
LoPC: Modeling Contention in Parallel Algorithms

by

Matthew Frank

B.S., University of Wisconsin (1994)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

@ Matthew Frank, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part, and to grant others the right to do so.

Author /..... . ,............
Department of Electrical Engineering and Computer Science

A November 18, 1996

Certified by
Anant Agarwal

Associate Professor of Computer Science and Engineering
Thy suprvisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

wRa 2!CjE\

1A

LoPC: Modeling Contention in Parallel Algorithms

by

Matthew Frank

Submitted to the Department of Electrical Engineering and Computer Science
on November 18, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Parallel algorithm designers need computational models that take first order system costs
into account, but that are also simple enough to use in practice. This thesis describes the
LoPC model, which is inspired by the LogP model, but which accounts for contention in
message passing algorithms on a multiprocessor or network of workstations communicating
via active messages. While LoPC is based on mean value analysis, it parameterizes
architectures and algorithms in exactly the same way as the LogP model. LoPC takes the
L, o and P parameters directly from the LogP model and uses them to predict the cost of
contention, C, for processing resources.

From LoPC's mean value analysis, which is itself straight forward, we derive several
even simpler rules of thumb for common communication patterns. We show that the LoPC
model can provide accurate predictions for client-server communication patterns and for
algorithms with irregular, but homogeneous, communication patterns. In addition, we
demonstrate how to adapt LoPC to deal with systems that include extra protocol processing
hardware to implement coherent shared-memory abstractions.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Engineering

2A

Acknowledgments

I am grateful to a great many people for their encouragement and help in moving this

work to completion. Mary Vernon of the University of Wisconsin has provided guidance

and numerous helpful suggestions. Kirk Johnson and Frans Kaashoek have been steady

sources of support and advice. My advisor, Anant Agarwal, has pointed me down numerous

profitable paths and provided an inspirational and energetic model.

In addition the members of the Alewife group, Ken Mackenzie, Donald Yeung, John

Kubiatowicz, Jonathan Babb, Rajeev Barua, Fred Chong, Victor Lee and Walter Lee have

generated an exciting environment in which to learn and work. Anne McCarthy has cleared

up bureaucratic issues for me on a regular basis, allowing me to concentrate on things I

have some chance of understanding.

Larry Rudolph, Charles Leiserson, Donald Yeung and Richard Lethin have provided

useful comments on versions of this document.

Finally, I thank my wife, Kathleen Shannon. This work wouldn't exist but for her

patience and supportive love.

The author is supported by an NSF Graduate Research Fellowship. The Alewife

project is funded in part by ARPA contract #N00014-94-1-0985 and in part by NSF

grant #MIP-9504399.

Contents

1 Introduction 7

2 Architectural Assumptions 11

3 Parameterization for LoPC 13

4 The LoPC Model 17

5 All-to-All Communication 23

5.1 The LoPC Model. 24

5.2 Modeling Uniform Service Time Distributions 26

5.3 Results 27

6 Client-Server Communication 31

7 Conclusion and Future Work 37

A The General LoPC Model 39

Chapter 1

Introduction

Light-weight user-level message passing paradigms, like Active Messages [22], are an

increasingly popular tool for writing parallel applications. To design effective algorithms,

programmers need a simple cost model that accurately reflects first-order system overheads.

The LogP model [7] has been successful at accurately modeling and optimizing al-

gorithms with regular, ordered communication patterns on active-message based systems.

The LogP model is simple to use and accounts for network latency and message pass-

ing overhead. However, it does not make any prediction about the costs of contention,

which can be particularly significant for algorithms with irregular communication patterns.

Lewandowski [16] successfully used LogP to analyze a work-pile algorithm with only a

relatively small amount of communication. However, when Dusseau used LogP to analyze

a variety of sorting algorithms with irregular communication patterns [8], she found that

some of her models underestimated execution time and attributed the difference to con-

tention costs. Algorithms that have irregular communication include hash algorithms and

applications that use indirect array accesses. Coherent shared-memory systems also often

exhibit irregular communication because the home-node for each coherence unit is found

using a simple hash function.

Holt et al [12] have used LogP as a framework for an experimental study of contention in

memory controllers for shared memory. For a variety of SPLASH benchmark applications

and a variety of controller speeds and network latencies they find that contention in the

memory controller dominates the costs of handler service time and network latency. Holt et

al tried to supplement their simulator study with a queueing model but abandoned the effort

because they found the errors in their analysis to be unacceptably large (up to 35% of total

response time). We believe that the LoPC model extended for non-blocking communication

will be applicable to this kind of application-based architectural study for shared memory

systems. For the blocking communication patterns we have studied, we have not observed

errors in LoPC larger than 6%.

In fact, regular communication patterns can also demonstrate contention. Brewer and

Kuszmal [3] measured the communication costs in very regular, all-to-all communication

patterns carefully designed on the CM-5 to interleave message arrivals across processors so

as to avoid contention. They discovered that the pattern quickly became virtually random,

largely due to small variances in the interconnect.

The original LogP paper also notes that the model underestimates the cost of all-to-

all communication on the CM-5 unless extra barriers are inserted to resynchronize the

communication pattern. However, very low-latency barriers like those on the CM-5 are

very expensive relative to other hardware components [19]. Few, if any, current generation

multiprocessors or NOWs implement this feature.

The evidence thus suggests that contention for message-processing resources is a signifi-

cant factor in the total application run time for manyfine-grain message-passing algorithms

(i.e., those that communicate frequently), including those with irregular communication

patterns and those that have regular communication patterns but are not tightly synchro-

nized.

The goal of this thesis is to create a new model for analyzing parallel algorithms, LoPC,

that provides accurate predictions of contention costs. LoPC is inspired by LogP and, like

LogP, is motivated by Valiant's observation [21] that the parallel computing community

requires models that accurately account for both important algorithmic operations and

realistic costs for hardware primitives. The LoPC approach is to feed the parameters

generated for a LogP analysis (network latency, message passing overhead and number of

processors) to a simple queueing model to calculate contention costs.

We illustrate the LoPC model for two important classes of algorithms: homogeneous

all-to-all communication and client-server workpile applications. We have validated these

models against both an event driven simulation and against synthetic micro-benchmarks

running on the MIT Alewife multiprocessor. We find that the queueing model is accurate

to within about six percent. Because LoPC is both simple to use and accurately models

contention costs we believe it is a tool that will be broadly applicable to studying algorithms

and architectural tradeoffs on both current and next generation parallel architectures.

Using the LoPC model we derive a number of interesting insights about the costs of

contention in applications with irregular communication patterns. For example, in all-to-all

communication patterns we find that on average every message either interrupts an active

job or creates processor contention that causes another request to queue. This phenomenon

leads to the interesting result that for homogeneous peer-to-peer communication patterns,

the cost of contention is approximately equal to the cost of processing an extra message.

Thus, in addition to deriving tight bounds on the total cost of contention we are able to

develop a simple rule of thumb to accurately predict the run time of an interesting class of

algorithms.

Although the simple rule of thumb holds only in the homogeneous case, the LoPC

queueing model is itself both simple and computationally efficient, so it can be used in

more general cases. For example, we use LoPC to characterize the run time of client-server

work-pile applications in which there is no possible contention-free communication pattern.

The LoPC analysis allows us to find an optimal allocation of nodes between clients and

servers.

The next section discusses the architectural assumptions we make. Section 3 describes

how to parameterize the LoPC model. Section 4 introduces the contention model we use.

Section 5 goes through a complete LoPC analysis for the case of homogeneous all-to-all

communication and derives bounds on the total cost of contention. Section 6 uses LoPC to

find the optimal allocation between clients and servers in a work-pile algorithm. Finally,

Section 7 concludes.

10

Chapter 2

Architectural Assumptions

The systems we model consist of a set of processing nodes each with an interface to a high

speed interconnect, (see Figure 2-1.) Each node may send a message to any other node. The

message contains a pointer to a handler and some small amount of data (typically around

eight words). When that message arrives at the destination node, it interrupts the running

job. The destination processor atomically runs the handler, which can perform arbitrary

computation, and then returns to its background job. If additional requests arrive while

the atomic handler is running, they are queued in a hardware FIFO. When the first handler

finishes, the processor is again interrupted for each additional message in the queue.

This type of communication model using messages, called Active Messages [22], is

general enough to implement arbitrarily complex communication and synchronization pro-

tocols. For example, a typical blocking request might begin with a node sending a message

and then spinning on a counter variable. At the destination the message handler runs,

perhaps loading or storing some data, and then sends a reply message back to the requester.

Node 1 Node P

CPU CPU

NI NI

Network

Figure 2-1: Architecture

When the reply reaches the requester, it interrupts the spinning background job and runs

a reply handler. The reply handler does some work, decrements the counter variable, and

then exits. When the background thread resumes, it finds that the counter has changed,

finishes spinning, and continues with its work.

Handlers in the active message model are assumed to run at user level and in the

application address space. This has two consequences. First, the operating system must

provide some concept of handler atomicity. If a message arrives while a handler is running

it must be queued until the previous handler finishes. The class of machines we model

typically provide some hardware support for maintaining atomicity [1, 6, 10, 17, 19]. In

particular the Alewife machine provides hardware network input queues which can hold

up to 512 bytes of data, and an application controlled interrupt enable flag in the network

controller.

An additional consequence is that the operating system must provide support for multiple

applications sending messages. There are a number of ways to avoid the problem of

messages arriving for a process that is not currently scheduled. One solution would be

to have the operating system buffer messages when they arrive and then redirect them to

the appropriate application when it becomes scheduled. Unfortunately, the high cost of

buffering will typically be unacceptable to fine-grain parallel applications. The typical

solution to this problem is to coschedule the machine so that message arrivals will coincide

with the correctly scheduled application. This is the approach assumed in this thesis.

We make two simplifications to make our model tractable. First we assume that the

interconnect is contention free. We model contention only for processor resources. Second

we assume that the hardware message buffers at the nodes are infinitely large. We find that

these assumptions don't affect our results for the short messages (less than about 8 data

words) and low cost handlers that we used in our validations.

While validating our model, we compared results on the Alewife multiprocessor [1]

against our event driven simulator, which has a contention free network and infinitely

large message buffers. The simulator gives results accurate to within about 1% for all the

communication patterns discussed in this thesis.

The next section gives an example of how the LogP and LoPC models are parameterized.

Chapter 3

Parameterization for LoPC

The process of parameterizing the LoPC model follows exactly the same lines as parame-

terizing a LogP analysis and uses both an algorithmic characterization and an architectural

characterization. The model predicts total application run times from these two characteri-

zations. In this section we will discuss both of these parameterizations.

Algorithmic Parameters Algorithmic characterization using either LogP or LoPC starts

by finding the total number of arithmetic and communication operations performed by the

algorithm. The differences between the LoPC and LogP models lie not in how they are

parameterized nor in how the basic algorithmic analysis proceeds. LoPC simply extends the

LogP analysis by calculating the average cost of contention, C, using the LogP parameters.

As with the LogP model, the method for deriving parameters varies from algorithm

to algorithm. To illustrate the technique we will calculate the number of arithmetic and

communication operations for a straight forward matrix-vector multiply routine.

A LoPC algorithm characterization produces an average time between requests, W, and

the total number of messages sent by each node, n. Suppose we have an N x N matrix, A,

that is cyclically distributed across P processors such that row i of the matrix is assigned to

processor i mod P, and a vector x that is replicated on each processor. We wish to multiply

A x x and replicate the resulting vector, y across all processors. Each processor will be

responsible for the NIP dot products corresponding to the rows of A that are assigned to it.

After a processor computes the dot product of row Ai with x to produce the value yi,

A x y

Figure 3-1: Matrix-vector multiply with matrix A cyclically distributed

LoPC LogP Description
St L Average wire time (latency) in the interconnect
So o Average cost of message dispatch

g Peak processor to network bandwidth
P P Number of processors
C2 - Variability in message processing time (optional)

Table 3.1: Architectural Parameters of the LoPC Model

that value must be communicated to each of the other P - 1 processors. We will assume

that the values are communicated with put operations. A message is sent to a remote node

containing the value and an address. The handler on the remote node stores the value

in memory and sends an acknowledgment message back to the originator. The node that

originates the request is blocked until the acknowledgment message returns.

The total work done by each node, then, consists of m = NIP x N multiply-add

operations to calculate the dot-products and n = NIP x (P - 1) put operations. These are

exactly the quantities required to parameterize the LogP model.

The LoPC model requires one further step to calculate the average work done between

remote requests, W = m For this algorithm W will be the cost of m = N/(P - 1)n n

multiply-add operations (or P the cost of an N element dot product.) Using this value,

the LoPC model will calculate the average run time of the algorithm, including the costs of

contention for processor resources.

Architectural Parameters The architectural parameters used by the LoPC model are

also very similar to those used by the LogP model. An algorithmic analysis under the

LogP model depends on four architectural parameters, shown in table 3.1. L represents the

network latency. This is the time that the message spends in the interconnect between the

completion of message injection by the processor, and arrival of the message at the remote

node. It does not include any processing costs for the message. The processor overheads

for injecting and receiving messages are covered in other parameters.

The o parameter represents the overhead of sending or receiving a message. This

parameter corresponds with costs on the CM-5 multiprocessor [15] for which the LogP

model was targeted. The cost of sending on the CM-5 is relatively quite large compared

to more advanced message passing systems. The costs of interrupts on the CM-5 are also

quite high, so the LogP model assumes that all message notification is done through polling.

Interrupts are not modeled.

The g parameter is also somewhat peculiar to the CM-5 system. It represents the

minimum "gap " between message sends and is the inverse of the peak processor to network

bandwidth. This parameter is necessary on the CM-5 because the processor to network

bandwidth is quite small. We expect that, in fact, most message passing platforms will have

network interfaces with balanced bandwidth, i.e., the gap will be 0.

The P parameter, finally, is the number of processors available for use in the system.

The LoPC parameters are similar to the LogP parameters. S1 , the average service time

in the network, corresponds exactly to the L parameter from the LogP model. The P

parameter, likewise, represents the number of processors in both models.

The So parameter corresponds approximately to the o parameter in the LogP model in

that it measures message processing overhead. While the LogP model assumes a polling

model with relatively expensive sends, the LoPC model assumes an interrupt model with

relatively low costs for sending a message. So represents the cost of taking a message

interrupt and handling the corresponding request. On most machines, the majority of this

cost will be devoted to the interrupt.

The g parameter, which, in LogP, accounts for the peak processor to network bandwidth,

is not included in the LoPC model because we have not yet found it to be relevant. We

believe that on most current and future multiprocessors and NOWs the bandwidth between

the node and interconnect will be roughly balanced with the rate at which the processor can

compose messages.

Finally, LoPC also optionally permits the use of a parameter, C2, that represents the

squared coefficient of variation of service times for message handlers. The default LoPC

model assumes exponential distributions, (equivalent to assuming C2 = 1). We include this

parameter because many message handlers consist of short instruction streams with low

variability. These handlers have service time distributions that are closer to constant than

exponential. We can represent this in the LoPC model by setting C2 = 0.

Except for these few minor differences in architectural parameters, the parameterization

of the LoPC and LogP models is very similar.

Chapter 4

The LoPC Model

LoPC extends LogP by calculating the average cost of contention for processor resources

using the LogP parameters. Our computational model assumes a message passing machine

with P nodes which can communicate through a high-speed interconnect. Each node, i,

runs a thread T. These threads do some local work and then after an average service time

W they make a blocking request to some other node and begin waiting for a reply. Section 3

discusses how to derive the parameter W from the algorithm being modeled. Each request

travels through the interconnect, which is assumed to be contention free, at an average

delay of S and arrives with some probability, Vij, at one of the P - 1 other nodes, j, see

Figure 4-1.

At the point when a request arrives it interrupts the thread, Tj, running on the destination

node, j, and runs a high-priority request handler, Hq, for an average delay of So (including

the cost of taking the interrupt). When the handler finishes it sends a message through the

interconnect, again with delay St, to the requesting node. Finally, when the message arrives

back at its home it interrupts the processor and runs a high-priority reply handler, Hy, with

an average delay of So, to unblock the local thread, which returns to work. Figure 4-2

shows the control flow for a complete request (without any contention).

The LoPC model calculates the runtime of an application from the parameters derived

in Section 3. These include the algorithm specific parameters, n and W and the architecture

specific parameters, S1, So and P. Given the average computation time between requests,

W, and the total number of requests, n, LoPC simply derives R, the response time of a

Figure 4-1: Queueing Model

HqIj
Ti-I; r

I st I So I s I So I

Figure 4-2: Timeline for a (Contention Free) Request

W

Tji ---F-y-
so*

000

V Portion of request handlers that run on a particular node
Rq Response time of high-priority request handlers
R, Response time of high-priority reply handlers
R, Response time of computation thread
So Average service requirement for a handler
St Average latency in the interconnect
W Average service requirement between blocking requests

Qq Average number of requests queued at a node
Q, Average number of replies queued at a node
Uq Processor utilization by requests
U, Processor utilization by replies
X System throughput
C2 Coefficient of variation in service time of handlers
P Number of processors in the system
P, Number of processors acting as servers
Pc Number of processors acting as clients

Table 4.1: Notation. In general, terms related to request handlers are subscripted with a q
and terms related to reply handlers are subscripted with a y

complete compute/request cycle, including the cost of contention, to get the total application

runtime, nR. Contention is suffered by the computation thread, Ti, because of interference

from request handlers, which have higher priority. The request and reply handlers, Hq and

H,, suffer contention delays due to queueing while other handlers complete.

To predict the costs of contention for processor resources we follow the general tech-

niques of Mean Value Analysis. The key idea is that the average queue length at any node

can be derived from the average response time at that node, while the average response time

can be derived from the average queue length. From the system and algorithm parameters

of the LogP model we can derive a system of equations, the solution of which gives the total

running time of the algorithm. Our notation and presentation largely follows the derivations

in [14].

We begin our analysis by breaking down the total average response time, R, of a

compute/request cycle. The cycle starts with the cost, R., of servicing, Ti, the sending

thread. Then the thread makes a request, which suffers a contention free delay of S, for

latency in the interconnect. Next the request handler, H,, arrives at a remote node where the

response time (cost of service plus any queueing) is given by Rq. Finally, a reply message

is sent back through the interconnect, again with delay St, and arrives back at the home

1j Hq jH

Rw SI Rq S I Ry

Figure 4-3: Timeline of a compute/request cycle including contention

Rq

Request
St Net N et St

I Ry Rw 7 I

I Reply Local Work I

Figure 4-4: Breakdown of a compute/request cycle

node where a reply handler, H,, is run at a cost of Ry. Figure 4-3 shows the breakdown of

the compute/request cycle including the costs of contention. Total average response time,

R, is given by:

R = R, + Sw + R + S + Ry (4.1)

Figure 4-4 shows a pictorial representation of the compute/request cycle. The total

response time consists of four main parts. First is the residence time, R., of running the

computation thread, including interference from requests made by other nodes. Next there

is the delay, St, of two trips through the interconnect, once for the request and once for the

reply. Next is the residence time for the request, Rq, which includes the overhead of waiting

for the completion of any handlers that might already be queued. Finally there is the cost

of running the reply handler, R,, including the overhead of waiting for the completion of

any handlers that might already be queued. Once we have calculated R, the response time

per compute/request cycle, we can calculate the total application runtime by multiplying R

by n, the total number of requests made by each thread.

To estimate the residence time at processor resources, we follow the general techniques

of Mean Value Analysis [18]. Mean Value Analysis relies on Little's result, which states

that for any queueing system the average number of customers in the system is equal to

the product of the throughput and the average residence time in the system. In the LoPC

model equations, we will most often use Little's result in the form N = XR, where N is

the number of threads in a particular system or subsystem, X is throughput and R is the

average response time for any particular thread. Little's result is very general, and makes

no assumptions about scheduling discipline, maximum queue length, specific service time

distributions, or the behavior of external system components. We use Little's result to

calculate the utilization of each node in the system, to find the average number of messages

waiting for service at each node and to compute the total system throughput.

The key element of Mean Value Analysis, the Arrival Theorem [13, 20], claims that

for a broad class of queueing networks the average queue length observed by an arriving

customer is equal to the average steady state queue length of a network with one fewer

customers. To remove this recursion on the number of customers in the system, we use an

approximation to the arrival theorem, due to Bard [2], which states that the average queue

length at request arrival time is approximately equal to the average queue length. This

approximation will slightly overestimate the average observed queue lengths and response

times, and underestimate throughput. This error diminishes asymptotically as N increases.

The key advantage of Bard's approximation is that its simplicity allows us to derive several

simple and useful rules of thumb for contention costs.

Appendix A gives the LoPC model in its general form, including the ability to model

"multi-hop" requests. In the next two sections we take advantage of the simplicity of Bard's

approximation to derive simple closed form solutions for two important special cases of the

LoPC model. In Section 5 we derive tight bounds on the contention costs of homogeneous

all-to-all communication patterns. In Section 6 we give a simple and accurate closed form

expression for the optimal number of servers in a client-server algorithm.

22

Chapter 5

All-to-All Communication

The general LoPC model, shown in detail in Appendix A, produces a system of equations

that can be solved numerically. In this section we show that for an important special case,

homogeneous all-to-all communication, we can make use of the homogeneity to simplify

the model and derive very tight bounds on the cost of contention. We walk through the

derivation step-by-step as an example of how to perform a LoPC analysis in general. In

Section 6 we show how to use LoPC to derive the optimal distribution of clients and servers

for a work-pile algorithm.

As demonstrated in Section 4, any LoPC analysis begins by deriving the total response

time, R, for a compute/request cycle in terms of its subcomponents, R", the response time

for the compute thread, S1 , the network latency, Rq, the request handler response time, and

Ry, the reply handler response time. (See Equation 4.1.) In this section we will show how

to derive each of these subcomponents. Although the situation is simplified somewhat,

because we take advantage of the system's homogeneity, the same analysis can be applied

to any communication pattern.

The next section goes through the analysis in detail. Section 5.2 explains how we model

arbitrary service time distributions. Finally Section 5.3 gives results.

5.1 The LoPC Model

We begin by calculating the total system throughput, X, by Little's result, given the total

response time for a compute/request cycle, R. There are P threads, each of which is making

a request per time R so:

P
X =- (5.1)

R

This is the throughput of the system as a whole. We will denote the throughput directed

to any particular node as VX where V is the fraction of total throughput directed to the

node. In a homogeneous algorithm the traffic is evenly divided between the nodes.

V = (5.2)
P

Again by Little's result, we calculate the queue length, Qk of high-priority handlers on

any node k.

Qk = VXRk (5.3)

Likewise, the utilization, Uk of any node by either a request or reply handler can be

calculated as:

Uk = VXSo (5.4)

We can calculate the response time, Rk, of an individual request handler at a given node

k by noting that the response time is given by the cost of servicing this request plus all the

requests that were in the network queue when this request arrived. By Bard's approximation

to the Arrival Theorem [20], however, we can approximate the queue length at arrival time

by the steady state queue length.

For request handlers we take into account the contention caused by both other request

handlers and reply handlers. The average response time is given by:

Rq = So(1 + Qq + Q) (5.5)

Since only one thread is assigned to each node, only one reply message can queue at

any given node, so we only need to account for contention caused by requests.

R, = So(1 + Qq) (5.6)

Finally, we model the response time, R., for the computation threads by using the

preempt resume (BKT) priority approximation [4, 5, 9]. We use the BKT approximation

because, for our purposes, it is more accurate than the simpler shadow server approximation.

We are unable to use the Chandy-Lakshmi priority approximation [4, 9], which is often

more accurate than BKT, because it requires information about queue lengths in a system

with P - 1 customers.

Only one computation thread is assigned to each node, so R, includes no queueing

delay for interference from other computation threads. In addition the computation thread

runs only when the reply handler finishes, so there is no interference from reply handlers.

The high-priority request handlers do, however, interfere with the computation thread.

First, when the reply handler finishes there may be additional requests queued. Since

these have higher priority than the computation thread they will run first. In addition, once

the computation thread does resume, additional request messages may arrive, interrupting

the computation thread. The BKT approximation models this interference as:

W + SoQq
R, = (5.7)

1 - Uq

Modeling Shared Memory A shared memory machine can be thought of as a message

passing system with special hardware, sometimes called a protocol processor to handle

requests and replies. In such a system request handlers will not interfere with computation

threads. In essence shared memory systems introduce an extra degree of parallelism into

each node so that request handler processing can proceed simultaneously with computation.

In this case we simply model Rw as W.

The rest of the shared-memory model remains unchanged from the message-passing

model. In particular, request handlers still contend with each other for protocol processor

resources and reply handlers still suffer queueing delays from request handlers.

0.4

2 0.3

0

d° 0.2

oa Handler 128
[]o Handler 256

C) . x Handler 512
0.1 c Handler 1024

0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Variation

Figure 5-1: Effect of Coefficient of Variation on Contention, W = 1000

The set of Equations 4.1 through 5.7 completely characterize the contention suffered

by a homogeneous all-to-all communication pattern. Section 5.3 discusses the solution

of this non-linear system. The next section explains how to extend LoPC to deal with

non-exponential service time distributions.

5.2 Modeling Uniform Service Time Distributions

The model presented above assumes exponential distributions. Our experience, however, is

that most handlers consist of relatively short instruction streams with homogeneous cache

behavior across invocations and few, if any, branches. For many applications then, the

service time distributions for handlers will be much closer to a constant distribution. This

section discusses how to extend the model to account for arbitrary service time distributions.

Suppose the service time distribution for handlers has a squared coefficient of variation

given by C 2. Then if a message arrives at an arbitrary node k there is a probability, Uk,

given by the utilization, that it will find a handler currently in service at that node. The

residual life, of that handler will be given by 2 So. When a message arrives at a queue, it

is delayed by the residual life of the first message in the queue and the full service time of

the rest of the handlers in the queue. The total delay caused by the handlers queued when

a message arrives at a processor, k, can then be given as:

1 + C2 2_C I
So(Qk - U±k Uk) = So(Qk + Uk) (5.8)

2 2

We then modify the response time equations as follows:

Rq = So(l + Qq + Q,+ (U, + U,)) (5.9)

Ry = So(1 + Qq + 2 Uq) (5.10)

Interestingly, the equation for R, does not change. This is because the thread restarts

exactly at the point when the high-priority reply handler finishes. The thread therefore

observes the complete service times of any request handlers left in the FCFS queue when

the reply handler finishes.

In addition, because there is exactly one computation thread assigned to each node

there is never any contention from other threads' computation. The variation in the service

requirement for computation threads, therefore, does not affect the result. Likewise, in a

contention free network there is never any interference between jobs so the average wire

time is all we need to characterize the response time in the network.

Figure 5-1 shows LoPC's prediction of the percentage of total response time devoted to

contention in a variety of homogeneous all-to-all communication patterns. In the figure W

is held constant at 1000 cycles and the variation, Co2, is varied from 0 to 2 for a variety of

possible values of handler occupancy, So. The difference between the values predicted for

a constant distribution, C,2 = 0, and an exponential distribution, C2 = 1, is about 6%.

5.3 Results

Solving the model given in Sections 5.1 and 5.2 requires solving a quartic equation. Typ-

ically the simplest way to do this is to use an equation solver to find a numerical solution.

Here we take a different approach. We derive a recursive definition for R and then find

limits on the fixed point. The result is that for a homogeneous all-to-all communication

Work (Cycles)

Figure 5-2: Response time of all-to-all communication with a handler time of 200 cycles,

Co2=0

r 320

' 280

240

200

160

120

80

40

0
2 4 8 16 32 64 128 256 512 1024 2048

Work

Figure 5-3: Components of contention for 32 node all-to-all communication with a handler
time of 200 cycles, C2 = 0

pattern with handlers that have little variation in service time, we can use the LoPC model

to derive tight bounds on the total response time.

We derive a simple rule of thumb for the homogeneous all-to-all case when C2 = 0.

We begin by taking the AMVA model of Section 5.1 and solving for Qq and Q, in terms of

R. Then we plug the result into the definition of R to get:

RW
F[R] = R-S +2S +2S +R - So

5S 2
2(R - So)

2S3

R2 - RSo - S02
3S43S4

(5.11)
(R - So)(R 2 - RSo - S2)

The fixed points of F [R] are the solutions of R. We note the following about F[R].

* F[R] is continuous and strictly decreasing when R > W + 2St + 2So

* limR,o F[R] = W + 2S + 2So

Therefor F[R] has a stable fixed point at some value greater than W + 2St + 2So. We

find further that F[W + 2S, + 3.46So] < W + 2S, + 3.46So, so

W + 2St + 2S, < R* < W + 2St + 3.46So (5.12)

where R* is the fixed point of F[R].

This technique is generally applicable for arbitrary C2 . Only the constants will change.

See Section 5.2 for more information about the effect of increased variability in handler

service time.

The lower bound of this range represents the contention free cost of all-to-all commu-

nication. The upper bound represents the maximum value for the numerical solution of

the LoPC model. Figure 5-2 shows these bounds along with the numerical solution to the

LoPC model and the values we measured in our simulator.

Figure 5-3 shows the breakdown of contention costs for one compute/request cycle in

an all-to-all communication pattern on a 32 node machine, as measured on the simulator

and predicted by LoPC. To a first approximation the cost of contention is equal to the cost

of an extra handler.

We can get some intuitive idea of why this should be so by looking at the cases where W

is very large or very small. If W is very large then the probability is very large that a request

handler arrives while the computation thread is working, so W is expanded to include an

extra handler time. If, on the other hand, W is very small (say 0), and St < So then

the average queue length for handlers throughout the system is about 1 and the utilization

by handlers is quite high (nearly 1). As a result an arriving handler usually has to queue

for about the length of a residual life of a handler (So/2). Since each cycle requires both

a request and a reply handler the cost of queueing adds another factor of So to the total

response time.

LoPC gives a slightly pessimistic estimate of runtime. This is due to Bard's approxima-

tion, which overestimates the queue length at the time of message arrival. In the worst case,

where W = 0, LoPC overestimates the cost of contention by 17%. Most of this error is

in the contention faced by reply handlers, which LoPC over predicts by 76%. LoPC over-

estimates total runtime by 6% in the worst case, with the error asymptotically decreasing

to 0 as the work between requests increases. In contrast, the contention free model, such

as a naive application of LogP, in the worst case under predicts total run time by 37%. In

addition, the total error of the contention free model (about equal to the cost of running a

handler) remains constant even as the work between requests increases, so that even when

W = 1024 the error of the contention free model is still 13%.

Chapter 6

Client-Server Communication

In this section we use the LoPC model to derive the optimal number of servers for a

work-pile algorithm on a machine with P processors. As in the previous section we take

advantage of application specific features to simplify the analysis. In particular, we are able

to show that in the optimal case the mean queue length at the servers is equal to one. This,

in addition to the observation that the clients only communicate with the servers, and that

the servers never initiate a request allows us to simplify the model dramatically.

The objective of work-pile algorithms is to achieve load balance for algorithms in which

there are a large number of relatively independent chunks of work to be processed and where

the amount of work required to process each chunk is highly variable. The problem with

work-pile algorithms is that if too few nodes are allocated as servers then the servers will

become a bottleneck. If too many nodes are allocated as servers, on the other hand, then the

servers won't create a bottleneck but there will be too few clients to actually do the work.

The machine is partitioned into Pc client nodes, which will actually perform the work,

and P, = P - Pc server nodes which will be used to distribute work to the clients. Because

the client nodes all communicate with the servers at the same average rate, and the compute

threads on the servers don't communicate at all, the model of Figure 4-1 reduces to that

shown in Figure 6-1. Each client node will process a chunk of work and when finished with

that chunk, will request another chunk from a randomly chosen server. The system has Pc

threads running (one per client), some of which will be working and some of which will be

in the process of making a request for more work from one of the servers. We would like to

Figure 6-1: work-pile Model

0.081

0.072

0.063

0 .0 5 4 . . - V --, "K W

0.045

0.036

0.027

0.018

0.009

0.000
0 4 8 12 16 20 24 28 32

Sewn.

Figure 6-2: Throughput on a 32 Node machine with handler time of 131 cycles

determine the proper distribution of nodes between clients and servers such that throughput

(chunks processed per unit time), is maximized. We will show that the maximum system

throughput will occur with an allocation such that the average number of requests being

handled by each of the servers is 1.

Suppose that there are Ps nodes working as servers and Pc = P - Ps nodes working

as clients. Then if there are on average only P, - 1 threads requesting service, then one of

the servers will, on average, be idle and we could get higher throughput if that node were

acting as a client. Suppose, on the other hand, that on average P. + 1 customers are at

the servers. Then on average at least one customer must be waiting for service at a server

that is already in use. If we reduce the total number of customers to Pc - 1 and increase

the number of servers to P, we will achieve higher throughput. At the optimal number of

servers, then, the average number of customers at the servers is Ps and the average queue

length at each individual server is P,/P, = 1.

We can use this information to find a closed form solution for the optimal number of

servers given a machine with P processors, network latency SI, handler occupancy So,

handler variation C2 and the algorithmic parameter W for the amount of work done by the

client between requests. By Little's result we can calculate the queue length, Qs, at each

individual server in terms of the total system throughput, X, and the average response time

at the servers, R,.

QS = -RS = 1 =- X = s (6.1)
P5 R,

Again by Little's result we can determine the total system throughput in terms of the

total number of threads and the average response time, R, to process a chunk of work

(including time at both the client and server).

P P-P,
X = C - (6.2)

R R

We can now combine Equations 6.1 and 6.2 to determine the optimal number of servers

in terms of average response times.

PR,
PS = (6.3)

R + R,

Again by Little's result and Equation 6.1 we can determine the utilization at the servers.

X So
Us = o = (6.4)

Ps Rs

By combining the terms for utilization and queue length with Bard's approximation to

the Arrival Theorem, we determine the average response time for a request at any of the

servers.

C2 C-1)So
R, = So(1 + Q + U) = So(2 + (o 1) (6.5)

2 2R,

This equation can be simplified by solving for R,.

2(C2 + 1)
R, = So(1 +) (6.6)

Now that we have determined the cost of a request at the servers, we can calculate the

total response time of a complete compute/request cycle. This includes the cost of doing

a chunk of work at the client, a trip through the network from client to server, the cost of

making a request at the server, a return trip through the network and finally the cost of the

reply handler at the client.

R = W + S± + R + St + So (6.7)

Finally by combining Equations 6.6 and 6.7 with Equation 6.3 and solving for Ps, we

find the optimal number of servers.

P(1 2(2+1))So
PS = P(+ 2 (6.8)

W + 2St + (3 + 2(C 2 + 1)) So

Figure 6-2 shows the predictions of this model. The throughput for an event driven

simulation of a work-pile algorithm running on a 32 processor machine is shown for each

combination of P, servers from 1 to 31 and Pc = 32 - Ps clients. In the worst case

LoPC predicts a value that is conservative by 3%. In addition, the black squares show the

predictions of Equation 6.8.

By examining the maximum throughputs of both the clients and the servers and ignoring

other contention, as we might do in a LogP analysis, we can find somewhat weaker optimistic

bounds on the throughput of the work-pile algorithm. The work-pile algorithm will be

server bound when the server utilization approaches 1. By Little's result this implies that

Xs, PSo.

At most, the client can processes one chunk of work for every compute/request cycle.

The minimum time for a complete compute/request cycle, on the other hand is given by

W + St + S + St + So, assuming that the thread suffers no contention at the server. For

a system with Pc clients this means that the throughput, Xc 5 PCW. These boundsW+2S+2So

are shown in Figure 6-2 as dotted lines. These bounds are asymptotically correct, but,

unfortunately, only in the range where the work-pile algorithm achieves poor parallelism.

36

Chapter 7

Conclusion and Future Work

LoPC is an extension to the LogP model, based on approximate mean value analysis, which

permits accurate analysis of parallel algorithms with irregular communication patterns.

LoPC uses the LogP architectural and algorithmic parameters to compute total application

runtime including contention for processor resources. No additional parameters are re-

quired. This thesis describes the LoPC model and shows how to use LoPC to analyze the

contention behavior of two common communication patterns.

For homogeneous all-to-all communication we show that the total contention costs are

bounded by a small constant factor and, to a first approximation, the cost of contention is

equal to the cost of an extra handler. For client-server communication we find a simple

closed form expression that gives the optimal allocation of machine nodes between clients

and servers. We have validated our model against an event driven simulation and shown

that it produces results for response time and throughput that are accurate within 6%.

Because LoPC is both simple to use and accurately models contention costs we believe it

is a tool that will be broadly applicable to studying algorithms with irregular communication

patterns and architectural tradeoffs on both current and next generation parallel architectures.

Although we have only validated the message passing version of the model, we have also

shown how to model communication contention in shared-memory machines.

Our ongoing work with LoPC includes extending the model, using a technique pioneered

by Heidelberger and Trivedi [11], to model non-blocking requests. With this extension we

plan to use LoPC to evaluate architectural and cost-performance tradeoffs between shared-

memory and message-passing communication primitives.

Appendix A

The General LoPC Model

In this section we present the LoPC model in its most general form. Although we don't

show any derivations of algorithms with non-homogeneous communication patterns, the

technique very closely follows the analysis given in Section 5. The main difference is that

while in that derivation we were able to take advantage of the inherent similarity between

threads to simplify the analysis, here we must derive a complete set of equations for each

individual thread.

We are given a system with P processors, each of which has a thread assigned to it.

For each thread c (the thread assigned to processor c) we are given that the thread requires

W, service on the local processor and then makes a blocking request. The processor will

require, on average, a fraction of service Vc at each node k. Note that in general we

permit E > 1, so we can easily model communication patterns that require "multi-hop"

requests.

By Little's result we can determine the throughput of each thread c as:

Xc = ~ c= 1, ... , P (A.1)

Where Rc is the average response time for thread c.

In addition, we can find the average throughput for each thread c through each node k

as:

ck = l,...,P

Again by Little's result we can determine, for each node, k, the utilization of that node

by request handlers.

Uqk = So Xck k = 1, .. , P
c=1

And similarly, we can find the utilization of each node, k, by reply handlers.

Uyk = XkSo

(A.3)

(A.4)

Once again by Little's result we can find

request and reply handlers

Qqk= RqkE Xck
c=l

the average queue lengths on each node, k, of

(A.5)

(A.6)Qyk = XkRyk

Next, by Bard's approximation to the arrival theorem we calculate the average response

times for request and reply handlers at each node from the average queue lengths at the

node.

Rqk = So(1 + Qqk + Qyk) k = 1,...,P (A.7)

Ryk = So(1 + Qqk) k = 1,...,P (A.8)

And by the BKT approximation, combined with Bard's approximation (more of which

is described in Section 5.1), we can calculate the response time for each computation thread.

Rwk = SoQk+Wk k = 1,..., P (A.9)
UqRwk= -uk

LoPC can model machines with protocol-processor support by avoiding modeling con-

tention between handlers and the computation threads by instead using Rwk = Wk.

(A.2)Xck = VckXc

Finally, we put all the parts together to arrive at the total response time for a com-

pute/request cycle. Note that this is slightly more complicated than the derivation shown in

Section 4 to account for the possibility of requests that require multiple hops through the

network.

P

Rc= Rwc+ Y Vck(St +Rqk) +S +Ry c= 1,...,P (A.10)
k=1

In addition, the model can be extended in a straightforward way to deal with handler
service time distributions other than exponential. For details see Section 5.2.

42

Bibliography

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz, John
Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The MIT Alewife
Machine: Architecture and Performance. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 2-13, June 1995.

[2] Yonathan Bard. Some Extensions to Multiclass Queueing Network Analysis. In M. Arato,
A. Butrimenko, and E. Gelenbe, editors, Performance of Computer Systems. North-Holland,
1979.

[3] Eric A. Brewer and Bradley C. Kuszmaul. How to Get Good Performance from the CM-5
Data Network. In Proceedings of the 1994 International Parallel Processing Symposium,
April 1994.

[4] Raymond M. Bryant, Anthony E. Krzesinski, M. Seetha Lakshmi, and K. Mani Chandy.
The MVA Priority Approximation. ACM Transactions on Computer Systems, 2(4):335-359,
November 1984.

[5] Raymond M. Bryant, Anthony E. Krzesinski, and P. Teunissen. The MVA Pre-empt Resume
Priority Approximation. In Proceedings of the 1983 ACM Sigmetrics Conference, pages
12-27, 1983.

[6] Derek Chiou, Boon S. Ang, Arvind, Michael J. Beckerle, Andy Boughton, Robert Greiner,
James E. Hicks, and James C. Hoe. StarT-NG: Delivering Seamless Parallel Computing. In
Proceedings of the EURO-PAR '95, pages 101-116, Stockholm, Sweden, August 1995.

[7] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a Realistic Model
of Parallel Computation. In Proceedings of the 4th Symposium on Principles and Practices of
Parallel Programming, pages 1-12, May 1993.

[8] Andrea C. Dusseau. Modeling Parallel Sorts with LogP on the CM-5. Masters Report
UCB/CSD-94-829, UC Berkeley Computer Science Department, May 1994. To appear in
IEEE Transactions on Parallel and Distributed Systems.

[9] Derek L. Eager and John N. Lipscomb. The AMVA Priority Approximation. Performance
Evaluation, 8(3):173-193, June 1988.

[10] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew Chang,
Yevgeny Gurevich, and Whay S. Lee. The M-Machine Multicomputer. In Proceedings of the
28th Annual International Symposium on Microarchitecture, Ann Arbor, MI, 1995.

[11] Philip Heidelberger and Kishor S. Trivedi. Queueing Network Models for Parallel Processing
with Asynchronous Tasks. IEEE Transactions on Computers, C-31(11):1099-1109, November
1982.

[12] Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hennessy. The
Effects of Latency, Occupancy, and Bandwidth in Distributed Shared Memory Multiproces-
sors. Technical Report CSL-TR-95-660, Stanford Computer Systems Laboratory, January
1995.

[13] S.S. Lavenberg and M. Reiser. Stationary State Probabilities of Arrival Instants for Closed
Queueing Networks with Multiple Types of Customers. Journal of Applied Probability,
December 1980.

[14] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantatative
System Performance, Computer System Analysis Using Queueing Network Models. Prentice
Hall, 1984.

[15] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.
Ganmukhi, Jeffrey V. Hill, Daniel Hillis, Bradley C. Kuszmal, Margaret A. St. Pierre, David S.
Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. The Network Architecture of the
Connection Machine CM-5. The Journal of Parallel and Distributed Computing, 33(2): 145-
158, March 1996.

[16] Gary Lewandowski. LogP Analysis of Parallel Branch and Bound Communication. Submitted
to IEEE Transactions on Parallel and Distributed Systems, April 1994.

[17] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Anant Agarwal, and
M. Frans Kaashoek. UDM: User Direct Messaging for General-Purpose Multiprocessing.
Technical Memo MIT-LCS-TM-556, MIT Laboratory for Computer Science, March 1996.

[18] M. Reiser and S.S. Lavenberg. Mean Value Analysis of Closed Multichain Queueing Networks.
Journal of the ACM, 27(2):313-322, April 1980.

[19] Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor. In Pro-
ceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[20] K. C. Sevcik and I. Mitrani. The Distribution of Queuing Network States at Input and Output
Instants. Journal of the ACM, 28(2):358-371, April 1981.

[21] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM,
33(8):103-111, August 1990.

[22] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Shauser. Active
Messages: a Mechanism for Integrated Communication and Computation. In Proceedings of
the 19th Annual International Symposium on Computer Architecture, pages 256-266, Gold
Coast, Australia, May 1992. ACM Sigarch.

