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Abstract
This thesis extends the previous literature on urban subcenter formation by

introducing congestion cost of transportation. A new model is constructed to analyze the
efficiency of private decision about firm decentralization with the presence of unpriced
transportation congestion. The model features a linear city with provision of
transportation infrastructure oriented toward carrying workers to the CBD. Congestion
cost of transportation is modeled by a function of traffic density, that is, the ratio of
traffic volume to transportation capacity. The introduction of congestion costs creates
mutual dependence between private decision about residential location and the
transportation cost even in a simple monocentric model. The simultaneity problem
becomes much more complicated in the decentralized scenario. The standard urban land
market theory is applied to the model to analyze equilibrium condition of the
decentralized city, and the optimal level of decentralization is analyzed by using the
aggregate household utility of the whole city as a criteria. Two scenarios of firm
decentralization that are investigated include when technology of transportation
infrastructure is non-uniform and when land market failure due to unpriced congestion
externality is not considered. Complex computer algorithm is required for simulation of
the model. Under various scenarios, the simulations show that only the technology of
transportation infrastructure affects the efficiency of private decision about
decentralization. If transportation infrastructure serving the whole city is uniform in
technology, private decision about decentralization will be socially efficient. However, if
the transportation infrastructure serving the central area is technologically less
congestable than that serving the subcenter, the private decision will lead to too many
firms decentralizing to the subcenter. These results suggest that subsidy for firms located
in the central area may be required in order to ensure the socially desirable level of firm
decentralization.
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Chapter 1

Introduction

1.1 Transportation and the Development of Employment Subcenter

In a long history of urban development, changes in urban structure have been

closely intertwined with transportation technology and infrastructure. When the

dominant mode of transportation was to walk, employment and residential areas were

located close together. Later, when motorized modes, such as subways and automobiles

in particular, became common, households took advantage of improvement in

transportation technology by decentralizing to suburban areas. As a result, the most

prevalent urban form in the era was a city with firms concentrating in a single, central

location, and residential areas around it. This urban form was termed a monocentric city.

The monocentric phenomenon may be explained by the fact that firms need to locate near

transportation terminal such as port, through which they can transport their product to the

market, and raw materials to their plants.

In recent decades, however, the trend of urban development has changed again.

Rationally, retail trade and personal service firms decentralized to be close to their

household clienteles. Following were manufacturing firms, which decentralized because

of two major reasons. The first was the change in manufacturing technology, such as

horizontal assembly line, which requires firms to use more land per unit of output than

before. Since land in the central area is expensive, firms were forced to relocate of

suburban area where land is cheaper. The second reason for decentralization of

production firms was the improvement of highway system, which made trucking an

effective mode of transporting firms' product. Consequently, firms no longer need to

locate close to the central area to be near transportation terminal because trucks behave

like moving terminal that firms can use wherever they are located. More recently, there

have been many evidences that financial and service firms that are office-based also

decentralize. This could probably be explained by the improvement in communication



technology, which allows interactions between firm employees and clients to take place

without physical proximity. Again, this trend is related to transportation in that

communication technology has reduced the need for physical movement of transaction

agents.

With the changes mentioned above, firms have increasingly decentralized out of

most metropolitan areas over years. However, it is evident that firms locations do not

randomly scatter throughout the area, but rather cluster together to form smaller centers,

which is termed employment subcenter. This is a result of the benefit from firm

agglomeration as well as the advantage of easy access to highway system. The most

important reason that firms do not completely decentralize from the central business

district (CBD) is probably because building stock and infrastructure are durable. Old

cities that were developed during the era of monocentric city or earlier have huge amount

of office space in the CBD, and transportation infrastructure oriented toward serving

traffic flow to the CBD. Examples of these include Boston, New York, and Philadelphia.

On the other hand, newer cities that emerged in the age of highway and automobile are

much more decentralized, and transportation infrastructure is provided more uniformly

than their older counterparts. Modern cities with these characteristics include Los

Angeles, Dallas, and Phoenix. In any case, these evidences reflect the evolution of urban

structure from monocentric to multicentric one, resulting from transportation technology

change.

1.2 Transportation Congestion and Optimal Subcenter Size

The impact of transportation on the development of urban employment center as

well as residential areas is significant. Under the monocentric framework, Solow [1973]

shows that with the presence of transportation congestion, failure to price the

transportation cost properly, i.e., internalize the congestion cost, would lead to land

market failure, that is the value of land is too low from social viewpoint. Using market

price of land for benefit-cost analysis of transportation infrastructure project would lead

to too much land being used for the infrastructure. Wheaton [1996] further argues that

even when transportation infrastructure is provided optimally, land market still fails to



function properly, given the unpriced congestion. These results show that congestion has

substantial impact in urban development, and unpriced congestion will lead to suboptimal

land allocation even in the simple monocentric framework.

Effect of congestion on firm decentralization has not yet been examined, however.

In order to illustrate the relationship between transportation congestion and optimal

employment subcenter size, consider a simple city where there exist two identical

employment centers that are served by two separate and different transportation

infrastructure. Suppose the number of household and worker in the city is N, N workers

commute to work in center 1, and N-N1 workers commute to center 2. Also,

transportation cost of using infrastructure to commute to work in center i is a function of

traffic density, i.e., the ratio of the number of commuters to the transportation capacity

provided by the infrastructure.

First, consider the equilibrium condition of decentralization of this city. To keep

every household at the same level of utility, the level of decentralization must be such

that transportation costs of all households in both employment centers are equal, i.e.,

T, 
=

T 2

where: TI: individual transportation cost of center I
T2: individual transportation cost of center 2
CT2: capacity of transportation infrastructure serving center 1
C2: capacity of transportation infrastructure serving center 2

Next, consider the optimal decentralization, which would lead to minimization of

total transportation costs. The total transport costs of the city can be determined as

follows:

TT = NIT, + (N - NI)T 2

where: TT: total transportation cost of the city

To minimize transport cost, the first order condition requires that:
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aNi C, C C , LC2 C2 2

= T,(1 +a)- T2 (1+a 2 ) =0

T, (l+a 2)
T2  (1 +,)

This condition means that if transportation cost function of infrastructure serving

both centers are identical (ai = a 2), and the transportation cost depends only on the ratio

of number of household in each center and capacity, then the optimal allocation of

employment is achieved when commuting costs to both centers are equal. Implication of

this result is that when transportation technology is uniform over the city, the optimal

employment decentralization of the city is the same as the equilibrium one. On the other

hand, if transportation technology is non-uniform, for instance, ai > a 2, the optimal

allocation of employment will be different from the equilibrium one. While the

equilibrium decentralization will equalize transportation cost, the optimal

decentralization will lead to reallocation of households in the center with more

congestable transportation infrastructure (a,) to the other center (a2).

The simple example shows that the private decision about decentralization is

efficient if the technology of transportation infrastructure is uniform. However, due to

the unrealistic assumptions, it cannot be concluded that this result is true in the real

world. This thesis will therefore investigate whether this conjecture holds under the more

realistic assumptions of a decentralized land use model.

1.3 Objectives and Methodology

1.3.1 Objectives

With emergence of urban employment subcenters in many leading metropolitan

areas around the world, it is important to realize the possibility of inefficient development

of those centers due to the land market failure and inappropriate pricing of transportation

cost. Therefore, the main objective of the thesis is to provide a theoretical framework to

analyze the efficiency of firm decentralization under such conditions. More specifically,

the thesis attempts to answer the following questions:



(1) With the presence of transportation congestion, are decisions that firms make

about decentralization socially efficient?

(2) What are the major factors that affect the optimal development of employment

subcenter?

(3) If the provision of transportation infrastructure is among those factors, how

does it affect firms' decisions and the social optimality?

(4) If the firm decentralization by private decision is not socially efficient. How

can we bring it to the socially efficient level?

(5) How do firm decisions about location affect transportation congestion? Is it

possible to influence the employment decentralization so that the

transportation congestion is mitigated?

1.3.2 Methodology

To answer the questions outlined above, the thesis combines methodological

approaches used by three related groups of theories and researches on urban land use.

These include the traditional land market theory [e.g., Alonso, 1960; Muth, 1969; Mills,

1972], the research on employment subcenter formation [e.g., White, 1976; Ogawa and

Fujita, 1980; Sivitanidou and Wheaton, 1992], and the research on urban congestion and

land use [i.e., Solow, 1973; Arnott, 1979; Wheaton, 1996]. The first group provides

general framework for modeling of simple urban formation. The second group addresses

the issue of firm decision to decentralize to the subcenter. The last group provides

practical approach to modeling of transportation congestion in the urban land use model.

Under the theoretical framework, four simplified models of a city with an employment

subcenter were developed to investigate the issue of private decentralization efficiency

under the condition of unpriced transportation congestion.

Simulations of the four models were done in order to analyze the optimal level of

firm decentralization under different modeling assumptions and exogenous factors.

Results of the simulation examples were summarized and exhibited in various tables and

graphs. From the analysis of the simulation results, conclusions about efficiency of

private decision on firm decentralization would be drawn. Based on these conclusions,

the thesis will finally suggest the proper public policies on the development of urban



employment subcenters, and how they might help alleviate transportation congestion

problem.

1.4 Organization and Outline

The thesis is organized in five chapters. Chapter 1, which is this chapter,

introduces the general issues of firm decentralization and transportation congestion, as

well as objectives and methodologies of the thesis. In chapter 2, which is an introductory

to the theoretical modeling, various types of models in the literature on urban land use are

reviewed. These models include traditional models of urban land use, models of firm

decentralization and formation of employment subcenter, and models of urban land use

with explicit consideration of transportation congestion. In addition, the research gap that

has not yet been investigated is pointed out. Chapter 3 describes the models created to

analyze the central problem of efficiency of firm decentralization by private decision.

Theories and assumptions of the monocentric models are first discussed in order to

provide basic knowledge, and followed by those of the more general decentralized model.

The formulations of problems for model simulations are also provided. Chapter 4

presents special characteristics of the four alternative models. The values of common

exogenous variables and exogenous variables that are specific to each model are

discussed. The examples of simulation results are summarized in tables and graphs later

in the chapter. These results are analyzed, and the answers to the central questions of the

thesis are drawn. The important findings and the public policies about urban land use that

are implicated by the findings then conclude the thesis in chapter 5.



Chapter 2

An Overview of Existing Urban Land Use Models:
Congestion and Employment Decentralization in
the Literature

The theory of urban land use has a long history of development. Initially, the

theory was based on traditional land market models, with the most important assumption

of monocentricity [i.e., Alonso, 1960; Muth, 1969; Mills, 1972; Wheaton, 1977]. That

assumption is important, since it means that all jobs are located at one pre-specified city

center. Because of limitations in real world application, the monocentric model was later

extended to consider a city with multiple employment centers [i.e., White, 1976; Ogawa

and Fujita, 1980; Wieand, 1985; Helsley and Sullivan, 1992].

The model of urban land use has also been developed in other directions besides

the relaxation of monocentric assumption. The most notably development is probably

when transportation congestion cost was incorporated in the standard monocentric model

by Solow [1973]. The follow-up research on urban congestion was presented by

Arnott[1979], Arnott, de Palma, and Lindsey [1993], and Wheaton[1996]. Unfortunately,

the urban land use models that consider transportation congestion are all monocentric.

This chapter explores a series of urban land use models that have been developed

over years, including both monocentric and decentralized models. Also, the literature on

urban congestion models will be reviewed. At the end of this chapter, the research space

that has not yet been explored before will be pointed out.

2.1 The Monocentric Models of Urban Land Use

The monocentric models were created to explain the theory of urban land use, that

is, how residential and land market operate in urban areas. A series of monocentric

models that have been developed includes the models of Alonso [1960], Muth [1969],

Mills [1972], and Wheaton [1977]. The models generally feature a well-defined linear or



circular city. The city has a single and pre-specified employment center where all firms

are located. This is the most important assumption of monocentric models since it

implies that the analysis of firm equilibrium is ignored, and the models concentrate on

only the analysis of the household equilibrium and the way residential land rents vary

across location.

Assumptions under which most monocentric models were developed are listed by

category as follows:

Assumptions about characteristics of an abstract city

* The city is located on a flat plain.

* The city is monocentric, with a pre-specified center where all jobs are located.

* The city is closed, i.e., no movement of household into or out of the city.

* The city owns the whole land. It collects rent and redistributes dividend to the

residents.

Assumptions about firms

* Firms consume negligible amount of land compared with households.

* Firms are immobile. Their only location is the center of the city.

* Firms' products are homogeneous and are marketed outside the city.

* Firms employ all of the city's labor force.

Assumptions about households

* Households are homogeneous. The number of worker per household, household

income, and household type are identical.

* All workers commute to work in the center of the city.

* Households are mobile.

* Household utility function is identical for each household. Only land consumption

and consumption of other goods and services enter the utility function.

* Household income is spent on housing, transportation cost, and other goods and

services.

* Households maximize the identical utility function over location.



Other Assumptions

* Residential land market is perfectly competitive. Housing is occupied by household

that pays the highest rent.

* Transportation cost is a linear function of distance. There is no transportation

congestion.

An array of assumptions makes the analysis of household equilibrium in the

monocentric model particularly tractable. The most common and elementary result from

various analyses is that land rents vary with locational amenities. Originally, the only

amenity at each location that was considered in the models was the accessibility to the

CBD. This is represented by cost of commuting from that location to the CBD. It was

also assumed that the commuting cost is a function of only distance. With this

assumption, the amenity of each location is simply the distance from that location to the

CBD.

All models suggest that variation in transportation cost, as a locational amenity, is

perfectly capitalized by land rent. According to the monocentric model by Muth [1969],

the slope of rent gradient with respect to distance from the CBD is given by:

DR T'(t) (2.1)
t =q(t)

where:
t: distance from the CBD
T(t): transportation cost at t
q(t): land consumption at t

In certain models [e.g. DiPasquale and Wheaton, 1996], land consumption is assumed to

be fixed. Hence, according to equation (2.1), slope of rent gradient will be proportional

to that of transportation cost gradient. If it is assumed further that transportation cost is a

linear function of the distance from the CBD, i.e.,

T(t) = k - t

where k is a positive constant, then

T'(t) = k



The slope of transportation cost k is a constant and can be interpreted as the unit cost of

traveling a distance of one mile. Consequently, the slope of the rent gradient in this case

is given by equation (2.2).

)R k-= -- (2.2)
at q

This means that the rent gradient of a simple monocentric model, which assumes a linear

transportation cost function and fixed land consumption is linear with the slope equal to

the ratio of unit cost of transportation and lot size.

In other models, however, the land consumption is allowed to vary across

location. Thus, the household utility function is solved for the land consumption

(density) gradient. (See the derivation of this in section 3.1.2.) In this case, the rent

gradient will no longer be linear, but will have a convex shape. The slope of rent gradient

will be steep near the CBD where land consumption is small, and flat near the border

where land consumption is large.

Figure 2-1 Rent gradient of a simple monocentric model with fixed land consumption.



Figure 2-2 Rent gradient of a simple monocentric model with variable land consumption.

1/q(t)

0 b t

Figure 2-3 Density gradient of a simple monocentric model with

consumption.

variable land

2-1 and Figure 2-2 illustrate the rent gradient of the fixed

consumption model and variable land consumption model, respectively. At the center of

R(t)

RA

Slope = -k/q(t)

b t

Figure land



the city, rent is the highest, while moving outward from the center, it decline. This is so

because rents capitalize transportation cost saving resulting from living closer to

employment location. Note that at the edge of the city where transportation cost is

greatest, the rent capitalize zero saving, and therefore it must be equal to the agricultural

land rent.

In the real world, however, locational variations are not limited to only variation

in transportation cost. There are many other kinds of variations in locational amenities.

For example, the quality of school, the amount of air pollution, and the beauty of scenery

almost always vary across location. To account for these variations, Polinsky and Shavell

[1976] created the more advance monocentric model. The major different between this

new model and standard monocentric model is that a vector of various locational

amenities is used instead of only variation in transportation cost.

Whether locational amenity is represented by only transportation cost or an array

of many variables does not affect the principle of household equilibrium. According to

Alonso [1964], household equilibrium requires that all households achieve the same level

of utility. If this condition did not hold, some households would move in order to

increase their utility. Therefore, the difference in land rent due to locational amenity in

equilibrium represents the compensating variation, which keep the level of utility of

households equal even though their locations differ in amenity level [Sivitanidou, 1991].

Despite the strong assumptions, the standard monocentric model gives many

useful explanations about residential location and land market. There have been several

attempts to make the model more complete by relaxing some assumptions or including

some extensions. In the next section, for example, the assumption that firms are

immobile will be relaxed. This will lead to a much more complicated analysis than the

monocentric model.

2.2 Employment Decentralization Models

With the continuing trend of increasing decentralization and declining importance

of CBD as an employment center, the monocentric assumption is deemed inadequate for

analyzing the modern cities [White, 1976, Wheaton, 1979, Ogawa and Fujita, 1980, and



Helsley and Sullivan 1991]. According to White [1976], the monocentric assumption and

the assumption of homogeneous household income could prevent an application of the

land use model in analysis of many important policy issues. She therefore developed an

employment decentralization model, which consider a city in which firms in the CBD can

relocate to the new subcenter. To reduce complexity of the analysis, she assumed that

firms relocate to a ring of land at fixed distance from the CBD. She argued that firms

might benefit from decentralization through paying lower wage, but a problem that might

arise is the scarcity of labor at the new suburban location. From her analysis, she showed

that the firms' decentralization under labor scarcity condition would cause the household

utility to increase, and the city size to expand. However, the change in land value due to

the decentralization is inconclusive.

Fujita and Ogawa [1980] argued that location and size of the employment center

of a city in the urban land use model should not be pre-specified. Rather the model

should provide a framework in which residential and employment location can be

determined simultaneously. By relaxing the assumption of monocentricity, they

developed a model in which spatial interactions among economic activities are

considered explicitly. Each firm is allowed to choose location in accordance with its

transaction activities with other firms. Each household location is chosen optimally with

regards to its commuting trip to employment location. From their analysis, they

concluded that the monocentric assumption could be defended only under special

circumstances, particularly when commuting volume is small.

Helsley and Sullivan [1991] developed a series of dynamic model of urban

subcenter formation. In each model, different assumptions about technology and

economies of scale in production at each employment location were used. They showed

that the development of employment subcenter arises from the tradeoff between

economies of scale in production and diseconomies of scale in transportation. The

development of the subcenter is only a part of the three-phase development of

multicentric city, which include an exclusive development of CBD, an exclusive

development of subcenter, and a simultaneous development of both centers. They

concluded that according to assumptions about technology and scale economies in



production, the models' predictions differ in the two aspects, the relative size of the CBD

after the development is completed and the duration of the exclusive development of

subcenter.

Sivitanidou and Wheaton [1992] focused their study on different issues, that is,

wage and rent capitalization in a decentralized city. In their paper, a two-center city was

developed to explain how wage and rent capitalization works under certain

circumstances, namely, when employment centers differ in productivity advantages and

when there are some kinds of land market regulations. They showed how differences in

spatial amenities, particularly transportation cost, are capitalized in rent in the long-run

equilibrium framework. However, the transportation cost that they used was only the

distance cost. The cost of congestion was ignored for simplicity. They concluded that

differences in locational advantages of employment centers are capitalized mainly by

wage in a competitive land market. Only when the land market of the advantageous

center is regulated will rents capture more locational value.

In most employment decentralization models, the major departure from the

standard monocentric model is the relaxation of the monocentric assumption. In many

cases, most of other assumptions as described in section 2.1 are still kept in order to

preserve the analytical tractability of the model. Models in the next section, however,

depart from the standard monocentric model in a different way. They relaxed the

assumption that there is no transportation congestion in the city. This change has led to a

significant improvement in urban land use theory.

2.3 Urban Land Use Model with Transportation Congestion

The use of only transportation distance cost to represent the location's

accessibility to the employment center is inadequate with the presence of transportation

congestion. In a large city where transportation congestion is intense, commuting cost

due to congestion is in fact more significant than the distance cost. Because of the

congestion, the rent gradient will no longer be linear even with the assumption of fixed

land consumption, but will become convex since transportation congestion cost will

increase exponentially as one moves closer to the employment center.



Solow [1973] generalized the basic model in the previous section by introducing

congestion cost. He pointed out that the incorporation of congestion cost will generate

the rent gradient with more curvature than those generated by earlier models (He already

assumed that land consumption varies across location.), and that this rent gradient

represents market value of land. Further, he argued that without congestion-pricing, the

market value of land reflects only private transportation costs, which is the sum of

distance and congestion costs, but not the full social cost, which must also include the

cost of congestion externality. Hence, the land market value is too low without

congestion pricing. Lastly, by using numerical examples, he showed that if market value

of land were used for cost-benefit analysis of street construction, more land would be

used for street than the socially optimal amount.

Wheaton [1996] extended the study of Solow. He maintained that internalizing

congestion externality could be achieved by two equivalent approaches, congestion

pricing and optimal land use (density) regulation. The question in his research was

whether these two approaches could be substitute when transportation capacity is

provided optimally. Following Solow's approach, he simulated a city where

transportation capacity is optimally provided. Even with the optimal transportation

capacity, he found that when congestion is present, the density gradient must be adjusted

differentially upward in order to improve social welfare. The density adjustment would

be especially large near the employment center, while the adjustment near the border

would be small. He concluded that transportation capacity policy is not a perfect

substitute for land use regulation policy.

Since incorporation of transportation congestion cost introduces mutual

dependence between transportation cost and household location, the analysis of

employment decentralization will be particularly difficult even if the linear form of the

city is assumed. This is probably why there has not yet been any employment

decentralization model that considers transportation congestion explicitly.



2.4 Research Gap

While research about the effect of congestion on land use has been brief, research

on employment decentralization has been far more explored. However, there has been an

obvious research gap between the two strands of literature. While the urban land use

models that consider transportation congestion explicitly are all monocentric, the

employment decentralization models neglected to consider transportation congestion.

Although negligence of congestion is acceptable when commuting rate is small, it is

inadequate when a large metropolitan area with significant transportation congestion is in

question. Unfortunately, in the real world, the employment decentralization is caused in

part by the growing traffic congestion in a large city. Therefore, in real world application

the analysis given by the models outlined in section 2.2 would suffer from failure to

recognize transportation congestion.

The work in this thesis is at the cross between the two groups of literature

mentioned in sections 2.2 and 2.3. It extends the employment decentralization models by

introducing transportation congestion cost as used in the urban land use models with

congestion. In this way, the new model is used to study the effect of transportation

congestion on employment decentralization. In addition, the efficiency of private

decision about decentralization will be examined. It is hoped that the work in this thesis

would lead to better understanding about the formation of employment subcenter with the

presence of congestion, and new way to improve social welfare by influencing such

process.



Chapter 3

Modeling Firm Decentralization with

Transportation Congestion

Decisions that firms make about decentralization are affected by transportation

cost and vice versa. The central question of this thesis is whether the firms' decisions are

socially efficient with the presence of uninternalized costs of transportation congestion.

In order to answer that question, a set of theoretical models was developed under various

assumptions about characteristics of the city, households, transportation infrastructure,

and transportation congestion. The most basic model that was created is a general

monocentric model, which features a linear city with a pre-specified city center. This

model was then extended to a set of two-center models. Under various assumptions,

these models were used to study the long-run effect of firm decentralization on social

welfare.

Since the models were built in attempt to address the issues of firm

decentralization, it is not necessary that the models created for this purpose strictly

replicate the real city. One might argue that a circular model of urban location better

replicates a real city than a linear model does thanks to its two dimensionality. However,

the process of firm decentralization is very difficult to model in this framework since

commuting pattern will be very complicated. As a result, a linear model was usually

chosen in order to reduce the complexity in most previous work on modeling employment

decentralization. This is also the case for the models in this thesis.

The problem of the equilibrium of urban location is very complex when

transportation congestion is taken into consideration because of mutual dependence

among many relationships. The most difficult problem is the simultaneous determination

of household location and transportation congestion. The household location decision is

affected by income and rent. These two factors are dependent upon transportation cost



for the reason that will be explained in this chapter. Further, transportation cost itself is

determined by residential location. Because of this difficulty, many simplifications of the

model were made to allow such a complex problem to be solvable. It would be shown

later in this chapter that even with all the simplifications, to solve the problem

analytically is virtually impossible, and the only practical way is to solve the problem

numerically, which is by itself not very easy.

3.1 The General Monocentric Model

3.1.1 Characteristics of a monocentric city

The general monocentric model features a linear city of finite width, tw and length,

2e, as shown in Figure 3-1. The city is assumed to own the whole land. It collects land

rent and redistributes rent dividend to the residents. The city's land is allocated among

commercial sector (firms), residential sector, and transportation infrastructure. All firms

are located in the Central Business District (CBD), of which a location is pre-specified at

the center of the city. Firms are assumed to consume negligible amount of land relative

to the residential sector. Transportation infrastructure is not uniformly provided, but

rather oriented toward moving workers to the main employment center (CBD). Equation

(3.1) shows the relationship between transportation capacity and the distance from the

CBD.

cot
v(t) = co cot (3.1)

e

where:

t : distance from the CBD
v(t) : fraction of land devoted to transportation infrastructure at distance t from the CBD
co : fraction of land devoted to transportation infrastructure at the CBD
e : the end of transportation infrastructure provision

The amount of land devoted to transportation infrastructure is maximum at the CBD, and

decreases linearly as one moves away from the CBD. Note that the amount of residential

land increases as the transportation capacity decreases.
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Figure 3-1 The shape of the monocentric city and the transportation capacity function.

3.1.2 Assumptions about households

The city's inhabitants reside in N identical households. Every household has one

worker who commutes to work in the CBD. Household income is composed of two

components: wage and rental income. Wage income is the annual salary that the worker

earns. Rental income is the rent dividend that was collected and redistributed by the city.

Four components of household expenditure include housing expenditure, commuting

cost, and expenditure for aggregate consumption of other goods and services. Each

household faces the utility function and budget constraint as shown in the following

expression:

U= Xq

Subject to: (3.2)

y+ry= R-q+T+X



where:

y : annual salary
ry : rental income
R : land rent
q : land consumption
T : commuting cost
X : aggregate expenditure on consumption of other goods and services

Household utility function has a simple Cobb-Douglas form. When the exponent

of land consumption a is small, it could be interpreted as a fraction of income devoted to

housing expenditure. Each household attempts to maximize utility by choosing its

housing location and amount of land consumption. This is important since at different

locations, transportation cost and land rent vary. Thus, each household must adjust land

consumption and aggregate expenditure of other goods and services according to its

location.

The household utility maximization problem can be solved by Lagrangian method

as follows:

Max :U = Xq"

s.t.:y+ry = Rq+T+X :

L = Xq" - X(y + ry - Rq - T - X)

= qa +X = 0, - = q" (i)
aX

- aXq'-' - XR = 0, - XR = aXq -l (ii)
aq

Dividing (ii) by (i) yields:
aX

R = (iii)
q

From budget constraint,
X = y+ry-Rq-T
Substituting X into (iii) yields:

R = a(y + ry - Rq - T)
q

R + aR = a(y + ry -T)
q



Thus,

R- a y+ry-T (33)
1+a q

1
,and X = (y + ry - T) (3.4)

l+a

Equation (3.3) and (3.4) are the conditions for the utility maximization for

individual household. Let t be the location of the city, which is defined by the distance

from the CBD. Since the values of rent, transportation cost, and land consumption vary

over location t, the utility maximization problem can be written as:

Max : U(t) = X(t) -(q(t))"

= (y + ry - R(t) -q(t) - T(t)) -(q(t))"

If there is no congestion, then transportation cost and land consumption will be

independent. In other words, the transportation cost function T(t) is exogenous, while

land consumption q(t) is endogenous to the problem. (This will be explained more in

section 3.1.3.) In the spatial equilibrium of household, the household utility must be

maximized over location. This problem can be solved as follows:

dU (-dqq dR dT q + a a-dq- -R q - +aq (y+ry-Rq-T)
dt dt dt dt dt

1
from equation (3.4), y + ry - Rq - T = X = (y + ry - T),

l+a

dU dq dR dT 1 _ddU -Rdq dR dT q+a -- (y+ry-T)q-dq
dt dt dt dt 1+ dt

Rdq dR dT q q-dq

dt dt dt ). dt

_Rdq dR dT a +R dqdt dt dt dt

( dR dT q

dt dt



dU
First order condition :-- = 0,

dt
therefore,

dR dT 0-q A qJ =q 0
dt dt

dR 1 dTdR .dT (3.5)
dt q dt

The spatial equilibrium of household requires that household utility be uniform over

location. This condition is guaranteed by the differential equation (3.5). The right-hand-

side of the equation can be interpreted as transportation cost saving per unit of land.

Therefore, equation (3.5) implies that without congestion, the change in land rent with

respect to location is compensated by the change in transportation cost saving with

respect to location.

3.1.3 Transportation cost and congestion function

According the relationship in equation (3.3) and (3.4), transportation cost is an

important determinant of rent and land consumption behavior. The transportation cost is

composed of two components, operational cost, which is dependent on the distance

traveled and congestion cost, which is proportional to traffic density. In the model of

congested city, the congestion cost is large, and the operational costs are assumed to be

small. Following Solow [1973], the marginal cost of congestion can be expressed

mathematically as follows:

t, (1- v(z))

T'(t) = k q(z) (3.6)
k2 tw v(t)

where:

q(t), q(z): land consumption at point t, z
v(t): fraction of land devoted to transportation infrastructure at point t
kl, k2 , and g: parameters of the marginal cost function



The marginal cost of congestion is proportional to traffic density, which is defined

by the ratio of traffic volume passing a given point and the transportation capacity at that

point. The traffic volume is assumed to be proportional to the number of households

located beyond point t, which is equal to the nominator of equation (3.4). This introduces

the mutual dependence between transportation cost and land consumption, and really

complicates the matter of solving the equilibrium condition because both transportation

cost and land consumption are now endogenous to the problem. The definition of

transportation capacity function v(t) was given in section 3.1. The parameter kl and k2 of

the function are chosen to imitate the marginal congestion cost in the real world. The

exponent g of the function is more important, as it represents the level of congestability of

transportation infrastructure. For the same traffic density, the higher value of g, the larger

marginal cost of congestion. This results from the fact that different kinds of

transportation infrastructure exhibit different level of congestability. The more intense the

congestability of the transportation infrastructure, the larger marginal cost of congestion.

For example, it may be shown that marginal cost of using highway is much larger than

marginal cost of using public transit, provided that the same volume of traffic is served by

the same amount of transportation capacity. In other words, the marginal cost of

congestion of an automobile entering a congested highway is far greater than that of an

additional passenger using a subway.

The complexity of the transportation cost function results from its integral term.

To facilitate the analysis, a new variable n(t) is created with the following definition:

t t , (1- v(z))

b q(Z)

Hence, equation (3.6) can be written as:

T'(t) = k n(t) (3.7)
k2 w (1 (l- v(t)) (3.7)

By construction of n(t),

n(t) t (1- v(t) (3.8)
q(t)



Substituting this into equation (3.3) and (3.5) yields the following differential

equations respectively:

T'(t)
R'(t) = (t, (1- v(t)) (3.9)

a y + ry - T(t)
n'(t) = a -(t) t, (1 - v(t))  (3.10)

l+a R(t)

Because of the symmetry of the monocentric model, transportation capacity function v(t)

and the boundary b are identical in the left and the right segments. Hence, the system of

differential equations (3.7), (3.9), and (3.10) is valid for both segments of the city.

3.1.4 Labor market

It is assumed that the whole labor force of the city is fully employed by the city's

commercial sector. In the case of monocentric city, all workers commute to the CBD.

Let N1 be the number of households located in the left segment, and N2 be the number of

households located in the right segment. (See figure 3.1) Then, the following conditions

must be true:

n(0) - n(b)= N, = N 2

N = N, + N 2

Due to the symmetry of the city, the transportation capacity function v(t) and the

boundary b of each segment are identical. Thus, half of the city's households are located

in the left segment of the city, and the second half in the right segment.

3.1.5 Boundary conditions of a monocentric city

In equilibrium, the following boundary conditions must hold for a monocentric

city:

T(0) = 0

R(b) = RA

n(0) = N = N 2 =
2

n(b) = 0



The interpretation of boundary conditions is straightforward. The first condition

implies that the transportation cost of traveling within (at) the CBD is assumed to be zero.

The second condition requires that the household located at the border of the city pay land

rent equal to the agricultural land rent RA. This condition is essential since it guarantees

the equilibrium condition of the city. If the household located at the border paid more

than agricultural land rent, there would be incentive to develop land just beyond the

border, and the border would be extended. The third and fourth conditions follow the

definition of household distribution variable n(t). The number of household located

outside the CBD equals the total number of household, and the number of household

located outside the border equals zero.

3.1.6 Formulation of problem for the equilibrium monocentric model

The equilibrium condition for a monocentric model can be solved from the system

of differential equations and the boundary conditions developed in previous section. The

full problem summarized here:

The system of differential equations:

T'(t) = k /  n(t) (3.7)
k2tw (1- v(t))

T'(t)
R'(t)= '. t, (1- v(t)) (3.9)

n (t)

a y + ry - T(t)
n'(t) t, (1- v(t)) (3.10)

l+ a R(t)

The boundary conditions:

T(O) = 0

R(b) = RA
N

n(O)= NI = N 2 =
2

n(b) = 0



The system of equations, (3.7), (3.9), and (3.10) contains three unknown

variables, R, n, and T. Theoretically, solving this system of differential equations with

the boundary conditions above would yield rent, density, and transportation cost gradients

(R(t), q(t), and T(t)) of the equilibrium city. However, the simultaneity problem is

complex, and therefore the system of differential equations could not be solved

analytically. The numerical solution, which is a practical way to solve the problem, along

with its algorithm, will be presented in the next Chapter.

3.2 The General Model of Employment Decentralization

3.2.1 Characteristics of a decentralized city

In general, the characteristics of a decentralized city are not different from the

monocentric one. However, for convenience of the analysis, the city is divided into four

segments, as shown in Figure 3-2. Segment 1 and 3 are parts of the old monocentric city,

while segment 2 and 4 compose the new subcenter. The distance T is an inner border that

divides segment 3 and 4, and thus the CBD and the subcenter. The assumption about

commuting patterns has also changed from the case of monocentric model. Workers in

households located in the odd-numbered segments commute to work in the CBD, while

those in the even-numbered segments commute to the subcenter. The location of the

subcenter is given by the distance S from the CBD.

Figure 3-2 The segmentation and location of employment centers of a decentralized city.



3.2.2 Assumptions about households

The assumptions about households in the case of decentralized city are identical to

those of the monocentric one, except for the commuting pattern in each segments of the

city as mentioned in the previous section. Thus, household utility function and budget

constraint remain unchanged, and so does the utility maximization condition. However,

due to the change in commuting pattern, the rent and density gradients will be different

for each segment. Thus, there are eight separate equations of utility maximization

conditions, two equations for each segment of the city:

Ri(ti)= (t) t(-vi(t))
n,(ti)

a y + ry - T (ti)
ni (ti) =- + t (1- vi (t))l+a Ri(ti)
where i : segment of the city

The variable ti stands for the distance from each employment center. For example, tl is

the distance from the CBD measured to the left, while t2 is the distance from the

subcenter measured to the right. Note that the subscript of t corresponds with the city

segment of interest.

3.2.3 Transportation cost and congestion function

Because of the segmentation of the city, there are four transportation capacity

functions v(t), one for each segment of the city:

Cot co(S+t2)VI(t) =c o - o,0 t, b v 2 (t 2 ) = 0  ,0! t 2 <b,e e

v 3 (t 3 )= co cot,05 t 3 _T v 4 (t 4 ) = co (S ,t4) 0t 4  S-T
e e

The definition of ti is given in the previous section. Since the borders of segment

3 and 4 are S and S-T. (See section 3.2.1.), the values of t3 and t4 are bounded by the

following ranges: [0, T] and [0, S-T].

According to the four transportation capacity functions, there will be four different

marginal transportation cost functions for the four segments of the city:



Ti'(ti) =k, ni(ti ) 9i

k 2 w(1- vi (t))

where i : segment of the city

3.2.4 Labor market

With the commuting pattern described in section 3.2.1, and assuming that there is

no cross commuting, the labor market for each segment of the city is mutually exclusive,

and the following conditions must hold (See Figure 3-2.):

ni(0)-ni(bi)= N i

4

i=1

where i : segment of the city

Since it is assumed that the city is closed, the number of household before and

after the decentralization are equal.

3.2.5 Boundary conditions of a decentralized city

In equilibrium, the following boundary conditions must hold for a decentralized

city:

Segment 1: T1(0) = 0, RI(bl) = RA, ni(0) = N1, nl(bl) = 0

Segment 2: T2(0) = 0, R2(b2) = RA, n2(0) = N2, n2(b2) = 0

Segment 3: T3(0) = 0, n3(0) = N3, n3 (T) = 0

Segment 4: T4(0) = 0, n4(0) = N 4, n4(S-T) = 0

R1(0) = R2 (0)

R3(T) = R4(S-T)



Interpretations of these conditions are straightforward and similar to the one given

in section 3.1.5. The last two boundary conditions, however, did not appear in the

monocentric case. The first condition implies that in the long run equilibrium, rent at

each employment center must be equal; otherwise, firms in the center with higher rent

would have incentive to relocate to the other center. The second condition implies that

the rents at the common boundary of segment 3 and segment 4 must be equal in order to

insure the equilibrium land market.

3.2.6 Formulation of problem for the equilibrium decentralized model

The full problem of equilibrium decentralized model is summarized here:

The system of differential equations:

Ti'(t i) =kI ni(ti) i

k 2 w (1- vi(t))

Ti(ti)
Ri(ti)= t, (1- vi (ti))

ni(ti)

_a y + ry - T (t.)

l+a Ri(ti)

The boundary conditions:

ni(0)- ni(bi) = N i

4

N=YN
i

i=1

Segment 1: TI(0) = 0, RI(bl) = RA, n 1(0) = N 1, nl(bi) = 0

Segment 2: T2(0) = 0, R2(b2) = RA, n2(0) = N2, n 2(b2) = 0

Segment 3: T3(0) = 0, n3(0) = N3, n3(T) = 0

Segment 4: T4(0) = 0, n4(0) = N4, n4(S-T) = 0

R1(0) = R2(0)

R3(T) = R4(S-T)

where i : segment of the city, i = 1,2,3, and 4

The employment decentralization model contains a system of 12 equations and 12

unknown variables, Ri, ni, and Ti. Again, theoretically, solving this system of differential



equations with the boundary conditions would yield rent, density , and transportation cost

gradients for each segment of the city. However, the problem of simultaneity is so

serious that solving it analytically is virtually impossible. The numerical solution is

therefore the last resort for the decentralized case. The algorithm of the numerical

solution will be presented in the next Chapter.

3.2.7 Firm decentralization process by private decision

In section 3.1, the city is assumed to be monocentric, and the firms are assumed to

be immobile. In the firm decentralization model, however, the assumption that firms are

immobile is relaxed. If there is no barrier to relocation, firms in the CBD will attempt to

reduce their production costs by relocating to a new subcenter. In a rational forward-

looking model, firms would select a site (distance from the CBD) to set up a subcenter

such that when that center was at its completed size, the firm costs would be minimized.

In a myopic model, however, firms would locate the center at the edge of the city since

that is where the rent would be minimum for the first firm relocating. Figure 3-4 shows

the firm decentralization in a transitional period when rents at the CBD and the subcenter

are unequal.

The firms' relocation to the new subcenter continues as long as the firms' costs

there are less than at the CBD. Therefore, if wage is assumed to be uniform, firms will

move as long as rents at the two centers are different. A long-run equilibrium occurs

when rent at the CBD equals the rent at the subcenter (See Figure 3.5) since no firm can

lower its costs by moving to the other location. This means the market solution is

characterized by the condition of rent equality between the two employment centers.
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Figure 3-3 Rent gradient of a city with firm decentralization in a transitional period.
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Figure 3-4 Rent gradient of a city with firm decentralization in equilibrium condition.



It is important to note that the provisions of transportation infrastructure serving

the two centers are quite different; i.e., the CBD is served by greater transportation

capacity than the subcenter. According to equation (3.1), the farther the distance from the

CBD, the smaller the amount of land is devoted to transportation infrastructure. The

asymmetry of transportation infrastructure will create very different .patterns of

transportation congestion and land consumption behaviors between the two centers as

well as among the city's segments. To illustrate, consider segment 3 and 4 of the

decentralized city in Figure 3-2. In segment 3, a large amount of the land is devoted to

transportation infrastructure and a relatively small amount of land is left for residential

area. Therefore, congestion in segment 3 will be modest relative to segment 1 and 2, and

the rent gradient will be relatively flat. In segment 4, transportation capacity provision is

rather absurd; i.e., more capacity is provided near the border than near the center. In this

case, congestion will be more severe, and rent gradient will be steeper than segment 3,

but less than segment 1 and 2 because of the smaller amount of available residential land.

3.2.8 Social optimality of firm decentralization

The social optimality of firm decentralization is characterized by the level of

decentralization that leads to maximum aggregate utility of all households. In the case of

a monocentric city and a decentralized city in market equilibrium, the household utility

does not vary with location; hence, the aggregate utility is simply the product of the

common household utility and the number of household in the city:
U e  = N -U

aggregate =

where:

Uggregate : aggregate utility of a city in market equilibrium

Uo: level of household utility that prevails in the city
N: number of household

However, in the transition period of a decentralized city, the utility of household

in one center can be different from the other because of the difference in rent at the

centers. Thus, the aggregate utility in this case is the sum of the product of the individual

household utility and the number of household in each center:

Ug = N. U1aggregate 1 i



where:
Uggregate: aggregate utility of a decentralized city in transition period

Ui: level of household utility that prevails in center i
Ni: number of household in center i

To analyze the social optimality, first consider the monocentric city and the

decentralized city in market equilibrium. The decentralization will reduce congestion

near and around the CBD because the number of household in segment I will decrease.

Thus, transportation cost and rent at the CBD of the decentralized city will be smaller

than those of the monocentric city. Reduction in transportation cost and rent will lead to

higher level of utility and aggregate utility of the decentralized city, and the decentralized

city will therefore be more efficient than the monocentric city.

Now, consider the decentralized city in the period of transition. As firms

decentralize, transportation cost and rent of the CBD will decline, while those of the

subcenter will grow. Assuming fixed income, the worker who works for the first firm

that decentralizes will enjoy the highest level of utility since he pays zero transportation

cost and low rent. The level of utility of the worker of the decentralized firm represents

the level of utility prevailing in the subcenter. However, this level of utility will decline

as firms decentralize more to the subcenter since rent and transportation cost will grow.

The aggregate utility of the city can be calculated as shown above.

There is no obvious solution, at which level of decentralization the aggregate

utility will be maximized. In other words, there is no guarantee that the market decision

will lead to maximization of aggregate utility. It is possible that the aggregate utility is

maximized during the transition period of firm decentralization. If it is so, the market

solution of firm decentralization will not be a social optimal solution, and the social

optimality can be achieved when firm costs (rent) and household utility are allowed to be

different between the two centers. This, however, would necessitate locational taxes or

subsidies for firms in one or both of the centers.



3.3 Summary

This chapter presents a basic approach to modeling a decentralized city when

transportation congestion is considered explicitly. First, the basic model of a monocentric

city was presented along with modeling assumptions about city characteristics,

household, household utility, transportation and congestion cost, commuting-pattern and

labor market. The equilibrium conditions of the monocentric city were then discussed,

and the formulation of the problem for solving these conditions was shown. Second, the

monocentric assumption of the basic model was relaxed. Some modifications of the

modeling assumptions due to this change were then described. The equilibrium of

conditions of a decentralized city were shown, and the formulation of this problem was

presented. Lastly, the process of firm decentralization was illustrated and the social

optimality of firm decentralization was discussed in detail.



Chapter 4

Alternative Models of Firm Decentralization and

Simulations

Inefficiency of firm decentralization can be divided into two parts. The first part

is the inefficiency associated with land market failure due to uninternalized transportation

congestion costs. The second part is the inefficiency resulting from the firms' decisions

about relocation, which are greatly influenced by the provision of transportation

infrastructure. Therefore, to study the efficiency of firm decentralization, four alternative

models were created based on assumptions about land market and provision of

transportation infrastructure.

Land market failure results from uninternalized externality created by

transportation congestion. Since land rent reflects transportation cost, unpriced

transportation congestion means lower transportation cost and flatter rent and density

gradients than when congestion is priced. Figure 4-1 illustrates the difference between

optimal (priced congestion) and market (unpriced congestion) density gradients

[Wheaton, 1996]. It should be noted that the effect of unpriced congestion is more

pronounced near CBD where congestion is more intense.

Two methods, imposing congestion toll and policy-controlling the density to

imitate the optimal density gradient can correct the land market failure. Theoretically,

however, there exists a special case when land market functions properly without

congestion pricing. If each household is assumed to consume the same amount of land q,

congestion pricing will not be necessary since the only way that households can change

behavior when congestion toll is imposed is to adjust land consumption. Thus, in this

special case, the inefficiency of firm decentralization stems only from the firms'

decisions about relocation.
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Figure 4-1 Market density gradient vs. optimal density gradient.

Provision of transportation infrastructure greatly affects land market and firms'

decisions about relocation. Rent at the CBD of a monocentric city, for example, is far

greater than at the edge of the city because transportation (commuting) cost at the CBD is

effectively zero, while commuting cost from the city edge to the CBD is very large. In

the case of decentralized city, the difference of provision of transportation infrastructure

is usually present between the CBD and the subcenter. Such difference will affect

commuting costs to each center and lead to the difference in center sizes.

The difference in provision of transportation infrastructure can be distinguished to

two types, namely, capacity difference and technology difference. It is usually the case

that capacities of highways and roads leading to the CBD are much larger than those

leading to a suburban city are. An example of transportation technology difference is the

difference in congestability of highway and mass transit. It can be argued that highway is

more susceptible to congestion than mass transit with the same amount of capacity. In

this aspect, the difference in provision of transportation infrastructure is that the CBD is

usually served by extensive and radial mass transit, while the suburban city's

transportation infrastructure is usually limited to few bus routes and highways.

Optimal density gradient

Market density gradient

boptimal bmarket t



According to the assumptions about land market and transportation technology,

four models were built to test the efficiency of firms' decision about decentralization.

These include a fixed land consumption model with uniform transportation technology, a

fixed land consumption model with non-uniform transportation technology, a variable

land consumption model with uniform transportation technology, and a variable land

consumption model with non-uniform transportation technology. The variation in

assumptions has led to different degree of difficulty in simulation of each model. While

the basic model requires only a simple algorithm to solve the equilibrium condition,

special treatments are required for the more complicated model. These will be discussed

in detail later on in this chapter.

In the next section, general characteristics of fixed land consumption models will

be discussed, and simulation algorithm will be presented. Then, general characteristics

and the simulation algorithm of variable land consumption models will be presented in

section 4.2. The generic exogenous variables and exogenous variables specific to each

model will described in section 4.3. Lastly, the simulation examples will be presented

and discussed in section 4.4.

4.1 Fixed land consumption models

These models focus on the inefficiency of firms' decisions about relocation and

ignore the effect of land market by assuming that the amount of land consumption is

constant for every household. To solve for an equilibrium city, recall the utility

maximization problem presented in section 3.1.2:

Max :U=X-qa

Subject to:

y + ry = X + R(t) -q + T(t)

In this special case, households cannot adjust their land consumption. The utility

maximization problem above is therefore reduced to only the problem of solving budget

constraint. However, equilibrium condition requires that utility be equalized for every

household. From the budget constraint, this is equivalent to requiring aggregate

consumption X to be identical across households. This can be expressed mathematically

in equation (4.1).



X = y + ry - R(t) .q - T(t) (4.1)

Since wage income (y) and rental income (ry) are identical for every location, equation

(4.1) states that the sum of land rent expenditure and commuting cost is uniform across

households.

4.1.1 Model I: Fixed land consumption model with uniform transportation

technology

This is the simplest model of all four firm decentralization models. The land

consumption is assumed to be fixed for all households. As mentioned earlier in section

3.1.1, the capacity of transportation infrastructure is oriented toward carrying commuters

to the CBD; i.e., the capacity is the largest at the CBD and is decreasing with the distance

from the CBD. Additionally in this case, the transportation infrastructure is provided

with identical technology across the city. For example, the city may be served by only

road network, which is dispersed across the city in the manner described above, and no

major transit service is provided in the CBD. This means the transportation

congestability level is uniform everywhere in the city.

The uniform transportation technology means that the exponent g of marginal

transportation cost functions are similar for every segment (See definition of segment in

section 3.2.1.) in of the city, both the CBD and the subcenter. Hence, the problem

formulated in section 3.2.6 is reduced to:

T (ti(ti))Ti'(ti) = i t k (2 .tW (l -vi(t))

ni(ti)
(t y + ry - Ti (ti)

ni(ti) = -t, (1- vi (t0)l+a Ri(ti)

with unchanged boundary conditions.

Note that the exponent g no longer has subscript i. Because land consumption is

fixed and exogenous, n (ti) and hence Ti'(t ) and R (ti) are all determined only by the

capacity function vi(ti). As a result, most of the gradients are linear, and hence the



boundary conditions determine the solution to the equilibrium condition of the

decentralized city.

With these simplifications, a rent gradient of each segment of the city can be

solved. Consider the households located at the CBD and at the edge of segment 1 of the

city, the utility equalization condition in mentioned earlier in this section requires that:

R, (0) + T, (0) = R, (b,) + T, (b,)

According the assumptions that the rent at the edge of the city equals the agricultural land

rent and that the transportation cost at the CBD is zero, the above equation is reduced to:

R 1(0) = RA + TI(bl) (4.2)

Now consider the households located at the CBD and at the distance t from the CBD,

again the utility equalization condition can be satisfied by:

RI(ti) + TI(tl) = RI(0) + TI(0)

From equation (4.2), Rl(ti) = RA+ TI(bi) - Ti(t1) (4.3)

The same analysis can be applied to segment 2 and the results are:

R 2(0) = RA + T 2(b 2)

R 2(t 2 ) = RA + T 2 (b 2 ) - T 2(t 2)

(4.4)

(4.5)

As for the internal segment 3, consider the households located at distance t from

the CBD and at the CBD,

R 3 (t 3 ) +T 3(t 3 ) = R 3 (0) +T 3 (0)

Since R 3 (0) = R, (0), from equation (4.2),



R 3 (t 3 )= RA +T(b)- T3 (t 3 )

Similarly, the rent gradient of segment 4 can be determined:

R4 (t 4 ) = RA +T 2 (b 2 )-T 4 (t 4) (4.7)

To guarantee the equilibrium of land market, the rents at the edge of internal

segments must be equal. Recall the boundary condition for equilibrium that was

discussed earlier in section 3.2.6:

R 3(T) = R4 (S - T) (4.8)

According to equation (4.8), the internal border T is obviously endogenous. The

external border bl and b2 are determined simultaneously, i.e., given the value of one

border, the other border can be calculated because of the assumption of fixed land

consumption. It should also be noted that due to the symmetry of the city and

transportation infrastructure, the length of the land that is occupied (bl+b2) is constant for

any combination of bl and b2.

4.1.2 Model II: Fixed land consumption model with non-uniform transportation

technology

It is typical that the transportation infrastructure serving the CBD differs from that

serving suburban employment center, especially in the capacity. However, the difference

is not only limited to the capacity, but also the degree that the transportation

infrastructure can be congested, which is termed here "the non-uniform transportation

technology". Model II was therefore built to analyze the effect of the non-uniformity.

The non-uniform transportation technology can be accounted for by the different

exponent g of the marginal transportation cost function. The higher the exponent the

more congestable the transportation infrastructure can become. In this model, the

transportation infrastructure in the CBD is assumed to be less congestable than that

(4.6)



serving the subcenter. Therefore, the city's segment 1 has smaller exponent than all other

segments, i.e.:

Ti'(ti) = k, ni(ti) 
i

k2t wvi(ti)

where: i:segment of the city

gi > 0, for all i

g1 < g2 = g3 
= g4

The derivations of rent gradients in section 4.2.1 (equation (4.2) to (4.8)) are still

valid in this model, although the transportation cost function Ti(ti) of each segment of the

city must be changed in accordance with the marginal cost function Ti'(ti), which varies

with the exponent gi.

4.1.3 Exogenous parameters for fixed land consumption models

Table 4.1 summarizes the exogenous parameters and their default values for fixed

land consumption models. The default values of exogenous parameters in reflect

approximate characteristics of large metropolitan areas in the U.S. The number of

household of 1,000,000 represents an approximate population of 3,000,000. The city

width of 2.0 miles was chosen to avoid complexity in commuting pattern. The city edge

of 40.0 miles is far enough to assume that transportation capacity there approaches zero.

Transportation capacity function is linear, with maximum capacity at the CBD and zero

capacity at the edge. The parameter Co is the fraction of land devoted to transportation

capacity at the CBD. The value of 0.35 is chosen for Co, as it is about the average value

in most U.S. cities [Wheaton, 1996].

The household utility function has a Cobb-Douglas form. The exponent o is the

fraction of income spent on housing (land rent). Each household is assumed to consumed

fixed amount of land, q. Land consumption is therefore another exogenous parameter,

and its value is set to 0.0001 square mile per household. The household income of

$40,000 is wage income from a single worker of each household. The total income is the

sum of wage income and rental income, which must be determined endogenously from

the simulation.



Table 4.1 Summary of exogenous parameters for fixed land consumption models

City Characteristics parameter name default value
Number of households N 1,000,000
City width (mi.) tw 2.0
City edge (mi.) e 40.0
Distance between centers (mi.) S - 20.0
Transportation capacity function, v(t) = co(e-t)/e Co 0.35
Parameters for transportation cost function

Common parameters k, 80
k2 40,000

Parameters specific to city segment
Model I, for all segment i gi 1.0
Model II, for segment 1 g 1.0

for all other segments g2, g3, g4  2.0
Household Characteristics

Exponent of household utility function, U=Xq acc 0.1
Land consumption (mi. 2) q 0.0001
Household income ($/year) y 40,000
Agricultural land rent ($/mi.2) RA 4,000,000

Note the difference in the parameters for transportation cost function for model I

and model II, which are set as shown. In model I, transportation technology is uniform.

Therefore, the transportation congestion functions share similar exponent for every

segment of the city, and the value of the exponent is set to 1.0. In model II, however, the

transportation technology in each segment of the city is non-uniform. The exponent

value of 1.0 is chosen for segment 1, while the value of 2.0 for segments 2, 3, and 4. The

exponent value reflects the congestability of transportation infrastructure. The exponent

value of 2.0 reflects the congestability level of urban highway, while the value of 1.0

reflects the congestability level of mixed transportation infrastructure, in which both

highway and public transit are provided.

4.1.4 Simulation algorithm for fixed land consumption models

Simulation algorithms for model I and II are similar. The only difference is the

value of exogenous variables that represent uniformity in transportation technology as

mentioned in the previous section. The algorithm of the simulation for model I and II is

described as follows:



1. Assign the values of exogenous variables, which are listed in table 4.1.

2. Initialize the value of border of segment 1, b, = e.

3. From the given values of N, q, v1(t,), and v2(t2), compute the following: number of

household in segment 1, N,, border of segment 2, b2, number of household in segment

2, N2

4. Compute transportation cost and rent gradient of segment 1, using the following

routine:

4.1 Initialize distance from the center (CBD), t, = 0. From boundary conditions in

section 3.2.5, n, (t) = N,, TI (t) = 0. (See definition of these variables in section

3.2.)

4.2 Initialize the total transportation cost of segment 1, TT, = 0.

4.3 With a small increment At,, compute the following:

T,(t, + At1) = T,(t ) + T'(tl) -At,

n,(tl +At) = n (tj)+ n"(tl)- At,

TT,(t, + At) = TT(t)+
q

where T'(t ) and n'(tI) can be computed from equation (3.7) and (3.8). Continue

until tl = b1. Note that q and vl(tl) are exogenous, and v,(tl) can be determined

from the equation given in section 3.2.3.

4.4 Use equation (4.3) to determine the rent gradient of segment 1.

4.5 Store the values of rent and density gradients, and the total transportation cost

TT.

5. Compute transportation cost and rent gradient of segment 2, using the same algorithm

as in step 4.

6. Find the equilibrium inner border T and the total transportation cost and rent gradient

of segment 3 and 4, using the following routine.

6.1 Initialize T = S/2.

6.2 Given the value of T in step 6.1, determine the number of household in segment 3

and 4, N3 and N4, from q, v3(t3), and v4(t4 ).

6.3 Use the same algorithm as in step 4.1 through 4.3 to compute the transportation

cost gradient of segment 3 and 4.



6.4 Use equation (4.6) and (4.7) to determine the rent gradient of segment 3 and 4,

respectively.

6.5 Check the equilibrium condition, R3(T) = R4(S-T). If successful, store the values

of rent and density gradients, and the total transportation costs TT3, and TT4, and

go to step 7; otherwise:

6.5.1 If R3(T) < R4(S-T), decrease T by a small increment AT.

6.5.2 If R3(T) > R4(S-T), increase T by a small increment AT.

6.5.3 Go to step 6.2. Reiterate until the equilibrium condition is met.

7. Check the market equilibrium condition, RI(0) = R2(0). If successful, stop. The

center size given by borders, b1 , b2, and T is the market equilibrium solution.

Otherwise, decrease bl by as small increment, and go to step 3. Reiterate until the

market equilibrium condition is satisfied.

The algorithm given above is for the determination of market equilibrium

solution. To determine the optimal solution, few adjustments are needed. The test in step

7 must be replaced by the condition of whether the aggregate transportation cost

4

(I TTi) is minimized. If it is, then the center size given by borders, b1, b2, and T is the
i=1

optimal solution. Otherwise, increment bl and reiterate until the minimum total

transportation cost is found.

4.1.5 Simulation examples of fixed land consumption models and discussion

As a basis of comparison, the monocentric model with fixed land consumption is

first simulated. The results from simulation are summarized in Table 4.2, and the rent

gradient of the monocentric city is displayed in figure 4-2. As mentioned in section

4.1.1, the rent gradient is relatively linear since land consumption is fixed.

Simulation of Model I yields the results that are summarized in Table 4.3. As can

be seen rents at the CBD and the subcenter are equalized, and aggregate utility

maximized. Further, total transportation cost drops significantly from $21.93 billion for

the monocentric city to $10.15 billion for the decentralized one. Also, the aggregate

utility increases substantially.



From the results of many simulations with various sets of exogenous parameters,

it was concluded that the level of decentralization that represents market equilibrium and

the optimal level firm decentralization are identical under the assumptions of Model I.

This is a very important finding as it indicates that the private decision about firm

decentralization is socially efficient, given an important modeling assumption of Model I,

that is, the uniformity of transportation technology across the city.

Figure 4.3 shows the rent gradient as a result of simulation I. As can be seen, the

rent gradients of segment 1 and 2 are much steeper than segment 3 and 4. This results

from the fact that the ratios of traffic volume to capacity and hence transportation cost of

segment 1 and 2 are much greater than those of segment 3 and 4. Note, however, that

the rent gradient of segment 4 is steeper than that of segment 3 near the center because

the transportation capacity near the subcenter is much smaller than that near the CBD,

and therefore, the transportation cost of the subcenter is greater than that of the CBD. For

the same reason, this result will be typical for every model simulation.

Simulation II-a and II-b are the simulation of Model II. As summarized in Table

4.3 and 4.4, the results of Simulation II-a represent the market equilibrium of firm

decentralization, while those of Simulation II-b represent the optimal firm

decentralization. Unlike the results of Simulation I, these simulation results cannot be

compared with the monocentric simulation since the transportation infrastructure is

provided differently. However, from the results of simulation I, it is quite clear that the

decentralized city is much more efficient than the monocentric one because it exploits the

capacity in segment 3 and 4 to reduce the transportation congestion that would have

occurred in segment 1 and 2.

The different level of firm decentralization in market equilibrium and the socially

optimal level indicate the inefficiency of firm decentralization by private decision. From

the results of Simulation II-a and II-b, the optimal CBD size is 745,800, while the

equilibrium size is 712,320. It is concluded, from many other simulation runs, that there

exists the difference between market equilibrium and socially optimal level of

decentralization in Model II. On the contrary to Model I, this means that firm

decentralization by private decision is not socially efficient given the assumption that

transportation technology serving each center is non-uniform.



Figure 4.4 and 4.5 illustrate the rent gradient from Simulation II-a and II-b. As

can be seen, the rent gradients of segment 2, 3, and 4 are much more convex than that of

segment 1. This can be explained by the difference in transportation technology, that is,

transportation infrastructures serving segment 2, 3, and 4, which are much more

congestatble than that of segment 1. As a result, the transportation cost and rent in these

segments rise more sharply as one moves toward the employment center than those of

segment 1 does.



Table 4.2 Summary of results of monocentric simulation-a: fixed density model

Distance Rent Density
t R(t)/1,000 1/q(t)

0 364,450 10,000
5 307,714 10,000

10 253,445 10,000
15 199,439 10,000
20 143,873 10,000
25 85,212 10,000
30 23,618 10,000

31.7 4,000 10,000

Results:
Border = 31.7 miles
Rental income = $12,25 1/household
Aggregate utility = 6,292 million
Total transportation cost = $ 21.93 billion

Figure 4-2 Rent gradient: Monocentric simulation with fixed
land consumption
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Table 4.3 Summary of results from simulation I

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 408240 26.6 10775.4 5.69E+09 2.26E+08 4.00E+06

3 159570 11.4 10775.4 3.06E+08 2.26E+08 1.97E+08
Subcenter 2 296760 16.5 10804.8 3.88E+09 2.25E+08 4.00E+06

4 135430 8.6 10804.8 2.67E+08 2.25E+08- 1.97E+08

Other results:
CBD size = 567,810
Subcenter size = 432,190
Rental income = $12,435/household
Aggregate utility = 10,788 million
Total transportation cost = $10.15 billion

Figure 4-3 Rent gradient of Simulation I: Equilibrium and
Optimal Firm Decentralization
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Table 4.4 Summary of results from simulation II-a

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 543720 34.0 6065 1.45E+10 4.50E+08 4.OE+06

3 168600 12.0 6065 1.73E+09 4.50E+08 3.1E+08
Subcenter 2 161280 9.3 6065 5.12E+09 4.50E+0& 4.OE+06

4 126400 8.0 6065 1.38E+09 4.50E+08 3.1E+08

Other results:
CBD size = 712,320
Subcenter size = 287,680
Rental income = $ 22,355/household
Aggregate utility = 6,065 million
Total transportation cost = $ 22.73 billion

Figure 4-4 Rent Gradient of Simulation II-a: Firm
Decentralization in Market Equlibrium
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Table 4.5 Summary of results of simulation II-b

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 555890 35.0 4960 1.56E+10 4.78E+08 4.OE+06

3 189910 13.4 4960 2.84E+09 4.78E+08 2.7E+08
Subcenter 2 149110 8.7 10159 3.65E+09 3.47E+08 4.OE+06

4 105090 6.6 10159 6.74E+08 3.47E+08 2.7E+08

Other results:
CBD size = 745,800
Subcenter size = 254,200
Rental income = $ 21,717/household
Aggregate utility = 6,275 million
Total transportation cost = $ 22.78 billion

Figure 4-5 Rent gradient of Simulation II-b: Optimal Firm
Decentralization
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4.2 Variable land consumption models

4.2.1 Model III: Variable land consumption model with uniform transportation

technology

This model is a more general version of model I, with the assumption of fixed

land consumption relaxed. As in model I, transportation technology for model II1 is

homogeneous and the exponent of marginal transportation cost function is the same for

each segment of the city. The major difference is that households can now adjust their

land consumption, consumption of other goods, and location to maximize their utility.

Hence, the derivations of rent gradient in section 4.2 are no longer valid. The system of

equations presented in section 3.2.6 with the given boundary conditions must be solved

simultaneously for each segment of the city. However, because of simultaneity

problems, the problem cannot be solved analytically. It must therefore be solved

numerically with the aid of computer program. Simulation algorithm and examples of

this model are provided in the section 4.2.3.

4.2.2 Model IV: Variable land consumption model with non-uniform

transportation technology

This model is an extension of model III. In addition to variable land

consumption, the technology of transportation infrastructure serving the CBD and the

subcenter is also assumed to be different, as in the case of model II. Hence, the exponent

of each marginal transportation cost function needs to be adjusted according to the

modeling assumption of the difference in transportation technology. According to this

additional assumption, the inefficiency of firm decentralization arising from this model

will be the result of not only land market failure and private decision about firm

relocation but also the asymmetric provision of transportation infrastructure in the two

employment centers. However, the problem formulation and the algorithm for simulation

of this model will not be different from model HI.



4.2.3 Exogenous parameters for variable land consumption models

Table 4.6 summarizes the exogenous parameters and their default values for fixed

land consumption models. All default values of exogenous parameters for the variable

land consumption models are identical to those for the fixed land consumption models,

with one exception, that is, the amount of land consumption per household, q, which is no

longer an exogenous variable, but must be determined endogenously from model

simulation. See the discussion about the values of these parameters in section 4.1.3.

Table 4.6 Summary of exogenous parameters for variable land consumption models

City Characteristics parameter name default value
Number of households N 1,000,000
City width (mi.) tw 2.0
City edge (mi.) e 40.0
Distance between centers (mi.) S 20.0
Transportation capacity function, v(t) = co(e-t)/e Co 0.35
Parameters for transportation cost function

Common parameters kl 80
k2 40,000

Parameters specific to city segment
Model I, for all segment i gi 1.0
Model II, for segment 1 g 1.0

for all other segments g2, g3, g4  2.0
Household Characteristics

Exponent of household utility function, U=Xqa a 0.1
Household income ($/year) y 40,000
Agricultural land rent ($/mi.2) RA 4,000,000

4.2.4 Simulation algorithm for variable land consumption models

As in the case of fixed land consumption models, simulation algorithms for model

III and IV are not different. Only the values of exogenous variables that represent

uniformity in transportation technology need to be adjusted. The algorithm of the

simulation for model I and II is described as follows:

1. Set the values of exogenous variables, which are listed in below:

2. Initialization of trial values.

2.1 Initialize the values of number of household in each city segment, N, N 2, N3, and

4

N4 according to the condition, N i = N.
i=1



2.2 Initialize the values of household utility in each city segment, U 1, U 2, U 3 , and U4.

2.3 Initialize the value of rental income, RY.

3. Compute transportation cost and rent gradient of segment 1, using the following

algorithm:

3.1 Initialize distance from the center (CBD), t, = 0. From boundary conditions in

section 3.2.5, n, (ti) = N1, T, (t,) = 0.

1
3.2 Compute the initial value of q, (t) = (1+ a)(y + RY - T (t,))

3.3 Initialize the total transportation cost and total rent of segment 1, TTI = 0 and TR,

= 0.

3.4 With a small increment At1, compute the following:

n,(t + = n, (t)+ n(t,) At,
T,(t 1 + At1 ) = T, (tI)+ T'(t). At1

At 1 "(1-v, (t,))- t,q, (t, + At,) )
n,(t, + At,)- n, (t,)

a (y + RY - T, (t))
R,(t 1 + AtA) = 1+ a q, (t, + At,)

T, (t,)- (1- v, (t,))" tTT,(t, + At,) = TT (t) +
q, (t, + At ,)

TR,(t, +At,)= TR,(t,)+R,(t ). (1-v,(tl))- t, -At,

where T'(t) and n'(t )can be computed from equation (3.7) and (3.8). Note that

v,(t1) is exogenous, and can be determined from the equation given in section

3.2.3. Continue until R,(t) = RA.

3.5 If n,(t,) = 0, stop. Store the values of border b, = t,, rent and density gradients,

TT,, and TR,, and go to step 4. Otherwise,

3.5.1 If n,(t,) > 0, increase U, by a small increment.

3.5.2 If n1(ti) < 0, decrease U, by a small increment.

3.5.3 Go to step 3.1. Reiterate until the condition in step 3.5 is satisfied.

4. Compute transportation cost and rent gradient of segment 2, using the same algorithm

as in step3.



5. Find the equilibrium inner border T and the total transportation cost and rent gradient

of segment 3 and 4, using the following routine.

5.1 Initialize T = S/2.

5.2 Compute the rent gradient of segment 3.

5.2.1 Initialize distance from the center (CBD), t3 = 0. From boundary

conditions in section 3.2.5, n3 (t3) = N3, T3 (t3) = 0.

1
5.2.2 Compute the initial value of q 3 (t 3 ) = (+ a)(y + RY -T(t 3 ))

5.2.3 Initialize the total transportation cost and total rent of segment 1, TT3 = 0

and TR3 = 0.

5.2.4 With a small increment At3, compute the following:

n 3(t 3 + At 3 ) = n3 (t 3 )+ n3 (t)At 3

T3 (t3 +At3) =T 3 (t 3) + T3 (t3 ) t 3

q3(t3 +At3) At3 *(1- v 3 (t 3 )) t wn3(t 3 +At 3)- n3(t)t 3

a (y + RY - T3 (t 3))R3(t 3 +At 3) =
1+a q 3 (3 + At 3 )

T3(t3)" (1- V3(t3))" twTT3 (t3 + At 3 =TT3 3(t 3 +
q3 (t3 + At3)

TRI (t3 + At3 ) = TR3 3(t)+R3 (3) (1 - V 3 ( 3 tw "Atl

where T3(t 3 ) and n3(t 3) can be computed from equation (3.7) and (3.8).

Note that vl(t,) is exogenous, and can be determined from the equation

given in section 3.2.3. Continue until t3 = T.

5.2.5 If n3(T) = 0, stop, store the values of rent at inner border R3(T), rent and

density gradients, TT3, and TR3, and go to step 5.3. Otherwise,

5.2.5.1 If n3(t3) > 0, increase U3 by a small increment.

5.2.5.2 If n3(t3) < 0, decrease U3 by a small increment.

5.2.5.3 Go to step 3.1. Reiterate until the condition in step 5.2.5 is

satisfied.

5.3 Compute the rent gradient of segment 4, using the same algorithm as in step 5.2.



5.4 Using the stored values of the rents at inner borders, check the equilibrium

condition, R3(T) = R4 (S-T). If successful, store the values of rent and density

gradients, and the total transportation costs TT3, and TT4 , and go to step 6;

otherwise:

5.4.1 If R3(T) < R4(S-T), decrease T by a small increment AT.

5.4.2 If R3(T) > R4(S-T), increase T by a small increment AT.

5.4.3 Go to step 5.3. Reiterate until the equilibrium condition is met.

4 TR
6. Check the aggregate rent with the trial value. If TR 1 = RY, go to step 7; other

i=1
s al TRi

wise, set the value of RY = T , and go to step 3. Reiterate until the condition is
i=1

met.

7. Check the market equilibrium condition, R1(0) = R2(0). If successful, stop. The

center size given by borders, b,, b2, and T is the market equilibrium solution.

Otherwise,

7.1 If R1(0) > R2(0), decrease the CBD size, N, + N3, and increase the subcenter size

N2+N 4.

7.2 If R1(0) < R2(0), increase the CBD size, N1 + N3, and decrease the subcenter size,

N 2+N 4.

7.3 Go to step 3. Reiterate until the market equilibrium condition is satisfied.

The algorithm provided above is for the determination of market equilibrium

solution. To determine the optimal solution, few adjustments are needed. The test in step

7 must be replaced by the condition of whether the aggregate transportation cost

4

(ITT i ) is minimized. If it is, then the center size given by borders, b1 , b2, and T is the
i=1

optimal solution. Otherwise, adjust the center size of the CBD and subcenter, and

reiterate until the minimum total transportation cost is found.



4.2.5 Simulation examples of variable land consumption models and discussion

The monocentric model with variable land consumption is first simulated for

comparison. The results from the simulation are summarized in Table 4.7, and the rent

gradient of the monocentric city is illustrated in figure 4.6. The rent gradient is convex

because transportation congestion intensifies as one moves closer to the CBD, and

therefore the rent rise slowly further from the CBD and sharply near the CBD. The

border of the city shrinks slightly from the case of fixed land consumption. This means

that the average amount of land occupied by each household is about the same for the two

models. In the case of variable land consumption model, however, the density of

household near the CBD (73,392 households/sq.mi.) is much higher than that near the

border (1,492 households/sq.mi.).

Simulation of Model II yields the results that are summarized in Table 4.3. As

can be seen, the level of firm decentralization from the simulation equalizes rents at the

CBD and the subcenter, maximizes aggregate utility, and reduces total transportation

over 30 percent, compared with the monocentric city. It was concluded, from many

simulation runs with numerous sets of exogenous parameters, that the level of

decentralization that represents market equilibrium and the optimal level firm

decentralization are identical under the assumptions of Model III. This result

substantiates the conclusion of Model I; that is, the private decision about firm

decentralization is socially efficient, given the uniformity of transportation technology

across the city.

The rent gradient as a result of Simulation m is illustrated in Figure 4.7. Unlike

that of Simulation I, the steepness of rent gradients of all segments of the city are

comparable. Due to the variation of land consumption, the number of households in the

segment where large transportation capacity is available can be adjusted, and hence the

ratios of traffic volume to capacity and transportation cost are somewhat similar for every

segment of the city.

Model IV is simulated in Simulation IV-a and IV-b. The results of Simulation

IV-a represent the market equilibrium of firm decentralization, while those of Simulation

IV-b represent the optimal firm decentralization. Because of the difference in technology



of transportation infrastructure, these simulation results cannot be compared with those of

the monocentric simulation.

The simulation results show that the optimal CBD size is 719,300, while the

equilibrium size is 695,700. As in the case of Model II, it is concluded, from many other

simulation runs, that the level of firm decentralization in market equilibrium and the

socially optimal level are different under the assumptions of Model IV. This result also

substantiates the conclusion that firm decentralization by private decision is not socially

efficient given the assumption that transportation technology serving each center is non-

uniform.

The rent gradients from Simulation IV-a and IV-b are displayed in Figure 4.8 and

4.9. As can be seen, the rent gradients from both simulations look like those of two

separate cities. Rents near the inner border between segment 3 and 4 are very low. The

rents in those segments rise very slowly near the inner border, but grow very rapidly near

the centers. This can be explained by the difference in transportation technology, that is,

transportation infrastructures serving segment 2, 3, and 4 are much more congestatble

than that serving segment 1.



Table 4.7 Summary of results of monocentric simulation-b: variable density model

Distance Rent Density
t R(t)/1000 l/q(t)

0 289,618 73,392
5 74,683 21,445

10 29,883 9,321
15 15,070 5,001
20 8,788 3,062
25 5,733 2,077
30 4,199 1,564

31.2 4,000 1,492

Results:
Border = 31.2 miles
Rental income = $3,838/household
Aggregate utility = 12,870 million
Total transportation cost = $ 5.28 billion

Figure 4-6 Rent gradient of monocentric simulation with
variable land consumption
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Table 4.8 Summary of results from simulation I

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 302400 33.0 14220 1.44E+09 1.13E+08 4.0E+06

3 251350 11.5 14220 5.92E+08 1.13E+08 4.1E+07
Subcenter 2 232350 18.9 14220 1.02E+09 1.13E+08 4.OE+06

4 213900 8.5 14220 5.01E+08 1.13E+08 4.1E+07

Other results:
CBD size = 553,750
Subcenter size = 446,250
Rental income = $3,618/household
Aggregate utility = 14,220 million
Total transportation cost = $3.55 billion

Figure 4-7 Rent gradient of Simulation IIl: Equilibrium and
Optimal Firm Decentralization
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Table 4.9 Summary of results from simulation IV-a

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 481900 33.1 12960 2.61E+09 2.70E+08 4.OE+06

3 213800 12.0 12960 1.22E+09 2.71E+08 1.9E+07
Subcenter 2 150200 13.1 12960 9.93E+08 2.72E+081 4.OE+06

4 154100 8.0 12960 9.23E+08 2.72E+08 2.OE+07

Other results:
CBD size = 695,700
Subcenter size = 304,300
Rental income = $3,428/household
Aggregate utility = 12,960 million
Total transportation cost = $5.74 billion

Figure 4-8 Rent gradient of Simulation IV-a: Firm
Decentralization in Market Equilibrium
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Table 4.10 Summary of results from simulation IV-b

Center Segment Population Border Utility Total cost R(0) R(b)
CBD 1 500000 32.7 12885 2.71E+09 2.90E+08 4.0E+06

3 219300 11.9 12885 1.27E+09 2.89E+08 1.9E+07
Subcenter 2 138500 15.1 13247 9.57E+08 2.20E+08 4.OE+06

4 152200 8.1 13247 8.09E+08 2.19E+08 1.9E+07

Other results:
. CBD size = 719,300

Subcenter size = 290,700
Rental income = $3,45 1/household
Aggregate utility = 12,988 million
Total transportation cost = $5.74 billion

Figure 4-9 Rent gradient of Simulation IV-b: Optimal Firm
Decentralization

3.50E+08
3.00E+08

E 2.50E+08
c 2.00E+08

1.50E+08
1.00E+08
5.00E+07
0.00E+00

0- 00 CO C 00 C0) D iD - (D (0

Distance (mi.)



Chapter 5

Conclusion

5.1 Summary of Important Findings and Their Implications on Public

Policy

The results from model simulations show that a decentralized city is more

efficient than a centralized one. This is so because the decentralization increases the

utilization of land that is available further out from the central area where available

amount of land is limited. However, the decentralization will result in dispersion of

congestion throughout a wider area than in the case of centralized city although this will

not significantly affect transportation cost as the decentralized city also utilizes

transportation infrastructure in the outer area. On the other hand, households consume

more land because of the greater availability of land in the outer area. With a slight

change in transportation cost, increase in household land consumption will lead to higher

level of aggregate utility of the city. Therefore, it could be concluded that a decentralized

city is more socially efficient than the monocentric one.

The efficiency of private decision about decentralization depends on how

transportation infrastructure is provided. The private decision, which is affected by

transportation congestion and land rent, is efficient when the technology of transportation

infrastructure that is provided across the city is uniform. This condition means that the

whole metropolitan area is served by only a single predominant mode of transportation,

which is most likely highway network and automobile.

If technology of the infrastructure serving the CBD and the suburban areas is non-

uniform, however, the private decision about decentralization would not be efficient,

given the presence of unpriced transportation congestion. An example of non-uniform

transportation technology is a city of which the CBD is served by both highway network

and extensive rapid transit system, and the subcenter is served by only private mode of

transportation, i.e. automobile. In this case, the simulation results show that too many



firms will decentralize to employment subcenters, and the equilibrium subcenter size will

be larger than the optimal one.

It was also found that when there is no land market failure due to unpriced

transportation congestion (Fixed land consumption models), the utility gained from

optimal decentralization is more significant than when there exists unpriced congestion

(Variable land consumption models). In other words, the inefficiency of private decision

about decision is more observable. This could probably be explained by the following

reasons. When there is no land market failure, the utility gained from optimal

decentralization, that is the reallocation of households from the subcenter to the CBD, is

purely the effect of decentralization itself. However, when there is unpriced congestion,

the reallocation of households from the subcenter to the CBD would worsen the

uninterni\alized congestion externality in the subcenter. Thus, the utility gained from

optimal decentralization is offset by the worsening congestion externality, and the

magnitude of utility gained is smaller in this case than the previous one.

The public policy implied by the findings of this thesis is very important,

particularly in the cities with radial public transit system intended to serve mainly the

CBD, such as Boston. According to the finding, this type of provision of transportation

infrastructure would lead to the level of decentralization that is not socially desirable

since too many firms would decide to relocate to suburban areas. Therefore, in order to

bring the level of decentralization to optimality, the local government needs to influence

the private decision by subsidizing firms that are located in the CBD for their higher cost

to keep them from decentralizing. On the contrary, in the cities where public transit

system is of little importance, such as Los Angeles, the local government needs not to

interfere with private decision about relocation because the level of decentralization in

market equilibrium and the optimal level are the same.

5.2 Further research

There are many possible ways to generalize the models created in this thesis in

order to obtain a more refined analysis. Several strong and unrealistic assumptions could

be relaxed; for example,



* The assumption of fixed household income is difficult to defend and could greatly

affect the simulation results. Wage capitalization of locational value was proved to be

important especially in the case of employment decentralization; hence it should also

be considered explicitly besides rent capitalization.

* The assumption of homogeneous household and perfect job-match. This assumption

results in the absence of cross commuting, which should be allowed to a certain

extent.

* The modeling of transportation cost function could be improved by considering also

the distance cost explicitly. In addition, the transportation capacity function could be

adjusted to replicate the provision of transportation infrastructure in the city.

* The assumption about availability of land in suburban area is not so realistic. The

current assumption is that the amount of land available for residential development

increases linearly with the distance from the CBD. The limitation of transportation

infrastructure should somehow affect the availability of land.

* The assumption of linear shape of the city could be generalized to consider circular

the city. This would replicate real cities better, but it would be difficult to model

commuting pattern.

* Decisions of firms about decentralization could be better modeled by introducing the

production cost function of firms, which would be the function of land rent and wage.

This would require relaxing the assumption that firm consume spaceless land and that

household income is fixed.

* The current model can not give the exact optimal level of firm decentralization. After

all the generalizations, however, it might be possible to determine the actual level of

decentralization that is socially optimal for a real city.
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