Rao-Varadarajan Conjecture.

Lemma 10.3 (Kumar) Let V and V be the irreducible representations of the complex semisim-
ple Lie algebra g with highest weight A and p respectively. Let W(g) be the Weyl group of g.
Let wl be an arbitrary element in W, and w2 E W such that 7r = w 2 (A + wl(p)) is dominant.
Then V 0 Vp contains an irreducible subrepresentation V, of highest weight r7, i.e.,

v c VA o 0 V

There is actually a stronger conjecture of Kostant, also proved by Kumar, about the multi-
plicity of V,. Since our argument will be based on Kumar's lemma and highest weight compu-
tation, we will not give a special name for this chosen V, in VA 0 V,. Since the highest weights
are different in type B and type D groups, we will treat them differently. We will always use
S(V) to denote the symmetric algebra of V and Si(V) to denote the i-th symmetric power of
V.

Theorem 10.7 (S02m+1) Let C2 m+ be the standard representation of SO2m+1. We choose
the standard Cartan subgroup and dominant chamber {A 1 _ A2 > ... > Am _ 0}. Then every
irreducible representation V of S0 2m+1 with the integral highest weight A = (A1 _ A2 ... Am >
0) can be realized as a subrepresentation of SilXll (m(C 2 m+l)). Here

m

IAl = ZAi
1

Proof:

1. Let vl be the highest weight vector for C2m+1. Then v 1 is a highest weight vector of
SA1 (C2m+). Thus there must exist an irreducible submodule V(A,0,...,o) of SAI(C 2

m+l)

with highest weight (A1,0,... ,0).

2. Recall that
Sn(em(C2m+1)) l+f2+fm om Sn,(C 2 m+l)

- (nl+n2...+nm=n r n(m

Here ni E N could be zero. We will proceed inductively on i to show that there exists

V(1 00) C 0 Sk( 2 m +

3. Suppose that A1 A2 _ > i i+1 > 0 and

V(A 2...>,0,...0 )  ®SAk(C
2m+l)

And also we know that

V(Ai+I,0,...,O) C SA'+1(C
2

m+
1 )
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According to Kumar's lemma, if we choose w1 to be the permutation (1 i + 1) in the

Weyl group, then there exists

V(Ai ... ,>Ai+ >0) C ~ S Lk (C
2

m+ 1)

4. Thus by induction, for every A1 > ... > Am > 0, there always exists

V(Ali>...>Am>) C ®0mSAk( 2 m+l) C SIIJl(em(C 2 m+l))

Q.E.D.
For S 0 2m, the integral highest weights are given by

A = (A1 > 2 ... > A m-, _> I'ml) (Ai E N)

Theorem 10.8 (SO2m) Every irreducible representation of SO2m with the highest weight A =

(A1 _ 2 A2 -- Am-1 > IAmi) occurs as a subrepresentation of SII](em(C2m)).

Proof:

1. Actually the same argument from the proof for S0 2m+1 proves that for every A = (A1 >

... > Am > 0), there exists a subrepresentation

VA c SllAll(Em(C 2m))

2. Let Om be the other component of 02m. Notice that SIAI1(em(C 2 m)) is automatically

a representation of 02m. We may look at O1mV 9 SIIlAl(em(C2m)) which is also a

representation of SO2m. In fact,

OmVA V 1,2,.., m-1,- m)

Thus V(x,,2,..2 . ,...Am-1,-Am) also occurs in SIIlAl((m(C 2 m)).

3. To sum up, for every A = (Ai > A2 ... > Am-1 2 lAmi), VA occurs in S(E(C2 m)).

Q.E.D.
One major fact that motivates this proof is that, unlike the other exterior products of C2m

which are irreducible, the m-th exterior product of C2 m splits. In fact,

Am(C 2 m ) N= V(1,1,...,1,1 )  V(1,1,...,1,-1)

Now we can sum up the results for type B and D groups in the following theorem.

Theorem 10.9 (Type B, D) Suppose n > p+q-1 Every irreducible representation of SOp+,

occurs as a subrepresentation of the i-th symmetric power SZ(M(p q,n)) for some i.

occurs as a subrepresentation of the i- th symmetric power Si(M(p + q, n)) for some i.
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We will spend the rest of this section to prove the density theorem. Mat(p + q, n) will be
denoted by M. For a fixed i, we write Rn for the linear span of
{F3,y I X, Y E M}. If we define F 1 : M X M - C(SOp+q) by

F1 (X, Y) = Fx,y

then R 1 is simply the space of matrix coefficients of the standard representation of SOp+q. Now
we can further define F i : M x M -+ C(SOp+q) to be

F (X, Y) = (Fx,y) i

For i > 2, F i is no longer linear. However, we have the following commutative diagram.

MxM

At Axa

S) C(SOp+q)

(10.67)

(®iM) 0 (0iM) ---- C(SOp+q)

where A' is the diagonal map, and Fi is the linear extension of F i. P can be written explicitly
as follows

i((X 1 0 X 2 ... 0 Xi) (Y1 0 Y 2 ... 0Yi)) = Fx 1 ,yFx 2,Y 2 ... Fx,,Yi E OSOpq

It is easy to see that the linear span of Ai(M) in 0i(M) is S'(M). Therefore

Rn = Pi(SZ(M) ® S(M))

It is easy to see that Fi is a linear SOp+q-equivariant map. Now we need a lemma.

Lemma 10.4 Rn is equal to the linear span of matrix coefficients of Si(M).

Proof: We define an inner product on (ZM

i

(Y1 ® Y 2 ... &®Yi,X 1®X 2 ... Xi) - = TrXY

Then this inner product is invariant under SOp+q.

(Xj,Yj E M)

For simplicity, we use g.v to denote the
action of SOp+q on M, and OGg to denote the action on the tensor product 0iM. Notice that

SF((XI 0 X 2 ... 0 X i ) 0 (Y 1 0 Y2 ... 0 i)) (9)(1068)

=(g.Y0 g.Y 2  ... g.Yi, X1 X2 X... i)

Therefore the function F y is precisely given by the matrix coefficient

((0g).(Y 0 Y 0 ... o Y), (X0X0 ... X))
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Since SZ (M) is the linear span of

Y®Y®....®Y (YEM)

R' is contained in the linear span of matrix coefficients of Si(M). By the same argument, one

can check easily that the converse is also true. Q.E.D.

One direct implication is that Rn is spanned by the matrix coefficients of S(M). From our

Theorem 10.9, every irreducible representation of SOp+q can be embedded as a subrepresen-

tation of S(M) = S((nCp+q) if n > P+q- Thus the matrix coefficients of every irreducible2

representation occur in Rn for n > +q-. Thus Rn contains the matrix coefficients of every

irreducible representation of SOp+q. According to the Peter-Weyl theorem, Oso+q, is spanned

by the matrix coefficients of all the irreducible representation. Therefore Rn = OsOp+q and Rn

is dense in C(SOp+q). This finishes the proof of the density theorem. Q.E.D.

Finally, we want to formulate a conjecture along this line.

Conjecture 1 If p + q 2 2n + 2, then Rn 'A Osop+q,

10.6 Some Conjectures

We say that 7r is an irreducible admissible representation of Op,q with bounded matrix coeffi-

cients if for every u, v E V,, there exists a constant Cu,, such that

<(7r~9u, V) I C ,vV, (uv EV,

Theorem 10.10 If (Op,q, Sp2n) is in the stable range, i.e.,

n >p+q

and 7r is an irreducible admissible representation of Op,q with bounded matrix coefficients, then

r E T,,(Op,q, SP2n)

Proof: Recall that the half of the sum of the positive roots of Op,q

p

pp,q ( p +i- 1)ei (ei(H)= Hi)
i=1

and the simple roots are given by

(ep - ep-1, ep- 1 - ep-2, ... , e2 - el, el), (p = q)

(ep - ep-l, ep-1 - ep-2, ... , e2 - el, el + e2), (p = q)

Then

2 pp,q - n = ((p + q - 2) - n)ep + ((p + q - 4) - n)ep-1 +...- +(q - p - n)ei
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Since n + 2 - p - q > 2, (n + 2 - p - q)ep is already a strictly positive combination of simple
roots, and it is easy to see that n - 2pp,q can be written as a strictly positive combination of
simple roots. Thus 2 pp,q - n can be written as a strictly negative combination of simple roots.
From the boundedness of matrix coefficients of ir, each of its leading exponents v has to satisfy:

Rev -< O

Therefore Re v + 2 pp,q - n is still a strictly negative combination of simple roots. Thus

7F e lss(Op,q,, SP2n)

Q.E.D.
Thus we proved that

Theorem 10.11 Suppose n > p + q and 7r is an irreducible Harish-Chandra module of Op,q
with bounded matrix coefficients. Then either 7r E R (Op,q,w) or r & X E R(Op,q,W).

Once we confine our attention to unitary representations, there is a stronger result of Li [Lil]
[Li2], which stated that the dual representations under the dual pair correspondence for different

(unordered) pairs p + q 5 n and p' + q' < n are different. Therefore these dual representations
(also called lower rank representations) can be classified by a pair (p, q) such that p + q < n
and an irreducible unitary representation of Op,q.

Motivated by Li's result, we formulate the following conjecture:

Conjecture 2 Suppose p + q = m < 2n + 1, and p < q. Let Wp,q : R (Op,q, ) - R(S 2n, w)
be the dual pair correspondence. Then Wp,m-p(Rss(Op,m-p,w)) does not intersect with other

Wp',m-p' (Rss (Op' ,m-p', w)), i.e.,

Wp,m-p(l ss(Op,mp,w)) nFlp,m-p, (R7ss(Op,,m_,p,)) = 0 (p +p' m,p $ p')

A stronger conjecture can be formulated as follows.

Conjecture 3 If the unordered pair (p, q) 4 (p', q') and p + q < p' + q' < 2n + 1, then

wp,q( ss (Op,q, w)) n wp',q (zss (Op',q', w)) = 0

Of course I am less positive about it.
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11 Nonvanishing theorem for (SP2n, Op,q)

Let G be the unitary dual of G, and Gad the admissible dual of G. The proof of nonvanishing
theorem of the dual pair correspondence in the semistable range of (Op,q, SP2n) relies on matrix

coefficient estimation and manipulation of a "compact" kernel K(z, w, g). From now on we will
assume p + q > 2n. We will regard Op,q as the "bigger" group and Sp2n (R) as the "smaller"
group. One might conjecture that a similar result as Theorem 10.4 holds for (Sp2n, Op,q).

Conjecture: Let r be in the semistable range of (Sp2n, Op,q). If p + q > 2n, then

Lf (pc ®0 ) 0

In particular,
7r E 7Z(Sp2n, w)

,,ss(SP2n, Op,q) C R(Sp2n,W)

However, this conjecture turns out not to be true. For example, we can take Op,q to be the

compact O,. Then the irreducible representations of Oq are parametrized by integrable highest
weights. We let

p = 0, q = 4n + 2

Then

Psp2, = ne 1 + (n - 1)e 2 + ... el (ei(H) = Hi)

-p +q + 2psp2, = -(en + 3en-1 + ... + (2n- 1)el)
2

Thus -P+q + 2psp2, is a strictly negative combination of simple roots. Suppose 7r is an irre-
ducible unitary representation of Sp2n(R). Then each of its leading exponent v satisfies

Rev -< 0

Thus Re v - P + 2PSp2n is a strictly negative combination of simple roots. This proves that
2

Sp2n( ) C Rss (Sp 2n, 04n+2)

However, there exists no one-to-one map between SP2n(e) and 0 4n+2. This shows that there

exists no injective map

w : ss(SP2n, 0 4n+2) - 0 4n+2

On the other hand, dual pair correspondence is a one to one correspondence

w: R(Sp2 n, w) -+ 0 4n+2
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Therefore

Rss (SP2n, O4n+ 2) I Z(SP2n , )

Recall that the definition of semistable range of (Sp2n, Op,q) only depends on the pair

(n,p + q). This suggests that instead of individual Op,q, we may consider the disjoint union of
representations of the real forms of O(p + q, C), i.e.,

Zss(SP2n, m) "_ Up+q=mOp,qad

We will first compute the integration kernel K(z, w, g) and derive some properties of K(z, w, g).
Then we will establish the relation between nonvanishing theorems and density theorems. Fi-
nally, we will prove some density theorems. The ideas used in this chapter are similar to the
ideas used in last chapter.

11.1 Setting

To begin with, we want to focus on the Sp2n(R) action on V = Mat(p + q, n, R). However, in
the setting from the last chapter, Sp2n(IR) acts from the right. Because of the right action, we
need to recompute everything we have done in the last chapter. Thus we choose to look at the
left action T of Sp2n(R) on Mat(2n, p + q, R). Let V = Mat(2n, p + q, R) and

( X 11 X 12  ( Mat(n,p,R) Mat(n,q,R)
X21 X22 Mat(n,p, R) Mat(n, q, )

We define

1. The symplectic form

Q(X, Y) = -Tr(XtWYSp,q)

- -Tr X 1 X21 0 I Y1  Y12  0 (1169)
2 t2 1 0 Y21 Y22 0 Iq (11.69)

= -Tr(XY 21 - Xt1 Y 11 + X 2  - XY 2 2)

2. Complex multiplication of i

JX = -WXSp,q = -X 2 1 X2 2

3. Identification of V with Mat(n, p, C) e Mat(n, q, C) by

X = (X,X 2) +X = ( Re(X) Im(X 2)
Im(X1) Re(X2)

X1 = X 11 + iX 21 ; X 2 = X 2 2 + iX 12
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4. Inner product on M(2n, p + q) regarded as a complex vector space

(X, Y) =Tr(XtYi + X Y2 )

=Tr (XfI + iXtl) (Yl - iY21) + Tr (iX'2 + X2) (Y22 - iY12 )

=Re(X, Y) + iQ(X, Y)

We use 7 to denote the action of Sp 2n(IR) on Mat(2n,p + q, R).

1. The maximal split Abelian subgroup of Sp 2, (R) consists of

expH = exp A (A = diag(AX, A2 ,... , An))

0
)

2. Let g E Sp2n(R). Then

J 0 T(g) o J(X) = Wg(WXSp,q)Sp,qX = (WgW)X = T(WgW)X

In particular

Jr(exp H)J = T -exp(-A) 0
- exp A= (- exp(-H))

3. We have

C(exp H) = (T(exp H) - J(exp H)J) = T cosh

We denote it by T(cosh H). We denote r(cosh H) - 1 by T(sechH).

4. We have

1(e sinh A
AT (expH) 2 (7(exp H) + Jr(exp H) J) = - 0

2 (x )= Tep 0
- sinh A

We denote it by r(sinhH).

5. We have
(xpH) C H)tanh(A)

Z-(exp H) = Cr(exp H) Ar(exp H) = 7 0

0
- tanh(A)

We denote it by T(tanh H).
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6. Now k E Un C Sp2n(R) can be represented by

B A-B
B A ;

Now we have

-B XiX1
A ( X21

-B ))X
A )

X12)
X22

AX 11

BX 11

- BX 2 1

+ AX 21

= (AX 11 - BX 21 ) + i(BX11 + AX 21 )

= (A + iB)Xll + i(A + iB)X 2 1

= kX 1

= i(AX12 - BX 22 ) + (BX 12 + AX 2 2 )

(11.72)
= (A - iB)(X 22 + iX1 2 )

= kX 2

7. We have

Cr(exp H)X
cosh AX11

cosh AX 2 1

Thus

CT(exp H)X1 = cosh AX 1 ; CT(exp H)X2 = cosh AX 2

8. We have

( tanh(A)X11
Z 7(exp H)X = - tanh(A)X 2 1

tanh(A)X 12
- tanh(A)X 22

Thus

ZT(expH)Xl = tanh(A)X 1

ZT(exp H)X2 = - tanh(A)X 22 + i tanh(A)X 12 = - tanh(A)X 2

11.2 Integration kernel of Sp2n(R)

Let g C Sp 2n(R) and T(g) E Sp(V, Q). We will ignore the T, and regard g as element in Sp(V, Q).
Let = ((, g) be a preimage of g under the metaplectic covering. Then the Bargmann-Segal
kernel of the oscillator representation is given by

1
(exp( 1W(g, z, w))4
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S(

Thus

T( (

AX 12 - BX 22

BX 12 + AX 22

A -B )X2r( B A )

(11.71)

cosh AX 12
cosh AX 22



where

-(g, z, w) = 2(T(sechH)kl z, k 2 w) + (ky 1z, T(tanh H)kllz) - (T(tanh H)k 2 w, k 2w)

We shall make a remark here that W(g, z, w) is in fact -t(Tr(g), z, w). This should not be confused

with the 7-(g, z, w) for g E Sp 2n (R) and z,w E C2n in Theorem 6.7.

1. We have
-- 1

(T(sechH)k 1 z, k2 w) =(sechAk 1zl, k 2 w1) + (sechAkl z 2 , k 2 w 2 )

=Tr(zFkisechAk2j) + Tr(z'kisechAk2 -2)

2. We have

(ki 1 z, T(tanhH)k 1 z) =(k1 zitanh(A)ki 1 z) + (- z2, -tanh(A) 
1 z 2)

=(k lzl, tanh(A)k-iT) + (kz 2 , -tanh(A)k-lz2) (11.74)

=Tr(z jl tanh(A)klzl) - Tr(ztkl tanh(A)ktz 2 )

3. We have

(r(tanh H)k 2 w, k2 w) = (k 2 w, tanh(A)k2w)

= Tr(wtk t tanh(A)k 2 wl) - Tr(wk-k1 tanh(A)k 2 w2 ) (11.75)

= Tr(wTkj 1 tanh(A)k2ii) - Tr(w2tk2 tanh(A)k 2 U2)

4. Recall the definition of the compactification of Sp 2,n ()

(ki exp(H)k2) ( k 0 tanh(Hc) -isech(HC) k 1 0

0 kT -isech(Hc) tanh(HC) 0 k2

Therefore, we can simplify W-(g, z, w) as follows.

W(g, z, w) =2Tr(z kisech(A)k2 w ) + Tr(z kl tanh(A)k-lzl) - Tr(wk21 tanh(A)2 -i)

+ 2Tr(zksech(A)k2U2-) - Tr(ztki tanh(A)k z 2 ) + Tr(w k2t tanh(A)k 2;u-2)

=Tr (zi, iw9 W (g) z' + Tr ((-izt, wt) g) (

(11.76)

11.3 On the Vanishing of Averaging Operator

Since the density theorems are a little cumbersome to deal with, we will first investigate the

vanishing of the averaging operator and establish some equivalence relation between the density

theorems and the nonvanishing theorems. The ideas and techniques are similar to the proof of

Theorem 10.4. Let G = Sp2n(R) and S = {UUt I U E U(2n)}.

113



Theorem 11.1 We fix a group Op,q and an irreducible representation r in the semistable
range of (Sp2n(R),Op,q). Suppose that

£4(Pc ®0 V) = 0

For u,v E V, and j= ((,g) E Sp2(R) where (2 = det( 1 C,(g), let

F(-) = ((v, -r()u); (g = kl exp H(A)k 2 )

Then F descends to a function on Sp2n (IR). Let 7- be the analytic compactification of SP 2n(IR),
and let

F(1 (g)) = F(g)(dU(2 ) ) -1 (g E Sp2n())dSpzng
Then F is a smooth function defined on W-(SP2n) and

/ F(s)(Tr()sx)) (Tr(y ))md(2n)s = 0; (x Mat(p, 2n, C); y E Mat(q, 2n, C), , m E N)

Proof: We will just give an outline here, and skip the details. Essentially, the details were given
in the proof of Theorem 10.4.

1. For each u, v E V, a,, pE Nn (p+ q), we have

(z', w(J)z)(7(L)u, 
v)dg = 0

Taking conjugation we have

0 = ((g)ZaI z)(, 7(g) )dy

= ( C(p+.) ×Cl(+q) exp(4 1(g, z, w) )w'-5P (v, ir( )u)dp (w)dl(z))d (11.77)
F(g +q) X(p+q) 1

= F(g) > exp(?-(g, z, w))wa" dp (w)dlU(z))d

Since E((, g) = (-J, g) and
(v, r(C )U) = (V, 7( )U)

F(g = (v, r( )u) descends into a function of G. We may write all our integrals as
integration over SP2n (R).

2. Claim:

/G(/C .+q) × F(g) exp(-W(g, z, w))wa-T dp(w)dpL(z))dg/1c- (a~ ) ex 1 (11.78)

= +q)(g) exp(c 1 7-(g, z, w))w'-p dg)dp(w)dp(z)
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It suffices to show that

F(g) exp( Wl(g, z, w))wa'- E L(dgdp(w)dM(z))

Recall that for g = kl exp Hk 2 (H E a+), we have

C,(exp H)X1 = cosh AX; Cr(exp H)X2 = cosh AX 2

I detc(Cr()) = I detc(Cr(expH))l = (cosh Ai) p + q

i= 1

n n

|( = H(cosh i) - 72+ < C H exp(-P +q Ai)

From our assumption on semistable range,

F(g) E L(dg)

On the other hand , we have

lexp 7l(g, z, w)waPI 5 exp( (11z 112+11W 112 + 112 112+11 112 ))IZI 1wV3  E L (dp (z)dp(w))

Thus

F(g) exp( 7(g, z, w))w'- E L (dgdp(w)dp (z))

Combined with 1), we have

C((Pf) xF(P+) F(g) exp(- (g, z, w))w T dg)dp (w)dp(z) = 0

3. The integral f F(g) exp(l-(g, z, w))dg is holomorphic with respect to z,
morphic with respect to w.

(11.79)

and antiholo-

4. Combined with Equation 11.79, we have

V z, w; F(g) exp(1-1t(g, z, w))dg = 0
JG"ex(4

5. Very similar to theorem 10.4, we have

0 = jS2n(R) 1
F(g) exp(7 W(g, z, w))dg

4

= F(s) exp(-(z, iw)s
is 4/

(11.80)
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Hence

= F(W- (s)) exp(a (z t i )s
4 1 )

zW1X (i 2 > -iz2 d3-' (s)z- ) exp( (-iz ,w-g -iz2 ) dU(2n)-02 dsdv2)

' ))exp( (-iz w  w2 )de(2n)S
i~Tl 4 W2 )



6. Finally, Taking x = 0 and y = 0, we obtain,

F(s) E L(S, du(2 n)s)

Since S is compact, it can be shown that V m, n E N,

is F(s)(Tr(zxsx))m(Tr(yt-y) )ndu(2n)s =0; (x E Mat(2n,p, C); y E Mat(2n, q, C))

Q.E.D.
In the next section, we will prove that the linear span of

{(Tr(xtsx))m(Tr(yt-y)) I x E Mat(2n,p, C); y E Mat(2n, q, C); p + q = 2n; m, 1 E N}

is dense in C(Sp2n(R)). Thus if £Sp (Pp,q 0 V,) vanishes for every p + q = 2n, then
Sp2n (R)

(7( )U, v) = 0 (u, v E V,)

here (Wp,q, Pp,q) is the Harish-Chandra module of the oscillator representation for dual pair

(Sp2n( (R), Op,q)-

11.4 Spherical Functions and Helgason's Theorems

Now let Os be the U(2n)-finite functions on S. For X E Mat(2n, p, C), we write

Fx(s) = Tr(XtsX) (s c S)

Then Fx (s) E Os. Let Rp be the linear span of

{Fk I X E Mat(2n,p),i E N}

and Rp be its conjugation. By a little multilinear algebra, we can show that

Theorem 11.2 Rp is spanned by

{(XsX)il(X sX 2 )i2 ... (XsXp) i I Xx,... ,X, E C 2n , 1 .. .i p N}

Proof: Let X = (X 1 ,X 2 ,... ,Xp), and X(t) = (t 1X 1 , t 2X 2 ,... - tpXp), where t E CP . Now

(Fx(t))i = (Et XjsXj)i E

For il + i 2 + ... i, = i, if we take the coefficient of I =lt ij in the above expansion, we get
S ij=1

II1(XsXj) i E Rp

On the other hand, every F1 can be written as a linear combination of II (X sXj)i (i E N).
Therefore Rp is spanned by

(X sX )i (X sX2)i2 ... (Xt sXp)i;
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Q.E.D.

The first theorem we state here is actually equivalent to the nonvanishing theorem for the

stable range dual pair correspondence.

Theorem 11.3 Suppose p > 2n, q > 2n. Then the multiplication

m : Rp 0 Rq -+ Os

is surjective.

Proof: This can be shown by using the Stone-Weierstrass Theorem. We skip the proof here.

This theorem is just a special case of Theorem 11.11 which we are going to prove. Q.E.D.

Before we continue on to improve the theorem above, we want to give a description of Os

first. The ring of regular functions on a compact symmetric space was studied by Helgason.

We will recall some definition and theorems here.

Definition 11.1 Let (G, K) be a reductive symmetric pair. A finite dimensional representation

7r of G is called spherical if there exists a K-fixed vector v E r. Such a K-fixed vector is called

a spherical vector. We use GK to denote the set of spherical representations.

If the representation is irreducible, then the spherical vector is unique up to a scalar.

Theorem 11.4 (Helgason) Let U be a compact connected Lie group, and K fixed point set

of an involution a. Let p be the -1 eigenspace of g, and tp be a maximal abelian subspace in

p. Let Tp be the Lie group corresponding to tp. Let T D Tp be a Cartan subgroup of U, and t

be its Lie algebra. Let M be the centralizer of tp in G. Then (T n M)o is the maximal torus in

M o . Let 7r be an irreducible representation of highest weight vector vo. Then 7r is spherical if

and only if
7r(M)vo = vo

A proof for semisimple groups can be found in [Helgason2] Theorem 5.4.1. The same proof

applies for compact connected groups.

Theorem 11.5 (Helgason) For a symmetric space X = U/K, let Ox be the space of U-finite

functions on X. We have the following decomposition

Ox = EA,iKcA(X)

where CA(X) is an irreducible spherical representation. Let 6 be a K-fixed vector for VA. Then

CA (X) consists of functions
uK -+ 6(u-v) (v E VA)

Let e be a spherical vector in VA. Then the spherical vector in CA(X) is given by a multiple of

uK -+ 6(u- l e)

117



This is proved in [Helgason2] Theorem 5.4.3.
Now let U = U(2n), K = O(2n).

tp = {diag(i0l, i02 ,... iA2n) I Oi E }

The Weyl group W(U, K) is simply the permutation group on 2n elements.

M = {e = diag(El, 2,... , 2n) Ii = -1 C Tp

Let V be the irreducible representation of U(2n) with the highest weight A. Of course we will
have

Al . A2 _- .. 2n

Thus for vo as the highest weight vector of (7, VA),

Ir(e)vo = l 1 (Ci) Av 0o

Therefore V is spherical if and only if A is all even, i.e.,

Ai even ; (i E [1, 2n])

Therefore we obtain the following theorem from Helgason's theorem.

Theorem 11.6

OS = A evenCA(S)

where CA(S) is the irreducible representation with highest weight

A= (A,_A2 ...>A2n) (A even)

We denote the unique spherical vector associated with each A by fA. Here we assume fx(eK) =
1.

11.5 Density Theorems and Nonvanishing Theorems

We will study R 1 first. Then from Theorem 11.2 Rp can be manipulated through the multi-
plication map

m : R1 R1 ®... R1 -+ Rp

We have the following decomposition theorem for R 1

Theorem 11.7 Let S = U(2n)/02n, and V = C2n. R 1 can be decomposed as

(iENC(2i,0,...,0) (S )
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Proof: We define (by abuse of notation)

as follows.

Tr : 02iV -+ O

Tr(vi 0 v2, ... v2i)(s) = Tr( si )
.. ~~ =Ijlrv sij

Now it is easy to see that

defined by

F i : V - Os

Fi(X) = (Tr(XtsX))i (X E V,s e S)

is the composition of the diagonal map A 2 i and Tr. In other words, F i can be written as

A
2

% 2' Tr
F i : V S2i(V) -4 Os

All these maps are U(2n)-equivariant. It is well-known that

S2i(V) - (2i,,...,)

is already irreducible. But F'(V) = 0. Thus the image of F i is isomorphic V(2i,0,...,0). Hence

R1 .---- (.iV(2i,0,...,0)

From Helgason's theorem,
R1 = i (2i,0,... ,0) (S)

Q.E.D.

In fact, the image Tr(S2i(V)) is C(2i,o,...,o)(S). Next we want
for the spherical functions in C(2i,o,...0) (S).

to compute the exact formula

Theorem 11.8 Let
fi : g -+ Tr(gtg) i (g E U(2n))

Then fi is a spherical vector in C(2i,o,... ,o)(U(2n)/O 2n ).

Proof:

* We fix an i first. Since

fi(kg) = Tr(gtktkg)i = Tr(gtg) (g E U(2n),K E 02n)

fi is spherical. Now it suffices to show that fi lies in C(2i,O,...,o)(U(2n)/0 2n).
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* If i = 1, one spherical vector in S2 (V) V(2,0,...,0) is given by

e + e +... + e

where {ei} is the standard orthonormal basis of C2n. On the other hand, let {6} be the
dual basis, i.e., {ei} itself. Then a spherical vector in (C2n)* is again given by

2 2 2e + e +... + en
Now according to Helgason's theorem, a spherical function can be constructed as follows.

f1(g) =(e2 + e2 +... + e2n, g- (e + e2 + ... + e2n))
2n

= (e, (g-'ej)2)
i,j=1

2n

= (ei,g-lej)2
i,j=1

2n
S (eg 1ej )(eig ej) (11.81)

i,j=l

2n

= (eig'ejejgei)
i,j=l

n

S (eigtgei)
i=1

=Tr(gt g)

* Since fl C Tr(S2 (V)), fi E Tr(S2i(V)). Therefore,

fi E C(2i,0,...,) (U(2n)/O 2n )

Q.E.D.

In fact, all the theorems we have proved in this section hold for Sn = U(n)/On. Next we
will prove a theorem for Sn. Just for the sake of the proof, we denote Sn by S. For the rest of
this thesis, S will still be S2n. Let W = W(U, K) be the Weyl group. Let T be the fixed torus
Tp in U. Let C(T)W be the space of smooth W-invariant functions on T. Let OT be the space
of T-finite functions on T. Let (OW and OM be the W-fixed and M-fixed functions of OT.

Let 0
W M - OTW n OM . It is well-known that the restriction of OK onto T yields a bijection

from O K onto OW 'M

Theorem 11.9 Let fi(g) = Tr(gtg)i (g e U(n)/On). Then O K is spanned by

Afi .. fifik+l ... fin (ij C N)
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Proof: It suffices to show that the restriction of

fifi ... fik fi, ... fi, (ij E N)

to T span 0 WM Notice that

OT = aeznCexp ia(O)

Thus

OTM = EaeznCexp 2ia(O)

Let (xI, x 2 ,... , Xn) = (exp(2i01),... , exp(2i0n)). Then we may identify "W ' with

R = P(sX, X2 ... , Xn, X1 ll, X 21,... , Xn)W

the space of symmetric Laurent polynomials. We define the signature of a monomial xa in R to

be a pair of integers (p, q) where p is the number of positive ai's and q is the number of negative

ai's. We may write sgn(a) or sgn(xa). The signature of a is invariant under the action of W.

Let Rj be the symmetric Laurent polynomial such that each term contains at most j negative

exponents. In other words,

j = z n (e3 ,j (i+j'<n Esgn(a)=(i,j')C z a )

Observe that

fj(exp(iO)) = Tr(exp(2iO)) = Tr(exp(2ijO)); (0 E Rn,j 0)

Thus in terms of elements in R, fj can be identified with sj = -'=1 4, and fj with sj =
En X-3

Claim: Ro = i~oCHf j sij

Notice that Ro is simply the space of symmetric polynomials. Let aj be the classical sym-

metric functions on (x ... , Xn), i.e.,

S= Z JJXik
(il~i2... i 3 )C[1,n] k=1

Then by the classical symmetric function theory

Ro = Di3 ENCU1 a 2 ... '

We may look at the following symmetric polynomials of degree 1,

n

{ s 3 lj = 1, lj N}
j=1
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The number of such polynomials is given by the number of

n

{0 < l 12<... < ln li= 1
i=1

Also these polynomials are all linearly independent. On the other hand, the number of linearly
independent symmetric polynomials of degree 1 is given by the number of

n

{(i 1 , i 2 ,... ,in) jij = l, ij E N}
i=1

Both numbers equal the number of partitions of 1 into a sum of no more than n positive integers.
Thus we must have

n

Ro = Ei eNC I sij
j=1

Similarly, for an arbitrary a C Z n , let Zi be the ordered n-tuple, namely

with sgn(a) = (p, q) and we set all the middle n - p - q to be zero. Let Rq with i > 0, j 0
be the linear span of

P n

{ xalsgn(a)=(pq) 5 ki, E 5k-ij}
- fixed k=1 k=n-q+1l

Here i is simply the total positive degree of Laurent monomial, and j is the total negative
degree of Laurent polynomial. Now we fix a nonnegative integer P0o n, a nonnegative integer
i and a nonpositive integer j.

Claim: eppo,q<n-pR~p'q is spanned by

Po n Po n

{ s l
1k sir 1 211 12- >lpo 0; 0 >- lpo+l >- ... >n; k i; }

k=1 r=Po+l k=1 r=Po+l

First of all, the set above is linear independent, since each one has a characteristic term, namely

11 12 pP0 p0+1 inI X; 2 ... ... Xpo+l ... Xn

Also the linear span of such set is contained in (eppo,qn-poRP,'q. Finally, the cardinality of
such set equals

E #(partitions of k into less or equal to Po parts)
O<k<i
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multiplied by

E #(partitions of k into less or equal to n - Po parts)
O<k<-j

This is exactly the dimension of Dp:po,q n-po 'j. The claim is proved. Since every element

of R is contained in some R;i', R is spanned by

n

{1 Sik Ik Z}
k=1

This implies that

(OT)W'" = E pfn,ijoC (fil fi2 ... fipfip+l ... fin)IT

Q.E.D.
We will prove the following theorem:

Theorem 11.10 Suppose p + q = 1 > 2n. Then

m: Ep+q=lRp 0 Rq + Os

is surjective.

Proof: It suffices to prove the theorem for 1 = 2n. We write

Rp,q = m(Rp 0 Rq); R = Ep+q=mm(Rp 0 Rq)

These two spaces are subspaces of Os. Notice that if the spherical vector f\ E R, then CA(S) E

R. It suffices to show that f. E R for every V, E U(2n)o2n. Since f\ is T-finite and K-fixed,

fx is contained in O g . From the last theorem, we see that OK is spanned by

fif.. ffik+1 ... fin (ij E N)

and according to Theorem 11.2 each of these is already in R. Thus Of C R. This implies

f, E R. Q.E.D.

From the same argument, a stronger statement can be proved.

Theorem 11.11
2n ( > 2n)

m: p=1-2n(Rp R-p) -+ O 2n)

m : R 2n R2n - OS

is surjective.

Now we have proved the following theorem concerning Os, for

= {XXt XI C U(n)} -- U(n)/On
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Theorem 11.12 (Density Theorem) O9s, is spanned by

Tr(XsXl) i l ... Tr(XksXk)ikTr(Xl+lsXk+)ik+1 ... Tr(XtsXn) in  (ij E Ns E Sn,Xj E Cn )

Now combined with Theorem 11.1, we have the following theorem.

Theorem 11.13 Suppose m > 2n. Let Wp,q be the dual pair correspondence of (Sp2fn(R), Op,q).
Let Pp,q be the Harish-Chandra module of the oscillator representation of Mp(V, f) with respect

to (SP2n(R), Op,q). Then

Tss (SP2n (R), m) C Up+q=mR(SP2n (R), Wp,q)

We define

W: lss(Sp2n(R), m) -+ Gp+q=mOp,qad
by letting

Wp,q(r) = 0S) (P,q Vr) (r C R'(Sp2n (IR),Wp,q))

Wp,q(r) = 0 (Tr R7(SP2n(R),Wp,q))

Then w is injective.

We only sketch the proof here. Let F(g) = ((v, r(g)u) be a matrix coefficient of Sp 2 n(R1). Then
F is an integrable function on S. Suppose that

Sp - (p ; ,q 9 V) = 0 (V p + q = m)

From the density theorem and Theorem 11.1, the integration of F against any 0 s is zero.
Therefore F must be almost everywhere zero on S and F must be almost everywhere zero on

SP 2n(R). Then (v, 7r( )u) must be identically zero for all E SP2n(R). This is a contradiction.
Thus there exists Po + qo0 = m, such that

Sp () ( ,qo0 Vr) # 0

Q.E.D.

If R E Zss(SP2n(R),m), then L Sp(~)(Pp,q 0 VI) : 0 if and only if

L- (p~) q, 0v 0 )V) 0

In other words, 7r E 7R(Sp 2 (R), p,q) if and only if 7r E R(Sp2n(IR), q,p). Therefore, we can
further show that

SR,,ss(Sp2n(IR), m) -4 p+q=m,p<qOp,qad

is injective.
We can further generalize Theorem 11.13.
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Theorem 11.14 Suppose m > 2n. Then

1 ss(Sp2n(),m) p=m2nO,m-pad (1 = min(m - 2n, L J)

is injective.

11.6 A conjecture on Unitarity

For a stable range dual pair (G, G') with G the smaller group, it is shown by Li that unitarity

is preserved under the dual pair correspondence from R(G, w) to R(G', w). We formulate the

following conjecture.

Conjecture 4 Suppose (G, G') is a reductive dual pair and (ir, V,) is an irreducible unitary

representation of G. If AL is well-defined and nonvanishing, then w(ir) is unitary.
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