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Abstract

In Wavelet Theory, the most significant (both historically and in the present stage) family of wavelets
is the Daubechies orthogonal wavelets with compact supports. The most powerful source of curiosity
and imagination is the key equation-the Refinement Equation (or Dilation Equation). And finally,
it is the keyword "filter" that has served as the major bridge connecting mathematicians, physicists,
and engineers, and made Wavelets Theory one of the very few examples in this century that was
rooted in several different fields, and was someday unified in the paradise of mathematics (Harmonic
Analysis and Approximation Theory), and eventually found itself in the broad market of engineering
fields (especially in the information processing technology). This thesis is a mixture of my research
results on analyzing, generalizing, and developing Daubechies family of orthogonal wavelets, the
Refinement Equation, and the design of digital filters. The main tool is asymptotic analysis.

To study Daubechies' family of wavelets, we first study the associated Daubechies lowpass filters
(or polynomials). The distribution of zeros is closely studied and its asymptotic pattern is obtained.
The transition bandwidth of the filter is found to be proportional to the inverse of the square root
of the number of zeros at the "highest" frequency w = r (a key number also determining the
smoothness of the wavelets). This first step breaks the secret of the nonlinear phase information
of the filters. The leading linear term approximation of the phase makes it possible to carry out
asymptotic analysis on Daubechies wavelets and scaling functions. The energy significant parts of
the wavelets and scaling functions are determined by the stationary phase method.

Our study of the Refinement Differential Equations (RDE) was the first one in the literature. It
is motivated by a perturbation of the Refinement Equation and the search for wavelets-like functions.
We establish the connection between wavelets and solutions to certain types of functional differential
equations, a hot topic near 1970s. We reveal the general structure of solutions to RDE's and discover
that RDE's are naturally connected to a class of Refinement Functional Equations (RFE). The
Continuous Subdivision Algorithm finds its dominant place in solving RDE's. The vague probability
idea of Rvachev (1971) is developed more completely.

In spite of the simple formulation of various (weighted or unweighted, real or complex domains,
simply connected or multiply connected domains) Chebyshev (L') polynomial approximation prob-
lems, the analytic behavior of solutions remains a mystery except for some simple cases, due to the
lack of geometric structures. This is the underlying reason why engineers working on filter designs
are frequently puzzled by certain behaviors of optimal filters. Based on Fuchs' work, we improve
and interpret a widely-used empirical formula established by Kaiser based on his numerical data
in 1972. Our new asymptotic formula proves to be more accurate than Kaiser's. To compute the
critical constant (related to the Green's function of the underlying domain), we study properties
of the Green's function for a multi-interval domain as well as its equilibrium distribution measure.
This result also contributes to the numerical analysis of partial differential equations (the Stokes
equation in fluid dynamics, for example).

Thesis Supervisor: Gilbert Strang
Title: Professor of Mathematics
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Chapter 1

On Asymptotics

1.1 What Is Asymptotics

There are many textbooks and conference procedings on asymptotic analysis and its applications.

But none of them has given an overall synthesis on this subject, or has updated the content of

asymptotics. In this first chapter, I give my attempt. Though asymptotic analysis is only one tool

in my thesis (not the subject), I still feel it valuable to freshen and broaden our viewpoints on this old

but never dormant subject, because the way we view thiilgs, determines the way we act and justify

our actions. Also the discussion of general asymptotics may provide some important background for

this thesis.

Almost all asymptotic analysis textbooks consist of three major parts: how to sum infinite

series, how to evaluate integrals with large parameters (Laplace or Fourier types), and how to solve

differential equations with a small or large parameter (second order differential equations typically).

They are three major columns for the hall of classical asymptotic analysis. But to me, asymptotic

analysis has already been scattered in several fields: classical analysis, probability, combinatorics,

dynamic systems, and so on. It depends on our understanding of the meaning of "asymptotics",

and in the following I have chosen bravely the widest (and therefore maybe wildest) one.

Using the least number of words, asymptotics means trends.

What studied by asymptotic analysis is a system of objects. It can be a family of integrals or

differential equations, or a sequence of polynomials, or a dynamic process (such as matrix iterations

in numerical linear algebra and iterations of maps in a dynamic system), or a collection of random

variables. In any case, the target objects must be connected by at least one parameter, which can

be either the real time (as in differentiable dynamic systems), or a discrete "time" (as in various
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iterations), or a crucial system parameter (such as the number of vanishing moments for Daubechies

family of wavelets with compact supports, the size of a gap between two close intervals, or a dimen-

sionless physical constant in differential equations). The central task of asymptotic analysis is to

detect and classify trends of the systems as the parameters vary (especially toward some extremal

values), to predict the "speed" (temporal) or the "scale" (spatial) of the trends and to give simple

but practically useful approximations to the trends. Therefore asymptotic method is one among a

handful of powerful "applied" methods.

1.2 Examples of Asymptotics

An ancient Chinese poet wrote: "you cannot see the real face of Mount LuShan 1, only because

you are on it." The same applies when we observe a system of objects. You cannot feel the trend

of a system unless you allow the system parameter to vary in a very large range ("watch it from

a distance"). The behavior of any individual object is often hard to understand, not transparent

to analysis, and even unpredictable -- because its behavior is the mixed effect of many factors,

and many relations that can be random or deterministic, and linear or nonlinear. Only in the

asymptotic case, one can consider only very few dominant factors or relations. This can make things

much simpler than usual.

Let us look at several examples scattered in different contexts.

Riemann-Lebesgue Lemma The first simple example is the Riemann-Lebesgue Lemma in anal-

ysis. Let f(x) be any L1 integrable function on [a, b] (either a or b can be oo). Then

lim ezAX f(x) dx = 0.

For each individual A, the integral obviously depends on f(x), a and b, and its exact evaluation can be

very hard (except by numerical methods). The Lemma captures such a simple asymptotic behavior

universally shared by this (Fourier) type of integral. It provides a simple necessary condition for

a function to be the Fourier or Laplace transform of an L1 function. In the Riemann-Lebesgue

Lemma, the asymptotic trend is the cancellation. The parameter A is the frequency of canceling

periods.

Law of Large Numbers and Central Limit Theorem The second familiar example comes from

probability. For one ideally random toss of a coin, the result of being head or tail is unpredictable.

1 LuShan is one of the most beautiful mountains in China.
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However, after tossing it for many times, "almost surely", for nearly half of the times we must get

heads and for the other half, tails. This half to half behavior is an asymptotic one and the parameter

is the number of tosses. Generally, this example is summarized by the celebrated Law of Large

Numbers, and the Central Limit Theorem describes even more detailed asymptotic behavior. These

two fundamental theorems of probability are both asymptotic results. They describe the universal

asymptotic behavior shared by a fairly large class of random events. In this example, asymptotics

is the sibling of another familiar word: statistics, and basically, the trend is still cancellation or

averaging-an individual random variable X is usually complicated, yet asymptotically, there is a

lot of cancellation in the independent sum (X1 + X 2 + -.. + XN)/N.

Attractor, Ergodicity and Ergodic Theorem The third example is from dynamic systems. In

a differentiable dynamic system (on a compact manifold, say), the evolution of an individual state

or phase often allows a very wide degree of freedoms and therefore usually has no simple closed

form. Fortunately, asymptotically, or as the counting time goes to infinity, the trajectory must

exhibit certain universal behaviors such as being attracted by an attractor (or a "sink"), which

can be either an attracting state, or a stable limiting circle (mostly in the plane phase case), or

even a strange attractor (in a high dimensional phase space). Each flow can be complicated, yet

its asymptotic behavior can be simply identified and classified. Another asymptotic example in

dynamic system is the set of concepts like "ergodic", "mixing", and "exact". Each of them describes

one typical sort of asymptotic behavior of the semigroup generated from the iteration of a given

map. The celebrated Birkhoff's Ergodic Theorem is yet another asymptotic example in dynamic

system and it is more or less related to the Central Limit Theorem, whose asymptotic meaning is

just discussed above.

Regular and Singular Perturbation The fourth example, which is more classical, is the pertur-

bation method of linear or non-linear differential equations. Even for second order linear ordinary

equations, except for some simple valuable cases such as Cauchy equations, equations with constant

coefficients, and equations with analytic coefficients, there is no closed form for the solutions. For-

tunately, in application, the dimensionless equation obtained from a physical system often contains

a large or small parameter. This usually makes the problem much simpler since the leading terms

of the solution can be easily obtained by regular or singular perturbations (though the problem of

matching is usually non-trivial). For example, the (leading term) solution to the following equation

containing a small parameter

Fy" - x2y' y = 0, y(0) = y(1) = 1
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can be easily found by solving one first order outer (or slowly varying) problem and two second order

inner (or boundary layer, or rapidly varying) problems. In this example, the asymptotic means the

trend of spatial variation: as c gets smaller and smaller, the region with rapid spatial variation tends

to be more and more concentrated near one of the boundary points-the famous phenomenon of

boundary layer.

Polynomial Sequences The last example concerns polynomial sequences. Let us consider two

classes of polynomial sequences that are closely related to Chapter 2 and Chapter 4 in this thesis.

The first class is the partial sum sequence of the power series (at some point) of a meromorphic

function. For example,

Z2 Z
n

q,(z)= 1+z+ + + -
2! n!

for ez at z = 0. A question asked and answered by Szeg6 is the zero distribution pattern of qn(z).

It is hard to describe precisely the zeros of qn(z) for each individual n (except for n = 1, 2, 3, 4).

However, asymptotically, the zeros of q, (z) behave very regularly-after a simple elementary trans-

form, the zeros are nearly equidistributed along the unit circle. And this asymptotic pattern is

universally shared by this class of polynomial sequences. The second class of polynomial sequences

are Chebyshev polynomials for a domain and a given function. That is, given a function f(z) and

a domain K in the complex plane, p,(z) minimizes the error

11f - Po IIL (K)

among all polynomials of degree n. The behavior of p,,(z) obviously depends on f(z), which can

be very complicated and arbitrary: entire, meromorphic, analytic, smooth, or only continuous.

Besides, the domain can also have a large degree of freedom. However, as the approximation order

gets larger, the sequence always exhibits certain common asymptotic behavior. In Chapter 4, we

study the asymptotic behavior of a polynomial approximation problem from digital filter design.

Summary These examples are scattered in different fields and have never been seen via a unified

viewpoint. The purpose of of the listing is to extract something common hidden in them and

therefore to find a quasi-foundation and methodology for them.
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1.3 Mechanisms for Asymptotics

If we are the loyal followers of the cause-effect philosophy, there must exist some common causes

leading to asymptotics or trends. These causes, or "forces" as I would like to call in the following,

in my opinion, include the following three major ones: cancellation, averaging, and attraction.

Cancellation The cancellation mechanism sees itself in the Riemann-Lebesgue Lemma, the method

of Stationary Phase, and even in the Law of Large Numbers. We can understand it in the following

quasi-philosophical way. Inside each object of a given system, there is more than one force (typically

two, Yin and Yang, for example). Those forces are not balanced in an individual object because

of random factors, and thus make the individual objects varying and complicated. Those objects

are linearly ordered according to a certain system parameter (frequency, say), which more or less

characterizes the cancellation degree of those forces. As the parameter increases, the cancellation

gets stronger and certain steady (or stationary) trends can appear. This is the asymptotics arising

from cancellation.

Averaging The averaging mechanism to asymptotics appears in the Law of Large Number, the

Central Limit Theorem, and the Birkhoff Ergodic Theorem. It is more or less associated to statistics.

The asymptotic or trend in this case is obtained from averaging a large sample of objects. The

individual irregularities cancel out each other during the averaging process. In this case, the objects

of the system must carry certain degree of randomness or diversity. For example, the iterations of

an ergodic map must be able to send any non-zero mass almost everywhere. In signal processing,

averaging means the elimination (or filtering) of high frequencies. Asymptotic trend is usually steady

and stationary, and therefore corresponds to low frequencies. They are preserved and even amplified

during the averaging (lowpass filtering) process.

Attraction Attraction is probably the most common way leading to asymptotics or trends. Unlike

cancellation, whose mechanism depends on two or more internal forces, and averaging, which

requires certain degree of randomness from the system, attraction is caused by certain deterministic

"external forces." The simplest example is the iterations of an initial state under a contracting map.

The "external force" is the contracting mechanism, which for a linear system, is usually caused by

the spectral radius of a linear operator (less than 1). The "external force" is also the unique fixed

point (suppose the metric space is complete) in the sense that the trajectory of any initial state

is attracted to it. Sinks, limiting circles, and strange attractors are more examples of "external

forces." 2

2 0f course, being external and internal is relative. An external force for one object (say, the trajectory of a state)
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Let us enumerate more examples. Consider the classical one:

j e-Af (x) dx,

where A is a positive parameter. Suppose f(0) is not zero (and assume f is smooth for simplicity).

Then the leading term as A gets very large is simply f(O)/A. It is obtained by replacing f(x) by

f(0) in the integral. As A gets larger, the effect of x = 0 becomes more and more dominant. It acts

like a strong force pulling the whole weight of integration round it.

Also consider the boundary layer phenomenon. In this case, fluid mechanics leads to a more

vivid picture of the "external force"-the drag of a plate or some boundary material to the liquid. As

viscosity gets smaller (or the Reynolds number gets larger), the propagation of this influence through

shear stress of the liquid is more confined near the boundary and we observe thinner boundary layers.

Finally, let us look at the asymptotics of the zeros of the partial sum polynomial sequence of

a meromorphic function. The scaled zeros will converge to a limiting curve (see Chapter 2, for

example), which acts as an attracting force. In fact, the underlying mechanism for this attracting

force is exactly the same as that discussed in the second paragraph.

Summary The understanding of asymptotic mechanisms helps us to adopt appropriate methodol-

ogy in applications. For attraction, the main task of asymptotic analysis is to identify the "dominant

force" and find a suitable approach to amplify its influence. For averaging, it is often inevitable to

turn to the methodology of statistics and operator theory. For cancellation, it is crucial to locate

the states where cancellation is the least (since they will determine the leading terms).

1.4 Introduction to the Thesis and Its Asymptotic Contents

Chapter 2 studies the Daubechies miniphase orthogonal wavelets with compact support (for spline

wavelets, the work has been carried out by other people). The major difficulty of analyzing this

family is caused by the complicated non-linear phases of the associated filters. The wavelets also

have the same property-with simple magnitudes but very complex phases (in the Fourier domain).

From a certain angle, this family of wavelets is very alike the Airy function, whose Fourier transform

is also purely phased. Our analysis starts with the asymptotic pattern of the zeros of the filters

and ends at the asymptotic structure of the wavelets. Basically, the asymptotics of a polynomial

sequence (derived from truncating the power series of a family of meromorphic functions) and the

method of stationary phase are used in this chapter.

can be the internal force for a larger system (the whole dynamic system).
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In Chapter 3, we study a generalization of the Refinement Equation. A refinement equation has

the following form

O(x) = h[0]4(2x) + h[1]¢(2x - 1) + ... + h[N]¢(2x - N)

for some real coefficients (or filter coefficients) h[O], .. , h[N]. The Refinement Equation plays a

crucial role in the theory of wavelets with compact support. It also links Wavelet Theory to signal

processing and other fields. After perturbing this equation, we obtain a new class of equations called

Refinement Differential Equations. Our major achievement in this chapter is the discovery of the

link of Wavelet Theory to the theory of functional differential equations and probability theory. This

chapter contains the least content of asymptotics, however.

Chapter 4 studies a particular polynomial approximation problem arising from digital filter de-

signs, and also the associated potential theory for a several-interval domain. The asymptotic behav-

ior of the optimal polynomial sequence is often determined by the singular locations of the target

function (i.e. poles) and the critical points of the Green's function for the working domain (the

"external forces" mentioned in the preceding section). The first part impoves an empirical formula

discovered by Kaiser regarding the relation of optimal errors to filter lengths. The second part

studies the Green's function and equilibrium distribution of a several-interval domain based on the

Schwarz-Christoffel mapping. Both structural and asymptotic results are established.



Chapter 2

Asymptotics of Daubechies

Mini-phase Filters and Wavelets

Though it now has been a clich6 - "to analyze wavelets, first analyze the filters," it never hurts in

practice to follow this simple principle.

The first part of the chapter studies the asymptotic behavior of Daubechies filters (polynomials).

The zero distribution pattern of the filters is crucial in their filtering effects as well as in the next

stage of analysis (on wavelets). Here the objects are discrete (polynomials and their zeros), yet the

result is continuous (the existence of the limiting curve). The second part studies the asymptotics of

Daubechies scaling functions and wavelets based upon their Fourier integrals. The stationary phase

plays an important role here. In this part, the objects are continuous (integrals and wavelets), yet

the result is in certain sense discrete (three different scales with separate asymptotics).
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2.1 The Zero Distribution of Daubechies Filters

2.1.1 Introduction

The Product Filter P(z): Positivity and Zeros

Let H(z) = E' 0 h[n]z - n be a lowpass filter whose associated Refinement Equation

N

0(t) = h[n]q(2t - n)
n=O

yields orthogonal integer translates {(t - n) I n E Z}. Its associated "energy" filter, or the product

filter P(z) is defined by P(z) = H(z) - H(z - 1) . In order that the integer translates of the scaling

function are orthogonal to each other, it is necessary for H(z) to be a quadrature mirror filter

(QMF), a connection first made by Mallat. This means

P(z) + P(-z) = 1. (2.1)

Such a filter is called a halfband filter. Its impulse response h[n] is always zero at even times n = 2k

except when n = 0.

The product filter has the following two remarkable properties:

(1) Positivity: P(z) > 0, for all jzj = 1.

Suppose z = e". Then H(z - 1) = H(z) and P(z) = IH(z) 2 > 0. Combined with the

symmetry property P(z) = P(z-1), we conclude that P(z) must be a nonnegative polynomial

of x = cos w:

L 1

p(x) =Z:c[nlx', p(x)=P(± 2
n=O

(2) Zeros at z = -1.

Since H(z) is a lowpass filter, we always impose the lowpass condition: H(1) = 1. Then

P(1) = 1 and Eq.(2.1) implies: P(-1) = 0. Therefore P(z) must have zero(s) at z = -1, or

the highest (digital) frequency w = 7r. This, in return, implies H(-1) = 0.

There is a profound influence of those zeros at z = -1 in Wavelet Theory. As shown in Battle [3,

1989], Mayer [50, 1992], Daubechies [10, 1992], and their most recent improvement in Cai and Shen [7,

1998], those zeros are necessary to achieve good smoothness for the wavelets. If an orthogonal wavelet

is Cm , then at least m zeros of H(z) should be guaranteed at z = -1 (even more in practice).
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Whereas image processing engineers debate the real necessity of smoothness in their applications,

mathematicians feel no hesitation to have it - for the purpose of regularity analysis of functions and

having "good" basis functions for the Wavelet-Galerkin method (for solving PDE's numerically).

A general design problem of orthogonal wavelets starts with the design of P(z). The number of

zeros at z = -1 must be an even number, say 2p. It is therefore convenient to factorize it in the

following form:

P(z)= +Z1) (+Z)PQ(). (2.2)

Obviously Q(z) must also be nonnegative on the unit circle and have a symmetric impulse response.

It is the Q(z) part that has induced the diversity of orthogonal wavelets with compact supports.

Ingrid Daubechies chose Q(z) in a typical mathematician's way: Q(z) is extremal in certain

sense.

Daubechies' Maxflat Condition

The Maxflat Condition asks for the lowest order of Q(z) such that P(z) defined by Eq.(2.2) is

both a halfband filter and nonnegative when restricted on the unit circle.

It is convenient to introduce another variable y: y = (1 - x)/2. Here x = (z + z-1)/2 is the

Joukowski transform ( x = cos w when z is restricted on the unit circle). Since Q(z) is symmetric,

it must be a polynomial of x, and therefore of y. Denote it by B(y). Then p(y) = (1 - y)PB(y), if

p(y) denotes the "y-transform" of P(z). The halfband condition Eq.(2.1) now becomes

(1 - y)PB(y) + yPB(1 - y) = 1. (2.3)

Notice that y E [0, 1] as z changes on the unit circle. Therefore mod yP,

(1 - y)PB(y) - 1,

or

B(y) (1 - y)P 1 + py + y2 3
(1 (- y)P 2 3

Define B,(y) to be the following polynomial of degree p - 1:

S +1y2 +p-1. (2.4)
2 p- 1
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Then B(y) = Bp(y), mod yP. This means the lowest order of B(y) can be p - 1. And it is not

difficult to see that p(y) = (1 - y)PBp(y) is the unique Hermitian interpolation polynomial of degree

2p - 1 that interpolates 1 at y = 0 and 0 at y = 1 both to order p. By symmetry, p(y) must

satisfy the halfband condition Eq.(2.3). Therefore Bp(y) is indeed the polynomial with the lowest

degree. Daubechies made this choice. Various Daubechies families of wavelets have been designed

from it. The difference lies in the procedure of factorizing P(z) into a product of H(z) -H(z - 1) (the

so called spectral factorization). In this thesis, we only demonstrate the most natural factorization:

the mini-phase spectral factorization, which leads to the mini-phase orthogonal wavelets.

To start, suppose we have already known the p - 1 roots Y, Y2 , '" , Yp- 1 of Bp(y). By the rule

of Joukowski transform z + z- 1/2 = 1 - 2y(= x), in the z-plane, we have 2p - 2 preimages of those

Y,'s-exactly half of which lie inside the unit circle. Denote them by Z 1 , Z 2 ,... , Zp- 1 . Then the

Daubechies mini-phase filter is defined by

H( 1 + z - 1  p -1 1- Z-1Zn

H(z) Z 1- Z (2.5)
n=l

If the product factor is omitted, the Refinement Equation produces spline functions-with accuracy

p but not orthogonal to their integer translates.

Our main goal is to analyze the zero distribution pattern of Hp(z).

2.1.2 A Note about the Numerical Computation of Zeros

Before we set out applying many analytic methods, let us first mention briefly the numerical com-

putation of the zeros using Matlab, a popular software for signal processing and wavelet analysis.

Matlab creates the companion matrix whose characteristic polynomial is B,(y). Then it finds

the eigenvalues of that matrix. Without scaling, this breaks down at p = 35, because of the wide

range in the coefficients of Bp(y). The first coefficient is 1, and by Stirling's formula, the coefficient

of yp-1 is

(2p - 2) /27(2p - 2) (2p - 2) 2p-2 4P-1
p- 1 2r(p - 1) (p - 1)2p- 2

The leading term 4p - 1 suggests that the variable 4y is preferable to y. With this scaling, the Matlab

computation remains accurate to p = 80. For larger p, a bifurcation (see Figure 2-1) occurs from

roundoff error. The coefficient (P-'+i)4 -i of (4 y)i is numbered b(p - i) by Matlab. Then b(p) = 1
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and the sequence of coefficients is created recursively;

fori= p- 1: -1: 1, b(i)= b(i+1)*(2p-i- 1)/(4*(p-i)); end

The command "Y = roots (b)/4" produces the approximate zeros Y(1),..., Y(p - 1).

Figure 2-1: A bifurcation occurs from roundoff error, p = 100.

Experiments with other root-finding algorithms were less successful, even though working with

the companion matrix is a priori surprising. A polynomial with repeated roots leads to a defective

matrix (not diagonalizable). Algorithms based on Newton's method had difficulty with the accurate

evaluation of Bp(y) and B,(y). Lang's algorithm (Lang and Frenzel [45, 1994]) is comparable to

Matlab 'roots', and probably faster.

2.1.3 A Clue from the Three-term Recursive Relation

In this section, we attempt to have a clue of the zero distribution pattern of Bp(y) from its recursion

formula.

From Eq.(2.4),

B 1 + py + 1y2 ... + p-12  p - 1

yB, = y + py2 + .p. . + 2p -3)Y-1 +p(2p, - 2) YP.
(p-2 p-1

Hence

(1- y)Bp = Bp- 1 + (2p3) P- (1 - 2y).
p - 2
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Since

(2 p - 1\
p-1}

2p - 3\ (2p - 2 )( 2p - 1) _ 1 2p- 3

p-2 ( (- )p -2(2- -p)
p-23 (-1)p \p-2 '

by setting c, = 2(2 - p- 1), we have

(1 - y)B+l 1 - [1 + cpy(1 - y)]Bp + cpyBp_ 1 = 0. (2.7)

Note that c, -+ 4 as p --+ co.

Lemma 1 Suppose a sequence of meromorphic functions fp(y), p = 0, 1, - -- satisfy the following

three-term recursive relation:

(1 - y)f,+l (y) - [1 + 4y(1 - y)] f,(y) + 4yf,_l(y) = 0.

Then generically as p -+ oc, zeros of fp(y) in the holed complex y-plane C\{0, 1, o00 approach the

following lemniscate (see Figure 2-2):

14y(l - y)j = 1.

Figure 2-2: Zeros of Bp(y) approach the lemniscate: 14y(1 - y)I 1.

Proof. The auxiliary equation (AE) for the recursion formula is

(1 - y)A 2 - [1 + 4y(l - y)]A + 4y = 0.

-04 -02 0 02 04
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Since y changes, A is a function of y. It has two auxiliary roots:

1
A 1 -= 2 = 4y.

Therefore

fp(y) = A(y)A'(y) - B(y)A'(y)

for some suitable coefficients A and B (both depending on y). In fact,

fI - fOA2  f1 - f0 1A= B=
AA - A2 B 1 2- A

By "generic", we mean both A(y) and B(y) are not zero functions. Since fo and fi are meromorphic

functions, so are A and B. On the zero set of f,(y), we have

[A2]P A

A, -. B '

or

14y(1 - y) = JA2/Ai = IA/BI I p .

If A/B = 0 or oo, A2/A1 = 4y(l - y) = 0 or oo. This is only possible when y = 0, 1, or oo. On the

rest of the y-plane, IA/B I is finitely positive. Hence JA2 /A1| approaches 1 as p -- o0. Oi

This lemma gives us a clue of how the zeros of Bp(y) might behave in the complex plane.

However, since cp is not exactly 4, we cannot apply it directly to Bp(y). It seems that we have to

analyze Eq.(2.7) through perturbing the three-term relation in the lemma. The analysis then gets

very involved. We therefore abandon this method and turn to a more analytical and easier method

first used by Gabor Szeg5.

Let me mention that there is no reason to curse the non-zero 4 - c, = 2p -1 . It is this small

deviation that makes the sequence Bp(y) a polynomial sequence. Generally fp(y) can be at most a

sequence of meromorphic functions.

2.1.4 Two Bounds for the Zeros of BP(y)

In this section, we prove two bounds for the zeros. Let Y denote an arbitrary zero of B,(y), and Z

any preimage of 1 - 2Y under Joukowski transform.
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Theorem 1 For p = 2, the only zero is Y = -1/2. For p > 2, all the zeros satisfy IYI < 1/2.

Especially, in the z-plane, Re(Z) > 0.

Its proof depends on a result due to Enestrim and Kakeya (Marden [49, 1966]).

Lemma 2 (EnestrSm and Kakeya) Let p(y) be a polynomial of degree n with all coefficients ai

real and positive. Define r, = a,/ai+l, 0 < i < n - 1. Then all zeros of p(y) must lie in the closed

annulus:

min r IYI < max r,.
i i

The details about when and how the zeros can indeed lie on the border of the annulus is discussed

by Anderson, Saff and Varga [2, 1979].

Proof of Theorem 1. Obviously, all coefficients of Bp(y) are real and positive. r, = (i + 1)/(p + i)

for 0 < i < p - 2. Thus min r = r0o = l/p, and maxr, = rp- 2 = 1/2. By the lemma and its

sharpened form, IYI < 1/2 for p > 2. Therefore, signReZ = signRe(1 - 2Y) = 1. O

See Figure 2-3 to visualize this result.

05

04

02

-03-

-04

-05-

-05 -0.4 -03 -02 -01 0 01 02 03 04 05

Figure 2-3: All zeros lie inside the circle jyl = 1/2, p = 3 1 : 60.

Our next bound is more tricky and the underlying idea is borrowed from Szeg5 [71, 1924].

Theorem 2 The zeros Y of Bp(y) satisfy 14Y(1 - Y)I > 21/P.

Here again we see the quadratic polynomial 4Y(1 - Y) appear (see also the preceding subsection).

This time, we give a direct analytic proof.
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Proof of Theorem 2 . Bp(y) is the truncated Taylor series at y = 0 for (1- y)-P. The pth derivative

of this function is p(p + 1) ... (2p - 1)(1 - y)- 2p. Then Taylor's integral formula for the remainder

R,(y) = (1 - y)-P - Bp(y) is

R(y) = (2p - 1) 2 (p - 1) Y(y - s)P- 1 (1 - s) - 2p ds
(2 ( - 1) fo

= (2p - 1) 2 (- 1) ( - t) - (1- yt ) - 2 dt

Call this last integral Ip(y). Since each zero has [Yj < 1/2, for any t E (0, 1], |1-Ytj- 1 < (1-t/2)- 1

Hence

Ir,(Y)I < (1 - t) - 1 (1 - t/2) - 2p dt = Ip(1/2).

At y = 1/2, Eq.(2.3) gives Bp(1/2) = 2P- 1 . Thus the remainder is

R,(1/2) = (1 - 1/2) -  
2 P- 1 = 2 P -

At each zero of Bp(y), R,(Y) = (1 - Y)-P. The above equations combine into

14Y(1 - Y)I-P = 4-P Y-P R(Y)I < 14- P (1/2)-P Rp(1/2)I = 1/2.

This is the bound 14Y(1 - Y)

proof. (Also see Figure 2-4.)

> 21/P that puts Y outside the limiting curve, and completes the

O

Figure 2-4: All zeros lie outside the curve 14y(1 - y)I = 21/p, p = 40.

This idea of using the integral remainder belongs to Szeg6. In [71, 1924], he studied the asymp-

totic zero distribution pattern of the partial sum (polynomial) sequence qn(z), obtained from the
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infinite series expansion of ez:

Z
2  Z

n

qn(z)=1 + z + + .
2! n!

Recent extension of this work can be found in Varga [75, 1992].

2.1.5 Regular Zeros and Singular Zeros

Further analysis exhibits that the zeros of Bp(y) should be better grouped into two sets: those away

from y = 1/2 and those near y = 1/2. For convenience, we call them the "regular" zeros and the

"singular" zeros.

Regular Zeros

Lemma 3 Fix a 5 > 0. Then uniformly for all ]Yl < 1/2 and ly - 1/21 > 3,

1
I(y) = p( 2) + O(p-2).

Proof. In the integral Ip(y), change variables from t to w = (1 - t)/(1 - yt) 2 . Then w goes from 1

to 0 and the derivative is dw/dt = (2y - yt - 1)/(1 - yt)3 . We leave part of the integral in terms of t

oy 1 -ytIp(y) -- -wP-l( 2 yIt)dw.

As p -+ oo the power wP- ' is concentrated near w = 1. Around that endpoint the leading term of

the expression in parentheses is (2y - 1)- 1 . The integration of w p- 1 gives 1/p and completes the

proof. O

If Y is a zero of B,(y), then R,(Y) = (1 - Y)-P. Therefore

[4Y(1 - Y)]-P 4 -P( 2 p - 1)2p 2)Ip(Y)

4P2p- 2) (1 + O(p-1)) (2.8)
p - 1 1 -2Y

( - 2Y) (1 + O(p)).
(1 - 2Y)V'4)i

We have applied Eq.(2.6) in the last step. The pth root displays the equation of the approximate

curve C, and the error term

j4Y(1 - Y)I = 1I - 2YI1 / P (47rp)1 /2 p (1 + O(p- 2 )). (2.9)



Asymptotics of Daubechies Filters and Wavelets

Theorem 3 Let 6 > 0 be any fixed small positive number. Then all zeros outside the circle ly -

1/21 = 6 are not farther than Ap - 2 from the curve Cp:

14y(1 - y) = I1 - 2yl1 P /  (4)/p)

The constant A only depends on 6.

Proof. Let y be the point on Cp nearest to Y

Since I1 + e1/p = 1 + O(~el/p), we have

1- 2YI1 / p = 11 - 2yI /

= 1 - 2yl' /. (1

4Y( 1 - Y)I = 14y(1 - y)l.

= 4y(1 - y)l - 1

and e = Y - y. We must show that e is O(p-2).

S 1/p

+ 1 - 2y

+o(lE6/p))
1 - 2y O

+ - y + O(e2 )

+ Ee + O(e 2)I

where E = (1 - 2y)/(y(1 - y)). E = 0(1) since 6 is fixed. Division yields

14Y(1 - Y)I I1 + Ec + 0(E2)1= = |1 + EE + o(|El)1.
1 - 2YI1 /P(4-,rp) 1/ 2  1 + O(+ l Ep)

On the other hand, by Eq.(2.9), the right hand side of the last equation is 1 + O(p- 2 ). Therefore

the left hand side implies that E must be of order O(p- 2). D

Corollary 1 All zeros outside the circle ly - 1/21 = 6 are not farther than Bp - 1 from the curve D

drawn in Figure 2-5:

14y(1 - y)I = 1 + r,,
ln(47rp)where p - 2p

P-2p

Here B is a constant only dependent on 6.

A further argument directly based on Eq.(2.8) provides a more detailed information about these

regular zeros, which is given in our next theorem:

Theorem 4 Let u = 4y(1 - y), and r, = 1 + e, as defined in the corollary above. Then for any
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Figure 2-5: DP is a first order approximation curve for regular zeros. p = 40.

fixed (as compared to p) small positive number a,

Uk =rp exp(27ri-), pa< k < p(1-a), kEN,p
1+ -Uk

Yk = 2 (take the negative real part branch of /)

gives a first order approximation (i.e. with error of order O(p- 1)) to the regular zeros lying outside

a circle ly - 1/21 = J(a) for some 6(ca) > 0 and 6(a) -4 0 as a -+ 0.

Please note that the theorem says that on the u-plane, the regular zeros are asymptotically

equidistributed.

Singular Zeros

The value of y = 1/2 is in every respect a singular point for this problem. It corresponds to

points z = i and z = -i on the unit circle. We now prove that the zeros Y approach 1/2 at speed

p-1/2, as Moler discovered by Matlab experiment. Surprisingly, the coefficient of p-1/ 2 comes from

a zero W of the complementary error function

erfc(w) = 1 - erf(w) = e - 2 ds.

The corollary will improve slightly a known result for the location of these zeros.

Theorem 5 If W is a zero of erfc(w), there is a zero Y of Bp(y) and a zero Z of Qp(z) such that

1 W
Y = + + O(p-3/2)

W iW 2

Z = i + O(p-3/2).
V 2p



Asymptotics of Daubechies Filters and Wavelets

Proof. We introduce a new expression for p(y) = (1 - y)PBp(y) (note p(y) = P(z)). As a function

of y, this is a polynomial of degree 2p - 1 whose derivative has p - 1 zeros both at y = 0 and y = 1.

Therefore the derivative is a multiple of yP-1 (1 - y)p-, and we have an incomplete beta function

p(y) = (1 - y)P Bp(y) = 1 - c 1 22p-1 - t)p 1 dt. (2.10)

The number cp is determined by setting y = 1:

"(2p-1 21 p - 2)
cP = 22p-1 t-1 ( - t)- 1 dt = 22p-1 (p 22-1 (2p - 1)

By Stirling's formula, we have

c= (1 + O(p-1)).
p

By symmetry, the value of the integral above should be 21- 2
pcp/2. Therefore P(1/2) = 1/2. In order

to see the detail of the zeros of Bp(y) near y = 1/2, we introduce a new variable by y - 1/2 = w/2v .

Then

p(y) = p(1/2 + w/2v') = p(1/2) - c 1 
2
2p - 1  (1/2 + t)- 1 (1/2 - t)p-1 dt

= 1/2 - 2 c (1 - 4t2)p-1 dt

= 1/2 - e- 4pt
2 dt (1 + O(p- 1))

= 1/2- eS2 d (1 + O(p-1 ))

= 1/2erfc(w) + O(p- 1)

Let W be a zero of erfc(w). All zeros are simple, because the derivative e-"2 is never zero. The

fundamental theorem of complex analysis says that as p -+ co, p(1/2 + w/2v/-) is zero at some point

w = W + O(p-'). In terms of y, Y = 1/2 + W/2vi/ + O(p- 3/ 2). This completes the proof since

B,(y) shares every zero with p(y) except y = 1. O

As an interesting application, we can infer certain behaviors of the zeros of the complementary

error function.

Corollary 2 Every zero of erfc(w) has I arg W1 < 37r/4.

Proof. The corresponding Y lies outside the limiting curve 14y(1 - y)I = 1, which intersects itself
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at y = 1/2 with slopes ±1. In the limit, W = (Y - 1/2)/f + O(p - 1) must have I arg W I _ 37r/4.

If the equality held, W 2 would be purely imaginary. Then the previous theorem would give

14Y(1 - Y)I = I1 - W 2p- 1 + O(p- 2 )j = 1 + O(p - 2)

This contradicts the inequality 14Y(1 - Y)j > 21/p in Theorem 2, proving the corollary. O

Fettis, Caslin, and Cramer [26, 1973] computed the zeros of erfc(w) to very high accuracy. They

also proved an asymptotic form of the statement I arg W1 5 37r/4. It is interesting to see the

complete statement (which their numerical table confirms) proved by such an indirect argument

involving the zeros of Bp(y).

These zeros approach 1/2 at order p-1/ 2 , close to the line Y - 1/2 = W/2V/ . By the corollary,

the slope of this line is not ±1. Therefore the distance from Y to the limiting curve C is of

strict order p-1/ 2 near y = 1/2. In this region, the error order in Eq.(2.9) rises to p-1. This

applies in particular to the rightmost zero, which comes from the first W tabulated in [26, 1973],

Y - 1/2 + (-1.3548... + il.9914... )/2/p-.

2.1.6 Transition Bandwidth

It is no surprise to see the connection to the error function. Probability theory has already made

the error function a universal cumulative distribution function through the Central Limit Theorem.

In analysis, the error-function-like behavior is universally shared by certain integrals with a large

parameter. In this subsection, we apply this idea to find the transition bandwith of the Daubechies

product filter P(e W), a quantity very important in signal processing.

A change of variables t = (1 - cos 8)/2 in Eq.(2.10) produces the integral of sin 2p - 1 0. The limits

of integration are related by y = (1 - cos0)/2. Thus Eq.(2.10) leads to the Meyer's form [50, 1992]

of the halfband filter P(z) in Eq.(2.2):

P(e") = 1- cp1  sin2p- 1 d. (2.11)

The zero at y = 1 becomes the celebrated "zero at 7r" for the frequency response P(eiw). This

zero at w = r is of order 2p, from the power of sin 9 in the above integral and the form of P(z) in

Eq.(2.2). Factorization gives pth order zeros for the Daubechies polynomials in P(z) = H(z)H(z-1 ).

That zero at w = 7r and z = -1 is responsible for the p vanishing moments in the wavelets.

The trigonometric polynomial P(e 'w) drops monotonically from one to zero on 0 < w 7r. The

first 2p - 1 derivatives are zero at w = 0, and w = 7r, from the vanishing of sin 2p- 1 0. Furthermore,



Asymptotics of Daubechies Filters and Wavelets

this integral of (1 - cos 0)P-' sin 0 involves only odd powers of cos 0, and the only even power is the

constant term. P(e '") is odd around its value 1/2 at w = 7r/2, and it is called "halfband".

An important question for such a filter is the slope at w = r/2. This slope determines the width

of the frequency band, in which P drops from 1 to 0. An ideal filter has a jump; its graph is a

brick wall (however, this ideal is not a polynomial). An optimally designed polynomial of order N

has slope nearly O(N- 1). There will be ripples in the graph of P(e'w)-a monotonic polynomial

cannot provide such a sharp cutoff. The Daubechies filters are necessarily less sharp: O(N) becomes

O(VN).

Theorem 6 The slope of P(e") is approximately V/-p/r at w = 7r/2. The transition from nearly 1

to nearly 0 is over an interval (i.e. transition band ) of with 2 2/p.

Proof. The integral in Eq.(2.11) has derivative sin2p- 1 (7r/2) = 1 at w = r/2. The slope of P(e '")

is exactly the constant -c-'. From the proof of the previous theorem, this is - p--/ + 0(p- 3/ 2).

To measure the drop in P(e"w) around w = 7/2, we integrate from 7/2 - /v.,/- to 7r/2 + a//-i.

Shifting by r/2 to center the integral, and scaling by 0 = -/<r , the drop is

/@ 1 ( 7)2p-d

cP' sin 2p - 1 dO 0-- 2p-
J0 / V/- Cp vF 2p1/

- - er2 dT.

Thus 95% of the drop comes for a = v/ (within two standard derivatives of the mean, for the normal

distribution). This transition interval has width AAw = 2 -2p, as the theorem predicts. That rule

was found experimentally by Kaiser and Reed at the beginning of the triumph of digital filters. O

2.2 Asymptotics of Daubechies Mini-phase Wavelets

2.2.1 Introduction

Orthogonal wavelets with compact support were announced by Ingrid Daubechies in 1988. For each

p = 1, 2, - --, she created a wavelet supported on [0, 2p - 1] with p vanishing moments. Our goal is

to understand the asymptotic behavior of the scaling functions and the wavelets as p -+ oc. The

construction begins with the "maxflat minphase lowpass filter" of length 2p. From its coefficients

hp[n] we form the transfer function or the filter polynomial Hp(z), and there are four main steps to

analyze as p -+ oc:

(1) The 2p - 1 zeros of Hp(z) = Z, hp[n]z - n ,
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(2) The phase of Hp(z) on the unit circle z = eiw(we keep using Hp(w) for Hp(eiw)),

(3) The scaling function Op(t) with Fourier transform I-=,l Hp(w/2k),

(4) The wavelet wp(t) = k(-1l)nhp[2p - 1 - n]¢p(2t - n).

In the previous section, we have analyzed the zero distribution of Hp(z). The phase analysis of

H,(z) was carried out in Kateb and Lemari6 [41, 1995]. This section brings step (3) and (4) near to

completion, based on the Kateb-Lemari6's analysis of step (2). The phase is of crucial importance

because orthogonal filters cannot be symmetric (beyond the Haar case p = 1). We show that the

filter coefficients and the scaling functions have similar asymptotic behavior (but not identical! See

Section 6).

The zeros of H7o(z) are shown in Figure 2-6. There are 70 zeros at z = -1, or w = 7r, which makes

the function "maxflat". The other 69 zeros are inside the unit circle, which makes it "miniphase".

The graph of IH70 (w) shows that the filter is "lowpass"; the magnitude is near zero for high fre-

quencies. This graph approaches the ideal one-zero function as p -+ 00. Then the magnitude of the

infinite product p(w) = k0=1 Hp(w/2k) approaches the characteristic function of [-7r, 7r].

15+ + + +++++++

05

0

-05

-1
++ +++

+++

-15 ++++

-1 -05 0 05 1 15 2 25

Figure 2-6: H 70 has 70 zeros at z = -1 (not shown in the graph) and 69 zeros inside

the unit circle. Those outside the unit circle in the graph are their reciprocals.

The z-transform (z+z - 1/2 = 1-2y) of the limit curve 14 y(1-y)l = 1 in y-plane is two intersected

circles Iz ± 11 = v'2 in z-plane. By Theorem 1, all preimages of Y's are in the right half plane: half

inside the unit circle and half outside. We take all the zeros inside to construct the Daubechies

mini-phase filter Hp(z) according to Eq.(2.5). Those zeros approach the circular arc Iz + 11 = Vr2

from inside by Theorem 2 (see also Figure 2-6).

From the two asymptotic formulas for the zeros (along the circular arc and near the end points

±i), Kateb and Lemari6 found the leading term in the phase arg(H(w)). They multiplied the 2p- 1
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linear factors and added phases. The result is naturally expressed in terms of the group delay grd:

grd(Hp(w)) = - (phase of Hp(w)) = pg(w) + O(pl/ 2 ), (2.12)

with

1 1 cos 1 - sinw
g(w) = + In (2.13)

2 27r sin w 1 + sin w

(The 1/2 term was not in Kateb and Lemari6's paper [41, 1995] and appears here because we shifted

the highpass filter to make it causal.) This even function g(w) is analytic and convex on (-r, 7r). Its

Taylor expansion around w = 0 is (1/2 - 1/r) + w2/6r + O(w 4). Its derivative is infinite at w = ±7r.

Our step (3) in the analysis must work with the infinite product p(w) = fI ,= Hp(w/2k). The

phases add, and the derivative for the group delay contributes a factor 1/2
k. This makes the infinite

sum converge:

grd(¢p(w)) = pG(w) + O(pl/ 2 ) (2.14)

with

G() = 2 2 )(2.15)
k=1

The function G(w) and its derivative are shown in Figure 2-7. The series for G(w) gives G(0) =

g(0) = 1/2 - 1/r and G"(0) = g"(0)/7 = 1/217. The numbers To = G(0) 2 .1817 and 7r = G(ir)

.3515 will be called the transition time in the eventual asymptotic formula for p,(7), with r = t/p.

We note an important difference in the time scale t/p, compared to the asymptotics of B-splines

(see Unser, Aldroubi and Eden [46, 1992]). The splines are symmetric. They approach Gaussians

with scaling tl, . The spline wavelets approach cosine-modulated Gaussians on that scale too.

The Central Limit Theorem is at work. Our problem requires a further step, and the technical tool

will be the method of stationary phase. This enters when we invert the Fourier transform:

P p(t(w)e t 1 e-ipG(-')(w)ettw dw = ]p(t). (2.16)

The scaled phase is approximately G(-1) (w) = fo G() dO. Our main task is to justify this

approximation Op(t) _ (p(t) based on magnitude and phase. Then we analyze the asymptotics of
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Figure 2-7: G(w) and G'(w)

,p(t) as p -+ oc. The results are summarized in our abstract.

Throughout this section, "A - B" means that A and B share the same leading term (when

expanded in terms of a certain asymptotic parameter). The symbol "a <K 1" means that a is small

enough (usually this can be characterized by some asymptotic parameter). We refer to [4, 51, 56, 81]

for a full theory of asymptotic analysis on integrals.

2.2.2 Accuracy of Approximations

We define the following approximations to Op(t):

1 p()e i t ° dw (frequency limited to Iw! < I r) (2.17)

p(t) = I eiarg(ep)eztw dw (magnitude taken as 1) (2.18)

(t) = e-ipG )()e't dw (leading term of phase) (2.19)

The integral G(- 1)(w) = fo G(O)dO approximates the phase. Our main goal in this section is to

justify these approximations. And in the next two sections, we will give the asymptotic analysis of
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Spectrum of the scaling function ,p(t)

We take the Fourier Transform and its inverse to be

(w) = 7 (t)e-itwdt
1 00

and 0(t) = (w)ei t dw
2, 0

Therefore, for any two square integrable functions f(t) and g(t),

1
(f (t), (t)) = ( ), ))

2n
(2.20)

For each p, let Ep(w) = Ip()12 and Pp(w) = IHp(e"w) 2 . In order to use Pp(w) to estimate the

Lq-norm of p(w), we need a detailed description of its behavior outside a finite spectral interval.

It is known that asymptotically Op E C - 4p  with p2, .2, so that ,p decays like w-4p at infinity

(see Daubechies [10, Chapter 7]). But this is not sufficient to justify (in the sense of L-norm)

our attempt to drop the spectrum of Op(t) outside [-r, 7r] without significant loss of energy. Meyer

provides the right bound, even though it is rougher in terms of the estimation of regularity compared

to the results in Daubechies [10, Chapter 7].

Lemma 4 (See Meyer [50, p. 103]) There exists a positive number a, such that Ep(w) < 2- 2
,

p
i

for any p and any w e [L 2i, 7r2J], j = 0, 1, . Therefore Ep(w) < (ir/)P for any positive W.

Corollary 3 For any positive q and 0 < e < 1,

IpllILq,(R) I= PIIL,q[-r-E, +E] + exponentially small term

Lemma 5 0 < e < 1. There exists 6, G (0, 1) such that

, < P,( ) = o()
:= P,( ) (1 + O(3f))

w E [7r + E, 27r]

w E [0, 7 + e]

Proof.

1] From Eq.(2.11),

Pp(w) = 1 - R (w), with Rp(w) = c 1 sin 2 - 1 dO

where cp is the constant that makes Pp vanish at 7r. Stirling's formula shows that cp has the

leading term V'--p. Note Pp(w) = Rp,(r - w) is the mirror image of Rp,() with respect to

as p --+ cX (2.21)

(2.22)
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w = r/2. Since 20- < sin < 9 on [0, 7r/2], we have

Rp(w) = c- 1  sin2p - 1 dO < c-1wsin2p - 1  <
R,(w)= c,

c- 1  sin2P w.
P 2

It also gives Rp(w) < clW 2p

2] Noticing that Ep(w) = k=l Pp(w/2k) and Ik=l(1 - x,) k=l Xk, for any Xk E [0, 1],

one has, for any w E [0, 7r + e],

Ep(w) = Pp( ) 1(1 - Rp(-))

= P ( -)(1 - 2p
2 1 - 4- 42p

(2.24)

For w E [r + E, 27r],

Ep(w) < P,( ) = Rp(r -- ) 5< cl COS2P 2
2 p2 2

By (2.24) and (2.25), any 6E E (max[( r-6) 2 , cos 2 6], 1) makes the lemma true.

Lemma 6 For any positive q,

r0
fo f Rp(0) dO = O(p-1/2 ) as p -+ o.

Proof. For 0 < w < 1,

7r 1 _ I S
Rp,(- -) = - cos2p-1

1 p-1/2 e-(p-1/2) 02 dO

2 o

= 1erfc( - 1/2 w),
2

(2.23)

(2.25)

(2.26)
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where the complementary error function is defined by

erfc(z) = 2 j e - t2 dt.

Since Rq(w) has a boundary layer near w = 7r, we have (for any q > 0)

[Rp(w)]qd= j[Rp( -2 w)] d

- W)]q d
o 2LII(

= [erfc(

[erfc(0)]q dO = O(p - 1/ 2)

Now we can analyze the accuracy of our approximations.

Approximating Op(t) with ¢c(t)

Theorem 7 Let rp(t) = Op(t) - Oc(t). Then,

Irp(t)lLo(R) = O(p- )

I rp(t)I L2 ) = O(p- 1)

Proof. By definition, Fp(w) is just the truncated spectrum of p(w) on

(2.27)

(2.28)

IR\[-Tr, 7]. By the corollary

of Lemma 4, the Lq norm of ?p is determined by its restriction on [-27r, -7r] U [w, 27r] up to a

p-exponentially small error. Then,

IIFP|Lq(,) 2 1/q1[F IILq[7, 2 r] = 2 ' /q J Ep()Lq[7r,27]

(by Lemma 5)2 L,[, 2rp]

= 4 '1/q1  Rp IIL,[LO,i/2]

- O(p-1/2q)

(2.29)

(by mirror relation)

(by Lemma 6)

Then (2.27) and (2.28) follow immediately from IIrp(t)llL 2 (R) '= Ir'plL 2 (R) and IIrp(t)IIL.(R)

rllFrplL1 (R)-. E

2q 1/q2 p -/2

Vp- 1 )]q du
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Approximating C(t) with p(t)

Theorem 8 Let sp(t) = Cp(t) - Op(t). Then

I Sp(t)IIL.(R) = O(p- ) (2.30)

IISp(t)lL,(a) = O(p- ) (2.31)

Proof.

1] For (2.30),

1 I 1 7
Is2(t)l = - kP/I2pl) e2 dw < 1 I -p I dw

1" 71 "

f (1 - Ip ) (1 + p) dw = (1 - Ep (W)) d
27 7r 2r _7

(1 Pp()) dw = 2 Rp () dO= O(p-)
7o 2 7o

where the approximation has an exponentially small error (by Lemma 5). This argument is

valid for any real t. Therefore (2.30) is true.

2] For (2.31)

1 1

21-1 2 1 2 1 11I L2n,()ISI = I10IP- I ILOP -r,/ i7rI - 1 IO-p L2[-lr,r]

i $I)(1 kI) dw = I j[1 - E,(w)]2 dw

r[1 ()]2 d = 2J [Rp(0)]2 dO = O(p - 1/ 2 )

Approximating p,(t) with @p(t) (I)

Both Op(t) and Dp(t) are entirely determined by their phases. By (2.14), the phase difference has

order O(pl/ 2 ), which is very large in the usual sense. This prevents any attempt to explain their

similarity by estimating the Lp norms of their spectra. A new mechanism has to be introduced to

explain their close relation. That is the stationary phase method we will discuss in the next section.

Before finishing this section, we interpret the results obtained so far.
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By Theorems 7 and 8, one has

Ilp(t) - Op(t)iLoo(R) = O(p - 1 / 2 ) (2.32)

IIp(t) - 0p(t)1L,(R) = O(p - 1 / 4 ) (2.33)

(2.32) is not so satisfactory since we will see later that O(p - 1 / 2) itself is the characteristic magnitude

of the scaling function Op(t) (see section 2.2.4). However, with the help of (2.33), one can show that

the set on which |Ip(t) - Op(t)| reaches O(p - 1/ 2 ) is small. The exact statement is Theorem 9.

Theorem 9 For any positive a and C, we define

Aa,c = {t E I: ¢,p(t) - op(t) > Cp-'}

Then p(A,c/p) < C'p2(a-3/4), where p is Lebesgue measure on the real line.

The proof uses the Chebyshev inequality to estimate the measure of Aa,c by the L 2 norm of

op(t)- OP(t).

Corollary 4 Set 7 = t/p, and denote any f(t) = f(pr) still by f(T) for simplicity. Then for any

ca < 3/4 and C > 0, limp,,, p{T E I : IOp(T) - op(rT)I Cp-a} = 0.

This result tells what one can hope for from the approximation to Op(t) by @p(t) ( or Op(7)

by )p(T), T = t/p). The approximations defined by (2.17) and (2.18) have already introduced a

non-negligible error of at least order O(p- 3 / 4 ). Therefore for the further approximation by (2.19),

it is only meaningful to talk about an accuracy of order O(p-") with a < 3/4.

2.2.3 Fourier Integrals with Large Parameters

Before we investigate the asymptotic form of the approximate scaling function 4c(t), it is helpful to

review and extend some results in asymptotic analysis.

Fourier integrals with one large parameter have the form

I = f(w)e - A(w) dU (2.34)

with real A, f, F. The asymptotic analysis usually deals with A > 1. The interval [a, b] can be

finite or infinite. Our problem is the finite case. The basic results can be stated as follows:

Statement 1 (End Point Contribution) Suppose that F is a C1 function and has no critical

point inside the closed interval (or equivalently, no stationary phase ), and f is a continuous function.
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Then the leading asymptotic magnitude is proportional to 1/A:

A = - [f (a) e'(a) f (b) e '(b) +(A-) (2.35)

Statement 2 (Stationary Phase Contribution) Suppose

1) F and f are C 1 and Co functions on [a, b] respectively,

2) c E (a, b) is the only critical point of F on [a, b] and f(c) $ 0,

3) F is C2 around this critical point and F"(c) $ 0.

Then the leading asymptotic magnitude is proportional to 1/v/A:

27 = f(c) -i[XF(c)+sign(F"(c)) - (2.36)X = f(c) IF (c)± (2.36)

The proofs of these two statements can be found in many asymptotic analysis textbooks (for

instance [1, 5, 7, 11] ) with a little modification on the regularity of F.

Next, let's consider the doubly parameterized Fourier integral (DPFI):

b

IX(r) = e - iAF(wr) dw, for real T. (2.37)

At any fixed time 7, Statements 1 and 2 can be applied to DPFI. As long as the regularity conditions

for w are satisfied uniformly during a certain period of time, the approximations hold uniformly with

respect to 7-. Attention must be paid to the so-called transition period of 7. It could happen that

one period of time belongs to the case of Statement 1 uniformly, and some other period to that of

Statement 2, while the rest is a transition period between these two cases.

The transition phenomenon is structurally stable and therefore universal. It occurs near "turning

points". To begin, we consider an idealized DPFI with a = -1, b = 1, and F(, 7) = - - -w. We

plot the critical points of F(w, 7) as a function of w with parameter 7 on the 7-w plane. F has two

critical points for r E (0, 1). Outside [0, 1], there are no critical points on the interval [a, b]. Two

classes of transitions with different origins occur here (see Figure 2-8):

1) Near r = 0, the two critical points coming from the right side collide and cancel each other

(and actually go to the imaginary axis).

2) Near 7 = 1, the pair of critical points coming from the left go out of the integral domain.
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Figure 2-8: Transition Phenomenon

In this example, the leading magnitude of IA() is 1/A uniformly on any compact set of negative

time (by Statement 1) and 1/v' uniformly on any compact set of positive time (by Statement 2).

The n, how is this jump in magnitude realized around time zero? The answer is given by Theorem 10.

We only sketch the proof, since a strict proof may take unsuitably long. Similar work on uniform

approximations of integrals can be found in Wong [81, Chapter 7].

Theorem 10 Let L(w) be a function on [a, b] (a < 0 < b) that satisfies

1) L is a C' function;

2) w = 0 is the unique critical point of L ;

3) L is C3 around 0, and L(0) = L'(0) = L"(0) = 0, L'(0) = a > 0.

Suppose F(w,T) = L(w) - -rJ. Then for 71 <C 1 (or precisely, r = O(A-))

IX(T) = 27r ~ -2/A Ai(- 2X2/a 7) + o(A-), (2.38)

where Ai is the Airy function.
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Proof. Since 171 < 1, the leading magnitude of I (r) is completely determined by the local property

of L near w = 0. Therefore we have

f b e - A(L(w)- rw) d J e (L( - rwd

a-6 C)

-J e- -r) dW
e- 6 -( - ) dw.

oo

Scaling the variables by setting r = - a/2 2 t and w = /-/aA 0 yields

I(-) 02/a] e-i( t) dO + o(A-)

= 27r /2/aA Ai(t) + o(A-)

= 27r /2/aA Ai(- 7/a r) + o(A- 5).

Now let us consider the second type of transition. A generic case is given by the following

theorem.

Theorem 11 Suppose F(w,r) = L(w) - rWu, where L(w) E C'[-a, a] satisfies

1) L(w) = L(-w);

2) w = 0 is the only critical point for L;

3) L is C2 around w = a and L"(a) # 0, oc.

Then for Ir - AlI < 1 (precisely, jT - All = O(A-2)), we have

L (7)= cos( T) coserf(v'S) + sign(A2 ) sin( inerf( S)
2 2----- '

+ o(A- ) (2.40)

A 1 -7S = sign(A 2 ) A ,
JI42I

(A1 -7) 2
T = 2(ra - Ao) +

A 2

with Ao = L(a), A1 = L'(a), A 2 = L"(a), and two Fresnel integrals,

1 * 92
coserf(s) = - cos -dO

2 -o o 2
sinerf(s) = - sin -dO.

vf27r 0- 2

Proof. Again we only sketch the proof and refer to Wong [81, Chapter 7].

(2.41)

( .o )
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1] One only needs to prove the case when A 2 > 0. For negative A2 , simply replace L and r by

-L and -7.

2] As Jr - All < 1,

fa a -a+6

Iz(T) =( e(L(u )- rw) dw j + e-iA (L(w)-rW ) dw
-- a- -a

= 2Re e-iA(L( )- r) dwc 2Re e-2O+A(-)+-

- 2Ree - iA(Ao - r a) e-iA[(A -r)+-
2 dO ( = w - a)

S2Ree - A(A o - ra) e-iA[(A-7)0+ 22]dO (since IAl - -r < 1)

2 \ (AI_-__)2_ VA S .2

Ree - i (Ao - '7a) e
2  A2  e- 2du

A2  cos( T) coserf(v/AS) + sin( T) sinerf(vA-S)

Unfortunately, in our case, L(w) = G(-1)(w), hence A 2 = oc. The generic result of Theorem 11

doesn't apply to this special case. In fact for 4p,(), one has to deal with the following type of local

integral with large parameter A:

I (T) = j eA(0-a2 log 0+b02) dO 7 0, a, b, c > 0 (2.42)

Its asymptotic analysis may be very involved. However this transition is of less importance to us for

the reason indicated in the last paragraph of section 2.2.2. So we leave this analysis work for the

future.

2.2.4 Asymptotic Structure of (,(t) and bp(t)

Asymptotic form of 4p(t)

We are ready now to establish the asymptotic form of Pp(t). Recall that we introduced the lower

transition time To = G(0) - .1817 and upper transition time ri = G(7r) - .3515. The definition of

,p(t) in (2.19) and DPFI in (2.37) implies a scaling t = -p. For simplicity, we continue to use (p(T)

to denote (I,(p-).
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Result 1 (Stationary Phase) Uniformly on any compact subset K of (To, T1 )

2p(r) = r cos[p(G(-1)(w,) - G(w,)w,) + -] + o(p- 1/ 2 ). (2.43)( pG'(w,) 4

w, is the unique w E (0, 7r) such that G(w) = 7.

Let F = G(- ' ) (w) - rw and apply the result of Statement 2 to DPFI.

Result 2 (Airy Transition) For jr - Tol < 1,

Ip(r) = A-4 Ai(- (7rp2 (- - 7o)) + o(p- ) (2.44)

Use Theorem 10 with L(w) = G(- 1)(w), and use T - To instead of 7. Note a = 1/217r in this case.

Result 3 (End Points) Uniformly on any compact subset K of [To, 7-]C,

() = 1 sin[p(G(-')( r) - err)] + o(p- 1). (2.45)
pr (T - 71 )

Apply Statement 1 to DPFI in the case F = G (- 1) - Tw, a = -ir, b = 7.

Result 4 (Front Matching) (2.43) and (2.44) match over interval p- 2/ 3 < - 70 < 1.

Proof. Let x = V27rp2(7 - TO) and K(w) = G(- )( () - G(w)w.

1] 7 - To > p- 2/ 3 implies x > 1. Since

Ai(-x) 1 -1/4 sin[ 2 3/ 2 + ] + O(x - 7/4 )  as z > 1,Ai(-x) = 1 + ± as ] ,
O 3 4

the leading term of the expression in (2.44) is given by

(')1/4p-1/2(,r _ 7-1/4 2 1(4
(42)1/4P-1/2(_Tr)-1/4sin[ (427r)1 / 2p(r - ro) 3/ 2 +  ]  (2.46)
7r 3 4

2] 0 < 7 - ro < 1 implies w, < 1 and G(w) _ G(0) + 2 w2 as IwI < 1. Therefore

G"(0) = 1/21r gives w, : [427(r - 70)]1/ 2 and

K(w,) O) 0) W 2 - (427r)/ 2 (T _ 0 )3/ 2  (2.47)6 3 T= 637r ---3
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and

G'(w2) G"(0) ( 1/2(7 _ T o)1/ 2  (2.48)
217

Substituting these two equations into the expression in (2.43), the leading term of (2.43) is

given exactly by (2.46) for 0 < 7 - TO < 1. O

The end point contribution is of magnitude O(p-1). This order is more delicate than our approx-

imation precision (see the last paragraph of section 2.2.2). Therefore this modulated sine wave of

order p- 1 is only the behavior of p (t), not that of the scaling function. These ripples are introduced

by the ideal lowpass filtering (truncation) in (2.17). However, as one can see from Figure 2-9, part

of the earliest ripples given by (2.45) can match p,(r) quite well.

The stationary phase contribution lasts asymptotically 7T - To = 0.1698 in the scaled time 7.

During this period, the magnitude has an order of O(p - 1/ 2 ) as noted below (2.33). A better way to

interpret (2.43) is that the phase inside the cosine is basically amplified (by p) and shifted (by 7/4)

from the Legendre transform of G(- '). G(w) provides a natural parameterization for the scaled time

period (To, T ). Therefore, 7 = G(WL) together with (2.43) is the w,-parameterized version of 4,(7)

on (To, 71). This is quite useful for computer plotting (the explicit inverse of G is unnecessary). The

total wave number k during this period is entirely determined by the area bounded by G = G(w),

= 0, and G = 71 in the left subplot of Figure 2-7, which is approximately 0.4152. Therefore

k ~ 0.4152p/2r 2 0.0661p. Every increment of 30 in p adds two complete waves during this period,

asymptotically. This is confirmed by numerical results.

The Airy transition reveals the rich structure of the main lobe (or the wavefront). The main

lobe lasts about p-2/3 in the scaled time 7 and has a magnitude O(p- 1/ 3 ). This makes it the real

leader of all waves that follow it: it is much wider than other waves (p- 2/ 3 to p- 1 ) and also much

higher (p-1/3 to p-1/ 2). However, from the viewpoint of energy, Airy transition is insignificant since

its total energy is of order O(p-1/ 3).

We have plotted our approximation in Figure 2-9.

Approximating Vp(t) with Pp(t) (revisited)

Now we show that 4p(r) and 4,(T) will share the same envelope for the stationary phase period

and their graphs have separation O(p- 1 ) during this period.

For convenience, let Q(w) = grd(qp)/p and Q(-1) = fo Q(w) dw = - arg(op)/p for any fixed p.

We state the following facts:

1) 4p(T) = d e-P(Q( - ( ) -(Wr ) dW ;
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asymptotic approximation and matching for phi_50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
tau=t/50

Figure 2-9: Asymptotic approximation and matching for 50 (T) (dashed line). The left
and right solid lines are Airy transition and end points contribution. The dark dotted
line in the middle is the stationary phase. Each approximation has been uniformly
shifted by approximately 0.01 (= O(p-1)) (see next subsection).

2) Q(-w) = Q(w), and Q(w) is strictly increasing on [07r];

3) By (2.14), jQ(w) - G(w)I cp - 1/ 2 for any w [-r, 7r]. On any compact subset K of (-r, 7r)

this estimation is differentiable:

IQ(n)(w) - G(n)(w) 1 cnp
- 1/ 2 (2.49)

Therefore we can apply stationary phase to ,(7) uniformly on any compact set K of (TO, Ti) to

find that

2
p (T) 2 cos[p Q(-1 (w.) - Q(aw)w ' ) + + o(p- )

¢p7 =7pQ'(0')4
(2.50)

w, is the unique w E (0, 7r) such that Q(w) = T.

By (2.49), on the compact set K, one can replace Q(n) and w' with G(n ) and w, (as defined in

(2.43)) at the price of an order O(p - 1/ 2 ) phase perturbation, i.e.

(2.51)= 2 ( cos[p (GC(') (w,) - G(w,)w, + O(p - ' / ) ) + ] + o(p-2)pp G p ((() 4
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Comparing (2.51) with (2.43), one sees that during the stationary period, Op(-) and ,p(7-) share

the same envelope p And at each time r, the phase of the leading term can be made the

same (mod 27r) up to an order O(p- 1) shifting of the scaled time 7. This means that the graphs

of Op(r) and p,(r) during this period have separation O(p- 3/2 ). Since the residue terms in (2.51)

and (2.43) actually have magnitude O(p- 1) (due to the good regularity of both G and Q on K), the

graphs of Op(T) and ,p(r) have distance O(p-1).

Similar work can be done for the Airy transition; the phase perturbation still exists.

2.2.5 Asymptotic Structure of Wavelets

Goodness of approximation

The orthogonal highpass filter Fp is the alternating flip of the lowpass filter Hp. In the z-domain,

F,(z) = -z-NHP(-z -1) with N = 2p - 1. The delay factor z-N makes Fp causal. Its group delay

is grd(Fp) = N - grd(Hp)(w + 7r).

The transform of the wavelet wp(t) is ,p(w) = Fp(f)¢p( ), so that grd(p) = [grd(Fp)(2) +

grd(p)(2 )]. Using the same notations as (2.14) and (2.15), the group delay for wavelets has leading

term

1 1
Igrd(p) - [p(2 + G(w)) - 2]I Ci5p. (2.52)

2 2

We already know that the spectrum of Op is mainly concentrated on [-Tr, 7r] and the magni-

tude IFp(w)| converges to the ideal highpass filter. Therefore it is natural to introduce Wp(t) to

approximate the wavelet wp(t):

() = -- ( + ) e-ip(G(-1)(w)+w/2)+zw/2eitw dw (2.53)

The minus sign before the integral is because the phase of ip near w = 0 is near 7r by our definition

of the highpass filter F,(z) = -z-NHp(-z-1), though its magnitude is zero at w = 0. One can

repeat the work already done for the scaling functions and obtain the analogues of (2.32) and (2.33).

Asymptotic form of Wp(t)

It is always good to use the scaled time -= t/p. First we have

WP() = , 2 +  e-ip(G(-1)(w)-(r-.5)() e'/2 d (2.54)
27 2x 7
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Let 70" = .5 + G(wr) = .5 + r71 .8515 and rl~ = .5 + G(27r) _ 1.0849 be the lower and upper

transition times for the scaled wavelets. Notice that

1) G is smooth inside (7r, 27r) and continuous on [7r, 27r],

2) G is monotonically increasing on [7r, 27],

Result 5 (Stationary Phase) Uniformly on any compact subset K of (rd, Tr1 )

W(r) = - 2 cos[p(G-1)(w,) - G(,)w,) + + ]+ o(p- (2.55)
wpG'(w,) 4 2

Here w, is the unique w E (7, 27r) such that G(w) = 7 - .5.

And similarly, one can write down the endpoint contribution:

Result 6 (End Points) Uniformly on any compact subset K of [rO, 7,r]c,

W(7) ( 1 sin[p(G(-1)(27r) - (7 - .5)27r) + 7r]
SI (2.56)

+ sin[p(G(- 1)(r) - ( - .5)7) + 7/2] + o(p-).
T - 7O

There is no Airy transition for wavelets. The group delay of @ii on [-27, -r]U[ [r, 27] has no crit-

ical point. Another interpretation is that the Airy wavefront has been removed by the highpass filter

F,. Therefore the characteristic scale for wavelets is: magnitude = O(p-1'/2); lasting time(scaled)

= 7w - 70 .2334. We have plotted our stationary phase approximation in Figure 2-10. Beyond

this stationary phase period, the magnitude of wp(t) is at most O(p-1), which is energy insignificant.

2.2.6 Asymptotic Structure of the Filter Coefficients

Three asymptotic regions

The asymptotic analysis method for the scaling function Op also applies to the filter coefficients hp[n].

Comparing (2.12) to (2.14), one only needs to replace G and G(- ') by g and g(-1) = fo g(O) dO. A

natural approximation to the impulse response hp[n] is h;[n]

h [n] = ~ e - ip g (- 1)(w) ei nw dw. (2.57)
2



Asymptotics of Daubechies Filters and Wavelets

0 0.2 0.4 0.6 0.8 1 1 2 1.4 1.6 1.8 2
tau=t/40

stationary period

-1 ' I 1

0.75 0.8 0.85 0.9 0.95
tau=t/40

1.05 1.1 1.15

Figure 2-10: Accuracy of the stationary
The dashed line represents w40 and the
7 shifted by 0.01 = O(p-1).

phase approximation for
solid line is given by (2.5

the wavelet
4) with p =

We can extend the definition of h* to allow non-integer index t by

h;(t) = I-1 ej- 'rpg( - 1)) e t "W duP 27r f mL
(2.58)

Scaling t by a factor p, 7 = t/p yields

h (T) = e-p[g()()-rw] dw. (2.59)

Define two filter transition times _ro and T7h by 7Th = g(0) = G(0) .1817 and T h = g(E) = .5. Then

the asymptotic form of h(Tr) is described by the following three results:

Result 7 (Stationary Phase) Uniformly on any compact subset K of (Toj, r1h),

h () = 2 cos[p(g(pg'(Wr) -(L) _ g(,)w,) + ] + o(p-1/2).
4

Here w, is the unique w E (0, 11) such that g(Lw) = T.22JC"L~" \/

w_40 and its stationary phase approximation

0.5

-0.5
-0.5-

.. . . .. . . . . .. . /\ -v -- -- - - -- - - -- - -

WP(t).
40 and

(2.60)
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Result 8 (Airy Transition) For 17 - Troh < 1,

h*(7) = - Ai(- 6 r (7 - -oh)) + o(p-A) (2.61)

Result 9 (End Points) Uniformly on any compact subset K of [,ro, r1 ]c

1 . 7 rh p() = r sin[p(g(- )( ) -r 7) + o(-). (2.62)
Sp7 (7 - 71h) 2 2

Of course, the Airy transition and the stationary phase are matched over the interval p-2/ 3 <

7 - T7 < 1.

These results have the following interpretations:

1) Stationary Phase. The impulse response hp[n] in this period is energy significant. Its

characteristic magnitude is p-1/ 2 . This period lasts approximately .3183 p from n - 7-oh p to

7.h p = p/2. Its total energy is of order O[(p- 1/ 2) 2 (h - -h)p] = O[1].

2) Airy Transition. Though highest, it is energy insignificant. Its leading order is O[p - 1/ 3]

but its duration is only O[p - 2/ 3] . O[p] = O[pl/ 3]. Therefore its total energy is of order

O[(p-1/3)2 p/3] = O[p-1/
3].

3) End Points. The magnitude is no more than O[p-1]. Therefore it is energy insignificant.

In one word, the energy of the impulse response hp[n] is asymptotically concentrated on the interval

n E [rohp, 71hp]. Our analysis of these coefficients began with Nico Temme's plot of h1oo[n] in [72, 96],

which is reproduced in Figure 2-11. In this case p = 100, and the leading order is - log10  = 1.

Readers can observe the stationary period up to n = p/2 = 50.

The similarity and difference between cp(t) and hp[n]

A frequent conjecture is that as p goes to oo, hp[n] should look like Op(t) at integer times t = n,

0 < n < 2p - 1. This is partly correct and partly wrong. We can summarize three essential points

of similarity:

1) Both hp[n] and Op(t) have the same support interval [0, 2p - 1].

2) For large p, as n and t increase from 0 to 2p - 1, both hp[n] and Op(t) undergo the following

three stages:

1] Airy Transition (wavefront) with leading magnitude O(p-1/ 3) and lasting time O(pl/ 3 ).
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200

Figure 2-11: Plot of - log 0 Ih,[n] I with p = 100, 0 < n < 2p - 1 = 199. The sharp Airy
transition ends near n = Trhp _ 18, and the stationary phase extends to n = 50 with
- log 0o Ih,[n] I 1. The long tail has small coefficients that are energy insignificant.

2] Stationary Phase (steady oscillation) with leading magnitude O(p- 1'/ 2 ) and lasting time

S(p).

3] End Points with leading magnitude O(p-1).

3) Both wavefronts start near time p(1/2 - 1/7r) - .1817p.

However, this structural similarity does not imply that the conjecture is entirely true. A significant

difference also exists. The Stationary Phase period of the filter impulse response hp[n] is much longer

than that of the scaling function. The scaling function stops near t 2 .3515p, much earlier than the

impulse response does (near n - .5p). Therefore the impulse response cannot be the sampling of

the scaling function.

Numerically the dilation equation is solved by the cascade algorithm, which iterates the lowpass

filter (with time rescaling). A natural choice of the initial data is the impulse 6[n]. Then the first

iteration gives exactly the filter impulse response hp[n]. Usually within 7 or 8 steps, one can obtain

the scaling function with satisfactory accuracy.

From our results, we can see what is happening during this algorithm. After the first step, the

values corresponding to the time interval (.3515p, .5p) will be attenuated again and again until the

leading magnitude falls from 0(p- 1/2 ) to O(p- 1 ).



Chapter 3

Refinement Differential Equations

and Wavelets

In this chapter, we consider the following type of Refinement Differential Equations(RDE)

P(D)O(x) = 2[H(E)O](2x),

where P(A) is a real polynomial and H(z) is a real Laurent polynomial; D = d/dx and E is the

backward translation operator Ef(x) = f(x + 1). If the differential part is P(A) - 1, the equation

is the famous refinement equation for designing scaling functions in wavelet theory. In this chapter,

we reveal the general structure of solutions to RDE's and establish the relation between RDE's and

certain types of refinement functional equations (RFE). This makes it possible to solve RDE's using

the generalized subdivision scheme. The probability idea of Rvachev and Derfel is explored in a

more systematic way. Our results are finally applied to the construction of smoothed wavelets and

quasi-multiresolution.
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3.1 Introduction

Let E and D denote the translation operator and derivative operator

f(x) -+ E(f) = f(x + 1), f(x) -+ D(f) = f'(x).

Let P(A) be a polynomial in A and H(z) a Laurent polynomial in z - 1 with real coefficients(following

the literature of digital signal processing, we use z -1 instead of z)

P(A) = CNAN + CNIANN - 1 +- + co, N > 0, CN 0,

H(z) = h,z - m + hm_ z - m+1 + + hm-L z -m+L, hmhm-L # 0.

In this section, we consider equations of the following form

P(D)O(t) = 2[H(E)O](2t). (3.1)

We call it a refinement differential equation(RDE) of type (P, H), with order N and length L.

If H(z) = 0, the RDE becomes an ordinary differential equation (linear homogeneous equation

of order N). If, on the other hand, P(A) - 1, the RDE is called a refinement equation(for designing

mother scaling functions with compact supports) in wavelet theory. Therefore in this paper, we shall

assume H : 0 and deg P = n > 1. The scalar 2 in the equation is not essential and can be replaced

by any general integer of k > 1. It is kept here to follow the literature in wavelet theory and digital

signal processing (See Daubechies [10, 1992] and Strang and Nguyen [69, 1996].)

RDE's of type (3.1) arise in many contexts. The first work should be mentioned is Mahler's

remarkable paper [47, 1940] in 1939. Initiated by an integer partition problem in combinatorics, he

studied the following functional equation

(x+a)- = (qx), a # 0, O < q < 1.
a

When the "difference parameter" a goes to zero, the equation evolves to an RDE: 0'(x) = (qx)

(q # 2, however.) He constructed a special solution through a very tricky integral transform. De

Bruijn's work [14, 1953] on equations of the following type

,'(s) = eas+b(s - 1)

gives a complete account of equations like 0'(x) = ao(qx) with q E (0, 1). The connection is realized



RDE and Wavelets

by the following change of variables (Kato and McLeod [42, 1971]):

x = e8, q = ec, (s) = ().

Near 1970, many authors(Fox and Mayers [28, 1971], Kato and McLeod [42, 1971], Frederickson [29,

1971]) studied the following special functional-differential equation:

0'(x) = a¢(qx) + bq(x),

which had arisen from the mathematical modeling of an industrial problem involving wave motion

in the overhead supply line for high speed train. It was Kato and McLeod who gave the complete

investigation on this equation for all types of parameters. As an initial value problem, they showed

the equation is well-posed if q < 1 and ill-posed if q > 1 (see also next section). Particularly, when

q > 1, the solution to the IVP is not unique. The non-uniqueness made the equation less interesting

to people working on ODE's, who care much about the existence and uniqueness of solutions to

initial value problems. The importance of q > 1 was only realized recently when we abandoned the

ODE sunglass and turned to the modern concept of multiresolution in wavelet theory.

The early 70's saw tons of papers (see Myshkis's survey paper [52, 1977]) on functional differential

equations, most of which were initiated by applications in circuit and control theory. It was probably

Rvachev who first deviated from the ODE point of view of the main stream. He paid attention to the

functional properties of solutions to certain functional-differential equations. The equation initially

studied by him is the following (see Rvachev's [62, 1990] [63, 1971]):

,'(t) = 20(2t + 1) - 20(2t - 1). (3.2)

In this paper, we call it the Rvachev equation. The unique solution with unit total integral is denoted

by up(t). It has the following properties: even, non-negative, C', and with compact support [-1, 1].

The significance of up(t) in the function-theoretic sense is that it plays an atomic role in certain

spaces consisting of C" functions(Rvachev [62, 1990]), parallel to what the "mother" scaling function

does in Lp(R) nowadays. The connection between Rvachev's up function and current wavelet theory

was explained by the work of Derfel, Dyn and Levin [17, 1995] on Stieltjes subdivision scheme and

non-stationary subdivision process.

Their work on this part can be summarized as follows: the classical subdivision process for the

Bernoulli (two-point) random distribution leads to the Haar scaling function, and then the continuous

subdivision process associated to Haar scaling function generates Rvachev's up function. Part of
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our current work is to reveal the general principles hidden in this intriguing example (section 3.5).

We show that generally, for each refinement differential equation of form (3.1), one can associated

it with a refinement functional equation(RFE) of the following form:

O(x) = (T, (2x - -)),

where T is a suitable distribution (typically, Schwartz distribution.) If the distribution has a nice

"density" function, then the above RFE can be solved using the continuous subdivision process

(section 3.6). This opens an entirely new window (compared with the classical ODE method for

functional-differential equations) for RDE's. It is one of our initial goals to find the bridge between

wavelet theory and the theory of functional differential equations.

If, under certain circumstance, the associated distribution T is a probability distribution, then

probability method can be applied to the underlying RDE. For the up-function, this has already

been noticed by Rvachev and Derfel, and can be further traced back to Jessen and Wintner's work in

1935 on infinite convolutions of symmetric Bernoulli distributions [39, 1935]. Related work can also

be found in Erdis [24, 1939] [25, 1940] and Garsia [34, 1962], and Brown and Moran [6, 1973] (as

initially referred in Daubechies [11, 1991].) In section 3.6, we develop the probability interpretation

of certain basic RDE's (particularly for the Rvachev equation and the kam equation in section 3.2).

The connection between the exponential distribution and the kam equation is entirely new, and

provides an efficient approach to construct uniform approximation to the kam function. We also

explain why the normal distribution cannot generate new functions along this probability line.

This chapter bas been organized as follows. In section 3.2, we introduce some necessary concepts

and make some general assumptions on our work. The main result of the section is the Structure

Theorem (Theorem 1), which is not difficult to prove but plays a crucial role in determining the

presentation structure. In section 3.3, we present the main results on RDE's of type (P(A), 1). A

new function kam(x) and one new family of functions 4oe(x) are introduced as the atomic solutions

to RDE's of type (P(A), 1) when P(A) contains no purely imaginary roots. For P(A)'s possessing

at least one purely imaginary root, we construct a set of linearly independent, periodic and C"

solutions based on the well adapted structure of Dirichlet series. As a by-product, we also show

that RDE's of type (P(A), 1) always carry a single-parameter family of C" and almost periodic

solutions. In section 3.4, we construct the solutions to general RDE's. The special role of Rvachev's

up-function comes up naturally. The main result of the section is that a scaling function designed

through the (1, H(z)) refinement equation is smoothed by the (P(A), 1) RDE to yield a CO solution

to the original (P(A), H(A)) RDE. Section 3.5 and 3.6 are devoted to developing the connections
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among RDE, RFE, the probabilistic method and the generalized subdivision process, as already

introduced above. In the last section, we demonstrate one important application of our results in

wavelet theory, namely, the construction of smoothed wavelets and quasi-multiresolution.

3.2 Regular Equations and the Structure Theorem

To formulate a well-posed problem, let us first understand the major difference between RDE's of

form (3.1) and linear homogeneous ODE's. We illustrate it by considering the initial value problem

0'(t) + 0(t) = q¢(qt), 0(0) = 1.

First we assume q E (0, 1). Integration gives:

(t) = 1 - j (r) dr = Rq (t).

It is clear that the affine operator Rq is contracting if restricted to C[0, p] for any p < 1. Hence the

local existence and uniqueness follow immediately from the Contraction Mapping Theorem. Fur-

thermore, the local solution can be obtained from the iterative action of Rq on any initial continuous

function. Hence for q < 1, the equation is integrally no different from ordinary differential equations.

But it is not the case when q > 1. The integration gives

0(t) = 1 + j (7T) dT= Rq,(t).

Rq is not contracting any more since the domain is expanding. Expressed in the language of signal

processing, the differential system is non-causal: what occurs at time t is influenced by the "future"

events up to time qt since q > 1! This causes the ill-posedness.

However, when q > 1, the equation is backward well-posed in the following sense. Suppose we

already know a "future" segment of the solution

0(t), t > qn, for some integer n.

Then by solving iteratively the following inhomogeneous equations:

t'() + "(t) = fm) ) = q(qt), qm-1 < t < qm, m < n,

the "history" of 0(t) : 0 < t < q' can be reconstructed! In this way, we find an easy way to construct
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infinitely many solutions to the given equation on (0, oc). Let k(x) E C O [1, q] satisfy the following

compatible condition:

k(m+1)(1) + k(m)(1) = qm+lk(m)(q),

(for example, any function in Co" [1, q].) Define 0(t) = k(t) for t E [1, q]. By the above discussion,

0(t) on (0, 1) can be determined uniquely; and for t > q, 0(t) is given by the following explicit

iteration:

1
¢(qt) = +-['(t) + 0(t)], qn < t < q+,n = 0,1,

q

This example makes it clear that the ODE point of view for RDE's of form (3.1) is inappropriate.

In fact, as shown in section 3.6, the subdivision scheme (linear operator) "S" is much better fitted

to this case than the integral operator Rq.

Therefore RDE's of form (3.1) are better viewed as a functional equation in certain function

space. To ensure existence and uniqueness, the equation must satisfy some solvable conditions, just

as the refinement equation does in wavelet theory (Daubechies [10, 1992]). We impose the following

conditions.

Definition 1 An RDE of type (P(A), H(z)) is said to be regular if

P(A) = (A )p(A), H(z) = (1 - z-1)rh(z)

for some non-negative integer r and

p(0) = h(1) $ 0.

r is called the index of the equation.

In this thesis, we only consider regular equations. This type already includes most functionally

interesting examples such as the Rvachev equation and kam equation. By a non-trivial solution,

we mean, in the most relaxed form, a non-zero CN function O(x) such that Eq. (3.1) is satisfied

pointwise. Here N is the order of the equation. It is easily seen that such a solution is necessarily

to be C". However, unlike the homogeneous ODE with constant coefficients, it is not C'. The

smoothness condition in no way ensures the uniqueness of the solution. Hence extra constraints are

added. In this paper, we are particularly interested in the following two properties: 1) L 1 , and 2)

periodicity or almost periodicity (see section 3.3 for definition). If the solution is in L1(R), we secure
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the uniqueness by forcing the integral normalization condition

(1,) = (x) dx = C
JR

for some convenient non-zero constant C.

There are two alternative methods for studying regular RDE's, namely, the "frequency" domain

method and the "time" domain method (Daubechies [10, 1992].) The first technique is particularly

powerful for analyzing the regularity behaviors of the solution, as now widely known and practised

in wavelet theory. In this paper, however, we prefer the time domain method because on one hand,

unlike wavelets and scaling functions in wavelet theory, solutions to regular RDE's are always CO

and hence the regularity analysis is redundant; and on the other hand, the solutions to RDE's carry

very rich structures and contents in the "time" domain. The time domain method is based on the

convolution operator "*". Let us first recall some basic properties of the convolution operator.

(a) Suppose f(t) E C', and g(t) E L 1 and has compact support. Then f * g E C"

(b) Suppose f(t) is totally continuous and g(t) as given above. Then

D(f * g) = (Df) * g, E(f * g) = f * (Eg).

(c) Suppose f * g is well-defined. Then

2(f * g)(2t) = [2f(2t)] * [2g(2t)].

Theorem 12 (Structure Theorem) Consider an RDE of type (P(A), H(z)). Suppose

P(A) = Pi(A) - P2 (A), H(z) = H(z) -H2(z),

where P,(A) are polynomials in A and Hi(z) Laurent polynomials in z. Assume ¢i(x) is the solution

to the RDE of type (P, H,), i = 1, 2. If € = ¢1 * 2 is well-defined, then it is a solution to the RDE

of type (P(A), H(z)).
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Proof. Let us check it directly by applying the fundamental properties of convolution.

P(D)4 = P1 (D) - P2 (D)[01 * 02]

= [Pi (D) 1] * [P2 (D) 2]

= 2[Hi(E) 1](2x) * 2[H 2 (E) 2](2x)

= 2[Hi(E) 1 * H 2 (E)0 2 ](2x)

= 2[H 1 -H 2 (E)0 1 * 02](2x)

= 2[H(E)O](2x).

Hence O(x) is the solution to the RDE of type (P(A), H(z)). O

Corollary 5 (Smoothed Scaling Function) Suppose a regular equation of type (P(A), H(z)) has

index r = 0. If ,O(x) is the solution to (P(A), 1), and Oh(X) the solution (scaling function) to

(1, H(z)) (the refinement equation), and O(x) = ,p * 0, is well-defined, then i(x) is the solution to

(P(A), H(z)).

This corollary will be very useful in the construction of smoothed wavelets and quasi-multiresolution

(see section 3.7).

In the following, we first consider regular equations of type (P(A), 1). The discussion on general

regular equations is completed in section 3.4.

3.3 Regular RDEs of Type (P(A), 1): the kam equation

Any real polynomial P(A) with P(0) = 1 can be factorized into the following

f(I + aiA)f d_(),

where a,'s are non-zero real constants and d, (A)'s are irreducible quadratic polynomials with d, (0) =

1. By the preceding proposition, to solve RDE of type (P(A), 1), it suffices to consider the following

two types of equations:

ad'(x) + O(x) = 20(2x), (3.3)

aO"(x) + bo'(x) + O(x) = 20(2x). (3.4)

aO'(x) + O(x) = 20(2x), a # 0

By a change of variable: x -+ at, we can assume a = 1.
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Kato and McLeod [42, 1971] studied the following initial value problem in full details in 1971:

y'(t) = ay(qt) + by(t), t > 0.

Since the idea of multiresolution was not yet on the stage of mathematical analysis at the time, their

starting point was the theory of initial value problems in ordinary differential equations: existence,

uniqueness, and asymptotic behaviors as t -+ 00.

From their results, we have

(i) the only solution to (a = q = 2 and b = -1)

y'(t) + y(t) = 2y(2t), t > 0

that decays faster than O(t- 1) as t -+ +oo is a constant multiple of the following function

(which in fact decays exponentially fast, and is named after the two authors in this paper)

S{ oo 2n exp[-(2n - 1)t]
kam(t) = e- t 1 + E(-1)n (2 -  , t > 0. (3.5)

(ii) any other solution is not in L 1' (0, oc). The two authors constructed a family of solutions that

have the exact order O(t- 1) in the oo.

The Dirichlet series solution in Eq.(3.5) was also studied by Frederickson [29, 1971] at the same

time. He considered general solutions of the following form parameterized by /:

o(t) = ~ Cn,O exp(3qnt)
n=-oo

for equations with q > 1. For q > 1, it can be easily verified that 3 = -1 is the only parameter that

ensures c, = 0 for all n < 0 and hence q0(x) = o(x-1).

We therefore conclude that if there is a solution Q(x) E C'(R) to

0'(x) + O(x) = 24(2x), R O(x) dx = 1,

O(x) must be a constant multiple of kam(x). To make referring easier later in the paper, we call

this equation the kam equation.

For convenience, we introduce the combinatorial notation (n)q for q-analog number (see Goldman
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and Rota [36] [37, 1969]) defined by

(n)>= =- 1 +q+.--qn-1
q-1

and (n)q! for the q-analog factorial given by

(n)q! = (1)q(2)q ... (n)q.

Then kam can be rewritten as

kam(x) (n)2) exp(-2nx),
n>O

where (0)q! is defined to be 1. Series in this form are called Euler Series in combinatorics, if x is

treated as a parameter.

Theorem 13 (Properties of kam(x)) Define kam(x) = 0 for all x < O. Then

(a) The alternating infinite series converge to kam(x) at a rate of 0(2-(2)) uniformly for all x > 0.

(b) kam(x) E Co(R).

(c) supp[kam(x)] = [0, oc), and kam(x) > 0 for all x > 0.

(d) ]kam(x)dx = exp(-1) E (7' 3 ) , where expq(x) is the q-analog exponential function defined

by

exp,(x) n=0

Proof. Set

2n 2n exp(-2nx)
an(x) = exp(-2 x) = (2 )(221)..(2 1)

(n)2! (2 - 1)(22 - 1 ... (2n - 1)
n= 1, 2, ..

Then

an,+i() 2
<1,

an(x) (2n+1 - 1) exp(2nx)

for all n > 1 and x > 0. Hence the alternating infinite series converge to kam(x) at a rate of

an(O) = 0(2-(n))
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for all x > 0.

Fix any positive integer k,

2 (k+1)n exp(-2nx)
(2- 1)(22 - 1)... (2n - 1)

2 (k+l)n

- (2-1)(22- 1) - -.. (2n - 1)

= o( 2 -()+kn).

which is uniformly exponentially small for all x > 0. Therefore for any positive integer k, and x > 0,

dk ckd kam(x) = -(-1) n + k

n=O

2 (k+1)n exp(-2nx)

(2- 1)(2 2 - 1) .. (2" - 1)'

which implies kam(x) is C' for all x > 0. To show that kam(x) E C"(R), It suffices to show that

kam(k) (0+) = 0 forall k=0,1,-..

dk k
(1) k dkam(O+)

dik

2(k+1)n
'+ E l)n (2 - 1)(2 2 - 1) ... (2" - 1)

+ n 2kn(2 n - 1) + 2 kn

n=1 (2 -  1)(2 2 -  1)...(2n -  1)

- k -- 1  dk-1
= (1-2 k-1 dk-1 kam(0+) + (-1)k- 1 kam(0 + )

dk-1
= (1 - 2k)(--) k - 1  

1kam(O
+ ).

d~xk-l

An inductive argument completes the proof of (b).

(c) is obvious since (an(x)) is a strictly decreasing positive sequence. The equality part of (d)

can be obtained by integrating the infinite series term by term; and the rest is due to

1 1
exp2 (-1) = 1-1+- + -'3 3-7

From now on, we will keep using kam(x) to denote its zero-extended version.

Corollary 6 When x > 1, the leading term of kam(x) is exp(-x).

In fact,
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Corollary 7 For any non-zero real constant a, the following first order RDE

a¢'(x) + O(x) = 20(2x),
JR(x = exp2(-)

has the unique C (R) solution

Oa(X) = a kam(a).
af a

Especially, supp4a = sign(a) - [0, oc).

Proposition 1 Define

K,(x) = kam(t) dt,

K(x) = kam( )
n=1

K_(x) = kam(t) dt, x > 0.

K_(x) = kam(2nx).
n=O

Proof. Take the second equation for example. Call the function on the right hand side L(x). Then

00

L'(x) = E 2nkam'(2nx)

00

= 2n[2kam(2n+'x) - kam(2nx)]
n=O

= E 2kam(2nx) - kam(2nx)
n=1 n=O

= -kam(x).

Obviously, L(x) -+ 0 as x - oc. Hence L(x) = K_(x). O

Notice that K_(0 + ) 5 K_(0).

aO"(x) + 2bq'(x) + q(x) = 20(2x), a > b2 .

By a suitable change of variable x = ±Vfa t, we can assume a = 1 and b > 0. Hence it suffices

to consider the following standard equation

¢"(x) + 2 cos9 0'(x) + O(x) = 20(2x),

Then

0 e (02
22

(3.6)
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(x)=kam(x) #!(x) + ix)=2#(2x)

Figure 3-1: kam(x),kam'(x) and kam(2x)

To make the solution unique, the following integral normalization condition is applied

R (t) d = [exp2(-)]
2 .

The solution is denoted by 0D (x).

For a given angle 0, define w = exp(iO), and

J((t) = 2 1 (-1)m 1 J +

J =) (m)2! 2 - t2-mw
n=O

for all t > 0. Here J and Ji are real and imaginary parts of J.

Lemma 7 Suppose 0 < 9 < 7r/2. Then

sup I J(t)I 2 exp 2 (1) cs 8.
t>o

Proof. For any t > 0,

1
IJ(t)l _ 2 (m)2!

m>0 ()2

< 2 exp2 (1) supt>o I - twl
2 exp2 (1)

sin9

(3.7)

1
sup

t>O,mo O - t2-mwl
1
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Theorem 14 (eo(x)) 0 < 0 < 1. Eq.(3.6) subjecting to the normalization condition Eq.(3.7) has

the following unique solution:

( 0 L -2o exp(-2nbx) [J° (2n) cos(2 n ax) + Jo(2n) sin(2nax)] x > 0
o(x) n=O (n) (3.8)

L0 x<O

Here b = cos9 and a = sin0. (Do(x) E C'(R); and for x > 0, its derivatives can be obtained by

differentiating the infinite series in Eq.(3.8) term by term, whose converging rate is O( 2 -(2)+kn) for

the k-th derivative.

Proof. We only sketch the proof. Uniqueness can be proved by applying the technique of Kato

and McLeod [42, 1971] or the frequency-domain method. The rest of the proof is constructed in the

following three steps.

First, with the help of Lemma 7, we can show that 0 (x) is Co for x > 0, and its derivatives can

be obtained by taking differentiation on the infinite series term by term, and the derivative infinite

series have the given converging rate (see the proof in the preceding theorem.)

Secondly, we show o(0+ ) = (O ) = 0. Take V(0 + ) = 0 for example.

'(0+ ) = -Re (-2)2n JJO(2n)0 E (n)2!
n>O

= -2Re . (-2)n+m 2nw

n>O (n) 2!(m) 2 ! 2mc - 2nw
m,n>0

2 (n-2)n+m -2Re (-2)n+m 2m

m (n)2> )2 O (n)2 !(m) 2 ! 2m"' - 2nw
m,n>O m,n>O

= -2Re (-2)n
+ m 2nc,

S2R E (n)2!(m) 2 ! 2n c' - 2mw
m,n>o

S2Re . (-2)n+
m  2nw

S(n)2!(m)2! 2mr - 2nw'
m,n>O

Comparison of the second line with the last line verifies that 4V (0+) = 0.

In the final step, we show that for x > 0, 4o (x) is the solution to the given RDE. We ask readers

to fill in the proof.

The combination of the last two steps and the original RDE implies that k) (0+) = 0 for

all non-negative integer k. Hence bo(x) E C0"(R) and satisfies the given RDE. Finally, a direct

computation shows that 4 satisfies the prescribed integral normalization condition. This completes

the proof. O

Corollary 8 (Damped Oscillation) If 0 < 0 < 7r/2, or equivalently b > 0, the leading term of
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the solution to Eq. (3.6) and Eq. (3.7) for x > 1 is the following damped oscillation:

(Do(x) - e-bx[Ao cos(ax) + Be sin(ax)],

where, b = cos 9, a = sin 0, and real constants Ao and Bo are given by

Ao + iBe = 2 (-1)m 1
m>O(m)2 ! c - 2-mw

Notice the leading term is a special solution to the second order ordinary differential equation

defined by the left hand side of the RDE.

Corollary 9 (Periodic Solution for = ) Suppose 9 = . Then i(x) defined in Eq.(3.8) is

forward periodic with period 27r when x > 0; that is,

4 (x) = o (x + 27), x > 0.

( (x) is a special solution to Eq.(3.6).

Remark. It is not difficult to see that both A1 (x) and 4 9(-x) are solutions to Eq.(3.6). Hence

the solution space is at least 2-dimensional. It can be shown further that in this extremal case,

Eq.(3.6) has no solution in C1 (R) n L1 (R). We will discuss this case in more details in the coming

subsection.
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Figure 3-2: (Do(x) for different angles: Damped Oscillation (0 < ) and Periodicity (9 = .)
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For convenience, we extend the range of the parameter 9 in e to include 9 E (7r/2, 7r) by the

following

9 e (r/2, r).

Corollary 10 Suppose real quadratic polynomial aA2 + bA + 1 has two complex roots re + iO for some

r > 0 and 0 E (0, 7r)\1. Then the unique C 2 n L 1 solution to the following RDE

a¢"(x) + b(zx) + O(x) = 20(2x),
R()dx = 1

is 1e(-rx) up to a multiplicative constant.

Finally, by recalling the Structure Theorem, we achieve the main result of this section.

Theorem 15 (Main Theorem. Part I) Consider an RDE of type (P(A), 1), P(0) = 1. Suppose

P(A) has no root along the imaginary axzs. Then Eq.(3.6) has a C"(R) solution which decays

exponentially fast near ±oo. In fact, up to a multiple constant, the solution takes the following form

O(x) = kam(-Aix) * -- * kam(-AkX) * IO (-rlx) * ... * oem (-rmx).

Here, A1 ,'- ,Ak are all real roots of P(A); and r exp(±O,), r > 0, j, E (0, 7r), j = 1,..- ,m, are

all complex roots.

Dirichlet Series Solution and Periodicity

Generally, for a given regular RDE of type (P(A), 1), P(0) = 1,

P(D)¢(x) = 20(2x),

one can always try the following Dirichlet series solution

00(x) = Cn,oe
- " x,

n

where the index n runs through all integers and i is a parameter to be discussed below. The

necessary condition for such a function O(x) to be a solution is the following recursion formula for

the coefficients:

C,,OP(-2 ) = 2 Cn-1,3.

(DO(X) = -I 'e(-x)'

(3.9)
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First, let us assume the parameter / is chosen so that A = -2/3, n = 0, ±1, - are all not roots

of P(A). Then for any n > 0,

S 2
Co,p = P(-2/3) C-,4,

and n < 0,

Cn,p = 2p(-2n+13)Cn+1,4.

In such a way, we find the unique Dirichlet series "solution" (up to a constant) by choosing Co,, = 1.

However, we have to check the convergence properties of the resulted series and justify the above

differentiation term by term. This is done by the following estimation. Suppose P(A) is of order

N > 1. Then the above recurrence formula implies that

Cn,3 = O( 2 -nN), n 1,
cn- 1, 3

Cn, 1
- - n -1,

Cn+l, - 2'

Hence,

Cn,O = O(2-( )N), n > 0 and Cn,p = O(2r), n < 0.

This estimation leads to the following.

Definition 2 (Almost Periodicity) A function f(x) is said to be almost periodic if for any

e > 0, there exists a periodic function f (x), such that I1f - fll < e.

Proposition 2 (Almost Periodic Solution) For any RDE of type (P(A), 1), and any purely

imaginary parameter 3, if P(A) has no root in the form of -2n3 for certain integer n, then the

real and imaginary parts of 0c(x) with Co,0 = 1 are two linearly independent and C" (R) real

solutions to the RDE. Furthermore, they are both almost periodic.

Now let's consider the case when there exists an integer n such that P(-2no) = 0. Let no be

the largest integer satisfying this condition. By choosing /' = 2 no , we can assume no = 0. From

the recursion formula, we have

Cn,p = 0, n < 0; Cn,, 2 Cn-l,4, n > 0.
P(-2no)
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Hence by choosing Co,p = 1, we obtain the unique (complex) Dirichlet series solution:

0 W = Cn,oe-2 0x

n>O

If the real part of / is not zero, the above expression cannot give a global solution since the series

diverge for one of the half-axes. It can be fixed, however, if there exists some x 0 in the convergent

half-axis such that ,3(x)(or one of its real and imaginary parts) is infinitely vanishing at this point:

,('k)(xo) = 0 for k = 0, 1,---. This is indeed what has occurred to kam(x) and (o(x) (xo = 0 for

both of them). Otherwise, we cannot obtain a global C 1 solution from the Dirichlet series.

The case when 3 is purely imaginary leads to the following.

Proposition 3 (Periodic Solution) Suppose P(A)(P(0) = 1) contains a purely imaginary root

/ = iw, for which no -2'P, n > 0 is a root of P(A) any more, then the real and imaginary parts

of 0p0(x) with Co,p = 1 are two linearly independent, periodic and C' real solutions to the RDE of

type (P(A), 1).

Definition 3 (Binary Degree) Two complex numbers a and b are said to be binary dependent if

a/b is a an integer power of 2. A set of complex numbers is said to be binary independent if no two

distinct numbers are binary dependent. The binary degree of a finite set is the cardinality of the

maximal subset that is binary independent.

This concept and the above discussion lead to the second part of our Main Theorem.

Theorem 16 (Main Theorem. Part II) Given a real polynomial P(A), P(O) = 1, let Z denote

the set of all of its purely imaginary roots with positive imaginary parts. Suppose the binary degree

of Z is d > 0. Then the RDE of type (P(A), 1) has at least 2d linearly independent, periodic and

C' solutions.

Analytic domain

In the above, we have shown that both kam(x) and (o(x), (9 E (0, 1)) belong to C"(R).

Since both only supported in the positive half axis, they cannot by analytic. However, we have the

following results.

Proposition 4 (Analytic Extension of kam(x)) There is a unique analytic function K(z) that

is defined on the right half plane: Rez > 0 and continuous to the imaginary axis, such that its

restriction on the positive half-axis is kam(x).
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Proof. In fact K(z) is the following function

K(z) = S (-2) exp(-2nz), Rez > 0.
n=O (n)2!

It is also not difficult to see that K(z) is continuous to the imaginary axis. O

Proposition 5 (Analytic Extension of eo(x)) Suppose 9 E (0, 1). There is a unique analytic

function that is analytic inside the angular domain defined by

7r 7r
- + 0 < Argz <  - - 0,2 2

and continuous to the boundary, such that its restriction on the positive half-axis is 'bo(t).

Proof. In fact, this function must be given by the following infinite series (see Eq.(3.8))

(-) exp(-2nbz) [JeO(2n) cos(2naz) + JO(2n) sin(2az)] .
n= (n)2!

3.4 General Regular RDE's

In this section, we consider general regular RDE's of type (P(A), H(z)) and with index r. Since the

equation is regular, we can assume

A
P(A) = (A)rp(A), H(z) = (1 - z-)rh(z),2

with p(O) = h(1) Z 0. W. 1. o. g., assume p(O) = h(1) = 1.

Type ( , 1 - z - 1) and Rvachev's up function

An RDE of type (2-, 1 - z- 1 ) has the following form

1' (x) = 2(2x) - 2(2x - 1), O(x) dx = 1. (3.10)

Set

1 1 y+l
y = 2x - 1, q(y) = -(x)= ).2 2 2
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Then

0'(y) = 20(2x + 1) - 20(2x - 1),

which is exactly the Rvachev equation! Therefore,

Proposition 6 The unique solution to Eq.(3.10) is given by

up+(x) = 2up(2x - 1).

The Fourier transform of up function first appeared in Jessen and Wintner's paper [39, 1935]

in 1935 as an example of infinite convolutions of symmetric Bernoulli distributions. Later in 1971

Rvachev's [63, 1971] studied Eq. (3.2) and obtained up(x) as a solution. Since then, it was re-

discovered by many other authors in different contexts (see Kirov and Totkov [43, 1982], de Reina

Martinez [15, 1982] for examples,) and its roles in approximation theory and in the representation

of smooth functions have been studied extensively. Readers can find more references from Myshkis's

survey paper [52, 1977] in 1977 and Rvachev [62, 1990] in 1990.

Integrating both sides of the Rvachev equation

0'(x) = 20(2x + 1) - 20(2x - 1),

with the assumption that O(x) G C1 (R) n L 1(R), we derive the following integral equation:

2x+1

W(x) = j 0(t) dt. (3.11)
J2x--1

Define the Rvachev operator R as follows

2x+1

Rf = f(t) dt.
J2x-1

Restrict DomR = Li(R). R has the following three properties: First, the subspace of all L1 (R)

functions that are supported in [-1, 1] is invariant under R-action; secondly, f_" f(t)dt is conserved

by R; and finally, R improves smoothness by order 1.

Rvachev obtained the up function by iterating R on the initial candidate 00 (x) = 11[_1, 11(x).

That is, define

On = R"Oo,
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for all n = 0, 1,.-.. He showed that the (spline) sequence ,,(x) converges uniformly. The limit is

called the up function, which is C' , supported in [-1, 1], and positive on (-1, 1).

We list some other functional properties of up(x):

(1) up(x) + up(x - 1) = 1 for x E [0, 1]. This follows directly from taking the first derivative.

Particularly,

Sup(x-n) = 1.
n=-oo

(2) For any non-negative integer j, up(3) (x) is a linear combination of the translated and dilated

copies up(2jx + k) (By induction.)

From the current multiresolution point of view, up( )(x) is inside V, (up), the space spanned (and

closed) by all functions up(2 x - k) for k = 0, ±1, .

Type (1, H(z)) and the scaling function

A regular RDE of type (1, H(z)) (H(1) = 1)

m

O(x)=2 E hkb(2x-k)
k=m-L

is the famous refinement equation in wavelet theory and computer aided design. Many authors

have contributed to the discovery of its importance and the study of its solution behaviors. More

references can be found in Daubechies and Lagarias [11, 12, 1991], and Daubechies [10, 1992]. In

the following, we summarize some main results on this equation.

Deslauriers and Dubuc [19, 1989] showed that the equation is always solvable in the distributional

sense (the solution therefore is called the scaling distribution in the following.) The non-trivial

distribution solution is supported in [m - L, m]. Mallat [48, 1989] considered the equation which

satisfies the following "orthogonal condition"

H(z)H(z - 1) + H(-z)H(-z - ) = 1.

He showed that a refinement equation with such an "orthogonal" real filter H(z) has a non-trivial

L2 (R) solution. Daubechies [9, 1988] studied the equation when the filter H(z) satisfies the following

"strong lowpass condition"

H(z) = )pL()
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She established the following regularity result: if IIL(z)l s < 2p-q for some non-negative number q,

then O(x) E C q . Here the norm refers to the supremum norm restricted on the unit circle S1 : Izj = 1.

More results on the existence and regularity properties of the solution can be found in Daubechies

and Lagarias [11, 12, 1991].

Solutions to General Regular Equations

Combining all the results so far, we achieve the last part of the main theorem.

Theorem 17 (Main Theorem. Part III) Given a regular equation (P(A), H(z)) of order N =

r + n > 1, length L = r + l, and index r,

(a) If P(A) has no purely imaginary roots, then the equation has a unique (up to a multiplicative

constant) C, n L 1 solution of the following form:

(x) = up+(x) * K(x) * 1(X) * O(X),

where

up _(x): the r-th convolutional power of up+(x),

K(x): convolutional product of some scaled kam(x) functions,

S(x): convolutional product of some scaled D0o(x) functions,

Oh(X): certain scaling distribution with a compact support of length I.

(b) If the set of all purely imaginary roots of P(A) with positive part has a binary degree d, then

the equation has at least 2d linear independent, periodic and C" real solutions of the following

form:

O(X) = upr(x) * "p(x) * Oh(x),

where -p() is some periodic solution of trigonometric Dirichlet series.

3.5 Distributions and Refinement Functional Equations

The probability explanation of the up function can be found in Rvachev [62, 1990]. Derfel [16, 1989]

generalized the refinement equation in wavelet theory by allowing arbitrary probability masks(filters).

His further work with Dyn and Levin in [17, 1995] studies the convergence problem of the continuous

and non-stationary subdivision process with more general Stieltjes masks, which gives further proba-

bility explanations to Rvachev's up function. Following this line, we will discuss the probability side
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of some typical RDE's in the next section. In this section, we first develop a more general framework

based on distribution theory, by which a close connection is found between regular RDE's and a

class of refinement equations with abstract "distribution masks", or refinement functional equations

(RFE), as called in this paper.

In what follows, We consider only the class S of Schwartz functions and the space S' of Schwartz

distributions, though some of the theory applies to much larger class of distributions. For those not

familiar with distribution theory, Strichartz's "guiding" book [70, 1993] is a friendly and encouraging

source to start with.

Recall that a C" function ¢(x) belongs to S if for any non-negative integer k and N,

sup 10(k)(x)I(1 + IxI)N < .
xER

Hence S is closed under the differentiating operator D. The space of all linear functionals on S is

denoted by S'. Elements in S' are usually denoted by capital letters T, F, -- -, and called Schwartz

distributions (or tempered distributions). The value T(O) is conventionally denoted by the scalar

product (T, 4).
Given a Schwartz distribution T, let us consider the following refinement functional equa-

tion(RFE)

O(x) = (T, 0(2x - .)), (x) E S. (3.12)

Here T acts on the variable in the position of - and x plays the role of a parameter. Since S is

invariant under translation (¢(t) -+ (t - a)) and dilation (O(t) -+ €(at)) for any non-zero constant

a, the equation is well-defined.

All solutions to a given RFE is a linear subspace of S, and as one will see, in most interesting

cases the solution space is a line. Hence to make the solution unique, we usually add another scalar

character for the solution, such as

(1 , ) =R (t) dt =c,

for a specified constant c : 0.

RFE's and RDE's are connected through the following concepts.
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Definition 4 (6-train) A 6-train is the following functional

00oo

F= 1: c,(x - n),
n=-oo

with the coefficients cn satisfying the temper growth condition: there exists an integer K, such that

Icnl
SUP i < 00.
SUn (1 + n)K

This condition makes any 6-train a Schwartz distribution. If there are only finitely many c" that

does not vanish, we say the 6-train is compactly supported. The maximal non-negative integer L

such that there exists m, cmcm-L A 0, is called the length of the train.

The most famous 6-train is the Poisson train or the uniform train:

P = E 6(x- n),
n=-oo

which is closely related to the famous Poisson Summation Formula (see Strichartz [70, 1993]), and

is also directly connected to Shannon's Sampling Theorem (See Oppenheim and Schafer [57, 1989]).

The interesting class of 6-trains in wavelet theory are those with compact supports.

Definition 5 (6-simple) A Schwartz distribution T is said to be 6-simple, if it is the solution to

the following distribution differential equation:

aNT(N ) + aN-_T(N- ) + ... + aiT' + aoT = F, (3.13)

for some constants ak, k = 0, 1, ... , N, aN # 0, and some 6-train F. N is called the order of T. If

F is compactly supported and with length L, T is said to be so.

It is not difficult to see the following properties of 6-simple distributions:

(a) T is 6-simple if and only if T(-x) is.

(b) If T1 and T2 are 6-simple, and T = T1 * T 2 is well-defined, then T is 6-simple.

(c) Suppose T is 5-simple. Then any finite sum of the following form is 6-simple too

SckT(x - k).
k
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It is easily seen that a 6-simple distribution is a linear combination of integer translated copies

of the fundamental solution (to the associated ordinary differential equation.)

Theorem 18 (Second Main Theorem) Suppose T is a 6-simple Schwartz distribution of order

N and length L, and Q(x) E S is the solution to RFE (3.12) with mask T. Then O(x) is the solution

to an RDE with the same order and length. Conversely, suppose a regular RDE of order N and

length L has a non-trivial solution 4 that belongs to the Schwartz class S. Then O(x) must be the

solution to an RFE with a 6-simple distribution mask T of the same order and length.

Proof. Suppose T satisfies

aNT (N ) + - + alT' +aoT = cmS(t - m) +.. + CmLS(t - m + L).

Apply both sides to the t-function 0(2x - t) parameterized by x, we have

N m

Eak T(k) , 0(2x - t)) = E clo(2x - 1).
k=O l=m-L

On the other hand, the left hand side of the above equation is

N

1.h.s = ak(T, (--)ka(k) 0(2 x - t))
k=O
N 0 (k)

= ak (T, -" k(2x - t))
k=O

N

= Dk(T, 0(2x - t)),
k=O

where D = d/dx. Since O(x) is the solution to the RFE with T, we obtain

N

1.h.s = k Dk(x)
k=O

Hence O(x) is the solution to the RDE of the following type (P(A), H(A))

N A\ k m
P(A) = ak , H(z) = 2 c z - , (3.14)

k=O l=m-L

which obviously has order N and length L.

The converse is proved in a similar way. O

EXAMPLES:
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(i) Let T be the following 5-train:

T = 2co6(z) + 2c1 (x - 1) + - + 2CL 6 (x - L).

Obviously, T is 6-simple (of order 0 and length L.) The corresponding RFE (3.12) gives

directly the refinement equation in wavelet theory.

0(t) = 2co(2t) + 2c 1¢(2t - 1) ... + 2cL( 2 t - L).

(ii) Define

Ta = a exp(-aIxj), for some positive constant a.

Obviously T is a Schwartz distribution. Moreover,

T"
- + T = 26.
a

2

Hence T is a second order 6-simple distribution of length 0. If O(x) E S satisfies

()= JR ae- It(2x - t) dt,

it must be the solution to the following second order RDE of length 0

- 4 2 + O(x) = 20(2x).

(iii) Let T be the characteristic of interval [-1, 1]:

(T, ¢(x)) = O(x) dx.
-1

Then

T' = 6(x + 1) - 6(x - 1).

Hence the associated RDE is

0'(x) = 20(2x + 1) - 20(2x - 1),
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which is exactly the Rvachev equation.

(iv) Set T = 1,>o(x)2 sin 2, which is the solution to the following distribution differential equation:

4T" + T = 25.

Hence the associated RDE is given by

0"(x) + O(x) = 20(2x).

Remark. As an equation, RFE (3.12) is always well-defined for any Schwartz distribution. How-

ever, it may have no solutions in the Schwartz class S. On the other hand, a regular RDE as a

point-wise equation can always be solved as we have shown in the previous sections. For instance,

in the last example, the associated RDE does have at least one non-trivial C' solution which is

periodic (see section 3.3). But a non-zero Schwartz function cannot be periodic.

The second main theorem builds the connection between regular RDE's and a special class of

RFE's with 6-simple distribution masks. It provides a new way to interpret and solve generic regular

RDE's. In the section below, we show that the two building-block functions-up(x) and kam(x) can

be studied successfully in this way.

3.6 Probability Method and Continuous Subdivision Process

Following the discussion in the preceding section, we consider a special class of distribution masks

- finite positive distribution masks, or equivalently, by Riesz's representation theorem, probability

measure masks. The connection between Rvachev's up function and probability has been pointed out

by Rvachev [62, 1990] and Derfel [16, 1989] and Derfel, Dyn and Levin [17, 1995]. In this section, we

develop systematically the probabilistic method for RDE's, especially for the two "building block"

equations - the Rvachev equation and the kam equation. Derfel's generalized subdivision process

is applied to generic RDE's. By "generic equations", we mean regular RDE's of type (P(A), H(z))

such that P(A) contains no imaginary roots.

3.6.1 Probability Method

Probability Interpretation of Certain RFE's

When T is a probability distribution of some random variable X, the RFE (3.12) can be rewritten
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as

O(x) = E(24(2x - X)). (3.15)

Here E denotes the expectation operator(not the translation operator defined in the abstract.) The

factor 2 right after E implies that we are taking 2dp for T, if dp stands for the probability measure

of X.

Given a random variable X, we associate it with an "X-averaging" operator Ax, which trans-

forms any random variable Y that is independent of X to a new random variable Ax (Y) defined

by

X+Y
Ax(Y) =

The "fixed point" of this operator is of the most interesting. A random variable Y independent of

X is called a fixed point of Ax if Ax (Y) has the same distribution as Y.

By recursion, it is not difficult to show the following

Proposition 7 Let X, X,, n = 1, 2, -- be a sequence of i.i.d. random variables on some probability

space. If the following infinite series of random variables converge a.s. to a random variable Yx

YX = Xf

n=1

Yx is the unique(in the sense of distribution) fixed point for Ax.

Qualitative relation between Yx and X is given by the following lemma.

Lemma 8 Suppose suppX = [a, b] and Prob(c < X < d) > 0 for any c, d: a < c < d < b. Then Yx

has the same properties.

Proof. It is not difficult to see suppYx C [a, b] from the infinite summation. Hence we only need

to show that Yx shares the second property. Set A = max(la|, Ibl). Then

S< A2 - N , a.s..
n>N
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Denote A2-N by J. For any c,d: a < c < d < b,

Prob [c < Yx <d]
N

>Prob [c + 6 < E < d-6
n=1

>Prob[(c + 6)(1 - 2- N ) < Xn < (d - 6)(1 - 2-) : n = 1,2,- ,N].

Choose N large enough so that a < c' < d' < b, where c' = (c+6)(1-2 -N) and d' = (d-6)(1-2-N).

Then

Prob(c < Yx < d) _ [Prob(c' < X < d')]N > 0.

By the standard truncation technique, a and/or b can be relaxed to 00 provided that E(IXI) < 00.

For any random variable Y independent of X, set Z = Ax (Y). Suppose Y has probability

density function (p.d.f.) pY.

Proposition 8 If the p.d.f. pZ of Z exists, then

pZ(x) = E(2pY(2x - X)).

Proof. This is because that (a) E(pY(x - X)) is the p.d.f. of X + Y whenever X and Y are

independent; (b) 2p(2x) is the p.d.f. of X/2 if X has p.d.f. p(x). O

Corollary 11 (Probability Meaning of RFE's) If the fixed point Yx of Ax exists and has p. d.f.

p(x), then O(x) = p(x) is the solution to Eq. (3.15).

Remark. In the above argument, we have left out some technical details about the regularity

conditions on the random variables involved. For instance, in Proposition 7, it is not difficult to

show, by applying the famous Kolmogrov's Three Series Theorem (see Prakasa Rao [61, 1986] for

example), that if E(IXI) < oo00, the infinite series of Yx do converge almost surely. We refer to

Derfel, Dyn and Levin [17, 1995] for readers who want to know more on convergence and regularity

conditions.

The Uniform Distribution and up(x)

Let X, - U[-1, 1] be a random variable uniformly distributed on [-1, 1]. The corresponding T
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is denoted by T, and given by

the characteristic of interval [-1, 1]. T, is a 6-simple distribution of order 1 and length 1 since

T" = 6(x + 1) - 6(x - 1).

Hence the solution O(x) to Eq.(3.15) satisfies the following RDE according to the previous section

0'(x) = 20(2x + 1) - 26(2x - 1),

which is the Rvachev Equation. Hence up to a multiplicative constant, the solution is up(x).

Corollary 12 supp[up] = [-1, 1], and up(x) > 0 for all x E [-1, 1].

Proof. Let X,, n = 1, 2, -- - be a sequence of i.i.d. random variables of type X,. Define

00 Xn

n=l

By the second Main Theorem and the integral normalization condition, up(x) = pY(x). The proof

is completed by applying the preceding lemma to the pair (X", Y,). 1O

The Exponential Distribution and kam(x)

Let Xe be any random variable with mean 2 and exponentially distributed along the positive

half-axis. The corresponding T is denoted by Te and is given by

Te = exp(- -)1 xo.

Te is a 6-simple distribution of first order since it satisfies

2T" + Te = 26(x).

Therefore the solution O(x) to the X-associated RFE equation must be also the solution to the

following RDE

0'(x) + O(x) = 20(2x).
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Up to a multiplicative constant, the only solution is kam(x).

Corollary 13 supp[kam] = [0, oc), and kam(x) > 0 for all x > 0.

Proof. Let X,, n = 1, 2,.-- be i.i.d. random variables of exponential type Xe on some probability

space. Define

Ye=ZXn
N>1

Then Ye is well defined and its p.d.f is given by

pY (x) kam(x)
exp 2 (-1)"

A recall of the preceding lemma completes the proof. O

The Normal Distribution and Divisibility

So far, we have discussed two important continuous probability distributions. To be complete, it

is natural to ask what is the function O(x) that corresponds to the normal distribution. The answer

is: normal distribution does not yield new function since it is divisible. Normal distribution serves

as a famous "fixed point" in the Central Limit Theorem and Fourier transform. So it does here for

the refinement process.

For normal distribution, we define the corresponding Schwartz distribution T, to be

Tn = 2exp - .

It satisfies the following well-known differential equation

T' + XTn = 0,

from which it is obvious that T, is not 3-simple. Hence one should not expect that the solution

O(x) to Eq.(3.15) can be a solution to an RDE.

On the other hand, let Xn, n = 1, 2, -- be a sequence i.i.d. random variables of N(0, 1), and

define

Xn

n>l

Since normal distribution is divisible, i.e. the sum of any two independent normal random variables
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is still of normal type, Y must be a normal random variable too! Since

E(X)______ 2X 1
E(Y) = E(X = O, a2 (Y) = E U(Xn, 1

n>1 n>1

we conclude that the solution to Eq.(3.15) for normal distribution is (subject to the integral nor-

malization condition (1, 0) = 1)

1() = exp -

Notice the major difference between the solution in this case and those in the previous two cases:

the solution here is CW!

3.6.2 Continuous Subdivision Scheme for Generic RDE's

The connection between RFE's and RDE's makes it possible to solve generic RDE's using the

generalized (continuous) subdivision process (Derfel, Dyn and Levin [17, 1995]).

Let us first recall briefly the role of the subdivision scheme in wavelet theory. For a given

refinement equation

O(x) = 2 1 h,0(2x - n),
n

the associated subdivision scheme S is the following "refining operator"

(Sf)[n] = 2 S hn-2kf[k], n = 0, ±1,..
k

which maps an infinite sequence f[n] to another (refined) sequence Sf (Daubechies [10, 1992].) The

subdivision scheme is better viewed as a grid transfer function in Multigrid Method(see Briggs [5,

1987]). The subdivision process (SP) refers to the following iteration process starting with the

"impulse signal" J[n] (Strang and Nguyen [69, 1996])

6, SS, S26,

It is said to be convergent uniformly if there exists a continuous function O(x) such that

lim IlS36 - 11 = 0,
-- 00
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where sequence 4, is defined by 0j[k] = 0(k/2 3 ). Obviously if the SP converges, O(x) must be

unique. Indeed, in the case of finite length filter hn, O(x) is the unique solution to the refinement

equation subjecting to the integral normalization condition f O(x) dx = 1.

SP is very useful in computer graphics for generating continuous objects from discrete data(see

Deslauriers and Dubuc [18, 1987] and Dyn and Levin [21, 1990]). It also appears in the analysis of

the Picard-Lindel6f iteration in numerical computation of ODE systems (see Nevanlinna [54, 1990]).

For refinement equation with continuous mask, Derfel, Dyn and Levin [17, 1995] generalizes the

subdivision process in a natural way. It can be used here to solve RDE's iteratively.

Given a refinement differential equation of type (P(A), H(z)), suppose T is the 6-simple dis-

tribution associated to it. Assume T has a "density" function p(x) E LI(R) (unnecessary to be

non-negative). That is

(T, g(x)) = R p(x)g(t) dx,

for any test function g(x). We require fR p(x) dx = 2.

The continuous subdivision scheme is the following operator Sc (subscript c stands for "contin-

UOUS" ):

Sf (x) = fR p(x - 2t)f(t) dt,

for any function f with at most a polynomial growth rate at infinity.

Let 6 = 6(x) be the delta distribution. The generalized SP is the following iteration:

6, SC6, S26,. .. .

It is said to converge uniformly to a continuous function O(x), if

lim 11S/6J(x) - 0(2-3x)10 = 0.
j-++oc

and converge weekly to a distribution F, if for any test function g(x),

lim S 6(x)2-'g(2-'x) dx = (F, g(x)).
j--++oI

The result of Derfel, Dyn and Levin [17, 1995] leads to the following.

Proposition 9 (Derfel, Dyn and Levin [17, 1995], Corollary 15 modified) Ifp(x) is rapidly
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decreasing, then the generalized SP converges in the weak sense to an infinitely diferentiable func-

tion in Li(R), which is the unique solution of the corresponding RFE in Li(R) subjecting to the

integral normalization condition. Furthermore, if p(x) consists of finitely many smooth pieces, then

the convergence is uniform in any C n (R).

This leads to an algorithmic approach to all regular generic RDE's.

We illustrate it through the following three examples. Notice that the SP also provides an

efficient way to compute convolutions like f * ¢ for an arbitrary function f(x) if ¢(x) is an solution

to certain RFE: one does not need to know the explicit expression of O(x) and just starts the SP

with the initial function f, instead of 6.

EXAMPLES:

(i) Rvachev equation: 0'(x) = 20(2x + 1) - 20(2x - 1).

In this case, p,(x) = 1[- 1,1](x). The subdivision scheme S, is given by

Sf(x) = pu(zx - 2t) f (t) dt = f(t) dt.

Hence

S,5(x) = p,(X) = 1[_1,1](x),
x+3 -3 < x <-

2

__1<x<3

0 the rest

If we look at the rescaled (spline) functions S,5(2x), S,6(4x), *, it is easy to observe the following

properties (those invariant during the SP) of the limiting function up(x):

(a) supp[up] = [-1, 1] and up(x) > 0 for all x E (-1, 1);

(b) up(x) is infinitely flat at x = ±1 and x = 0, and up(O) = 1, up(±1) = 0;

(c) up is mirror symmetric around -: up(1 - x) = 1 - up(x).

(ii) The kam equation: 0'(x) + O(x) = 20(2x).
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Here we have pe(x) = exp(-f)lx>o. The subdivision scheme Se is defined by:

Sef(x) = R pe(x - 2t)f(t) dt = e-z Set f(t) dt.
o

Particularly, if suppf C [0, co), then

Sef(x) = l>oe-A et f(t) dt.

Hence the first few steps of the SP are given by

Se6 = Pe = exp(-) 1x>o,2

S 6 = [2e-i - 2e f]lx>o,
8s

S3J5 = [-e 83
4

- 4e-i + -e -]1x>o.3

Generally Sk6 can be obtained by solving a linear system in the following way. Assume

k

Sk6(x) = 1x>0 ce-.
j=1

To determine k coefficients cj, we impose the following k conditions

ISk6(2kx)dx = 1;
dm dm  S() = 0, m =

dxm z=O

This leads to the following linear system of Vandemonde type:

cE 2j = 2 k;
J=1

c2-im = 0,m= 0,1,- ,k - 2.
j=1

Now we have two sequences of functions to approximate up(x): the scaled SP sequence exp 2 (-1)Sk6(2kx)

and the k-th partial sum in Eq.(3.5)

k-12)m

Sk ( 2)m exp(-2 m x).

The advantage of the SP sequence exp2 (-1)Se6(2kx) is that it gives a better uniform approximation.

Sk (x) is only good away from x = 0 (see Figure 3-3 ).

0, 1, --- k - 2.
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Figure 3-3: exp 2 (-1)Sk (2kx) gives a better uniform approximation to kam(x) compared with the
partial sum sequence Sk (). k = 3 in this plotting.

i " (x)
(iii) + 0'(x) + O(x) = 20(2x).

2
The "density" function for this equation is

p(x) = lx>oe 2 sin -.
2

Hence the resulted subdivision scheme S for any function f supported in the positive half axis is

Sf(x) = l>oe- 2 [sin et cos tf(t)dt - cos- t sintf(t)dt

It is guaranteed by the preceding proposition that Sk6(2kx), k = 0, 1, -. converges uniformly to

v 2- (VZx) up to a multiplicative constant.

3.7 Application: Smoothed Wavelets and Quasi-Multiresolution

In this section, we present one application of the previous results in wavelet theory-the construction

of smoothed wavelets and quasi-multiresolution.

3.7.1 Classical Wavelets with Compact Support

Wavelets with compact supports are of particular interest in application. The design starts with the

following refinement equation

m An(x-n.O(x) = 2[H(E)¢](2x) = 2 (3.16)
n=m-L

X
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Once the scaling function has been worked out, the associated (mother) wavelet O(x) is obtained

through the following wavelet equation:

p-L

V(x) = 2[G(E)k](2x) = 2 E gko(2x - k). (3.17)
k=p

Here

p-L

G(z) = gk - k

k=p

is the companion highpass filter of H(z), which must satisfy the highpass condition: G(1) = 0.

The scaling function and wavelet generate a multiresolution(MR) in the following way: for any

function f(x) E L 2 (R) and each integer j, define a closed subspace by setting

V,(f) = span{f(23x - k) I k = 0,+1,...},

MR is the iteration of the following triangular relation in L 2 (R):

Here ($ is the direct sum of subspaces; and for orthogonal multiresolution, it is the orthogonal direct

sum.

Under certain conditions on the two filters, the resulted MR is complete in the sense that Uj V (0)

is dense in L 2 (R). Further conditions on the filters lead to the orthogonality of the direct sum. One

of the unsatisfactory point of classical compact wavelet analysis is the regularity: all scaling functions

and wavelets designed through this way are only finitely many times differentiable. The regularity

of scaling functions and wavelets is directly related to the vanishing degree of the lowpass filter H(z)

at the highest frequency w = 7r if z = ei"

In certain circumstances, such as applying the Wavelet-Galerkin method to solve differential

equations numerically, C' (or piecewise C') basis functions are welcomed (classically, trigonometric

functions, splines, orthogonal polynomials and eigenfunctions of a Sturm-Liouville problem.) The

naive idea to achieve smoothness is to mollify scaling functions and wavelets in existence. This is

indeed what the following differentially perturbed refinement equation (a special RDE) achieves.
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3.7.2 Smoothed Wavelets and Quasi-Multiresolution

For an existing system of refinement equation and wavelet equation whose filter pair is given by

(H(z), G(z)), let us consider the following first order perturbed system:

EO'(x) + 0E(x) = 2[H(E)¢O](2x), (3.18)

E7C(x) + 0.(x) = 2[G(E)O,](2x), (3.19)

where e is a small perturbation parameter. Assume it to be positive. We impose again the nor-

malization condition / ,b(x)dx = 1. By the structure theorem, if the original unperturbed system

has the pair of scaling function and wavelet (O(x), 4(x), then the above system has the following

solution:

=(x) = K, (x) (x), , (x) = K (x) *V),

where K, (x) is given by

E-lkam(E-lx)

exp2 (-1)

The interesting observation is KE (x) plays the exact role of a mollifier in functional analysis. Hence

it is readily seen that

(1) ¢. and /, are both C" functions.

(2) 0, and 0, converge to ¢ and V in C'(R) and Lp(R) whenever 0 E C'(R).

(3) 0, and 4, are "weakly" compactly supported, or equivalently, decay faster than any polynomial

degree.

If e is small enough, V, (0,) and V (0) are two subspaces very "close" to V, () and Vj(0) in the

sense that Shen and Strang gave in [65, 1996]. Thus it can be expected that the following triangular

relation should still hold approximately:

We call the iteration of this approximate triangular relation a quasi-multiresolution(QMR).
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If the original unperturbed system is orthogonal, that is

R (x)(x - n) dx = 6,
JR()( - n) dx = 0

O(x)o(x - n) dx = 6n,

the perturbed system must satisfy the following relations:

R 0 E(x) (x - n) dx = Jn + sn, fR (x)0,(x - n) dx r,d
(3.20)

(3.21)

where sequences (sn), (rn), (wn) are uniformly (for e) exponentially small for large Inl and the

sequence supremum norms are of order O(e) (in fact 0( 2 ) as we show later). This is to say that

the resulted QMR is near orthogonal.

For example, in Figure 3-4, we have plotted the smoothed Haar scaling function and Daubechies

min-phase orthogonal scaling function D4 (See Daubechies [10, 1992]), both obtained by choosing

the perturbation parameter e to be 0.04.

Haar Scaling Function

Smoothed Haar Scaling function

Daubechies D4
15

-0 5
0 1 2 3

Smoothed 04

Figure 3-4: First order perturbed Haar scaling function and D4 (e = 0.04).

3.7.3 Smoothing versus Small Deviation

In this section, we show that the solutions to the differentially perturbed system (3.18) and (3.19)

is very close to a small deviation of the original scaling functions and wavelets.

(x) (x - n) dx = 6n + wn,
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Let us consider the following new system:

qj(x + e) = 2[H(E) ,](2x),

4E'(x + e) = 2[G(E)O,](2x),

(3.22)

(3.23)

with the same integral normalization condition for the scaling function.

Proposition 10 (Small Deviation) If (O(x), O(x)) is the scaling function and wavelet pair for

the original system, then Eq.(3.22) and (3.23) have solutions

kO(x) = O(x - 2c), (x) = (x - 2e).

Proof. A direct check using the original refinement and wavelet equation. O1

When the lowpass filter H(z) is highly vanishing at w = 7r or z = -1, O(x) and O(x) are

finitely many times differentiable. So are , and , by the above proposition. We can apply Taylor

expansion for parameter e:

E(x + e ) = (x) + eq'(x) + O(e2) 4E(x + E) = V(x) + E,'() + O(E2).

Hence, up to the second order, we have the following

e' (x) + ~ (x) 2[H(E)j,](2x),

e '(x) + ~e(x) " 2[G(E)4~](2x).

This leads to

Corollary 14 (Smoothing versus Small Deviation) Suppose the original scaling function O(x)

is C (R) for some a > 2. Then uniformly for all x,

0,(x) = ¢(x - 2e) + O(e2), 0,(x) = V(x - 2e) + O(e2)

Proof. We only sketch the proof. Set A (x) = q (x) - 4,(x). By the regularity condition, we can

assume that

£2

A,(x) = e~ 1 (x) + A2 (X) +

where Az (x), A 2 (x),. are functions independent of e. By the integration normalization condition,
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fR Ak(x) dx = 0 for k = 1, 2, -. On the other hand, since

2

2

2[H(E)A,](2x) - AE(x) - eZ (x) = - ,(x) + higher e terms.

Comparing the first order e term, we obtain

A, (x) = 2[H(E)Ai](2x).

Hence A1 is a constant multiple of the unperturbed scaling function O(x). It must be 0 since

fR A1 (x) dx = 0. Therefore,

S(x) - 4~(x) = A,(x) = -A2(X) +... = O(e 2 )

The uniformality of this relation follows from the fact that both 0,(x) and , (x) are uniformly

weakly compactly supported. The proof for 0, (x) is done in a similar way. O

Therefore visually, 0 (x) accomplishes two things simultaneously: infinitely smoothing the orig-

inal scaling function O(x) (hence also the wavelet) and shifting it (rightward) by a small distance

2e.

Corollary 15 (Linear Orthogonality) Suppose the original scaling function and wavelet lead to

an orthogonal MR, and the scaling function is at least C 2 , then the sequences (sn), (rn) and (w")

have order O(e 2 ). In such a case, we say that the QMR is linearly orthogonal.

Finally, we point out that if one considers the following second order perturbed refinement

equation (or wavelet equation):

-2',2() + 'OE,2(X) + 0,2(x) = 2[H(E)bE,2](2x), ,2(x) dx

then the following results can be established in a similar manner:

(1) €E,2 = K*,2 * 0, where

1 V ( Z

[eXP 2(-1)]2 4 E)
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(2) 0,,2 is CC" and supported in [0, oc) and weakly compactly supported.

(3) (Quadratic Orthogonality) If the original scaling function O(x) is Co for some a > 3, then

,,2 (x) = ¢(x - 2e) + O(E3),

0,.2(x) = ?/)(X - 2E) + O(e3),

and the uniform norm of (sn), (r,) and (wa) are all have order O(3) if the original MR is

orthogonal. Hence the QMR is "more" orthogonal than the previous case.



Chapter 4

Asymptotics of Optimal Lowpass

Filters

Digital filters are polynomials (in terms of the "delay" variable z - 1) or trigonometric polynomials (in

terms of the "frequency" variable w with z = eiw). Filter design almost surely starts with a desired

shape (or more generally, constraints) in the frequency domain. This ideal shape is specified by the

specific task at hand. An important class of digital filters are the optimal filters: those that are best

under certain constraints (for example, those that give the best approximation to a given shape).

Inevitably, mathematically, we are led to the analysis and construction of "best" polynomials, a

very old yet still surprisingly active field. The Green's function and equilibrium distribution of the

underlying domain play a crucial role in the whole analysis.

This chapter consists of two parts, with slightly different motivations and styles. Part I(section 4.1)

is aimed to interpreting and improving a very important empirical formula established by Jim Kaiser

(Bell Lab) in the beginning of the digital filter age. The presentation meets the taste of signal pro-

cessing engineers. Part II(section 4.2 and 4.3) studies the properties of the Green's function and

the equilibrium distribution of a several-interval domain and their asymptotics. The invention of

concepts like "critical polynomials", the discovery of the "square root law", and the by-product

application in numerical linear algebra manifest that this part is "more" mathematical.
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4.1 Asymptotics of the Error-Length Relation

4.1.1 Introduction

It is a familiar (and happy) fact that the equiripple property of an optimal lowpass filter suggests

a good algorithm for designing that filter. This is the Remez-Parks-McClellan algorithm (see Ch-

eney [8, 1966] and Parks and McClellan [58, 1972]), which iteratively pushes down the error at its

maximum point. Eventually the error has equal magnitudes and alternating signs at N + 2 points.

Since no polynomial of degree N can have N + 1 sign changes, this equiripple filter cannot be im-

proved at all N + 2 points. It is optimal (in the minimax sense). The algorithm is directly available

in MATLAB as remez.m and is very widely used.

The designer begins with a passband (ending at frequency wp) and a stopband (starting at ws)

and an acceptable error. This section considers first the weight-free case with equal errors in the

passband and stopband: p = 6, = J. The transition bandwidth Aw = Ls - wp is critical to the

relation of the filter length N + 1 = 2n + 1 to the distance 6 from an ideal one-zero response. A

useful formula derived experimentally by Kaiser [40, 1974] suggests an appropriate filter length.

There are similar formulas in Rabiner and Gold [60, 1975] and Vaidyanathan [74, 1992]. Kaiser's is

the simplest and most characteristic:

20 loglo 6- 1 - 13
N2 (4.1)2.324Aw

For this value of N, the Remez algorithm yields the frequency response H(w) closest to the ideal

"one-zero function" F(u) on the union of passband |wI _ Up and stopband 17r - w 7r - w,. The

code outputs the coefficients h[0], .. , h[N] of this optimal lowpass filter, for which the error is

approximately 6 (See Figure 4-1).

Our section analyzes this relation of 6 to N (or n). The error decays exponentially, 6 e-'0//Vf,

and the key problem is to compute the exponent / = 3(wp, u,). The leading term of 3 is controlled

by Aw = w, - wp and our asymptotic result is close to Kaiser's experiments for small 6, see Eq.(15):

20 loglo 6- 1 - 10 loglo logo0 6
- 1

2.171Aw

This asymptotic result is later modified to the semi-empirical formula (4.17), which applies to a wide

range of practical parameters and is hence recommended to replace Kaiser's empirical formula.

Kaiser also discovered a nearly optimal family of filters based on the lo-sinh function. An

empirical formula similar to (4.1) was also established by Kaiser [40, 1974] for this family. The

constant in the denominator becomes slightly smaller, which increases N. This family was analyzed
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Figure 4-1: The frequency response of the optimal FIR lowpass filter with N + 1 = 21 coefficients
and wp = 0.447r, wS = 0.567r.

theoretically by Fuchs et. al. in [33, 1980] and we return to it in Section 4.1.5.

The fundamental tool in the analysis is the Green's function g(z), which solves Laplace's equation

on the complement of two intervals (with a pole at infinity). This function has a unique critical

point o, and 3 is actually g(a). Since our intervals are real, the critical point is also real (and it lies

in the transition band). But our problem is emphatically one of complex and not real analysis. The

oscillations of a real polynomial prove that an equiripple filter is optimal, but for more information

we must go deeper into the complex plane!

We give references to fundamental work of Walsh [76, 1965] and Widom [80, 1969] and Fuchs [31,

1978]. The virtue of complex analysis is to permit contours of integration to be deformed. Then

the leading term in an integral with a large parameter can be computed by the method of steepest

descent.

The Green's function has an explicit simple form only in the symmetric case, when ws + Wp = 7r.

Then the critical frequency is w, = 7r/2, at the center of the transition band. Our analysis is most

complete in this symmetric case. Our task in all other cases (when g(z) becomes an elliptic function)

is to recapture the same form, in which NAw plays such a key role.

We also present early results on nearly optimal filters, for which S6 is of the same order as

the optimal error sequence. Unlike equiripple filters, nearly optimal filters may have closed forms

and allow fast algorithms. For the symmetric and weight-free case, we propose an explicit set of

interpolation points. This leads to the discovery of the asymptotic behavior of optimal filters in the

transition band. The frequency response is close to an error function. The limit as n -4 c is the
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ideal brick wall filter with cutoff at the critical frequency ,.

This first part of the chapter has been organized as follows. Section 4.1.2 introduces an important

result due to Fuchs in approximation theory. The complete asymptotic relation among design

parameters in the symmetric case wp + w, = 7r is derived in section 4.1.3. For the non-symmetric

case, theoretical results as well as a MATLAB algorithm for the crucial geometric constant / are

described in section 4.1.4. Asymptotic analysis is also carried out for the case of narrow transition

band. In section 4.1.5, our results are compared with that of Fuchs on Kaiser's window family of

filters. In section 4.1.6, we show the numerical comparison between our asymptotic formula and

Kaiser's empirical one. Section 4.1.7 describes the asymptotic behavior of optimal filters in the

transition band. Some proofs are included in the appendix.

4.1.2 Leading Order For 6,

Leading Order for General Problem

We now present Fuchs' result on polynomial approximation on several domains in the complex plane.

Let K be a compact domain with disjoint simply connected components K 1 , - - - , Km. Our problem

is to approximate by polynomials the function f(z) that equals h,(z) on the component K,. (The

h,(z) are entire functions and not all identical.) The minimum error in the maximum norm is 6,

when the polynomials have degree at most n:

6, = min max If(z) - p(z)I.
pEP,, zEK

Here P, denotes the space of all polynomials of degree not greater than n.

Theorem 19 (Fuchs) There exist a non-negative integer q, a positive number 3, and two positive

constants A_ and A+, such that

A_n -  exp(-n3) 6, < A+n -  exp(-np). (4.2)

Remark. The nonnegative integer q is determined by the objective function f(z) and domain K

together. It is the multiplicity of a particular critical point as a zero of a difference hi(z) - hj(z)

(Fuchs [31, 1978] gives details). Our case will automatically have q = 0, since ho(z) = 1 and

hi(z) = 0.

The exponent / is a geometric constant, entirely determined by K. For m = 2, / is Green's

logarithmic radius of the unique critical point of Kc. Its meaning will be explained immediately.
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Potential Theory in the Complex Plane

Let G(z, s) be the Green's function for the Laplacian on the complement Kc, which is completely

characterized by the following properties:

* G(z, s) is harmonic over Kc except at z = s, where G(., s) behaves like - In Iz - sj (or In iz

when s = oo).

* For any fixed s, G(z, s) goes to zero as z approaches OKC, the boundary of Kc.

We are particularly interested in g(z) = G(z, oo). For any z E Kc, g(z) is called its Green's

logarithmic radius, and is denoted by zIK. The function g has exactly m - 1 critical points ordered

by lalIK 1021K .'. - 1am-1IK inside the domain KC (Nevanlinna [55, 1970]). A critical point

of g (or of Kc) means that the gradient at a is zero. Geometrically, the level line of g through a is

self-intersected at a (see Figure 4-2). Then 3 in Fuchs' theorem is given by

p =1lalK : f can be continued analytically on

IlzK < a0IIK but not on IzlK < laI+lK.

(4.3)

Since the hi are not identical, ai

critical point a.

does exist. When m = 2, / must be lalK = g(o) at the unique

-05 42 0 0 0 0 0
-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 4-2: The level lines and critical point a

K = [-1, -b] U [a, 1]. Here we show the case a =
of the Green's function associated to a domain
b = 0.2. By symmetry a = 0.

Remark. For optimal polynomial approximation, real analysis yields the famous "Alternation

Theorem" (the equiripple property and exchange algorithm, see Cheney [8, 1966] and Rabiner and

z-plane

ne
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Gold [60, 1975]). The deeper asymptotic problems require complex analysis and potential theory.

We recommend the classical monographs by Walsh [76, 1965] and Henrici [38, 1986].

Leading Order for J,

It is natural to work in the x = cos w domain. Let x, = cos Wp and x, = cos w,. The passband and

stopband become K, = [x,, 1], K, = [-1, x,]. Then K = KP U K, and a is the unique critical

point of Kc.

Lemma 9 There exist two positive constants A_ and A+ such that for all n

A_n-i exp(-nlaIK) 6n A+n- exp(-nJalK) (4.4)

Proof. Use Theorem 19 for this special case of m = 2. By equation (4.3), 3 = lalK. On the other

hand, ho - 1 and hi = 0. Therefore z = o is a zero of order q = 0 of ho(z) - hi (z). OI

Remark. Our K has only two free parameters xp and z, (or wp and w,). So we will also use the

function symbol P(xp, xs) or P(Wp, w ). To determine the leading order of Jn, we have to compute

0 explicitly, which is the task of the next two sections. Lemma 9 leads to the following theorem in

terms of logarithms. Its proof has been placed in Appendix A.

Theorem 20 For long equiripple filters (n > 1), the asymptotic error satisfies

In 6- 1 In In 6- 1

n ~ n n (4.5)
(x,, xs)

Remark. The empirical formulas (Kaiser [40, 1974], Rabiner and Gold [60, 1975], and Vaidyanathan [74,

1992]) only catch the leading term In 6 '. They do not capture the correct 3 or the double logarithm

term due to the factor n -
1/

2 (which is overshadowed by the exponential term in all experiments).

4.1.3 The Symmetric Case

In the next section, we shall see that 3 (xp, xs) generally has no description by elementary functions.

In the symmetric case X, + Xs = 0, or wp + W = 7r, the Green's function simplifies and 3 can

be computed explicitly. Several elementary properties will be useful (referred to as Property 1,2,3

later):

1. (Unit disk) The Green's function for the domain Iwl < 1 with source s = 0 is - In Iw|.

2. (Conformal equivalence) Suppose w = f(z) is a conformal mapping from a domain Kz onto a

domain Kw. Assume that f is continuous up to the boundary and f(0Kz) C aK. Let zo be an
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interior point of Kz and wo = f(zo). Suppose go(w) is the Green's function for K, corresponding

to source w0o. Then go(f(z)) is the Green's function of Kz corresponding to source z0 .

3. (Pullback by covering mapping ) In Property 2, suppose that f is an analytic mapping, but z0o

is the only preimage of wo and all the other conditions still hold. Then go(f(z))/d is still the

corresponding Green's function provided that zo is the (d - 1)-multiple zero or pole of f'(z).

Lemma 10 (Green's function: symmetric case) Suppose wp + ws = 7r. Then xp = -z, = a >

0. The Green's function g(z) for Kc corresponding to source s = oo is

1n 2 2 2

2 1  - a2 a (z2  a 2) (z -) -1

Here the square root has K as its branch line and takes a positive value at z = 2.

Proof. Define

(Z 2 [Z 2 - (Z-a 2)(Z-1) - 1

1- a2

Here Z = z 2 folds K into a single interval I = [a2, 1] in the Z-plane. The inverse Joukowski

transform w = O(Z) maps the complement of I onto the unit disk D in the w-plane, and maps

Z = 0c to w = 0. Let f(z) = O(z2 ). Then this lemma is a direct conclusion from Properties 1 and

3 with d = 2. O

Lemma 11 Suppose z, = -x, = a. Then the exponent in the error formula is

1 1 + z,= - In
2 1 - xP (4.6)

1 1 + cos w, WP- In 1 + os In cot
2 1 - cos wp 2

Proof. By symmetry, the unique critical point for Kc must be a = 0. Therefore

1 l+a
f=g(0) = In

2 1-a

The combination of (4.5) and (4.6) can be used for design problems when w, + w = 7. Notice

that even in the symmetric case, 3 is not strictly linear in Aw. However, Kaiser's idea of linear

approximation to P as shown in the denominator of his formula (4.1) is good for most applications.

The estimated coefficient 2.324 can be improved by our asymptotic analysis. We now look for a

theoretical formula in the symmetric case that is similar to Kaiser's.
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Suppose Aw < 1. Noticing wp = r/2 - Aw/2, we have

/ - xp = cos(7r/2 - Aw/2) _ Aw/2.

In Eq.(4.5), we replace / by Aw/2 and rewrite it in terms of decibels by changing the logarithm

to base 10. By ignoring the O(1) term (compared with logarithms of 6n1), we obtain the following.

Theorem 21 (Asymptotic Relation of N to 6, ) Assume that wp + w, = r and wp is close to

7/2. Then the order is related to the ripple height 6n by

20 log 10 6n1 - 10 loglo log 0 6 (4.7)N = 2n o Aw (4.7)
(5 loglo e) Aw

Remark.

(a) Numerically In cot(wp/2) is close to Aw/2 except when Aw is close to 7r (see Figure 4-3). For

most applications, Aw is small. Hence Aw/2 is a satisfactory approximation to P. In fact, when

Aw = 7r/4, the relative error is only (/ - Aw/2)//3 2.6%.

(b) Kaiser's linear coefficient 2.324 is larger than our corrected value 5 logo0 e - 2.171. The relative

error is (2.324 - 2.171)/2.171 21 7%. This slope deviation can be detected in Figures 4-5 and

4-6.

(c) Since the second leading term for n is a double logarithm, the number "13" in Kaiser's formula is

not correct theoretically. However, it does reveal the fact that the second leading term changes

very slowly. Practically we only deal with 6, ranging from 10-1 to 10- 16. Then the double

logarithm in (4.7) goes from 0 to 16 (and 13 is inside this range).

4.1.4 The General Case

In the non-symmetric case, O(xp, xs) is no longer an elementary function. In this section, we first

describe the theoretical approach to determine /, and then create a numerical algorithm using

MATLAB to compute it.

Conformal Equivalence to Annulus

Lack of symmetry (wp +w s # r) makes Kc a nontrivial doubly connected domain (DCD). Hence one

has to turn to the general theory. A famous theorem says that any DCD is conformally equivalent to
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Figure 4-3: = n cot -  .- -  The dashed line corresponds to 3 _ and the solid line is the

true 3(wp) with wp = - . The horizontal axis shows Aw/7r.

an annulus A, : r < Iwj < 1 (see Nehari [53, 1952]). The "modulus" r is uniquely determined by the

DCD. In our case, this conformal mapping can be obtained in closed form using elliptic functions.

The inverse mapping z = f(w) is (Kober [44, 1957])

1 + , 1 - s sn2( In w; k) + sn2( Is; k)

2 2 sn2 (I In w; k) - sn2 (K' In s; k)

Here 0 < s < 1, and f(s) = oo.

The three parameters r, s, k are given by Freund [30, 1991] as functions of xp and xs.

2(xp - xs) (4.8)k (1 + )(1 - (4.8)

( 7rKc(k)) (49)r = exp KI (k) (4-9)
7rK (k)

s = exp i-K ) (4.10)

The elliptic functions sn(u; k), Kc(k), Ki(k), and K'(k) are defined in Appendix B.

Green's Function and /

Let gA(w) denote the Green's function for the annulus Ar corresponding to the source s. Then by

Property 2, g(z) = gA(f -(z)) is the Green's function for Kc corresponding to s = 00. Let a and

aA denote the unique critical points of g(z) and gA(w). Then a = f(aA) since f preserves level

lines. Hence 3(xp, Xs) = g(a) = gA(aA).

Define A = In s/l In r E (0, 1). For any c inside the unit circle, the symbol [c] = [c](w) denotes
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the Mbbius transform of the unit disk associated with c:

W-c
[c](w) = C*W - 1

Then gA(w) is given by Akhiezer [1, 1990] as

Aln Iw - In I[s]l - (n I[r2 +In I[ Tr )
j=1

The partial sum from 1 to J of this infinite series converges on A, with rate O(r2J). For small r

this is quite satisfactory. However when the transition band is narrow, r defined by (4.8) is close to

1. So the following form of gA(w) is much better numerically:

A In Iw - Ins -I IS + (w)l + In IS- (w)I (4.11)

Now the partial sums of S+ and S- from -J to J give greater accuracy O(r 2 ) :

S+(w) = r3 2  (4.12)

3=-oo

S-(w)= 3 r32  . (4.13)

Our MATLAB code uses this form for gA(w).

Theoretically, the unique critical point aA can be located as the zero of the gradient vector

VgA. This generally requires substantial computation. The following theorem changes it to a one-

dimensional optimization problem.

Theorem 22 (3 by Optimization) Consider

gA(x) = A ln(-x) - In s - In S+(x) + In S- (x) (4.14)

for -1 < x < -r. Then /3(p,Xs) = max gA().

Proof. By definition, gA(x) > 0 and gA(-) = gA(-r) = 0. Hence gA(x) reaches its maximum

value inside (-1, -r). On the other hand, since gA(w) is symmetric with respect to y (w = x + iy),

OgA/y must be zero along (-1, -r). Therefore 9gA(w)/Ox = 0 immediately implies a critical

point of gA. Since there is only one critical point JA, it must yield the maximum of gA(x). Hence

P/(xp, xz) = gA(OA) = max gA(x).
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Algorithm and MATLAB Code

The complete elliptic function called ellipk in MATLAB can be used to compute Kc and K'.

For the incomplete elliptic function Ki, we apply MATLAB integration quad8 to the function

for_call , which is simply 1/ - msin2 x with m = k2 . Set 0 = sin-l a (a is defined in

Appendix B (iii).) Then

"Ki = quad8('for_call', 0, 0, le - 14, [], m); "

computes K, to the precision 10- 14. This yields r and s from (4.9) and (4.10) (by RS.m ). Then

Green.m uses (4.11)-(4.13) to compute the Green's function gA on the annulus A,. Our last

program betak.m applies the minimization fmin to -gA(x) defined in (4.14) and finally finds

/. We distinguish betak from MATLAB's beta.

Asymptotics for Narrow Transition

When we compute / numerically, we don't know its exact behavior as a function of wu and wus.

To compare with earlier empirical formulas, we apply asymptotic analysis to / when the transition

bandwidth is narrow (Aw < 1) and fixed. In practice, this narrow transition is preferred. We

measure Up and w, from the mid-frequency wm = (w + ws):

Wp = Wm - and us = rn +2 2

Since Aw is fixed, 3(wp, ws) becomes a function only of Wm and is denoted by /(wm).

Theorem 23 The leading term of 3(wm) is P(7r/2) in the range Aw < min(wm, 7r - wn). Practi-

cally, the range can be taken as (see Figure 4-4):

Aw < Wm < 7r - Aw.

The proof is in Appendix C.

It is Kaiser's empirical formula (4.1) that led to our discovery of Theorem 23. In turn, our

asymptotic result provides a theoretical support to the form of his empirical formula. The transition

bandwidth Aw is crucial and the position u of the transition band has small effect. Our analysis
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04-

03-

0 05 1 15 2 25

Figure 4-4: Theorem 23: (wJm) -3(,r/2). Each solid horizontal line represents 3(w ) when Aw is
fixed. From the bottom to the top, Aw = 0.1 : 0.1 : 1.1. The segments bounded by the diagonal
dashed lines show the practical range inside which 3 (wm) 3(7r/2).

gives the correct constant in the leading term, and also the next term. With the help of Theorem

23, Theorem 22 generalizes to the non-symmetric case.

Theorem 24 If Aw <K min(w, 7r - win), then

20 logl 0 6- 101ogo1 logo 6 1  (4.15)N = 2n o (4.15)
(5 loglo e) Aw

In practice, this yields good results for Aw < 7r/4 and wm E [Aw, 7 - Aw] by the remark of

Theorem 21 and Theorem 23.

4.1.5 Kaiser's Filters Are Near Optimal

Besides the equiripple filters, another popular way of designing FIR filters is the window method.

The ideal one-zero lowpass filter is IIR. In the frequency domain, we convolve this ideal response

with the window response. The frequency response of a window is often a damped wave. The

narrowness of the main lobe and side lobes determines the quality of the resulting FIR filter.

Kaiser used the non-linearly scaled zeroth-order modified Bessel function to create a family of

windows with good properties. They are of limited duration in the time domain and have most

of their energy concentrated at low frequency. (This is the core idea of modern wavelet analysis.)

Most important, these filters are nearly optimal: the error sequence has the same order as that of

the optimal approximation.
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First, Kaiser [40, 1974] established an empirical formula for his windows when 6 < 0.1:

20 logo0 6-
1 - 8

2.285 Aw

(We have converted from Af to Aw = 27rAf.) Fuchs, Kaiser, and Landau [33, 1980] proved that

for large window parameter a,

[ N exp (- N).7rAw 4

Comparing with our Eq.(4.2) Kaiser's windows are indeed nearly optimal (but not exactly, since

0 - -_ is only an approximation). Similar to the way we have proved Theorem 20, Fuchs showed

that

20 loglo 6- 1 - 10 loglo logo 6- 1
N_

(5 loglo e)Aw

This is exactly (4.15).

The Chebyshev optimal filter is completely characterized by the equiripple property. The under-

lying mechanism of Fuchs' result is that for large a, the side-lobes have approximately the same L,

norms (same areas). This makes Kaiser's filters near equiripple and hence near optimal.

4.1.6 Numerical Experiments

We use the MATLAB function remez.m to compute the minimal error 6N corresponding to each

N. The result is then used to test Kaiser's empirical formula and our asymptotic formula.

Narrow Transition

For narrow transition (this practically extends to Aw < 7r/4), Theorem 24 gives the first two leading

terms of N. However, to make Eq.(4.15) accurate even for small N, we have to know the constant

An appearing in the proof of Theorem 20. This means that we have to add a constant term

(independent of 6,) in the numerator of Eq.(4.15). Finding An is a mathematically open problem,

but our numerical experiments indicate that we can take this constant term as 20 loglo 7r. Then the

following formula applies to all N:

20 loglo(r6,) - 1 - 10 loglo logo (4.16)N = 2n 2( (4.16)
(5 loglo e) Aw

This is very accurate for small Aw. Our experiments have Aw = 0.027r, 0.047r, -.. , 0.10r and



Asymptotics of Optimal Lowpass Filters

Wm = 7/2. For each Aw, first we use remez.m to compute the N-6 relation exactly. With this

result we test the predictions by Kaiser's empirical formula (4.1) and our asymptotic formula (4.16).

The test results are plotted in Figure 4-5. It shows that Eq. (4.16) is more accurate.

TW-O.Opi. ocp. . o0pl. 0.04p. o.p

40 " - "

20

10.

100 10 10

Figure 4-5: Comparison of Kaiser's formula and formula (4.16). There are five sets of curves in the

plot, one for each Aw. From right to left, Aw = (0.02 : 0.02 : 0.10)r. Each set contains three lines-

solid, dotted, and dashed, corresponding to the real N-6 relation, Kaiser's empirical prediction, and

the asymptotic prediction by Eq.(4.16).

Modified to Include Wide Transition

For wide transition, say Aw = 0.57r, both Kaiser's formula and formula (4.16) assume that 3 is a

linear function of Aw. Generally we need the original /(wm) 2 13(r/2) = ln cot(r - Aw)/4 in the

denominator. Then the following formula is very accurate even for wide transition:

20 loglo(r6bn) - 1 - 10 logo log10 6 1  (4.17)
(10 log10 e) In cot (

The experiments for wide transition are plotted in Figure 4-6, with 6 on the horizontal axis and N

on the vertical.

So finally, we would recommend Eq. (4.17) for all design problems with either wide or narrow

transition Aw, and symmetric or non-symmetric bands.

One Example

We compare the accuracy of the formulas through a real design problem. Suppose that wp = .51r, and

w, = .541r. We want an equiripple filter whose passband and stopband errors are 6p = 6. = 6 = 0.02.

By Kaiser's formula (4.1), the filter length should be NK = 72. The exchange algorithm

HK = remez(NK, [0 .5 .54 1], [1 1 0 0])
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Figure 4-6: Comparison of Kaiser's formula and formula (4.17). The five sets of curves now corre-
spond to wider transitions Aw = (0.2 : 0.1 : 0.6)7r.

gives the impulse response of the equiripple filter HK. The actual ripple height is 6 K = 0.0255.

Hence the relative design error is

rK - = 27.5%.

The corresponding data using our asymptotic formulas (4.17) or (4.16) are:

NA = 80, J A = 0.0192, rA = 4 %.

4.1.7 The Transition Band

This section describes the asymptotic behavior of the equiripple filter response Hk.Pt (w) inside the

transition band w, 5 wl < w, as the filter length N + 1 = 2n + 1 increases. This behavior reveals

the convergence of impulse responses to the ideal 0-1 filter with passband jwj < w,. We thank Alan

Oppenheim for bringing this problem to our attention.

Nearly Optimal Filters

A family of FIR filters HN(W) of length N + 1, is said to be nearly optimal if its error sequence

eN = IIHN(w) - I(w)lI

is of the same order as the optimal error sequence. This means that eN < CJN for a fixed C.

Nearly optimal filters serve two purposes. Unlike equiripple filters, they may have closed forms

and allow direct mathematical analysis. Their properties should give an approximation to their
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counterparts (the optimal equiripple filters). Second, by relaxing the optimality, we may have a

better design algorithm, such as direct interpolation. For the symmetric case wp + w, = 7i, we do

find such an interpolation scheme.

Theorem 25 Suppose wp + w = it and x, = cosw = a > 0. Define 2k points xf,j = 1, 2,--. , k

by

+a2 a 2
= d- + cos x

3 2 2 Cosk7

Let pn(x) denote the unique polynomial of degree n = 2k - 1 interpolating 1 at each x+ and 0 at

each x . Let N = 2n and define

HN(w) = pn (cos).

Then HN(w) is a sequence of nearly optimal filters.

Asymptotics in the Transition Band

With the help of HN(W) just constructed, we find the following asymptotic form of the equiripple

filter Hjpt(w) in the transition band.

wp + Ws
Theorem 26 Let m = 2 be the mid frequency in the transition band. For Aw = w, -w, < 1,

2
the leading term of H pt (w) on wp < w < Ls is given by

Hoptr ( Y /4 - (4.18)
HN () erf m . (4.18)

Here p 3 Aw/2 is the geometric constant appearing in previous sections and the error function

erf(x) is defined by

1 t2
erf(x) = - e-t dt.

Practically, this approximation is very satisfactory for a wide range of transition bandwidths.

Figure 4-7 shows the case of Aw = .1r, for both symmetric and non-symmetric bands.

Computational experiment guided by our error function formula leads to the following semi-

empirical formula for the weighted case. In minimizing the maximum deviation from the ideal filter,

the stopband error is weighted by W. In practice, W can be 100. The optimal filter with heights

p W6~ is still denoted by Hf '(w). Then the leading term approximation in the transition band
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Figure 4-7: Closeness to the error function. The four windows show the scaled transition band:

S= W- m . For example, wp now corresponds to 0 = 1. The solid lines represent the optimal
Wp - Wm

equiripple filters, and the dashed lines show the error function (4.18). For the top two, w. = .557-
and wp = .457r with N = 32,64. For the bottom two, w, = .757r and wp = .65r with N = 32,64.
The fitting improves as the filter length N increases.

is:

4 L w -- Lom

with

In W + 1 In In W
SN(W) 2N

This experimental expression for the shift SN(W) has successfully predicted the impulse response

of optimal filters in the transition band. They still converge to the ideal filter with cutoff frequency

W mWm - SN(W) for narrow transition band.

N-32. 4 - 55., -0 4.
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4.1.8 Appendix

A. Proof of Theorem 20 (Section 4.1.2) Suppose 6 = Ann- exp(-n), with A_ < An _ A+

by Lemma 9. Taking the natural logarithm yields

1
In 6 1 = - In An + In n + np. (4.19)

2

The dominant term on the right is n3, which must equal the dominant term on the left. Hence
In 6'

In 6-1 n3. This determines the leading term. To find the next term, assume n = n + An.

By (4.19),

1
0 = - In A + -Inn +3An.

2

As n > 1, the dominant term 1 In n can only be balanced by /An, since In An is bounded. Hence

1 in n 1 in In 5 -
A2_ 2 n

B. Definitions of elliptic functions (Section 4.1.4)

(i) v = sn(u; k) is the Jacobian elliptic function with modulus 0 < k < 1, defined by the incomplete

elliptic integral:

= dx

U 1  (1 - x 2 )(1 - k 2x2 )

(ii) K,(k) = sn - 1(1; k) is a complete elliptic integral:

K, (k) = 1 dxooI  dz
o /(1 - x 2 )(1 - k 2 x 2 )

K'(k) in the expression of f is defined by K'(k) = Kc(1 - k2), also a complete integral.

(iii) K,(k) = sn- 1 (a; k) and a = .1+

C. Proof of Theorem 23 (Section 4.1.4)

(i) The unique critical point oa of g(z) = G(z, oc) must lie inside (xs, p). If the mid-frequency

Wm = 1(p + ws) is below 7r/2, the stopband K, is longer than the passband Kp. Hence the
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Green's function g(z) grows more slowly near K,. The maximum of g on [xs, Xp] occurs closer

to x, than to xz, so that a > xm.

(ii) Define

d 1 + XpXsd=X + x
p + z,

and c= d- -1.

ce [X,, ZX] and c= Xm + O(Ax 2 ). (4.20)

The linear fractional transform

z-c
z' = F(z) = z-c

1 - cz

maps K = Ks U Kp onto a symmetric domain K' in the z'-plane:

K' = K U K,= [-1, x] U [' 1].

Here zx = F(xz) = -F(x,) = -x',.

(iii) Set s' = F(oo) = -1/c and a' = F(a). Then a' is the unique critical point of G'(z', s'). Since

the new source s' lies inside (-oc, -1) and the new domain is symmetric, its Green's function

G'(z', s') grows more rapidly near K, than Kp. Hence the maximum of G'(., s') (2X,X;) must

occur closer to xs, implying that o' < 0. Now denote F(xm) by x m . Since F preserves the

critical point as well as the order on [x,, xp], we have by (i) x' < a' < 0.

But Aw < min(wm, 7r - in) implies that

m _m - _ O(Xm - c) = O(Ax2).
1 - CXm

So finally we have

6' = O(Ax 2 ). (4.21)

(iv) For the symmetric case in Lemma 11, when xp < 1,

G'(x', 00) (X,)2 - (I)2 + O((XI)2) (4.22)
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for all x' in [-xp, x ]. And since z' -- x',/z' maps K' onto itself, Property 2 yieldsforaP P P- --

G'(z', s') = G'(x,/z', x ,/s'). (4.23)

Therefore finally,

P(Wm) = G(a, oc) = G'(o', s')

= G'(0, s') + O(Ax 2 )

= G'(oo, -zc) + O(Ax 2 )

= G'(-x'c, oc) + O(A 2)

V (x,) 2 - (Xc)2 + (AzX 2 )

= 1z + O(Ax)
= p - c +c2 O(A 2)

1 - cx,I -= X1 C2 + O(Xz
Xp - Xm

= + O(AX2 )
2V1- x

w+ O(Aw2)
2

= 3( ) + O(Aw2 ).
2

[(4.21)]

[(4.23)]

[(4.22)]

2) [(4.20)]

(v) The numerical results displayed in Figure 4-4 show that practically, in the whole range of

[Aw, 7r - Aw], 3 (wm) - 3(7r/2) is a satisfactory approximation.

4.2 The Green's Function of Several Intervals and Its Asymp-

totics

4.2.1 Introduction

There are at least two natural occasions where domains with several intervals arise: the design

of optimal bandpass filters (in the previous section, we have considered a special case: lowpass

filters) (see also Fuchs, Kaiser and Landau [33, 1980]), and polynomial based matrix iterations (see

Eiermann, Niethammer, and Varga [23, 1985], Eiermann, Li, and Varga [22, 1989], Freund [30,

1991], and Wathen, Fischer and Silvester [77, 1995] [78, 1997], for examples). Both cases involve

the optimal Chebyshev polynomial approximations on several intervals, with or without constraints.
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Their analysis requires the knowledge of the Green's function of the underlying domain (see Fuchs [31,

1978], Walsh [76, 1965], and Widom [80, 1969], for examples).

Design of Digital Bandpass Filters

In most occasions of signal processing and image processing, filters with linear phases are preferred

(see Strang and Nguyen [69, 1996], and Oppenheim and Schafer [57, 1989]). H has linear phase

if there exists a real polynomial p(x) such that: H(e"' ) = ezLw/ 2p(cos), or equivalently, the

coefficients sequence of H(z) is symmetric around certain index L/2 (integer or half integer). For

simplicity, assume L = 0 from now on. Such a filter is said to have zero phase.

An ideal bandpass filter D is defined for several given bands of interests: J1 , J 2 , • , Jn, n disjoint

(closed) intervals of [0, -7]. D is an even and 27r periodic 0 - 1 function, and for w E [0, 7r]

Ck, w Jk

0 else

ck = 0 or 1, depending on whether information contained in band Jk is noise or not (or for some

other purposes). In practice, ck are not all O's, neither all l's. The word "ideal" indicates that D

cannot be realized by digital filters of finite length.

A natural question is: given a fixed length N = 2m + 1, which digital filter of zero phase gives

the "best" approximation to the ideal one? The approximation error is usually evaluated by the

uniform norm

lID - H J = max ID(w) - H(e")J,
wEJ

where J = U= 1 Jk. The symmetry assumption eventually leads to the following standard polynomial

approximation problem ( with x = cos 0 ):

Minimize IID*(x) - p(x)IlK over all polynomials p(x) of degree < m.

Here K = cos(J) and D*(x) = D(cos - 1 x). Notice that K is a subset of [-1, 1], consisting of several

disjoint intervals.

By Fuchs' result (Theorem 19), the convergence analysis of this approximation requires the

Green's function of K. We will go back to this in section 4.2.4.
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Polynomial Based Matrix Iteration

Here we introduce two classical examples of polynomial based matrix iteration methods in numerical

linear algebra and discuss briefly how the Green's function of a several-interval domain plays an

important role in convergence anaysis.

o Semi-iterative method (SIM)

The simplest and primitive iteration method for solving linear system of algebraic equations is

based on the contracting mechanism:

xn+l = Tx, + b,

with the spectral radius p(T) < 1. It solves Ax = b, with A = I - T usually discretized from some

differential equation in a continuous model. The error vector en = x, - x. satisfies e, = q(T)eo,

where q(T) = T ' is a monomial and x. is the unique solution.

This primitive iteration is far away from being optimal unless the spectrum A(T) of T is scattered

(almost) everywhere in the disk IAI < p(T). If the inclusion set K of A(T) is not a disk, as in the

example of Davis and Hageman [13, 1969] where K turns out to be a cross-shaped domain, then we

can apply the so called semi-iterative method to improve acceleration (see Eiermann, Niethammer,

and Varga [23, 1985]). From the signal processing point of view, it is a special filtering process: at

each step n, with xo, xx, , xn at hand, we apply a lowpass filtering to them; namely, find a "good"

polynomial (or filter) p(z) of degree n, p(z) = coz n + -... + c,, p(l) = 1 (the "lowpass" condition),

by which, a new vector y,, is generated from filtering x,'s:

Yn = coxn + cixn-1 + * " - + cnxo.

Set 6, = y, - x,. Then I6n = p(T)eo . This key equation hints that p(z) is "good" if and only if

IIp(T)I can be small. (See Driscoll, Toh and Trefethen [20, 1996] for the most detailed discussion

of related questions.) If, as in most cases in practice, we are only able to know that the spectrum

is included in some domain K, then the best possible choice for p(z) should be the solution of the

following mini-max optimization (though obviously over-constrained):

min max lp(z) .
p ofdegree n,p(1)=1 zEK

The convergence analysis of SIM therefore inevitably involves the Green's function of K. Domains

of several intervals are of particular interest in applications (see ELV [22, 1989]).
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P Minimal residual method (MR)

MR is one example of the Krylov space methods and is also polynomial based. Here we only

sketch the main idea for the simple version of MR (without preconditioning). To solve Ax = b

(usually already transformed from the original system), one searches an optimal approximation

solution x, in the n-th Krylov space generated from b:

{b, Ab,..., An-1b}.

In MR method, the optimality is evaluated by the magnitude of the residue vector rn = b - Axn.

To minimize the norm of rn, it is equivalently to solve the following optimization problem:

min jIp(A)b.
p of degree n,p(0)=1

If, as in most cases, the spectrum A(A) is only known to be included in some domain K, then the

"best" possible choice of p(z) is naturally the solution to the following mini-max problem:

min max Ip(x) .
p of degree n, p(0)=1 xEK

General convergence analysis of the MR method depends on analysis of this polynomial optimization

problem. If A is discretized from some self-adjoint differential operator, A(A) is very often contained

in the real line. Further information can restrict A(A) to some intervals (as in the case of Wathen,

Fischer, and Silvester [77, 1995]). This is why the Green's function of a several-interval domain can

be very important in the convergence analysis of MR like methods.

The Green's Function

The analysis of these polynomial approximations requires the knowledge of the Green's function for

a several-interval domain. This has motivated our research. To start, let us formulate the problem

in an abstract way, temporarily forgetting those application backgrounds.

Given 2n points between -1 and 1:

-1 < al < bi < a 2 < '. < an < bn < 1,

we can define n + 1 intervals:

K 1 = [-1, al], K 2 = [bl,a 2], . - , Kn+1 = [b,, 1]; with K = UjlK,.
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In between are n "gaps" (or "transition bands" in signal processing)

1= (al, bi),I 2 = (a2, b2),.'', ,I = (a,, b); with I = Ul, Ik.

Thus I U K = [-1, 1]. Kc = C\K denotes the complement of K in the complex plane. The Green's

function g(z) is the unique function with these properties: (1) g(z) is harmonic on KC\oo; (2) near

z = 00, g(z) - In Izi is finite; (3) g(z) is continuous up to the boundary of Kc (which is K in this

case), and (4) g(z) = 0 on the boundary K. The main purpose of this paper is to study this function.

For simplicity, g(z) is directly called the Green's function of K.

Our main tool is the Schwarz-Christoffel mapping (SCM), which maps the upper half plane

onto an arbitrary polygon domain. This SCM idea was first introduced in Trefethen, Embree and

Mitchell [73, 1998] and has an important contribution to the study of the Green's function for a

several-interval domain. For the sake of comparison, we first make some comments on some existing

approaches in this subject. Eiermann, Li and Varga [22, 1989], and Shen and Strang [67, 1998] could

only apply some elementary (polynomial) transforms, and study a special two-interval case, which

requires some strong symmetry property and can be reduced to a single interval case. Freund [30,

1991] and Fischer [27, 1996] turned to a conformal mapping involving elliptic functions and converted

the domain to an annulus, and then studied its Green's function. Wathen, Fischer and Silvester [77,

1995] [78, 1997] avoided the Green's function, but perturbed the two-interval case to a somewhat

artificial one, for which a differential equation can be established and asymptotic analysis becomes

possible. The SCM method is more elementary, universal, and better suited for asymptotic analysis.

We have emphasized the following two points in our presentation. First, we have singled out the

two-interval case because of its importance in applications and its simplicity in analysis. Secondly,

domains with narrow gap intervals are welcomed since asymptotic analysis can lead to simple and

useful leading terms. We also borrow some ideas from Hilbert space theory and probability theory,

which help inspire deeper insights into this analytic problem.

Organization

This part has been organized as follows. Section 4.2.2 studies the Green's function for the two-

interval case. Section 4.2.3 discusses the Green's function and related objects for a general domain

with several intervals. In Section 4.2.4, we demonstrate two applications in digital filter design and

the numerical analysis for the Stokes equation. Our main contribution in this part is the discovery

of the so-called "Square Root Law."

108



Asymptotics of Optimal Lowpass Filters

4.2.2 The Green's Function for Two Intervals

In this section, we study the Green's function for the two-interval case:

K = [-1, a] U [b, 1], -1 <a < b < 1.

There are two reasons for singling out this case. First, the two-interval case itself is frequently

encountered and important in practice. Secondary, the analysis is relatively simple compared to

that for more than two intervals, yet it already contains all the required mechanisms. For more

examples and computational results, we refer to Trefethen, Embree and Mitchell [73, 1998].

The SCM and Green's Function

The central idea is to use the symmetry of K in the vertical direction to reduce the doubly connected

domain Kc to a simply connected one: the upper-half plane.

First, in the upper-half plane, define a one-parameter SCM family by

W= (1-U 2)(b-u)(u- a)

We take the / branch that is positive for all u E I. Under this choice, the image of the gap I

is always a subset of the real line in the w-plane. Moreover, C, maps the upper-half plane onto a

polygon domain in the w-plane, whose vertices are oc, and the images of -1, a, s, b, and 1, denoted

by C, A, S, B, D. By the general theory of SCM, the interior angles of the polygon at C, A, S, B, D

are 7r/2, r/2, 27r, 7r/2, and r/2. With the knowledge that 0,(a) = A = 0 and s((a, s)) lies inside

the positive axis, we conclude that the polygon has the following shape and orientation:

There is a critical parameter s = a, which is needed to achieve B = A = 0. This amounts to

requiring

0 = (b)( - x)dx
0= (b)= (1 - x 2 )(b - x)(x -a)

This real integral produces the following probability interpretation of the critical parameter oa.

Proposition 11 (The critical parameter) Define the number y by the elliptic-like integral

fb dx

L X/( - X2)(b - )( - a)

Let X be a random variable supported in (a, b) and with probability density function given by p(x) =
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Figure 4-8: The image of the upper-half plane under a general SC mapping 4, (left) and 4, with
the ciritical parameter o (right).

[(1 - x 2 )(b - x)(x - a)]-1/ 2/. Then a = E{X}, the mean value (or expectation) of X.

For this particular a, denote 0, simply by q. Define

S= Req(z) Imz > 0

g(y) Imz < 0

Proposition 12 g(z) is the Green's functon of K.

Proof. From the definition, O(K) is a subset of the imaginary axis (see Figure 4-8). Hence

g(K) = {0}. Since O(IR\K) consists of some horizontal open lines, O(z) can be analytically continued

locally near any x E R\K, by Schwarz's Reflection Principle. From this it is easy to see that g(z)

is harmonic on Kc. Finally, from our choice of the / branch, ¢(z) = In z + co + cl/z + -- -, near

z = oc. Hence g(z) - In Iz is finite near z = oo. This shows that g(z) is the Green's function for K.

O

Recall that z = zo is a critical point of g(z) if the level line through z0o is self-intersected, or

equivalently, the gradient of g(z) vanishes at zo .

Corollary 16 (The Green's function on the gap) For all x E I = (a, b),

g(X) = X (0 - t)dt

g() /( - t 2)(b - t)(t - a)

Especially, a is the unique critical point of g(z).
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Proof. For all x E I, O(x) is real. Hence g(x) = O(x) is given by the above integral. The same

integral shows 9g/ex(a) = 0. Since )g/ay(a) = 0 holds automatically by the vertical symmetry of

g(z), a is a cirtical point of g(z). Uniqueness follows from the fact that the Green's function for an

n + 1-multiply connected domain has exactly n critical points (see Nevanlinna [55, 1970]). O

Asymptotics for a Small Gap I

Domains with small gap intervals arise from both digital filter design and matrix iterations. Define

the midpoint and the half-width:

a+b b-a
C = - =

2' 2

From now on, we assume that c belongs to a fixed compact set of (-1, 1), and 6 -+ 0.

The following change of variable is useful. For any x E I, set 9 = (x - c)/6. Then for any f(t),

f x  f (t) dta (1- t 2 )(b - t)(t - a)

Lemma 12 The location of the critical point is

a = c + 0(6 2).

(4.24)

A similar result was also proved in Wathen, Fischer and Sylvester [77,

context.

Proof. [Proof of Lemma 12] Following the notation of Proposition

have

1995], but in a quite different

11, and using Eq. (4.24), we

1 f ds 6s
S- c = E{X - c} =--82 - (c+ ) 2

Since c is assumed to be in a compact set of (-1, 1), the following infinite series converges uniformly

for small e:

Cl + C2 2 +
1 - (c + E) 2
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Therefore

Vc=6 s2ds

Since -7 and ck are both of order 0(1) (from the assumption that c belongs to a compact set of

(-1, 1)), we complete the proof. ]

Proposition 13 (The square root law) Uniformly for all x E I = (a, b), and c in a compact set

of (-1, 1),

1g(x)-= (b - x)(x - a) + 0( 2)

= (WWb)(Wa -W) +0(AW2 )

Here w = cos - 1 x, Wa = cos- 1 a, Wb = COS - 1 b, and A. = W - Wb (the "transition bandwidth" in

szgnal processing).

Proof. The second line follows from the first by a change of variables to x = cos w.

g / (a - c) - 6s ds.
-1 /(1 - s2)(1 - (c + s)2)

= S- + 0(62).
- /(1 - s2) (1 - (C + S)2 )

Lemma 12 has been applied to the last step. Suppose

1 1

S- (c + ) 2 C

Then

Ss (X) 1 -
2 + 

0(62).

V/_1 __2 j 1 2+ 0(j rj _C

This completes the proof since 62(1 - 02) = (b - x)(x - a). O

In some cases, we have to allow e = 1 - c, or 1 + c to be small too. Set r = 6/E. A modification

of the above proof leads to the following stronger version.

Theorem 27 Suppose r < 1. Then uniformly for all x E (a, b),

1
g(z) = /(b - x)(x - a) + O(r 2 ).
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4.2.3 The Green's Function for Several Intervals

In this section, we study the Green's function for several intervals. As already introduced in the

introduction section, K is the union of n + 1 disjoint intervals K 1 , K 2 , -- - , Kn+, and I is the union

of all gaps I1,12, ' , I,. Thus K U I = [-1, 1]. Let g(z) be the Green's function for K. Since Kc is

n + 1-multiply connected, g(z) must have n critical points, say al < a2 < . < an. The symmetry

of the domain implies that all critical points lie along the real axis. It is not hard to see that thereis

one critical point in each gap (ak, bk).

The configuration polynomial, critical polynomial, and Green's function

The configuration polynomial is

n

Q(z) = (z2 - 1) 11(z - ak)(z - bk)
k=1

This is a monic polynomial of degree 2n + 2 and contains all the information of K. One useful

property of the polynomial is that Q is positive on all n gaps, and in fact

Q(x) > 0 for all x E R\K.

The critical polynomial is

P(z) = (z - o)(z - o2) .. (Z - O)

This is also monic and of degree n. Suppose

P(z) = zn - elz n-1 + e2 zn-2 + (1)n-len.

Then ek = ek (al, U2, - , an) is the k-th elementary symmetric function of the Uk'S.

Theorem 28 (The Green's function) For x E Ik = (ak, bk),

g(x) = (-1)n+1- k  X P(t) d.

Proof. The idea is exactly the same as in the two-interval case. Here we only outline the proof.
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(a) In the upper-half plane, define

w = (z) = (-1)
n + 1- k z P(u) du.

Jk Q(u)

Take the square root component that is positive for all u EIk = (ak, bk). Then w = O(z) is

a SCM which maps the upper-half plane onto a polygon domain in the w-plane. The vertices

of the polygon are oo and the images of ±1, a,, b., and ao, j = 1, - - - ,n. The interior angles

at all the images of the critical points are 27r, and at no, 0. All the rest interior angles are

7r/2. Since O(ak) = 0 and O(x) is positive for all x E (ak, ak), the orientation and shape of the

polygon domain in the w-plane must look like the right subfigure in Figure 4-8, except this

time we have more than one horizontal slits, digging into the interior of the polygon domain.

(b) Define g(z) exactly as we did for the two-interval case. Then g(K) = {0}; g(z) is harmonic on

KC, and g(z) - In Iz is finite near z = oo. Hence g(z) is the Green's function and it is identical

with O(x) for x E Ik.

Critical polynomial: a linear algebra approach

In this subsection, we illustrate one way to compute the critical polynomial P(x) for a given con-

figuration polynomial Q(x). By finding the roots of P(x), we can then find all the critical points

of the Green's function, which are very important in some applications. In the next subsection, we

provide another geometric way to compute it.

Because the Green's function g(x) vanishes on K, we have

(t) dt = 0, (4.25)

for all k = 1, ... ,n. Assume

P(x) = zX - elx n -l + e2Z
n-2 +. + (-)nn-

Then we have the following characterization theorem.

Theorem 29 c = (el,-e 2 ,.. , (-1)n-len)' is the unique solution to the n by n linear system

Mc = b. Here the configuration matrix M = (Mik) and vector b = (bj) are defined by

k tn-kdt b tndt

Mjk = bj = .
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Proof. By applying Eq.(4.25) for k = 1, 2, -- - , n, the coefficient vector c is easily seen to solve

Mc = b. Uniqueness follows from the following lemma. O

Lemma 13 The configuration matrix is non-singular.

Proof. Otherwise, we can find a non-zero polynomial q(t) of degree no more than n - 1 such that

Sq(t)dt
Ik Q(t)

for k = 1, 2, .. , n. Therefore q(t) must change its sign on each gap Ik, which implies at least one

zero on each gap. But q(t) cannot have n zeros. Contradiction! [

Critical polynomial: a geometric approach

In this section, we compute the critical polynomial in a geometric way based on orthogonalization

and projection in a certain L 2 space.

Take the gap set I = I1 U ... U In as the underlying space for a measure. Define the measure dAu

by dp = [Q(t)]-'/ 2dt. Then (I, dp) is a finite measure space. In what follows, we always work in

the Hilbert space L2 (I, dy) with inner product (-, ).

Let Xk (t) be the indicator function of Ik. Consider the following two sets of vectors in L2 (I, di):

{1,t,--. ,tn - 1} and {X1,X2,* ,Xn}.

By the preceding lemma, both are linearly independent sets. The linear space IPn1 spanned by the

first set contains all polynomials of degree no more than n - 1.

Under this setting, the configuration matrix M is given by Mk = (Xi, tn-k). The non-singularity

of M implies the existence of a dual basis in IFn_1:

Corollary 17 There exists a unique set of vectors {ql, " , qn} in Pn-1 that is dual to {xi, " , X,}:

(Xj, qk) = 6jk, 1 < j, k < n.

With the dual basis, the critical polynomial can be computed explicitly.

Proposition 14 The critical polynomial is given by

n

P(t) = tn - E(t n ', xk)q(t).
k=l
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The critical polynomial can therefore be computed from the dual basis {qi, - - - , qu}. Let S denote

any non-empty subset of [n] = {1, 2.. -- , n}. For each subset S of k elements, we shall define a monic

polynomial Ps(t) of degree k, subject to

(Ps, X3) = 0 for any j E S. (4.26)

This is realized by the following inductive projection algorithm.

Step 1 For any subset S = {j} of one element, define

Ps(t) = t - (

Obviously (Ps, X3 ) = 0.

Step k Suppose at the end of Step k - 1, we have defined all polynomials Ps(t) subject to condi-

tion (4.26), for a subset S with k - 1 elements. For any subset S with k elements, define

Ps (t) = tk - z PS\ (t

This is well-defined since (Ps\j, X3) cannot be zero ( Ps\, has no zero on Is). Obviously Ps

satisfies condition (4.26).

From the above construction, it is easy to see that

Proposition 15 P[](t) is the critical polynomial. After normalization, the dual basis of {XI, , Xn}

consists of the polynomials

P[n]\l, " , P[n]\ .

Besides its role in characterizing the critical polynomial and the dual basis, this algorithm also

works efficiently in practice for a small number of intervals, typically, for n = 2, 3, 4. For large n,

the algorithm is in no way economic since at least 2n - 1 polynomials are to be computed.

Asymptotics for a small gap I3

The square root law (Proposition 13) for a small gap still holds for several intervals.

Let us fix an index j. Set c, = +(aj + bj) and 6, = .(bj - a.). For simplicity, we assume that

all the other gaps Ik : k 5 j are fixed ( this restriction can be easily relaxed to include other cases),
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and cj belongs to a compact set of (bj-l, a,+l), and 6j - 0. Define

Q (x) =- Q(x) P, (s) = 1(x - k).
(1 - x2)(b - )(x - a,)' =

Then we have the following square root law. Its proof is similar to Proposition 13 and has been

omitted here.

Proposition 16 (Square Root Law) Uniformly for all x E Ij = (a,, bj), and ca in a compact set

of (b3_ 1 , a,+1),

g(x) = IP, (cj)I V(w - %)( ) + (2).

Here w = cos-1 z, Wa = cos-1 a, and w = cos-1 b,.

Similar results can also be established for the delicate cases when c, approaches bj- 1 or a,+1.

4.2.4 Applications of the Square Root Law

In this section, we apply our results to two problems: design of optimal (equiripple) lowpass filters,

and the convergence analysis of the minimum residual (MR) method for solving the Stokes equation

in fluid dynamics. We anticipate more applications in other fields.

Design of equiripple lowpass filters

Our first application is to give a simple proof of Theorem 23.

Recall that an equiripple lowpass filter has only two bands of frequencies on [0, 7r]: the passband

[0, wp] and the stopband [ws, ir]. The ideal lowpass filter D(w) equals 1 on the passband and 0 on

the stopband. With x = cos w, the polynomial approximation problem for each n is:

Minimize IID*(x) - p(x)llK over all polynomials of degree < n.

K = [-1,x8 ] U [xp, 1], xp = cos(wp), and x, = cos(w,). The norm is the L norm. The optimal

error is of order O(n-1/2e-n 3 ), where fl is the value of the Green's function of K at the unique

critical point a. Set Wm = -(w, + wS). Aw = (W - wp) (the transition bandwidth). Then / is a

function of wm and Aw. We denote it by (wm, Aw). Now we are ready to give a simple proof to

Theorem 23:

Theorem 23. In the range of Aw < min(wm, r-wm), the leading term of 3(wm, Aw) is P(7r/2, Aw).
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Proof. Without loss of generality, assume wm E [0, rr/2]. From our Theorem 27,

g(x) = (w - wp)(ws - w) + O(r2 i.

Since zA = O(6/I), and wm = O(V.), we have

O(r2 
) 

=O( ),
Wm

which is an order smaller than O(Aw) when Aw < min(wm, ir - ). Therefore

g(a) = max g(x) = max ( + -) +o(A)=o(w.

Hence the leading term of 3 is independent of w,. Especially one can take wm to be 7r/2. O

For the symmetric case (wim = r/2), Shen and Strang showed that

/(7r/2, Aw) = In cot
4

For small Aw, it again gives Aw/2 as the leading order. Numerical evidence showed that taking

In cot - as an approximation to 3(wm, Aw) is better than Aw/2.

Estimation of asymptotic convergence factor

Wathen, Fischer and Silvester [77, 1995] studied the numerical solution of the classical Stokes prob-

lem of fluid dynamics:

-V 2u + grad p = f in Q,

div u = 0 in Q.

With suitable boundary conditions, the equation is usually discretized ( by the Finite Element

Method, say) and stabilized to a linear system of equations of the form

A BT U f(B -C)( ) 0
or simply Ax = b. The linear system is symmetric and indefinite; the matrix A has both positive and

negative eigenvalues. For such an indefinite system, the minimum residual (MR) iteration method

is perferred to the conjugate gradient method.
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After preconditioning, Wathen and Silvester [79, 1993] showed that the spectrum of the discrete

Stokes operator is included in two intervals:

Kh = [-a, -bh] U [ch 2 , d], a, b, c, d, h > 0.

Here h is the mesh size for discretizing the underlying domain G. The asymptotic convergence factor

p is given by:

p = exp(-g(0)).

Here g(x) is the Green's function of Kh. The main result of Wathen, Fischer and Silvester is the

following.

Theorem 30 ( Wathen, Fischer and Silvester [77, Theorem 4.1] )

p :< 1 - bad h 3/ 2 + O(h 5/ 2).

The proof strategy was based on the equiripple property of the optimal polynomial p,(x), which

is as small as possible on K under the constraint pn(0) = 1. By perturbing the interval a little bit,

pn(x) can have n + 2 extremal points. This makes it possible to establish a differential equation and

carry out some asymptotic analysis.

Here we use our square root law in Section 4.2.2 to give a simple proof of

p = 1 - bc/a h3/ 2 + O(h 2). (4.27)

Proof. To apply Proposition 13, we normalize the set Kh by introducing

z+az. = O(z) = -1 + 2
d+ a

V(z) maps Kh to

K. = [-1, a] U [b., 11, a. = (-bh), b. = O(ch2).

The gap size is

2 bh
26. = b. - a. = V'(0)(ch2 - (-bh)) + O(h 2 ) = - + O(h),
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or, 0(J.) = O(h). The center point is c. = 0(0) + O(h).

Let g.(z.) denote the Green's function for the normalized domain. Then

g(0) = g.(0(0)) = 1 \/[*(0) - 0(-bh)] [(ch2 ) - Vb(0)] + O(h 2)

- 1+ O(h) /V)'(0)bh - '(O)ch 2 + O(h 4 ) + O(h 2),1 - 2 (0)

-= 14(0) (1 + O(h)) + O(h 2)
1 - 2 (0)

= Vbc h3/ 2 + O(h2).

Therefore

p = exp(-g(0)) = 1 - bc/ad h3 / 2 + O(h 2).

Similarly, by normalizing the domain and applying Theorem 27, one can give a short proof to

another result.

Theorem 31 ( Wathen, Fischer and Silvester [78, Theorem 5.1] )

If the domain is Kh = [-ahL , -bh ] U [ch r , d] for some positive a, b, c, d, with L < r, and L < 1, then

the leading term is

p 1 - b-/dh(r+
1-

L)/
2

4.3 The Equilibrium Distribution and Asymptotics of Ex-

tremal Points

4.3.1 The Potential and Equilibrium Distribution

What is closely related to the Green's function is the equilibrium distribution of K. In this section,

we give an explicit expression for the equilibrium distribution when K consists of several disjoint

compact intervals.

Let p be any unital distribution (probability measure) on K (built on the Borel algebra). The

potential generated by p is

V,(z) = n Iz - sl p(ds).JK
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The potential must be subharmonic on C and harmonic on the complement of K.

The total energy generated by M is

EI = - V(s) it(ds).E K

The equilibrium distribution v is a unital distribution that minimizes the total energy. The potential

associated to the equilibrium distribution is called the equilibrium potential.

Such a distribution is not only physically important but also mathematically useful. For a "reg-

ular" domain like that in our case, it uniquely exists. Frostman's Theorem gives a characterization

of the equilibrium potential.

Theorem 32 (Frostman's Theorem) Let K be a "regular" compact set of C and v the equilib-

rium distribution of K. Then

(i) V,(z) > -E, on C.

(ii) V,(z) = -E, on K.

Conversely, a subharmonic function V(z) with the following two properties must be the equilib-

rium potential.

(i) V(z) is harmonic on the complement of K and V(z) - In Jlz = o(1) near z = 00.

(ii) V(z) = -E for all z E K and a certain constant E.

The inverse problem is solved by the generalized Laplacian: v = AV/27r (in the sense of generalized

functions).

The Green's function g(z) and the equilibrium potential V,(z) are almost identical:

g(z) = Vv (z) + E,.

Our main result of this section is the following theorem.

Theorem 33 Following the notation of section 4.2.3, let Q(z) and P(z) denote the configuration

polynomial and critical polynomial. Then the equilibrium distribution v is supported on K and given

by

v(dx) = C I(x)i dx,
JriQ~xI
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where the positive constant C normalizes v to be unital. Especially, in terms of the Schwarz-

Christoffel mapping O(z), v is the pullback (by O(z)) of the uniform (unital) distribution on #(K)

(the purely imaginary edge of the polygon domain (see Figure 4-8).

Proof. Let us prove the two-interval case. The general case is exactly the same.

Suppose K = [-1, a] U [b, 1] and the equilibrium distribution is given by

v(dx) = p(x)dx.

For all x in the gap I = (a, b),

S,(x) = K In Ix - t| p(t)dt,

and the Green's function

g(x) = j tdt.

Differentiating g(x) = V,(x) + E, yields

0 - x = KX p(t)

for all x E (a, b). Now define two analytic functions on C\K:

1 ,(z) = 0 z -(Z) p(t dt.

Take V to be positive on I = (a, b). Since 4l1 (z) = 4 2 (z) on I, )1 (z) )2(z) for all z E C\K.

Notice that (2 (z) is a Cauchy integral. Therefore, for any x E K (excluding the end points),

p(x) = - 2(+) -2()),

where b2 (+) = lim6_ 0+ 4 2 (x + i6). Hence

P i (b, (x+)_ ( _)) = 1 (a-x-

p~z) = qz I
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This completes the proof of the first part. For the remaining part, simply notice that

dO = Q z and so v(dx) = Cldl.

Remark. We have noticed that Peherstorfer [59, 1990] also obtained the first part of the theorem

based on Widom's formula [80, 1969] for the complex Green's function. The proof presented here

avoids the multivalue problem caused by the multi-connectivity of K, by first considering the re-

striction of the Green's function on a gap. The first part can also be obtained from Geronimo and

Van Assche's result on polynomial mappings [35, 1988]. The second part gives for the first time a

clear geometric meaning to the equilibrium measure. O

An asymptotic result for the two-interval case can thus be established based on this theorem and

Lemma 12 (on the location of a).

Corollary 18 Suppose K = [-1, a] U [b, 1], and a, b are contained in a fixed compact set of (-1, 1).

Let 6 = (b - a)/2 <K 1. Then for any c, d:

-1 <c<d<a or b<c<d<1,

with e = min{la - dI, Ic - bl} > 6,

v[c, d] = (we - d)/1 + 0((6E)2)

where w, = cos - 1 c and Wd = COS - 1 d.

4.3.2 Asymptotics of Extremal Points and Its Applications

The convergence analysis of the matrix iteration problem has little to do with the equilibrium

distribution. But the filter design problem has a lot.

The current design of optimal lowpass filters or bandpass filters is realized by the Remez-Parks-

McClellan exchange algorithm. The algorithm needs improvement in at least two aspects. First,

it has no recursive structure, which forces one to rerun the program to get a filter of length 65

even when the optimal one of length 33 has already been available. Secondly, the efficiency of the

algorithm can be improved if one starts it with an initially guessed set of extremal points that are

very close to the real ones.

These two problems are closely connected, guiding us to investigate the distribution pattern of
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the extremal points, or equivalently, the zeros of the error function r,(x) = D(x) - pn(x), where

pn() is the optimal polynomial of degree n and D(x) the ideal lowpass filter. Suppose one knows

enough information about the pattern, then it is possible to design an approximately optimal filter

by a once-and-for-all interpolation. It is also possible to give a good set of initial points for the

exchange algorithm and lessen the correction work in the algorithm.

This has been the major motivation of Fuchs paper [32, 1980] and the current section.

Let Fe (x) denote the cumulative distribution function(c.d.f.) of the equilibrium distribution:

F(x) = v(-oc, x].

Let Yo, Yi, yn+1 denote the n + 2 extremal alternating points of the optimal error rn(x). These

are a set of points on K satisfying:

r(y,) ll n(y,)(y,+) < 0.

By assigning each point y, a measure 1/(n + 2), we can define another c.d.f.:

F,(x) = E n
L:y< 

n.

Fuchs' main result is

Theorem 34 ( Fuchs [32, Theorem 3] ) Uniformly for all x E R,

F(x) - Fe(x) = O(n-1/5 ), as n -+ oc.

The following two results are obvious from it.

Corollary 19 Let Zn(x) denote the c.d.f for the zeros of rn(x) (assigning each zero a measure 1/n).

Then uniformly for all x E R,

Z,(x) - Fe(x) = O(n-1/5), as n -+ oc.

This is because between each pair of y, and y,+l (excluding one i), there is exactly one zero.

Corollary 20 Let H = [c, d] be any interval contained in K. Then the portion of the extremal

points (or zeros) on H is v[c, d] + O(n-1/5).
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Especially, for the two-interval case, as n -+ 00,

# of zeros on [-1, a] : # of zeros on [b, 1] - a dx : dx.
I-1 IQ(X)I J b iQ( )I

Furthermore, if the gap (a, b) is narrow, under the condition of Corollary 18, we have

Proposition 17 The portion of extremal points (or zeros) on [c, d] is

(wc - Wd)/7 + O((6/)2 + n-1/5)

Under the Schwarz-Christoffel mapping O(z), the equilibrium distribution of K becomes the

uniform distribution on the imaginary edge O(K). Therefore, the zeros of rn (x) can be approximated

by the preimages of any n points equidistributed along O(K). The resulted interpolation leads to

nearly optimal filters in the sense of section 4.1.7. For numerical examples and more discussions, see

Trefethen, Embree and Mitchell [73, 1998].

4.3.3 Summary

The work presented in section 4.2 and 4.3 is an extension of that in Trefethen, Embree and

Mitchell [73, 1998]. Based on the SCM idea first appearing in Widom [80, 1969] and later re-

discovered in the above paper, we study closely the properties of the Green's function for a real

several-interval domain. The undetermined parameters in the mapping happen to be the critical

points of the Green's function. By introducing the critical polynomial and configuration polynomial,

we can determine those unknown parameters either by solving a linear system of equations or an

inductive projection process.

On a narrow gap interval, the Green's function behaves like the square root of a quadratic

polynomial. This "square root law" is applied to a problem from digital filter design and a problem

from computational fluid dynamics.

We have also studied the equilibrium distribution and its properties. Most of the research has

been motivated by the optimal design of digital filters.
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