
Initial Data to Vacuum Einstein Equations With
Asymptotic Expansion

by

Sang Hoon Chin

B.S.E.E. Electrical Engineering, Computer Science, and Mathematics
Duke University, 1993

SUBMITTED TO THE DEPARTMENT OF MATHEMATICS IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1998

Copyright 1998 Sang Hoon Chin. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole and in part.

Signature of Author: ...................... ............ .....................
Department of Mathematics

April 29, 1998

Certified by .................................................
Richard Melrose

Professor of Mathematics
Thesis Supervisor

Accepted by ............................

Chair, Departmental

Richard Melrose
Professor of Mathematics

Committee on Graduate Students

OF ;t.CNOL3GV

JUN 011998 Scienc-

LIBRAWF



Initial Data to Vacuum Einstein Equations With
Asymptotic Expansion

by

Sang Hoon Chin

Submitted to the Department of Mathematics
on April 29, 1998 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

ABSTRACT

We investigate the Vacuum Einstein Equations (E-V) for a globally hyperbolic
and maximally time-foliated space-time (M, g) such that M - R x R3. For such
a space-time, it is well-known that solving (E-V) is equivalent to first finding
(g, k) which satisfy the constraint equations, where g is a Riemannian metric on
3 and k is a symmetric 2-tensor on R3 , and then, with such (g, k) as initial

data, solving the evolution equations. We prove that there exist solutions to
the constraint equations which have a complete asymptotic expansion at spatial
infinity. In order to do this, we compactify the space (2 R3 ) into a manifold
with boundary (- B3), thereby bringing spatial infinity to OW3 , and reformulate
our problem in the b-setting, developed by R.B.Melrose. We then use analytic
tools of the b-calculus to obtain the main result. We briefly discuss at the end
how such solutions might evolve according to the evolution equations.

Thesis Supervisor: Richard Melrose
Title: Professor of Mathematics
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Chapter 1

Introduction

According to Einstein, the large scale structure of a space-time (M, g) where
M is a differentiable 4-manifold and g is a Lorentzian metric on M, is governed
by his famous field equations. These equations relate the bending of the space-
time, measured in the Ricci curvature Ra, of g, to the gravitation, manifested
through an energy-momentum tensor, T p, of a matter field as following :

1
Rp - gpR = 87rTo,

where R is the scalar curvature of g.
In a vacuum space-time, we have Tp = 0 and the above reduces to the

vacuum Einstein equations, henceforth denoted by (E-V) :

Rp = 0

Thus, to solve the vacuum Einstein equations (E-V) is to find a pair (M, g) such
that Rp = 0 on M.

In this thesis, we will assume that a space-time M is globally hyperbolic,
i.e. there exists a hypersurface E in M which any causal curve intersects exactly
at one point. Such a space-time is known to allow the existence of the globally
defined differentiable function t whose gradient Dt is time-like everywhere. We,
then, can foliate M by the level surfaces of t (see [C-M]).

Since Dt is normal to the level sets t-l(a),a E IR, if we define a set of
coordinates {t, x1 , 2 , 3

}, where {x 1 , x 2, x 3 } is a set of coordinates for t - 1 (0)

and

i 4 E (s, 1 , , 2 3) the point in M obtained by following the integral

curve of Dt from (x1 , 2 3) E t - 1 (0) till it intersects

then the metric g can then be written as :

g = -4 2 (t,x)dt2 + gij (t, X)dxidx j

Z'j



where ¢, called the lapse function, is defined to be € = 1 Moreover

gij(t, x) is a Riemannian metric on Et in these coordinates, and the extrinsic
curvature kij of Et is then given by :

kij = -(20)-l tgij

In this setting, the (E-V) for the 4-metric g can be re-written as equations
for g, k, and ¢. Indeed, if we apply the condition Rp = 0 to the well-known
structure equations of the foliations (where T is future-oriented unit normal) :

tkij = -ViVj + (RiTjT - kiakj)

Vikjm - Vjkim = RmTj

Rij - kiak + kijtrk = RiTjT + Rij

we get the following set of equations that relate g and k on each t-slice

Vlkii - Vitrk = 0

R- Ik12 + (trk)2  = 0

and another set of equations which shows how g and k evolve with respect to
time t :

atgjj = -20kij
otklj = -ViVij + (Rij + trkkij - 2kiakja)

We make two observations here. First, if the first set of equations are satisfied
by (g(0), k(0)) on (t = 0)-slice, they are satisfied by (g(t), k(t)) on any t-slice,
provided that (g(t), k(t)) evolve with respect to time t, due to the Bianchi-
indentities. Secondly, we note that, in the second set of equations, there are
13 unknowns : (gij, kij, ), but actually only 12 equations. To remove this
indeterminancy, we add one more condition, often called the maximal foliation
condition,

trg(k) = 0

and then we finally get the following determined system of equations :
Constraint Equations :

trg(k) = 0

V j kj i = 0

R(g) = Ik|

Evolution Equations :

it9tgj = -20kij

otkij = -ViVo + O(Rij - 2kiakja)

AO = |k12

Thus, finally, solving the Einstein Field equations, in this case of maximally
time-foliated vacuum space-time, is reduced to the following two steps :



Step 1 Find a pair (g, k) which satisfies the Constraint Equations on o,.

Step 2 With such (g, k) as initial data, solve the Evolution Equations.

Now we state two important results proven in this direction, when E = = 3.

First, in [C-M], Christodoulou and O'murchadra proved that there indeed exist
pairs (g, k) which satisfy the constraint equations, and moreover, which are
asymptotically flat near infinity. More precisely, they proved :

Theorem 1.1 Let g, a Riemannian metric on R3 , be such that g-e E H,,6 and
R(g) > 0, where e is the Euclidean metric on R3, s > 4, and -3/2 < 6 < -1/2.
Then there exists g in the conformal class of g such that - e E H,,6 , and

a symmetric 2-cotensor, k E H8- 1,6 +1, such that (g, k) satisfy the constraint
equations.

Then, in [C-K], Christodoulou and Klainerman showed that

Theorem 1.2 Such (g, k), which, in addition, satisfies a global smallness as-
sumption, leads to a unique, globally hyperbolic, smooth, and geodesically com-
plete solution of the evolution equations. Moreover, this solution is globally
asymptotically flat in the sense that the curvature tensor tends to zero on any
causal or spacelike geodesic, as the corresponding affine parameter approaches
infinity.

I started this thesis work as an attempt to refine these results in terms of the
regularity of (g, k) near infinity. Of course, the work of [C-M] does say something
about the behaviors of (g, k) near infinity : by knowing that (g - e, k) E H,,s,
one knows that (g - e, k) becomes small at infinity (for s and 6 in our range).
However, it would be better if we knew, in addition, exactly how (g - e, k)
becomes small at infinity - a property not quite captured by H,,6 . Thus, we
look for solutions to the Einstein Vacuum equations with "better" control at
infinity - i.e. (g - e, k) that has a complete asymptotic expansion at infinity.
(we will define this more precisely later.)

Why is having a complete asymptotic expansion at infinity important for
g (and also for k)? For example, if (g, k) were a solution to the constraint
equations and if we can write g as follows :

gij = (1 + C-)6ij + higher order terms
r

for some constant C, then it turns out that in fact

C = 2M

where M is what is called the A-D-M mass, which is, roughly speaking, the mass
of the universe seen from spatial infinity. Scheon-Yau proved in [Schoen-Yau]
that M was in fact non-negative, settling a long-standing Positive Mass Con-
jecture. It is also conjectured that the coefficients of the higher order terms and
some functions of them might also carry some physical significance. In order



to investigate this further, you obviously first have to know that gij indeed has
expansions, in higher order terms, and most desirably a complete asymptotic
expansion. Thus I asked the following questions :

Naturally, I asked the following two questions :

Question 1 Is there a solution (g, k) to the constraint equations which are not
only asymptotically flat in the sense of [C-M] but also have a complete
asymptotic expansion at infinity?

Question 2 If so, does the solution (g(t), k(t)) to the evolution equations also
have such an expansion at least locally in time?

In order to answer these two questions. I first radially compactify R3 to
B3, a manifold with boundary (see [Melrose 1]). Then the behaviors of (g, k)
at infinity of RJ3 correspond to the behaviors at the boundary of B3, so that
the above questions can be analyzed by b-calculus developed by my advisor,
Richard Melrose. In this b-setting, AO(B 3), the set of all functions (tensors
defined similarly) with a complete asymptotic expansion at infinity, with respect
to an index set 8 can be defined as follows :

s<r

A (B:= f Co (R3  Vr E +  f(x,) = c,8) (logX)k+ R,
s,kcE

where x is a boundary defining function and R, E xr'H (B3 ). We will dis-
cuss more in detail (in Chapter 2) about index sets and b - Sobolev spaces,
xrH (B 3)_

With this definition of a complete asymptotic expansion, I answer Q1 af-
firmatively. This is the main result of this thesis, as stated in the following
theorem (we will give a more precise b-version in Chapter 2 :

Theorem 1.3 Let g be as in the hypothesis of the theorem(1.1), and, moreover,
have a complete asymptotic expansion at infinity. Then there exists j in the
conformal class of g such that (§ - e E H,,a) and a symmetric 2-cotensor k E

H,-1,6+1, so that (j, k) is a maximal initial data set with both g and k having
a complete asymptotic expansion at infinity.

In proving this theorem, I, show how to construct a pair with a complete
asymptotic expansion. I do so by following the steps that Christodoulou and
O'murchadra used in [C-M] to produce an asymptotically flat solution (§, k)
to constraint equations by modifying any arbitrary asymptotically flat pair
(g, k) with R(g) > 0. Likewise, I also start out with an asymptotically flat pair
(g, k) with R(g) 0, but this time, with a complete asymptotic expansion, in
addition. Then I show that in each of the steps that they used, the property
of having a complete asymptotic expansion is preserved, by proving the follow-
ing three theorems about three equations that play a very crucial role in the
modification process.



Assuming that

a E (0,1)

g - e E zaH (Bs3 ; T*3 T*I3) n A(B 3 ; T*R 0 T*I 3 ) for an index set G

we prove :

Theorem 1.4 (York's Equation) Suppose T E af+2H (o3 ; T*R3 )nA (B3 ; T*RI ).

Then the unique solution a E xaH~(B3 ; TR 3 ) to

divg o L 9 (a) = T

is in A (B3 ; TR3), for an index set I which depends on g and 8.

Theorem 1.5 (Scalar-Flat Equation) Suppose f E xa+2 H (B3 ) n A (B3 )
and f > 0. If h E xa+2HO(B3 ) n A (B3 ), then the unique solution u E
xaHo(B 3 ) to

(Ag - f)u = h

is in A' (B3 ) for an index set I which depends on 9, F, and, E.

Theorem 1.6 (Lichnerowicz Equation) Suppose M E xa+2 Hb (B3 )nA (B3 )
and M > 0. Let, V be the unique solution to

A,9g + Me - 7 = 0

such that V) - 1 E xaH o ( 3 ). Then 4 - 1 E A(B 3 ), for some index set Z,
which depends on G and M.

The rest of this paper is devoted to the proof of the main theorem and the
above three theorems. As alluded to before, my advisor's insight that what is
happening at infinity can be analyzed right "in front of our eyes" by radially
compactifying R3 to B3 and thus putting our problem in b-setting, laid the
foundation of this work. In Chapter 2, we, therefore, review some aspects
of b-calculus as they pertain to our problem and restate the main theorem
(Theorem 1.3) in the b-language. Once this is done, we can use analytical
tools of b-calculus to prove the main theorem and the theorems mentioned
above. For instance, we will see in Chapter 3, how we can understand the
asymptotic behaviors of solutions to the flat Laplacian Ao on R3 by viewing it
as an elliptic b-differential operator acting on b-Sobolev spaces as follows :

A0 : xbH+ 2 ( 3 ) - a+2 H (B3 )

We will first discuss the mapping properties of the above and then show how to
use its indicial operator of Ao to conclude that if h E xa+2Hs(B3 ) of

Aou = h

has a complete asymptotic expansion, then the solution u E xaH+2 (B3 ) does
also. We will also precisely give the index set for u based on the index set of h.



The result of Chapter 3 is important not only in its own right, but also for
the fact that it can be used as a model to prove the above three theorems. We
first tackle scalar-flat equation in Chapter 4, since it is closest to the model
case. We will see that we can write

(Ag - f)u = (Ao + Q)u = h

where Q is an operator coming from the non-flatness of the metric. We will see
that near 013, A dominates Q, since the metric is asymptotically flat, after all,
and we can use what we know from Ao to understand the asymptotic behaviors
of u given the asymptotic behaviors of h.

Next, we tackle the Lichnerowicz equation

A 9g + MW- 7 = 0

in Chapter 5. Though this is a non-linear equation, we will see that the
non-linearity is rather mild (only in 0-7 term) and moreover, becomes milder
and milder near OB3 so that almost all the arguments of the linear case of the
previous chapter can be used to establish that the solution i has a complete
asymptotic expansions of the solution V, given the same for M.

Lastly, we discuss the York's equation

div9 o Lg () = r

in Chapter 6. We will see that we can write

div, o L = Yo + Q

where Y E Diff (B3 ; T3;T*R3) and moreover, z-2Yo is b-elliptic. These
facts will enable us to imitate the results of Chapter 4 to establish that a has
a complete asymptotic expansions, given the same for 7.

Then finally, in Chapter 7, we put all these together to get an initial
maximal pair (§, k) with a complete asymptotic expansion at infinity, thereby
finally proving the main theorem.

As for Question 2, I have obtained a partial, but what I believe to be pivotal,
result in answering Question 2 affirmatively. In Chapter 8, we state this result
and discuss the future directions in establishing the veracity of Question 2.



Chapter 2

The Setting

The b-calculus was developed by Melrose to study analytic problems on mani-
folds with boundary. A good introduction can be found in ([Melrose 2]). In this
section, we mainly show how to put our problem in this setting and make a few
relevant definitions.

2.1 B3, the radial compactification of R 3

Since it is the behavior at spatial infinity of the initial data that we are mainly
interested in, we help ourselves, psychologically speaking, by bringing the in-
finity right upto our eyes. Analytically, this means that we radially compactify
([Melrose 1]) 3 to the upper hemisphere S3 ',+, which is topologically B3, a man-
ifold with boundary. We will choose x = 1 , to be the boundary defining

function, where r = x + x + x 2 is the Euclidean distance and ¢ is a smooth
cut-off function supported near 0 E IR3. After this compactification, the spatial
infinity corresponds to B]3 1 S 2 and the interior of B3 corresponds to iR3 . And
on a neighborhood O near o 3 , say O = B3 - (0 E VR3 ) for instance, we have
the obvious diffeomorphism :

0 [0, oo), x S2

2.2 Function Spaces and Asymptotic Expansions

Now that we talked about the structure of the manifold with boundary B3, we
can define a few function spaces on it. We first define

C, ( 3 ) = (smooth functions on 3 }

Vb(B 3 ) = {smooth vector fields on B3 that are tangent to IB3}

Diffbk(B) = spanO<s<k(Vb( 3)) ; Vb0 ( 3 ) C ( 3)



Now, we introduce a b-density, dp, on B3. In fact, we can easily write one
down explicitly, such as :

1
dp = ( ) r2drdO

(r) + r3

where O(r) is again the cutoff function introduced in the previous section. With
respect to this density, we can then define

L (B3, dp ) = {f C Loc(R3 ) I If 2di/ < o}

Hb(B3 ,du) = {fI Hoc(R3) j IP(f) 2d < oC; P E Diff( 3)}

xaH(B3 ,dp) Hi (V)= {I e oc( R3 lP(x-af)12dp < oo; P E Diff(8(B 3)}

It's always assuring to know that these newly-defined spaces Hg (B3; dp)
satisfy some properties of the existing spaces H S ( 3 ). We mention two that are
of particular importance to us,

Lemma 2.1 (b-Sobolev Imbedding) For a > 0 and for 0 < k < s - 3/2, we
have

xa Hs(B
3, dy) C ck(3)

Proof : For any f E xaHb, (B3, dp), we decompose it using the cutoff function
¢ as follows :

f = . f + (1 - 0) -f = f+ + f_

Now
f+ E Hc(R3 ) C Cck (R3 )

by the regular Sobolev Imbedding theorem. As for f_, we change coordinates
as follows :

(0, 1) x S 2 9 (x, 0) - (log x, 0) = (t, e) E (-oo, O)t x S2

and under this coordinate-change, we can see that

f_ (t, O) E Hs(IR x S2); f_ - 0 for t large

Again by the regular Sobolev Imbedding theorem, we have

H"(R x S 2) C Ck (R x S2)

and thus
f_(t, 9) E Ck (IR x S2 ); f_ 0 for t large

So, we can see for both f+ and f_ that

f+ and f_ ECk



where we define

Ck(B3 ) = {f E C(B3) I P(f) E C(B3 ); P E Diffk(B 3 )}

Therefore, we conclude that

ZaH(IB3 ,dp) C Cb(B 3)

Since we can easily show that Ck ( 3 ) C C k ( 3 ), we finally have

xa H(B 3 , dp)C C (1k 3)

An immediate consequence of this theorem that we will use often in this
chapter is

Corollary 2.2 For s > 2

XaHS(]B3 ) X XcHs-2(B3 ) C xa+cH s- 2 ( 3)

Proof : For f E xaHg(B3 ) and g E XaHb -2(B 3 ), we can apply the above
lemma, repeatedly, to show that

P(fg) E xa+cL2 (B3 ); P E Diffs-2 ( 3 )

A slightly non-trivial extension of this corollary that we will also use often
is

Lemma 2.3 (b-Multiplication Theorem) For s, s' > 3/2, we have

XaHs(B 3 ) x XCH (B3 ) C a+cH (B3 )

where so < s, s' and so < s + s' - 3/2

Proof : For f E aH(B 3 ) and g E aHb -2( 3 ), we decompose

fg = €- fg + (1 - 0)- fg = (fg)+ + (fg)-

and apply the standard Gagliano-Nirenberg-type multiplication theorem of HS (Rn)
(see [Melrose-Ritter] for example) to each piece. O

Now in order to define what it means for a function to have a complete
asymptotic expansions at &93 = S 2 , which corresponds to spatial infinity, we
need to define an index £, a set of powers that appear in an expansion, to be a
discrete subset of R + x (N U {0}) with the following three conditions.

1) (s, k) E - (s + 1, k) E , Vl E N

2) (s, k) E -+ (s, 1) , O < 1 < k

3) (s, k) -+ -4 s -+ oo



Then we define A' (B3 ) as following :

s<r

A(B 3) := f C(R) I (Vr E +)f(x, ) = I cs,k(O)xs(logx)k + r
(s,k)EE

Rr E xrHb(B 3)}

The first condition makes A a C1 (B3)_ module. The first and the second
condition assures that A' is invariant under different choices of coordinates

(2, 0). Finally, the last condition on . ensures that the summation is always
a finite sum, and the more terms you have in the expansion, the smaller the
remainder term becomes.

We remark than A' (13) can be given a complete locally convex topology by
constructing seminorms from IICs,k (0)IIC"(S2) for (s, k) E . and IIRm IIx. H(B3)

for some sequence {rn} C I R such that ro = oc. It is straight-forward to see
that such a topology on A' (B3) is independent of the choice of the sequence

{rn).
Now let E and F be index sets as defined above. We then prove :

Lemma 2.4

A"O(B3) + OA ( ) C Eou( )

An"(B)- Ao (W) c A0F+(B 3

Proof : The lemma follows straight-forwardly from Lemma 2.1 and Lemma
2.3. O

2.3 Extensions of Tensor Bundles

We first consider the simplest case, i.e. TIR3 . Let us choose on R3 a flat
coordinates system {xZ , 2 , 3 } (i.e. for which gij = 6ij), and trivialize T 3

using this coordinate system as following :

TV RMXZ2X3) X{1,02,03}

Under this trivialization 4), smooth vector fields correspond to smooth maps
into a fixed vector space IR3 with a fixed basis {1, 02, 03} as :

v=v1 (x) 1 + v 2 (x)a 2 + 3 (x)03 E C'(R3 ;T 3 )

(va, v2,V3) E Co (;3 i 3 3
vUi E Co(R3;R), 1<i<3

L 2 and Hs sections of TR3 can be defined in a similar component-wise manner.



Now, in order to discuss the behaviors at infinity of the vector fields on R3 ,
we extend TIR3 to a bundle over B3 . One way to do this is simply to radially
compactify the base manifold R3 of TI 3 and leave the fibers intact :

TRP3 3 B3 X 43 T31T j 2i,'X23 
X R1 , .2a3}01 092093 1

where
S: R3 x R3 3 (x, v) - (SP(x), v) e B3 x D 

3

and {1a, 02, 3} is now a basis for all the fibres over all p E B3, simultaneously.
Here we retain 4 in the notation B3 x D R3 to remind ourselves of the fact that
a choice of trivialization of TR3 , namely 4, was made in the above definition.

Then, similar to what we did for TVR3 , we define C"-sections of B~ xP R 3

as follows :

V=VlOl+v2a2+ V3a3 E c°(B 3 ; 3 x~J 3 )

(vi, v2,v 3 ) E C"(B 3 ; 3 )
vi E Co (B3 ; R), 1 < r < 3

Moreover, we can define L I-, Hb-, and xaHg- sections of B xi 3 in a similar
component-wise way. Thus in this way, the behaviors at infinity of the sections
of TIR3 are eventually reduced to the boundary regularity of its components, i.e.
the boundary regularity of functions, which we defined in the previous section.

Similar to what we did for A' (iB), we define A (I13; B3 x, 3 ) to be a
subset of C (R3 ; T 3 ) which have a complete expansion, with respect to £, at
infinity. In other words, o is in A" (B 3 ; B3 x, 3 ) if

SE C (R3 ; R3 x~ R 3 )

and for some neighborhood near aB3 , say U c [0, 1), x S2

s<r

Vr E R+* i lu = r*(c,k)zX(lg )k +R,; Rr E xrH(U; (B3 X3  )Iu)
(s,k)EE

where cs,k E Co(Ol
3 - ( 3 x3 X 

3
)IO3 ) and

(]3 × 3) U 3 ((3 X P 3)1 O)

where 7r : U 3 (x, 0) -+ E S 2.
Now it is easy to check that the above, somewhat complicated looking, def-

inition is equivalent to a component-wise definition of A~ (B3 ; 3 x 1 3 ) as
follows :

oE AO (B3; X+ DR3) 4 o i E A 0(B3), 1 < i < 3

Since we used the trivialization D in defining the spaces above, we need to
assert that they are all well-defined under a similar choice. We thus prove :



Lemma 2.5 Let ' : T R3 - IR3 x 3 be another trivialization of TR 3 such that
the transition map tij E Co (R 3 ,GI(3)) is in C, (B3 ,Gl(3)). Then, tij maps
following spaces isomorphically.

tj : COo (B3; B13 x j3) _ CCO (3 ; 13 X , 3)

tij " XaHb(B
3

;
3 

x3 3I ) _ XaH(B
3

;
3  

Xl R
3

)

tij A (B13 ; B3 
xI R3 ) -+ A (B13 ; 13 X(', I 3

)

Proof : This is a consequence of the algebraic properties of the function spaces
C" (B 3 ), xaHs(B13 ), and A' (13) 0

Because of this lemma, from now on, we will stick with the trivialization ).
And in fact, we will denote :

TR3 = B3 x 
3

Lastly, we remark that through a similar reasoning, we have

T* 3 , d3 x IR{dXd,ddx3} - 3 X . 3 , denoted by T*R 3

and

T*I 3 OT*(R3  ( (3 X( 3 
( i

3 ) ~_B
3 x(.)®(.)(I 3 

3 ), denoted by T*R3 2T* 3

C" - ,  aH - , and A'- sections of T*R3 and T*R3 9 T*R3 can be defined
in a similar way.

2.4 Back to R3

We now compare the function spaces that we defined on B3 and those that we
defined on I3 . First we prove :

Lemma 2.6

C"(R3 ) D Hb(B 3 ) D A (B 3) D xcCO(03 )

for any index set . and for any positive e such that (e, 1) E 9 for some 1 E N.

Proof : The first inclusion follows from b-Sobolev imbedding theorem. The
second inclusion is straight-forward and the third inclusion follows from the fact
that C (B3 ) = A 3 (B3 ) for S = N. O

Now, we prove the following lemma which translates the notation of ([C-M])
to this b-language.

Lemma 2.7 The following equalities hold where the right hand side was defined
in ([C-M]) :

H s ,6 (R 3 ) = x +2Hs(B3 , Pb)

H,6( 3;E) = ZX+3H6(B3;E, pb)



Here, E is any tensor bundle (i.e. TR3 , T*R 3 , T*V3  x T*R3 , etc.) of R3 and
F is its extension, (i.e. T~3 , T* 3 , T*f 3 x T*1R3 , etc)

Proof : We will just prove the first statement, for the second one follows
easily from the first.

Recall the following definition from ([C-M])

H,,6 = {u E L oc( 3) I (/(1 + lX2))6+l"aIDu E L 2(1 3 ) for Ial < s}

For f E H,, 6 , we write

f = f+ + f = Of + (1- )f

It is easy to check, for any 6 and a

. Hs,6(I 3 ) = . XaHb( 3 )

because 6 and a matter only at infty (or 01 3 ). we just need to show that

(1 - ¢) -Hs, a(R 3 ) = (1 - ) -xaH (]B3 )

Suppose s = 0 for now. Then we have

f_ E Ho,(IR3 ); f- 0 near 0 E 3.

S 3(/(1 + xIZ)) 2 6 f_12r2 drdO < c00

fr26lf_12r3 dO <

jf Ir+2 f_ 2drdO < oo

[(6+) f dr dx
S fr xS3 f2_ 12P b < 00; r Pb near o93

For s = 1, we furthermore have

f ( (1 +X2))
2+2 65Df_ 

2 r2 drdO < 00

r rif2 drd < <o, for 1 <i<3
3 r

j 1 x-(6+)P(f-)2 b < Oo for P E Diffi(] 3 )

because r&i E r xDiff' (B3) = Diff (B3 ) for functions that are supported away
from 0 E R3.

Now, the similar arguments work for all s > 1 and we conclude

(1 - ¢) -H,' 6(I
3 ) = (1 - ) . XaHs(B3 )



2.5 Restatement of Theorem 3.3

Now we are finally ready to give a precise version of our theorem, in b-category.

Theorem 2.8 Let 0 < a < 1. Suppose we have a pair (g,k), where g is
a Riemannian metric on 3 such that g - e E xaHO(B 3 ; T*I 3 0 T*R3 ) n
A(BS; T*R13 OT*IR3 ) for an index set 9 and R(g) > 0; and k is a symmetric 2-

tensor on R3 such that k E xa+l H (B3 ; T* 3 T*R3 )fnA( (B3 ; T*R3 ®T*"l3),
for an index set IC.

Then there exists a new pair (j, k) that depends on (g, k) , where § is in the
conformal class of g and - e e xaH (Bi T* 3 0 T*Ri) n A (3 ; T*I 3

T* 3 ); and k E za+1Hb (B3; T*3 9 T*3) n Az (B3; T*IR 3 0T*R3 ), for index

sets 1 and 'I that depend on 9 and KC, such that (g, k) satisfies the contraint
equations.



Chapter 3

The Asymptotic Behaviors
of Solutions to the Flat
Laplacian on R3

In order to understand the asymptotic behaviors of the solutions of Ao, we
revisit the known result of McOwen ([McOwen]) to first understand the mapping
properties of Ao. McOwen proved, phrased here in the b-language :

Theorem 3.1 The flat Laplacian

Ao : xaHb(B 3 ) - xa+ 2 H- 2 ( 3 )

is Fredholm for a Z. And for a Z, it is an injection if a > 0, a surjection if
a < 1, and thus an isomorphism if 0 < a < 1.

Since the theorem is phrased in the b-language, we will try to prove this
theorem using the b-analysis which will help us in analyzing the asymptotic
behaviors of solutions to Aou = f. With this in mind, we define a cutoff
function 0 to be

q E Cc(I( 3 )

S- 1 near 0E 3

and we actually prove the following equivalent statement instead :

Theorem 3.2

( +r 2 )Ao : aH(B 3) - XaH'-2( 3 )

is Fredholm for a V Z. And for a Z, it is an injection if a > 0, a surjection if

a < 1, and thus an isomorphism if 0 < a < 1.



Recall that r here is again a Euclidean distance on R 3 , which again corresponds,
via compactification, to the interior of B3

We will prove Theorem 3.2 by constructing a parametrix to (0+r 2 )Ao. As
we will see, the Fredholmness of (O+r 2 )Ao depends much on mapping properties
of r 2 Ao. This is not so surprising considering the fact that (0 + r 2 )Ao and r 2 A
only differ in supp(¢) E R3 , and even in that case, only by a positive scalar
except at the point 0 E R3 . However, r 2 A has the advantage of being its own
indicial operator on (0, 00) x S 2 . Thus, we first investigate r 2 Ao in detail in
Section 3.1, Section 3.2, and Section 3.3. Then in Section 3.4, we will
show how to construct a parametrix to (0 + r 2 )Ao, using r 2 Ao. Once we have
a parametrix for (0 + r 2)A 0 , we can easily deduce the mapping property of
( + r 2)Ao, thereby proving Theorem 3.2. This is done in Section 3.5.

Once we establish the mapping properties of (0 + r 2 )Ao, we use them to
prove the main theorem of this chapter in Section 3.6 as follows :

Theorem 3.3 Suppose f E xa+2 Ho(B03 ) n Ay(B3 ) for 0 < a < 1. Then the

unique solution u E xaHc (B3 ) to

Aou = f

is in A' (B]3) for an index set Ze where ZE = (S - 2)UN.

In other words, if f has a complete asymptotic expansion, so does u.

3.1 r 2A 0 as Operator On [0, 1] x S2

We realize the following two facts about r 2 Ao :

1. r 2 A is not elliptic at 0 E B3 because of a rather spurious degeneracy at
0 E R3 introduced by multiplying Ao by r 2.

2. r 2 Ao is invariant under (R+, x)-action on R3

Motivated by these two facts, we introduce [0, 1] x S2 , a manifold with boundary
closely related to B3. [0, 1] x S2 comes about first by blowing up the origin in R3

by introducing the polar coordinates near the origin. In other words, we have :

RJ
3 

_ {0} E (0, 00), X S2

by sending
x -+ (Ix,x/|xl)

We then compacitfy (0, o00) x S2 to [0, 1] x S 2 as following :

(0, oo) x S2 9 (r, 9) 4- (r/(r + 1), ) E [0,1] x S 2

Thus (0, o0) x S2, under 9, corresponds to the interior of [0, 1] x S2 and [0, 1] x S 2

has 2 boundary components :

([0, 1] x S2) = ({0} x S2) II ({1} x S 2)



Now let us write r 2 Ao using the polar coordinates on (0, 00oo) x S2 ,(r, )

r2o = (rr) 2 + (rar)2 + AS2

Furthermore, near r = oo, we can let y = 1/r and then we have

rOr = -yO, E Diff ([, 1] x S 2)

r 2 A0  = (y o)
2 - (YoU) 2 + As2

Thus, it is clear that indeed :

r2 A0 E Diff ([0, 1] x S2 )

3.2 b-Sobolev Spaces on [0, 1] x S 2

Now in order to define b-Sobolev spaces on [0, 1] x S2, we need to introduce a
b-density, Tb. There is an easy choice for Tb, namely :

dr
Tb = I dO

r

Near the boundary component r = 0, we can see easily see that this is a
b-density. On the other end, where r = c, i.e. y = 1/r = 0, we note that

I d = dy dO|
r y

which shows that Tb behaves as a b-metric should near the other end (r = 00),
as well as (r = 0).

Now using Tb and again the fact that (0, 00oo) x S2 corresponds to the interior
of [0, 1] x S2 under the compactification IF, we define :

rcHb([O, 1] x S 2 ,Tb) = {f E Hc((0, o) x S 2 ) I IP(r-cf)12Tb < oo;
/OO S2

P E Diffb([0, 1] x S2)}

Note here that the weight "r" blows up on one end and vanishes on the other,
depending on the sign of c.

Now, using the fact that

spanc(] 3 ){rr,O,o } = Vb([0,1] x S 2 )

we conclude that

rCHm ([0, 1]xS 2, b) = {f =rC'f I 2dI (Irr)k ( o)l'(r,)12dd r  < 00}
S O<kl<m

Now let us introduce a variable t such that r = et. We then have

(0, O), x S2 3 (r, ) ++ (logr, 0) E (-C, C)t X S0 0-u L~ ~~



and

f E rcHbm ( 3 ) + f = r c " f(r, 0) = ectf(et, 0) = ectf (t,0)

I s I Z (t,)k(ao)ifb(t,) 2 dO dt < 00
O2 

0<k+<m

In other words, f E Hm(Ir x S 2) and thus we concluded that under the
coordinate change r = et :

rcH ([O, 1] x S2 ) + ectHm(R x S2)

Lastly, we describe how ectHm( R x S 2) behaves under taking the Fourier

Transform on t-variable. (the reason for doing this will become clear in the
forthcoming sections.) We first prove :

Lemma 3.4 The Fourier transform gives the following isomorphism :

t (1+ s m)h(s,) E L 2 (I; LHm2 (S 2 ))

Proof : Suppose h E L2 (R x S 2 ). For t E (R - E), where E is a set of measure
0, the following definition :

ht(x) := h(t,x) E L2oc(S 2)

makes sense. Moreover, since we have, by Fubini's theorem,

L( ih(t, )12 dO) dt = I h(t, )12 dtdO < 00

we conclude that for t E R - E - E ' for possibly another set of measure 0 , E',
we have

ht E L 2 (S 2)

and

IIht I 2 (s2) dt < 00 4= h C L 2 (R; L2 (S 2 ))

Now if we take the Fourier transform in t-variable to get

h(s,) = f e-isth(t,9)dt

and we have

f, L 2(S2) ds f= f2 h(s,) 12dds

= IS2 ih(s) 2dsdO (by Fubini)



= S2 fl h(t, 0)12dtdO

= ff2 h(t, 0)12 dOdt

= Ilht12 2(S2)dt

(by Plancheral)

(by Fubini)

Thus
L 2 (IR x S 2 ) r L 2 (t; L 2 (S 2 )) -L L 2 (RI ; L 2 (S2)) (3.1)

Now if h E Hm ( x S2 ), then we have (t)k(oo)lh(t,O) C L 2 (R x S 2) for
0 < k + 1 < m. In fact, by the well-known interpolation argument (which can
be easily proved by using the Fourier transform), we have

E L 2 ( x S 2), 0 < k +l < m

L 2 (IR xS 2), 0 < <m
L2(R x S2)),

L2 (R; Hm (S 2))
L 2 (R; L 2 (S 2 ))

l<m<l< m

O < 1 < m

(at)k(Oo) h(t, 0)
S(0o) 1h E

S (Ot) m h E

({ h
(ot) m h E

By (3.1), we therefore see that

(Ot)k(&e)Ih E J

(1+ Ism) i

(1 + |s m)h

L2(R;L2(S2)), O< k +

E L 2 (I;L 2 (S 2 ))

E L 2 (R; Hm(S 2))
E L 2 (IR; ;L 2 (S 2))

O
Thus we can

f

-

finally define

E rcHbm([O, 1] x S 2)
on int([0, 1] x S 2 )

f
(0, oo), x S 2

rcf(r, 9)

(-00, 00)r x S2

ectf (t, 0)

where

f(s,9) E L 2 (IR;Hm(S 2))

(1+ Is m )f(s,) L 2 (IR; ;L 2 (S 2))

From now on, we will denote H ([0, 1] x S 2 , b) simply by H ([0, 1] x 2),
assuming that we are using the measure Tb = dOI on [0, 1] x S 2 . We are now

ready to state the main theorem for r 2 Ao.



3.3 Main theorem for r 2Ao

We prove :

Theorem 3.5 (r2 A) : rcHS+2 ([O, 1] x S 2 ) - rcH([ 1] S2) is an isomor-
phism iff c V Z.

Proof : We will prove this by showing that the inverse

(r2o)- 1  c rcH([O, 1] x S 2) - rcHb+2 ([0, 1] x S2)

exists for c V Z. We will consider the case when s = 0 (all the remaining cases
are proven in a similar way). Thus, we start with

u C rcH ([, 1] x S2)

and
f = (r2 Ao)u E TCL ([O, 1] x S2)

Writing r 2Ao, u, and f in (r, 0) coordinates on (0, oo) x S2, we have :

((rOta,) 2 + (rOtr) + Ao)u(r, 9) = f(r, 9)

The above equation becomes in (t, 9) :

((at)2 + (at) + Ao)u(t, 9) = f(t, 9)

Using the definition of Hs ([0, 1] x S 2) that we gave in the preceding section, we
can write :

f = rcf(r, ) = ectf(t,); f' E L 2 (R x S2 )

and
u = rcii(r, ) = ectu'(t,0); u' E H 2 (R x S 2)

Then the above equation becomes :

(e-Ct{(at) 2 + (at) + Ao}ect)u'(t,0) = f'(t,0)

Therefore,
(r 2 Ao) : rcHs+2 ([O, 1] x S 2) -+ rcHg([O, 1] x S2)

can be equivalently written as

(e-ct{(0t)2 + (at) + Ao}ect) : Hs+2(i x S 2 ) - H'(IR x S2)

The advantage of writing as above is that the domain and the range are now fixed
and dependency of the parameter "c" lies solely on the operator (e-ct(at)2 +

(at)2 + Ao}ect), where r2Ao is conjugated by ect. Carrying out the conjugation
we get :

((Ot + c)2 + (at + c) + Ao))U (t, 8) = f (t, )
Now we can take Fourier transform of both sides in t-variable to get :

((is + c)2 + (is + C) + Ao)Ub(s, ) = f(s, 9)

We now state following well-known result from the Analytic Fredholm theory.



Lemma 3.6 1. ((is)2 + (is) + =)-1 = A(s) + Ekez Bk/(S - ik), where

A(s) is holomorphic with values in Q-
2 (S2), thus holomorphic in Io(S 2)

as well, and Bk is a projection operator to the eigenspace of As2 with the

eigenvalue k(k + 1).

2. I((is)2 + (is)+ A L2(S)--L2(S2)+L2(s2) < C/(1+ IS12) as IsI -+ oO away from

iZ.

3. ll((is) 2 + (is) + AO)- 1 I L2(S2)-+H2(S2) < C away from iZ.

Proof : This is a result from the Analytic Fredholm theory ([Melrose 2]). We
simply note

(is + c)2 + (is + c) 4 Spec(Ae)

(is+c)2 + (is + c) k(k + 1),k E Z +

c Z

Thus, when c V Z, the resolvent

Vs E I : Rs = ((is + c)2 + (is + C) + A ) - 1 : L 2 (S 2 ) - H 2 (S 2 )

is well-defined and ub (t, 9) can be written as following :

u (t,9) = eit((is +a) 2 + (is + a) + A)-'(s,9)ds = eistRs(f)(s,9)ds

Now it remains to show that u, thus given by the above formulae, is indeed
in H 2 (I x S 2), given f E L 2(I x S 2). By Lemma 3.4, this is equivalent to

showing that

ub (s, 9) C L 2(R; Hm (S 2))

(l1+ s 2 )u (s,9) E L 2 (R;L 2 (S 2 ))

provided that f , E L 2 (; L2 (S 2)).

By (2) of Lemma3.6, we know

liRs IL2(S2)-4H2(S2) < C'

Thus, we have

IL2(R;H2(S2)) IL2(R;H2(S2))

= jIIRs(f)ll|2 2(s 2)ds

< IIRs L2(s) -H2 (s2)l 2 l2(s2)ds

< C.- IfIL 2( 2)ds

< CIf |I2(R;H2(S2)) <00



By (3) of Lemma3.6, we also know

llRsIlL2(S)-+L2(S2) < C/(1+ IS2)
Then, we can conclude that

|(1+ | 2(R;L2(2)) = ( +l 2 )Rs( fI2(R;L2(S2))

= 1(1 + S2)12IIS(f'S)1 2 (S2)ds

< f1(1 + s2)1211sI 211fII2ll2(S2)ds

< (1 + 2)2 S 2  I L2(S2)ds

< C' IIf2L2(R;L2(S2)) <00

Therefore, we finally conclude that

u (t, 9) E H 2 (IR x S2)
fi(r, ) E H2((0, C0) x S2))
u = rCi rcH2([0, 1] x S 2)

This shows that when c 4 Z, we have a well-defined inverse :

(Tr 2A) - 1 rCL ([O, 1] x S 2) -+ rCHb2([O, 1] x S 2)

and similarly for all s > 0

(r2 A)- 1 : rcHg([O, 1] x S 2 ) -4 rcHs+2 ([0, 1] x S 2)

is well defined for c V Z O

Remark 3.7 Another way to prove the above lemma is to keep the operator
r 2 Ao fixed, instead of conjugating it, and then investigate what the Fourier
transform does to ectL 2 (R; L 2 (S 2)). We recall the well-known isomorphism :

L2(R) 9 f t- f E L (R2) (3.2)

Using this, we deduce the following 1-1 correspondence :

T : eCtL 2 (R; L 2 (S 2 )) -+ L 2 (R- ic;L 2 (S 2))
= - 1  : L 2 (IR - ic; L 2 (S 2)) - ectL 2 (R; L 2 (S 2))

Going in (-+) direction, we have

F(f)(s,9) = e-ist f(t,9)dt

R e-ist ectf(t,9)dt

f e-i(s+ic)t f(t, 9)dt

- f(s + ic, O)



and f(s + ic, 9) is L2 , exactly when s = a - ic, a E IR, because

f(s + ic, 9) = f (a - ic + ic, 9) = f(a, 0) E L 2 (R; L 2 (S 2 ))

Going in the other direction, we have

G(g) (t,9) = i eistg(s,O)ds

= ez(-iC)t'g(o - ic, O)do

= e ct j eiutg(a - ic, O)da

Again by (3.2), g(g)(t,O) E ectL 2 (I; L 2 (S 2)).
Going back to the main equation with u rcHb([O, 1]x S 2 ) and fE rcL ([O, 1]x

S 2 ) , we have,:

((is)2 + (i) + Ao)ii(s, = f(s, 9) (3.3)

or after all the changes of variables, we have

((is)2 + (is) + Ao)u(s + iC, 9) = f(s + ic, 9) (3.4)

Now we have :

c7Z
Vs E R - ic, s V Spec(Ao)

((is) 2 + (is) + A0)- 1 is well-defined 4

((is) 2 + (iS) + Ao) - 1 f(s + ic, 0) E L 2 (IR - ic; L 2 (S 2 ))

And by the above 1-1 correspondence,

u(t, 0) = eist((is)2 + (is) + A)-f (s, )ds

= L-zcezst((i)2 + (is) + AO)-l f+(s + ic,9)ds

= ((is)2 + (is) + A)-1f(s + ic, ))

is indeed in ectL 2(R; L 2 (S 2 )). By the mapping properties of R, and R , as
discussed above, u(t, 9) is, actually, in ectH 2( (R x S 2).

3.4 Construction of a Parametrix to (q + r 2)Ao

We first need to define the following cutoff functions. Recall q was such that

1 if r <l

C (R3 ); = E [0,1] if 1<r <2
0 if r >2



Similarly we define , i, and 4 to be

[0, 1]
if r <3
if 3 < r <4

0 if r>4

1
e [0, 1]

if r < 5
if 5 <r <6

0 if r>6

Using these cutoff functions, we define :

Q(f) = [1 * + (1 - )(r 2A-(l - )f
4r ( + r2)

= l(f) + Q 2(f)

We prove :

Lemma 3.8 Q is a map on following spaces :

Q: xaHg(
3 ) a XaHs+ ( 3)

for a Z.

Proof : Suppose f E xaH( 3 ). Now look at the first term Ql(f) = [r- *
+r]. We note that - feHf (IR3 ) and make the following claim :

Claim 3.9 (4- *_ ) is a well-defined map on the following spaces :

S* _ : H ) - HS+2(IR3)4rr " -

Proof : Take an element f E H S(IR3). We have

1 1- 1
47rr * = 4rr = 2

Now let us write

where ¢ once again is a cutoff function defined above.
well-known correspondence :

Recall the following

h E HS(IR3 ) ++ (1 + JS)h E L2(R 3 )

Thus, (1 + E)- E L 2( R3) and since f- E 0 near 0 E IR3 ,

(1 + I1s+2) I 2
Wrl

= E [0,1]
0

if r < 7/3
if 7/3 < r
if r > 8/3

< 8/3E CCO (R3);

E¢ C(R3);

E Cc (W );

4= {
4= {
1

f- E L2( 3 )



Thus .- 'l('-) E Hs+2(I 3 ) and I -1 (-f-) E H+ 2( 3).

Now, since f is compactly supported, we see that f E C (R 3 ) by Paley-

Wiener, and thus f+ is in C (R3 ). We then have:

1 f'L ELI ( 3 ) C D'( 3 )
Il25

Again by Paley-Wiener theorem, .-- 1 ( -f+) E CO(IR3 ) and -Y-1 (-17f +) E

Cqc(R 3 ) C Hc+2(R3 ).

Thus the above claim shows that

Q1(f) C Hc+2(( 3 ) E XaHs+2(B3)

Furthermore, since it is compactly supported, it is indeed in xaH +2 
(]3).

Now look at the second term

Q2(f) = (1 - o)(r
2 Ao)-l(1 - )f

Since (1 - 0) is supported away from 0 E R3 and a = r - a near oo, we realize
that

(1 - )f E r-aH([, 1] x S 2)

Since we showed that for a Z :

(r2A-1 r-aHg([0,1] x S 2 ) -+ r-aH+ 2 ([0, 1] x S 2)

is well-defined,

(r 2 Ao)-(1 - a)f E r-aHs+
2

([0, 1] x S 2
)

Now cutting this off away from 0 E R33 by multiplying it by (1 - q), we thus
conclude that

Q2(f) = (1 - 2)(r2 Ao)-'(1 - O)f E xaHs+2(B 3 )

Therefore,
Q(f) = Q1(f) + Q2(f) E xaHb+2 (B3)

In order to prove that Q is a parametrix to (¢+r 2)Ao which makes (¢+r 2 )Ao
Fredholm, we need to show

(0+ r2 )Ao oQ = I + R

and
R : xaH (B 3 ) + xaH H(B 3 )

is a compact smoothing operator. Thus we prove



Lemma 3.10
( + r2 )Ao oo Q(f)= f + OK(f)

where

OK : xaH(3 3 ) -+ xaH(B
3 )

is a compact smoothing operator.

Proof : We have, in the sense of distributions,

(0 + r2 )Ao 0 QI(f)
1= ( + 2)a oo - 'Of

47rr ( + r2)

1 f 1 #f= (O + r2)(Ao )( + ) + 2(V )(V(- * + )) +
47rr ( + r2) 4nr ( + r2)

1 • f
(47rr + r 2 )

Now, as for the rightmost term, we have :

(0 + 2)( )(.A __ I * _ _ - ('O+f 2
) OPf

47rr ( + r2) ( r2)

= f

because - = O. We assert that the remaining first two terms give a smooth
error. From the definition of , we can see that

supp(Ao ) C {p E 1 3 | 3 < Ip| < 4} -4 supp(Ao) n suppO = 0

Now, with this in mind, we can write :

1 bf(€ + r2) (Ao )( * + I)
Ix2°x] + [4>r2) ) Y(X)

= [( (x) + 1x yl2)o(x)][ (y) ]f(y)dy
R)3 4xx - y| ('0(y) + |y|2)

= K (x, y) f (y)dy

= OK, (f)

We then assert the following claim :

Claim 3.11 K 1 is in C"(R3 x V3 ) and moreover

OK 1 C-O(
3 ) - C00(l

3 )

is a compact smoothing operator.



Proof : K 1 E C c (J 3 x R3 ) is clear because

supp([(O(x) + IX2).o (X)] • [ ]) c Diag(R3  x R3)c
(O(y) + y12)])

and singsupp( 
y) = Diag(3R x R3 )

47r x - y|

Thus OK, is in fact a smoothing operator. Now it remains to show that

OK1 : xaH(B3 ) - xaH(B 3)

is a compact operator. By definition, this means that we need to prove that
given a bounded sequence {fn), i.e. IfnlxzHg(B3) < C, we need to show that

{OK1 (fn)} has a convergent subsequence. Since

E = supp[(O(x) + Ix12 )Ao (X)]

is a compact subset of B and supp(OK, (fn)) C E we see that

Vn, supp({OK (fn)) C E

Furthermore, we can prove that ({OK1 (fn)}) is an equicontinuous family, as we

can see from below :

IOK (fn)(x) - OK(fn)(x')l = if (Ki(x,y) - K(x', y)) fn(y)dy

= I (K(x, y) - K(x', y)) f(y)dyI

< ( |IKi(x,y) - Ki(x',y)I2dy) -( fn 2dy)

< C -( IKI(x, y) - KI (x', y)I 2dy)

where

' = supp( )
(O(y) + |y12)

Now since Ki(x, y) E C°(R3 x R3) (in fact C (R3 x R3)), we have

(V > 0)(36 > O)(l(x,y)-(x',y')l < e -+ IK,(x,y)-K(x',y')l <
y(, 1 dy)

Letting y = y', we then have

(WE > 0)(36 > 0)(|(x, x'l < c -+ IKl(x, y) - Kl(x', y) <
/C - (fa, 1 dy)}



Thus,

(V > 0)(Vn)(36 > 0)((x,x'I < - 10 K,(fn)(x) - OK,(fn)(x')

< C ( K,(x, y) - K (x', y)|2dy)

<C. (f y))( dy)2

<c

and thus the equicontinuity of OK 1 (fn)(X) is established.
Similarly, we have

|OK1(fn)(X)l < (, IK(x, y)|2 y ~ ()2dy) 1

< C' C

where C' = maxxz, (fE, IKi(x, y)12dy) . Now, the following computation

(f x-aOKfn (x) 12dy) =  ( 'X-aOK, fn(X) 2 dy)

< A. (j IOKfn(X)12dy) for some constant A

< A. C2 C '12.( 1 dy)

shows that

lOK (fn)llxn2(B3) < L

Now putting all the three above facts together, i.e.

1. {OKlfn} is supported on a compact set.

2. {OK lfn} is equicontinuous.

3. {OKlfn} is bounded.

we can apply Azela-Ascoli theorem to prove that there exists a subsequence of

{OK (fn)} that converges to fo E xaL (B3 ). Now we can repeat the argument

for all k < s to get subsequences that converge to fk. I.e. We get a convergent

subsequence in xaH2(B 3 ). I

Similarly, we can define

OK2 (f) = (O+r2) (2V )( *V( + ))
47r ( + r 2 )

= ( + 2) (2V )( * ( )f) + (0 + r2). (2V1 )(4-  f V())
4rr (0 + r 2) (4 + r2)



and conclude that
OK 2 : xaHS( 3 ) xaHS( 3)

is again a compact smoothing operator because

supp(2(V )) C {p E 1 3 | 3 < IpI < 4} -+ supp(2(V)) n suppVo = 0

-4 supp(2(V)) n suppo = 0

Thus, we finally conclude that

(0 + r 2 )Ao o Ql(f) Of + OKl(f) + OK2 (f)

Of + OK(f)

Now for (0 + r 2)A, o Q2(f), we prove a similar lemma :

Lemma 3.12

(0 + r 2 )A, o Q 2 (f) = f + OK'(f)

where
OK': xaH 3(B3 ) -+ xaH(B 3 )

is a compact smoothing operator.

Proof : As in the preceding lemma, we compute

(0 + r2 )A 0 o Q2(f)

= ( + r 2 )A o ((1 - )(r 2A)- 1 (1 - )f

= ( + r2 ){(Ao(1 - ))(r 2 Ao)-1 (1 - )f) +

2(V(1 - 4))(V((r 2 A 0 )-(1 - O)f)) +

(1 - ¢)Ao(r 2 Ao)-l(1 - )f}

For the rightmost term, we again see

( + r2)(1 o )Ao(r 2 
o) - 1 - )f)

because we chose q and 0 such that

As for the remaining first two term

supp(Ao(1- ) r
supp(2V(1 - r)) r
supp(2V(1 - r)) r

= (1-)(r 2 o0)(r
2 A 0o)- 1 ((1-)f)+

¢(1 - q)Ao(r 2 / o) - 1 (1 - )f

= (1 - )f

f = (1 - )f
) = 0

s, by noting, as we did for Q1, that

i supp(1- 0)=0

1 suppV(1 - 4) = 0

1 supp(1 - ) = 0



we again conclude that

( + r 2 )A o Q2 (f) = (1 - i)f + OK(f)

where
OK' : xaH(B 3 ) + xaH(B 3 )

is again a compact and smoothing operator. O

Therefore, finally, we have :

( +r2) oo Q(f) = ( + 2)o (Q(f) + Q2(f)

= f + (1 - )f + (OK + OK)(f)
= f + R(f)

where
R: xaH(B 3) -+ xaHg(B3 )

is a compact and smoothing operator.

3.5 Mapping properties of (0 + r2)Ao

In the previous section we saw that when a 4 Z, the map

( +r 2 )A a :xaH(]33 ) -+xaH-2(B3 )

had a parametrix Qa such that

(0 + r 2 )A o Qa = Id + Ra

where Ra is a compact and smoothing operator. This proves, by standard
arguments, that (0 + r 2 )A, is Fredholm if a V Z. Moreover, a V Z is indeed a
necessary and sufficient condition for (0 + r2 ) A to be Fredholm for because of

the following lemma :

Lemma 3.13
( 2 + r2 ) A xaH(B 3 ) -+ xaH-2 ( 3 )

is not closed if a E Z.

Proof : We construct a counter-example. We refer to Paul Loya's thesis
([Loya]). O

Now when a V Z, i.e. when (0 + r 2 )Ao is Fredholm, we can talk about the

dimensions of ker(( 4+ r 2)Ao) and coker((0 + r 2 ) A). We first note the obvious
fact that

ker((0 + r 2)Ao) = ker(Ao)



Now suppose f E S', (i.e. f is a tempered distribution) then

(Ao)f = 0 1 12f= 0

+ supp(f) C 0 ER 3

k

E f= cD6o, for some k EN
a=1

= f is a polynomial of degree k

Thus if f E S' and Aof = 0, then f is indeed a harmonic polynomial. Since

xaH(B33 ) C S', Va E I

we therefore conclude that

ker(Aa) C {Harmonic polynomials}

Since there is no polynomial on R3 that vanishes at oo, we see that

a > 0 -- ker((0 + r 2)a) = * ((0 + r 2 )Aa) injective

Furthermore,
-l<a<O -- {1} = xaHs(B3 ) nker((r + 2 )Aa)

-2 < a < -1 -+ {1,x ,x 2 ,x 3} = xaH (]B3 ) nker(( + r2 )A)

and in general

dim(ker) = 1
dim(ker) = 4

-(k + 1) < a < -k -+ ker((¢ + r2 )A) =

where _ik is a set of harmonic polynomials of degree k.
On the other hand, if a is too large, (0 + r 2)Ao fails to be surjective. For

instance, we can prove

Lemma 3.14 For a > 1, 1/(0 + r 2) defines a linear map on xaHg(]B
3 ) by

SaHg (B3 ) 9 f j ( f vol

where vol is the standard Euclidean measure.

Proof : Setting f = xaf for f H (B3 ), we have

f Vol xa r 2 drdO
3 ( f + r2 =2 R3 + f r2

fR r 3  dr
= ( (  xa)(f) dO

r3 T2 2f J2 2

< 3 xa 2  dO) I( 2dr dO)
J ( + r2 ) r R3 r

r 3  
xa 2 d )2 2(B2)( 3 1(0+r2)- a dO) II]IIL



where the inequality is justified by the Cauchy Schawrtz when

( I xZa 2 dO) < oo
(L I(0+ r21 ) <

which is true when we have

2 - 2a < E wa > 1 + /2

Using this lemma, we conclude that for a > 1

1
Im(( + r2)A aH( 3 ) - XaH-2(l3)} C ker{ (r 2

0 : xHb(B) C krl ( + r2)
xaH ( 3 ) -4 IR}

Jf 11a (2) + r2)Aaf vol
fR (0 + r2) 0

= j 1"Aaf Vol

= Ao(1) f vol

=0

and furthermore we can show that indeed we have

1<a<2 : Im(( + r2 )A)

2<a<3 Im(( + r2 )A)

C ker{ • xaHs(l~a3 ) --+ IR}
x 1 2 x3C ker{ : 2

), ( +R xaH( 3 ) -+ IR}C -ker , (O--2), T N, :raH((3

This pattern suggests a relationship between the kernel and cokernel of (0 +
r 2)Ao. In fact, we have

Lemma 3.15

1
1<k<a<k+l : coker((O+r 2 )A a )= lk

( + r2 )

Proof : We refer to Paul Loya's thesis ([Loya]). O

Putting this all together, we finally see that for

(0 + r 2 )Ao x: aH(B 3 ) 4 xaH -2(B 3 )

is
Fredholm iff a V Z
surjection
injection

isomorphism

if a <1
if a>0
if O<a<l

because



3.6 Asymptotic Behaviors to Solutions to Ao

Now, we are ready to prove the main theorem of this chapter :

Theorem 3.16 Suppose f E xa+2Hoo(B 3 ) n A (B3 ) for 0 < a < 1. Then the
unique solution u E xaH (B3 ) to

Aou = f

such that u E A' (B3 ) for an index set ZE where Ze = (. - 2)UN.

We first prove the following important lemma :

Lemma 3.17 Let a E (0,1), f E xa+2H(BS 3 ) and u be the unique solution to

Aou = f

such that u e xaH,+2 (B3 ). Suppose f were in fact in xa+2+YH,(B 3 ) (i.e. decays
faster by a factor of x', 7 > 0). Then u has the following asymptotic expansion
near infinity :

u= c cj(0)x + xa+-H+2 ( 3 )
1<3<a+-

Proof :

Remark 3.18 Throughout this proof, we will state several claims. The proofs
of these claims will be postponed till the Appendix at the end of the section to
allow the proof of the theorem to flow smoothly.

We write, using the cutoff function ¢ supported near 0,

u = qu + (1 - O)u = u_ + u+

f = Of + (1 - )f = f- + f+

By multiplying both sides of Au = f by r 2 , we get

(r 2Ao)U+ = r2 f+ + r 2f_ ( 2 Ao)U_

We then claim :

Claim 3.19 If c > 3/2, then

xCHb,(B3 ; dp) C r-CHb([0, 1] x S 2 , Tb)

Since 2 < a + 2 < 3, the Claim 3.19 shows

f_, f+, Aou+ C xa+2 H ( ) c r-(a+ 2)Hb([0,1] x S 2,b)

r2f+ +r 2f_ - (r 2A)U_ r-aHs([0,1] xS2,)



Moreover

u+ E 0 near 0 E 3 -+ u+ E r-aH+2([O, 1] x S 2 b)

Recall that we proved the following isomorphism for a V Z in Theorem 3.5

r
2

Ao : r-aHs+ 2
([0, 1] x S

2 , 
Tb) r-aHb([, 1] X S 2

,b)

or letting r = et

e2to : e-atHs+
2 (R x S 2

) - e-atH(IR x S 2 )

Thus, if we let U(t, ) = u(et, ) and F(t, ) = f(et, ), U+ can be given as

following :

U(t,9) = eit((is)2 + (is) + A )-'(e2F+ + e- - ( e2 tA)U)(s,O)ds

We now look at the righthand side of the above, more in detail. We first look

at

I eist ((is) 2 + (is) + Ao)- 1e2F+(s,)ds
R-ia

We note the following properties of u

e2tF e-atHs( x S 2), supp(e2tF+) C IR+ x S 2

which can be equivalently written as, using Lemma 3.4,

(t) e2tF+ E e-atL2 (R; H(S 2)), supp(e2tF+) C R+ x S 2

($) e2tF+ E e-atHs(R;L 2 (S 2)), supp(e2tF+) C R+ x S 2

We now prove the following lemma of Paley-Wiener type which characterizes

functions with above properties :

Claim 3.20 Let 1 be some Hilbert space with a norm I1 I|W given by its inner

product. Then, there is a following 1-1 correspondence :

h E eCtHm(R; 7) and supp(h) C R+

(1) For 0 < k < m, (is)kh(s) is holomorphic, with values in 7H on {s E C I Im(s) < -c}.

(2) IIh(s)lln < IlhllH(;R) on {s E C IIm(s) < -c}.
(1+Islm)V2(Im(s)+c) Sh, (oc) E H m (R; 7l)

(3) Vq < -c, h,(o) h(o + ir) - IhH(R;) _< IhIH-(R;)
(-oo, -c] 9 7r * h, E Hm(R; 7) continuously

El



Applying Claim 3.20 to (t) and ($), we see that

(t) e2tF+ is holomorphic, with values in HS(S 2 ) for {s E C I Im(s) < a}

() e2tF+ is holomorphic, with values in L 2 (S2 ) for {s E C I Im(s) < a}

with such decay properties as specified in the lemma.

It is the second notion of holomorphy that we use for what follows.
Let us finally use our assumption of f. Since f actually has an extra decay

near oo, i.e. f E ra+2+"H(B3 ), we in fact have

e2tF+ E e-(a+)tH(IR x S2 ), supp(e2 tF+) C R+ x S2

and thus e2tF+ is actually holomorphic, again with the values in L2 (S 2 ) using
($), in Im(s) < a + -y. This motivates us to make the following claim :

Claim 3.21

IR+ia
eist((is)2 + (is) + A)-le F+ds = C+(0)e- k t + R+(t );

a<kEZ<a+y

R+(t, 0) E e-(a+)tHm+2 (R x S2)

Now, as for the remaining terms r 2f_ - r 2 Aou_, we can proceed in a very

similar manner as it was for r 2 f+. We first prove the following claim, which
follows easily from Claim 3.19

Claim 3.22 If c > 3/2, then

3/2 < k < c -+ xHn(B 3 ;dp) C r-kHm([O, 1] x S 2
,Tb).

Thus, we see that

xa+2 H n(B 3 ) C r-2Hbi([0, 1] x S 2, Tb) -

Hbm([0, 1] x S2, b)

f- - AoU -
T2f_ - (r2 o)U_

and after the coordinate-change of (r, 0) -+ (t, 0)

e2tF_ - (e 2t Ao)U_

e2tF_ - (e2tAo)u

e-atL 2(R; H(S 2)), supp(e2tF_ - (e2tAo)U_) C {t < log 2} x S2

e-atH(R; L2 (S 2)), supp((e2tF_ - (e2tAo)U_) C {t < log 2} x S2

Now to this, we can apply the following claim : ( again of the Paley-Winer type

but with different holomorphy region)

(t')
(4')



Claim 3.23 Let 7t be some Hilbert space with a norm || ] given by its inner
product. Then, there is a following 1-1 correspondence :

h E Hm (R; ) and supp(h) C a for some a E R

(1) For 0 < k < m, (is)kh(s) is holomorphic on {s E C I Im(s) > 0}.
(2) lh(s)l < llhllH- on {s E C I Im(s) > 0}

I (1+sI ) 21 m(s)_

(3) Vr1 > 0, h (o) := h(O + i) -+

h(e) E H m (IR; )

Ih, Hm(R) _ IllllHHm(R;7)
(0, 00oo) rD r ;l E Hm (R; W)

to conclude that e2F_ - (e tA)U is holomorphic for Im(s) > 0. We can again
use the Cauchy's theorem to assert

Claim 3.24

ia eist((is)
2 + (is) + A)-l(e2t + e2tU)ds =

Thus fia lly, we have

Thus finally, we have

u+(t, 0)
IR+ia

Sc-(o)e- k + R_(t,0);
a<kEZ<a+y

R_(t,9) E e-(a+-)tHm+2 (R x S 2)

f eist((JR+ia

a<kEZ<a+y

a<kEZ<a+

is) 2 + (is) + Ao)-(e2tF - (e 2 tAo)U-)(s,O)ds

Cj-(0)e- k t + R+(t,0) +

Cj ()e - kt + R(t, 9)

c ( )e - kt + R (t, 9)
a<kEZ<a+y

and going back to the variable r = et, we have

u+(r,9)= E
a<kEZ<a+)

Cj ()r- + ?(r, 9)

Note that the RHS, though seemingly singular at the origin because of r -

terms, does vanish near at the origin, since u+ does. Therefore, we can finally
conclude

u = C,(O)xj + xa+Hs+2 (l 3 )
1<jEZ<a+y

continuously

eist((is)2 + (is) + Ao)-l(e2tF + e 2tF- - (e 2 tAo)U)(s, O)ds

eist ((is) 2 + (is) + A)-le2tF+ (s, 9)ds +



This ends the proof of Lemma 3.17. O

Now with this lemma, the proof of Theorem 3.16 follows almost immedi-
ately. Here is how.
Proof : Since f E xa+2 H0' (B3) n A (B), we can first write

q<p

(Vp > 0) : f(r,0) = h(r) Cq,k(0)r-q(logr)k + fpO(r,O)
(q,k)ES

where fO(r, 0) E xPH'(B~3). Here h(r) E Co (R) is a cutoff function such that

h(r) 0, for r < 1; h(r) E 1, for r > 2

Again writing u = Cu + (1 - O)u = u+ + u_, we have

u+ E r-aHboo([0, 1] x S 2) - U+(t,O) E e-atH(R x S 2)

and taking p > a + 2 and using Claim 3.22

(-r 2 Ao)U 2 + o -(p- 2 )Ho ([0,1] x S 2 )

(e- 2tAo)U_ + e2tF E e-(p-2)tH"(R x S 2)

and
h(r) -+ H(t); supp(H) E

We then write

U+(t,9) =

To the second
Lemma 3.17

fR+ia

q<p

eist((is)2 + (is) + Ao)-'( Cz (Cs,k(O)H(t)e-(q- 2)ttk)(s,))ds +
(q,k)EE

S eiSt((is)
2 + (is) + Ao)-l((e2tA)U

- + (e2tA)FO)(s,O)ds

Iterm of the above, we can apply the approaches in the proof of
to see that

j eist((is)2 + (is) Ao)'-((e2A) - + (e 2 A)F)(s,)ds

= Cj,()e - j + Rp(t,O); Rp(t,) E e-(p- 2)tHOO(R x S 2 )

1<jEZ<p-2

As for the first term, we first make the following claim :

Claim 3.25 Hesottl(s) is meromorphic in C with a pole of order 1 at s = -iso
such that for all k, N E N, 3 Ck,N such that

S)((s+is)Hett'(s)) <Ck,Nem(+ Isl)N

[]



Thus, H(t)cso,k ()e-(q- 2)ttk(s) is a Schwartz function on each horizontal line

away from its poles, which implies

lim
A-+oo A+C-A

q p

eist((is)2 + (is)+A )-l( H(t)cq,k(O)e-(q- 2)ttk)(s, )ds = 0

(q,k)EE

and

qp~P
e ist((is)

2  
(is) A)-1(

R+i(p-2) (q,k)EE

E e-(-2)tS(R; H"(S2))

Thus, using Cauchy's theorem, we conclude that

q<p

S eist((is)2 + (is) + Ao)-1( E H(t)cq,k(O)e-(q- 2)ttk)(s,9)ds
R+ia (q,k)ES

a<Im(z)<p-2

= Residue at z + Rp(t, 0); Rp(t, 9) E e-(p- 2)tS(R; H (S 2))
zE{poles}

Now, we only have to say what the poles look like between Im(s) = a and
Im(s) = p - 2. From Lemma 3.6, we see that

{poles of ((is) 2 + (is) + Ae) - 1} = {simple poles along iZ}

and from Claim 3.25

{poles of (qk)E H(t)cq,k()e-(q- 2)ttk)(s, )} = {poles of order k at -i(q - 2), q < p}

Therefore, if we denote a pole at is E C of order 1, by (s, 1s), we see that

q<p

(is,ls) E { poles of ((is)2 + (is) + Ao)-( E H(t)cq,k(O)e-(q-2)ttk)(s, )}

(q,k)ES

H s<p-2 and (s,1) EE'

where we define

q' E NU{q-2 1
1

k' = k

k, k + 1

(q,k) E 9}
if q' E N - {q - 2 1 (q, k) E &}
if q' E {q - 2 1 (q, k) E E}-N
if q' E N { q - 2 1 (q, k) E E}

We now compute the residue at these poles, and finally conclude that

eist((is)2 + (is) + )-(

qqp

S H(t)cq,k (0)e-(q- 2)ttk)(s,9)ds
(q,k)EE

.V := {(q',k') I

R+za

H(t)cq,k (O)e-(q-2)tt k )(s, O)ds



q'! p-2

= c q',k ( )e
- q

'ttk + R(t, 0);

(q' ,k')EE'

Thus finally

fR+ia

fR+ia

q<p

eist((is)2 + (is) + Ao)- 1 ( 1 H(t)cq,k (e-(q-2)ttk)ds +
(q,k)EC

eist((is)
2 + (i) + Ao)-l ((et )U- + (e2t Fo)(s, )ds

S cj(O)e - j + Rp(t, 8)
1<jEZ<p-2

q'<p-2

Scq,,k ()e't' + R (t, 9) +
(q,k')EE'

Since £ is an index set, it is not hard to see that the smallest index ZE set
containing E' U (N x {0}) is

Ze = (E - 2 )U N
def

i
ned (E- (2,0))U(Nx 0)U{(s, ) Is E ( -(2,0)) and s E N}

Thus, combining c(9) and c'(0), and Rp and RP and switching back to the
variable r = et, we have for all p > a + 2 :

q<p-2

u+(r, ) = E C,k (9)r- (logr)k Rp-2 (r, ); p(t O)r-(p- 2) Ho([0, 1]xS 2 )
(which, finally, implies

which, finally, implies

(Vp>a):u= E C,k(9O)x (logx)k + Rp(x, 9); p(x, O)xPH, ( 3)

This finishes, finally the proof of Theorem 3.16 O

Appendix : Proofs of Claims

Proof of Claim 3.19
Proof : Recall that on (interior of B3) I R3 we have

d = ((r) r 3 ) r 2drdO
(r) + r3

where q is a cutoff function supported near 0. Also recall that on IR+ x S2 , we
have

dr
Tb = d9

r

U+(t, 0)

R' (t, O)e- (p - 2 )tS(R; H' (S2))



For f E xcHm(B3 ; dl), let us write

f = Of + (1 - 0)f = f+ + f_

Since we have, as r -+ oo, dp = Tb and x = 1/r, we then see that

(1- ) -xcH(B 3 ; dp) = (1 - ) -r-cH([O, 1] x S 2 
Tb)

So the question boils down to :

Is -xcHn(B3 ; dp) C 'r-cH ([O, 1] x S 2 ,Tb) ?

Let B be a ball in R3 and supp(O) C B. Since x is smooth and nonvanishing
on B,

S i B ok f+r2drd9
O<i+j+k<m

Now let us first look when i = j = k = 0. Since c > 3/2, we have

SIf+12 r 2 drdO
< 00l-+ Ircf+12 dO < 00

Tcf+12Ir f2dr dr
= lB If+12 r 2c-3r 2drdO

< (radius of B) 2c- 3 - fB If+ 2r 2drdO

Now for the case when i + j + k = 1, it helps to first recall that we can write
for 1 j 3

o,, = c () a, + c (0) 10
Thus we see that

f Of+ 2 r2 drdO < o00 o f + 12 r2drdO

which implies that

IrO,(rc f+)12 dr
'Br B IrC(cf+ +T rf+)12r dO

= Bc2 f+12 r 2c-3r 2 drdO + fB ,f+12 r2c-1r2drd

< c2(radius of B)2c- 3  f+12r2drd +

(radius of B) 2c- 1 B If+1 2 r2 drdO

< 00

f+ E -xcHmn( 3 ; dp) <=

because



and

10 (rc f+)2dr dO f + 2 2 c - 1 d r d O

B r lB
< (radius of B) 2

c
- 1 f IOf+2r 2c-1drde

< oo

All the remaining cases for the higher derivatives follow the same pattern as
above and we can thus conclude that

f+ E .-xcH H (B3 ;dp) - f+ E -r-cHm ([O, 1] x S 2; )

and putting this with what we discussed about about f_ we finally conclude
that if c > 3/2

f E xcH(B 3 ; dp) - f E r-CHm([O, 1] x S 2 ; 7b)

Proof of Claim 3.20
Proof : This claim can be easily deduced from the following subclaim of the
scalar case :

SubClaim 3.26 There is a following 1-1 correspondence:

h E L 2(IR) and supp(h) C R+

(1) h(s) is holomorphic on {s E C I Im(s) < 0}

(2) Ih(s)I < JhL 2  on {s E C Im(s) < 0}
-== -() h (a) E L2(R)

(3) Vq < 0, h,(o) := h(o + i-) I IhaL2(R) L2 jih|iL2(R)
(-00, 0] 3 1 h7- E L 2( R) continuously

Proof : (=)
We first start with the definition, with h(t) E L 2(IR)

L 2 (R) E h(t) + h(s) = e-isth(t)dt e L 2 (R)

which is a priori defined for s E R. Now, we can try to extend this definition
for s = a + ir E C

h(s) = e-isth(t)dt

S e-ite'qth(t)dt



Now, if rl < 0, we see that

Vt E R : |e"th(t)l < Ih(t)l

because supp(h) E R+. Thus

h,(a) = h(o, + i) = f e-oteth(t)dt

is in L2 (R) and it is also easy to show that

l|jhn1L2 < IhIL2 = IjhlIL2

Moreover, since

is continuous

is also continuous since
ously.

We now note that,
C I Im(s) < 0} because

(-o, 0] 3 71, e-'th E L 2(R)

(-0, 0] 3 77 '-+ h, E L 2((R)

the Fourier transform maps L 2 (Rt) to L 2 (R,) continu-

for 71 < 0, h(s) is actually well-defined for all {s E

Ih(s)l = I jenteith(t)dt

< (e e2tdt)I( h dt) i

< (j e2ntdt)1( Ih 2dt) (supp(h) C R

IhlIL2 jIlhL2

Since a similar estimate can be found for (d)kh(s) as

I(ds)kh(s) = )ke-ith(t)dt

= f (it)ke-isth(t)dtl

< ( |(it)ke"L fdt)( h 2dt) 2

< (k o(it)etldt) (foIhdt)

< Ck,7llhllL2

where
(j

Ck,j := k t dt)2
)O

I+)



is a constant depending only on i7 and k that is well defined on i7 < 0 and blows
up at 77 = 0. Thus we conclude that h is in fact holomorphic on Im(s) < 0.

(~=)
Since

(-00, 0] 3 7 -- f 7 E L 2(IR)

is continuous, if we define :

f(o) = lim f (a) = lim f(a - i?7)
7->0 /--0

then f(a) is also in L 2(R). Then, simply define f(t) to be the inverse Fourier

transform of f(s).
Now it remains to show that supp(f(t)) C IR+ . Actually, we will equivalently

show that for any small E > 0, f = e-tf will be supported in IR+. Then

f (s) = e-iste-t f(t)dt

= e-i(s-i)tf (t)dt

= f (s - i)

The assumptions on f, then, imply the following on f

f (s) is holomorphic on Im(s) < ic

If(s)I < 1L2

f (s) is L 2 on each horizontal line Im(s) = 77 and

V~ < e, Ilf(a + i 7)|L 2 < IIflL2

Now let ¢ E C (IR) be a test function such that

supp() C (-b, -a) C R-

Then, by the Paley-Winer theorem (see [?]). 4 is an entire function. Now we
have

/ f(t)q(t)dt = j f(t)(t)dt (because Vt E IR, (t) E IR)

= f f(s)O(s)ds (Plancheral's formula)

= f(s)0(3)ds (s E IR and (§) is holomorphic since q is.)

= f f(s)0(3)ds +

lim ( f (s)()ds + f (s)(3)ds)
A->oo oA



where the last equality is justified, for any aribitrary 77 > 0, by

theorem since f(s)o( ) is holomorphic on {s E C Im(s) < i}.
a segment given by

t E [0,1] -- t(A - iO) + (1 - t)(A - iq)

the Cauchy's

Here, Cn,A is

We first assert that

lim (
A-4+c JC,A

We see that

f(s)()ds + C,,-A f(s)0( )ds) = 0

= IL e-ist(t)dtI

SI elm(s)te-nRe(s)t(t)dtl
JR

< e-aIm(s) L I0'(t)Idt (since supp(¢) E (-b, -a) C R-)

< C - e - aIm(s) (where C0 is a constant depending on ¢)

and moreover

) = I dt

f elm(s)t e-iRe(s)t I d (t)dt|

< e - am(s) ( I(t)ldt

< 6¢, - e - aI m (s ) (where C' is a constant depending on 0')

Thus in fact

(s)l < Cs,' s e-alm(s)

Then,

1 (C e-aq)( IIL2 )dq
< +A V

1
1 + A -C,, (CO,O, independent of q)1+A

lim

lim

f(s)o(g)ds = 0

f(s)$( )ds = 0

I(s)

c 7,A

f(s)0(3)dsI

Therefore,

Similarly,



Thus we see that V71 > 0, we have

j(t)o(t)dt 
=

Now

LR-i

Thus, for any arbitrary q > 0

I J f(t)(t)dtI

cf (,e - in)( L + i)diL

< (I L

1+171 2(n- c)

< ( e L2
1+1 1 2(77-)

-+ 0 as r7-oo

Thus fR f(t)o(t)dt = 0 for any test function 0 that is supported
implies that supp(f) C Rt. O

in IR-, and this

Proof of Claim 3.21
Proof : We start with the following subclaim :

SubClaim 3.27 For any t E IR, we have

+iaeist((is)
2 + (is) + Ao)-1eF+ds=

Z Residue at k +
a<kEZ<a+-y

+i(a+- eist((is)2 + (is) + Ao)-le2F+ds
R+i(a+(q-e))

for any small E > 0.

Proof : We use the following conclusions of the Lemma3.6 :

1. ((is) 2 + (is) + A) - 1 = A(s) + EkZ Bk/(Z - ik), where A(s) is holo-

morphic with values in T- 2 (S 2), thus holomorphic in 0o(S 2 ), and Bk is
a projection operator to the eigenspace with the eigenvalue k(k + 1).

2. II((is)2 + (is) + AO) -IL2(S2)-+L2(S2) < C(1 + IS12) as IsI 00 away from
iZ.

3. I|((is) 2 + (is) + AO)- 11L2(S2)-+H2(S2) < C away from iZ.

f(s) (3)ds



By (1), we can use the Cauchy integral formula to get, for any small e > 0 :

iaeist((is)2 + (is) + Ao)-le2tF+ds

= Residue at k +
a<kEZ<a+y

eist((is)2 + (is) + Aoe)-le2tF+ds +

est((s)2 + eS) + A -1lim 1 eist((is)2 + (is) + Ae)-leF+ds
A-+oo JC-A-CA

where C-A is a contour from -A + i(a + 7) to -A + ia and CA is a contour
from A + ia to A + i(a + y).

Remark 3.28 We cannot make the Im(s) = a + 7 a part of the contour, quite

yet, because the integrand is holomorphic only for Im(s) strictly less than a + 7.

Now we must show that

lim eist((is)2 + (is) + Ao)-le F+ds = 0
A-+o JCA -C-A

This follows because of (2). For Im(s) < a + 7, we have :

Ileist((is)2 + (is) + AO)-l 2t+llL2(s )

= e-Im(s)t ll((is)2 + (iS) + A)-l1 IL2(S2)-+L2(S2) lie2tF+IL2(S2)

< em()t .Ie-(a+y)te2tF+ Hm(R;L2(S2))

(1+ s12) (1 + ISIm
- 0 as IRe(s)I - o

El

Now, we can easily compute the residues as follows :

ReSa<kEZ<a+y = e-ktk);
kEZ, a<k<a+y

Thus, by the above subclaim, we have, for any t E R,

+aeist((i)2 (s) + Ao)-le2F+ds =

R+ia

Z Residue at k +
a<kEZ<a+,y

iJRi.a+- eist((is)
2 + (is) + A)-le2F ds



where C+(0) in the eigen-space of As with the eigenvalue k(k + 1). Now we
note here that the LHS and the residue term does NOT depend on f !!! Since
the above were true for any small c > 0, we can thus take the limit of the last
term as E -+ 0. More precisely, we write :

I eist((is)
2 + (is) Ao)-leF+ds = e- (a+-E)t e[et,(s)do

R+i(a+(y- )) JR

where we define :

IP (s) := ((i(a + i(a + - ))2 + i(a i(a + - c)) + A)-1e2t+( i(a + - ))

then
[0,1) 3 e + (s) E L2(R; L2(S2))

is continuous because

C - iZ s 1- ((is) 2 + (is) + A) - 1 E B(L 2 (S 2 ); L 2 (S 2))

and
(-oo, a + -] 7r -e2t F+( + q)

are continuous. Now since the inverse Fourier transform is continuous on L 2 (IR; L 2 (S 2 )),
we finally conclude that

lim - eist((is)2 + (is) + Ao)-leFds
f-o JR+i(a+(-y-E))

e-(a+y)t j e ito(s)do

= (a+y) eiSt((is)2 + (iS) + Ao)-le2tF+ds

E e-(a+y)tHm+2 (R; L 2 (S 2))

which is in e-(a+)tHm+2 (I S 2 ). Once we established this, we use the fact that

II((is) 2 + (is) + AO)-'llL2(S2)-+H2(S2) < C (a constant independent of s)

to conclude that indeed

R eist((is)2 + (is) + Ao)-leF+ds e-(a+,)tHm+2 (IR x S 2 )

R+i(a+7,)

Proof of Claim 3.22



Proof : We have for 3/2 < k < c,

(1- ) -r-kH([O, 1] x S 2, Tb) C (1 - . -CHbm([O, 1] x S 2, Tb)

For k > 3/2, we also have

- Hb( 3 ,Tb) C rT-cHbm([0, 1] x S 2,Tb)

Proof of Claim 3.23
Proof : This claim can also be easily deduced from the following SubClaim
3.26. O

Proof of Claim 3.24
Proof : Using Claim3.22 and Claim 3.23, instead of Claim3.19 and Claim
3.20, we can imitate the proof of Claim 3.21 0

Proof of Claim 3.25
Proof : In order to see this, we first make the following two subclaims, all of
which are simple applications of the Paley-Winer theorem.

SubClaim 3.29 H(s) is meromorphic in C with a simple pole at s = 0 such

that for all k, N E N, 3 Ck,N such that

I( )k(sH(s))l < Ck,NeIm(s)(1 + )N
ds

Proof : We first see that
d

H = sH(s)

Since JH(t) E Cg(R), Paley-Winer theorem asserts that AH(s) is an entire
function with

Io(-H)I < Ck,Nelm(s)(1 +Isl)N

for all k, N EN. O

SubClaim 3.30 Hesot(s) is meromorphic in C with a simple pole at s = -iso

such that for all k, N E N, 3 Ck,N such that

I )k((s + iSo)Hes(s))l < Ck,Nem(s)(1 + ISDN



Proof : Simply, we note

Heo t (s) = H(s + iso)

Now to prove our claim, we simply, we note

Hesottl(s) = (-i)l( )le-tH(s)

d ()t(s + iso)

and use the above subclaims. O



Chapter 4

Asymptotic Behaviors of
Solutions to the Laplacian
on the Asymptotically Flat
R3

In the previous section, we investigated how the behavior, as r -+ o0, of a
solution u to

Au = h

depends on the behavior of h near infinity of JR3 . In this section, we generalize
the results of the previous section to the case when g is an asymptotically flat

metric on RJ3 . We will see that the asymptotic behaviors of u, in this case,
depends not only on that of the function f but also on the asymptotic behavior
of the metric g. However, we will see that on the asymptotically flat R13, Ao

will eventually dominate, near the infinity of IR3 , the error terms that arise from

the non-flatness of the metric. As we will see, we can recursively apply what we
know of Ao, to iterate away errors that arise from non-flatness and in so doing,
we can understand the asymptotic behavior of u.

In order to see this, as in the case of the previous section, we first need to

understand the mapping properties of A. In this direction, Christodoulou and

O'Munchadra proved in ([C-M]) :

Theorem 4.1 Let g be a Riemannian metric and f a non-negative function on

R3 such that g - e E H,,,, and h E H,1- 2,61+2 with s' > 3/2 + 1,6' > -3/2.
Then the operator Ag - h (acting on scalar function on R 3) is an isomorphism

H s,6 -+ Hs- 2 ,6+2

for each 2 < s < s', -3/2 < 6 < -1/2.

We rewrite this in the b-setting.



Theorem 4.2 Let g, a Riemannian metric on R3 , be such that g-e E xHg( 3 ;T*R3 9

T*R3 ) for e > 0. Also let f E x 2+EHg-2 3 ) be a non-negative function on R 3 .
Then,

Ag : xaH ((B 3 ) -_ xa+2 H1'-2(B 3 )

is an isomorphism for 2 < s' < s, 0 < a < 1.

Once re-written in this b-setting, we believe that the proof of the theorem
becomes much more transparent than otherwise. A major ingredient in the
b-setting proof is the fact that

A9 =A + Q, where Q E x 2 +f . Hs- (B 3 ) - Diff ( 3)

Though Theorem 4.2 is a mere restatement of Theorem 4.1, we discuss
its proof in Section 4.1, hoping that the b-setting proof, especially using the
above fact, is more lucid.

Once we understand the mapping properties of Ag - f, we then turn our
attention to its action on the asymptotic behaviors of function. In Section 4.2,
we therefore prove :

Theorem 4.3 Let g, a Riemannian metric on R3, be such that g-e E x~H (]B3; T* R
T* R3 ) n A (B3 ;T* 3 ® T* R3 ) for e > 0, and f E x 2+eH' (B3 ) n Ac (B ) be

a non-negative function on R33 . Suppose h E Za+ 2 HO( ( 3 ) n A' (B3 ), where

0 < a < 1. Then, the unique solution u E xaH ( 3 ) to

(Ag - f)u = h

is also in A00(B 3 ) for an index set I which depends on 9, T, and, £. (I is
given precisely in the proof.)

4.1 Mapping Properties of Ag - f

As alluded to above, we first prove :

Lemma 4.4 Let g, a Riemannian metric on R 3 , be such that g-e E x'Hbs(]3 ; T*R 3

T*R3 ) for s > 3/2 + 1, e > 0. Then

A9 = A0 + Q

where Q E x2+E H~- 1( 3 ) - Diff(b 3).

Proof : By the assumption, we can write g in coordinates (see Lemma 2.3)

gij = 6 ij + x'hijhijij E HS(B 3)

Then, we can write g- 1 as

g i +6 _ x EHiJ;



where Hi E H (B3 ) by Sobolev Imbedding (Lemma 2.1) and the multiplica-
tion theorem( Lemma 2.3). Next, we have

G = det(g) = 1 + x u; u E H(B 3 )

which implies

= 1+ xv; v H(] 3 )

= 1+ xw; w E H(B 3 )

Again the fact that u, v, w E Hg (B3 ) because of Lemma 2.3. We did the above
computations just so that we can compute Ag as

Ag = I-oaiGgioq j

Now we recall that on some neighborhood U of 80 3 , we have

U [0, 1) x S2; x = 1/r

and

1<i<3 : ai = ai(0)(xO) + iO(e)eo; ai(O), 3 i() E C,(S 2)
= P, Pi EDiff' (B3 )

and

= X 2 ai(O)aj () )(X) 2 + (a(O)/j(O) - ,3 (O)a,(O))(xo&)(oo) + f,(O),3(O)aoo +

(a (O)j, (0) - i (9)Oa (O))(xax) + (ai (O)j(9 ) - Oi (O)O(O)) (o)}

= x2 Qij; Qij E Diff (] 3)

With this in mind, let us compute :

1 1 ai(v/-(Sij + XfHiJ)&j)

1 {&i(v1/sijj) + v/UxeHiaa j + i(x VgHlj)aj }
vJG

= A + XEHijaiaOj + 6iJ \i(-G )v/ °

Moreover, since Bi = xPi E xDiff1 (3)

1 < j 3 -4o :j xHbm'( 3 ) - x+Hbm-1(B3 )

which implies

i (v/ )b ° G j
3

= Z(1 + xzw),(x'v)Oi
i=1

Oi (x vHiJ)
+ v'I



3

= (1 + X'W)(xl- C~(0)v + xl+Piv)&i
i=1

3

= (1 + xdw)(xl+Ei)0i;
i=l

3

= Zx2 +Evi(1 + xEw)Pi,
i= 1

and by Lemma 2.3 (note s - 1 > 3/2)

{ (1 +x w)
E H~-(B 3 )
e H(B 3 ) }

= ci(0)v+ ) E H6 ( 3 )

i 1 + x w) E H6-1 (3);

v(1 + x-w) E Hs-I (B 3 )

Similarly,

a,(x f vHi )  =
V "3-

Sx 2+aijTij; E -1(3),
1<i,j<3

T ij E Diff (]B3 )

Putting these all together, we conclude

3

A 9 = A + 2 +E(HijQ1 + (1 +xEw)Pi + 1 aijTij )

i=1 i,j<3

A 9 -A o  E 2 + E H 1 (B3 ) Diff(B]3 )

One immediate application of this lemma is the following result about the
kernel of A, . We prove

Lemma 4.5 If 0 < a < 1 and u E XaHg(IB3 ) is in the kernel of (Ag - f), then
actually u E xPH(] 3 ) for any 0 < p < 1.

Proof : Since u E ker(Ag - f), we can write

Agu-fu = 0

(Ao + Q)u = fu
Aou = -Q(u) + fu

Now, we see, by (Corollary 2.2) that

E XaHbs(T 3)
E x2+Hb-2( 3 )

Since Q E x2 +~ H -1 (] 3 ) Diff ( 3 ),

Q(u) = x2 +E - h P(u); P(u) E xaHb-2(B3 ) and h E H -' (B 3 )

-+ f E 2++aHs-23)



Since, by Lemma 2.3

H-1( 3(B) x XaH- 2 (B3 ) C xaHb-2 ( 3 ) because s - 1 > 3/2

we see that Q is well-defined as the following map :

Q : xaHg (B3 ) _ x 2 +e aH- 2(B 3)

Now in the previous chapter, we proved that

A o : XaHb(B3
) - xa+2

H8- 2 (B 3
)

is an isomorphism for 0 < a < 1. Since we have

Aou = -Q(u) + fu E x 2+e+aHb-2(B3 )

we can conclude that u, originally in xaHg(B3 ), is in fact in xa+EHb- 2(B 3).

Moreover, now that u is in xa+EHb(B 3 ), we can repeat the argument to assert
that u is in xa+2eHb(B 3 ), and so on, to conclude that

u E xa+mfHb(B 3 )

as long as a + me < 1. O

We are now ready to the prove of Theorem 4.2, which again is a restatement
of Theorem 4.1 of Christodoulou and O'Munchrada ([C-M]). We mostly follow
their arguments, but put each step in b-setting. Near the end of the proof, we
will use the preceding lemma.
Proof : For t E [0, 1], let us define :

gt := 6ij + t - h,j

Note that t - hij is still in x'Hg(B3 ) and that t- f is still non-negative. Now
define :

Pt := Ag, - t. f = xaHs'-2(B3) _ + xa+2Hg ' (B3 )

We see that
Po = Ao; P = Ag -f

Moreover, we prove

Claim 4.6 Vt E [0, 1], Pt is Fredholm.

Proof : We only give a sketch of proof here.
We can construct a parametrix Qgt for ( + r 2) (A9t - t f) imitating the steps

for the parametrix for (4 + r 2 )Ao as done in Section 3.4. We define

4f
Q9 ,(f) = $ [Ag, ( 2 ] (1 - (r 2(Agt - tf))-(1 )f

SQl(f) + 2(f)



where in the interior, we can define A9~ such that

(r 2 (A, - tf)) o Ag, = Id

Near the boundary, we can write

(r 2(A 9 - tf))¢= Z ak(x)(XkO)
O<k<2

where

ak(x) = ak(X,O)(ao)l; akl(x,0) E C'([0, Co] x S 2) + xEH([0,1] x S 2)

Thus we can define :

(r 2(Ag -tf - 1  raH([O, 1] x S 2) -+ raHs+2 ([O, 1] x S 2)

(r2 (Ag t))L(¢)(t,0) = eits( E ak(X)(iS))-J(S, 9)ds
O<k<2

and then show that this is well defined for a V Z.
Finally we show that

( + r2)Pt o Qgt = Id + Rgt

where Rt E xH{(B3 ) i- DOb1(B3 ). By standard argument for xIDO*, we
indeed have

( + r2)Pt o Q' = Id + R,

where R' E x H(B 3 ) - DOb-(B 3 ) O

Thus Pt is a continuous family of Fredholm operators and by the continuity
of index for Fredholm families, :

index(Pi) = index(Po) = index(Ao)

= 0, for 0 < a <1

Thus it suffices to show that

ker(Pi) = ker(Ag - f) = 0

Suppress u E xaHs' (B3) were in ker(Ag - f), i.e.

Agu - fu = 0

Multiplying both sides by u, we get

uA 9 u - fu 2 = 0



At this point, one is tempted to integrate both sides over IR3 However, it is not
a priori clear that you can do so because

u E xaHg'(, 3 )
uA - f)u E xa+ 2H 2(B 3 ) - u (Au - fu) E X2 +2aHs '-2 3

but,
x H (B3 ) C L(1R3 ) only if 3 > 3

However, Lemma 4.5 asserts that

1
u E ker(r 2 A) - uE xOH(B-3 ) for  < 0 < 1

- u(Agu - fu) E x 2+ 20Hg(B 3 ) C L1 (1R3)

Thus, we can indeed integrate both sides over RJ3 to get

uAgu- fu 2 = 0

JIVulgdx + fu2dx = 0

which implies u = 0. O

4.2 Action of Ag - f on Asymptotic Behaviors
of Functions

As we did for the case of Ao, we first see what happens when h is small :

Lemma 4.7 Let g, a Riemannian metric on JR3 and f, a non-negative function

on 1R3 , be as in Theorem 4.2. Furthermore, Let a E (0, 1), h E za+2Hs'-2(]3)

and u E xaHg'(B3 ) be a unique solution to

(A 9 - f)u = h

for 2 < s' < s. Suppose h were in fact in xa+2+ Hb-2(B3 ) (i.e. decays faster by

a factor of x, -y > 0) and that a + -y > 1. Then u has the following asymptotic

expansion near infinity :

u = C(O)x + xPH '(B3)
l<jEZ<p

where p = min(a+y, a+me) where m is the smallest integer such that a+me > 1.

Remark 4.8 Notice that this lemma is very reminiscent of Lemma 3.17, ex-

cept that in this case, no matter how large y is, the asymptotic expansion stops

at a + me instead of at a + y. We will see why this is the case in the ensuing

proof.



Proof : Again using
Ag = Ao + Q

we have

(Ag - f)u = h

Ao, = fu- Q(u)+h

Since f x2+EH '- 2 (B3) and Q x2+ - Hg (B) Diff (B3 ), we can see, as
in the proof of Theorem 4.2 that

fu - Q(u) E x 2+a+Hs'-
2 ( 3)

Recall also that h is in xa+2+fH"'-2(B3 ), with a + -y > 1. If a + e < 1, then we

see that
fu - Q(u) + h E X2+a+CH'-2 (

3)

which, by the fact that Ao is an isomorphism for 0 < a < 1, implies that u,
which a priori is in xaH ' (1B3 ), indeed in xz+eHg' (B). However, this fact in

turn implies that u E Xa+
2 Hs' (B3) and so forth, which leads to the conclusion

that
uE za+nE"H' ( 3 )

as long as ne < 1. Suppose m E N be the first integer such that a + me > 1.
Then u E "a+(m-1)fH' (] 3 ) which implies that

fu - Q(u) + h E x2+pH'-2(B3)

where p = min(a + mE, a + y). Now we can use Lemma 3.17 of the previous
section to conclude that

U = cj(e)Z9 + zH'(B3 )
i<j<p

Notice that, unlike in Lemma 3.17, we cannot get a priori any more terms
in the expansion, even if we assume that y is really large. Here is why :

u, by the conclusion of the lemma, now belongs to x-Hg (B3 ) which re-
plugged into the equation implies that RHS(= fu+Q(u)+h) is in x

2+±+( 1-) Hb (B3 )
(since we assumed that y is sufficiently large). This implies that

S= C, (O) x j + z+(1-6 )Hg'(B 3)
i<jEZ<p

which is a slight improvement of the conclusion of the lemma, in so far as the

remainder term is concerned. However, u is again in xl- Hg (B3 ), and there is

a priori no more improvement of the remainder term in the expansion or any

more terms in the expansion - unless we assume some more regularity on the



metric g and on the non-negative function f. In fact, the content of Theorem
4.3 is that when we do assume more on g and h, we do get more information

on u. However, before we get to the theorem, we first need to prove a variant
of Lemma 4.4.

Lemma 4.9 Let g, a Riemannian metric on R3 , be such that g-e C xH (IB3 ; T*IR3

T* 3 ) A (B3 ;T*3 0 T *I 3 ) for e > 0. If we let G = U =ln ~ + (2, 0), then

Ag can be written as
Ag = A + Q

where Q e (x 2+e H0(B 3 ) n A (B3 )) Diff (I 3).

Proof : Similar to what we did in the proof of Lemma 4.4, we can write g

in coordinates (see Lemma 2.3)

gij = 6ij + kij; kij E x Hc (B3) A (1 3

Now let
g= u i n •

We then can write g-1 using Lemma 2.1, Lemma 2.3, and Lemma 2.4 as

following :
gij = 6ij + Ki ; Kij E xE Hc ( 3 ) n A (B3)

and we also have

G = det(g) = 1 +u; u E x'Hb(B3 ) n A  (11 )

which implies

v- = + v; vxEH- (I'3 ) nA (13)

1 1 + w; w E xx HO (B3) n A( 3)

We compute again :

a + + 3( G ) ) n Df (3++ +--.- O ( v/-/i

Because
0j= x2 Qij; Q,j C Diff(B 3 )

it is clear that

K'iaOj E (x2+EHb(B 3 ) n A +( 2,o)(1 3 )) .Di 3



Moreover, since &i = xPi E xDiff1 (B'3 )

1 < j 3 - j : '-H (B3 ) nA (B3) -xl1+EH(B 3) A+( 1,0) B3)

we have

49j = (1 + w)x 2Pi(v)Pi
i=l

3

= (1 + w)i0pi; (1 + w)i0 E 2+EHb( 3 ) A+(2,)(
i=1

Similarly,

a,( vI-dK J ) X2+6Hboo(B3
j = a T'j; aijx i )nX+( ,o) (3), T 'j E Diff()Ki 3 i 3 ij g+(2,0)

i,j_3

Letting
= 0 + (2, 0)

Putting this all together, we conclude

3

Ag = Ao + (KijQ + E (1 + w)Pi + E aijTij
i=l i,j<3

Ag - o E (x2+H6oo1(I3)A0 (IB3)) - Diffb (IB3 )

Now we are in position to prove the main theorem of this section, namely
Theorem 4.3.
Proof : First, let us assume, as we did for Lemma 4.7, that h is in fact in
xa+2+7HbOO(] 3 ) ,n A(B 3 ) (i.e. decays faster by a factor of x7, y > 0) and that
a + y > 1. Then Lemma 4.7 shows that

u = C (O) x j + R(x,O);RU (x,O) xP xH ( 3 )

1<jEZ<p

where p = min(a+y, a+me) where m is the smallest integer such that a+me > 1.
As a matter of fact, using the assumption that h does have a full expansion

at the boundary, we can indeed show a similar result even when we don't assume
an extra decay on h. We claim that

Claim 4.10 If h E A' (B ) and the first term of the expansion of h as in

h = C(O)xk+ 2 (logx)lo + Rh+0(x,O); R2h+(x,O) E x2+ZgH(1 3 ); 3> ko

is such that ko < 1, then the unique solution u E x(ko-5)H (B33 ) (6 > 0 arbi-

trarily small) to
(Ag - f)u = h



has the following expansion :

u = C(O)xko(logz)'o + ~ C() +R( ) Ru(x,) E xPHb'(l)
ko<jEZlp

where p = min((ko - 6) + E,,3) and l = 1o if ko < 1 and 1' = lo + 1 if ko = 1.

Proof : Plugging into the equation, we have

Au = C(O)xki+2(logx)LO - Q(u) + fu + Rh(x,9)

Since u E z(ko-6)Hb(B3)

-Q(u) + fu E x(ko-6)+ 2+eH ~(B 3 )

and thus
-Q(u) + fu+ Rh(x,9) E x2+pHb(B 3 )

where p = min((ko - 6) + e, p). Then the claim follows by the main result of
the previous section, Theorem 3.16. O

Thus, regardless of the size of h, we can conclude right away that u has some
partial expansion at OB3 . Let us define Zo to be the set of powers in this finite
expansion, i.e.

to = Ul<k<p{(k,O)};

or
1o = (ko, 1) Uko<k<p {(k, 0)}

depending on the size of h, as we can see from the above claim and the paragraph
preceding the claim.

In fact, we can combine this into one expression. Noting that G = + (2, 0),
we write

E = E- + (2,0)
S= F- +(2,0)

Now if ko is the smallest among {(k, 1) E .} and

h = C(O)xko+2 (logx)lo + Rh(x,O); R h (x, ) E 2+roH(B 3 ); ro > ko

then we have

U= , C(9O)xk(logx)l + Rpo(x,0); RpU (x,o) E xPoH (B3 )
(k,I)Elo

where

To = ((S - (2,0))UN) n {(k,l) I k < Po}

= (- u N) n {(k, 1) I k < po}



and
po = min(ko - 6 + E, ro)

Now once we conclude that u has this finite expansion, it's easy to see that
we, in fact, u has a full asymptotic expansion at infinity of R13 . We can see this
iteratively as follows : First plug this back into

Aou = -Q(u) + fu + h

By the above Lemma 4.9 :

Q" c l ( O) X k ( l
O

g X )
i X' . (3)

(k,1) EZo

Q: xPH  (3) 2+ +p H ( ( 3)

Moreover, since f e An (o3)

Clu(0) 1 Cu(0)zk(lOgz)l o A (3)
(k,1)Zo

xpHo (3) _4 x2+E+PHO (]3 )

Now using the assumption that h E xa+2 HO (i3) n AO(B]3), we can write

m<2+p+e

h= C m,,xm(logx)n + R (x,); Rh 2 ,) 2 (3

(m,n)EE

where we define
P1 = po + 1

Thus we have

m<2+pi

Aou = Q( xzk(log) ' ) + f E xk(logx) + Cm,n m(logx)n

(k,l)EZo (k,l)EZo (m,n)EE

+Q(Ro) + Ro + R
2 -P -P 

O 2 p l

The first three terms of LHS can be written as

i<2+pi

CL Zi(log x) + R,; Rp, E xP H ( 3)

(i,j)ETi

where
T= ((gUF) +Zo) Us

As for the next three terms of LHS

Q(R) + f. - R + Rh lE xP1 OO (B3 )



Putting this all together, we thus finally we see that

i<2+pi

Aou = C xi(logx) + RL ; R L E xP'H (IB3)

(i,3)E Ti

Then we can use the main result of the previous section Theorem 3.16 to
conclude that

u = C",zk(logz ) + R Ru E P1 HO (3)
(k,l) EZ1

where

z = ((((u.)+TZo)U)-2) UNn{(k,1)I k <pi}

= (((g u -) +Zo)U&-)uNn {(k,1) k < pi}

and
P1 = Po + E

Iterating the above argument, we can see that

Vn E N: u u C, xk (lO g x)l + Rp, ; Ru E xPn H  (B3)

(k,l)EIZ

where
Pn = Po + n-e

and
zIn+, = ((( u 7-) + zn) U E-)UN n {(k, 1) k < Pn+l})

Thus, if the following claim is true

Claim 4.11 The following direct limit

I = lim In

exists and, moreover, I is an index set.

then we can finally see that

e zaHX(H3 ) n A4(1 3)

Thus it only remains to prove the above claim.
Proof : of Claim 4.11 :

We first show that the direct limit exits. I.e. we need to show

In C In+1

We prove this by induction. It is easy to see

Io C 1l



Now, suppose Zn-1 C In. From

zn = (((0U -) + In 1) U -)Nn{ (k, 1) k < Pn}
n+1 = (((OUF-) +In)U-)UNn{(k,l) k < pn+)

we can easily see that
In C In+1

Now that the direct limit I is well-defined, we need to show that it indeed is an
index set. i.e. we must show that

Vr > O : #{(k,l) E Z k < r} < oo

In order to see this, let us write In in the following way

In+ 1 = [((gu F - ) + n)U_ U E-U-N n {(k,l) 1 k < pn+l}

Since E-UN does not change during iteration, we only need to worry about

(g U -- ) + In

Now let io = smallest k, where (k, 1) E Zo. We know that io > 0 and io is the
smallest k for all other In, n > 0.

Now suppose (a, b) E 0 U . - and a < r. If we look at how (a, b) moves
(say to (a', b')) in (k, 1)-plane under each iteration of (! U F-) + In, it always
moves to the right at least by io. Thus even though we may acquire new points
- one additional point (a', b' + 1) whenever a' E Z - the number of the new
points is bounded because after finitely many iterations, the new point (a', b')
will eventually be on the right of the line k = r.

More precisely speaking we have :

r - io
#{(k,l) EI k<r} < -o .#{(k,l) E 0UF- I k<r}+#{(k,1) E - NI k<r}

< oo



Chapter 5

Non-linear Constraint

Based on what we learned about how the linear operator (Ag - f) act on func-
tions with complete asymptotic expansions, we will study, in this section, the
asymptotic behavior of solutions to the following non-linear equation :

A 9g + MW - 7 = 0 (t)

This is a reduced form of what is referred to as Lichnerowicz equation in [C-K].
We remark that the non-linearity of the equation is not so severe in the sense
that it appears only at the M - 7 term. The main result that we want to

establish is the following :

Theorem 5.1 (Lichnerowicz Equation) Let g, a Riemannian metric on 3,

be such that g-e E xzH b (B3;T 3 & T3 n A0 ( ; T*3 (& T*R 3 ) for e > 0,

and M, a non-negative function, be in xa+2 Hb, (3 )N.A ( 3 ). Then, a solution

¢ to
Ago + MW - 7 = 0

which exists uniquely so that 0 - 1 E xaH(B 3 ) is also such that A'(B 3 ),

for some index set I, which depends on 9 and M. (I is given precisely in the

proof.)

Once again, the reason why one would expect such a result lies in the fact
that it is eventually the linear term ,A that dominates over the non-linear
term M/ - 7 near the infinity of R33 . Furthermore, the properties of Ag can be
deduced, as we saw in the previous section, from the properties of the model
operator Ao. The main points of the proof of the above theorem basically lie in

trying to reduce the non-linear case all the way down to the model case Ao, in

a systematic way.
Our starting point for the proof of the above theorem is, as in the linear

case, some theorem which gives existence (and uniqueness) of solutions to this

nonlinear equation (f). In this direction, Christodoulou and O'munchadra had

again gone before me and proved :



Theorem 5.2 Let g be a Riemannian metric and M, a non-negative function

on R3 such that g - e E H,, and M E Hs-2,6+2 with s > 4 and -3/2 < 6 <

-1/2. Then the semilinear elliptic differential equation

Ago + MW- 7 = 0

has one and only one positive solution 4 such that - 1 E H,,s. Furthermore,

We again rewrite this in b-setting.

Theorem 5.3 Let g be a Riemannian metric such that g - e E x'H (B 3 ) for

s > 4 and e > 0 and M, a non negative function on R3 , be E xa+ 2Hs-2(] 3 )

with and 0 < a < 1. Then the semilinear elliptic differential equation

A 9go + M -7 = 0

has one and only one positive solution 4 such that 4 - 1 E xaH (3). Further-

more, 4 > 1.

Remark 5.4 Note that g-e E X'H( 3 ) for e > 0 is slightly more general than

g - e E Hs,6 for -3/2 < 6 < -1/2 in Theorem 5.2. However, it is not hard

to see that the main steps of this proof - the continuity argument - as found in

[Cantor] go through in the slightly more general setting.

Now using the above Theorem 5.3 for the case of s = oo, we can begin the

proof of the main theorem of this section Theorem 5.1

Proof : Let us first write

o =1+u; u E aHbc (B 3 ), U > 0

Now, from Lemma 4.9 we know

A , = o +Q; where Q E (x2+EHbOQ 3) A (3)) - Diff ( 3)

thus, we can see that our main equation (t) can be written as

Aou -Q(u) - M( + u) - 7

Since u E xaHb0( 3 ) C C'(IR3 ) and u > 0, we can Taylor-expand (1 + u) - 7

near u = 0 to get

A ou = -Q(u) - M(1 - 7u + K(u)u2 ); K E C' ((-1, oc))

= -Q(u) + 7Mu - M - MK(u)u 2

Compare the above with the situation that we had for the linear case in the

previous section :
Aou = -Q(u) + fu + h



Notice that the only difference between the two is, as one would expect, the

non-linear term, MK(u)u2 . Our strategy now is to show that this non-linear
term is innocuous in the sense that we can still use most of the arguments of the
linear case proof with a slight modification to tame the non-linear term. With

this in mind, we prove :

Lemma 5.5 Ifu E xaHg(B3 ) for a > 0 and if K is a C" function on the range

of u, then K(u) is bounded and V(K(u)) E xaH'H-(B 3 ), for all V E Diff (B3 ).

Proof : The fact that K(u) is bounded is immediate. Now we want to show :

V(K(u)) = K'(u) - V(u) E xaH,-l(B3 )

Since K'(u) is bounded, we see that

K'(u) - V(u) E xa+lH-l (B
3)

== K"(u)W(u)V(u) + K'(u)W(V(u)) E xa+Hs-2( 3 )

for V, W E Diff1 (B3 ). Reapting this argument,

V(K(u)) E xaH- -(B 3 )

if and only if the following expression :

K(S)(u) Vi (u) . V 2 (u) -Vk (U)

+ K ( -1) (u) (Vi -V)(u) - Vi (l(U) Vi (u) Vj (u) . Vk(U)
l<zfj<s

+ K'(u)(V1 ... V)(u)

is in xaL~(B3 ). Now it's easy to check that u E xaH (B3 ) implies that each

term in the above sum is in xaL2(B3 ). O

Now, as an application of this lemma, we prove :

Lemma 5.6 Suppose f is bounded and that V(f) E xHb-l(B3 ), for c > 0,
s > 2+3/ 2 , and E Diff (B 3 ). Now for any g E xH (B3), fg E x H(B 3).

Proof : Since f is bounded, fg is in x L2((B3 ), and thus it suffices to show
that

V(fg) = V(f) - g + f -V(g) e xH"- 1 (B3 )

But this follows easily because the assumption on s is just so that the multipli-

cation lemma Lemma 2.3 can be applied to this case. O

Now let us apply these two lemmas to the last term MK(u)u2 on the LHS
of

Au = -Q(u) + 7Mu - M - MK(u)U2



If M E x 2+aHb(B 3 ), then u E xaHb( 3 ), which implies that

Q(u) E x2 +a+EH (1 3 )
7Mu E x 2 +2aHoo(B3 )

MK(u)u2 E x2+3 aHbo( 3 )

We see that MK(u)u2 is the smallest term on the LHS. Thus, we can assert
that u has some finite expansion to begin with, just in the same way as we did
in the previous section, as follows :

u = Cu,(O)xk(logx)l + Ru(x,O); R (x,0) E xPOH' (B3

(k,1) EZo

where

Zo = ((M - 2)OUN) {(k, 1) I k< po}

= (M-U N) n {(k,) I k < po}

and
Po = min(ko - 6 + e, 2(ko - 6), ro)

Here, let us note that Po is slightly different form po of the previous section,
because M E x(ko-6)Ho(B3).

Now before we can crank out the expansions as we did in the previous section,
we must pay attention to K(u)-term that we didn't have before. We first do

some rearranging :

Aou = -Q(u) + 7Mu - M - MK(u)u2

= -Q(u) + M(7u - K(u)u2 ) - M

Then we prove :

Lemma 5.7 Suppose v has the following expansion near infinity :

k<P

v = 1 Ck,,()xk (log x) + R (x, ); R)(x,0) E x ' H(B 3 )

(k,l) E

Furthermore, suppose 4 E C' and 4(0) = 0. Then, (v) also has a finite
expansion, given below, with a remainder term of the same size as the remainder

term of v :

,(v) = Ck,',()xk' (logX)1 ' + R(x, 0); R'(x,0) E x 3H (B3))
(k',l')k' < g EZs

where I' = U= 1 k .-I and m is the smallest integer such that mko > p (here ko

is the smallest k such that (k, 1) E To)



Proof : This is a simple application of the Taylor's theorem. Since -(0) = 0,

4 U) (0)
4 (u) = Z 1 u3 + Rm(u)u m

1<j<m-1

where Rm is again a smooth function on the range of u. Then, we can just

plug in the partial expansion of u and use the multiplication lemma Lemma
2.3 to multiply out the terms in the expansion to get new terms with powers in
I' = Um -1 k -Z, where mko > p. For the remainder term, we can use Lemma
5.5 and Lemma 5.6 to conclude that

Rm(u)u m E zmkoHoo(B3 )

Since mko > 3
Rm(u)u m E x Hb( 3)

Now let us apply this lemma when D(u) = 7u - K(u)u2 . Then, we have

Aou = -Q(u) + MT(u) - M

and the exact same arguments of the previous section go through to deduce that

Vn E N:u= C", xk(log)l + R" RL E xpHb ((B 3 )

(k,l)EZn

where
Pn = Po + n -min(e, ko - 6)

and
m = smallest integer such that mn - io > Pn

and

In+, = ((( + In) U (M - -+ k -. In)) uM-)u-N n {(k, 1) I k < pn+1}

where M = M - + (2, 0). Then, by the claim

Claim 5.8 The direct limit
I = lim Inn-+oo

exists and it is an index set.

Proof : The same arguments of the previous section go through. We simply
note that m,+l > mn D

we can finally conclude that

u e A(B 3 )



Chapter 6

York's Equation

In this section, we will concern ourselves with the following operator :

divg o L : xaHb (B ; TR3) a+2H-2(]3 ;T* 3 )

where L9 is the conformal killing operator that York introduced, which maps
vector fields into trace-free 2-covariant symmetric tensor-fields.

Lg : xaH1(3 ; TR3) 3 X -+ Lxg - 3(divgX)g E Za+lHS(B 3;T* 3 T*3)

We delay discussing the motivation for such the above operators till the next sec-
tion. Christodoulou and O'munchadra proved the following theorem regarding
the mapping property of divg o Lg, written here in b-language :

Theorem 6.1 Suppose g - e E x'H'(B3 ;T* R3  T*IR3 ) for e > 0 and s >

3/2 + 2. Then

divg o L9 : aHb(B 3  TR3 ) -+ Xa+ 2Hb-2(B3 ; T*R3 )

is an isomorphism for 0 < a < 1.

Based on this, we want to prove the following theorem, which is the main

result of this section :

Theorem 6.2 Suppose g - e E x'H (B 3 ; T*IR 3 9 T1* 3 ) nAI A(B 3 T*.R 3 9

T*R3), for e > 0 and an index set g. Moreover, let T E xa+2 Hc(B 3 ; T*R3 ) n
A (B3 ; T*R3), for another index set E. A unique solution o- e x b O (B3 ; TI 3)
to

divg o Lg(a) = 7-

is also in Af(P 3;TR3), for some index set I which depends on g and 8. (E

will be given precisely in the proof)



Proof : Similar to what we did in the scalar case, we will decompose

divg o L :x aHb(B3 ; TI) -+ Xa+ 2Hs-2(B3; T*R3)

as following :
divg o L= Yo + Q

where Yo can be thought of as a model operator and Q is a perturbation term
from the model operator. There is an obvious choice for this model operator,
namely when g = e. Thus we let,

Yo = dive o Le

Now, using the coordinates that we chose above,

divg o L 9 = Vi(ViXj + VjXi - 2gijVIXI)3

Correspondingly, Yo looks as following in coordinates :

Yo = o 0 + 2 2 020a3
0 0 A0o 13 11 03 2 03

Of course, what is most important about the model operator Yo are the facts
of the following 2 lemmas.

Lemma 6.3 The model operator Y is

Yo = 2 o

where Yo e Diff (B3; TR3; T*I 3 ) and moreover Yo is b-elliptic.

If we can, furthermore, prove that

Lemma 6.4

Q c (x2+EHoc(B3 ) n A ( 3 )) Diff (]33)(]3 ; Tl3 ; T*l - )

where g = (U 1n ") + (2, 0).

If the above lemmas are true, then the proof of Theorem 4.3 can be employed
to show the veracity of the conclusions of Theorem 6.2. This is because in the

proof of Theorem 4.3, we never used the fact that the operator was scalar-
valued, and thus it is easy to see that the arguments will go through just as well

for bundle-valued operators, which we have in this case.
Thus, if we assume Lemma 6.3 and Lemma 6.4, for the time being, we

can proceed as follows :

div, o Lg(a) = 7



can be re-written as

Yo(a) = Q(o) +

Since Yo is b-elliptic, Proposition 5.3 of [Melrose 2] asserts that

o = { indicial roots of Y(s)}

((y, ly) C x N I y is a pole of order ly of fo (s)}

is a discrete subset of C x N, where Yo is the indicial family of Yo.
Thus the exact same arguments of Theorem 4.3 can be used to conclude

that the solution
a E xaHbo (l 3;T3) n A"(B3;T R 3 )

where I = lim,,, -,o and In, is recursively given as

,n+1 = ((g + In) U E-)UjYo

= ((O+In)UE-)UYoU= ((9 + zI) u E-) u Yo u
{(k,j + m) I (k, j) E (0 + In) U E-and (3m E N)((k, m) E Y0)}

This finishes the proof of our main theorem of this section, Theorem 6.2. O

Now we will prove the two aforementioned lemmas :

Proof of Lemma 6.3 :
We will deduce the lemma from the following two claims.

Claim 6.5
Yo : CO (3;T TR3 ) - Co(3 ;T(  3)

is a second order elliptic-differential operator.

Proof : By the trivialization

T*1 3 
= I1 2,3 X 6{d,dx2,dx3}

we can compute the top symbol of Yo as follows :

/ I(y2 0 0 1 ( 1
0(Yo) = 0 112  0 + - 12 2 23

0 0 I 31 GG 2 ~3

Now

1 2 4 1 2o 122 1.22
det(a(Yo)) = (1512+ 1 1 )(11l + 1(621612 + 62) + 1623 2- 223)

1 1 1 2 1(1162)( ~(1612 + 162)_ 1 2 2) -

1 1 1 1 2



2 ( 2 1 2 2 2 2 
2  112I2= 2"(J'1 + t1)( I + 6'2 + 1 621162I')I - 13

1 1
1|2 2 2 

21

= l12( 12 (k12  + ~( 
+2 + _32)+

3
> 0 for ( $0

This proves that Yo is elliptic. That it is a second order differential operator is
evident from its formula given above in coordinates. O

Claim 6.6
Yoa : H ( 3 ;TIR3 ) - xa+2 H (B3 ;T* 3)

is in x 2 Diff ( ; TIR3; T*3).

Proof : We recall that near oB3

1 < i < 3 : 0i = ai(0)(xx) + i(0)09; ai(0), 0i(0) E Co(S 2)

and

001 = x2 {a(9)aj(9)(xO) 2 + (ai(0)/3 j() - i(0)a())(XO(e) + 2()3(0)0 +

(a (0) c (9) - 3i (0) a (0)) (xx) + (a (o) 3 (0) - A (9) O ()) (o)}

= x2 Qij; Qij E Diff (B3)

Thus, near dB3, we have

(Ao 0 0 1 01 0102 013
Y o = 0 A o 0 + - 0102 02 0203

0 0 A ) (/301 03 02 02((x,9x)2 + (Xa, + AO 0 0
= x2 0 (Xx)2 + (x0+) + Ao o

0o (xo)2 ±+ ((x) + o)
2 11 Q12 Q13I Q12 Q22 Q23

Q31 Q32 Q33

= x 2 (I3 x 3 ((ax) 2 + (x00) + AO) + Qij)

= x 2 o; o E Diff2(B 3 ;Tr3;T* R3)

This proves that Yo E x2 Diffb (B3 ; TIR3 T*I 3 ). [L



Now, using these two claims, we will show that Yo is b-elliptic, i.e. el-
liptic as a b-differential operator. This means that if we make the following
substitutions

( 1 ++ xO,

C ++ ao

where (1, Ce} is a basis for bT* ] 3 , then we want

(1 2  0 0
det(bc 2Yo)) = det( 0 I1(2 0

0 0 (12

q I ((j, o, C0 ) q12 ((1, (0, 0)

+- 3 12 (1 o , ) 22 1 0, 0

q31 (1, e,8) q32(1, 0, 0)

> 0(1, , 0)
> 0 for (A0

q13(1,C o,8)
q2 3 ((1, o,) )
q33 (C1, )

where

qij ((1, (, 8) = ai(O)aj(8)((1)2 +((()j(8)() - i ()aj())(1)(o)+,3i(0)3j(0)(0

Now what is most important in the above computation is ironically what is
missing. Notice that in

det(b 2(Yo)) 1, ,8)

there is no x dependance. Now, on 13 , i.e. the interior of 33, we have

det(a(Yo)) = x 6 -det(Jac(x, 0)) -det(ba 2 (Yo))

Claim 6.5 asserts that

det(a(Yo))(x, ) > 0, for ( $ 0

Since x > 0 and det(Jac(x, 0)) > 0, for x = 1/r > 0

det(b1 2(Y o) det(a(Yo))
et o)) det(Jac(x, 0))

> Ofor( 0

Moreover, since det(b 2 (Yo)) is independent of x,

det(ba2( o)) > 0 for ( $ 0

even when x = 0. This proves that Yo is a b-elliptic operator. O

Proof of Lemma 6.4 :



Recall, in coordinates,

divg o L9 = Vi(ViXj + VjXi - gijV'X)

Now we can write this in a matrix form as follows :

0 0
Ag 0
0 Ag

+ V1V2 -a2V 1

V1V3 - 83V 1

V2V 1  2 3 a

V2V 3 2

V
3

V 1 -

V3 V2 -
V 3

V 3 -

21 V 3

a2 V3

30 3

Since we assumed that

g - e E x~HO(B 3 ; TlK3  0 T* -R3 ) n A0(] 3 ;T*3 & T*1R3 )

we know, from Lemma 4.9 that

Ag = AO + Q

where Q E (x2+EH(B3) Aloo Diff (B3 ) and = g + (2,0), where

Thus, we will be done n=if we can prove

Thus, we will be done if we can prove

VJvi- 3iV j

3
1= 30,a + Sij
3

where Sij is also in (x 2+EH (B3) f A (133 )) Diff (b 3 ).
This can be shown by brute-force computation. We first recall

gij = 6ij + kij; kij E xH o (]53 ) n A (B3 )

gij = 6ij + KiJ; KiJ E x - H ( 3 ) n Aa (B3)

Now

VjViXk = 9jC Oc(ciXk - F'kXl) - 1i (O&mXk - rmkX1 ) - F (OiXm - rfmXi)}

We pick apart the above formula term by term.

gjC ci X k
= (3jc + Kic)acaiXk

=- OjaXk + KJccaiXk

Since
Ocai = x2 Q cj ; Qj E Diff (B~3 )

we see that
ic f t 2+E o(3h o3)) Diff i (B3

Now for the rest of the computation, the following claim is crucial :

Agg9



Claim 6.7
r k E x+EHb(B 

) 
n A,4g ( 

3 )

where g = o + (1, 0).

Proof :

Fit = 2g m (01g9mj + 9jg.m - Omgjl)

(6m + Ki m )(a1 kmj + Ojkmi - mkjl)
2

- (a1 kis + a9k -O4k 1) + 2Kim(atkmJ + ajkmi - tmkji)

Since

Ok = XPk xH(B 3) A ( 3) +H (B ) n Ag++(1,o)(])

we see that
i Ex 1 + H (B ) n Agc (]B3 )

where

= (g + (1, 0)) U (g + (1, 0) + g)

S(9 U (g + )) + (1, 0)
= ( U ( + U0 =ln -9)) + (1, 0)

= ( U (U=2n -9)) + (1, 0)

- (UOln + )) +(1, 0)

= ~ (1,0)

Thus, using this claim, we can tackle the second term as follows :

gjCc(]kXI) = (6iC +K c)((Oc k)XI +rIkacXI)

= (jrd k)X + -ik (XI) + Kic(Oiljk)X1 + Kjcr'k (OX,)

Since

F k E x2+ Ho (]3 ) n A,+(1,o) (113 )

F koi E (2+EHoo (B3 ) n Agoo+(1,0)3)) - Diff1(B'3 )

we see that

jXk 2+( Hb(B 3 ) n A +( 1,0)(B 3 )) - Diffo(B3)

Kica&jr k E (2+ ~H(B3) n A +0+( 1  3)) " Diffo(1 3)

rFa (2+H(B ) n ) nA +(io)(3)) • Diff(B )

Kicr 2+ (B3 ) nX 0 O+(1,o)(B> 3)) -Diff I )



we see that

gj(cc(Fk -) ( 2+ Hb(1 3 ) n AO) -Diff (B3 )

where

(go + (1,0)) U (0 + go + (1, 0))

(0 + (1, 0) + (1,0)) U ( + ( + (1, 0)) + (1, 0))

(9 + (2, 0)) U (20 + (2, 0))

(0 + (2, 0)) because 20 C 0

Thus, we finally conclude that

gijCc(rfk ) E ( 2 +EHbo(B
3 ) n A) -Diff1(B 3 )

Next we tackle :

gicr m (omXk - r'kXI)

Now, since

F(m(Om -_ )
Kicm(Dm -_)

Pm l
ci Lrnk •

K3cmplmk -
K c i.mk . _

(6ic + Kjc)(Fr(amXk - rmkX 1 )

rm(3mXk) + Kicr2(amXk) - mkX

(x 2 +EH) (B3 ) A+( 1,o)) Diff (B3 )

(x2+ f H (B3) n A +g+(1,o)). Diff1 (B3 )

(x2+E Hb (B3 ) nA2) • Diffo (B3)

(z2+fHb (B ) n Ac+0) - Diff(o a)

-KjcylkXL
Fci mkXl

we see that

gjCr(Om _ rk S- 2+ H' (1 ) n Ag2 ) Diff (B3)

where

9 3 = (+ (1, 0)) U ( + +(1, 0))U 20U (2g0 + )

= ((± + (1,0)) + (1,0)) U (9 + (0 + (1,0)) + (1,0)) U

2(9 + (1, 0)) U (2(9 + (1, 0)) + 9)

= (9 + (2, 0)) u (20 + (2, 0)) U (20 + (2, 0)) U (30 + (2, 0))

= (9 + (2, 0)) because 20, 3 C 0

Thus we can conclude that

i( -_- ' -_ ) E H (B) n A ) Diff (B3 )

g2



Similarly the last term

rm( i _ - fm _ E (x2+'Ho(B3) n X.) - Diff'(B3 )

Putting these all together, we can finally conclude that

VVi = iO + S ; S' E (x2+eH (B3 ) nA) -Diff(B 3 )

Now in a similar manner, we can carry out the computation of

ai(V Xk) = i (g 1(a0 Xk - lXm))

= a((6j' + Kt')(OlXk - rmXm))

= O(jiXk + Kj'alXk - FjkXm - K'rIm Xm)

= i Xk + ai(KjtoXk) - i('mkXm) - i(Kjlr'PmXm)

to conclude that

aiVj = 8id8 + S11; S"1 e (x2+fHo( 3 ) AC)- Diff(B 3 )

Letting Sij = S'. + S"., we can finally conclude that

Vig - 3iV = lioa + Sij; Sij E (x 2+EHO ( 3 ) nA Ao) Diff
LI Dff ] 3



Chapter 7

Construction of Initial Data

Now using all the ingredients of the last few section, we finally show how to
construct initial data to Einstein's vacuum equation with complete asymptotic
expansions, thereby proving the main theorem of this thesis, Theorem 2.8.
Let us first start with g, a Riemannian metric on R3 , such that

g - e E xaH (B3; T*R 3 ® T* 3) n A( 3 ; T* I 3 ® T* R3 )

for 0 < a < 1 and a index set g, as is assumed for Theorem 2.8. Now, we

need to come up with a symmetric 2-tensor kij such that

kij E xa+lH HO (3; T* 3 0 T*i3) nf A (B3 ; T *Ri 3 0 T*I 3 )

for some index set K and

trg(k) = 0

divg(k) = 0

R(g) = Ikg

In the following sections, we will show that given any element kij in xa+1 HbOO (3

T*R3 rT*3 ) nA ( 3 ; T* & T*R3 ), for any index set K, we can modify (g, k)

to (g, k) such that (§, k) indeed satisfies the above constraint equations.

7.1 Trace-Free Condition

The first constraint equation
trg(k) = 0

is rather easy to satisfy. We define

kj = kij - tr (kij)kj

= kij - lmi kilmkij

= k- 1(61m + lm)klkij



We recall from the previous sections that

Qi E xaHoo(B3) fn A (B3 ; T*I 3 0 T* 3 ); where = U n -

Thus
k' E xa+l Hb( (B3; T*R3 0 T*R3) n A., (B3 ;T*R3 0 T*R)

where

K' = ICU (2K U (2 +g))

= ICU (2C + )

and (g, k') satisfies the first of the constraint equations.

7.2 Divergence-Free Condition

Now that kj is trace-free, we now try to modify it such that it will satisfy the
second constraint equation :

div,(k) = 0

Following York's approach, we try to find a symmetric 2-cotensor pij that we
exactly need to subtract from kij such that

} = k' - Pij

divg(k") = 0

In other words, we want to find pij such that

divg(pij) = divg(k j) (t)

Such pij, of course, exists. For instance, one can simply take pij = kj, in which
case, however, k = 0. To get a more nontrivial outcome, York introduced
Lg (see [C-M]), the conformal killing operator, which maps vector fields into
trace-free 2-covariant symmetric tensorfields.

L: C"(R3 ;TR) 3 X -4 Lxg - 2(divgX)g E C(R 3 ; Sym2 T* 3 )

suggested that one should look for pij in Ran(Lg) C C' (R3 ; Sym 2T*1 3 ). Given
our assumption on g and a, Theorem 6.1 of Christodoulou and O'Munchadra
asserts that

divg o L : xaH (B 3 ; TR 3 ) _+ xa+2 H' (B 3 ; T*1R3 )

is an isomorphism, we can indeed find the unique a E xaHO° (B3 ; T 3) such that

Pij = L 9(a)

divg (pij) = divg(k:j)

Now by the following claim, which we will prove at the end of this chapter,



Claim 7.1 Given our assumption on g, we see that

divg xcHoo (3 ;T* 3  T*3 n A(00 3 ; T*R3 0 T*I) 

C+ 1H (B3 ; T*(B 3 0 T*IR3 n A( (B3 ; T*))

where
L= (C + (1, 0)) U ( + (1,0) + G)

we see that
divg(k') E xa+2 Ho(B3 ) n A-,(B3 T* 3 )

and thus (g, div,(k')) satisfies the assumptions of Theorem 6.2, and we can
apply the theorem to obtain a such that

divoLg(a) = div,(k')

a E XaHOO(]B3 ) nAo (] 3 ;T*R3)

where

In+1

Once a is obtained, we let

= lim In
n-- oo

= ((+ In) U ' )Uyo

pij = Lg(a)

and using the following claim

Claim 7.2 Given our assumptions of g,

L xcH(B 3 ) n A (B3 T*W3 )  xc+l Hbo(B3 )

where
S= (£ + (1,0)) U (L + (1,0) + g)

we can conclude that

Pij E xa+IHb(B3) n A (3; T*-3 T* R 3)

Ip = (z, , +(1, 0)) U (1, +(1,0) + )

Thus, finally we have

k' = k - Pij

k E xa+H(B 3 ;T*13 T*R3) n A,,(B3 ;T* 3  T*R3 )

where

and (gij, k.)

C" = I' U I-p
now satisfies the first two of the constraint equations.

n Aj(3 ; T*IP3 0 T*I 3 )Ic



7.3 Non-linear Constraint

Now it remains to satisfy the last constraint equation which, unlike the first two,
is non-linear. The key observation York ([York]) made is that if (g, k") satisfies
the first two constraint equations, so does (p 4 g, (p-2k") for any conformal factor
-P. Moreover, York observed that if we choose P, just so that it satisfies the
Licnerowicz equation :

S- R(g) + = 0

then (§, k) = (4g, ,-2k") will indeed satisfy the final constraint

R() = ltkI

in addition to the first two constraint equations.
Now as it is done in practice ([Cantor], [C-M]), we look for the solution of

the Lichnerwicz equations in the form of two conformal factors.

The conformal factor X is a solution to

AgX - R(g)x = 0 (t)

Then (, k") = (x 4 g,- 2 k") is such that

R(x 4g) = 0

Now, we then can look for a solution T to

AF + 81k, - = 0 ($)

Let us first look at (t). We first establish the following claim:

Claim 7.3 If

g - e E xH(B 3 ;T*I3  T*3) n A (B3; T*3 0 T*IR 3)

then
R(g) E xa+2 Hb (B3 ) n A+(2 ,o) ( 3)

where = Uln G. IO

Since we want our conformal factor X to approach 1 at spatial infinity, we

let X = 1 + T. Then T satisfies

1 1(g) (t')
Ag - -R(g)T R(g) (')

8 8



Now because of the preceding claim, (g, R(g)) satisfies the assumptions of Theorem4.3,
so we can apply it to (t') to get :

-E X aHb (IB3) n A" (B3)

where Z -= limnoo Zn, and

In+1 = (( + In) U )UN

Then (y, k") is such that

e- eE xaHo(B 3 ; T*R3 0 T*R3) n 3 A (B; T*S3 T* R3)

where

,- = (UL i --ET ) U U ((U
i " ZY) + 9)

and similarly

k"ij E a+lH (B3 ; T*I 3 0 T*IR 3 ) n A (l 3 ;T*R3 0 T*I3)

where
z- = (Ul 1i -IV) U " U ((Uli Z-) + II")

We finally turn to the ($). We first claim

Claim 7.4
k|1 12 xa+lHj(IE 3) n A00 (B3

for
M = 2C,-, U (2Ij-,, + G)

Then since (, Ik"iy) satisfies the assumptions of Theorem 5.1, we can use
the theorem to ($) to conclude that

T E XaHbo(B3) n A (B3)

where Z = limnoo In, and

I+1= + In) U (M + U In) U M)UN

and finally we have

(,k) = (4 -2k,2- )

= (I 4 4 g, -2-2 k")

= (4g, - 2 k")

and
S- e E xaHb(B 3 ,;T*R3 0 T*R3) n AC (B 3( ;T*R3 T*R 3 )



where
z = (u ~zh) U g U ((u4 _z,) + )

and similarly

kij E xa+lHO ( 3 ; T* K 0 T*IR3) n Ac (3; T*I3 T*R3 )

where
zI = (U~=l§4) U K" U ((U!_ 1L1 1 ) + ZI-)

This concludes the proof of the main result of this thesis, Theorem 2.8.
We finish with proofs of the claims that were made in this chapter.

Proof of Claim 7.1 If

k@j E xa+lHOO((B3 ) n AOO,( 3 ; T*3K3 T*R 3 )

then we can compute

divg(k') = gciVck,,

S(6Ci si)(Ock - Fk - km)

=- ikj + QciOck', - Fikmj - "ciF"k' - rkim - Qc F.kI

Now

Cikij

Qcickz

Qcifm t k' - Qcipm ]Fkci "mj c "im

xa+ 2 H(1 ()1) (Bf(3nAT*3)

a2 +2aH (oo ( 3) n A +(1,oo )(103 *T 3
x2+2 Ho (B) n A ,++(1,o)(3 ; T*3 )

x2+2aHbo (B3 ) n A0°, ,+ (BV; T*R3)

Z2+3a HbO (3 ) n Aw° ,+g+0 (B3; T* R 3)

Thus we see that

div,(k') E xa+2Hbo(B33 ) nA (B3 ; T*I 3 )

where

(IC' + (1,0)) U

(K' + (1, 0)) U
(K' + (1, 0)) U

(KC' + (1, 0)) U

(K' + (1,0)) U

(K' + 0 + (1, 0)) U (Kc' + 0) U (Kc' + 90 + )

(K' + go) u (cK' + S) u (cK' + go + g)
(K' + go) U (K ' + g +)
(K' + o)
(K' + (1, 0) + )



Proof of Claim 7.2
This is a straightfoward computation as in the preceding proof.
O

Proof of Claim We simply compute

= zk jlRijki

= ik jlicRjckl

- gjl36c(a r - al~rk)

- gjl(ak r k - a r
9 k)

S(6ijl + Qjl)(Ok, - k)

Thus, we see that

"a+ 2Hy (B3) nA(+(1,0))u(O+go+(1,o)) (B3)

a+2Hy( 3 ) nA A(+(2,0)) (3)

Proof of Claim 7.4 This is immediate from

Ik"l = gi gm kimkjn

S(6ij + qij)(6mn + Qmn)kimkjn



Chapter 8

Future Direction

By the work of the previous seven chapters, we now know that there are pairs
(g, k) which satisfy the Constraint Equations

tr9 (k) = 0

divg(k) = 0

R(g) = Ik

and have a complete asymptotic expansion, i.e.

g-e E xaH (B3 ;T*10 T*RI3)n A(B 3 ; T*R3 0 T*R3)

k Cj E xa+IHoo( 3 ; T*I 3 0 T* 3-) n Ao(B3 ;T*I 3 & T*1R3 )

for 0 < a < 1 and index sets ! and K
Now, with (g, k) as initial data, let us suppose (g(t), k(t)) is a solution to

the Evolution Equations that were introduced in Chapter 1 :

0 tgij = -20kij

otkij = -ViVj + O(Rij - 2kiak )

AO = 1k 12

Recall that we asked the following question :

Question 2 : Does (g(t), k(t)) also have a complete asymptotic expansion for
each t, at least for t small?

I believe the answer to the above question is Yes. I have not yet quite
established this, but for the remainder of this chapter, I want to briefly describe
where I am now and how I would proceed in the future in order to answer
Question 2 affirmatively.

In order to make use of the well-known local existence result of Choquet-
Bruhat, we first re-write Evolution Equations as follows (see Lemma 10.2.1



of [C-K] for more detail), :

-(0-l1t)2ki j + Akij = Nij

-- l9tgij = 2k,j
A = Ik12

where Nij is a non-linear expression in g, k, q, and their covariant derivatives.
We would like to show that if an initial pair (g, k) has a complete asymptotic

expansion at infinity on (t = 0) - slice, so does the local solution (g(t), k(t)) to

the above elliptic-hyperbolic system on each t - slice, for t small.
As what I believe a major step in affirming this, I consider the following

second order linear hyperbolic operator :

P = Og + g(a, V) + b

where

gap = 7lap + hap; hp E x6H (M; Sym 2T*M) n A'(M; Sym 2 T*M)

and M - it x B3, e > 0, and 7rij is the Minkowski metric. Moreover, a vector
field a E A' (M; TM) and a function b E A (M). If we now denote D+ (M)
to be the distributions of M with a past compact support, we prove :

Theorem 8.1 Suppose f E D+(M) is in A'(M). Then u E D+(M), the

unique solution to Pu = f, is also in A (M), for an index set I which depends
on F, S, and B

Proof : I first explicitly write down the solution u, using the Hardarmard's
construction as following :

u(q) = U(p, q)f (p)pr(p) + V- (p, q)f (p)p(p)

By analyzing how the mapping properties of the kernel U(p, q) and V(p, q)
depend on the regularity of gap, we can actually prove

Lemma 8.2 Let P be as above. Suppose f E D+(M) is in HO(M). Then

u E D+(M), the unique solution to Pu = f, is also in H (M).

Using the lemma and the observation that the above theorem is true for (-1t)2 +
Ao, the flat wave-operator, (this can be easily deduced for we can explicitly write
down solutions of the flat wave operator using the fundamental solutions), we
can crank out the terms in the expansion for u, given that f has a complete
asymptotic expansion. O

With this theorem at our disposal, let us look at the re-written Evoultion
Equations above. Using the theorem and the work of the previous chapters,
I have proven, so far, that the solutions of the each of the three re-written
evolution equations, considered independently from each other, have asymptotic



expansions if the metric, coefficients and the RHS do. However, since these three
equations are coupled together, I need to understand the interplay between the
elliptic and the hyperbolic equations. My current idea is to set up an iteration
argument which produces more and more terms in the asymptotic expansion of
(g, k) at each iteration, similar to the original iteration argument of Choquet-
Bruhat on short-time existence of a hyperbolic system.
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