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Abstract

Computer representations for semiconductor fabrication processes are currently not well
defined for distributed computing. This work focuses on defining and implementing an
open, distributed software architecture for designing semiconductor fabrication processes.
The implementation of the architecture provides a common interface to semiconductor
process repositories, a life cycle service to manage the distributed objects, various means
for organizing distributed repositories, and clear component definitions to enable a trader
to find and manage available services. The base interfaces and services are essential in
the development of distributed and shared applications for semiconductor process design.
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Chapter 1

Introduction
Building integrated circuits requires semiconductor fabrication processes. Current

software systems for designing these fabrication processes are not built for distributed

computing. This research implements and evaluates a distributed, platform independent

software architecture for semiconductor process design. The architecture provides well-

defined application programming interfaces for process repositories and surrounding

services. To automate common network programming tasks, the interfaces use the

Object Management Group's (OMG) Common Object Request Broker Architecture

(CORBA).

This chapter begins by providing an introduction to previous work done in the area

of semiconductor process representation. Next, distributed systems are discussed. A

thesis statement follows this. The chapter concludes by presenting the organization of the

thesis.

1.1 Related Work

A semiconductor process is affected and influenced by numerous steps during its life

cycle from origination to fabrication and maintenance. New processes generally emanate

from evolutionary changes to existing processes or the creation of new technologies. An

example of an evolutionary change occurs when improved equipment is used. The

introduction of a new technology, e.g. Silicon Germanium, might require creating an

entirely new fabrication process.



When a new process is designed, the description can begin as a desired performance

parameter specification. A process is then generated and simulated to satisfy the given

constraint, adding specific information such as machine settings, environments, and

effects to describe the process. An integrated circuit is then fabricated to collect data on

actual performance characteristics of the process. The results are cycled back through

each stage until the performance characteristics are finalized (see Figure 1).

Circuit Designer

Fabrication Process Designer

Figure 1: Semiconductor process design cycle

The design cycle for a semiconductor process demonstrates the need for an

information model to communicate process information. The structure must encompass

data that is viewed differently depending upon its position in the cycle. A variety of

Technology Computer Aided Design (TCAD) tools and Computer-Aided Manufacturing

(CIM) systems have been researched and designed to address this issue. The following

sections outline several of these systems.

1.1.1 FABLE

Stanford University's FABLE was the first attempt to develop a structured representation

for semiconductor processes [1]. The project generated a procedural language for

representing processes. The language was highly structured with multiple abstraction

levels for modeling semiconductor fabrication processes.

FABLE programs represent process steps with hierarchical layers. The five layers

are process, effect, treatment, settings, and physical (see Figure 2). The process layer,



the highest level of abstraction, provides a general description of a process step (e.g. etch-

oxide). The effect layer details any operation on the wafer (e.g. what and where is the

oxide etched). The treatment layer corresponds to the specific operations needed to

obtain the desired wafer state (e.g. how the oxide is etched). The settings layer describes

the specific equipment needed for the step and its corresponding settings. Finally, the

physical layer details the processing of the wafer.

Process

Effects

Treatment

Settings

Physical

Figure 2: FABLE process layers

The FABLE project was not successful due to several limitations. The detailed

structure proved very restrictive and not useable in a real manufacturing environment [2].

The language was not extensible and could not keep pace with rapidly evolving process

technology. Lastly, FABLE was not able to interface to applications other than

manufacturing.

1.1.2 Process Design Aid (PDA)

Building on the FABLE research, Stanford generated a second representation for

semiconductor processes as part of the Process Design Aid (PDA) project [3]. An object-

oriented process representation was coupled with PDA. It divided processes into a

hierarchical structure where each process step was a class. The process step was

constructed from the base class or inherited from it with additional attributes. The PDA

process representation was flexible and extensible. This proved to be advantageous in

that a user was free to add any attributes desired, and detrimental in that it was possible

for some process descriptions to not be interpreted correctly by applications. Unlike

FABLE, PDA interfaced well with simulators but lacked robust manufacturing support.



1.1.3 Berkeley Process Flow Language (BPFL)

The Berkeley Process Flow Language (BPFL) [2] was developed during the same time as

PDA. BPFL was a programming-language-based approach for representing

semiconductor processes. It represented semiconductor process information with a

multiple view structure. For example, specific instructions for performing a process were

in a fabrication view while a simulation description was in the simulation view. Other

views included equipment and material. A wafer state model with standard control and

processing instructions were also defined.

BPFL proved to be effective in a manufacturing environment due to its exception

handling and systematic abstraction for process steps. Since BPFL did not provide

extensibility, it became difficult to maintain the process representation.

1.1.4 Process Flow Representation (PFR)

As part of the Computer Aided Fabrication Environment (CAFE) at MIT, the Process

Flow Representation (PFR) was developed [4]. PFR provides a representation for

semiconductor processes. It follows FABLE by abstracting representation layers for

processes. PFR uses a three level abstraction model. The change-wafer-state layer

describes changes the semiconductor wafer undergoes during an operation. The

treatment layer describes the physical environment surrounding the wafer during the

changes. The settings layer details parameters for the equipment used to achieve the

treatment (see Figure 3).

Settings

Treatment

Wafer State

Figure 3: PFR layer abstractions

In addition, PFR supports unification of process data [4]. This allows for the

association of multiple descriptions of processes. For example, a process simulator such

as SUPREM-III [5] uses a specific format for input files. PFR unifies its internal view of

the process with external views such as simulator input files.



PFR coupled with the overall CAFE architecture [6], provides a system for

communicating process information between engineers, designers, and manufacturers of

semiconductors (see Figure 4). However, the repository is limited to a specific hardware

and software platform. This makes it difficult to share information with other

repositories.

Applications
(Scheduling, process design, equipment, data, people,

etc.)

Data and Tool Integration Architecture
(PIF, PFR, programmatic interfaces, etc.)

Infrastructure Architecture
(Ingres DB with Gestalt layer, fabform, Unix OS)

Figure 4: CAFE architecture

1.1.5 Semiconductor Process Representation (SPR) Information Model

There are other proprietary, commercial implementations in addition to the models

detailed in the previous sections. Semiconductor representations are unique to specific

laboratories and companies making it difficult to transfer process information between

facilities. The varying models for semiconductor processing are not well suited for

communicating information between repositories. Researchers at MIT and elsewhere in

the TCAD/CIM community have addressed the need for a common representation of

semiconductor processes by developing the Semiconductor Process Representation

Information Model (SPR) [7].



SPR organizes process information into different views. The four main views are

effects, environment, equipment, and sub-processes. The equipment view contains

information about the machines for a process step. During the fabrication, the equipment

produces a particular environment around a wafer, which in turn causes the effects on a

wafer [7]. Sub-processes provide structure for dividing process information amongst

multiple smaller steps.

A common interface to access semiconductor process repositories is essential for

process designers to share and exchange information between repositories. The SPR

information model incorporates the strengths of proven systems, in addition to addressing

the weakness of previous models by providing extensible components for structured

growth and expansion. The SPR information model can be used for exchanging

information about processes within a distributed software architecture for semiconductor

process design.

1.2 Distributed Systems

Software for designing semiconductor processes (e.g., process simulation, editing, and

synthesis) is currently programmed for specific software and hardware platforms.

Platform interoperability is essential for a distributed software architecture to incorporate

legacy systems. The system should be able to integrate existing applications and reuse

available services.

A distributed, platform independent software architecture provides numerous

benefits for semiconductor processing research. Process designers can choose between

any simulator, editor, or synthesis tool without being restricted by a particular operating

system and hardware platform. Semiconductor fabrication benefits from the distributed

software architecture. Due to expenses associated with fabricating semiconductors, lack

of state-of-the-art equipment often limits research facilities. A distributed software

architecture facilitates the sharing of remote resources and equipment.

1.2.1 Common Object Request Broker Architecture (CORBA)

The Object Management Architecture (OMA) is a consortium specification created by

the Object Management Group (OMG). Including over 700 company members, the

OMG is an organization whose purpose is to create vendor independent specifications for



object-oriented distributed computing [8]. The OMA's core is the Common Object

Request Broker Architecture (CORBA). It provides interoperability among a variety of

hardware and software platforms. CORBA defines an "Interface Definition Language

(IDL) and Application Programming Interfaces (API) that enable client/server object

interaction within implementations of Object Request Brokers (ORB)" [8]. In essence,

CORBA is a technology that readily allows the development of distributed systems.

In addition to CORBA, the OMA consists of interfaces and functional specifications

for common services and facilities (see Figure 5). These are defined as CORBA services

and CORBA facilities. CORBA services focus on common object services for managing

a distributed system [9]. Included are specifications for naming, event handling,

persistent objects, life cycles, trader, querying, etc. CORBA facilities are of two types -

domain (vertical) and common (horizontal) [10]. Domain facilities concentrate on

specific vertical domains such as manufacturing, healthcare, telecommunications, and

finance. Common facilities provide application functionality such as user interfaces, help

facilities, and document management. The benefits of software reuse and interoperability

is realized by using agreed upon standard interfaces for services. Applications utilizing

the common interfaces are allowed to choose services between providers implementing

the functionality.

To automate common networking programming tasks, programming interfaces for

the distributed software architecture for semiconductor process design utilize CORBA.

Furthermore, the architecture employs reusable CORBA services when appropriate.



Application
Interfaces

Vertical (Domain)
CORBAfacilities

HealhCare

Manufacturing

Enance

Horizontal (Common)
CORBAfacilities

UserInterfaces

Help Facility

Do cument
Management

Object Request Broker (ORB)

Figure 5: Object Management Architecture

1.2.2 SEMATECH CIM Framework

The OMG is focused on defining specifications for the common object services and

facilities that are applicable to generic distributed systems. Industry consortia, such as

SEMATECH, are left to generate interfaces for domain-specific facilities. SEMATECH,

a consortium of U.S. semiconductor manufactures, works with government and academia

to sponsor and conduct research in the area of semiconductor manufacturing. A CORBA

based CIM framework is currently being developed by SEMATECH for semiconductor

manufacturing. The CIM Framework is a vertical CORBA facility within the OMA (see

Figure 5).

The objective of the SEMATECH CIM Framework is to provide a software

infrastructure for integrating applications and sharing information for the manufacturing

of semiconductors. The framework's intent is to establish an open industry standard for

creating semiconductor CIM systems [11].

Object Services (CORBAservices)
Lifecycle, Naming Persistence, Query, Trader, etc



The CIM Framework defines the following component modules for managing a

semiconductor manufacturing system [12]:

* Factory management

* Document management

* Labor management

* Machine management

* Material management

* Process definition management

* Process specification management

* Schedule management

The modules provide a basis for CIM applications such as

process tracking, machine control, etc (see Figure 6).

CIM
Applications

WIP
Tracking

Process
Control

process control, work-in-

Machine
Control ...

Object Request Broker (ORB)

Factory Document Labor
Management Management Management

c o m m o n Iu
Components Machine Process

Management Management

Figure 6: CIM framework

The focus of the CIM framework is to provide the appropriate manufacturing

abstractions and services for the semiconductor industry. The scope of the framework

encompasses all aspects of semiconductor manufacturing from billing and shipping to

machine management. Within the framework, there is a need to communicate

information about semiconductor processes. The current framework [12] has allocated

components for process definition and specification management. Final component

definitions have not yet been specified by SEMATECH. One intent of the research

presented in this paper is to develop a process design representation that can be used in

conjunction with the SEMATECH CIM framework.



1.3 Thesis Statement

Current computer representations for semiconductor processes are not well defined for

distributed computing. Hardware and software dependencies, varied protocols for inter-

communicating, and undefined interfaces for managing distributed data are several

weaknesses of existing representations. The research presented in this thesis focuses on

defining and implementing a distributed software architecture for designing

semiconductor processes. The architecture addresses the need for a common

representation for processes and implements surrounding services for managing the

system based upon industry standards. The implementation of the services is done in

Java [13] to provide platform independent components that can be used as the foundation

for further distributed system development.

1.4 Organization of Thesis

This chapter has served to provide a brief background on current systems used for

semiconductor process design. In addition, an overview of distributed systems was

discussed. Finally, the problems and challenges of defining a distributed framework for

semiconductor process design were presented.

In the following chapter, an overview of the entire system is presented. Then,

Chapters 3 through 6 discuss the details of specific modules by exploring their interfaces

and implementations. Applications that utilize the architecture are detailed in Chapter 7.

Finally, Chapter 8 summarizes the thesis and details areas for further research.



Chapter 2

System Architecture
The distributed software architecture for semiconductor processing provides reusable,

inter-operable services (see Figure 7). The architecture adheres to the philosophy of

CORBA by using standard OMG interfaces for common object services such as life cycle

and trader [14]. The combination of core services provides an architecture for distributed

semiconductor process design.

Figure 7: Distributed software architecture for semiconductor process design



The SPR service is the basis for accessing process information in the distributed

software architecture. It utilizes a generic information model for describing

semiconductor processes. Joining SPR are three supporting services for organizing and

managing the distributed process objects. The life cycle service provides interfaces for

creating, copying, moving, and removing the distributed objects. Extensions to the life

cycle service enable querying process databases. A library service provides a common

interface for organizing collections of processes. Lastly, a trader is used to find and

manage available services.

In parallel with the implementation of the distributed software architecture, a

semiconductor process browser was developed. The process browser application

demonstrates aspects of the architecture implementation. It allows a user to view

processes in distributed repositories. The process browser interacts with the four main

services. It uses the trader service to connect to a library service. The life cycle service

can be integrated for managing the creation and movement of the distributed objects.

Once the browser has access to repositories, it uses the SPR interface to access

information about processes.

2.1 IDL for Semiconductor Process Representation (SPR)
The SPR information model provides a standard medium for communicating information

about fabrication processes [7]. It combines the needs of process designers (TCAD) and

manufacturers (CIM). These characteristics make it suitable for defining the

programming interfaces for a distributed software architecture for semiconductor process

design. The SPR programming interfaces are defined in CORBA IDL and are used to

access existing as well as new process repositories. The use of a standard interface

allows process designers and manufacturers to integrate services and applications via a

standard communications mechanism.

The implementation of the SPR programming interface consisted of three phases

(see Figure 8). The first defined the IDL based upon the SPR information model

document [7]. The second phase implemented the server in Java for developing and

refining the interface definitions. After establishing the interfaces, the third phase created

a persistent storage backend.



Phase 3
Persistent storage backend

with PSE for Java

Figure 8: SPR server development

The server implementations closely reflect the SPR information model. The model

provides an organized representation for process information. SPR organizes process

information into four main views - effects, environment, equipment, and process (see

Figure 9). The process view is a division of a process into sub-processes. The other

views (effects, environment and equipment) describe what occurs during the process. The

equipment for a process creates an environment that causes the effects [7].

sprView

sprProcessView sprEffectsView sprEquipmentView sprEnvironmentView

Figure 9: SPR views

2.2 Life Cycle Service
The life cycle service provides functionality for creating, deleting, copying, and moving

distributed objects. Distributed systems need conventions for clients to manage and

perform such operations on remote objects. The implementation of a life cycle service

coupled with the SPR service is the core of the SPR repository.

The OMG defined life cycle service consists of three interfaces - a life cycle object,

a factory finder, and a generic factory [9]. The base interface is the life cycle object.

Object interfaces must inherit from the life cycle object to implement life cycle

functionality. The life cycle object defines operations for copying, moving, and removing

an object. Each subclass of the life cycle object implements these methods. The factory



finder interface provides afind factories operation used for obtaining factory references.

A single reference to a factory finder interface enables a client to access any factory

within its scope. The factory finder is a directory of factories that exist within its scope.

The generic factory interface is the base for creating objects. Its create object method

uses criteria to produce instances of objects.

There are various issues that are addressed in the life cycle service implementation.

For copying and moving, the definition of shallow versus deep is clearly specified (e.g.,

copying a reference to an object versus copying an object's data). The removal of an

object involves complex issues such as distributed garbage collection and dangling

references. The life cycle service was developed in tandem with the SPR service (see

Figure 10). Furthermore, the Java implementations of these services are coupled with a

persistent storage backend.

Semiconductor Process Repository

SPR Service

Client

Life Cycle Service

Figure 10: Life cycle service interacting with SPR service

2.3 Repository Organization
The organization of repositories was defined in a service separate from SPR to allow

multiple abstractions and implementations. A library service organizes processes into

catalogs. The processes of a catalog can be stored in repositories distributed across

multiple systems. The library service organizes a distributed process repository as a

single entity (see Figure 11).



Figure 11: Library service indexing repository

For additional repository organization, query extensions were added to the life cycle

service. This allows querying to utilize the underlying repository databases. The query

extensions provide a generic interface masking the underlying database engine.

2.4 Trader Service

A trader facilitates the exporting and importing of services. A service advertises its

functionality to a trader (exporting). The trader then takes requests from clients and

matches the desired functionality with an advertised service (importing). Figure 12

shows the interaction of an advertised service (exporter), a client (importer), and a trader.

3) A link is established between the
client and the service by the
trader

Figure 12: A trader interacting with services



The distributed software architecture incorporates a generic trader that client

applications use to obtain services. For example, when a client needs a specific

simulator, it passes a request to the trader. The trader then returns references to any

qualified simulators. The program or user can select a simulator from these references

(see Figure 13). Suppose that the client requests a remote fabrication service that uses a

BICMOS process. The trader returns references to all the remote fabrication services

that "advertise" a BICMOS process (see Figure 13). Finding a specific simulator or

remote fabrication service are two examples of using the trader.

/d MRepository

Ie I Simulator B
e Synthesis

W Trader

1) Request simulator Service SiGe
Fabrication

BiCMOS Repository
Client Application Fabrication Repository

Figure 13: Selecting a simulator using the trader service.
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Figure 14: Selecting a remote fabrication service using the trader service.

2.5 Applications

In order to test and demonstrate the functionality of the distributed software architecture,

a semiconductor process browser was developed. The process browser is a comparable

concept to a web browser in that it accesses data from a heterogeneous collections of



services and machines across a network. The browser uses the distributed software

architecture for semiconductor process design as the protocol for interacting with

services. The browser allows a user to view processes. It can also be enabled to support

other services such as simulators and fabrication tools as they become available through

the trader service.

The browser demonstrates a client application interacting with the SPR, life cycle,

library, and trader services. The trader is the main interface from the browser to the

distributed services. The browser finds the library and other services via the trader.



Chapter 3

Semiconductor Process Representation

3.1 Overview

To share and distribute information efficiently, a standard data representation is

necessary. The semiconductor process representation (SPR) is intended to provide this

standard for communicating information about fabrication processes. Thus, SPR was

chosen as the basis for the process information programmatic interfaces within the

distributed software architecture. The interfaces are defined in CORBA IDL and are

therefore language independent; repositories and clients can be implemented in multiple

languages across platforms. The standard interfaces allow process designers and

manufacturers to integrate services and applications seamlessly across global networks.

3.2 Description

The SPR model organizes information into multiple views. The model has four base

views - effects, environment, equipment, and process (see Figure 15). In addition,

developers are allowed to use generic or custom views for data unification and

extensibility. Views encapsulate specific domain and discipline information about a

process. The view abstraction is a mechanism for capturing the diverse information to

support both TCAD and CIM applications.

Generally, a process is broken down into smaller stages. The process view provides

this abstraction; it divides processes into sub-processes. The other base views depict

details of the process. The equipment view contains timing and setting information for



machines. The effects view describes what changes are performed on a wafer. The

thermal and chemical environment of the wafer during processing is detailed in the

environment view. Possible custom views include legacy process representations and

simulator specific instructions. The interfaces and components associated with these

views are discussed in the following section.

views

Figure 15: Process step divided into multiple views.

3.3 Interfaces

The SPR information model is extensible, laying the foundation for describing any

semiconductor process. For practical application, SPR cannot possibly account for every

process characteristic today and in the future. Thus, the model is extensible to account

for growth and change. Extensibility is provided by a foundation of reusable interfaces

for managing generic properties. These interfaces are used to construct view specific

interfaces to access and organize semiconductor processes.

This section initially details the basic data structures. Then, the generic, reusable

interfaces are described. Finally, the base SPR interfaces are illustrated.



3.3.1 Base Data Structures

There are two fundamental approaches for specifying data structures for a distributed

environment. Data structures can be defined with the interfaces or strings may be used to

pass data types. For the first case, all the information about the structure is tightly

coupled with the interfaces. This guides implementations to adhere to the defined

structures. In the latter case, strings must be parsed and unparsed according to an agreed

upon specification in order for multiple implementations to operate equivalently. For the

SPR implementation, the base structures are coupled with the interfaces to provide

explicit definitions.

In addition to standard data types inherent with CORBA IDL, structures are defined

for time duration, statistical floating point values, generic values, and units (see Table 1).

A structure defines time duration as two integer values for hours and minutes and a

floating-point value for seconds. Using a structure to represent time duration is not as

extensible as an interface, but is beneficial in that the amount of information transmitted

over the network is less. Additionally, the structure provides a restriction on a time

duration's units to ensure that they are used equivalently by all applications. A

correlating specification is that any time duration with minutes greater than sixty defines

an unspecified value. Interfaces that use a time duration can provide specific methods for

converting units of time to the duration structure. The statistical floating-point structure

associates a standard deviation with a value. This is important for specifying process

parameters that are digested experimental data or design specifications with tolerances.

For specifying generic values, the sprValue union is defined to be either a primitive data

type, a statistical floating-point value, or an sprParameter (defined on page 28). The

sprValue type could have been implemented as a CORBA any type. Any enables the

passing of all IDL defined interfaces and basic types. The sprValue was used instead of

any because it provides additional information to implementations. Lastly, an

enumeration is defined for possible units. This currently contains only a few basic units,

but can be further expanded when the system has progressed beyond the current

prototype.



struct sprDuration {
long hours;
long minutes;
float seconds;

1;

struct sprStatFloat {
float mean;
float sdev;

enum sprValueType { BOOLEAN, SHORT, LONG, FLOAT, DOUBLE, STRING,
PARAMETER, STATFLOAT };

union sprValue switch(sprValueType)
case BOOLEAN: boolean Boolean;
case SHORT: short Short;
case LONG: long Long;
case FLOAT: float Float;
case DOUBLE: double Double;
case STRING: string String;
case PARAMETER: sprParameter Parameter;
case STATFLOAT: sprStatFloat StatFloat;

enum sprUnits { NONE, m, mm, nam, pm, sec, ns, ps, cSt, A};

Table 1: Base SPR data structures.

3.3.2 Base Objects

The foundation of the SPR information model defines a set of basic objects which are

then used to provide extensibility for objects within the framework. Properties are used

as an extensibility mechanism. A property is a name, value pair. The sprProperty

interface is defined with interfaces for setting and retrieving a name and a value (see

Table 2). Properties are useful for modeling characteristics that are not otherwise

accounted for specifically by an object. Documentation and instructions are possible

properties.

Properties alone do not provide extensibility. The sprExtensibleObject furnishes it

by providing interfaces for managing a sequence of properties (see Table 2). This

enables an object based on the sprExtensibleObject interface to contain a set of

properties. The property sequence is used to model additional attributes.

Naming an object is a common convention. A name is useful for distinguishing

between specific instantiations of objects. The sprNamedObject is an abstract interface

used for attaching a name reference (see Table 2). This interface combines with

sprExtensibleObject to form the sprExtensibleNamedObject interface.



The last two base interfaces define generic parameters for detailing primitive process

information - sprParameter and sprTimedParameter (see Table 2). A parameter is a

value associated with a unit of measure. A timed parameter is a start value and an end

value with corresponding units. Using these basic parameters, constant and time-varying

state information is described.

interface sprProperty : LifeCycle::LifeCycleObject {
void setName(in string inPropertyName);
string getName();
void setValue(in sprValue inValue);
sprValue getValue();

interface sprExtensibleObject : LifeCycle::LifeCycleObject {
void setProperties(in sprPropertySeq inProperties);
void addProperty(in sprProperty inProperty);
sprPropertySeq allProperties();

interface sprNamedObject : LifeCycle::LifeCycleObject {
void setName(in string inObjectName);
string getName();

interface sprExtensibleNamedObject:sprNamedObject,sprExtensibleObject{};

interface sprParameter : LifeCycle::LifeCycleObject {
void setValue(in sprValue inValue)

raises (sprInvalidValue);
sprValue getValue();
void setUnits(in sprUnits inUnits)

raises (sprInvalidUnits);
sprUnits getUnits();

interface sprTimedParameter : sprParameter {
void setEndValue(in sprValue inEndValue);
sprValue getEndValue();

Table 2: Foundation SPR interface objects

3.3.3 Processes & Views

The sprProcess interface is designed for encapsulating information about a

semiconductor process (see Table 3). It is a named container derived from the

sprExtensibleNamedObject interface. In addition to its inherited name and properties,

methods are defined for managing the multiple views of a process object. Views are used

to associate multiple descriptions with a process design.



The generic view interface, sprView, contains methods for defining and retrieving

the view type (see Table 3). The four base views - process, effects, environment, and

equipment inherit from this base interface. Additional views can be defined by extending

this interface. Custom views enable the encapsulation of application specific data. An

example is defining a custom simulation view. Defining additional views should be done

with caution. The intent of the model is to specify common process information within

the base views. A simulation view should only contain the instructions or

transformations necessary for the simulator to use the base SPR views. It is not efficient

to have multiple views containing the same process information.

interface sprView : sprExtensibleNamedObject {
void setViewType(in string inViewType);
string getViewType ();

interface sprProcess : sprExtensibleNamedObject {
void setViews(in sprViewSeq inViews)

raises (sprNotUniqueViewType);
void addView(in sprView inView)

raises (sprNotUniqueViewType);
sprViewSeq allViews ();

Table 3: Generic view and process interfaces

3.3.4 Process View

The sprProcessView provides structure for subdividing processes (see Table 4). It

creates a structure to manage process information enabling the reuse of process objects.

For instance, a sub-process for depositing a material only needs to be defined once.

Then, multiple process views may reference this process.

interface sprProcessView : sprView {
void setSubProcesses(in sprProcessSeq inSubProcesses);
void appendSubProcess(in sprProcess inSubProcess);
sprProcessSeq allSubProcesses();

Table 4: Process view interface

3.3.5 Effects

Effects represent changes that occur to a wafer. A sequence of effects within the

sprEffectsView interface details the cumulative change in wafer state during a process



step (see Table 5). Applicable information within the effects view is often used by wafer

state simulators.

interface sprEffectsView : sprView {

void setEffects(in sprEffectSeq inEffects);
void appendEffect(in sprEffect inEffect);
sprEffectSeq allEffects();

Table 5: Effects view interface

A data representation for location is necessary for specifying an effect. The location

defines where on a wafer the effect occurs. For the prototype implementation of SPR, a

structure was defined for a simple effect location (see Table 6). The simple effect

location contains a string defining a region of material coupled with a boolean specifying

whether the region is exposed to the effect. More complex effect locations can be

appended as necessary.

struct sprSimpleEffectLocation (
string MaterialRegion;
boolean IsExposed;

enum sprEffectLocationType {SIMPLE} ;
union sprEffectLocation switch(sprEffectLocationType)

case SIMPLE: sprSimpleEffectLocation Simple;

Table 6: Simple effect location data structure

For effects, distance and material are defined as specific parameters (see Table 7).

They are used to filter and narrow the broad scope of parameters. A distance parameter's

value type is limited to being only a double or a string indicating "all" by the

implementation. sprMaterial is implemented to only accept values of type string.

interface sprDistance : sprParameter { };

interface sprMaterial : sprParameter { };

Table 7: Effect specific parameter interfaces

Effects take a wafer state and transform it to new wafer state. Specific effects

interfaces are defined beyond the base sprEffect in this prototype system (see Table 8).

The base effect interface contains a location. The change material effect specifies a

change from an old to a new material. The deposit effect describes the coating of a



vertical layer of material (see Figure 16). The conformal and planar deposit effects are

subtypes of the deposit effect. The conformal deposit effect deposits a material that

assumes the shape of the base layer (see Figure 17). The planar deposit effect deposits a

level layer of material (see Figure 18).

Figure 16: Deposit effect

Figure 17: Conformal deposit effect

Figure 18: Planar deposit effect

The vertical etch effect has an interface for a thickness and a material. The thickness

is a number or 'all' indicating that all the material should be etched. For a strip etch

effect, the implementation ensures that the thickness is "all." Thus, the entire material

layer is removed. For an isotropic etch effect, an equal thickness of material is removed

across the entire wafer. The base interface for the growth effect contains the type of the

material grown, the resulting thickness, and the depth consumed from the underlying

layer.



interface sprEffect : sprExtensibleObject {

void setEffectLocation(in sprEffectLocation inEffectLocation);
sprEffectLocation getEffectLocation();

interface sprChangeMaterialEffect : sprEffect {

void setOldMaterial(in sprMaterial inOldMaterial);
sprMaterial getOldMaterial();

void setNewMaterial(in sprMaterial inNewMaterial);
sprMaterial getNewMaterial();

interface sprDepositEffect : sprEffect {

void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();
void setThickness(in sprDistance inThickness);

sprDistance getThickness();

interface sprConformalDepositEffect : sprDepositEffect { ;

interface sprPlanarDepositEffect : sprDepositEffect { );

interface sprEtchEffect : sprEffect {

void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();
void setThickness(in sprDistance inThickness);
sprDistance getThickness();

interface sprStripEtchEffect : sprEtchEffect { ;

interface sprIsotrophicEtchEffect : sprEtchEffect { };

interface sprGrowthEffect : sprEffect {
void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();
void setThickness(in sprDistance inThickness);
sprDistance getThickness();
void setDepth(in sprDistance inDepth);
sprDistance getDepth();

Table 8: Effects interfaces

More effects such as add field and diffusion can be added to the model. The effects

were expanded in detail to support initial applications and testing of the system with

process design tools. The method used to extend the SPR IDL with additional effects can

also be used to append the environment and equipment views.



3.3.6 Equipment View

The equipment view defines base interfaces for describing processing equipment.

Additional parameters and equipment interfaces or properties can be used to provided

more details about the machines and equipment settings. The equipment view interface

contains two methods for describing the equipment setup and operation (see Table 9).

interface sprEquipmentView : sprView {

void setMachines(in sprMachineSeq inMachines);

void appendMachine (in sprMachine inMachine);
sprMachineSeq allMachines ();

void setSettings(in sprEquipmentStateSeq inSettings);

void appendSetting(in sprEquipmentState inSetting);

sprEquipmentStateSeq allStates();

Table 9: Equipment view interface

Equipment specific interfaces include equipment state and machine (see Table 10).

The equipment state is a set of properties associated with a duration. The machine is a

named entity with a set of properties. In a thorough SPR implementation, these two

interfaces are the base for a collection of interfaces for fabrication equipment.

interface sprEquipmentState : sprExtensibleObject {

void setTimeDuration(in sprDuration inTimeDuration);

sprDuration getTimeDuration() ;

interface sprMachine : sprExtensibleObject {
void setMachineName(in string inName);
string getMachineName() ;

Table 10: Machine and equipment interfaces

3.3.7 Environment View

The base interfaces are defined for the environment view. The physical state surrounding

the wafer is described using a set of environments (see Table 11). Physical-based process

simulators customarily utilize the environment view. The view may be created by

collecting fabrication statistics. For example, data such as electron concentration and

energy spectra collected from a plasma etcher may be used to create an environment

view.



interface sprEnvironmentView : sprView {

void setEnvironment(in sprEnvironmentSeq inEnvironment);

void appendEnvironment(in sprEnvironment inEnvironment);

sprEnvironmentSeq allEnvironment ();

Table 11: Environment view interface

The environment parameter interface is a specific instance of a timed parameter. It

is used to encapsulate models reflecting the state surrounding the wafer. Sets of

environment parameters form the general environment interface (see Table 12).

interface sprEnvironmentParameter : sprTimedParameter { };

interface sprEnvironment : sprExtensibleObject{
void setTimeDuration(in sprDuration inTimeDuration);
sprDuration getTimeDuration() ;

interface sprGeneralEnvironment : sprEnvironment {

void setEnvironmentParameters
(in sprEnvironmentParameterSeq inParameters);

void appendEnvironmentParameter
(in sprEnvironmentParameter inParameter);

sprEnvironmentParameterSeq allEnvironmentParameters ();

Table 12: Basic environment interfaces

3.4 Server Implementation

CORBA IDL translates into corresponding skeletons and stubs for an assortment of

programming languages. Skeletons are code generated for the server-side

implementation of objects. The stubs are code generated to enable client access to the

objects. Client and server interaction such as managing network connections and

transferring data are performed by skeletons and the stubs (see Figure 19). The SPR

server implementation of skeletons was done in Java [13] to provide a platform

independent prototype.



Object Stubs

Figure 19: CORBA skeleton and stub interaction

There are two techniques for associating an implementation object with a skeleton -

inheritance and delegation [15]. With inheritance, the implementation object extends the

skeleton directly. Delegation associates an implementation object with the skeleton.

Java does not support multiple inheritance. Ergo, the inheritance method of an

implementation object must inherit directly from the skeleton. Consequently, the

delegation method was chosen for implementing the SPR interfaces due to the extensive

use of inheritance among the objects. The class hierarchy of the Java implementation

closely follows the inheritance structure of the interfaces (see Figure 20).

Figure 20: SPR Java implementation hierarchy

Object Skeletons
(Automatically generated)



3.5 Persistent Storage

The initial SPR implementations were used for testing and developing the interface

definitions. When the base SPR interfaces became finalized, a persistent implementation

was created. PSE for Java [16] was employed to create an object-oriented database for

the core set of SPR objects with attributes. As shown in Figure 21, the core classes are a

subset of the interface hierarchy. An object model was defined (see Appendix D) and

implemented in Java for storing process information persistently to disk. Within the

defined database classes, methods convert distributed object references to strings for

persistent storage.

Figure 21: Persistent SPR classes

The development of the SPR and life cycle services were closely coupled. Chapter 4

details more specifically how the persistent classes interact with the CORBA

implementations.

3.6 Example Client Interactions

The client example presented in Table 13 obtains a process reference, prints its name and

the view types it contains. All the object method invocations appear as normal Java calls.

The distributed mechanisms operating within this program are hidden to the programmer

in the automatically generated stubs. Obtaining an initial reference to a process object

has multiple approaches and is discussed with latter services such as the library and

trader (see Chapter 6).



1 sprProcess etchOxide = << obtain initial reference >>;

2 System.out.println(etchOxide.getName() + " process has views of
type:");

3 sprView[] views = etchOxide.allViews();

4 for(int i = 0; i < views.length; i++) {

5 System.out.println(" - " + views[i].getViewType());

6 1

Table 13: Simple client navigation of a semiconductor process



Chapter 4

Life Cycle Service

4.1 Overview

The OMG life cycle service defines interfaces for creating, deleting, copying, and moving

distributed objects [14]. In a distributed environment, operations provided by the life

cycle service allow clients to manage objects in remote locations.

The life cycle service addresses object creation and location. Object creation is a

mechanism for creating objects at a remote location. An interface is defined for

producing remote objects. Object location entails how and where clients indicate remote

object destinations while preserving the CORBA principal of location transparency. An

interface is defined for locating remote objects.

4.2 Description

4.2.1 Factories

A factory is an object that creates and initializes new instances of objects (see Figure 22).

With access to a factory, a client can create multiple objects instances. The factory

determines the location of the new object and allocates the necessary resources for its

implementation. Resources typically include memory or persistent storage mechanisms.

A factory may also interact with a trader or naming service to register object instances.
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Figure 22: Client and factory interaction

4.2.2 Locating Factories

The notion of location is a major concern for any distributed system. Services such as

naming and trader are two services that address this issue. Location is necessary to

create, move, and copy objects. When an object is moved, a mechanism for specifying

"where" the object is moving is needed. For the OMG Life Cycle service, the factory

finder interface is used to determine location. The factory finder may be implemented as

a standalone object managing available factories; or, it may be coupled with the

organizational power of a naming or trader service (see Figure 23).

FactoryFinder NamingContext FactoryFinder Trader

NamingBasedFactoryFinder TraderBasedFactoryFinder

Figure 23: Factory finder interface used in conjunction with other location services.

4.3 Interfaces

The Life Cycle service consists of three interfaces - generic factory, life cycle object, and

factory finder. These interfaces and some base data structures are discussed in the

following subsections.

4.3.1 Base Structures

Three data structures are used with the life cycle service (see Table 14). A Key structure

is defined as a name and a hostname. Keys are used to name and locate factories. A

factory entry structure associates a key with a generic factory. Lastly, a name value pair

structure is defined as a name with an associated value. The CORBA type any is used to



pass any primitive data type or defined interface. Sequences of the Name Value Pair

structure are used to pass Criteria to factories and factory finders.

struct Key {
string name;
string hostname;

struct factory_entry {
Key key;
GenericFactory factory_ref;

typedef struct NVP (
string name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

Table 14: Basic life cycle data structures

4.3.2 Generic Factory

The job of a generic factory is to match creation criteria specified by clients of the

GenericFactory interface (see Table 15) with specific factory implementations [14].

The OMG defines create_object and supports methods for the GenericFactory interface.

The methods list_objects, remove_object, and shutdown are custom extensions.

Create_object is a generic creation method that passes requests to specific factory

implementations. It takes a key to identify the factory implementation and criteria to

define how the object is initialized. The supports operation returns true if the generic

factory can create an object given a factory key. The list_objects operation takes a key to

identify a specific factory and returns a sequence of all the objects created by that specific

factory. The remove_object method takes a factory key and object reference and removes

the specified object from the factory's list of created objects. It returns true if the

removal is successful. This operation is intended for use with persistent storage

mechanisms. The shutdown method is for remotely shutting down a generic factory

service.



interface GenericFactory {
boolean supports(in Key k);
Object createobject(in Key k, in Criteria the_criteria)

raises (NoFactory, InvalidCriteria, CannotMeetCriteria);
ObjectSeq listobjects(in Key k)

raises (NoFactory);
boolean remove_object(in Key factory_key, in Object obj_ref)

raises (NoFactory);
void shutdown();

Table 15: Generic factory interface

4.3.3 Factory Finder

Clients use a factory finder interface to specify the destination of a move or a copy

operation. The FactoryFinder interface (see Table 16) has one OMG defined method -

findfactories. The methods addfactory and shutdownAll are custom extensions.

The findfactories operation takes a key to identify the target generic factory. A

sequence of factories with matching keys is returned by the operation. The addjactory

method passes a key and a generic factory reference to be added to the factory finder's

scope. The operation is used by generic factory implementations to notify the factory

finder of its location. The shutdownAll method shuts down the factory finder service and

all the factory objects within its scope.

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises (NoFactory);
void add_factory(in Key factory key, in GenericFactory factory_ref)

raises (DuplicateKey);
void shutdownAll();

};

Table 16: Factory finder interface

4.3.4 Life Cycle Object

Objects participate in the life cycle service by extending the LifeCycleObject interface.

The OMG defines the copy, move, and remove operations for the LifeCycleObject

interface (see Table 17). The methods getMarker, setFactoryName, and getFactoryName

are custom extensions.

The copy operation makes a copy of the object. The factory finder and criteria

determine the new object's location. A reference to the new object is returned by the



method. The move operation moves an object to the location specified by the factory

finder and criteria. It returns its new reference. The remove method instructs the object

to destroy itself. The object reference is no longer valid after the remove operation

successfully completes. The get_marker operation returns a string containing the object's

interface name. Factories notify an object that the factory created it by using the

setFactoryName method. The getFactoryName operation is used to determine which

factory created the object instance.

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there, in Criteria the_criteria)

raises (NoFactory, NotCopyable, InvalidCriteria, CannotMeetCriteria);
LifeCycleObject move(in FactoryFinder there, in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria, CannotMeetCriteria);
void remove ()

raises (NotRemovable);
string getMarker();
void setFactoryName(in string name);
string getFactoryName();

Table 17: Life cycle object interface

4.4 Implementations

The components of the life cycle service were implemented in Java. The SPR

implementations participate by implementing a defined functionality. In the case of the

life cycle service, this is the life cycle object interface. The generic factory also

participates by passing the task of object creation to object-specific factories. The factory

finder is the only generic aspect of a life cycle service implementation.

4.4.1 Generic Factory

The generic factory object implements operations for support, create_object, list_objects,

remove_object, and shutdown. The generic factory does not perform the actual creation.

Specific implementation factories for individual objects that the generic factory supports

perform the creation. For the distributed software architecture for semiconductor process

design, the generic factory supports creating all the objects defined by the SPR service

(see Chapter 3).

The specific factories for each SPR object extend from an abstract factory class that

implements base methods such as listing the objects created and removing objects from

this list. The abstract factory persistently stores the list of object references it creates.



This correlates to a second list of database objects. These two lists are stored to disk.

They provide persistent storage for the repository objects. The specific factories

implement create the object instance and link it to its respective database object.

The generic factory creates instances of all the specific factories that it supports.

These factories and their respective keys are stored in a list that is searched when a client

invokes the support method. The operation returns true if the generic factory finds the

factory key in the list.

The create_object is passed a key identifying a specific factory for creating the

object. The specific factory then creates the object based on the given criteria. The only

criterion supported in the current implementation is to name the object. The object name

is encoded within the interoperable object reference (IOR). If an object name criterion is

not given, a unique random name is assigned to the object. Other criteria can be defined

to initialize the object with values or to represent other constraints on the creation

process. Figure 24 shows a client invoking the generic factory to create a process object.

The generic factory passes the call to the process factory and returns a reference to the

client.
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Figure 24: Client creating a process object

The list_objects operation returns a list of objects from the factory specified by the

given key. The remove_object method deletes the persistent storage of an object given

the factory key and the object reference. The shutdown operation commits all current

data operations, closes the database, and turns off the factory service.



4.4.2 Factory Finder

The factory finder implementation keeps a list of all factories within its scope. The

scope is defined as any factory that notifies the factory finder via the add-factory

method. Thefindjfactories operation cycles through the list of known factories and

returns any that matches the given key. If a blank key is given (both name and host are

empty strings), all the factories within the finder's scope are returned. The shutdownAll

method cycles through all the factories within the finder's scope, calls their shutdown

operation and then exits. Alternate implementations could utilize a trader or naming

service to find factories.

4.4.3 Life Cycle Object

The life cycle object is the participatory aspect of the life cycle service. All SPR objects

in the architecture inherit and implement the life cycle object interface. This enables the

copying, moving, and removing of SPR objects.

The life cycle object implementation takes the approach of deep copying all objects

except the process view. The process view is the only recursive object in that it

references other process objects. Thus, only the references of the process view are

copied. For removal, a process view deletes itself and its properties but not the processes

that it references. The remove operation deletes an object via removing itself from

memory and its persistent image. The move operation combines the copy and the remove

methods. The two criteria implemented for the copy and move operations are for naming

the new object and specifying a generic factory key within the factory finder scope.

A more expansive life cycle object implementation would add criteria for specifying

different implementations and policies for copy, moving, and removing objects.

4.5 Examples
Two examples of a client interacting with the life cycle service are shown. The first set

of code (see Table 18) binds to a factory finder, creates a process object using criteria,

and then removes the object. The first line performs an initialization of the orb object.

The need for obtaining an initial object reference is a bootstrapping problem for client

applications. In this example, a universal resource locator (URL) is used to read a file

containing a stringified IOR for a factory finder service (lines 2-9). The reference is then

converted to a factory finder reference (lines 10-11). Keys are created to find the generic



factory ("MTL") and specify the specific factory ("ProcessFactory") to use (lines 12-13).

Note that when the host field of the key structure is a blank string, the field is ignored.

Criteria to specify an object name is then instantiated (lines 14-16). The factory finder

binds to the "MTL" generic factory (line 17) and the factory creates a new process object

(line 18-19). With a reference to the object, the name is set (line 20) and then the object's

remove operation is called (line 21).

// initialize ORB

1 ORB orb = ORB.init(new String[O], new java.util.Properties());

// bind to Factory finder via IOR

2 URL iorURL = new URL("http://gun.mit.edu/SPR/factoryfinder.ior");

3 URLConnection connection = iorURL.openConnection();

4 InputStream input = connection.getInputStream();

5 InputStreamReader reader = new InputStreamReader(input);

6 BufferedReader in = new BufferedReader(reader);

7 String buffer = in.readLine();

8 reader.close();

9 input.close();

10 Object obj = orb.string_to_object(buffer);

11 FactoryFinder ff = FactoryFinderHelper.narrow(obj);

// create keys for the factories

12 Key specificKey = new Key("ProcessFactory", "");

13 Key genericKey = new Key("MTL", "");

// create name criteria

14 NVP[] criteria = new NVP[l];

15 criteria[0] =new NVP("NewObjectName", orb.create_any ());

16 criteria[0].value.insert_string("Etch Oxide Object");

// find factories

17 GenericFactory[] factories = ff.find_factories(genericKey);

// create object

18 obj = factories[0].create_object(specificKey, criteria);

19 sprProcess etch = sprProcessHelper.narrow(obj);

// set process name

20 etch.setName("Etch Oxide");

// remove process object

21 etch.remove();

Table 18: Life cycle client example

The second example uses a helper client class for interacting with the life cycle

service. The helper class (spr.Base.Client) was defined to reduce the amount of code

necessary to interact with the life cycle service. As shown in the previous example, the



simple task of creating a process object takes multiple lines of code. The helper class

contains operations to automate connecting to factory finders or factories and creating

SPR defined objects. Table 19 shows the creation of a process object along with some

properties and three views. The first line initializes the helper class with "MTL" as the

default factory key. A new process is created and named "Etch-Oxide" (lines 2-3).

Properties are created for the "version" and "date" and added to the process object (lines

4-9). Process, equipment, and environment views are created and added to the "Etch-

Oxide" object (lines 10-17). Finally, the example from the previous chapter (lines 18-22)

is used to output the view types of the process object (see Table 20).

1 spr.Base.Client helper = new spr.Base.Client(new Key("MTL",""));

2 sprProcess etchOxide = helper.newProcess();

3 etchOxide.setName("Etch Oxide");

4 sprProperty[] properties = new sprProperty[2];

5 sprProperty version = helper.createProperty("Version", 7);

6 properties[0] = version;

7 sprProperty date = helper.createProperty("Date", "05/26/97");

8 properties[l] = date;

9 etchOxide.setProperties(properties);

10 sprProcessView processView = helper.newProcessView();

11 sprEquipmentView equipmentView = helper.newEquipmentView();

12 sprEffectsView effectsView = helper.newEffectsView();

13 sprView[] mainViews = new sprView[3];

14 mainViews[0] = processView;

15 mainViews[l] = equipmentView;

16 mainViews[2] = effectsView;

17 etchOxide.setViews(mainViews);

18 System.out.println(etchOxide.getName() + " process has views of type:");

19 sprView[] views = etchOxide.allViews();

20 for(int i=0; i < views.length; i++) {

21 System.out.println(" - " + views[i].getViewType());

22

Table 19: Life cycle client with helper class

Etch Oxide process has views of type:
- sprProcess
- sprEquipment

- sprEffects

Table 20: Output of client interaction



Chapter 5

Organizing and Searching the Repository

5.1 Overview

The SPR and life cycle services provide the core functionality for a distributed

semiconductor process repository. A representation for communicating and managing

semiconductor process information across a global computer network is the foundation of

the repository. These services do not define interfaces for organizing and searching the

process information. The organization was kept independent of the repository to allow

multiple interfaces and implementations. A library service was defined to organize

remote processes into catalogs and query extensions were added to the life cycle service

for searching repositories.

5.2 Library Service

5.2.1 Description

The organization of repositories was defined separate from the SPR service to allow

multiple abstractions and implementations. A library service organizes processes into

catalogs (see Figure 25). The processes within a catalog can be stored in repositories

distributed across multiple systems. Thus, a collection of processes from distributed

repositories appear as a single entity. The interfaces of the library service provide

operations for managing catalogs.
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Figure 25: Library service

5.2.2 Interfaces

The Catalog is the only data structure defined for the Library interface (see Table 21).

The structure consists of a name and a sequence of processes. It is used to group process

references with an associated catalog name. The library is constructed as a collection of

process catalogs.

struct Catalog {
string name;
sprCORBA::sprProcessSeq processes;

Table 21: Catalog data structure

The SPR library stores collections of semiconductor processes in catalogs. An

example is a library for the Microsystems Technology Lab (MTL) at MIT. Some of the

catalogs included would be for CMOS and MEMS processes. The Library interface (see

Table 22) defines the methods setName, getName, addCatalog, removeCatalog,

allCatalogs, setProcesses, getProcesses, addProcess, removeProcess, and shutdown.

The first set of operations manage the library. The setName and getName operations

are for accessing and changing the library name. The addCatalog method appends the

inputted catalog to the library's current collection. It raises a DuplicateCatalogException

when a catalog with the same name already exists within the library. The removeCatalog

operation deletes a catalog given a name. It raises a CatalogDoesNotExist exception if



there is no catalog with the given name. The allCatalog operation returns a sequence of

strings containing the names of all the catalogs.

The second set of methods manage the processes within a catalog. The setProcesses

operation is passed a catalog name and a sequence of processes to fill the catalog. The

getProcesses method takes a string with a catalog name and returns the catalog's process

sequence. The addProcess and removeProcess append and delete individual processes

from a given catalog. All the catalog management operations raise a

CatalogDoesNotExist exception if there is no catalog corresponding to the specified

name.

interface Library {
void setName(in string name);
string getName() ;

void addCatalog(in Catalog inCatalog)raises (DuplicateCatalogName);
void removeCatalog(in string name) raises(CatalogDoesNotExist);
StringSeq allCatalogs();

void setProcesses(in string inCatalogName,
in sprCORBA::sprProcessSeq inProcesses)

raises (CatalogDoesNotExist);
sprCORBA::sprProcessSeq getProcesses(in string inCatalogName)

raises (CatalogDoesNotExist);
void addProcess(in string inCatalogName,

in sprCORBA::sprProcess inProcess)
raises (CatalogDoesNotExist);

void removeProcess(in string inCatalogName,
in string inProcessName)

raises (CatalogDoesNotExist);

void shutdown();

Table 22: Library interface

5.2.3 Implementation

The Library skeleton is implemented in Java using the delegation method. The service

implementation is a straightforward mapping to the IDL-defined interfaces. Following

the SPR implementation, PSE for Java [14] is used to store the library name and catalogs

of process references persistently. All process object references are converted to and

from strings when writing and reading from disk.

5.2.4 Example

Table 23 shows an example client interaction with the library service. The example

starts with the standard initialization of the orb and client helper objects (lines 1-2). It



then binds to a library (line 3). A new catalog is created and filled (lines 4-8). The

catalog is added to the library (line 9). Lastly, a set of loops iterates through the library's

collection of catalogs and its respective processes (lines 10-17). The output generated

from this example is shown in Table 24.

1 ORB orb = ORB.init();

2 spr.Base.Client helper = new spr.Base.Client();

// Bind to Library

3 Library libRef = helper.bindLibrary();

// Create CMOS Catalog

4 sprProcess[] processes = new sprProcess[3];

5 processes[0] = baseline;

6 processes[l] = bicmos;

7 processes[2] = ccdcmos;

8 Catalog CMOS = new Catalog("CMOS", processes);

// Add catalog to the library

9 libRef.addCatalog(CMOS);

10 System.out.println(libRef.getName() +
"'s catalogs and processes:");

11 String[] cats = libRef.allCatalogs();

12 sprProcess[] sProcesses;

13 for(int i=O; i < cats.length; i++) {

14 System.out.println(" -> " + cats[il);

15 sProcesses = libRef.getProcesses(cats[i]);

16 for(int j=O; j < sProcesses.length; j++) {

17 System.out.println(" o " + sProcesses[j].getName());

}

Table 23: Library example

MTL's catalogs and processes:
> CMOS
o Baseline
o BiCMOS
o CCD/CMOS

Table 24: Output of library example

5.3 Query Extensions

5.3.1 Description

For additional repository access, query extensions were defined and added to the life

cycle service. The additional method allows a query to utilize the underlying repository

database. The intention of the query operation is to lay the foundation for a full query



service implementation. The query operation allows a query service to access the speed

and efficiency of the repository's underlying database.

5.3.2 Interface

A constraint structure was defined to pass queries to factories. The structure contains a

name for identifying the type of query, a value, and a predicate. The constraint structure

defines a generic constraint mechanism for queries. Another possible implementation is

to pass strings in a query language. A specification for the query language would be

associated with the defined interfaces.

enum Predicate { EQ, NEQ, GTE, LTE, GT, LT };

typedef struct constr {
string name;
any value;
Predicate predicate;

} Constraint;
typedef sequence <Constraint> ConstraintSeq;

Table 25: Query data structures

The QuerableGenericFactory interface extends the life cycle's GenericFactory

interface to include a query_objects operation. The operation takes a specific factory key

and a sequences of constraints as arguments. It evaluates the constraints for the factory

specified and returns a sequence of objects that satisfy the constraints.

interface QueryableGenericFactory :: GenericFactory {
ObjectSeq query_objects(in Key k, in ConstraintSeq constraints)

raises (NoFactory, InvalidConstraint);

Table 26: Query capable factory interface

5.3.3 Implementation

Following from the life cycle service, the query extensions were implemented in Java

closely interacting with the underlying object-oriented database. The prototype

implementation of the query extensions only supports searching process objects with

constraints for identification and name. Other objects and criteria can be defined and

added to the current the implementation.

The implementation object for the QueryableGenericFactory interface passes a

query to the specific factory identified by a key. The specific factory directly searches its

collection of objects created. The method allows a collection of remote object references



to be efficiently searched, avoiding the overhead associated with iterating through a

sequence of remote object references.

5.3.4 Example

An example using the query extensions binds to three factories, queries each factory for a

process with a name equal to "etch-oxide," and then prints the results of each query (see

Table 27). The first two lines of the code initialize the orb and client helper objects.

Keys are then created for binding to three generic factories (lines 3-5). References to the

factories are located via the factory finder (lines 6-11). A key to the specific factory to

search is instantiated (line 12). Constraints are defined for searching for a process with a

name equal to "etch-oxide" (lines 13-19). Finally, the query is performed at each factory

(lines 20-22) and the results are output (lines 23-25).

Table 27: Query extensions example

I ORB orb = ORB.init();

2 spr.Base.Client helper = new spr.Base.Client();

// Create Specific Factory Keys

3 Key mtlKey = new edu.mit.mtl.LifeCycle.Key("MTL","");

4 Key sprKey = new edu.mit.mtl.LifeCycle.Key("SPR Research","");

5 Key experKey = new edu.mit.mtl.LifeCycle.Key("MTL Experimental","");

// Bind to factories

6 GenericFactory mtlFactory

7 = ((helper.bindFactoryFinder()).find_factories(mtlKey))[01;

8 GenericFactory sprFactory

9 = ((helper.bindFactoryFinder()).find_factories(sprKey)) [0];

10 GenericFactory experFactory

II = ((helper.bindFactoryFinder()).find_factories(experKey)) [0];

12 Key processFact = new Key("ProcessFactory", "");

13 constr[] constraints = new constr[l];

14 Any search = (orb.createany());

15 search.insert_string("etch-oxide");

16 constraints[0] = new edu.mit.mtl.LifeCycle.constr(

17 "Name",

18 search,

19 Predicate.EQ );

20 Object[] objl = mtlFactory.queryobjects(processFact, constraints);

21 Object[] obj2 = sprFactory.query_objects(processFact, constraints);

22 Object[] obj3 = experFactory.query_objects(processFact, constraints);

23 System.out.println("MTL : " + objl.length);

24 System.out.println("SPR : " + obj2.length);

25 System.out.println("Exper : " + obj3.length);



Chapter 6

Locating Services

6.1 Overview

The OMG defines a trader service to facilitate importing and exporting services [14]. It

advertises and matches service capabilities to the appropriate client applications. The

distributed software architecture for semiconductor process design utilizes a generic

trader service, JTrader [17], allowing client applications to obtain services such as the

library, repository, and factory finder.

6.2 Description

Traders are repositories of object references coupled with an interface type and a

descriptive set of properties [15]. A service exports a service offer by advertising its

functionality to the trader. The service offer contains a reference to the object coupled

with specific property values (exporting). Client applications import services from a

trader by requesting a desired functionality based on the interface type and properties of

a service offer (importing).

A service type is a template used to ensure that service offers are grouped together

with similar functional descriptions. It consists of an interface type and a defined set of

properties (see Table 28). A service type allows clients to efficiently search and match

offers within a trader. The service type encourages offered services and client

applications to use common properties for classifying services.



Table 28: Example service type

A program exports a service offer to a trader. Clients use stubs generated from IDL

to access services. The same client stubs can be used to access any service that

implements the server-side skeletons. Thus, a client application can choose any

advertised service that supports the defined IDL. Applications make a choice using

constraints and preferences based upon the service properties advertised. Dynamically

assigning services at runtime allows service implementations to be upgraded and

enhanced without making changes to client applications.

The OMG defines trader interfaces for searching and managing a database of service

offers. In addition, a trader can be linked to other traders. It utilizes links to pass queries

to a larger pool of services. A group of linked traders is referred to as afederated trader.

A trader may vary in the implementation level of OMG defined interfaces. Policies allow

traders to define which interfaces are supported. A trader that supports all the OMG

defined interfaces except linking is a standalone trader. JTrader [17] is a standalone

trader implementation.

A scenario where a trader service is useful for semiconductor process design is

locating software tools such as simulators. Currently, a process designer invokes a

simulator by knowing the program location. If a new simulator becomes available, email,

news, or other communication media notify users. Users then become responsible for

"reprogramming" themselves to use the new simulator. A more efficient method for

upgrading a simulator is to have users supply client applications (e.g. a process editor)

with simulator requirements that automate the service selection using a trader. When

new simulators become available that match the designers predefined requirements, the

user can use the new simulator without knowledge of specific details such as location.

Similar scenarios can be described for the interactions between the software

architecture's foundation components such as the library, generic factory (repository),

and factory finder.

service exampleServiceType {
interface IDLinterface;
mandatory property string name;
property sequence<string> moreProperties;



6.3 Service Types

As part of the base software architecture, service types are defined for the library, generic

factory, and factory finder. The service types are used to advertise the three fundamental

interfaces used by clients for accessing, managing, and organizing SPR objects. When

simulators and fabrication facilities are added to the architecture, appropriate service

types should be defined.

6.3.1 SPR Repository

The foundation of a repository is the life cycle service's generic factory object. It

contains interfaces for creating and accessing SPR object instances. A service type is

defined for a SPR repository to advertise services that support the generic factory

interface (see Table 29). The service type contains basic properties for defining a name,

host, and version. Boolean variables are used to classify whether a factory is capable of

storing objects persistently and if the factory supports query extensions. Last, a sequence

of strings is used to classify the types of process objects that a repository supports. The

classification is used for keyword indexing of repositories.

service sprRepository {
interface GenericFactory;
mandatory property string name;
property string host;
property string version;
property boolean persistent;
property boolean queryable;
property sequence<string> processTypes;

Table 29: Repository service definition

6.3.2 SPR Library

The SPR library object is used to organize processes across multiple repositories. A SPR

library service type is defined to advertise services that support the library interface (see

Table 30). Similar to the repository service type definition, it contains basic properties

for a name, host, and version. A boolean variable is used to classify whether the library

persistently stores information to disk. A sequence of strings is used to classify the types

of repositories that the library contains.



service sprLibrary {
interface Library;
mandatory property string name;
property string host;
property string version;
property boolean persistent;
property sequence<string> processTypes;

Table 30: Library service definition

6.3.3 Factory Finder

The life cycle service's factory finder is used to link multiple factories within a given

scope. A factory finder service type is defined to advertise instances of factory finders

(see Table 31). Again, the service contains basic properties to define a name, host, and

version. Boolean variables are used to classify whether the factory finder supports OMG

defined interfaces and if there are interface extensions. A sequence of strings details any

customizations or variations from the standard OMG interfaces.

service FactoryFinder (
interface FactoryFinder;
mandatory property string name;
property string host;
property string version;
property boolean OMGcapable;
property boolean Extensions;
property sequence<string> supportedIDL;

Table 31: Factory finder service definition

6.4 Examples

Adding service type definitions is the first step required to use the trader service. The

trader implementation, JTrader [17], utilizes a graphical interface for managing the

service type definitions. The service types for SPR repository, SPR library, and factory

finder were defined using the service type manager (see Figure 26).



Figure 26: Adding service types

Once the service types have been defined in the trader, specific service

implementations can be registered. Table 32 contains the Java code used to register a

SPR library service offer. The first two lines use the helper function to bind to the trader

service. Next, a reference to the registration module is retrieved (lines 3-4). Properties

for a name and hostname are created (lines 5-16). Finally, the library implementation is

registered using the trader service (lines 17-18).
// Bind to Trader and retrieve interface to service repository

I Lookup lookup = helper.bindTrader();

2 org.omg.CORBA.Object obj = lookup.type_repos();

3 Register reg = null;

4 reg = lookup.register_if();

5 int num = 0;

6 Property[] props = new Property[2];
7 props[num] = new Property();

8 props[num].name = "name" ;

9 props[num].value = orb.create_any();
10 props[num].value.insert_string("MTL");

11 num++;
12 props[num] = new Property();

13 props[num].name = "hostname";

14 props[num].value = orb.create_any();

15 props[num].value.insert_string("gunpowder.mit.edu");

16 num++;

// bind to Library and offer the service
17 Library lib = helper.bindLibrary("MTL");

18 String id = reg.export(lib, "sprLibrary", props);

Table 32: Service offer for SPR Library



After the service offers are registered with the trader, queries can be performed on

available services. Constraints and preferences are used for querying service properties.

Constraints restrict the outcome of the search using boolean expressions of service

properties. A constraint is required with true being the simplest. A preference is used to

order the sequence services that match the given constraints. Preferences consist of a

modifier and a boolean expression. Modifiers include minimum, maximum, random,

with, and first. Preferences are an optional input. The default ordering is to return a

sequence of service references in the order that the trader stores the matching offers.

The JTrader [17] implementation includes a simple graphical interface for

demonstrating queries of the trader service. The application is used to perform a

constraint and preference based query on available SPR libraries. Three available

libraries are registered with the trader. Their names are "MTL," "SPR Research," and

"ICL." The first search constrains the name to be equal to "SPR Research" without any

preferences (see Figure 27). As expected, a reference to library named "SPR Research"

is returned. The second query uses true as the constraint and a preference that the name

is equal to "MTL" (see Figure 28). The resulting search returned all three libraries with

"MTL" first in the sequence. The use of this simple query application demonstrates how

any client application can use a trader service to locate services transparent to location.



Figure 27: Query with constraints

Figure 28: Query with preference



Chapter 7

Semiconductor Process Browser
In chapters 3, 4, 5, and 6, the base services of a distributed software architecture for

semiconductor process design were detailed. This chapter introduces a semiconductor

process browser that utilizes the architecture. Emphasis is placed on areas where the

browser interacts with the trader, library, SPR, and life cycle services.

7.1 Overview

A semiconductor process browser was developed to test and demonstrate the

functionality of the distributed software architecture [18]. The browser can access

process information from a heterogeneous collection of repositories across global

networks. The browser uses the components of the distributed software architecture for

semiconductor process design to interact with repositories and surrounding services. The

browser is a Java applet [13] that views semiconductor process information. It can be

extended to support editing capabilities and other services such as simulators and

fabrication tools as they become available through the trader service.

7.2 Finding services
The semiconductor process browser uses a trader service to retrieve initial object

references. The trader service publishes a stringified IOR at a known URL location. The

applet reads the IOR, converts it to an object reference, and binds to the trader. Once that

applet is connected to the trader service, it can obtain references to services such as

libraries.



Upon startup, the process browser queries the trader service to find all available SPR

libraries. Users can connect to any of the libraries returned by the trader (see Figure 29).

Information from the trader such as name, hostname, version, persistent, and process

types can be displayed to users.

Select a Library

SPR Research ________

Cal MEMS Processes
ICL Research Processes
Stanford MEMS Processes
MrT MEMS Processes
MTL

Figure 29: Browser interacting with trader service

7.3 Library service
Once connected to a library service, the browser retrieves and displays a list of catalogs

(see Figure 30). Users select specific process catalogs to view. The applet uses the

allCatalogs interface to retrieve the list of catalogs from the library server. The selection

of a catalog brings up a new window with a list of processes. Upon selecting a catalog,

the browser uses the library's getProcesses interface to retrieve a sequence of SPR

process references.

L



Select a Library

SPR Research
Etch (wet and dry)
Active Processes

Figure 30: Browser interacting with library service

7.4 SPR service
With a sequence of processes, the SPR interfaces are used for accessing process

characteristics and attributes (see Figure 31). The uppermost panel of the window

displays the current location with the catalog and process. The example shown is in the

sub-step oxide-boe-etch of the process backside-oxide-wet-etch within the catalog. The

next panel contains object properties. The properties are retrieved via the getProperties

interface, which all SPR objects support. In the example shown, properties such as

duration, sink, and tank are displayed for the equipment view of the process step. Users

can switch views of the process via the middle menu panel. References to views of a

process object are gathered using the allViews interface. Lastly, view-specific attributes,

such as machines for the equipment view, are displayed in the bottom portion of the

window. The information is retrieved using view-dependent interfaces such as

getMachines from the equipment view.

- -.. ---~-



oxide in ICL

Figure 31: Browser interacting with SPR service

7.5 Utilizing the Life Cycle service
The current implementation of the SPR process browser does not allow editing of process
information. Thus, there is no interaction with the life cycle service. Possible future

research includes integrating editing capabilities to transform the browser into an editor.
The life cycle service would be used for creating and managing remote SPR objects.

An editor would use the trader service to retrieve a reference to a repository for
creating SPR objects. This entails binding to either a generic factory or a factory finder.
For creating objects in only one remote location, a generic factory would be used.

However, if a user needs to create objects at multiple remote locations, a factory finder
would be more appropriate. Other life cycle operations such as copying, moving, and
deleting objects are supported by each instance of SPR objects.



Chapter 8

Conclusion
Current computer systems for semiconductor process design are not well designed for

distributed computing. Hardware and software dependencies, communication protocols,

and lack of interfaces for managing distributed data are deficiencies of existing systems.

Research presented in this thesis defines and implements a distributed software

architecture for designing semiconductor processes. The architecture addresses the need

for a common representation for semiconductor processes and implements surrounding

services for managing and organizing repositories.

The semiconductor process representation (SPR) is used for communicating

information about fabrication processes within the software architecture. The

programmatic interfaces for processes are based on the SPR standard. The interfaces

were defined such that repositories and clients can be implemented in multiple languages

across platforms. The SPR interfaces allow process designers and manufacturers to

communicate process information between services and applications across global

networks.

An implementation of the OMG life cycle service has interfaces for creating,

deleting, copying, and moving distributed objects [14]. In the distributed software

architecture for semiconductor process design, the operations provided by the life cycle

service are used by clients to manage SPR objects in remote locations.

Together, the SPR and life cycle services provide the core functionality for a

distributed semiconductor process repository. This core does not include interfaces for



organizing and searching process information. Organizational and search interfaces were

developed independent of the repository to allow multiple implementations. A library

service was defined to organize remote processes into catalogs and query extensions were

added to the life cycle service for searching individual repositories.

The architecture utilizes a generic trader service to facilitate matching client

applications with the appropriate services. The distributed software architecture uses the

trader with defined service types to enable client applications access to services such as

the library, repository, and factory finder.

The creation of the semiconductor process browser demonstrates the functionality of

the distributed software architecture. It can access process repositories across global

networks. The browser uses the components of the software architecture to interact with

distributed SPR repositories.

The main goal of this research was to define and implement platform independent

interfaces enabling the development of distributed computing applications for

semiconductor fabrication process design. A foundation of services have been defined

and implemented to be reusable, extensible, portable, and easy to adopt. The generated

modules can be used in the process management component of the SEMATECH CIM

framework. The interaction of various client applications with the system will lead to

further development and expansion of the distributed software architecture.
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Appendix A

SPR IDL
This appendix contains the base Semiconductor Process Representation (SPR) IDL.

/*****************************************************************************

IDL Declarations for Semiconductor Process Representation (SPR)

Author: Matt Verminski (mvermins@mit.edu)
Date: 25-March-1997
Revised: 31-October-1997

#include "LifeCycle.idl"

module sprCORBA {
/**************************************************************************

BASE INFORMATION MODEL - Guideline for how process information is organized.

/* INTERFACE DECLARATIONS */
interface sprDistance;
interface sprEffect;
interface sprEffectsView;
interface sprEnvironment;
interface sprEnvironmentView;
interface sprEquipmentView;
interface sprEquipmentState;
interface sprExtensibleObject;
interface sprExtensibleNamedObject;
interface sprGeneralEnvironment;
interface sprGeneralEnvironmentParameter;
interface sprMachine;
interface sprMaterial;
interface sprNamedObject;
interface sprParameter;
interface sprProcess;
interface sprProcessView;
interface sprProperty;
interface sprTimedParameter;
interface sprView;

interface sprDepositEffect;
interface sprChangeMaterialEffect;
interface sprConformalDepositEffect;
interface sprPlanarDepositEffect;



interface sprEtchEffect;
interface sprStripEtchEffect;
interface sprIsotrohicEtchEffect;
interface sprGrowthEffect;

/* Type definitions for specific parameter types */

/* TYPE DEFINITIONS and BASE DATA STRUCTURES */

// Sequences used to represent sets of objects
typedef sequence<sprEffect> sprEffectSeq;
typedef sequence<sprEquipmentState> sprEquipmentStateSeq;
typedef sequence<sprEnvironment> sprEnvironmentSeq;
typedef sequence<sprTimedParameter> sprEnvironmentParameterSeq;
typedef sequence<sprMachine> sprMachineSeq;
typedef sequence<sprProcess> sprProcessSeq;
typedef sequence<sprProperty> sprPropertySeq;
typedef sequence<sprView> sprViewSeq;

// Define duration as a struct of hours, minutes, seconds
// If hours and minutes are 99, then the duration is undefined.
struct sprDuration {

long hours;
long minutes;
float seconds;

// sprStatFloat is a parameter that contains a mean value and its
// respective standard deviation
struct sprStatFloat {

float mean;
float sdev;

// Value is either a primitive data type or and sprParameter
enum sprValueType { BOOLEAN, SHORT, LONG, FLOAT, DOUBLE, STRING,

PARAMETER, STATFLOAT );
union sprValue switch(sprValueType) {

case BOOLEAN: boolean Boolean;
case SHORT: short Short;
case LONG: long Long;
case FLOAT: float Float;
case DOUBLE: double Double;
case STRING: string String;
case PARAMETER: sprParameter Parameter;
case STATFLOAT: sprStatFloat StatFloat;

// Structure definitions for various Effect Locations
struct sprSimpleEffectLocation {
string MaterialRegion;
boolean IsExposed;

};

// EffectLocation describes where on (or in) the wafer the effect occurs
// by specifying the material region to which the effect applies, and
// whether or not the region is exposed.
enum sprEffectLocationType {SIMPLE};
union sprEffectLocation switch(sprEffectLocationType)

case SIMPLE: sprSimpleEffectLocation Simple;
1;

// Enumeration of possiblue units (used by Parameters)
enum sprUnits { NONE, m, mm, nam, pm, sec, ns, ps, cSt, A};
// fill in more later

// EXCEPTIONS
exception sprNotUniqueViewType { string sprViewType; } ;
exception sprInvalidValue { string reason; } ;
exception sprInvalidUnits { string reason; } ;



// EXCEPTION for invalid parameters
exception sprInvalidMaterial { string reason; } ;
exception sprInvalidTimedParameter { string reason; }
exception sprInvalidEnvironmentParameter { string reason; } ;
exception sprInvalidDistance { string reason; } ;

/* INTERFACE DECLARATIONS */

// spr::Property
//
// Name, value pair. Useful for modeling "top-level parameters" and
// other possiblities such as documentation. Effective mechanism for
// extending the information model.
interface sprProperty : LifeCycle::LifeCycleObject {
void setName(in string inPropertyName);
string getName();

void setValue(in sprValue inValue);
sprValue getValue();

};

// spr::ExtensibleObject
/ ---------------------
// ExtensibleObject is an abstract interface which contains a set
/! (sequence) of properties. Used to model additional attributes of
// objects.
interface sprExtensibleObject : LifeCycle::LifeCycleObject {
void setProperties(in sprPropertySeq inProperties);
void addProperty(in sprProperty inProperty);
sprPropertySeq allProperties();

// spr::NamedObject
/----------------

// NamedObject is an abstract interface to attach a name reference
// to objects.
interface sprNamedObject : LifeCycle::LifeCycleObject {
void setName(in string inObjectName);
string getName();

// spr::ExtensibleNamedObject

// ExtensibleNamedObject is an abstract superclass of named and
// extensible objects.
interface sprExtensibleNamedObject : sprNamedObject, sprExtensibleObject {

// spr::View

// Contains specific information about a particular view of the process.
// There are four basic views that are derived from spr::View -
// spr::ProcessView, spr::EffectsView, spr::EnvironmentView, and
// spr::EquipmentView
interface sprView : sprExtensibleNamedObject {
void setViewType(in string inViewType);
string getViewType();

// spr::Effect
//---------
// Description of the change to the state of a wafer. Take wafer states
// and transform them to new wafer states.
interface sprEffect : sprExtensibleObject {
void setEffectLocation(in sprEffectLocation inEffectLocation);
sprEffectLocation getEffectLocation();

// spr::EquipmentState



/-
// Describe important equipment settings and a time duration that is
// associated with the settings.
interface sprEquipmentState : sprExtensibleObject {
void setTimeDuration(in sprDuration inTimeDuration);
sprDuration getTimeDuration();

// spr::Machine
/------------

// Contains a name for a particular piece of machinery.
interface sprMachine : sprExtensibleObject {
void setMachineName(in string inName);
string getMachineName();

// spr::Environment
//----------------
// Description of the (perhaps time-varying) physical variables that
// determine the reaction of the wafer.
interface sprEnvironment : sprExtensibleObject{
void setTimeDuration(in sprDuration inTimeDuration);
sprDuration getTimeDuration();

// spr::Parameter
/--------------

// Primitive items of process information. They can describe constant
// or time-varying state information.
interface sprParameter : LifeCycle::LifeCycleObject {
void setValue(in sprValue inValue)

raises(sprInvalidValue);
sprValue getValue();

void setUnits(in sprUnits inUnits)
raises(sprInvalidUnits);

sprUnits getUnits();

// spr::Process
/------------

// Named container holding information about a semiconductor process.
// It contains any number of spr::Views and spr::Properties.
interface sprProcess : sprExtensibleNamedObject {

// Exception signal raised when an attempt is made to make
// a view that is not a unique view type
void setViews(in sprViewSeq inViews)

raises(sprNotUniqueViewType);
void addView(in sprView inView)

raises(sprNotUniqueViewType);

sprViewSeq allViews();

//** Specific Views **//

// spr::EquipmentView
/------------------

// Information which describes the equipment setup and operation. This
/! may be generic ot an equipment class or specific.
interface sprEquipmentView : sprView {
void setMachines(in sprMachineSeq inMachines);
void appendMachine(in sprMachine inMachine);
sprMachineSeq allMachines();

void setSettings(in sprEquipmentStateSeq inSettings);
void appendSetting(in sprEquipmentState inSetting);
sprEquipmentStateSeq allStates();

1;



// spr::EffectsView
//
// Represents a change or changes in the static wafer state. The
// cumulative effects specified by an effects view represents the change-
// in-wafer-state from inter-process interval before the process with which
// the effects view is associated to the immediately following interprocess
// interval. Typically used by wafer-state "simulators".
interface sprEffectsView : sprView {
void setEffects(in sprEffectSeq inEffects);
void appendEffect(in sprEffect inEffect);
sprEffectSeq allEffects();

// spr::EnvironmentView

// The specific dynamic physical environment (state) experienced by the
// wafer. This is the environment the wafer actually experiences and is
// the basis for physically based simulators. Environments are descriptions
// of thermodynamically intensive state variables (possibly time variant).
// Coupled with the wafer state they are used to model the physical
// (including chemical) process the wafer undergoes during the process.
interface sprEnvironmentView : sprView {
void setEnvironment(in sprEnvironmentSeq inEnvironment);
void appendEnvironment(in sprEnvironment inEnvironment);
sprEnvironmentSeq allEnvironment();

// spr:ProcessView

// The sequential breakdown of subprocesses that together make up the
// process.
interface sprProcessView : sprView {
void setSubProcesses(in sprProcessSeq inSubProcesses);
void appendSubProcess(in sprProcess inSubProcess);
sprProcessSeq allSubProcesses();

//** Specific Parameters **//

// spr::TimedParameter
/ --------------------

// Contains parameter that has a start value (inherited from Paramter)
// and an optional end value.
interface sprTimedParameter : sprParameter {
void setEndValue(in sprValue inEndValue);
sprValue getEndValue();

// spr::EnvironmentParameter
//
// Environment are a specific instance of a timed parameter.
interface sprEnvironmentParameter : sprTimedParameter {

// spr::Distance
/-------------

/! Used for measuring distance. The value type is to be implemented
/! such that it is double or a string indicating ALL
interface sprDistance : sprParameter {

// spr::Material
//
// Used for specifying a material type. The value type is to be implemented
// such that it is always a string.
interface sprMaterial : sprParameter {

//** Specific Environments **//



// spr::GeneralEnvironment
/ ------------------------

// Container of general environment parameters that are common to the
// process that the envrionment is associated with.
interface sprGeneralEnvironment : sprEnvironment {
void setEnvironmentParameters(in sprEnvironmentParameterSeq inParameters);
void appendEnvironmentParameter(in sprEnvironmentParameter inParameter);
sprEnvironmentParameterSeq allEnvironmentParameters();

};

//************************** END OF BASE SPR MODEL ************** **********

// EFFECTS

// spr::ChangeMaterialEffect
//
// Changes the material from oldmaterial to newmaterial with possible
// attributes residing in the properties.
interface sprChangeMaterialEffect : sprEffect {
void setOldMaterial(in sprMaterial inOldMaterial);
sprMaterial getOldMaterial();

void setNewMaterial(in sprMaterial inNewMaterial);
sprMaterial getNewMaterial();

// spr::DepositEffect
/ -------------------

// Simple effect to describe the vertical modeling of a one dimensional
// deposit of a specific material for a specific thickness. Base model:

//
//

//

interface sprDepositEffect : sprEffect {
void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();

void setThickness(in sprDistance inThickness);
sprDistance getThickness );

// spr::ConformalDepositEffect
/----------------------------

// Subtype of sprDepositEffect that conforms to the layer the material
// is deposited upon:
//
// II:::\\
// /1 \\

interface sprConformalDepositEffect : sprDepositEffect {

// spr::PlanarDepositEffect
/ -------------------------

// Subtype of sprDepositEffect that deposits a planar layer of material
// upon the previous layer:
/1

//
//

interface sprPlanarDepositEffect : sprDepositEffect {
};

// spr::EtchEffect
-- - -- - -- -



// Simplest etch effect is a vertical etch. The material to be etched
// is specified along with the thickness of the material to etch. This
// may be a specific number or all to indicate that all the material
// should be etched.
interface sprEtchEffect : sprEffect {
void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();

void setThickness(in sprDistance inThickness);
sprDistance getThickness );

// spr::StripEtchEffect
/ --------------------

// The thickness for the strip etch effect is implemented such that it is
// always ALL. The material layer is removed everywhere.
interface sprStripEtchEffect : sprEtchEffect {

// spr::IsotropicEtchEffect
/ ------------------------

// An equal thickness of material is removed in all directions.
interface sprIsotrophicEtchEffect : sprEtchEffect {

// spr::GrowthEffect
/-----------------

// Growth is defined by three parameters - the material grown, the
// thickness of the resulting layer, and the depth of the underlying
// layer which is consumed.
interface sprGrowthEffect : sprEffect {
void setMaterial(in sprMaterial inMaterial);
sprMaterial getMaterial();

void setThickness(in sprDistance inThickness);
sprDistance getThickness();

void setDepth(in sprDistance inDepth);
sprDistance getDepth();

// More effects such as sprAddFieldEffect, sprDiffusionEffect,
// sprChangeMaterialEffect, etc. can also be added to the model

// END EFFECTS

};// module spr



Appendix B

SPR ODL

ODL Declarations for Semiconductor Process Representation (SPR)

Author: Matt Verminski (mvermins@mit.edu)
Date: 17-June-1997
Revised: 15-August-1997

module sprDB {

// Define duration as a struct of hours, minutes, seconds
// If hours and minutes are 99, then the duration is undefined.
struct sprDuration {

long hours;
long minutes;
float seconds;

};

// sprStatFloat is a parameter that contains a mean value and its
// respective standard deviation
struct sprStatFloat {

float mean;
float sdev;

// Value is either a primitive data type or and sprParameter
enum sprValueType { BOOLEAN, SHORT, LONG, FLOAT, DOUBLE, STRING,

PARAMETER, STATFLOAT };
union sprValue switch(sprValueType)

case BOOLEAN: boolean Boolean;
case SHORT: short Short;
case LONG: long Long;
case FLOAT: float Float;
case DOUBLE: double Double;
case STRING: string String;
case PARAMETER: sprParameter Parameter;
case STATFLOAT: sprStatFloat StatFloat;

// Structure definitions for various Effect Locations



struct sprSimpleEffectLocation {
string MaterialRegion;
boolean IsExposed;

// EffectLocation describes where on (or in) the wafer the effect occurs
// by specifying the material region to which the effect applies, and
// whether or not the region is exposed.
enum sprEffectLocationType {SIMPLE};
union sprEffectLocation switch(sprEffectLocationType)

case SIMPLE: sprSimpleEffectLocation Simple;
};

// Enumeration of possiblue units (used by Parameters)
enum sprUnits { NONE, m, mm, nam, pm, sec, ns, ps, cSt, A};

/* INTERFACE DECLARATIONS */

// spr::Property
//
// Name, value pair. Useful for modeling "top-level parameters" and
// other possiblities such as documentation. Effective mechanism for
// extending the information model.
interface sprProperty

(key name) {
attribute string name;
attribute sprValue value;

// spr::ExtensibleObject
/ ----------------------

// ExtensibleObject is an abstract interface which contains a set
// (sequence) of properties. Used to model additional attributes of
// objects.
interface sprExtensibleObject {
relationship Set<sprProperty> properties;

// spr::NamedObject
//
// NamedObject is an abstract interface to attach a name reference
// to objects.
interface sprNamedObject

(key name) {
attribute string name;

// spr::ExtensibleNamedObject

// ExtensibleNamedObject is an abstract superclass of named and
// extensible objects.
interface sprExtensibleNamedObject : sprNamedObject, sprExtensibleObject {

// spr::View

// Contains specific information about a particular view of the process.
// There are four basic views that are derived from spr::View -
// spr::ProcessView, spr::EffectsView, spr::EnvironmentView, and
// spr::EquipmentView
interface sprView : sprExtensibleNamedObject {
attribute string viewType;

};

// spr::Effect

// Description of the change to the state of a wafer. Take wafer states
// and transform them to new wafer states.
interface sprEffect : sprExtensibleObject {
attribute sprEffectLocation location;



// spr::EquipmentState

// Describe important equipment settings and a time duration that is
// associated with the settings.
interface sprEquipmentState : sprExtensibleObject {
attribute sprDuration timeDuration;

// spr::Machine

/! Contains a name for a particular piece of machinery.
interface sprMachine : sprExtensibleObject {
attribute string getMachineName;

// spr::Environment
/----------------

// Description of the (perhaps time-varying) physical variables that
// determine the reaction of the wafer.
interface sprEnvironment : sprExtensibleObject{

attribute sprDuration timeDuration;

// spr::Parameter

// Primitive items of process information. They can describe constant
/! or time-varying state information.
interface sprParameter {
attribute sprValue value;
attribute sprUnits units;

// spr::Process
1------------

// Named container holding information about a semiconductor process.
// It contains any number of spr::Views and spr::Properties.
interface sprProcess : sprExtensibleNamedObject {
relationship Set<sprView> views;

//** Specific Views **//

// spr::EquipmentView
//
/! Information which describes the equipment setup and operation. This
// may be generic ot an equipment class or specific.
interface sprEquipmentView : sprView {
relationship Set<sprMachine> machines;
relationship Set<sprEquipmentState> settings;

// spr::EffectsView

// Represents a change or changes in the static wafer state. The
// cumulative effects specified by an effects view represents the change-
// in-wafer-state from inter-process interval before the process with which
// the effects view is associated to the immediately following interprocess
// interval. Typically used by wafer-state "simulators".
interface sprEffectsView : sprView {
relationship Set<sprEffect> effects;

// spr::EnvironmentView
//
// The specific dynamic physical environment (state) experienced by the
// wafer. This is the environment the wafer actually experiences and is
// the basis for physically based simulators. Environments are descriptions
// of thermodynamically intensive state variables (possibly time variant).



// Coupled with the wafer state they are used to model the physical
// (including chemical) process the wafer undergoes during the process.
interface sprEnvironmentView : sprView {

relationship Set<sprEnvironment> environment;

// spr:ProcessView
/---------------

// The sequential breakdown of subprocesses that together make up the
// process.
interface sprProcessView : sprView {

relationship Set<sprProcessSeq> subProcesses;

//** Specific Parameters **//

// spr::TimedParameter
/ --------------------

// Contains parameter that has a start value (inherited from Paramter)
// and an optional end value.
interface sprTimedParameter : sprParameter {
attribute sprValue endValue;

// spr::EnvironmentParameter
/ -------------------------

// Environment are a specific instance of a timed parameter.
interface sprEnvironmentParameter : sprTimedParameter {

// spr::Distance
//
// Used for measuring distance. The value type is to be implemented
// such that it is double or a string indicating ALL
interface sprDistance : sprParameter {
};

// spr::Material
//
// Used for specifying a material type. The value type is to be implemented
// such that it is always a string.
interface sprMaterial : sprParameter {

//** Specific Environments **//

// spr::GeneralEnvironment
//
// Container of general environment parameters that are common to the
// process that the envrionment is associated with.
interface sprGeneralEnvironment : sprEnvironment {

relationship Set<sprEnvironmentParameter> environmentParameters;

// EFFECTS

// spr::ChangeMaterialEffect
//-------------------------
// Changes the material from oldmaterial to newmaterial with possible
// attributes residing in the properties.
interface sprChangeMaterialEffect : sprEffect {
attribute sprMaterial oldMaterial;
attribute sprMaterial newMaterial;

// spr::DepositEffect

// Simple effect to describe the vertical modeling of a one dimensional
/Simple effect to describe the vertical modeling of a one dimensional



// deposit of a specific material for a specific thickness. Base model:
//
//
/1 I

//
interface sprDepositEffect : sprEffect {
attribute sprMaterial material;
attribute sprDistance thickness;

// spr::ConformalDepositEffect
/ ----------------------------

// Subtype of sprDepositEffect that conforms to the layer the material
// is deposited upon:
//

// // \\
//
//
interface sprConformalDepositEffect : sprDepositEffect {

// spr::PlanarDepositEffect
/ -------------------------

// Subtype of sprDepositEffect that deposits a planar layer of material
// upon the previous layer:
//
//
//
//
/1
interface sprPlanarDepositEffect : sprDepositEffect {

// spr::EtchEffect
/I
// Simplest etch effect is a vertical etch. The material to be etched
// is specified along with the thickness of the material to etch. This
// may be a specific number or all to indicate that all the material
// should be etched.
interface sprEtchEffect : sprEffect {
attribute sprMaterial Material;
attribute sprDistance thickness;

// spr::StripEtchEffect
//--------------------
// The thickness for the strip etch effect is implemented such that it is
// always ALL. The material layer is removed everywhere.
interface sprStripEtchEffect : sprEtchEffect {

// spr::IsotropicEtchEffect
/-------------------------

// An equal thickness of material is removed in all directions.
interface sprIsotrophicEtchEffect : sprEtchEffect {

// spr::GrowthEffect
//
// Growth is defined by three parameters - the material grown, the
// thickness of the resulting layer, and the depth of the underlying
// layer which is consumed.
interface sprGrowthEffect : sprEffect {
attribute sprMaterial material;
attribute sprDistance thickness;
attribute sprDistance depth;



// More effects such as sprAddFieldEffect, sprDiffusionEffect,
// sprChangeMaterialEffect, etc. can also be added to the model

// END EFFECTS

};// module spr



Appendix C

Life Cycle IDL
This appendix contains the Life Cycle IDL. Modifications to the OMG standard are

noted.

module LifeCycle{

// Forward declarations
interface FactoryFinder;
interface LifeCycleObject;
interface GenericFactory;

// A simple structure containing two strings is used to represent the key
// to objects. One field contains the object name while the other contains
// the object's hostname where it resides.
struct Key {

string name;
string hostname;

typedef GenericFactory Factory;

// A factory entry structured is useful to keep track of what factories
// available for use by the factory finder implementation.
struct factoryentry {

Key key;
GenericFactory factory_ref;

typedef sequence<GenericFactory> Factories;
typedef sequence<Object> ObjectSeq;

typedef struct NVP {
// use basic string type until Istring has been implemented
// Naming::Istring name;
string name;
any value;

} NameValuePair;

typedef sequence <NameValuePair> Criteria;

// Exceptions
exception NoFactory {

Key search_key;



exception DuplicateKey { // addition for add_factory
Key search_key;

exception NotCopyable { string reason; 1;
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{

Criteria invalid_criteria;

exception CannotMeetCriteria {
Criteria unmet_criteria;

// Clients pass factory finders to move and copy operations for
// scoping purposes.
interface FactoryFinder {

// The find_factories operation is passed a key to identify the
// desired factory. If the factory exits, it is returned.
Factories find_factories(in Key factorykey)
raises(NoFactory);

// The add_factory operation is passed a key to identify the factory
// that should be added to the list and a reference to the factory.
// Used by implemenations of factories to notify factory finders that
// they exist.
void add_factory(in Key factory_key, in GenericFactory factory_ref)

raises (DuplicateKey);

// The shutdown method is for turning a factory finder and its respective
// factories off
void shutdownAll();

// Defines copy, move, and remove operations. Objects participate in the
// life cycle service by supporting this interface.
interface LifeCycleObject {

// The copy operation makes a copy of the object. The copy is located
// in the scope of the factory finder passed as the parameter. The
// operation returns a reference to the new object. The new object is
// intialized from the existing object.
LifeCycleObject copy(in FactoryFinder there, in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria, CannotMeetCriteria);

// The move operation on the target moves the object to the scope of the
// factory finder passed as the parameter. It returns the new object
// reference.
LifeCycleObject move(in FactoryFinder there, in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria, CannotMeetCriteria);

// Remove instructs the object to cease to exist. The object reference
// for the target is no longer valid after remove successfully completes.
void remove()

raises(NotRemovable);

// Implementation name for narrowing object references without calling
// ORB specific methods
string getMarker();

// Methods for setting and returning the name of the factory that created
// the object
void setFactoryName(in string name);
string getFactoryName();

// The generic factory interface defines a generic creation operation that
// specific factory instances should implement.
interface GenericFactory {

// The supports operation returns true if the generic factory can create
// an object given a key.
boolean supports(in Key k);



// The create_object operation is passed a key that is used to identify
// the object to be created.
Object create_object(in Key k, in Criteria the_criteria)

raises (NoFactory, InvalidCriteria, CannotMeetCriteria);

// The list objects operation is passed a key to identify a specific
// factory and they returns a sequence of objects that have been created
// by that factory.
ObjectSeq listobjects(in Key k)

raises (NoFactory);

// The remove_object operation takes in a factory key and an object
// reference to remove the object from the list of objects created by
// the factory. It returns true if the removal is successful.
boolean remove object(in Key factory_key, in Object obj_ref)

raises (NoFactory);

// The shutdown method is for turning a persistent factory off
void shutdown();

};

// Query Extentions
enum Predicate { EQ, NEQ, GTE, LTE, GE, LE };

typedef struct constr {
string name;
any value;
Predicate predicate;

} Constraint;

typedef sequence <Constraint> ConstraintSeq;
exception InvalidConstraint { string reason; };

// The generic factory interface defines a generic creation operation that
// specific factory instances should implement.
interface QueryableFactory : GenericFactory{

// The query_objects operations takes in a factory key and a constraint
// that is then evaluated and returns the objects that satisfy the
// contraint.
ObjectSeq query_objects(in Key k, in ConstraintSeq constraints)

raises (NoFactory, InvalidConstraint);



Appendix D

Catalog IDL
This appendix contains the Catalog IDL for the organization of SPR repositories via

libraries.

#include "spr.idl"

module sprCatalog {

// EXCEPTIONS
exception DuplicateCatalogName { string reason;
exception CatalogDoesNotExist { string reason; } ;

typedef sequence<string> StringSeq;

struct Catalog {
string name;
sprCORBA::sprProcessSeq processes;

interface Library {
// interfaces for naming the library
void setName(in string name);
string getName();

// interfaces for creating, deleting, and retrieving Catalogs
void addCatalog(in Catalog inCatalog)

raises(DuplicateCatalogName);
void removeCatalog(in string name)

raises(CatalogDoesNotExist);
StringSeq allCatalogs();

// interfaces for setting and retrieving processes from a Catalog
void setProcesses(in string inCatalogName,

in sprCORBA::sprProcessSeq inProcesses)
raises(CatalogDoesNotExist);

sprCORBA::sprProcessSeq getProcesses(in string inCatalogName)
raises(CatalogDoesNotExist);

// interfaces for adding and removing individual processes from
// a Catalog
void addProcess(in string inCatalogName,

in sprCORBA::sprProcess inProcess)
raises(CatalogDoesNotExist);



void removeProcess(in string inCatalogName,
in string inProcessName)

raises (CatalogDoesNotExist);

void shutdown();



Appendix E

Trader Service Definitions
service sprRepository {

interface GenericFactory;
mandatory property string name;
property string host;
property string version;
property boolean persistent;
property boolean queryable;
property sequence<string> processTypes;

service sprLibrary {
interface Library;
mandatory property string name;
property string host;
property string version;
property boolean persistent;
property sequence<string> processTypes;

service FactoryFinder
interface FactoryFinder;
mandatory property string name;
property string host;
property string version;
property sequence<string> supportedIDL;
property boolean OMGcapable;
property boolean Extensions;


