

Other Exotic Scenarios at the LHC Kamal Benslama Columbia University

On behalf of the ATLAS and CMS Collaborations May 23, 2006 Hadron Collider Symposium

jets+# "deviation-from*ll*+jets+∉_⊤ *l*+jets+∉_T SM" hunting by experimentalists, taus+∉_⊤ $bb+\gamma$ then **Massive Stable Particles** "model hunting" bb+∉_⊤ by theorists*ll*+bb+∉_τ It is a real l+jets γ+jets+∉_T challenge! Kinks *1111*+∉_⊤ γ+*ll*+∉_T monojets *lll*+jets+∉_⊤ Non-prompt photons $\gamma\gamma + E_T$ or Z's It's a complicated environment K. Benslama Hadron Collider Symposium

Large Extra Dimensions

- Large extra dimensions (>> 1/TeV)
 - ADD model (Arkani, Dimopoulos, Dvali)
 - SM particules on brane
 - Gravity propagates in bulk (Xtra Ds)
 - Hence new gravity scale $M_{PL}^2 \sim M_D^{2+\delta} R^{\delta}$
 - KK graviton excitations | M_b ~ TeV for R < mm

KK mode separation is very small:

 $e.g.: M_D = 1 \text{ TeV}, n = 2 \Longrightarrow R = 0.08 \text{ mm} \Longrightarrow R^{-1} = 2.6 \text{ x } 10^{-3} \text{ eV}$

 $n = 4 \Rightarrow R = 1600 \text{ fm} \Rightarrow R^{-1} = 120 \text{ keV}$

- \rightarrow continuous spectrum
- \rightarrow high density of states compensates low coupling (~1/M_{Pl})
- \rightarrow chance to observe effects at LHC

K. Benslama

ADD: Graviton Emission

ADD: Virtual Graviton

- Use effective scale M_s (σ diverges if $\delta \ge 2$)
- Observables
 - Excess in II & γγ
 - γγ more central

TeV⁻¹ Extra Dimension

- One extra dimension compactified on a S¹/Z² orbifold
- radius of compactification small enough
 gauge bosons in
 the bulk

fermions localized on:

- a fixed point (M1 model): invariance under $y \rightarrow -y$
- opposite fixed points (M2 model): under $y \rightarrow y + 2\pi R$
- Kaluza-Klein spectra for $Z^{(k)}$, $W^{(k)}$: $m_k^2 = m_0^2 + k^2 M_c^2$
 - for $M_c = 4$ TeV: $m_1 = 4$ TeV, $m_2 = 8$ TeV

→ look for pp → $\gamma^{(1)}/Z^{(1)}$ → I⁺I⁻ on top of SM Drell-Yan

TeV⁻¹: Direct $\gamma^{(1)}/Z^{(1)}$

Look for resonances in II spectrum

TeV⁻¹: Asymmetry

Randall-Sundrum

Motivation

 2 branes (TeV & Planck) connected by 1 warped ED

$$ds^{2} = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}, \quad y = r_{c}\phi$$

 $\Lambda_{\pi} = M_{pl} e^{-kr_c \pi}; \qquad kr_c \pi \Box 35 \implies \Lambda_{\pi} \Box \text{ TeV}$

- Coupling of KK states ~ 1/ Λ_{π}
- Graviton excitations

$$m_n = kx_n e^{-k\pi r_c}, \text{ avec } J_1(x_n) = 0$$
$$m_1 = 3.83 \frac{k}{M_{Pl}} \Lambda_{\pi}$$

- Constraints

$$0.01 < k/M_{pl} < 0.1$$

K. Benslama

RS: Graviton Resonance

RS: Graviton Spin

Look at angular distribution

ATLAS, 100 fb⁻¹, m_G=1.5 TeV

Little Higgs: Heavy T

K. Benslama

ATLAS

Technicolor

m_{ρ_T}	m_{π_T}	Γ_{ρ_T}	${\rm BR}\;(\rho_T\to WZ)$	$\sigma imes BR$
${\rm GeV}/{\rm c}^2$	${\rm GeV}/{\rm c}^2$	${\rm GeV}/c^2$		(pb)
220	110 (a)	0.93	0.13	0.16
	110 (e)	67.1	0.014	$1.04 imes10^{-3}$
500	300 (b)	4.47	0.21	$1.3 imes10^{-2}$
	500 (f)	1.07	0.87	$5.4 imes10^{-2}$
	110 (g)	130.2	0.013	$1.5 imes10^{-4}$
800	300 (h)	52.4	0.032	$3.6 imes10^{-4}$
	500 (c)	7.6	0.22	$2.5 imes10^{-3}$

0 At least 3 charged leptons with pT > 25 GeV 0 pT(W), PT(Z) > 40 GeV

0 Use polarization of

technirho

30fb⁻¹

Excited Quarks & Leptons

- Excited quarks
 - Reach limit for q* -> q γ
 6.5TeV
 - Reach for **qw**: 7 TeV
 - Reach for qz: 4.5 TeV
 f=f'=1 L = 300 fb⁻¹, Λ = m*

Excited electrons

$m^{\star}(GeV)$	500	1000	2000	3000	4000
$Z \ \rightarrow ee$	77.	2.3	3.7×10^{-2}	1.7×10^{-3}	1.1×10^{-4}
$Z \ \rightarrow jj$	1600.	48.8	7.6×10^{-1}	3.5×10^{-2}	2.4×10^{-3}

Reach: ~ 3 - 4 TeV for $\Lambda = 6$ TeV, 300fb⁻¹

Leptoquarks

New Gauge Bosons (II)

- Reach in 1 year at 10³⁴: 4-5 TeV
- Discriminating between models possible up to m ~ 2.5 TeV by measuring:
 - -- $\sigma x \Gamma$ of resonance
 - -- lepton F-B asymmetry
 - -- Z' rapidity

Doubly Charged Higgs

- L-R symmetric model would be a natural extension of the SM
 - \succ SU(2)_L x SU(2)_R x U(1)_{B-L}
 - predicts new fermions: heavy Majorana neutrino
 - predicts new gauge bosons:
 W_R

predicts new Higgs sector

 $\Delta_R = (\Delta_R^0, \Delta_R^+, \Delta_R^{++})$

In thi K. Benslama

Two high pT leptons with same charge Two high pT jets

 $\Delta_L = (\Delta_L^0, \Delta_L^+, \Delta_L^{++}) \text{ (if Lagrangian is invariant under } L \leftrightarrow R \text{ symmetry})$ $\phi_{1,2}^0, \phi_{1,2}^{\pm}$

Parameters:
$$k_1 \quad k_2 \quad v_L \quad v_R \quad k = \sqrt{k_1^2 + k_2^2} \sim 250 \text{GeV}$$

 $\rho = \frac{M_{W_L}^2}{\cos^2 \theta_W M_{z1}^2} \sim \frac{1 + 2v_L^2/k^2}{1 + 4v_L^2/k^2} \quad \longrightarrow \quad v_L \leq 9 \quad \text{GeV}$
this analysis: $m_{W_R}^2 = g_R^2 v_R^2/2, \quad g_R = g_L \approx 0.64$

Summary

CMS

LHC will explore the TeV scale in detail with direct discovery potential up to m \sim 5-6 TeV

22

403 days from now, particle physics will enter a new epoch of its history. The LHC will address many of the leading questions in particle physics:

- Is nature supersymmetric?
- Are there extra dimensions of space?
- What unknown mechanism gives mass to particles?

Solving these mysteries will be an important chapter in the history of science.

Backup Slides

ATLAS & CMS

ATLAS

MAGNET(S)

Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets CMS

Solenoid Calorimeters inside field 1 magnet

TRACKER

EM CALO

HAD CALO

MUON

Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$

Pb-liquid argon σ/E ~ 10%/√E uniform longitudinal segmentation

Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

Air $\rightarrow \sigma/p_T < 10$ % at 1 TeV standalone; larger acceptance

Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$

PbWO₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation

Brass-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$

 $Fe \rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

ATLAS & CMS at the Beginning?

The ATLAS Detector

- Inner Detector (2T solenoid, |n|<2.5):</p>
- $\sigma_{p_t} / p_t \square 0.05\% / \text{GeV} \times p_t \oplus 1\%$
- Calorimetry:
 - * electromagnetic, |n| < 3.2 $\sigma_{E}/E \Box 10 \% \sqrt{GeV} / \sqrt{E} \oplus 0\%$
 - * hadronic (central, $|\eta| < 1.7$) $\sigma_E / E \Box 50 \% \sqrt{GeV} / \sqrt{E} \oplus 3\%$
 - * hadronic (endcaps, 1.7<|n|<3.2) $\sigma_E/E = 60 \% \sqrt{GeV} / \sqrt{E} \oplus 3\%$ * hadronic (forward, 3.2<|n|<4.9)
 - $\sigma_{E}/E \Box 100 \% \sqrt{GeV}/\sqrt{E} \oplus 5\%$
- Muon system (~4T toroid, $|\eta| < 2.7$): $\sigma_{p_t}/p_t \square 10\%$ for $p_t(\mu) \approx 1$ TeV/c

CMS Detector

K. Benslama

Object	Physics coverage	$L = 2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Electrons	Higgs new gauge bosone extra dimensions SUSY, W, top	e25i, 2e15i
Photons	Higgs extra dimensions SUSY	γ60, 2γ20i
	Higgs new gauge bosons, extra dimensions SUSY, W, top	μ20i, 2μ10
Muons	Rare b-decays (e.g., $B \rightarrow \mu\mu X$, $B \rightarrow J \Psi(\Psi^*)X$)	2µ6 + mass cuts
Jets	SUSY compositeness, resonances	j400, 3j165, 4j110
Jet+missing E _T	SUSY, deptoquarks	j70 + xE70
Tau+missing E _T	Extended Higgs models (e.g., MSSM), SUSY	$\tau 35i + xE45$
Others	Pre-scaled, calibration, monitoring	
	Total HLT Output Rate	

Charge sign misidentification

K. Benslama

Jets Calibration using γ /jet sample

In-situ calibration typically involves balancing jet(s) against EM object. But E_T range for jets is 2-4 times larger. Compare jets and single γ 's (parton level, LO QCD, CTEQ5L):

Large Extra-D: Direct Production

800 1000 E^{cwt}(GeV)

δ	M_D	Low lu	minosity	$,30fb^{-1}$	High luminosity, 100fb		
		S	S/\sqrt{B}	$S/\sqrt{7B}$	S	S/\sqrt{B}	$S/\sqrt{7B}$
2	4	1036.4	81.6	30.8	3542.2	150.2	56.8
	5	417.0	32.9	12.4	1426.9	60.4	22.8
	6	205.9	16.3	6.2	700.6	29.6	11.2
	7	111.3	8.8	3.3	379.4	16.1	6.1
	8	65.3	5.2	2.0	222.5	9.4	3.5
3	4	641.8	50.6	19.1	2168.4	92.0	34.8
	5	211.5	16.6	6.3	706.0	30.0	11.3
	6	85.1	6.8	2.6	287.5	12.1	4.6
	7	39.3	3.1	1.2	134.0	5.7	2.2
4	4	436.2	34.3	13.0	1473.4	62.5	23.6
	5	113.0	8.8	3.3	383.4	16.3	6.2
	6	37.8	2.9	1.1	128.5	5.4	2.0

Gamma+MET ^(g) ^{10²} ¹⁰ ¹⁰

600

800

700

800

δ	M_D	High luminosity, $100 f b^{-1}$				
		S	S/\sqrt{B}	$S/\sqrt{6B}$		
2	3	194.4	21.4	8.7		
	4	61.8	6.8	2.8		
3	4	49.2	5.4	2.2		

10

100

200

300

400

Table 1 Maximal reach in M_S at 5σ level in di-photon and di-lepton production channels well as for combined statistics.

channel	n		2	3	4	5
	luminosiy					
	$10 {\rm ~fb^{-1}}$	$\frac{M_S^{max} \text{ (TeV)}}{S/B}$	$\frac{6.3}{36/18}$	$5.6 \\ 36/18$	5.1 39/25	$\frac{4.9}{34/13}$
$\gamma\gamma$	$100 {\rm ~fb^{-1}}$	$\frac{M_S^{max} \text{ (TeV)}}{S/B}$	$7.9 \\ 50/53$	$7.3 \\ 62/96$	$\frac{6.7}{55/72}$	$\frac{6.3}{51/53}$
	$10 { m ~fb^{-1}}$	$\frac{M_S^{max} \text{ (TeV)}}{S/B}$	$6.6 \\ 33/11$	$5.9 \\ 31/8$	$5.4 \\ 30/6$	$5.1 \\ 30/6$
<i>l</i> + <i>l</i> -	$100 {\rm ~fb^{-1}}$	$\frac{M_S^{max} \text{ (TeV)}}{S/B}$	7.9 49/48	$7.5 \\ 38/21$	$7.0 \\ 36/16$	$\frac{6.6}{29/6}$
	$10 {\rm ~fb^{-1}}$	M_S^{max} (TeV)	7.0	6.3	5.7	5.4
$\gamma\gamma + l^+l^-$	$100 {\rm ~fb^{-1}}$	M_S^{max} (TeV)	8.1	7.9	7.4	7.0

$m_G(\text{GeV})$	$\Gamma_{\boldsymbol{G}}(\text{GeV})$	$\Gamma_m (\text{GeV})$	$\boldsymbol{\sigma}\cdot\boldsymbol{B}\left(\mathbf{fb}\right)$
500	0.068	3.53	281.9
1000	0.141	6.02	11.0
1500	0.213	8.13	1.20
1700	0.242	8.78	0.57
1800	0.256	9.34	0.41
1900	0.270	9.66	0.29
2000	0.285	9.80	0.21
2100	0.298	10.18	0.15
2200	0.312	10.49	0.11

Large Extra-D: Virtual Production

RS Graviton

K. Benslama

Constraints on large ED

constraint	δ=	:2	δ=3	3
	max R (mm)	min M _D (TeV)	max R (mm)	min M _D (TeV)
Gravitational force law	0.2	0.6		
SN1987A cooling by graviton emission	7 x 10 ⁻	10 30	9 x 10 ⁻⁷	0.8 2.5
Diffuse cosmic ray background ($G^{(k)} \rightarrow \gamma\gamma$)	9 x ₅ 10⁻	25	2 x 10 ⁻⁷	1.9
other reheating scenarios		167		22
decays after SN explosion		450		30
heating of neutron stars (trapped <i>G</i> ^(k) decaying)	8 x 10- 6	90 1700	3.5 x 10 ⁻⁸	5 60
LEP: γ <i>G</i> , ZG, virtual		~ 1 TeV		
Hadro Hadro	n Collider Syn	nposiûm1		
		lev		

Radion

- Motivation
 - Scalar field representing fluctuations of the distance of the 2 branes
 - To stabilize $krc\pi \sim 35$ (Golberger & Wise)
- Radion properties
 - Higgs-like couplings
 - Mixing to Higgs ξ
 - Signal

Radion

By testing Hawking formula \rightarrow proof that it is BH + measurement of δ $\log T_{\rm H} = -\frac{1}{\delta + 1} \log M_{\rm BH} + f(M_{\rm D}, \delta)$ precise measurements of $M_{\rm BH}$ and (T_H from lepton and photon spece

precise measurements of M_{BH} and T_H needed (T_H from lepton and photon spectra) M_D from cross-section

Heavy Gauge Bosons

- Basics
 - Look at sequential leptons: 4th family
 - Other models: VF, Chiral F, Singlets F
 - Final state IIZZ
- Analysis

K. Benslama

- gg & DY
- 21, 2Z (4jets)
- Bdg: tt, VV+jets
 Reach ~ 1 TeV

Depends on Z'

Figure 13: Signal to background comparison for $M_L = 0.5 \ TeV/c^2$ and $M_{Z'} = 0.7 \ TeV/c^2$, for $L \rightarrow e + Z^0$ channel.

