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Abstract
Air-data sensing and estimation methodologies for generic air-breathing

hypersonic vehicles (AHSVs) are developed and the resulting estimation strategies are
demonstrated with an example vehicle configuration. The methodologies cover the steps
from problem formulation and modeling through the resulting nonlinear estimator design.
The core emphasis of the AHSV air-data estimation strategy is to improve the accuracy of
the angle of attack estimate to a degree necessitated by the stringent operational
requirements of the air-breathing propulsion and flight stabilization systems.

A requirement set for air-data estimation accuracy is provided. The air-data
sensor selection and placement issues are discussed, and a most likely scenario of sensor
usage is covered. Based on a Draper Laboratory developed AHSV simulation code, a
parameterized vehicle model is formed along with sensor and environment models that
are later incorporated into the estimation algorithms.

The resulting estimation problem involves solutions to time-dependent nonlinear
estimation equations. Because the solutions to the nonlinear estimation problem(Zakai
equation) is infinite dimensional, a finite approximation is needed. A statistical analysis
based on a simulation of the vehicle dynamics and observation show that the diffusion
(propagation) process does not significantly alter the basic characteristics of the initial
Gaussian conditional density of state variables. Similarly, the nonlinearities within the
observation do not distort the initial density shapes for large hypersonic flight spans
covering a Mach 10 to 15 range. The results provide the basis for applicability of an
Extended Kalman Filter (EKF) and substantiate the application requirements from
necessary assumptions and finite approximations.

The EKF for the AHSV air-data system is implemented and statistical analysis
(Monte-Carlo simulation) is used to provide the estimator performance. In conjunction
with the estimator design, the sensor precision requirements are approached from the
context of the estimation problem. By starting from the covariance equations of an EKF,
a sensor precision requirement criteria is developed.

Through numerical example study and design, the AHSV air-data estimation
methodologies described above are demonstrated systematically. The numerical results
provided some insight into the achievable performance of the estimator design. Finally,
the demonstrated methodologies lay out the design guidelines for future AHSV air-data
estimator design and analysis when higher fidelity models are available.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Historical Context

Until the fall of the Berlin wall, the main driving force behind the aerospace

technology was the arms race of cold war. In the current era, characterized by the end of

cold war and the beginning of an international economic race, aero-space programs can

not follow the military oriented path of the past but rather should be stimulated by

socioeconomic criteria. Technology developments in aero-space programs must

emphasize international competitiveness in primary industries while also stimulating

development of other engineering fields.

In recent years, enthusiasm for hypersonic flight research has been renewed by the

promise of a fully reusable, horizontal take-off, single stage to orbit flight vehicle with

air-breathing engines. The current state-of-the-art launch vehicles such as the Space

Shuttle and expendable rockets have demonstrated their capabilities in the past; however,

the existing vehicles are far short of an ideal launch system. Existing launch vehicles

suffer from shortcomings in efficiency, reliability, and complexity. Projected air-



breathing hypersonic vehicles (AHSVs), such as was envisioned with the X-30 or

National Aero-Space Plane (NASP) program, would potentially be very efficient [Peg 1].

A unique feature of this class of vehicles is the usage of air-breathing engines as

the main propulsion system during most of the ascent trajectory. Since typical launch

vehicles may allocate up to 90% of the vehicle weight to fuel and oxidizer, using

atmospheric oxygen significantly reduces vehicle weight when compared to the rocket

propulsion system with similar payload capability. For example, about 1/3 of the Space

Shuttle mass, excluding the solid rocket boosters, are liquid oxygen [Lewl]. In the

extreme case, liquid oxygen contained within the first three stages of the Apollo Saturn V

launch vehicle contributed about 72% of its total weight [Lewl]. Full reusability and

single-stage-to-orbit (SSTO) capability provides simplicity in operation and potentially

cost effectiveness. Horizontal-take-off capability will eliminate complicated and costly

launch facilities.

The inherent advantages of AHSVs make them quite attractive. The projected

increase in demand for future spacecraft launches will justify the development of the

AHSV technology; consequently, the AHSV concept qualifies as a future aero-space

program justification criterion. Moreover, the derived new technology will be multi-

faceted, since every aspect of building this class of vehicle would require innovation.

High temperature materials, propulsion, system integration, control, sensors and

estimation techniques are a few areas which can gain in their respective state-of-the-art

by pursuing this program. Lessons learned from this vehicle development will greatly

influence many industries.

1.1.2 AHSV Mission Requirements and Challenges

The anticipated result of the NASP research vehicle development program would

have been an AHSV that would deliver a significant amount of payload to low earth orbit

(LEO) via use of air-breathing engines [Pegl]. A future vehicle in the NASP class is

expected to take off horizontally on conventional runway without complex launch

facilities. The vehicle will have a single stage configuration that eliminates stage

separation issues and insures full reusability. With a single stage configuration, the

vehicle will cruise through the atmosphere following a narrow air-breathing corridor.

The employed air-breathing engines will operate in both ramjet and Scramjet modes.



Hydrogen fuel will be burned with atmospheric oxygen ingested into the propulsion

system. The total expected hypersonic flight time would be about 2000 seconds, longer

than any existing launch systems [Hatl]. Once the vehicle gains speed to near orbital

velocity, it will be inserted into low earth orbit with the assist of small rockets. Reentry

will be performed using high drag maneuver similar to the Space Shuttle Orbiter

following a trajectory much higher than the air-breathing ascent corridor at hypersonic

speeds.

Operational requirements of an air-breathing hypersonic vehicle differ in many

ways from conventional spacecraft and aircraft, mainly due to its unique propulsion

system. Design of an air-breathing hypersonic vehicle will be dominated by

considerations regarding air-breathing engine performance and stability, because the

engine performance and stability will dictate the mission success. With likely slender

lifting-body configurations, AHSVs will have propulsion, aerodynamics, and flight

dynamics that are highly integrated and interactive [Sch2, Sch3, Pegl]. The vehicle

lower surface would act as inlet and nozzle while providing lift. The flight control,

guidance, engine control and vehicle cooling are heavily coupled to the propulsion

system design; consequently, the major tasks of these subsystems would be to contribute

to the proper combustion conditions. Propulsion, aerodynamics, and thermal constraints

will be the main emphasis in the vehicle configuration design procedure. Moreover, the

air-breathing engines of hypersonic vehicles will introduce restrictions on the flight

trajectory envelope, vehicular motion and atmospheric conditions [Kan2].

Developing an efficient air-breathing propulsion system which can operate over a

wide range of flight Mach numbers is a difficult task. Even though development of

ramjet technology started as early as the 1950's, ramjet technology can only be used

below about Mach 7 [Nasl]. The major difficulties in implementing conventional

(subsonic combustion) ramjet technology are in the thermal limitations in combustor

materials, inlet normal shock stability, combustor flame stability and the inherent

problem of poor efficiency at low supersonic speeds and at Mach numbers greater than 7

[Petl]. The worst propulsion failure is called engine unstart that can occur if the normal

shock position can not be properly controlled inside the compression inlet [Lehl, Sha2].

The technology of supersonic combustion ramjets which are called Scramjets

promises good efficiency at higher Mach numbers [Kopl]. However, Scramjet

technology is not yet mature enough to be implemented in an operational design. Many



problems associated with Scramjet technology are due to a still deficient understanding of

supersonic combustion. Supersonic combustion chemical kinetics must be well modeled

and managed to obtain stable and efficient combustion. Just injecting hydrogen fuel and

promoting combustion in supersonic flow presents a substantial challenge [Kop1, Wall].

Inlet and nozzle design and the associated Aero-thermodynamics also must be fully

understood and accommodated. Because of the high dynamic pressure, high Mach

number flight conditions expected during Scramjet operation, materials capable of

withstanding high thermal stresses are needed (greater than 3000F) [Kan2].

Both a theoretical understanding and experimental investigations of the

aerodynamics and Aero-thermodynamics associated with hypersonic flight are needed.

An understanding of the aerodynamic phenomena is required to determine vehicle

dynamic variables such as stability derivatives, lift and drag coefficients. The vehicle

control effectiveness can also be determined by investigating these aerodynamic

problems [Cha2]. The aero-thermodynamics must be studied to determine the cooling

requirements of the propulsion system and vehicle structure. The vehicle will have a hot

structure configuration with long heat soak duration; therefore, an active cooling strategy

must be developed [Peg 1, Wall, Lew 1].

Similarly, AHSV structural designs are also a challenge. Slender and shell

structure lifting-body AHSVs are difficult to design and analyze due to their extreme

temperature variation and heat loads. Furthermore, high temperature materials are

difficult to find and then manufacture into vehicle components [Wall], and their strength

and stiffness are difficult to estimate at extreme temperature. Even when such vehicle

can be manufactured, it will be difficult to estimate the amplitude and frequencies of the

vehicle vibration and bending modes. The resulting structural design may cause

interaction problems with the control systems, propulsion, sensors and estimators.

Overall AHSV design is a difficult task since the interactions between subsystems

are severe when compared to the conventional vehicles. Thus an AHSV must be

designed as an integrated system instead of separate subsystems. For example, the flight

controller can not be designed with conventional methodology based on just vehicle

geometric and mass properties with experimentally derived stability derivatives. Given

that the vehicle motion is heavily coupled to the air-breathing engines, and the engine

control capability can be limited by actuator placement, complexity, bandwidth, and

weight, the flight controller may be required to supplement the engine controller by



flying within specified attitude and maneuver ranges as a function of Mach number

[Kan2]. Similarly the structural dynamics will be strongly interactive with the flight

controller and propulsion systems; therefore, structural dynamics should also be

addressed in the flight controller design process [Schl]. Due to the wide operating

envelope of AHSVs, the flight control system includes highly nonlinear, time varying,

and often unstable plants [Cha2].

Often the problem of state measurement and the associated data processing

system is ignored as a serious problem during early flight vehicle development; however,

for the AHSV, it is a very important problem to consider from design conception [Kan2].

The measurement and data processing system is the nervous system of the vehicle where

the information is sensed, processed, and exchanged between the important functional

subsystems. As part of integrated vehicle design methodology, the design of the

measurement and data processing system must also be treated in integrated form. The

design of sensors that can operate in such an extreme temperature environment is

difficult. The hypersonic flow effects prohibit any sensors that intrude into the flow

[Neul]. Also, accuracy and bandwidth requirements on sensors are stringent [Kan2].

Even if sensors can be designed and properly placed on the vehicle, it will still be

challenging to manage and process thousands of measurements [Neul]. Furthermore,

some measurements must be processed in real time thereby introducing constraints on

data processing time.

Development of AHSV sensing and estimation capability can be categorized into

several major tasks. The first task involves the control of information traffic; that is to

define the transaction rules for the sensed and processed information. In other words, the

task defines what parameters are needed by each subsystem, defines what measurements

are available, and defines how sensed or processed information should interface between

each subsystem. Also the transfer rate should be determined. The second task is to

analyze the measurement process. In addition, the sensor noise and disturbance noise of

measurement processes must be characterized. A third task is to provide algorithms that

supply information in a compact and efficient form and provide an estimate of important

variables. In order to solve such an involved problem, it is necessary to understand the

overall system functionality as well as applicable requirements.

The performance and stability of air-breathing engines are highly dependent on

the air data parameters which are the quantified description of air flow around the



vehicle. In other words, the performance and stability of the air-breathing engines can be

characterized only if the nominal and perturbations of the vehicle attitude in the wind

frame are specified. Past investigations of the sensitivity of ramjet and Scramjet

performance with respect to air data parameters indicated that the operation of the air-

breathing engines outside the design envelope severely degrades the propulsion efficiency

and could lead to combustion instability [Kan2,Hatl]. For example, if angle of attack is

off one degree from the design value then about 5% of total fuel will be wasted[Hatl].

The past and current rocket based hypersonic flight vehicles, such as X-15 and Space

Shuttle, do not require the measurement of air data for the propulsion performance and

safety. However, for the air-breathing hypersonic vehicles, the measurement and control

of the air data parameters will play as important a role in their operational success as

inertial platforms have for rocket propelled vehicles.

Other important physical variables are the parameters associated with flight

environment. Describing the atmosphere around the flight trajectory, they are difficult to

measure and are poorly known a priori. The variables such as free stream temperature,

pressure, density, and wind vector distributions are required to operate the engine and

flight control. For example, free stream static pressure and total pressure measurements

along with free stream density are needed to fully characterize the true operating

conditions of the engines. These operating conditions and the flow angle parameters are

needed to adjust the fuel injection and other engine control variables. Therefore, along

with engine parameters and air-data states, free stream atmospheric variables must be

measured and processed. The data processing of atmospheric variables will involve

estimation based on a combination of sensor measurements and the a priori data base.

The propulsion related parameters must also be measured and processed. The

engine parameters, such as inlet thermodynamic states, mass flow rate and fuel flow are

required to properly control the engine through throttle setting as well as inlet and nozzle

geometry. Since the vehicle attitude regulation is also used as a method of engine

control, those variables are needed by the flight controller to assist proper combustion.

The applicable sensors are difficult to find since the sensors have to operate in an extreme

temperature environment.

The interactions among subsystems described above calls for a system integration

approach to measurement system design. With a full understanding of each subsystem,
the inertial, air-data, propulsion, and environment sensing problem should be laid out



altogether and solved in an integrated manner. To demonstrate appropriate information

processing methodologies and to obtain particular solutions would be significant, and

enabling contributions to the development of AHSVs.

1.2 Research Objectives

The global objective of this research is to formulate and to demonstrate an air-data

estimation strategy for Air-breathing Hypersonic Vehicles (AHSVs). In particular, the

estimation efforts are focused on improving the air-data estimate accuracy, since there are

stringent observation requirements which can not be addressed directly with accurate

sensor readings. Even when applying all previously available knowledge of AHSVs,

alternative estimation methodologies are needed, must be explored, and then evaluated on

a realistic AHSV hypersonic flight digital simulation. The specific thesis research

objectives are:

* To define AHSV measurement requirements by analyzing each subsystem

such as engine control, flight control, guidance, and the vehicle cooling. In

addition, analyze how required information is to be used by each subsystem.

The accuracy requirements should be updated from previous work.[Kan2]

* To formulate the air-data estimation problem based on the accuracy

requirements and available sensor technologies.

* To select and design applicable estimation strategies. The data processing

schemes emphasize estimation of air-data states, propulsion parameters, and

environment parameters. On the basis of fundamental nonlinear filtering

theory and numerical analysis of a particular AHSV configuration, a particular

solution of the air-data estimator should be designed and analyzed.

* To verify the estimator performance by obtaining a demonstrated solution to

the estimation problem and performing statistical analysis. A computer

simulation that has implemented the estimator concept should verify its

performance.



* To assess the air-data sensor precision requirements in the context of air-data

estimation. Relate the sensor issues such as applicability of currently available

air-data sensor technologies and sensor precision requirements based on a

demonstrated estimator solution and estimation constraints.

1.3 Contributions

* The development of a systematic approach to air-data estimator design

methodologies that is applicable to any class of generic Air-Breathing

Hypersonic Vehicles(AHSVs). This covers AHSVs with dynamic models that

have nonlinearities within the vehicle flight dynamics, propulsion system, and

measurement processes (observation equations).

* The treatment of coupled estimator and flight control problem that arise from

the AHSV characteristics. Nonlinearities within the AHSV dynamics and

observations result in solutions to the air-data estimation problem being

dependent on control history. A flight controller is designed in the process of

obtaining a particular solution.

* The assessment of air-data sensor precision requirements based on a

demonstrated solution to the air-data estimation problem as well as a new

method which is derived from the Extended Kalman Filter formulation to form

inequality constraints with the state estimation error covariance and sensor

noise covariance.

* A demonstrated solution to the AHSV air-data estimation problem. This

includes:

* Graphical solutions to the Fokker-Planck equation of the AHSV

dynamics. That is based on a set of flight simulation runs with a statistical

analysis.

* The Extended Kalman Filter design and its performance estimate

based up on a Monte-Carlo simulation.

* An estimate of the air-data sensor precision requirements derived by

using an iteration algorithm containing the covariance inequality constraints.



1.4 Organization of Thesis

Chapter 2 describes the research approach of this thesis. First part describes a

global view of the thesis problem. Problem of the AHSV air-data estimation and

constraints of the air-data sensing issues are qualitatively discussed to motivate the

unique characteristics that are associated with this problem. Interactions between the air-

breathing engines with other flight subsystems (most importantly with the vehicle

attitude) are emphasized as the main motivation for the development of an accurate

estimation strategy. Second part of this chapter presents brief solution strategies for the

AHSV air-data estimation problem. The research tasks are presented in a systematic

order and provide a general overview of the AHSV air-data estimation methodology.

Chapter 3 presents some introductory materials on the AHSV missions and

configurations. Typical flight envelop and trajectory of the AHSV are presented with

explanation of the air-breathing engine constraints. The most likely configuration of the

AHSV is synthesized and discussed. The final AHSV design, that is being used within

this thesis work, is configured based on the Chamitoffs AHSV design tools [Cha2]. Also

this chapter discusses the status of the AHSV research. The last part of this chapter

discusses the interactions between the air-breathing propulsion and other sub-elements of

AHSVs such as structure and flight dynamics. The impact of these unique AHSV

characteristics on the air-data instrumentation is discussed.

Chapter 4 discusses the AHSV air-data instrumentation issues. This chapter

begins with the historical overview of hypersonic instrumentation. The air-data sensors

from previous research and operational vehicles such as the X-15 and the Space Shuttle

are discussed along with some other previously proposed conceptual sensor designs. This

historical review of the potential sensor technologies provides the foundation for the

AHSV instrumentation. The second part of this chapter presents the projected accuracy

requirements of the air-data states. The accuracy requirements are derived in two

perspectives, constraints from the air-breathing propulsion and the vehicle acceleration

limits. The accuracy requirements are gathered and concluded from various sources such

as [Kan2, Honl, Hatl] and several Space Shuttle documents. Also, the sensor selection

issues are discussed. On the basis of functional characteristics of each applicable sensor

candidate, sensor selection criteria are formed with the considerations from operational

regimes, accuracy, and operation environment. The last part of this chapter discusses the

sensor placement issues. The sensor installation criteria are motivated by the functional



characteristics of each sensor technology, shock structure and thermo/aerodynamics of

the vehicle forebody, and the thermal loads.

Chapter 5 derives the necessary models for the AHSV dynamics, sensors, and

simple environment models in the context of the AHSV air-data estimation. Two

different models are presented to cover different flight regimes. First model contains

wind effects and this model can be used to describe the vehicle motion during ramjet

assisted flight (Mach 3 to 6). This model is derived and specialized to longitudinal

motion from the 6 degree of freedom derivation of [Fro 1]. Second model is based on the

LVLH formulation of [Cha2] and the equations are manipulated to treat angle of attack as

one of the state variables. The inertial and air-data sensors are modeled such that the

models are readily implementable for the estimation. The sensor models are simplified

from the references [Prul, Hil3, Mill,Mil2, Mil3]. A simple environment model is

presented.

Chapter 6 is a large chapter that discusses the air-data estimation methodologies.

This chapter begins with the theoretical background necessary to understand and to derive

the properties of the AHSV air-data estimation algorithm. The fundamentals of the

estimation theory are briefly stated and the Extended Kalman Filter is derived from the

fundamental equations as a special case.

The second part presents the estimation problem formulation. The equations from

the models of vehicle dynamics and sensors are specialized to form a set of equations that

represent the air-data estimation problem. The next section explains the AHSV air-data

estimation strategy. The estimator design procedure is discussed from the problem

formulation to the final performance verification stage. Control system design process is

presented. The control system design has been motivated by the estimator's dependence

on control history. Therefore a functional control system is designed and the

performances are shown.

The next section presents a method of visualizing propagation of the state

conditional densities. In order to guess at an appropriate approximation of the state

conditional densities, the state conditional densities are visualized by multiple simulations

and statistical analysis. The histograms of the propagation and update processes are

plotted and presented. The results concluded that the Extended Kalman Filter should be a

good approximation for this problem.



The last section demonstrates the Extended Kalman Filter development. The EKF

design procedure is explained. A Statistical analysis (Monte-Carlo Simulation) is

implemented and the necessary considerations are explained. The results from the

statistical analysis are presented. The Gaussian assumption on probability density

function of the estimation error is substantiated by the statistical analysis.

Chapter 7 provides a method to estimate the sensor precision requirements

bounded by the estimator performance specifications. This chapter begins with the

motivation for this analysis. An inequality constraint is derived from the EKF

formulation. Later in this chapter, the solution strategy is demonstrated for several

operational points and different sensor combinations.

Chapter 8 summarizes the thesis and discusses the conclusions. Also some

recommendations for future research efforts are included.



Chapter 2

Research Approach

2.1 Problem Definition

The objective of this research is to understand and to develop the AHSV

instrumentation and air-data estimation system. In particular, the research efforts have

been focused on to the design and analysis methodologies of the AHSV air-data estimator

with large emphasis on the air-data estimate accuracy improvement. The most important

air-data state variables are the variables that depict air-relative attitude of the vehicle such

as angle of attack. Throughout this thesis, several smaller pieces of problem are defined

such that these problem definitions, solution strategies, and example demonstrations

combined to layout the back bone of the design and analysis methodologies for the

AHSV air-data system.

The measurement and data processing system is the nervous system of the vehicle

where the information is sensed, processed, and exchanged between the important

functional subsystems such as propulsion, thermal management, guidance and flight

control. The instrumentation and information processing problem is critical to efficient

and stable operation of AHSVs. For example, the engine control requires information on

inlet, combustor, and nozzle flow parameters as well as vehicle motion (direct

interdependence between propulsion and vehicle motion, Chapter 3) in order to execute



the feedback control law. Since the vehicle flight dynamics are highly nonlinear,
unstable, and time varying, active control of vehicle motion is inevitable for both flight

control and propulsion. Therefore, an accurate estimate of important states and

parameters is absolutely necessary.

The AHSV state information can be obtained either by direct measurements

and/or by processed measurements that are derived by numerical techniques such as

nonlinear state estimation. Similarly instrumentation and information processing systems

are needed by flight control, guidance, the structure thermal management, and various

hypersonic experiments. In particular, the information on air-data states and propulsion

parameters are considered as the most critical variables for the estimation.

The interaction among functional subsystems of AHSVs complicates the

estimation problem formulation. The variables for the vehicle flight dynamics have

direct inter-dependence with the propulsion state variables. In order to achieve greater

estimation accuracies, it is desirable to treat all air-data sensitive elements of the AHSV.

As a result, the problem formulation requires augmentation of all the interacting elements

of interdependent functional blocks. The required information can be acquired through

various sensors located around the vehicle combined with a priori knowledge or data

about the systems prior to flight. It is a challenging task to provide methods to distribute

and integrate these numerous information sources so as to insure a proper and efficient

operation of the vehicle propulsion systems.

A part of this thesis research effort involves understanding of how each functional

subsystem behaves during the hypersonic flight. For each subsystem, it is necessary to

define what are the important states and how they affect the overall flight performance

and stability. If these states require monitoring or control, then the accuracy and

bandwidth requirements on these states must be defined. Also, design of sensors that can

operate in the applicable extreme temperature environment is difficult. Therefore another

part of this research involves selection of applicable sensors, and sensor placement. The

measurement requirements and sensor issues lay out a foundation for the AHSV air-data

estimation problem.

Once the air-data estimation problem is defined, another challenge is to find an

appropriate estimation strategy. The problem is to determine what type of signal

processing and/or estimation strategy would be most applicable for that particular



assignment. Because the AHSV problems contain nonlinear elements, the selection of an

appropriate estimation algorithm is not trivial. Since a model based estimation strategy is

considered to be the most appropriate strategy, the required models should be formed.

The modeling problem is also a challenging problem since all the elements of hypersonic

flight and air-breathing propulsion should be addressed without complicating the

representing models. The measurement processes (including sensors) are needed to be

modeled. After an estimation strategy is established, next issue is to develop algorithms

which provide a compact and efficient source of processed information derived from

measured data set. The algorithms and the selected set of sensors must provide estimates

of important variables within the required accuracy and bandwidth.

Once the air-data estimator is developed, some measure of its expected

performance is needed. Since the problem involves stochastic response of the nonlinear

dynamics, a statistical analysis is needed for the system performance verification. The

algorithm implementation issues and the system practicality should be addressed. Due to

the unique nature and complexity of the AHSV information processing system,

demonstration of the information processing methodology and obtaining particular

solutions would be a significant contribution to the development of AHSV technology.

The last problem of this thesis is the assessment of the air-data sensor precision

requirements. For this given air-data estimation problem, the problem of finding an

upper bound of the sensor performance requirements can be defined This problem would

be a significant interest to the hypersonic air-data sensor designers. The AHSV air-data

sensors are still under development. Most of the proposed sensor technologies are either

laboratory techniques or conceptual stage. By obtaining a method to bound an upper

bound of the sensor performance and providing a demonstrated solution, the results may

be used as an accuracy goal for the future sensor development.



2.2 Solution Strategy

In an attempt to solve the problem defined in section 2.1, a solution strategy is

laid out and will be discussed in this section. The solution strategy for the AHSV

instrumentation and air-data estimation can be briefly summarized as follows. The first

phase of this research is in understanding of the AHSV system. The instrumentation and

information processing requirements of each functional block are defined. Once the

requirements are defined, the engineering analysis that is based on physically available

hardware provides the basis for the problem formulation in the context of the air-data

estimation. The second phase involves the air-data estimation problem formulation and

the system modeling. Once the important states and parameters are selected, models of

the interacting functional elements are created. These models include sensors, vehicle

dynamics, and the environment. The third phase involves formulation of estimation

algorithms. On the basis of the problem formulation and the related system models, a

simulation based analysis is performed to provide a clue to the estimator design solution.

The last phase addresses the performance verification and the numerical implementation

issues along with some recommendations for the sensor precision requirements.

Phase I: By investigating the detailed characteristics of AHSV subsystems

such as vehicle configurations, guidance and control requirements, detailed propulsion

characteristics, and flight dynamics, the measurement and information flow requirements

are defined. There are several previous investigations on flight dynamics and control,

trajectory optimization, and propulsion in both theoretical and experimental forms. On

the basis of these studies as applied to the selected vehicle configurations, the AHSV

measurement requirements are defined with emphasis on air-data states. A candidate set

of inertial, air-data, and propulsion sensor technologies that can span the AHSV flight

envelope is selected on the basis of functional requirements and first principles of sensor

operation. These sensors may utilize mechanical, pressure, and advanced optical

measurement techniques. With the list of applicable sensors, the AHSV operational

requirements, and the information flow structure, the basis for the problem formulation is

formed.

Phase II: The model based estimation approach is the most applicable for

AHSV air-data state estimation. The AHSV flight dynamics contain full of air-data

information. The force components are direct function of thermo/aerodynamic

parameters, angle of attack and velocity. Therefore, the model of AHSV dynamics can



boost the information on the air-data states assuming that a sufficiently accurate model

can be obtained. Once the model based estimation strategies are considered, the models

for vehicle dynamics, propulsion, environment, and sensors are formulated. The vehicle

and propulsion models are developed based on the NASA Langley [Shal] and Draper

Lab data bases [Cha2]. The sensor model formulations are based on the first principles of

operation and/or previous implementation results. Also the corresponding sensor noises

and disturbances will be modeled and characterized. The review of existing data and

conceptual preparation on wind information, and some of the propulsion coefficients lead

to the necessary models.

The environment model, by definition the free stream parameters such as

pressure, temperature, density, and wind velocity vector field, are incorporated within the

vehicle flight dynamics. The propulsion and aero-thermodynamics describing the AHSV

dynamics contain the parameters that are depend on the environment model parameters.

Therefore, the models are needed to be updated by measurements and processed in order

to implement the estimation strategy. This information should also be distributed for the

engine and flight controller.

Once the measurement and data processing requirements are established, the

estimation problem is formulated. A first task is to define the states to be estimated.

With laid out models for sensors, sensor noises, vehicle dynamics, and environment, a

model based estimator block diagram is constructed. Part of the problem is in dynamic

state estimation form, while other parts are in the form of static filtering. Due to the

vehicle dynamics and sensor characteristics the problem involves treating nonlinear, time

varying, unstable, and nonlinear observation processes.

Phase III: In order to solve the estimation problem defined in phase II,

nonlinear filtering theory is reviewed and applicable filtering strategies are composed. In

order to acquire an approximate solution for the AHSV air-data estimator, it is desirable

to know the characteristics of the state conditional densities. A visualization tool based

on a statistical analysis is recommended. Initially the Extended Kalman filter (EKF) is

considered since it is the easiest to implement. However, the implementation of EKF

requires certain assumptions on its state conditional densities and the AHSV air-data

estimation problem should be analyzed to verify its applicability. The visualization tool

would provide some evidences for the applicability of EKF. If EKF fails as the solution



to the estimation problem, the estimator design can be approached in more fundamental

methods.

The problem posed by the AHSV air-data estimation requires a control system

design. When looking into the evolution of the state conditional densities for the AHSV

air-data estimation problem, the governing equation depends on specific control history,
measurement, initial conditions, and operation boundary conditions. Consequently, the

solutions will depend on a specific controller design.

Throughout the estimator design phase, a statistical analysis tool such as the

Monte-Carlo simulation may be used to characterize the problem. Because of the fact

that the estimation problem is a nonlinear problem, an achieved solution will depend on a

specific design and operating condition. The obtained results will be used to reassess the

air-data sensor precision requirements.

Phase IV: Once a reasonable estimation strategy is selected and an

appropriate estimator is designed, full scale simulation is needed to be performed with

both the plant, which consists of high fidelity models of vehicle dynamics, sensors, and

disturbances, and the estimator, which is designed based on simpler models with

uncertainties in model coefficients. Through Monte-Carlo analysis, the performance of

the designed estimator can be estimated. Engineering analysis is then used to address

issues regarding numerical implementation, and estimator characteristics.

With the estimation results, the issue of air-data sensor precision requirements can

be addressed. Also, if possible, an upper bound of the sensor precision requirements

should be derived. With these results, some recommendations for the sensor accuracy

requirements can be made.



Chapter 3

AHSV System Overview

3.1 Air-Breathing Hypersonic Flight

3.1.1 Air-Breathing Corridor and Flight Trajectory

The air-breathing ascent trajectory is determined by air-breathing combustion

requirements and thermal load considerations in addition to guidance requirements. For a

given speed, air-breathing engines require bounded ranges of atmospheric pressure,

density and temperature for proper combustion, thus the requirements set a particular

Mach number - altitude envelope called the air-breathing corridor. More detailed

trajectory optimization results based on these requirements can be found in [Hat2]. The

trajectory restrictions, along with maneuver restrictions and bounds of allowable

environmental conditions, set part of the requirements for sensor selection and operation.

Thus these bounds or results can be used to obtain the particular operating conditions for

AHSVs. Therefore, the results will be applied as nominal conditions throughout the

thesis analysis. Since more detailed work can be found in [Hat3, Kan2, Lewl], the

requirements are briefly stated, then more importantly, the resulting operating conditions

will be used to provide nominal conditions for the models within the estimators during

numerical simulations.
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The combustion requirements can be briefly summarized as follows. The

combustor inlet temperature must be low enough to permit addition of heat to the flow

with an increase in enthalpy. At sufficiently high temperature, added fuel will dissociate,

and the dissociation will absorb energy and result in a net loss of heat from the flow. On

the other hand, the combustor inlet temperature must be high enough to create

spontaneous combustion [Lewl]. Combustor inlet pressure must be as high as the

structure can withstand to maximize combustion efficiency; however, if inlet temperature

is low, then the inlet pressure must be kept below the cutoff pressure where secondary

reactions start [Lewl]. Therefore, inlet pressure and temperature should be controlled

within a narrow range. Detailed numerical data on combustion requirements can be

found in [Lewl, Cha2, Kan2]. Typical dynamic pressure bounds of 500 to 2000psf are

expected during most of the hypersonic flight phase and up to a 3000'F peak temperature

is expected on the vehicle structure. The constraints defined by combustion and

structural loads will dictate a flight envelope similar to the air-breathing corridor shown



in Figure 3-1. Most of the hypersonic flight will occur within the 100k to 200k ft altitude

range. Total air-breathing flight time will be about 2000 seconds [Hatl].

Figure 3-2 AHSV Configurations

3.1.2 AHSV Configuration

The proposed AHSV will have low fineness ratio lifting body configuration as

shown in Figure 3-2 [Wall, Schl]. A total vehicle length and weight of 150 ft and

250,000 LB are expected [Schl]. The vehicle will have flat 2-D forebody which acts as a
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series of inlet compression ramps. The free stream atmosphere will be compressed

through oblique shock waves formed by the inlet ramps and the compressed air will feed

into the combustor located under the vehicle. A stepped inlet - combustor boundary will

minimize the interactions between the inlet and the combustor. Either liquid or slush

hydrogen fuel will be drawn from the fuel tank, heated to a gaseous form, while cooling

the air frame, and then injected into the combustor [Wall]. If the flow inside the

combustor is decelerated to subsonic speed by forming a normal shock wave, then the

engine will be operating in ramjet mode. Otherwise, the engine will be operating in

Scramjet mode where combustion occurs in supersonic flow. The energized gases will

expand over the aft-body, which will function as part of the nozzle. Because the vehicle's

underside functions as part of the air-breathing engine, aerodynamics and vehicle motion

will be highly coupled to the performance and stability of combustion. Some literature

suggests that an external burning system would also be employed to augment the main

propulsion system during the low supersonic flight regime. The controllable

aerodynamic surfaces are elevons, twin vertical tails, and nozzle lip. Part of the under

surfaces such as inlet ramps, nozzle surface, and nozzle lip may be actively moved to

control the combustion process and thrust vectoring. The AHSV configuration is not yet

fixed and there is still on-going research to improve the overall performance in both the

supersonic and hypersonic flight phases [Wall].

3.2 Status of AHSV Technology

Hypersonic flight vehicle programs started as early as the 1950's. During the 50's

and 60's, an enormous amount of hypersonic research was pursued under several

programs such as ballistic missiles, the X-15 and X-20. Most significant work was in

ramjet propelled intercontinental missiles, X-series vehicles, and space plane concepts

[Nasl, Neul]. The ideas of single-stage-to-orbit, horizontal take-off, and Scramjet air-

breathing propulsion were introduced around this era. Unfortunately, these programs all

died before the 70's except for limited research on 3-D Scramjet designs and the

associated vehicle configuration studies within NASA's Langley research center. Around

1984, DARPA started a classified hypersonic research program called Copper Canyon.

In early 1986, President Reagan announced in his State of the Union address that

hypersonic research would be pursued under the NASP program. He approved a program

aimed at making a decision to build a NASP prototype by 1990, with first flight planned



by 1993, and achievement of orbit by 1995. Right after the President's approval, several

airframe and engine contractors were selected and the NASP Joint Program Office was

formed with NASA, the Air Force, the Navy, DARPA, and SDIO as participating

agencies. However, the NASP program suffered from severe budget restrictions which

delayed technology maturation necessary to build a first prototype. When the contractors

were down selected and teamed, the National Program Office began operations in mid

1990 on an interim basis [Wall]. By mid 1993, the NASP program was redefined and

redirected to accomplishment of the Hypersonic Flight Test Experiment (Hyflite) due to

shrinking budgets and concerns regarding the status of several technologies needed to

construct a flight test demonstrator, X-30 [Avil]. The program now was aimed at

accomplishing several rocket launched unmanned hypersonic flight experiments to study

boundary layer transition, Scramjet performance, and vehicle stability and control but has

since been canceled.

Since the 50's, ramjet technology has been demonstrated for applications in long

range ballistic missiles [Nasl]. Limited Scramjet performance has been demonstrated

and a broad data base developed up to Mach 7. SR-71 inlet control and Concord two

dimensional variable ramp inlets represent bases for the supersonic cruise inlet design.

Limited research has been done on Scramjet inlet design. Performance potential has been

demonstrated for fixed geometry supersonic inlets for the Mach 3 to 10. A several-

stepped combustor upper surface is considered for minimizing inlet combustor

interactions. Complex Computational Fluid Dynamics (CFD) codes are available to

simulate flow around the high Mach vehicles including after body flows. Much work

was done toward development of a slush hydrogen fuel system. The most significant

advancement toward the completion of the AHSV technology was in the area of materials

and structures[Wall]. Due to the emphasis carried on to the development of high

temperature materials from early stage of the NASP program, a large portion of the

funding was diverted into the development of exotic materials such as carbon-carbon,

metal matrix composite, silicon-carbide, etc., along with extensive efforts from the

contractors. The moving elevon components and several leading edges were prototyped

and developed to demonstrate the manufacturing capability. Also these parts were put on

to arc-jet heater for the testing of thermal integrity[Wal 1].

In the technical area of instrumentation and control for the NASP, or AHSVs in

general, fewer efforts were put on by the contractors, mainly due to lack of significant

funding from the program. Most of the instrumentation and control research were done



by the Universities or Internal Research and Development (IR&D) programs of aero-

space related companies. The research efforts on optimizing the AHSV design

configurations were carried out since early eighties by Hattis with emphasis on control

and guidance issues[Hat5, Hat6]. In the area of AHSV flight control and guidance,

significant efforts and results were accomplished by Chamitoff [Cha2], McRuer [McR1],

and Schmidt [Schl]. McRuer provided insight into the behavior of AHSV dynamics

through analysis. Schmidt analyzed the dynamics via a linearization approach, and

developed the controller based on the linear theory [Schl, Sch3, Sch4]. Chamitoff

advanced the AHSV study and development in two interesting areas [Cha2]. First, he

developed a complex computer based model of the vehicle which is the most realistic

vehicle model known up to date (unclassified), and developed a control methodology

based on the A-star search which takes account of full integrity of the nonlinear model.

The AHSV instrumentation issues were investigated by two contractors,

McDonnell-Douglas and Honeywell. The McDonnell-Douglas researchers investigated

the feasibility of the SEADS system on the AHSVs. The Honeywell researchers

performed a survey of applicable sensing technologies [Honl]. Miles, working in

conjunction with the sub-contractors, analyzed the feasibility of laser based optical

sensors on the AHSVs [Mill]. Most of the previous work on instrumentation was no

more than the feasibility study of old/new sensing technologies on the AHSV platform.

None of the previous work addresses the problem of the estimation of air-data states in

conjunction with the sensor development. Therefore, it was highly desirable to envision

and establish the estimation problem for the AHSVs as part of the AHSV development.

Since 1990, Kang and Hattis pursued the development of estimation strategies for the

AHSVs, and part of the results are contained in this thesis.

3.3 System Interactions

Even from the beginning of manned flight, the superb engineers and pilots of that

time, the Wright brothers, experienced the dilemma of solving a problem which involved

closed loop interactions.

It is hard to find even a point from which to start, for nothing about

a propeller, or the medium in which it acts, stands still for a moment. The



thrust depends upon the speed and the angle at which the blade strikes the

air; the angle at which the blade strikes the air depends upon the speed at

which the propeller is turning, the speed the machine is traveling forward,

and the speed at which the air is slipping backward; the slip of the air

backward depends upon the thrust exerted by the propeller and the

amount of air acted upon. When any of these changes, it changes all the

rest, as they are all interdependent upon another. But these are only afew

of the factors that must be considered...

Orville Wright

Spring of 1903 [And 1]

Now, there exists a closed form solution for the propeller design problem of the Wright

brothers. Similar to the Wright brothers' dilemma, AHSV design requires investigation

of a system which has highly interactive elements. For example, there are strong

interactions between vehicle motion and propulsion, between structural deformation and

propulsion, and between propulsion and aerodynamics. Even though this research is

focused in instrumentation and data processing, it is extremely important to understand

the nature of the AHSV system because it provides sensing requirements and forms the

basis for the problem formulation. The next few subsections are devoted to discussion of

important interactions associated with flight of AHSVs.

3.3.1 Attitude - Propulsion Interactions

In general, the vehicle motion and propulsion have strongly coupled interactions.

Most importantly the engine performance is interdependent on angle of attack, angle of

side slip and flight Mach number. Since the vehicle forebody functions as the

compression inlet, if angle of attack or side slip angle changes then the propulsion

efficiency changes [Nasl, Lewl, Kan2, Cha2]. If this inlet conditions change, then the

thermo/aerodynamics of the flow inside combustor change. Consequently, the thrust

magnitude, flow expansion in nozzle, and thrust direction change when combustor states

change. These changes in thrust then influence the attitude dynamics.

The flight trajectory dependent parameters such as altitude and flight Mach

number dictate the engine design and, if possible, the vehicle inlet and nozzle geometry.



Because the vehicle geometry can not vary dramatically, one has to design for a particular

nominal design [Cha2]. These nominal conditions for the engine operation will set the

degree of interaction among attitude and propulsion which change along the flight

trajectory. The functional dependence of these parameters is discussed in Chapter 5,

vehicle modeling.

3.3.2 Aerodynamics - Propulsion Interactions

Because the vehicle under surface is the air-breathing engine and the vehicle is

configured as a lifting-body, aerodynamics and propulsion are strongly interdependent.

The under-surface pressure distributions, which include inlet and nozzle surface pressure,

dictate the propulsion conditions as well as lift, drag, and moments. For example, if the

thrust is changed by adding more fuel and increased mass flow, then the pressure

distribution along the inlet and nozzle changes and alter the total lift and drag of the

vehicle. Such problems could be most severe at the nozzle because the flow expansion

and attachment at the nozzle are a complex function of the flow exiting the combustor

and the vehicle external atmospheric conditions. The inlet pressure and nozzle flow

condition will dictate the net pitching moment applied to the vehicle. The vehicle attitude

and aero/thermodynamics of flow within the inlet, combustor, and nozzle will set

conditions for the boundary layer transition point and thickness [Lewl]. Conversely, if

particular lift and drag values are needed to follow a particular guidance trajectory, the

desired angle of attack not only changes lift and drag but changes net thrust and pitching

moment.

3.3.3 Structure - Dynamics - Propulsion Interactions

Structural interaction with vehicle dynamics and propulsion is considered critical

in the performance and stability of AHSVs. These interactions are highly convoluted in

the sense that a phenomenon can not be analyzed without considering structure,

dynamics, and propulsion issues together. The structural interactions can occur in both

static bending as well as forced and free vibration. The static deflections of AHSVs are

caused by non-uniform pressure distributions along the body surfaces as well as thermal

deflections. For example, the SR-71 has significant in-flight aerodynamic and thermal

distortions as shown in Figure 3-3 [Neul]. Similarly for the hot structure of AHSVs,



static deflections can alter the geometry of inlet and nozzle and create significant

alteration in combustion conditions. Moreover, if the geometry and combustion

condition change, the vehicle dynamics change as well.

AHSV structural vibration can be caused by the vehicle's inherent flexibility

which is forced by either aerodynamics, vehicle motion, or propulsion disturbances. The

thermal effect can also cause the vibration frequency and damping to change. If the

energy associated with these bending modes is small and the frequencies are well above

vehicle rigid body modes, then the vibrational modes can be ignored. Otherwise, the

structural vibration can interfere with vehicle dynamics. The worst scenario is when

bending modes modulate the angle of attack and consequently results in thrust

modulation. If the vehicle thrust is modulated with bending frequency, it is possible to

excite the bending modes further and/or affect the vehicle flight dynamics. These

phenomena are closely interactive and create serious flight control, engine control, and

instrumentation problems.
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In-Flight Aerodynamics and Thermal Distortion of the YF-12 Aeroplane
Figure 3-3

3.3.4 Instrumentation & Estimation Problems From Interactions

The overall configurations and interactions described above pose serious

problems for systems engineers. For the air-data instrumentation, there are problems of

sensor placement and alignment. The structural motion, either dynamic or thermal

bending related, can contribute to the errors in the sensor alignment. The instrumentation

problem includes the uncolocated sensor-actuator problem for the case of measuring

angle of attack with the sensors installed at the nose while the vehicle is vibrating at low



frequency structural modes. For the problem of designing control and estimation

algorithms for AHSVs, the interactions of the vehicle dynamics and propulsion cause the

plant (models) dynamics for the control and estimation to be a highly nonlinear, time

varying, and unstable plant. Moreover, the complexity or dimension of the problem

increases if rigid body dynamics, structural dynamics, aerodynamics, and propulsion have

to be treated simultaneously. In order to control vehicle motion, the interactions from

propulsion and aerodynamics must be properly treated.



Chapter 4

AHSV AIR-DATA
INSTRUMENTATION

4.1 History of Hypersonic Instrumentation

Only a few hypersonic flight vehicles, from which to draw hypersonic

instrumentation technology, currently exist. Among these, the X-15 and the Space Shuttle

Orbiter are the most significant. Although these vehicles do not employ air-breathing

engines and have different flight trajectories, their instrumentation techniques and

requirements can provide insight into the AHSV technology requirements. The
instrumentation techniques of these vehicles represent the state of the art in flight-proven

technology. [Kan2, Neul] provide detailed descriptions of the available hypersonic air-

data sensing technology, listing their requirements and performances. Also, the references

[Kan2, Hat4, Honl] describe the applicable air-breathing hypersonic air-data sensing

techniques and requirements. Therefore, the sensing techniques are only briefly

summarized here.

X-15: The X-15 was a rocket-propelled hypersonic research aircraft. It

had typical missions of rocket powered boost from 40kft to about 200kft with a ballistic

coast to a maximum height of 350kft while traveling at flight Mach numbers up to 7.



Reentry occurred at a high angle of attack to dissipate energy while maintaining the skin
temperature below the 12000F. The hypersonic flight segment typically lasted 10 to 15

minutes [Web ].

Fuselage pitot probe

Ball nose

IV-- - Fuselage static orifice

3 - synchro mounted on
pivot axis of outer gimbal

a - synchro mounted on
pivot axis of inner gimbal

Figure 4-1 Schematic Drawing of the X-15 Ball Nose Sensor

For flight Mach numbers less than 3, the X-15 used a conventional Pitot static nose

boom with angle of attack and angle of side slip flow vanes. Such a method would not

withstand high thermal loads at higher Mach numbers, so a ball nose sensor was

implemented [Web], Woll]. As shown in Figure 4-1, the sphere was housed in the end of

the conic nose. It was rotated by a hydraulic actuator to face the stream-wise direction by

nulling the differential pressure between vertical and lateral pressure sensor pairs. The

alignment angles of the sphere with respect to the aircraft reference axis indicated the angles

of attack and of side slip.



The rear portion of the sphere contained the mechanical and electrical components.

These components, along with the sphere, were cooled by vaporized liquid nitrogen.

Thus, the X-15 structure and associated components behind stagnation points were capable

of withstanding temperature of up to approximately 1200F (922°K). The static pressure

sensor was flush mounted on the side of the conic nose. Besides air-data sensors, the X-

15 had the capability to accommodate up to 1000 sensors, including those for measuring

skin temperature, pressure, structural strain, etc. [Neul]. The tabulated sensing

requirements and sensor performance are listed in [Kan2].
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Figure 4-2 SEADS Orifice Configuration

Space Shuttle: The reentry part of Space Shuttle flight envelope, as shown

in Figure 3-1, has a much higher flight altitude for a given flight Mach number than that



AHSV would experience during its air-breathing ascent. The AHSV reentry trajectory

would be similar that of the Space Shuttle. Therefore, the Shuttle entry flight environment

can be used as the reference for AHSV's. The main purpose of the reentry flight maneuver

is to decrease flight kinetic energy by using high angle of attack (higher than what an

AHSV would experience during its ascent), high drag maneuvers. By gliding through a

high altitude envelope, the thermal load on the structure is dissipated by radiation cooling,

without significant convection, while obtaining sufficient deceleration. The flight envelope

spans the Mach numbers from 27 to touch down, the angle of attack from -5' to 45", and

the peak stagnation temperature up to about 2000"F to 2300"F (1366 0K to 1532 0K) [Hil3].

The Shuttle Entry Air Data System (SEADS), designed for hypersonic flight

experimentation, is currently mounted on the Shuttle Columbia since the STS 61-C mission

and is used to collect atmospheric research data during entry operations [Hat4]. As shown

in Figure 4-2, the SEADS employs a cruciform array of 14 flush mounted pressure

transducers on the nose cap as well as 6 static orifices located aft of the nose cap. The

SEADS uses dual pressure transducers in each of 14 pressure ports to collect data below 1

psia and below 20 psia respectively, with resulting measurement error discontinuities at

transition from one set of transducers to the other [Hat4].

The nose cap heating rates can reach 50 W/cm 2 [Hat4]. The nose of the Shuttle

Orbiter functions as both a Pitot-static probe and a flow direction sensor by implementing

numerical pressure sensor data processing techniques [Hil2, Prul]. A computational

technique, which includes calibration parameters derived from wind tunnel data, is used to

extract air-data parameters from the pressure field measurements without a rotating ball

nose. A rotating ball like the one used on the X-15 would have an operational Mach limit

too low for the Shuttle. The tabulated sensing requirements and realized sensor

performances were detailed in [Kan2].

Besides the X-15 and the Shuttle sensors, several other AHSV applicable sensor

technologies exist. Several temperature and strain measurement techniques applicable to

both hot and cold structure hypersonic vehicles, were developed for the X-15, the SR-71,

the Shuttle, and the X-20A programs [Neul]. However, the sensing techniques for other

necessary measurements such as heat flux, skin friction, and boundary layer transitions

only have limited performance [Neu I]. A UV based sensor was proposed for the X-20A

in the early 60's. The UV densitometer was based on crossing a transmitter UV beam with

a receiver beam. The scattered UV beam is sensed and processed [Neul]. Similarly,



AVCO proposed an electron beam device for ballistic vehicles in the late 60's. The electron

beam exits the vehicle surface and interacts with the flow around the surface. Then the

scattered UV light is picked up by photo multipliers. The exit angle of the electron beam is

controlled by a magnet located near the exit window [Neu 1].

There are other more recent reports on laboratory tested optical air-data sensors with

AHSV applicability based on Rayleigh scattering, Raman spectroscopy, laser Doppler

shift, and laser induced florescence [Mill, Mil2, Mil3, Mil4]. These sensors show certain

advantages due to their non-intrusive sensing methods although there exist several

shortcomings such as unproved resolution, unknown sensor-environment interactions, and

altitude limitations for some classes of sensors. A detailed description of these optical

sensors can be found in Chapter 5, the Sensor Modeling section.

4.2 Accuracy Requirements For State Parameters

The required measurement accuracies of air-data state and propulsion related

parameters are derived from the unique functional requirements within the context of the

operational AHSV state estimation problem[Kan2, Hat2]. Air-breathing hypersonic

vehicles have highly coupled propulsion, aerodynamics, and flight dynamics, and each of

these sub-systems dictates accessibility requirements of relevant physical variables. These

requirements provide the foundation for the estimation and control problems of AHSVs.

The performance uncertainties and operational requirements of the AHSVs are

defined based on the analysis of operational AHSV flight dynamics and propulsion. The

parameters needed for feedback control and estimation systems are selected on the basis of

need for propulsion efficiency and stability. Thus, the key questions include the following:

what parameters are needed to provide feedback to the controller?, what accuracy is

required for particular piece of state information, and how fast should the information be

updated?

Accuracy requirements for AHSV air-data states were derived in [Kan2, Hat2,

Hat3] from trajectory optimization and performance sensitivity studies including

consideration of both engine sensitivity analysis and vehicle configuration. The

requirements impose implicit accuracy demands on the vehicle models, the atmosphere



models, and the associated parameters. These specifications, in turn, ensure proper

operation of the AHSV. For example, the AHSV configuration chosen for the Mach 10 to

15 flight exhibit extreme sensitivity respect to angle of attack as shown in Figure 4-3. For

one degree angle of attack perturbation around the nominal equilibrium condition, the

normal component of the vehicle acceleration can vary from 5 to 10 m/sA2 (half to one g).

The sensitivity increases as the flight Mach number increases. If the angle of attack

feedback is needed by the flight controller, the maximum allowable angle of attack

perturbation should be much better than about one degree. For one degree angle of attack

regulation, the 0.1 degree angle of attack measurement accuracy requirement is not an

unrealistic figure.
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Figure 4-3 Normal Acceleration Vs Angle of Attack & Mach numbers

A brief summary of the requirements is in Table 4-1 below [Kan2, Hat3]. Due to

the stringent accuracy requirements, precise modeling of the flight environment and the

vehicle dynamics is imperative to the estimator design. The most stringent requirements are

imposed on the flow direction parameters such as angle of attack and side slip angle.

According to [Hat2], about extra 5% fuel consumption will occur if angle of attack is

changed by one degree from the design value. However, 0.1 degree accuracy requirements

in angle of attack and side slip measurements are difficult to meet with the currently

available air-data sensors. An engine sensitivity analysis [Hat2] notes that the free stream

conditions such as temperature, density and pressure will dictate the air-breathing engine's

performance.



Table 4-1 Air-Data Reuuirements

a angle of attack

P side slip angle

Q dynamic pressure

P0  free stream density

T- free stream temperature

Va air relative velocity

Pe engine inlet density

Te engine inlet temperature

Ve engine inlet velocity

0.1 deg.

0.1 deg.

5%

0.5%

0.5%

0.5%

0.5%

0.5%

0.5%

-5 - +300

0 - 2000 psf

0 - 0.0025 slug/cu-ft

3600 - 5600 R

0 - 28,000 fps

0 - 0.0025 slug/cu ft

3600 - 35000 R

0 - 3000 fps

4.3 Sensor Selection

The feasible inertial and air-data sensors for the AHSV application are selected

based on their operational range, accuracy and the expected operational environment. A

variety of air data measurement technologies exists in flight-proven, wind tunnel

demonstrated, or conceptual forms. However, each measurement technique has specific

envelope limitations, and none of these techniques individually meets the AHSV accuracy

requirements. Furthermore, each technology has its unique disturbance susceptibilities and

has different sources of measurement uncertainties. From the list of existing or conceptual

hypersonic sensors, several workable concepts are selected so that, in the aggregate, they

constitute a satisfactory sensor package. This section presents the selected sensor

technologies along with a brief explanation of the selection criteria and justifications. More

detailed information on the sensor mechanization and expected performance can be found in

Chapter 5, the modeling section.

Inertial sensors: The AHSV inertial sensors would be similar to any other

aircraft or spacecraft inertial sensors. Because of its close functional resemblance to the

States Required Accuracy Measurement Range

Table 4-1 Air-Data Requirements



Space Shuttle, the proposed AHSV avionics system is assumed to include the inertial

sensors functionally similar to those on the Space Shuttle with the addition of Global

Positioning System(GPS) receivers. An Inertial Measurement Unit(IMU) would include

integrating rate gyros and accelerometers. They would provide both rotational and

translational positions, velocity and acceleration data. Since the GPS can provide very

accurate inertial position and translational velocity, it will be used to correct translational

bias drifts. Interferometric GPS can be used to correct attitude drift and bias.

Air Data sensors: Although the inertial measurements can be used to provide

computed air data parameters [Honl ], direct air data measurements are necessary; because,

the atmospheric variations and disturbances contribute to greater air data uncertainties than

the required accuracy. Both pressure and optical based air-data state measurement sensors

were considered for the AHSV applications. The available pressure based sensor

technologies include Pitot probes and arrayed, flush mounted pressure port sensors like the

Shuttle Entry Air Data System (SEADS). The optical sensor technologies include Rayleigh

scattering sensors, Laser Doppler Velocimetry (LDV) based on Mie scattering, Raman

spectroscopy and Raman Doppler Velocimetry based on Coherent Anti-Stokes Raman

Scattering (CARS), and Laser Induced Fluorescence (LIF).

Pitot probes cannot be operated above Mach 3 and may only be used for takeoff and

landing phases because of the intrusive nature of the probe in the heavy thermal load

hypersonic flow environment. Therefore, the Pitot probe technology is excluded from the

candidate sensor array. The flush mounted pressure sensor class includes SEADS and

engine inlet sensors. The SEADS has demonstrated its performance from reentry to

landing. The flush-mounted pressure transducers are located aft of the vehicle nose shock

wave. Therefore, they require a blunt nose shape for maximum sensitivity and very

accurate vehicle/flow interaction models for maximum accuracy. Furthermore, the flush

mounted sensing technologies such as SEADS are most accurate when used with post-

flight calibration [Hil2]. The post flight calibration refines the numerical model of the

hypersonic flow around the nose to achieve improvement in accuracy. Although the

SEADS technology has not proven to independently achieve the required AHSV accuracy

[Kan2], it is selected because of its wide operational Mach number envelope.

The flush-mounted pressure sensor technology is also considered for the engine

inlet. The flush mounted pressure transducers would be placed under the first and second

ramp of the engine inlet (vehicle under-surface) to measure engine inlet flow states. These



propulsion sensors can determine free stream air-data states with proper modeling of the

overall inlet aerodynamics. The sensing strategy is similar to the SEADS, requiring

extensive modeling of the vehicle/flow interactions (i.e. aerodynamics and aero-

thermodynamics). Flush mounted engine inlet pressure sensor technology is also included

in the AHSV candidate sensor set because it can operate over a wide range of Mach
numbers.

Laser Doppler Velocimetry (LDV) and Raman scattering techniques are not

selected because: i) their operating range is limited to low supersonic speeds; ii) they
provide only a limited number of air data parameters; and iii) they have poor accuracy. The

accuracy of the LDV depends on the atmospheric particle abundance, particle size

uniformity, scattering properties, and interaction of the particles with flow disturbances.

Though the laser velocimetry techniques have proven their capability in supersonic flight

vehicles, they have significant altitude limitations. At high altitude, where most of AHSV

hypersonic flight would occur, the concentration of appropriately sized particles is very low

and these sensing techniques will be useless [Hat4]. Also, the coherent Raman

spectrometer technique is ruled out because of its poor accuracy. Furthermore, its accuracy

decreases in hot regions away from surfaces.

The Rayleigh scattering and Laser induced fluorescence (LIF) techniques are

selected for the AHSV sensor set as the most promising optical sensor technology. The

LIF technique has been successfully applied to hypersonic flow measurements in a variety

of ground-based test facilities [Mil3, Mil4]. The LIF technique uses oxygen molecules as a

tagging and tracing agent. Therefore, it has a wide operation envelope. The laboratory

results suggest that the technique can provide adequate measurement accuracy. However,

the measurement technique has several problems related to the flow and tracing agent

interactions, and which need to be resolved prior to flight application. The Rayleigh

scattered signal is stronger than that of Raman scattering methods, but it is weaker than that

of LIF. If a pulsed laser beam is used with well-designed molecular filters, the Rayleigh

scattering measurement accuracy can be improved to an acceptable level for AHSV

applications. For all of the optical sensing techniques, the accuracy of flow angle

measurements, such as angle of attack and side slip angle, depends on the alignment errors,

the angular resolution of the optical devices, and disturbances in the tracing agents.

To summarize, the selected sensor technologies include SEADS-like flush mounted

pressure sensing system, flush mounted inlet sensors, IMU and GPS inertial sensors,



Rayleigh scattering sensors, and LIF sensors. The individual sensor operation envelopes

vs. flight speed are shown in Figure 4-4. The corresponding altitude envelope can be

found in Figure 3-1.
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Figure 4-4 Useful Sensor Range[Hat4]

4.4 Air-Data Sensor Placement

The selected air-data sensor placement strategy is considered for a typical AHSV

configuration as described in Chapter 3. The inertial sensor placement is assumed to be

similar to that in the Space Shuttle and further discussion is omitted. The placement of

sensors involves trade-off between maximizing sensitivity and minimizing disturbance

effects while remaining within constraints imposed by thermal loads on the transducers.

The hypersonic environment and the flow field around the forebody can not be determined

precisely with the currently available data. Therefore, the exact location of the transducers

is to be determined after extensive testing or analysis of the flow/vehicle interactions along

with thermal and bending loads imposed on the structure.



In order to implement the SEADS like pressure based sensors, the curvature and the

pressure distribution of the nose must be obtained by extensive wind tunnel and/or in-flight
testing. The maximum sensitivity occurs at the blunt tip of the nose, but the thermal loads
are also maximized at that location. Furthermore, at the tip of the nose, the flow
deformation due to the vehicle body displacement is at a minimum. Active cooling is

necessary to implement the flush mounted transducers. The static pressure sensors are

placed on both sides of the vehicle where the surface is normal to the velocity axis,

assuming a zero side slip condition. Example locations of the flush mounted air-data

sensors are shown in Figure 4-5.
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Figure 4-5 Air-Data Sensor Placement

The Rayleigh scattering and LIF optical sensors require precise component

alignment, because the flow angle measurement accuracy depends directly on the alignment

error. The density and temperature measurements do not require stringent sensor

alignment, but a focusing capability of the optical devices is needed to pin-point the sample

volume at the desired locations. To resolve the three velocity vector components with

maximum sensitivity, three sensor optics are needed in nearly orthogonal axes. Two

optical module configurations, each with three pairs of laser sheets/spots that are projected

into the flow with single receiver optics, have been considered by a contractor interested in

the LIF technology[Honl]. The sensor location is decided by optical window accessibility.

The optical windows should allow sampling of all three components of the velocity vector.

The expected thermal loads on the optical window must also be considered. Also, the

thermal deformation of the vehicle structure should be considered since the deflection can



alter the alignment angle with respect to the body axis (as discussed in Chapter 2).

Window contamination, active cooling, and sensor system volume can also affect sensor

location. Optical sensors can be placed under the first and second inlet ramps to measure

inlet flow velocity and density. The sensors may also be placed to measure the boundary

layer thickness and the mass flow rate by scanning through the inlet area.
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Figure 4-6 Inlet operating Conditions

Engine inlet pressure measurements have been considered to improve the estimate

of the angle of attack and flight Mach number as well as to obtain the propulsion state. An

analysis was carried out to determine the effectiveness of the sensing method and to locate

the sensor installation points. The motivation for this approach was based on the fact that

the oblique shock angle of a wedge has nearly a one-to-one ratio with respect to the vehicle

nose wedge angle. Since the apparent wedge angle is the ramp angle plus the angle of

attack, the shock angle will have a direct functional relationship with the angle attack and

the free stream Mach number. Moreover, there is a distinct pressure jump across a shock

wave. Small changes in the shock angle will cause large variations in the shock attachment

location because the vehicle has a slender forebody. The shock-boundary layer interaction

I I



creates pressure and geometric distortion around the impingement area. However, these
effects may be ignored since the movement of the shock impingement location is in the

order of couple meters for a degree of the angle of attack variation while the distortion is

predicted to be in the order of few centimeters (interpreted from supersonic case) [Adal].

As shown in Figure 4-6, there are three different inlet conditions. The optimal

engine operation occurs at the critical condition where the oblique shocks impinge on the
lower cowl lip (engine under surface). For the inlet condition shown in Figure 4-6 (a),

there are sharp pressure jump at the shock impingement location. Another problem with

this inlet condition is an extremely high heat flux at the shock impingement area (perhaps an

order of magnitude higher than at any non-impingement locations). A second operating
condition is when the shocks move outside of the engine, as shown in Figure 4-6 (b). For

this particular condition, the inlet capture area has been greatly reduced, and there are no

distinct pressure jumps within the engine since both shocks exist outside. The third

operating condition is when shocks crawl inside of the combustor as shown in Figure 4-6

(c). In this case, the two oblique shocks merge and the shock impingement location will

have a distinct pressure jump location.

Based on 1-D analysis, the inlet section has been modeled as a simple two ramp

wedges. Ignoring viscous effects, a simple inlet analysis has been completed. In Figure 4-

7 and 4-8, the oblique shock angles induced by the first and second ramps have been

plotted versus the angle of attack and the flight Mach numbers. Each line corresponds to a

given flight Mach number between 10 and 15. It is quite clear that the shock angles have a

distinct and nearly linear relationship with the angle of attack. The variation due to Mach

number is much smaller. In Figure 4-9, the pressure rise across the shock has been plotted

against the angle of attack and the Mach number. The pressure variation at the first ramp

surface is large and will produce a good signal to noise ratio if a pressure sensor is located

there. The relationship is nearly linear with respect to both the angle of attack and the Mach

number. However, when the pressure rise at 2nd ramp surface is plotted against angle of

attack and Mach number in Figure 4-10, the variation in pressure with respect to angle of

attack is very small. Consequently, the second ramp location is not suitable for angle of

attack measurements.

Figure 4-11 shows the shock impingement location as a function of the angle of

attack variations. For the case of critical operation (Figure 4-6(a)) and condition I (Figure

4-6(c)), an array of pressure sensors can be placed on the lower surface of the engine



combustor and used to locate the shock position as shown in Figure 4-6. Great sensitivity

is expected since the shock moves on the order of meters for couple degrees of angle of

attack variation.
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Chapter 5

Modeling

5.1 Vehicle Dynamics

Within the context of the AHSV estimation problem, it is desired to use full

information about the processes which are to be measured. The source of information

can be both, measurements from various sensors and knowledge about the internal

processes such as models of vehicle dynamics, aerodynamics, propulsion, environment,
and sensors. Under the assumption of a model-based estimation strategy, the appropriate

models should be formulated and the accuracy of the models will determine the system

stability and precision of the estimates. The flow angle parameters such as angle of

attack are considered to be the most important parameter to estimate. Therefore, it is

important to include all interactive elements which provide good sensitivity with respect

to the angle of attack for the models in the estimator. The models, which are formulated

and described in this chapter, will lay out the foundations for AHSV state estimation and

will be used extensively in later chapters. Moreover, the nature of the model equations

will determine the tractability of the estimation problem.

Some of the desired AHSV states are measured directly and some are obtained

implicitly through certain nonlinear functions (called either observation equations or



measurement equations). Regardless of the availability of direct full state measurements,

it is desired to augment all available knowledge about the state in order to enhance

estimation accuracy. For example, angle of attack measurements may be readily

available through air data sensors based on a relationship between angle of attack and

vehicle attitude. However, if the achievable accuracy is not acceptable, it is instead

possible to use vehicle motion measurements (inertial sensors) to obtain some

information regarding angle of attack. Another advantage of incorporating the vehicle

motion is to increase the state estimate bandwidth [Kasl] when the sensor system have

inherent bandwidth limitations. The drawback to using both sources of information is in

the complexity of the computation and the difficulty in obtaining accurate and relevant

models for the processes. Therefore it is desirable to obtain accurate models that are also

simple for numerical implementation for the vehicle equations of motion. In next few

subsections, the vehicle equations of motion are derived with emphasis on air data state

estimation.

There are several versions of the equations of motion for AHSVs. The most

significant model derivations are done by Chamitoff [Chal][Cha2] and Schimdt

[Bill][Sch2]. Some related but not clearly attributed empirical aerodynamics and

propulsion data are also available from NASA Langley [Shal]. Bilimora and Schmidt

[Bil1] formulated equations of motion based on a Lagrangian approach. The formulated

model captures the dynamics of rigid-body motion, elastic structural deformation, fluid

flow, rotating machinery, wind, and a spherical rotating Earth. The detailed forcing terms

which include aerodynamics, thermodynamics, and propulsion can be found in Chavez

and Schmidt [Sch2]. Chavez and Schmidt used 2-D Newtonian theory to analyze

hypersonic flow, and coupled it with l-D aero/thermodynamic analysis of the flow in a

Scramjet. Chamitoffs model has higher fidelity in the hypersonic flow and propulsion

models by employing panel methods and chemical reaction properties. The model

assumed a spherical rotating earth and was formulated in an LVLH frame. Even though

this model has more fidelity in the aerodynamics and propulsion representations, it lacks

structural deformation and vibration characterizations. In addition to hypersonic vehicle

formulations, there exist a vehicle equations of motion applicable to low speed

conventional aircraft with special features to treat the wind effects. Most of the

formulations are specialized to solve problems of wind shear [Fro 1].

For the air data estimation problem here, two different formulations have been

selected as applicable. For the lower flight Mach number part of the trajectory, the



equations of motion have been formulated based on generic flight vehicle dynamics

equations which include wind effects. The formulations are specialized extensions of the

equations derived in the reference [Frol]. The forcing terms are based on Chamitoffs

model (the numerical data from Chamitoffs NASP simulator) [Cha2]. For the higher

flight Mach number regime, Chamitoffs controller model has been selected. The

formulations here also only address longitudinal motion [Cha2].

5.1.1 Model Selection Criteria

A model-based state estimation scheme is considered the most appropriate

technique for estimating flow angles and air-relative velocity in order to enhance the

accuracy of given air data sensors. The only previous research where a vehicle dynamics

model was incorporated into air data state estimation can be found in the high angle of

attack research flight vehicle program. [Kasl] Actual implementation of the concept on a

flight vehicle showed improvements in the estimation frequency response and accuracy

during transient high angle of attack maneuvers. For simplicity and speed in digital

implementation, the zero wind condition was assumed, and acceleration measurements

were emulated as input to the vehicle kinematics. Such assumptions may penalize AHSV

air-data estimation performance. Since the transfer functions (functional relationships)

from aerodynamics, propulsion, and control surfaces contain rich information of the angle

of attack and air-speed, it is not desirable to ignore the relationships and use acceleration

measurements only. Based on previous experience, if the bandwidths of the air-data

sensors are considered too low for the controller, some hybrid algorithms that incorporate

inertial data, air-data, and vehicle dynamics, may be used to expand it and also increase

accuracy. Consequently, a dynamic model is desired in AHSV applications and the

appropriate model should be formulated.

In the process of developing a model for state estimation, the choice of

assumptions is critical. Appropriate assumptions can simplify the problem without

significant loss of fidelity. The vehicle equations of motion can be written differently

depending on three major factors. The first is whether to include models of the external

forcing terms. These external forcing terms, excluding gravity effects, are composed of

forces induced by propulsion, control, and aerodynamics. These forcing terms can be

modeled using either first principles or empirical formulations. The dependence of these

forcing terms on the states is implicit while the wind terms are coupled to the states



explicitly. If the modeling uncertainties are relatively large, then applying such a

relationship between forcing terms and states does not improve performance and may

degrade estimation accuracy. An alternative strategy is to use acceleration measurements

to replace the forcing terms within the model as inputs similar to the implementation on

the FA- 18 high angle of attack research vehicle [Kas I].

Flying Mach Number

Yes Is Centripetal No
Force

Significant?

Is Wind Contribution Is Wind Contribution
in Angle of Attack Wind Speed in Angle of Attack

important? and Direction important?

No Yes No Yes

LVLH Flat and Inertial
Formulation Earth Approximation

LVLH Flat and Inertial
Formulation Earth Approximation

with Wind Terms with Wind Terms

Figure 5-1 Decision Flow Chart for Vehicle Models
(LVLH=Local Vertical Local Horizontal Frame)

Two other major factors are flight speed and wind contributions. As shown in the

model selection criteria in Figure 5-1, the magnitude of centripetal acceleration and

contributions due to earth rotation must be computed for the given flight speed. If such

contributions are large then an Local Vertical Local Horizontal (LVLH) formulation

should be used. Otherwise, a flat, inertial earth approximation is adequate. The size of

each contributing term is calculated and plotted as a function of the vehicle flight speed in

subsection 5.1.3. Once the reference frame and coordinate system is selected, the

magnitude of wind contributions should be estimated. If the wind contributions change

the flow angle by more than 0.1' (rough estimate of the angle of attack accuracy



requirement at flight Mach number around 10 to 15) then implementation of the wind

models can improve performance of the estimator. The criterion for the wind

contribution is shown in Figure 5-2.
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Resulting Angle of Attack for Various Vertical Gusts

The wind effects can also be approximated by a simple analysis. If we assume

that the lift force and angle of attack is given by

L = V2 A C (a) and a = a, + V
where V, is the normal wind gust, and also when we consider the Newtonian flow

approximation, then

dCL
da

and SL V V 2A w a =- V2Aw a
2' V 2

If we assume a nearly constant dynamic pressure trajectory,

3L QA,( ao

vV ) V

+ V.V V



It is clear that the vertical gust contribution in angle of attack decreases when Mach

number increases. If the nominal angle of attack ao is much smaller than the gust

contribution, then the wind term affects the normal lift force squarely. Otherwise, the

wind contribution affects linearly. For the flight speed between Mach 10 to 15, the

resulting plot of normal force vs. angle of attack and Mach numbers (Figure 4-3 from a

particular design of aerodynamic and propulsion model) suggest that

N = koAM N = k,-- V,

Again, the wind gust contribution decreases when the flight speed increases.

For the AHSV applications, two models were selected to represent the complete

flight envelope. Based on the analysis of subsection 5.1.3, additional terms including

centripetal accelerations and Coriolis terms are found to be small below about Mach 6.

Similarly, Figure 5-2 shows the wind contributions to be significant below about Mach 6;

therefore, the model with the flat and inertial earth approximation and incorporated wind

terms will adequately represent the vehicle during that flight phase. Conversely, since the

wind terms are insignificant at higher Mach numbers, the LVLH formulation without

wind terms can be applied to represent the vehicle motion during the higher flight Mach

number regime.

5.1.2 Flat and Inertial Earth Approximation With Wind Terms

For the lower Mach number flight regime, which is determined by the previously

noted criteria, flat and inertial earth approximations are considered adequate for

estimation purposes. Moreover, the wind terms can be augmented to improve estimation

accuracy. This subsection derives the applicable vehicle equations of motion with

incorporated wind effects. The equations of motion are first presented for the full 6

degree of freedom case[Frol], and then, the equations are specialized to longitudinal

motion only. In the end of the subsection, the equations are simplified to be used for

estimation. The states to be estimated are air relative velocities and flow angles;

therefore, the states are coupled with wind terms to first order.

Incorporation of Wind Contributions Into Vehicle Equations of Motion:

The earth is assumed to be a stationary plane in inertial space. The earth-fixed

coordinates define the inertial frame of reference. The body coordinates are fixed at the



center of gravity point as normally applies to the flight vehicle convention. The

corresponding force equations projected on body axes are shown in the equation (5.1)

below [Fro 1].

SFx - mgsin 0 = m(i + Wx)+ m[q(w + Wz) - r(v + Wi)] (5.1a)

_Fy + mg cos Osin = m(f W) + m[r(u + Wx) - p(w + Wz)] (5.1b)

Y.Fz + mgcos Ocos = m(vi + W)+ m[p(v + Wy)- q(u + Wx)] (5.lc)

The wind terms are obtained by using equations (5.2) through (5.4).

IW,] = CBE W, (5.2)

dWx dWx dWx dWx
W dx y dz x dt

aW oWv oWv dW,W W dW y + dWY (5.3)
dx y dz dt

WE W Wz W _ LziE dWz

dx dy dz JE -dt E

Wx Wx WX

V = CBE Wy + CBE W] (5.4)

aWi
If we make the frozen field approximation for the wind then the dt terms are all zeros.

Therefore the wind fluctuations are defined purely by the spatial gradient of the wind

field. Also notice that the retained forcing terms are dependent on the wind parameters

such as angle of attack, side slip angle, and total wind velocity magnitude. For example,
the thrust will depend on the flow angles as well as total air relative velocity. The

elements of the coordinate transformation matrices and their derivatives are shown in

Appendix A.

The moment equations are:

SMx = I -Ix( + pq) - (l - Iz)qr (5.5a)

YM+,= Iv - Iz-(r2 - p2)-(Iz- L)rp (5.5b)



Mz = Izr- I(p - pr)-(Ix - Iv)pq (5.5c)

Notice that none of the wind terms explicitly appear in the moment equations. However,
the forcing torque terms do contain wind dependent components. For example, the lift

and drag coefficients can be represented as polynomial functions of angle of attack. For

the longitudinal motion, these forcing terms are shown in equation (5.14). The rotation

angle can be found by the kinematic relations as shown in equation (5.6). These

kinematic relations can also be expressed with quaternions if a singularity is expected and

must be avoided.

= p + q sin 4 tan 0 + rcos 0 tan 8 (5.6a)

6= qcos - rsin (5.6b)

fr= (qsin 0 + rcos O)sec 0 (5.6c)

By definition, the flow angle parameters, angle of attack ox, and side slip angle 3,

are defined as:

tan a = - and sinfl = v (5.7a,b)

where:

I2 = (E - WxE) + (jE- WyE) + (E - WzE _ 2 (5.7c)

Their derivatives are respectively:

uw 2 - (u2 + w 2 ) - v(u4i- wV) (5.8a,b)
6 = U2 + VV2 and = (5.8a,b)u + wV2 + w 2

Therefore the velocity vector can be expressed as,

u cosP cos a
V= = Vr sinf (5.9)

w cospfsin a

Longitudinal Dynamics: The previously derived equations of motion (5.1

through 5.8) are specialized to longitudinal motion. The lateral dynamics are ignored for

convenience (lateral dynamics are not investigated nor well understood at this time). The

applicable coordinate system and reference frames are defined in Figure 5-3.
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ZE

Figure 5-3 Definition of coordinate system and variables

The corresponding longitudinal equations of motion are:

Fx - mg sin = m(t + W ) + mq(w + W.)

Fz + mgcos 0= m(wv+ W) -mq(u + W)

Y = Iq

Where Equations (5.2) and (5.4) reduce to:

[Wxl [cos -sin 81[Wx1

Wz] sin 0 cos 0 LWzJE

L WZV
WJAE

dWx
Sdx= Wz

x-

dWx

dwz
z JE E

(5.10a)

(5.10b)

(5.10c)

(5.11)

(5.12)



-s cos r -sin , , -sinoo -cosoo6 W

W]sin0 cos8] Wz [ cos 0 -sinO LWz (5.13)

w uw - wui
Equation (5.8) reduces totana= u and a= u2 2 . For AHSVs the

aerodynamic and propulsion forcing terms can be defined as follows [Cha2]:

SF, = [CTr(M, a, R) - CD(M, a) + Cxa(M, a, ) + C~sa.(M, a, r) ]Q(R, V)S
(5.14a)

+[ Cx(M, a, ,v)[ CTv(M, a, R) + Cx,,(M, a, ST)]]Q(R, V)S

SFwz = [C(M, a, R) + CL(M, a) - Cza(M, a, e) - CzsT(M, a, 6T)]Q(R, V)S
(5.14b)

-[ Cz,(M, a, v)[ Cza6(M, a, rT) - CTn(M, a, R)]]Q(R, V)S

SM, = [Cmp(M, a, R) + Cma(M, a) + Cma.(M, a, 3) + Cma (M, a, 6T)]Q(R, V)Sc

+[ C,,(M, a, &v)[ Cmsr(M, a, Sr) + Cm(M, a, R)]]Q(R, V)Sc

However, these forcing terms are defined in wind axes, and need to be transformed into

body axes by use of a coordinate transformation matrix.

Simplified Representation: Let's start from the longitudinal equations of motion

(Equation (5.10), - flat earth approximation). Equations (5.10) through (5.13) can be put

together and be simplified. More details on the applied simplifications are in Appendix

B. The resulting complete equations of motion are,

iros dWx d Wx- sin 0
c-q osinOWcosO jLowz+ + (5.15a)-u sin 8 cos dWz dWz i az Cos

L dX dz E

with

q=1 My (5.15b)

= q (5.15c)

where the states are w and u.

Equation (5.15) can be evaluated with information about pitch angle 0, pitch rate

q, inertial velocity X and Z, wind gradient Jacobian, and accelerations. All the inertial

quantities, which excludes the wind gradient Jacobian, can be obtained from the inertial



sensor measurements. However, these inertial measurements may also depend on the

states.

If equation (5.15) is expressed with state parameters chosen to be angle of attack

and total velocity, the equation becomes

[VT Cx Cz cos a
S -q_ VT VT Jsin a

(5.16)

ax - g sin 8 -( dx EWx
azcg + gcos 8 + (Wx Edx

Wx dW . dWWx iE) cos 0 + (W + W E) sindz dx dz
+ x E) sin 0 + (Wz jE+ dWZE) cOS 0

dz dx dz

More detailed intermediate steps which lead to equations (5.16) and (5.17) are in

Appendix B. For better visualization of the above equations, the appropriate block

diagram is shown in Figure 5.4.

where

SCx]
cJ-

(5.17)
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5.1.3 LVLH Formulation of Longitudinal Dynamics

The vehicle equations of Motion in the LVLH frame are based on the formulation

given in the reference [Cha2]. This model was derived based on the assumption of rigid

body motions through the atmosphere of a rotating spherical Earth. Only the longitudinal

motions are considered with an equatorial launch to orbit scenario. Therefore all the

lateral variables are omitted. The gravitational acceleration has been modeled with

altitude variations. A stationary atmosphere with no wind is assumed. The forcing and

control coefficients given by equation (5.14) can be obtained numerically from the

simulations which contain sophisticated aerodynamics and propulsion models. For

simplicity, the forcing and control coefficients can be further parameterized by

polynomial curve fitting the tabulated coefficient data that are generated by the vehicle

design program [Cha2]. The resulting equations of motion are,

dV_ F - [g(R) - 2R]sin F (5.18a)
dt - m EXW - Rsi

V = - - w-[g(R) - R]cos F + cosF+ 2(EV (5.18b)dq - R

= - _ My (5.18c)

dO q (5.18d)

dR VsinF (5.18e)
dt

However it is desirable to express the equations in terms of angle of attack a

instead of flight path angle F. Since F = 0 - a and F = 0 - o, equation (5.18 a, b) can be

written as:

S= Fxw+ -g(R) + _R] sin (0 - a) (5.19a)

V(q - a) = - Fw~ + [-g(R) + R + ] cos(6 - a) + 2EV (5.19b)

Using the trigonometric relations:

sin(x - y) = sin xcosy - cosxsin y (5.20a)

cos(x - y) = cos xcos y + sin x sin y (5.20b)

Then the equations (5.19) turn into:



V= ax + [R - g(R)](sin 0cos a - cos 0sin a) (5.21a)

(5.21b)w = g(R) V _ - (coscosa + sin Osin a)+q-2o

with

y

= q
R = Vsin(O - a) = V(sin 0cos a - cos 0sin a)

The forcing terms are defined same as equations (5.14a, b, c).

(5.19c)

(5.19d)

(5.19e)

The representative graphs of the forcing coefficients are plotted in Figure 5.5

through 5.13.
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The resulting Block diagram of the LVLH formulation (Equation 5.18) is shown in
Figure 5.14.

parameters
p,T, y, etc.

Figure 5.14 Block Diagram of AHSV Equations of Motion in LVLH frame

Term Sizing:

In order to determine the magnitude of centripetal and Coriolis effects imposed on

the vehicle equations of motion, each of the additional terms should be calculated. The

analysis are based on a rotating spherical earth assumption. It is desirable to compute



each of the centripetal and Coriolis terms as functions of the state variables. From

equation (5.18), the terms O R, -, and 2(0EV appeared due to a rotating spherical earth

assumption. These terms can be calculated and compared with respect to g(R), the

gravitational acceleration.

The term oR is only a function of R. Since R is defined as the earth radius plus

flight altitude, the term varies little within the altitude range of an air-breathing corridor.

The parameter 0E is the earth's rotational rate and it's value is 7.3E-5 rad/sec. Since R is

the earth radius plus altitude, it's value is approximately 6400km. So 4 R is about 3.4E-

2 m/s 2 . In terms of g, it is 3.5E-3 g's . So it is very small compared to gravitation effect.

Also it is not dependent on other state variables.

V2
Now compare R with respect to g(R

is dependent on V to the second power.

velocity is plotted in Figure 5-15 below.
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Within the low Mach number regime, it stayed under 0.1g. However as Mach number

increases, it can approach 1g. The term 2 0EV (Coriolis acceleration) stayed below 0. 1g

most of time. It is plotted in Figure 5-16 below.
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5.2 Modeling of Air-Data and Inertial Sensors

Sensor classes, which is needed for proper operation of AHSVs, is presented here

for the purpose of setting up observation equations within the scope of the air-data

estimation problem. The sensors are analyzed and modeled specifically for use in the air-

data estimation problem. Given the objective of obtaining high accuracy air-data

information, the air-data estimation problem establishes a guideline for the mathematical

representation of the sensors. In order to implement the estimation theory for AHSVs,

sensor models are needed in the form of differentiable real-valued functions. Also the

Wiener (Brownian motion) process representations for the random components of the

sensor noise are highly desirable in order to use readily available and tractable estimation

theory. Therefore, the inertial and air-data sensors, which are required and selected for

AHSVs, are reviewed and their mathematical models are derived. These mathematical

descriptions of the sensors are then combined in a realistic combination to form the

observation equations. With realistic numerical values assigned to the models, they are

used within the simulation to complete the numerical analysis in later Chapters.

The purpose of the measurements, which provide information on the inertial and

air-data state, is to provide necessary information for the operation of propulsion,

navigation, guidance and control systems. The measurements will be processed through

the estimation algorithms to provide the inertial and air-data states, then the estimated

state parameters are distributed to propulsion, navigation, guidance and control systems.

If there exists a set of perfect sensors that directly measure the desired states and

parameters, then signal processing, including state estimation, is not needed; however, the

applicable sensors are far short from being ideal measurement devices. Therefore,

accurate modeling of the sensors is important to insure the fidelity of the estimates along

with the modeling of the vehicle motion.

Much of the research effort on this project has been devoted to demonstrating the

model formulation methodologies and deriving the sensor models. The important aspects

of the sensor modeling procedures, include study of the physics involved in the sensing

process, derivation of the mathematical models for that physical process, reflection of the

estimation problem onto the sensor models, and the formation of the observation

equations (i.e. the sensor models). The observation processes are then analyzed based

upon the investigation of the physics of the sensor mechanism and the sensing medium.

The derived physical law provides the mathematical description of the measurement



process, the observation equations. The resulting mathematical descriptions of the

sensors has a major impact on the estimation process. Because the sensor models are

combined to determine the estimator observation equations , the formulated mathematical

depiction of the sensors can greatly alter the estimation strategy. For example,

measurement of the velocity vector defined in rectangular coordinates, with the sensing

axis also defined in rectangular coordinates results in a linear set of observation equations

while use of polar or spherical coordinates result in nonlinear observation equations.

The nature of the random components of sensor signals must be investigated

because the characteristics of the sensor noise, such as its probability densities, influence

the estimation algorithm. Most importantly, it is desirable to know whether the noise can

be represented as a Wiener (Brownian motion) process since most available and tractable

estimation theories rely on the Gaussian assumptions of the process and measurement

noise. The sensor noises includes the inherent sensor device noise as well as sensor

environment noise. As part of an engineering analysis, it is important to predict how well

each sensor can measure as well as its bandwidth.

Inherent
Transducer

Disturbances TransducerNoise

Signal
Measurand Transducer Transduced signal Process

Figure 5-17 Measurement Process

5.2.1 Characterization and Treatment of Sensor Noise

The measurement process can be viewed as shown in Figure 5-17. The noise and

error involved with the measurement process can be attributed to three sources: The

inherent transducer noise; Errors in the interface between the transducer and the sensing

medium (measurand); The disturbances experienced by the sensing medium. For

example, the pressure measurement at a vehicle's surface has uncertainties that come

from the pressure transducer noise, errors introduced by the orifice and alignment, and



pressure error and fluctuations induced by the flow around the vehicle. During the

process of the sensor modeling, the interactions which occur between the measurand and

transducer are augmented with transducer dynamics to obtain a sensor system. The

inherent errors and noise appear due to the interactions between measurand and

transducer combine with transducer noise as the overall sensor system noise.

Due to limitations in existing estimation theory, it is desirable to have the sensor

noise in the form of a Wiener (Brownian motion) process. Most sensor noise can be

described this way, and in many cases it is justified to assume a fictitious white Gaussian

noise. If the noise can be assumed to be in this form and has a finite power spectrum,

then it can be modeled using colored dynamics which are driven by white noise. The

sensors can also have a non-random components of noise such as temperature induced

drifts or integration drifts. A bias should also be modeled if such factor is significant.

The states can be augmented to treat the bias as a fictitious additional state to be

estimated. The most important part of treating this noise effect is verifying the adequacy

of the Wiener process assumption. Using these models of sensors and the associated

noise, the estimation problem will be formulated in later chapters.

5.2.2 Inertial Sensors

Most classes of aircraft and spacecraft have some form of inertial sensors for the

purpose of flight control, guidance and navigation. The AHSV is no exception. Inertial

sensors of a similar to the Space Shuttle IMU (though updated) would likely be

employed. The inertial sensors for the AHSVs are assumed to include a GPS receiver

and IMUs. IMUs contain three-axis integrating rate gyros to measure attitude and

attitude rate. Also inertial platforms update and correct the attitude bias errors. IMUs

normally contain three-axes linear accelerometers and integration units. Recently there

has been great emphasis on GPS-IMU integration. Since use of the GPS involves slow

update rates (about 1Hz) and IMUs have inherent drift problems, GPS and IMU data is

combined to take advantage of high IMU bandwidth and using GPS to update and correct

position and translational velocity errors every few seconds. It is perfectly justified to

treat the combined GPS and IMU system as a single inertial sensor system.

GPS Receivers: GPS measurements are based on telemetry from a

constellation of satellites that, when processed, provide extremely accurate inertial



position and translational velocity data. There are no inherent dynamics associated with

the GPS positioning process. GPS performance is limited by its update rate and

intentional signal corruption if encrypted code is not utilized. The typical update rate is

in the order of seconds. Normally a Kalman filter is present within a GPS receiver, and it

is typical to have the covariance of the output signal. GPS measurement noise can be

modeled in terms of a bias and Gaussian random noise [Taol]. A representative sensor

and noise model are shown in Figure 5-18. Typical GPS performance is tabulated in

table 5-1.
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Figure 5-18 System Representation of GPS

Table 5-1 Typical GPS Specification
GPS Pseudo-Range Measurement Specification

Bias 30 ft/axis
Noise 5 ft/axis

GPS Velocity Measurement Specification
Bias 1 fps/axis
Noise 0.1 fps/axis

Gyros: Typical IMUs contain either mechanical or optical gyros in all

three axes. Mechanical gyros are sometimes still considered because of their superior

performance or because of the new trend toward micro-machined devices. The dynamics

associated with mechanical gyros can be modeled using either a first or second order low-

pass filter. The transfer function of a rate gyro from an angular velocity input to a gimbal

angle output is:
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The transfer function of a rate integrating gyro from an angular velocity input to a gimbal

angle output is
SOg Hg
i s(Igas + kd)

(5.23)

The gimbal angle derived from a rate gyro is proportional to the rate input. Also the

gimbal angle derived from a rate integrating gyro is proportional to the time integral of

the rate input. For example, the steady state value of the gimbal angle for a step rate

input is given by

rate gyro
- co

rate integrating gyro
t

0

(5.24)

Typical roll-off frequency will fall between 12 to 40Hz; however, ring laser gyros are

capable of measuring at 500Hz with medium accuracy if the bandwidth becomes a

limiting factor (note: fiber optic devices (e.g. IFOG) have even higher bandwidth!). The

random components of noise associated with the gyros are assumed to be a Wiener

process. The typical gyro error is tabulated in table 5-2 below[Taol].

On the basis of the dynamics of gyros and gyro errors, a gyro model is formed and shown

in Figure 5-19 below.
random bias

noise imeasurement

rate input rate or rate integrating
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Figure 5-19 System Representation of Gyro

Table 5-2. Typical High Performance Gyro errors (1-sigma)
Drift Rate Bias Repeatability 0.02 deg/hr
Scale Factor 200 ppm



Accelerometers: Similar to the gyro dynamics, accelerometer dynamics can

be modeled by either a first or second order low pass filter. The typical mechanical

system can be modeled as a mass - spring - damper system. The frequency response of a

typical accelerometer can exceed 100Hz. A representative sensor and sensor noise

models are shown in Figure 5-20. The typical sensor error[Taol] is tabulated in table 5-

3.

On the basis of previous experiences on integrating these inertial sensors on flight

vehicles, the noise characteristics of sensors can be assumed as Wiener processes. If the

bandwidth of the vehicle dynamics and/or estimation method is greater than or near the

inertial sensor bandwidth, then the dynamics of the sensors need to be augmented at the

cost of increasing the dimension of the filter state vector.

Table 5-3. Example Precision Accelerometer Errors
Bias Repeatability 150 ggs
Scale Factor 200 ppm

random
bias noise

acceleration
input Instrument measurement

dynamics quantization

sampling

Figure 5-20 System Representation of Accelerometer

5.2.3 Pressure Measurement Based Air Data Sensing Techniques

Pressure measurement based air data systems(ADSs) have been applied to flight

vehicles for flight regimes spanning subsonic to hypersonic. Examples include the X-15

and the Shuttle. Heavy thermal load during AHSV cruise prohibits the use of an ideal

long nose boom sensor. Therefore the deployable Pitot probe that is similar to the Shuttle

ADS is considered a candidate only at speeds below Mach 3.5. A nose pressure field

measuring technique similar to the SEADS[Prul] would also be a good candidate if the

AHSV nose permits insertion of pressure ports and the nose cap can be sufficiently

cooled to protect the structure and the pressure sensing devices.



The main disadvantages of pressure based air data sensors are flow field - sensor

interaction and thermal loads. Since pressure measurements are obtained after flow-

vehicle interactions occur, such as shock waves, the function which describes flow-

vehicle interactions must be inverted in order to obtain free stream parameters. Therefore

extensive knowledge of the flow around the vehicle is needed. In order to minimize the

vehicle-flow interaction errors, the pressure sensors must be installed in the vehicle nose

region. However, the thermal loads will be maximum at the nearly co-resident stagnation

point. Any intrusive technique should be avoided and active cooling is likely to be

necessary.

Pitot probes: The Shuttle deploys two Pitot probes, one on either side of the

forebody, at Mach numbers less than 3.5.[Hil2] There are upper and lower pressure ports

next to the total pressure port to measure the angle of attack. The blunt forebody of the

Shuttle causes significant flow field interference, and the sensors have to be calibrated by

extensive wind tunnel tests[Hil2]. Even though the operating range is somewhat limited,

this technique may be applied to the AHSV directly. By selecting high temperature

materials, the operating Mach number may be extended up to 5. Also additional pressure

ports at the sides of the total pressure port could measure the side slip angle and the angle

of attack. Vehicle-flow interaction can be expected to affect measurements on AHSVs as

on the Shuttle with similar empirical calibration requirements.

Sensor environment model
activation (empirical and/or
logic analytical)

true Data
pressurePitot interaction primary output

probe ~-~~model data
probeprocessing

pressure pressure
disturbance sensor noise
noise

Figure 5-21 System Representation of Pitot Probe

The typical data flow arrangement is shown in Figure 5-21. The sensor

deployment logic will keep it active only at Mach numbers less than 3.5 (or maybe up to

5). There are either empirical and/or analytical models to minimize sensor-body



proximity effects. After transforming the pressure data to account for interaction effects,

they are processed to provide air data parameters.

The measurement equation can be simplified and written as

Pmi = Pi ± Pn (5.25)

where the Pi is the true valued pressure at the i-th pressure sensor and the Pn is the

corresponding pressure noise including pressure disturbance and sensor noise, and is

assumed to be zero-mean Gaussian white noise if the pressure transducers are

temperature compensated as well as compensated for other drift sources. Each pressure

transducer has its own dynamics such as the maximum structural and electrical

bandwidth of the device. The dynamics may be modeled as a first order low pass filter.

There are also pressure bias errors, but they are assumed to be small after the temperature

effects and built in device compensation. Note that the pressure disturbance noise

discussed here includes only the pressure port errors and the errors caused by the

boundary layers. Vehicle-flow interaction errors such as sensor position errors and shock

wave induced errors are not included. They are treated later through function inversion.

SPi = f(a, l a, P3

SPt

Figure 5-22 Detailed Block Diagram of Functional Relationship
Between Surface Pressures to Air-Data States



Once the pressure measurements are corrected for vehicle-flow interaction errors,

the total and static pressure measurements can be further processed as shown in Figure 5-

22. The Mach number, velocity, and dynamic pressure are computed from the Rayleigh

Pitot formula. The errors in the dynamic pressure measurement diminish as the Mach

number increases because the measurement becomes mostly dependent on the total

pressure, not on the static pressure and Mach number. The extra pressure ports Pi which

are located next to the total pressure port, are used to measure the angle of attack and

angle of side slip by comparing the pressure differential of two symmetric ports. The

environment model can be used to improve the measurement by updating the specific

heat, and the pressure altitude function.

SEADS-like system: The fundamental concept behind SEADS-like[Prul]

systems is very similar to the Pitot probe system. Instead of deployable probes, the

forebody of the vehicle is used as a probe. Multiple pressure sensors are flush mounted

on the nose section of the vehicle. The surface pressure distribution is measured by the

array of flush mounted sensors. A mathematical description of the forebody pressure

distribution is used to obtain the air data state parameters.

ith pressure sensor

Cp max

Figure 5-23 Modified Newtonian Approximation of Round Nose

On the basis of the modified Newtonian model, the pressure at the i-th orifice can

be written as:
P =(P, -P)cos2 0i + P for M. >> 1 (5.26)

where 0i is the flow incident angle at the i-th orifice (90 deg. incidence, the flow angle to

the normal to the surface). The 8i can be written as:

cos 0, = cos acosP cos l, + sin sin 7,i cos i + sin a cosp sin ri sin i (5.27)



where i, is the cone angle and i is the clock angle. If only the longitudinal motion is

considered, as shown in Figure 5-23, the equations (5.26) and (5.27) simplify to:

Pi= (P, - P)cos2(a + i)+ P for M. >> 1 (5.28)

Since the Rayleigh Pitot formula is:

SP. 2 y1[2l2-('-1) Y-1

Pt (Y+1)M2 
f2 for M, > 1 (5.29)

the equation (5.28) can be written as:

P, = P[(1- R(M))cos 2(a+ i)+ R(M)] for M >> 1 (5.30)

Thus the state variables are [P,, M, x].

Rayleigh Pressure Ratio
x10-3

81

3-
10 11 12 13 14

Mach number

Figure 5-24 Plot of Rayleigh Pitot Formula (y=l1.4)

Equation (5.29) can be approximated with a polynomial function for a small segment of

the flight trajectory. For Mach numbers between 10 to 15, where most of the analysis

and simulation have been carried out, the Rayleigh pressure ratio has been approximated

with a third order polynomial to reduce computation time. The resulting approximation

is:



R(M) = a3M3 + a2M2 + a1M + ao  (5.31)

where [a3,a2,al,ao]=[-1.0777e -5, 5.046e-4, -8.354e-3, 5.1584e- 2]

and the Rayleigh pressure ratio is plotted against Mach number in Figure 5-24 along with

its approximation.

Each of the pressure sensors and associated noises can be modeled as shown in

Figure 5-25, and the noises are augmented as pressure disturbances and assumed to be

Wiener processes. The pressure transducer noises are of thermal Johnson type which

appears typical of electrical devices and they are Gaussian in nature. The pressure errors

are largely non-random due to orifice-surface pressure interactions. Most of the random

pressure noise would be of the acoustical (through structure) type.

pressure pressure
disturbance sensor
noise noise & bias

first order
true pressure approx. of pressure

transducer measurement
at ith port dynamics at ith port

For ith pressure sensor

Figure 5-25 Pressure Port Model for SEADS Like System

For assistance to SEADS-like systems, the stagnation temperature of the flow can

be measured with thermocouples located at the stagnation point. The measured total

temperature or total enthalpy can be converted into the flow velocity by the equation:

H,-H= E V2  (5.32)

The uncertainties in free stream temperature penalize the accuracy in low speed

measurements. If the free stream temperature can be directly measured, the accuracy will

improve. For example, a deviation of 70 0R in atmospheric temperature from an assumed

4000 R will produce a 100 ft/sec error at Mach 5. As the velocity increases, errors due to

uncertainty in free stream temperature would be smaller since the total enthalpy would be

much greater than free stream enthalpy; however, at high Mach numbers, the thermal



radiation from the structure would be quite large and will introduce large errors.

Therefore, at higher Mach numbers, optical sensors must be used to determine free

stream temperature at a distance from the vehicle.

5.2.4 Air Data Sensors, Laser-Optical Techniques

Rayleigh Scattering: Rayleigh scattering is an elastic scattering process

where the frequency of the scattered light (electromagnetic wave) is well removed from a

resonance in the atom. The scattered light varies from the source frequency due to the

Doppler shift resulting from the velocity of the moving gas. The scattered intensity is

proportional to the density of scattering molecules. The broadening of the scattered light

spectrum is dependent on the temperature of scattering molecules and the Doppler shift is

dependent on the mean molecular velocity. On the basis of these first principles, density,
temperature, and velocity of the flow can be measured. A Rayleigh scattering sensor may

operate in a wide altitude range, up to well over 200k ft. The upper bound is determined

by the minimum number density of scattering molecules that can produce a detectable

return signal. The lower bound is determined by Mie scattering effects due to high

entrained particle concentration at low altitude. A typical Rayleigh sensor model is

shown in Figure 5-26.
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Figure 5-26 Block Diagram of Rayleigh Scattering Sensor

The sensor model for the density measurement can be formed from the first

principles. The Rayleigh scattered power is given by;

Ir = IoLQc7c7 7d N Qi (5.33)
i



Based on the measurement of Ir and other known parameters, the flow density can be

estimated. Notice that the Rayleigh cross-section of the species must be known. The

major source of measurement process uncertainty is the Rayleigh cross-section estimate.

The error due to the variations in ambient gas composition is estimated to be less than

15%.[Mill] The sensor noise can be modeled as shot noise with standard deviation

proportional to the square root of the number of detected Rayleigh photons. The noise

intensity can be expressed as follows:

IV(k)l = Amp (5.34)

The sensor noise decreases as the pulse duration and the number of pulses during the

measurement interval increase; however, the sensor bandwidth decreases. The

measurement equation can be written with additive noise as shown below:

Irm(k) = Ir(k) ± V(k) (5.35)

Since the noise model contains the square root of the Rayleigh scattered intensity,

defining a new state Zm as the square root of the intensity results in a simpler

measurement equation, as shown below:

Z = Pr ihv (5.36)

Another source of noise is the Mie scattering from particles. This noise depends on the

altitude and the sensor location. The noise increases as altitude decreases since more

entrained particles are present at lower altitude.

The Doppler shift in Rayleigh scattered light can be measured by spectroscopic

equipment, such as the scanning Fabry-Perot etalon. The Doppler shift frequency and the

flow velocity are related by the expression below:

v _ 2V sin "e (5.37)V - 2

where Vd is the Doppler shift frequency, V is the laser frequency, c is the speed of light,

V is the flow velocity. Three orthogonal sensors are needed to resolve all three velocity

components. The major measurement error is in the process of resolving the median



frequency from the broadened spectrum. Another measurement error arises from the

spatial resolution and alignment error at the sensing section of the laser beam. The

accuracy of this technique is estimated to be about +2.5%.[Honl] Also the spatial

resolution is +0.75 deg.[Honl]

Another performance estimate comes from reference [Tibl]. Based on a specially

designed molecular filter to resolve the 50% transmission point (center point of the

Doppler broadened return signal), the author concludes that the Rayleigh scattering

device can measure the velocity of a sample to about 0.3% at 30km altitude. The

performance degrades as altitude increases, because the sensor performance is limited by

photoelectron shot noise from the detected signal that increases with altitude. At 60km,

the measurement uncertainty is expected to increase to 2%; and will further increase to

19% at 90km altitude. In order to obtain flight velocity and flow angle parameters (angle

of attack and side slip angle), the measured velocities of sampled air have to be

transformed to body axes as shown in Figure 5-27.
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Figure 5-27 Definition of Sensing Coordinate for Rayleigh Scattering Sensors

The measurement equation is

U1 = Vcos(0, + a)+ n,

u2 = Vcos(02- O) + n2

(5.38)



where ui is the velocity measurement, V is the true velocity and the n(t) is the associated

velocity measurement noise.

The broadening of the scattered light spectrum is dependent on the temperature of

the scattering medium. By measuring the half power width of the spectrum of the

Rayleigh scattered light, the temperature of the flow can be measured. The accuracy of

temperature measurement depends on the Q factor of the Fabry-Perot spectrum analyzer's

ability to resolve half power width of the broadened spectrum. Also, the intensity of the

returned signals plays a key factor in the sensor noise characteristics for this state

measurement.

Laser Induced Fluorescence: The laser induced fluorescence technique

uses the properties of the electromagnetic wave induced resonance of the scattering

particles [Mill]. When the laser frequency is tuned to the resonant frequency which is a

unique signature of the tracing molecules, the particle fluoresces at the resonant

frequency and generates stimulated emission. A fluorescence tracking velocimetry uses a

laser beam to coherently pump(tag) a small volume of gas upstream to meta-stable level,

then another laser which is located downstream elevates the energy of the pre-tagged

volume. When the energy level of the molecule reaches a critical point, an electron

decays and create fluorescence. Only the pre-tagged volume will respond to the sensing

beam since only the energy level of the pre-tagged molecules will be resonant with the

sensing beam frequency. The optical detector is used to sense the presence of the

fluorescence. The sensor configuration is demonstrated in Figure 5-28.

pump beam detector laser
and CCD optics

Figure 5-28 LIF Laser And Optical System Configuration



The velocity is determined by
(5.39)Xdetector-XtagAt

which is the difference between the detector position and tagging position divided by the

time of travel. The major error source is the spatial misalignment. Both angular position

and magnitude error can result from misalignment of the tagging beam and the detector.

The measurement noise would be a combination of spatial uncertainties and the false

threshold of the fluorescence detection. The threshold of the detectable signal strength is

dependent on altitude; and can be expressed as:

ISn(h)l = IS(h)l ± S(h)l exp 6.9 (h h - 2)}

or the equation can be expressed in terms of signal to noise ratio as:

S= exp{-6. 9 (h - 2)}

(5.40)

(5.41)

where Sm is the measured detector signal, S is the true signal, and h is the altitude in ft.,

ho is a constant with value of 300k ft. The noise is dependent on both the signal and the

altitude.

The overall sensor placement and configuration are shown in Figure 5-29 below.
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Figure 5-29 Definition of Sensing Coordinate for LIF Sensors



The resulting measurement equation is:
u, = Vsin(0, + a) + n,

u2 = V sin(02 -a)+ n
(5.42)

where ui is the velocity measurement, V is the true velocity and the n(t) is the associated

velocity measurement noise.
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Figure 5-30 Information Route of Air-Data Sensor System

5.2.5 Air-Data Observation Equations

With the sensor models presented in previous subsections, the appropriate

observation equations are formed and specialized for flight Mach number segment

between 10 and 15. Also only longitudinal motion has been considered for simplicity and

that the main findings should be extended to lateral motion for further development of the

AHSV. For that Mach regime, SEADS and optical sensors are assumed to operate

simultaneously. The sensor models resulted in two sets of observation equations; one for

SEADS

L.I.E

---- L
.II



angle of attack and true air velocity which are needed within the dynamic filtering, and

the other for free stream thermodynamic parameters.

A five pressure transducer configuration has been selected for the SEADS-like

system. The Shuttle uses an eight pressure sensor configuration for the longitudinal axis,

but a configuration with fewer sensors was considered here because of the limitations in

reduced computation time required for the numerical analysis. A two-sensor

configuration has been selected for both optical sensors. The final design of the sensor

information route is shown in Figure 5-30.

For the estimation of angle of attack and true air velocity, the resulting

observation equations are:

Pi =P[(1-R*(V))cos2(a+ i)+ R*(V)]+np,

u1 = Vcos(350 +a)+n,

u2 = Vcos(30 - a)+ n2  (5-43)

u3 = Vsin(350 + a)+ n3

u4 = Vsin(30" - a)+ n,

where 7,i = [300,150,00,-150,-300]. and ni are associated noises.

For the estimation of free stream thermodynamics parameters, the resulting

observation equations are:

Pi= f(Pt,M,q.)+np,

P , = 1 - k,)P, + np_ (5-44)
Im = ', = k,p. + n,

LF = kFT, +nT



5.3 Environment

The important parameters that depict the flight environment are the free stream

thermodynamic states such as temperature, density, and pressure as well as the wind

effects. This subsection reviews briefly which environment models are available for

AHSV applications and the derived simple model for thermodynamics parameters that is

used for the estimator design in later chapters. Most of the models that are presently

available are numerical-empirical models and are not readily implementable with

estimator design. The most serious problem with the available environment models is the

excessive computation time required to access necessary information from a large data

set. If higher fidelity is required, some segment of these data base models may be

specialized (meaning simplified to finite and low dimensional, analytic vector functions)

such that they can be implemented for AHSV on board computers. In the next few

paragraphs, some methodologies, which seem to be promising for future work, are

discussed. Also a simple atmosphere model has been derived such that the model is

suitable for estimation.

5.3.1 Available Atmosphere Models

The wind effects can be sub-divided into turbulence and the mean value of wind

magnitude and direction. Turbulence can be modeled as a first order Gauss-Markov

process. The bias term of wind magnitude and direction can be modeled as a time-

invariant vector field along the trajectory with a gradient that is only space dependent.

The justification for the frozen field approximation is based on the reference [Hill]. The

wind direction and magnitude vary little within the time scale of interest. The probable

wind magnitudes are selected from the reference [Tao 1].

Due to the well-known nature of the thermodynamic state parameters at low

altitudes (below 100 Kft), a simple model which is based on the perfect gas law and fluid-

statics is selected. The density waves and density discontinuities which are commonly

experienced at the higher altitudes are excluded in the low Mach model because their

effects are small at the altitudes of interest [Robl].

The Global Reference Atmospheric Model (GRAM-88)[Jus2] and the Four-D

model[Jusl] are reviewed. A newer version of GRAM-88 is GRAM-90 with coverage of

the altitude range as shown in Figure 5-31 along with the NASP trajectory. The 4-D

100



model covers altitudes up to 80kft and the Middle Atmosphere Program (MAP) covers

from 100kt to up to 300kt. There is also an interpolation method to bridge the two

models. Primary use of these models is to simulate the atmosphere, rather than predict

the atmosphere. For our purposes, we are more interested in local, but accurate

prediction of the atmosphere in order to improve the accuracy of the estimates. The most

promising approach in estimation would be first to treat the atmospheric parameters as

both random and deterministic, then to generate the most probable value of the

atmospheric data and its uncertainties from GRAM and/or other atmospheric data such as

balloon measurements prior to the flight. These values and uncertainties should be used

as the basis for a first estimate of mean and variance of the atmospheric parameters.
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Figure 5-31 Zonal Assignment of Different Atmospheric Models
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The free stream thermodynamic parameters such as temperature, density and

pressure have distinct profiles which are mainly space-dependent. The deterministic

model will be a function of altitude, longitude, and latitude in an Earth-fixed frame.

Since the thermodynamic process is a quasi-static compared to the vehicle flight time, the

parameters can be assumed to be time-independent. However, when the thermodynamic

parameters are viewed in the vehicle frame, they vary with time because of their spatial

variation. These spatial variations can be represented as stochastic models with spatial

correlation.

Similarly, deterministic and stochastic models can be considered for the wind

velocity. The wind velocity model is subdivided into atmospheric turbulence and its

mean valued magnitude and direction. The mean values of wind magnitude and direction

do not vary very rapidly over short periods of time. Typically nearly 15% change is

expected over a 30 minute period. Therefore, the wind magnitude and direction can be

modeled as a time-independent velocity vector field along the trajectory. The

atmospheric turbulence and spatial variations can be modeled as stochastic processes.

Based on spectral analysis, the Von Karman model may provide a more exact description

of the processes; however, the model used here, which approximates the process as either

a first or second order Markov process, is considered because it is simpler to put into a

linear system model.
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Figure 5-32 Temperature Distribution in the Standard Atmosphere
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5.3.2 Simple Model Of Atmosphere

For the lower altitude regime, a piece-wise linear (in temperature) model of

atmospheric properties is an adequate representation. Without attempting to compose a

sophisticated model of the atmosphere or avoiding a measurement data base, a simple

model is presented here. The parameters of interest are temperature, pressure and

density. The atmospheric model can be sub-divided into isothermal and gradient layers

each corresponding to continuous segment of the atmospheric parameters. The constant

temperature regions are the isothermal layers and the constant slope regions are the

gradient layers. The isothermal and gradient layers of the atmosphere are shown in

Figure 5-32.

For an isothermal region:

T = Tr = const. (5.45)

ln( -j = In()= -Tr(h - hr) (5.46)

For a gradient layer:

T = Tr +a(h - hr) (5.47)

Pr a(R -  (5.48)

Pr = r (5.49)

According to the reference [Dukl], a simple model for the atmosphere estimator

can be composed by treating the coefficients of the above relations as the state variables

for estimation. According to [Dukl], the first order Taylor expansion of the above

equations can be obtained and simplified to:

Inp = Inpr - #h - hra - (5.50)

Let Xl = Inpr, x2 = Tr, x3 = a then the temperature and density model for a gradient

layer are:

T = x2 + X3(h - hr) (5.51)

Inp = xi -1 + In(l + (h -hr ~-) (5.52)
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For an isothermal region, the model becomes:

T = x2  and Inp = xl - h - hr)
x2 R

(5.53)

Once the coefficients of the model, xl, x2 , and x3 are estimated from the sensor output,

the thermodynamic states, temperature, density and pressure can be computed using the

above relations [Dukl].
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Chapter 6

Estimation

6.1 Theoretical Background

The estimation problem for the AHSV air-data system is approached from the

fundamental concepts of nonlinear estimation theory. The AHSV estimation problem is

derived in the form of the nonlinear filtering of dynamic random processes. The most

compact description of the state history (solution) for the estimation of random processes

is the A Posteriori conditional probability density of the states. If the equations that

depict the time history of the state conditional probability density can be solved, then an

appropriate optimal estimation criterion can be defined and the numerical value of the

estimate can be obtained [Zak 1, Cul 1, Lam 1].

The differential equations which depict the dynamics of the vehicle tend to

increase the uncertainties of state information as time progresses; therefore, this is called

diffusion or propagation of the estimation process. When measurements (observations)

are available at a given time, the uncertainties on the states decrease since more

information has been gained by the observation. The theoretical background which

defines the propagation and update of covariance equations in estimation is presented

here without rigorous proof. The nonlinear filter equations and the assumptions that are
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needed to derive such filters lay out the foundations for filter design procedures discussed

in later subsections of this chapter.

The propagation of the state probability density function of nonlinear dynamics

that are driven by Gaussian random processes (Brownian motion processes) can be

described by the Fokker-Planck equation; and updating of information from

measurements is governed by Bayes' rule [Bucl, Buc2]. For continuous measurement

cases, the propagation and update cycle can be augmented into a single equation such as

Zakai or Kushner equations [Laml]. The solution to these equations provides the A

Posteriori conditional density of the states. Unfortunately, the nature of the solution is

infinite-dimensional; and some form of approximation is needed to make the problem

tractable [Cull, Laml]. Therefore, it is important to recognize the necessary assumptions

applied to these general equations since that would provide the limitation of these

particular results. One of the most practical and widely used approximate filtering

equations is the Extended Kalman Filter (EKF) [Gell]. The approximations involved in

deriving the EKF are shown by presenting its relationship to the general equations.

6.1.1 Nonlinear Filtering Equations

Ito / Langevin Equation for Process and Observation Model: The filtering of

continuous parameter processes of nonlinear systems like the AHSV equations of motion,

either with continuous or discrete observations, is our main objective. The context for the

filtering problem is given by the Ito / Langevin Stochastic Differential Equations(SDEs)

and the observation equations for the Markov process, xt which are:

Process Law dx, = m(x,,t)dt + s(x,,t)df3
1 (6.1)

Observations dy, = h(x,,t)dt + R2dv

where d3 and du are unity variance standard Brownian (Wiener) processes and the initial

state of the process is a Gaussian random distribution: xo - N(Xo, ao).

A Posteriori Filtering Equations for Continuous Observations: The filtering

solution is most generally given by the A Posteriori conditional density of the state of the

process denoted:
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A Posteriori */ Y) or (xt,t*
Conditional Density (6.2)
where Y = {y,t } o, t*]

The two SDEs which incorporate the continuous update into the Fokker-Planck equation

are the Kushner and Zakai equations. The Kushner equation provides the usual A

Posteriori conditional density while the Zakai equation provides an un-normalized

version (i.e., the density doesn't integrate to one and thus must be normalized), but in a

simpler format. Both equations are essentially the Fokker-Planck Equation with added

terms due to the continuous update, as shown below [Laml].

dp+ 1Zakai = Lp (xt, t)dt + h(x,,t)R2 p+ (x, t)dy, (6.3)
dt

Kushner dt - Lp(x,,t)dt + (h(x,,t) - h(x, t))R dl, (6.4)
dt

where dIt is the innovation process:

dl, = dy, - h(x,, t)dt (6.5)

where the over-hat signifies conditional expectation and where L is the Fokker-Planck

operator for the system shown below in vector form [Bro 1]:

d 1 d o)
L() = d (m(xt,,t) + I I d (Sj(X,,t)Sk (X,t) (6.6)

Note also that because of the observation process, the A Posteriori equations are

stochastic, partial differential equations(PDEs) and not deterministic PDE's like the

Fokker-Planck equation.

A Posterior Conditional Density and Estimates: At this point it is necessary to

recall the following facts concerning obtaining estimates from the A Posteriori

conditional density. 1) Extraction of the estimate from the density is a significant problem

and this leads to the Loss Function approach for defining optimality. 2) The conditional

mean is by definition the minimum variance estimate. 3) A symmetric density implies

that all odd higher central moments are zero. 4) For a symmetric, unimodal conditional

density, the conditional mean is the optimal estimate regardless of the particular Loss

Function.
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A Posteriori Conditional Moment Equation: The derivations of the Kushner

and Zakai equations are approached based on the use of Bayes' theorem, converting from

a measurement history conditioned on a state history to the reverse as in the discrete

update equations. The A Posteriori moment equations are derived from the Kushner and

Zakai equations similarly to the Fokker-Planck equation.

The A Posteriori equations which describe the dynamics of the conditional

expectation of an arbitrary differentiable function O(xt) are presented.

Arbitrary Function O(X t

Desired Conditional Expectation (Xt f(x)p(x, t / Y)dx (6.7)

Where Y is the observation history up to and including yt. The derivation of the A Priori

moment equations from the Fokker-Planck equation involved the commutative property

of expectation and differentiation and the application of integration by parts. The

derivation of the A Posteriori moment equation from the Kushner equation is a little more

involved because of the stochastic update term. The final form of the A Posteriori

conditional moment equation is:

do(x,) = C (x,)dt + [O(x,)h(xt) - b(x, )h(x,)]R-'dI, (6.8)

where L* is the formal adjoint of the Fokker-Planck operator shown below in the

simplified scalar case:

d 1 2
L*(e)= m(x,,t) (*)+-s2 (xt,t) ( ) (6.9)

dx 2 dX2

where, as before, the over-hat signifies conditional expectation.

Note that in general the entire conditional density is required to evaluate this

differential. Also, in general, moment equations can be expressed in terms of higher

order moments which in turn are expressed in even higher order moments, leading to an

infinite dimensional set of PDE's. In special cases higher moments may go to zero or are

parameterizable which leads to a finite dimensional set of equations. The issue of finite

dimensionality is best looked at from a geometric view point. The dimensionality of the

filter is related to the dimensionality of the Estimation Lie algebra associated with the
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diffusion. If this Algebra is finite dimensional then the resulting filter is also finite

dimensional.

In nonlinear filtering, we are typically interested in the conditional mean. The

moment equation for this case ( (xt) = xt ) becomes :

di, = L xdt + [x,h(x,) - ,ht(x,)]R-ldl (6.10)

In the linear system case and with sub-optimal filters such as the Extended Kalman Filter,
the second moment is also of interest:

Pt = E+{[x, - j] 2  (6.11)

The first term can be obtained directly from the moment equation with O(xt) =

xt2 . The second term can be simplified by the chain rule for differentiation; however, not

the chain rule of ordinary calculus but the chain rule for Ito calculus [Bro2]. By

observing from the conditional mean equation, the conditional mean with the observation

innovations update term is a stochastic process despite the fact that the expectations

produce real numbers. Thus we need to use the Ito differentiation rule for the second

term. That is, instead of:

di2 = 2icd, use d2 = 2^di t + I[xh(x,) - ^,4(x,)]R-'dt.

Substituting the above expression and the first moment equation into the

definition of the second moment and arranging terms gives us the A Posteriori second

moment equation:

dP, = 2(x t - c, )m(x,)dt +s2  )dt - [xh(x,) - h(x,x)] R-'dt

+ [(x, - C,)2 h(xt) - Ph(x,)]R- 'd l
(

6.1.2 A Special Case: The Extended Kalman Filter(EKF)

By observing the general first and second moment equations, it is noted that they

are full of complicated conditional expectation terms which do not uncouple. Also there

exist innovation processes (measurements) in the covariance equations. It would be
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beneficial to make some approximations which allow uncoupling and therefore simplify

these expectations to get an implementable filter. The first main assumption in deriving

the EKF is that the estimation error is small most of the time. Then assuming that the

drift, m(xt), and the observation function, h(xt), are smooth functions, we can

approximate them in a Taylor's expansion:

m(x,) = m(t) + (x, - X,) m(x,) [+Neglected H.O. T.] (6.13)
dx

h(x,) = h( ,) + (x, - Xt) dh( ,) [+Neglected H.O.T.] (6.14)

The conditional expectation of the first central moments is zero and thus:

m(x,) = m(x,) and h(x,) - h(j,) (6.15)

Similar consideration of the remaining terms gives:

x,h(xt) - ,th(x,) = (x, - ^ )h(x,) (6.16)
2d d

S(xt - ct) h(,) = Pt h(,)
dx dx

The resulting expression for the evolution of the conditional mean is:

di, = m(i,)dt + P, h(-,)R-1[dy, - h(xi)dt] (6.17)

Apply these approximations to the second moment equation, and get the evolution

equation for the variance:

dP, [2P - --m( )+ s2(xt) - Pt2 [4-h( )12R -1dt

S dx .x ht(6.18)

+ 1{(x - )3 h(x,)R-'[dy, - h( t)dt]

Again, as in the linear case with the Kalman-Bucy filter derivation, the third central

moment term couples to the observations allowing the observations to affect the variance

of the filter. If we repeat the approximation procedure for the third moment we would

find it depending on the fourth moment and so on ... resulting in an infinite dimensional

set of equations. Even with a first order approximation, an infinite dimensional filter still

results. The second, and crucial assumption associated with the EKF is that the error is

symmetrically distributed about its mean value so that the third moment goes to zero with
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all other odd central moments. In this case, the first and second moment evolution

equations become a closed set known as the Extended Kalman Filter and become

innovation independent.

di= m( )dt + P h(,)R-1 [dyt - h( C )dt]
The Extended 2 (6.19)
Kalman Filter d $d

d M(^ + s 2 (X)_ p'2 d-dPt = 2Pt  m(2t)+ (2t)- h(x,) R-' dt

6.2 Estimation Problem Formulation

6.2.1 Estimation Problem for Velocity and Angle of Attack

The filtering problem can be defined with the models derived in Chapter 5. The

equations which describe the diffusion process can be stated as given below.

) = [oR- g(R)]sin(O - a) + Q(R, V)S [Crv(M, ,R)- CD(M, a)]

+ Q(R, V)S [Cx(M, a, e) + Cxs(M, a, 6T)] (6.20)

+ Q(RV)S [+Cxr(M, a, &)[Crv(M, a, R) + Cx(M, a, r)

Scos(- a) + q- 2o E  Q(R'V)S [CmT(M, oa, R)+ CL(M, a)]

V R V [ cos(O-a)+q-2WE + V)

- Q(R, V)S [Cz&(M, a, 6) + Czla(M, a, ST)] (6.21)

- Q(R,V)S [Cza(M, a, 6v)[Cz a(M, a, Sr) - Crn(M, a, R)]]

Q(RV)Sc [ Cmp(M, a, R) + Cma(M, a) + Cms(M, a, e) + Cma(M, a, Tr)]

(6.22)

+ Q(R,V)Sc[Cmsv(M,a, v)[Cm.(M,a, Sr)+ Cmp(M, a, R)]

Several assumptions can be imposed on the equations to simplify the estimation

process and also reduce the dimension of the estimator. The first assumption is that the

inertial measurements are available with relatively good accuracy. We can assume that

the altitude R is available and treated as a known parameter. With GPS and IMU data,
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altitude can be measured with accuracy of a few feet (assuming military code). Also it

can be assumed that the pitch angle measurement is available with an accuracy of better

than 0.01 degrees. It is also presumed that the gravity and earth rotation rate are known

exactly. The second assumption is free-stream temperature measurements are available

with specific heat ratio such that the Mach number can be converted to air velocity. The

final assumption deals with disturbances which occur in the vehicle dynamics. Most of

the disturbances are assumed to be caused by density fluctuations. Therefore, the free

stream density is assumed to be of the form:

p(t) = p, (R) + p,(t) (6.23)

The density noise is additive to mean density which is a function of altitude only.

If the assumptions are applied onto the equations (6.20) to (6.22), then the

resulting equations can be expressed as:

dV = f, (V, a, e,, 8T, 8,)dt + g, (V, a, 8,, , S , )d p *

da = f2(V, , q, 6e, T,Sv)dt + g2(V,a, q, Se,rSv)dp* (6.24)

dq = f3 (V, a, b,,, 8, ,)dt + g3 (V, a, ,, 8, 8,v)dp*

Notice that the diffusion processes (6.24) are functions of the control variables

(e, , 6v), and the solution of the Fokker-Planck equation of (6.24) becomes dependent

on the control history. Therefore, a state feedback control law has been assumed and

designed. The feedback control law can be written as:

u = [e, T, 6Sv]T = Kc(a, V,q, 6,R) (6.25)

Then (6.24) can be written as:

dV = f (V, a,)dt + g (V, a)dp*

da = f2 (V, a, q)dt + g2(V, a, q)dp* (6.26)

dq = f3(V, a)dt + g(V, a)dp*

With observation equations from Chapter 5:
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dP1 = P[(1 - R*(V))cos 2 (a + 30")+ R*(V)]dt + dnl

dP2  P (1- R* (V))cos 2(a + 150) + R*(V)]dt + dn,2

dP3 = P,[(1- R*(V))cos 2 (a)+ R*(V)]dt + dn,

dP4 = P,[(1 - R* (V))cos 2(a - 15")+ R*(V)]dt +dn,

dP5 = P,[(1 - R* (V))cos 2(a - 300)+ R*'(V)]dt + dnP,
du, = Vcos(35o + a)dt + dn, (6.27)

du2 = Vcos(30 - a)dt + dn2

du3 = Vsin(350 + a)dt + dn3

du4 = Vsin(300 - a)dt + dn4

Objective: Equations (6.26) and (6.27) form the complete filtering equations

which are written in the Ito / Langevin Stochastic Differential Equation form as described

in subsection 6.1. In simple form:

dx = f(x, t)dt + g(x, t)dw (6.28)
dz = h(x,t)dt + dn

with

x=[oa,V,q] and z=[Pi,uj] i=1....5, j=1....4

The filtering problem is to find the conditional mean of state variable x; and the filtering

process requires knowledge of:

A Posteriori px(x,t* / Z) or p+(xt,t*)
Conditional Density

where Z = {z,} t [0,t'l

6.2.2 Estimation Problem for Atmosphere parameters

The estimation problem for the atmosphere parameters can be posed as a static

filtering. From section 5.3.2, the observation equation can be form as:

Z = x 2 + X3 (h - hr) + n

InZ = x, - l+ g ln( 1+(h-hr) )+n

where x, =In, X2 =Tr and x3 =a.
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In section 5.2.5, the sensor models for the atmospheric parameters were:

Pi = f(P,,M, q.) + n,

P = (1 - k,) P + n_

I,, = '/, = kp. + n,

LF= kFT + n,

By including the sensor models of above with the atmospheric model of section 5.3.2, a

static estimation equation can be formed. Once the coefficients of the model, xl, x2, and

x3 are estimated from the sensor output, the thermodynamic states, temperature, density

and pressure can be computed using the thermodynamic relations of atmosphere. More

related estimation procedures and derivations can be found in [Dukl].

6.3 Estimation Strategy

The estimation problems defined in section 6.2 have been approached from the

fundamental estimation equations. The core of the estimation problem involves the

propagation and update of the state conditional densities since the conditional densities

contain the most compact information on the current states as well as their history.

Therefore the estimator design process involves: 1) Estimation problem formulation,

where diffusion and observation processes need to be defined. 2) Design of the controller

as function of states (state feedback), if the vehicle requires stabilization. 3) Obtain the

equations which govern the propagation and update of state conditional probability

densities 4) Visualize the behavior of the densities to seek proper approximations 5)

Design an estimator which provides a conditional mean of states (minimum variance) 6)

Estimator performance verification via simulation.

In order to visualize the estimation problem, the vehicle models and observation

equations from sensor models are reviewed. Two major parts of the estimation problem

can be formulated. The first part of the estimation problem is to obtain the most accurate

estimate of the thermodynamic parameters such as temperature, density, pressure, and

Mach number. The appropriate observation equations are in Chapter 5, the sensor

modelling section. The filtered thermodynamic parameters are then used to update the

vehicle dynamics model coefficients during the estimation of flow magnitude and

direction as well as wind effects.
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The second part of the estimation problem is to design an estimator for the flow

direction parameters (angle of attack and side slip angle), flow magnitude, and wind

effects. The most promising strategy is to formulate the problem in a nonlinear dynamic

filtering representation. The equations of motion described in Chapter 5 will be used as

the propagation (diffusion) process by assuming the controller is in the state feedback

form. Appropriate functional representation of the forcing blocks (including

aero/propulsion terms) will be dependent on the defined states and thermodynamic

parameters. The sensor models discussed in Chapter 5 will be used as the observation

equations along with their associated noise and bandwidth characteristics.

6.3.1 Solution Strategy

The flow of ideas in the solution strategy is drawn in Figure 6-1. The first step

toward solving this estimation problem is to define proper objectives and appropriate

requirements. Based on these objectives and requirements, suitable models are

formulated as in Chapter 5. In order to understand the behavior of the processes

described as models, mathematical and engineering analysis is applied on these models.

The resulting models can be written as a set of differential equations and observation

equations as shown in Figure 6-2. The differential equations come from the modelling of

the vehicle equations of motion and the observation equations come from the modelling

of the sensors.

The existing nonlinear estimation theories suggest that the most compact way of

describing the states in the stochastic system is to keep records of the state conditional

densities. The estimation process for the discrete measurement case can be described as

propagation and update cycles. The propagation can be obtained by solving the Fokker -

Planck equation which is a parabolic partial differential equation. The update cycle is

operated by using Baye's rule. Similarly, there exist a couple of density equations for the

continuous measurement case which contain both the propagation and update cycles. The

solution to the Zakai equation provides the conditional density of states in un-normalized

form. The solution to the Kushner equation provides the same results but in normalized

form at the cost of complexity resulting from operating on expectation.

To solve these probability density equations, appropriate boundary and initial

conditions are needed. Unfortunately, the solutions to these PDEs are infinite
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dimensional in nature. Very few known solutions exist, such as the linear dynamics case

(Gaussian) and Bene's equation. Consequently, numerical approximation is unavoidable.

The Extended Kalman Filter is one of the approximations that is widely used because of

its simplicity and because its moment equations are innovation independent. As

described in section 6.1, the EKF requires several assumptions on its conditional

probability densities. The most important one is the density being symmetrical and

unimodal such that the all odd moments will vanish. Therefore it is desirable to visualize

the behavior of the densities associated with the AHSV air-data estimation problem to

validate the usage of EKFs.

If application of an EKF fails, then there are other approaches available. One

method is to solve the PDEs directly using finite difference methods. Other methods

involve approximating the densities with a finite dimensional series of functions. For

example, the simulated densities can be obtained by multiple Monte-Carlo simulation

runs, then based on the observed density shapes the appropriate approximating function

can be chosen. The orthogonal functions such as Hermite-Gaussian series expansion

have advantages over others because the addition of a higher order terms does not affect

the previously calculated lower order terms.

This solution strategy is thought to be the most promising way of solving the

AHSV estimation problem. The major problems associated in following such a strategy

are the convergence problem of the numerical methods and accuracy of the

approximation. The solutions to the density equation, and the stochastic partial

differential equations, depend on the control history as well as the initial and boundary

conditions. Therefore, a reference controller needs to be implemented in order to

complete the estimator design. Of course, the obtained solution would only be a

particular solution. If a more representative controller and vehicle models are available in

the future, then the design process can be repeated to provide correct approximations.
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Research Objectives
Demonstration of Air-Data Estimation Strategies

AHSV Estimation Requirements
Problem Posed by AHSV Configurations

Investigation & Definition of AHSV Configurations
Selection of AHSV Design Necessary for Defining Estimation Problem

AHSV Flight Trajectory Selection
Trajectory Dependent Parameters(Dynamic & Thermal Loads etc.)
Vehicle Design Selection(Propulsion, Aerodynamics, Control)
Sensor Selection and Placement

Modeling of AHSV
Modeling of AHSV and its Subsystem for Estimation
Modification Needed for Estimation Problem Formulation

Vehicle Dynamics & Propulsion Models
Air-Data Sensor Models
Atmosphere Model

Estimation Problem Formulation
Formulation of Estimation Problem With Defined Configurations & Models

dx = f(x,t)dt + g(x,u,t)dt + Qdw
dz = h(x,t)dt + Rdv
u = K(x) and x, = N(M, t)

and dy = H(p)dt + dn
n p = Thermo - parameters

Control System Design
Estimation Problem coupled with Control

Model Inversion Method & Gain Feedback

Estimator Design
Demonstration of Estimation Strategies by Showing Specific Design Case

Approximating Time History of Probability Density Function (Simulations)
Observation Nonlinearities
Extended Kalman Filter Formulation
Estimator Performance Verification (Monte-Carlo Simulations)

Estimation Driven Sensor Precision Requirements
Inverse Problem of Defining Sensor Precision Requirements From Estimation Accuracy
Requirements

A Method Derived From EKF Formulation
Weighting of Sensor Noise
Environment Model Parameters (also CRLB for static Filtering)

Figure 6-1 Block Diagram of Research Procedure
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Estimation Problem Formulation
Formulation of Estimation Problem With Defined Configurations & Models

dx = f(x, t)dt + g(x,u,t)dt + Qdw = H()dt+dn
dz = h(x, t)dt + Rdv and dy -p
u = K(x) and x, = N(M,t) p = Thermo- parameters

Estimator : Minimize Estimation Error in Mean Square Sense
i = F(z,u, 0) and 3 = G(y, ty)

Fundamental Concept of Estimation
Conditional Density Contains Full Info of State Variables
Continuous Propagation & Discrete Observation

Fokker-Planck and Baye's Rule
Continuous Propagation & Update

Zakai & Kushner Equations
Special Case: Extended Kalman Filters (also 2nd Order , Gaussian etc.)

Probability Density Equations
Stochastic Partial Differential Equations

p = (p, x,u,t) with B.C. and I.C.

Solution Strategy
In General, Solving SPDE involves Infinite Dimensional Problem
Exact Solution

- Very Few Known Solution Exist
Extended Kalman Filter

- Assumptions on CPDFs and Linearization
Other Numerical Approximations

- Visualizing CPDFs by Numerical Simulation
- Solving SPDF by Spectral Methods
- Orthogonal Expansion of SPDF Solution
- Finite Difference

Figure 6-2 Estimator Design Procedure
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6.4 Control System Design

6.4.1 Motivation
In general, the desired estimator design in both theory and practice depends upon

a specific history of control inputs. The difference in the desired estimator design,

especially in nonlinear and/or non-Gaussian noise case, is due to the shape of the state

conditional probability density function (PDF); and the equations which depict the

evolution of PDF depends upon control variables. Therefore, the main objective of this

chapter is to address the design and analysis of a realistic and robust control system that

manages the AHSV flight dynamics such that the simulations of the closed loop

dynamics can be used to provide the characteristics of the state probability density

function.

The vehicle equation of motion and observation can be expressed as shown in

equation (6.29). Also, the corresponding Zakai equation is shown below that equation.

By observing the Zakai equation, the time rate of change in the conditional densities

depend on state variables, time, control variables, and measurements. Even if we assume

the feedback control for u, the governing equation for the conditional densities still

involves the closed loop behavior (diffusion operator) of the vehicle. Consequently, the

time variations in the conditional density function depend on control system design.

dx = f(x,t)dt + f,(x,u, t)dt + g(x,t)dw

u = K(x, t) (6.29)

dz = h(x, t)dt + dn

with

x=[a,V,q] and z=[Pi,uj] i=l ....5, j=l ....4

ak ' 1
Zakai - L+ (x,, t)dt + h(x,, t)R 2 p + (x, t)dzt

where L()= ((xt) )+ (gj(x,,t)gk(x,t).)
i xi 2 i, k dxjdxk

For high Mach number flight, there exists a stable controller design by Chamitoff

[Cha2] whose design is based upon Lyapunov stability criterion and an A-star search

method applied in a manner similar to that used in nonlinear dynamic programming.

However, when considering the estimator design, it is undesirable to have the controller
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in a form of numerical search codes; rather, an analytic form, especially a regulatory

feedback controller, is highly attractive. For the analysis that has been carried out in this

thesis, only a representative control system is needed. Since covering all possible control

schemes or an optimal control scheme is beyond the scope of this thesis, only a little

effort has been applied to finding an implementable control scheme. The resulting design

of the flight control system is derived in this chapter.

6.4.2 Assumptions and Background

To obtain a particular AHSV controller design applicable to high Mach number

flight, the LVLH kinematics formulation is used along with the parameterized form of the

forcing (aerodynamics and propulsion) terms. The non-dimensionalized forcing

coefficients are generated using the Draper developed AHSV design and simulation

codes[Cha2] in the form of multi-dimensional numerical tables. The coefficient tables

are then polynomial curve-fitted to form an approximate model of the vehicle dynamics.

The state vector is defined as in Chapter 5 (vehicle modeling section). Included in the

vector are velocity, flight path angle (or angle of attack), pitch rate, pitch angle, and

altitude. To simplify the design procedure, it is assumed that all the state variables are

available from direct measurement without measurement noise. Finally, the control

system design has been customized to the narrow flight envelope spanning flight from

Mach 10 to 15.

6.4.3 Control Strategy

The AHSV flight control problem involves stabilization of a highly nonlinear as

well as inherently unstable plant(vehicle dynamics). Two different approaches were

taken here; the first design is based on a linearization and Linear Quadratic Regulator

implementation using the linearized model, and the second design is based on an

inversion of the forcing models which provide direct control in terms of the applied

forces on the vehicle dynamics. The second approach has not been tested with the

numerical examples due to the lengthy computation time it required. The statistical

analysis involved with the estimation problem prohibits use of time consuming processes.

However, the control system design approach and procedure are discussed and some

example designs are included in the Appendix D.
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The main objective of the regulator is to command the state x to follow the
scheduled state trajectory x,, while minimizing the defined cost functional C. The

constraints are defined by the limitations on the acceleration magnitude which are

considered by propulsion, structural dynamics, and human factors.

Let the state error xe be defined as xe = x - xs then the problem is to find the

feedback control u such that IIxe ll is minimized while satisfying the input constraints

SF < M by considering ul < N.

In this case, the 2 norm of the error defined by the weighted sum of squares becomes the

cost function to be minimized.

The vehicle dynamics have been linearized about the nominal trajectory. With the

linearized model, Linear Quadratic Regulator (in the form of constant gain, full state

feedback) is designed for operating points at every finite step. The resulting feedback

gains were scheduled as a function of angle of attack. More detailed steps in the

controller design approach are discussed below:

1) First, the nominal trajectory (the trajectory that vehicle should follow in flight) data

has been calculated. With the nominal trajectory value, the perturbation equation is

formed from the vehicle dynamics equations.

Nominal Trajectory =x, = x(t)

Letxe = x - x and ue =u-u s then

,e =C- - ,= f(x,+x,,t)+ f,(x,+xe,u,+ue,t)+g(x, +x,t)w (6.30)

2) The next step is to linearize the equation (6.30) about the nominal trajectory x,, that is

taking the Taylor approximations and using only the first order terms.

-'e =I f" (x"'f t (U - Uo) (6.31)fo(,t) (x -x)+fo(x,,t)+ (X -X (u-) (6.31)
U=U" U=Uo U=U,

to form a set of equations in the form of

ie = Axe + Bue (6.32)

3) With the linearized dynamics, a set of integrators are included such that the steady

state errors will vanish. By including the integrators, the resulting augmented system has

twice the dimension of the previous system.
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4) With the augmented linearized system dynamics, the Riccati equation is solved

numerically. The two weighting matrices are calculated by using the Bryson's rule. The

solutions to the Riccati equation provide the feedback controller after augmenting the

integrator into the gain structure.

5) The procedure has been repeated from step 1) to 4) for discretely stepped nominal

trajectory values such that the feedback gain is curve-fitted with the data as a function of

angle of attack, in the form of:

u = F(a)x (6.33)

This type of control system design is not really recommended for actual

implementation for AHSV, because the robustness of the algorithms can not be easily

addressed. Because the feedback gain is a function of angle of attack (which is one of the

most sensitive parameters to variations in plant dynamics), the feedback control is no

longer linear. Also because the feedback gain changes as rapidly as the plant dynamics,

the interactions may result in instability. For this thesis, this approach has been taken

since the structure of the controller is much simpler than any other and it is much more

computationally efficient to use.

6.4.4 Controller Simulation and Performance

By following the steps described in 6.4.3, the control system was designed

successfully. Within the narrowly defined operating regions, the controller performed

satisfactorily. The break-down point of the controller ranged from 0.5 to 0.7 degrees

away from the nominal values of the angle of attack. The controller was much less

sensitive to variations in other variables such as Mach number, pitch rate, and pitch

angles. Both the initial conditions and disturbance amplitudes were varied to make this

determination.

The Figures 6-3 through 6-10 show a sample of the typical transient response of

the controller for initial condition errors in the velocity and angle of attack. The response

shows good steady state error response, asymptotically going to zero because of the

integrators included inside the controller. Most transients died out within a few seconds

into the simulation. This design is used throughout the analysis in the later chapters as

the main controller.
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Figure 6-3 Transient Response of Axial Velocity
(Velocity Initial Condition Error of 10m/s)
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Figure 6-4 Transient Response of Flight Path Angle
(Velocity Initial Condition Error of 10m/s)
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Figure 6-5 Transient Response of Pitch Rate
(Velocity Initial Condition Error of 10m/s)
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Figure 6-7 Transient Response of Axial Velocity
(Flight Path Initial Condition Error of 0.5 deg.)
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Figure 6-8 Transient Response of Flight Path Angle
(Flight Path Initial Condition Error of 0.5 deg.)
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Figure 6-10 Transient Response of Pitch Angle
(Flight Path Initial Condition Error of 0.5 deg.)
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6.5 Visualization of Conditional Density Propagation

The solution to the estimation problem, which is discussed in section 6.2, is the

conditional mean and variance; and the exact solution requires solving the Zakai

equation. The solution to this equation provides the A Posteriori conditional density of

the states and leads to the conditional mean and variance. The exact solution to the

nonlinear filtering problem is not easily attainable since the nature of the solution is

infinite-dimensional. Thus, some form of approximation is needed to make the problem

tractable. Many different approximation strategies are possible. (For example, Gaussian

approximations, Exponential expansion, and orthogonal expansion of Hermite

polynomials, etc. [Cull, Laml, Buc3]) Performance of the estimator depends on the

fidelity of the approximated density functions as compared to the actual densities.

In order to derive finite approximations to the solution, the investigation of the

conditional density shape is highly desirable. An engineering method, which visualizes

the characteristics of time dependent density functions without solving for the Zakai

equation, would be highly desirable in order to seek an appropriate approximation of the

densities. The approach taken here is based on the numerical simulation of the vehicle

and observations. The AHSV dynamic model has been flown in the simulation for a

large number of runs (2000 per flight condition) to obtain the approximate visualization

of the Fokker-Planck equations (propagation). With the observation equations, the

distortions of density shapes due to the nonlinearities in observation equations are

investigated. The results are investigated to substantiate the requirements posed by the

Extended Kalman Filter.

6.5.1 Approach And Structure Of Simulation

The purpose of this analysis is the visual inspection of the behavior of the

probability densities through use of the vehicle dynamics (propagation) and observations

(update). The ultimate goal of the estimation problem is to obtain the conditional mean

of the states. The governing equation to solve is the Zakai equation, as shown below. (In

return, the solution is the conditional probability density functions of the states with

respect to both propagation and update)
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Zakai = Lp+ (x,, t)dt + h(x,,t)R2 p+ (x, t)dy,
dt

where L(e)= Id(mi(x,,t) )+ d sj sxt)sk t
ixi 2 J, x dXidXk

The exact solution to the Zakai equation can not be easily found in closed form except for

a few special cases (linear and Bene's problem) since the nature of the solution is infinite-

dimensional [Laml].

Due to the tractability problem of the Zakai equation, the solution to the

estimation problem has been approached by seeking a finite approximation. There exist

many different approaches to obtain a finite approximation of the solutions to the Zakai

equation. Most often a finite sum and/or a group of finite known function is used to

represent the solution. The only restrictions are the integrability, smooth and compact

support assumptions, and positive-real values that are needed to qualify the

approximations as a probability density function. There have been several past

suggestions to use an exponential Fourier series, power series, Gaussian sum, Gaussian

product, Hermite Gaussian polynomials, etc. [Laml, Cull, Buc3] If the density looks

nearly Gaussian (or at least unimodal and symmetrical), then a Gaussian approximation

can be applied. The commonly used Extended Kalman Filter falls into this category.

As an approach to find an appropriate scheme to approximate the functions, a

method of visual inspection of the density deformation through use of vehicle dynamics

and observation has been taken. The exact procedure requires the following steps: First,

multiple simulations of the vehicle flight following the nominal trajectory are made up to

one discretizing time step. Secondly, the ensemble cross-section at the end of the time

step is taken as the propagated conditional density. Thirdly, the Baye's rule is used to

obtain A-Posteriori densities. Lastly, these density shapes are used as the initial condition

for the next propagation cycle, and the procedure is repeated over until the desired

trajectory has been covered. The exact procedure is difficult to implement and is

impractical since the random number generation for arbitrary density shapes is a difficult

task. Therefore, the approach taken here is the independent visual investigation of the

density evolution process, the propagation and update.

The vehicle dynamic equations, which are shown below, form the stochastic

differential equations to simulate the propagation cycle of the filtering. The responses of
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the vehicle dynamics to the random air-density disturbances are stored for given initial

conditions for the vehicle dynamics (assuming Gaussian density initial condition). These

data are used as the statistical basis for creating the estimate of the probability densities

during the propagation cycle.

dV = f, (V, a,es, 3 T,6,r)dt + g, (V,a, e,6r,3v)dp*

da = f, (V,a,q, 8,, 8, 8 )d t + g2 (V, a, q, ,, , 8,)dp* (6.34)(6.34)
dq = f 3 (V,a, 65e,8,6,)dt +g 3 (V,a, 6e,63v)dp*

dO = qdt

With the control variables (s6,e , 65) defined as: u = [8e' ,,6,.]T = Kc(a, V,q, 8, R)

These dynamic equations form a simulation cell block as shown in Figure 6-11.

Initial Conditions
Clock

SData
Density .- Storage
Disturbances Vehicle Dynamics

tate Feedback

Flight Controller 4

Figure 6-11 Configuration of AHSV Flight Simulation (For Each Cell Block)

The procedure of the simulation is shown in Figure 6-12. First, the simulation

starts with set up of the initial condition densities and evaluation of the non-state-

dependent parameters. Secondly, the code evaluates the state feedback law and external

air-density disturbances, followed by computing the state derivatives. Thirdly, the

Runge-Kutta 4/5th order integration routine is used to evaluate the state values at delta t

later. Then the output is saved. Once the integration has been achieved up to final time,

a flight trajectory data set has been collected. This procedure is repeated for 2000 runs

and the collections of trajectory ensembles are presented in a histogram which provides a

good visual presentation of the state probability densities. This result is also the solution

to the Fokker-Planck equations;

S= I (mi(x, t)p)+ d (s(x,,t)sk tt)p) (6.35)dt dxi 2 jk dxjdxk
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I Save output

Figure 6-12 Simulation Procedure Block Diagram

The previous step provides the density shape deformation during the propagation

cycle. The next step is to observe the deformation of the densities through the
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observation nonlinearities. The overall scheme of the simulation is shown in Figure 6-13.

First, the state variable ranges of interest (for nominal operation ) are selected. At each

point along the trajectory, random number generating codes are used to create fictitious

state signals. Those signals are then injected into the observation equations (sensor

equations) to obtain the measurement outputs. The measurement data (collection of

obtained sensor signals) are then transformed into histograms (crude form of probability

density construction based on likelihood of each sample).

Generate Flight trajectory

random number
generator to produce
Gaussian density noise
for each state variables x

Observation equations Histogram Generation
z = h(x, t) and Plotting routine

Figure 6-13 Observation Simulation Procedure Block Diagram

6.5.2 Simulation Results

The simulations were completed with 2000 runs per segment of the flight

trajectory. The flight conditions corresponding to Mach numbers 10, 13, and 15 are

selected. Each flight trajectory consisted of a 10 second flight segment. For the

estimation propagation and update process, the statistical behavior of the dynamical

system only needs to be verified for the duration of each update time step. Therefore, 10

second duration is considered more than adequate. Most initial transients will die out

within a few seconds into the flight as verified in the control system design section. Also,

the nominal flight altitude was considered constant throughout the simulation.

The size of fluctuations of the state variables about their nominal values will

affect the apparent non-linearities. It is suspected that as the magnitude of the

fluctuations increases, the deformation of the densities will increase due to a larger
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nonlinear effect. Therefore, the initial conditions and the driving disturbance noises (air-

density fluctuations) were set to the maximum allowable values while keeping the flight

conditions in a realistic range. The air-density disturbances were increased until the angle

of attack response was approximately 0.5 degree r.m.s. at Mach 10, which is the

maximum tolerable value for the stable operation of the controller. The value decreased

just a little bit (about 0.3 to 0.4 degrees) for higher Mach numbers (Mach 15). Half a

degree variation seems small, but if we recall the plot of normal acceleration vs. angle of

attack in chapter 4, the figure corresponds to about half a g of normal force fluctuation.

That magnitude is certainly not acceptable for a manned vehicle; and may be regarded as

an upper bound on normal acceleration variations.

The resulting histograms are shown in Figure 6-14 to 6-19. As can easily be seen

from the figures, the densities retained the general shape of the Gaussian initial density.

It is hard to conclude that the densities are exactly Gaussian, but it is clear that the density

shapes do meet the requirements for the assumptions carried out on deriving the Extended

Kalman Filters (symmetric and uni-modal). The results were consistent for all three

segments of the nominal flight trajectories. A question also arises to verify the behavior

of the dynamics if non-Gaussian densities were to be propagated. To be far away from

Gaussian density, (also it is readily available on numerical packages) a uniform density

function was used instead as the initial condition to the simulation for the flight segment

of Mach 10 only. As shown in Figure 6-20, the diffusion process (vehicle dynamics) still

tends to normal (Gaussian) as time progresses. The white Gaussian driving disturbance

noises tend to push the state probability toward a Gaussian distribution even though the

initial density was uniform. The results suggest that the diffusion process does actually

help to preserve normality in this case.

The observation process has been simulated to visualize the deformation of the

densities through the nonlinearities in the observation. For each Mach number segment

of 10, 13, and 15, angle of attack is varied from 0 to 5 degrees to cover the realistic

ranges of the operational regime. At each operating condition, a fictitious state signal is

generated (Gaussian noise with a mean equal to the flight condition), then injected into

the observation equations. The sensor noises were neglected since we want the

deformation solely due to the state signal to measurement transformation. If the sensor

noise is included, it will help the probability density of the measurement signal to be

more Gaussian-like, based on the Central Limit Theorem. The resulting histogram is

shown in Figure 6-22 to 6-30. The nonlinearities in the observation process did not alter
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the results significantly. Because the nonlinearities involved in observation are mostly

cosines and sines, and due to the small angular ranges of signals considered in this case,

the observation process can be considered nearly linear, and the process will not deform

the density significantly.

With the results from the propagation of densities, and from the observation

process, we can conclude that if the initial condition is nearly Gaussian, then the

propagation and update cycle will not destroy the basic characteristics of the initially

defined density shapes within the defined operational regime. Therefore, if the control

action minimizes the angular perturbation of the vehicle motion, then the overall vehicle

system will exhibit at least statistically linear behavior. This evidences suggest that the

Extended Kalman Filter should work satisfactorily for the considered range of the flight

envelope.
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Figure 6-14 Histogram of State Variables - Velocity & Angle of Attack (Mach 10)
(Gaussian Density Initial Conditions)
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Figure 6-16 Histogram of State Variables - Velocity & Angle of Attack (Mach 13)

(Gaussian Density Initial Conditions)
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Figure 6-17 Histogram of State Variables - Pitch Rate & Pitch Angle (Mach 13)
(Gaussian Density Initial Conditions)
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Figure 6-19 Histogram of State Variables - Pitch Rate & Pitch Angle (Mach 15)
(Gaussian Density Initial Conditions)
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Histograms of Pressure Transducer output
(Density Deformation by Transformation of Observation Nonlinearity)

Pressure Transducer #1 Pressure Transducer #2

Pressure Transducer #3 Pressure Transducer #4

Pressure Transducer #5
Figure 6-21 Histogram of Pressure Sensor Output
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Histograms of Rayleigh Scattering Sensor Output
(Density Deformation by Transformation of Observation Nonlinearity)

Optical Sensor (R-S) Up Optical Sensor (R-S) Down

Histograms of L.I.F. Sensor Output
(Density Deformation by Transformation of Observation Nonlinearity)

Optical Sensor (LIF) Up Optical Sensor (LIF) Down

Figure 6-22 Histogram of Optical Sensor Output
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6.6 Estimator Development

The evidence shown in the section 6.5, Visualization of Conditional Density

Propagation, suggested that the Extended Kalman Filter is applicable for the hypersonic

flight condition from Mach 10 to 15. For flight operation within the ball of allowable

perturbation, which is defined as a maximum perturbation region centered at the

operating trajectory point, the diffusion process (the vehicle dynamics driven by the

density disturbances) does not destroy the properties of unimodality and near symmetries

about the mean. Also, the observation nonlinearities cause insignificant deformation of

densities through the transformation. Consequently, an Extended Kalman Filter is

designed for the AHSV air-data estimation problem (defined in section 6.2), and the

results are summarized in this section.

The objectives of the design process and results shown in this section are, first,

the demonstration of the air-data EKF design methodology, and the verification of the

estimator performance. The validity and applicability of the conceptual air-data sensor

system were the main emphasis of this thesis. The estimation results were viewed with

emphasis on sensor issues such as:

* Can currently available air-data sensors be used with the estimator to obtain the

required accuracy?

* How do estimation performance results change if relatively better or worse

optical sensors were used (as compared to the SEADS-like pressure system)?

* If we want a certain performance level from the estimator, how accurate must

the sensors be?

With an initial guess of flight conditions (the initial conditions and the external

disturbances from density fluctuations) and an air-data sensor performance specification,

a particular solution of achievable performance of the estimator can be determined. In

order to supplement the results of these chapters, Chapter 7 provides an assessment of the

sensor requirements which will be approached by a method that does not depend on

estimator simulation results.
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6.6.1 EKF Design Procedure for AHSV Air-Data Estimation

For the AHSV air-data estimation problem, the EKF formulation is discussed

here. As defined in the section 6.2, Estimation Problem Formulation, the diffusion and

observation process can be shown as:

Diffusion:

Observation:

dV = f (V, a,)dt + g* (V, a)dp*

da = f~ (V, a, q)dt + g (V, a, q)dp*

dq = f, (V, a)dt + g3(V, a)dp*

dP = P,(1- R*(V))cos 2 (a + 30")+ R*'(V)]dt + dn,.

dP2 = Pt (1- R*(V))cos 2 (a + 150)+ R*(V)]dt +dnP2

dP3 = P, (1- R*(V))cos2 (a) + R*(V)]dt + dn,,

dP4 = P (1- R* (V))cos 2 (a - 150) + R*(V)]dt + dnP,

dP5 = P,[ (1- R*(V))cos 2(a - 300)+ R*(V)]dt + dn,5

du, = V cos(350 + a)dt + dn,

du2 = Vcos(300 - a)dt + dn2

du3 = Vsin(350 + a)dt + dn3

du4 = Vsin(300 - a)dt + dn4

which include a full state feedback (closed loop dynamics). The density disturbances

were modeled as a set of first order linear systems with the 0.3 second time constant. The

time constant was estimated by the following arguments. If we assume the frozen field of

density distribution along the flight trajectory, then 1km spatial correlation in all

directions and the flight speed of 3000 m/s (approx. Mach 10 flight) result in 0.3 second

time constant. The associated dynamics and observation equations can be simply stated

with discretized measurements as:
C(t) = m(x, t) + s(x, t)w(t)

z(k) = h(x(k), k) + n(k)

where { w(t) } and { n(t) } are zero-mean, white Gaussian noise processes with:

E{w(t)w(z)}= Q(t)8(t - Z) and E{n(t)n(z)T} = R(t)6(t- z)

and for t > to and x(to) - N(x,Po) and k - tk. The problem is specialized by

assuming the case of uncorrelated process and sensor noise. Furthermore, the state and

noise (process and sensors) are uncorrelated at any given time, as shown below.
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E{w(t)n(r)}= 0, E{x(t)w(r)'}= 0, E{x,(t)n,(r)} = 0,

With the linearization defined as (Results are shown in Appendix C):

F(, t) m(x, t)- dh(x, t)
dmx and H(,t) x

the resulting EKF equation is:

Propagation: 5(t) = m(i(t),t)

P(t) = F(i(t),t)P(t) + P(t)F(i(t),t)T + SQ(t)ST  (6.39)

Update: (k + 1 / k + 1)= (k + 1/ k)+ K(k + 1)[z(k + l)- h(,(k + 1 / k))]

P(k +1/k + 1) = [I- K(k + 1)H(i(k +1/ k))]P(k + 1/ k)

K(k + 1) = P(k + 1 / k)H(i(k +1 / k))T [H((k + 1 / k))P(k + / k)H((k + 1 / k)) T + R(k + 1)

(6.40)
(note: .(t) = x(t) - i(t) is the estimation residual or estimation error and i(k + 1 / k) is the
estimate at time k+ 1 given measurements up to k)

The Extended Kalman Filter for the AHSV air-data system has been implemented

by the following numerical computation procedure:

Step 1: Integrate the state and covariance propagation equations (6.39) using a

numerical integration routine (Runge-Kutta 4-5 etc.) with initial guess

(initial condition) of the state estimate and state covariance. If the filter

implementation is for the computer simulation, the vehicle dynamics with

disturbances should be integrated altogether. The linearization process

within the filter covariance equation should be linearized about the previous

update of state estimate.

Step2: Obtain sensor output (measurements). For numerical simulation of the

vehicle and the estimator, the observation should be made with the true state

values (the propagated state values from integrating the vehicle dynamics).

Step3: Compute the filter gain K. With the computed filter gain, update the state

estimate and covariance. The linearized matrices are obtained by linearizing

the vehicle dynamics and observations about the propagated estimate of state

variables.

Step4: Repeat from step 1 to obtain the estimate for next time step.
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When the on-line implementation of the EKF is needed, these procedures must be

computed by the on board computer. The most serious problem associated with the EKF

implementation is its sensitivity with respect to the initial condition of the state and

covariance. Since the filter is linearized each step by the current estimate of states, large

errors in the initial condition would result in grossly different linearized dynamics.

Different types of estimation strategies are also applicable for the AHSV air-data

estimation problem. The extended Kalman filter can be further improved by iterating the

update equations with newly linearized functions. Another possibility is the second order

Gaussian filter. By taking up to second order terms with Gaussian assumptions, the

second order filter can be formulated and can improve the estimate if the second order

term is significant. Second order filter imposes about 15% more computational burden

compared to EKF. Second order filter performs much better in steady state compared to

other nonlinear filters, however it may cause wild transient behavior for high frequency

operation. In general, the iterated filter has lower r.m.s. error while the second order filter

has lower bias. Regardless of type of filters, these filters require on-line computation and

the filter performance is heavily dependent on initial conditions.

6.6.2 Statistical Analysis

Before making an attempt to obtain some measure of the air-data estimator (in

general, of any estimator) performance, it is necessary to answer a question regarding the

confidence one has in the statistical results. The statistical analysis, via the Monte-Carlo

simulation, is achieved by generating large samples of estimation error trajectories. The

ensemble of the trajectory cross-section at any given time provides the data for the

statistical analysis. The performance of the estimator can be measured by an estimate of

mean and a variance of the estimation error. The question that must be answered here is:

How many sample trajectories are needed to achieve confidence in the statistics? In other

words, if we select a certain number of simulation runs, how good is the estimate of the

mean and variance?

In order to estimate the central moments of a random process, a large number of

statistically independent samples are generated and the statistic
N m

1m = ^( - x (6.41)
i=1

146



is formed. Here M, is the mth moment of the difference X^ - x, for all i. The statistics

(6.41) converge quickly and asymptotically to normal by the Central Limit Theorem.

With mean and variance given by:
E{,. m = m. (6.42)

Var{m = M2mn 'm (6.43)

Since the statistics are Normal, we can compute the probability confidence bands for the

estimates for large N.

For the purpose of estimating the performance of the estimator, we are only

interested in the mean and variance of x, where m=l, and 2. If we assume the

asymptotically normal property of the estimate of statistics, and also assume that the

samples are statistically independent, the confidence band can be computed. If it is

assumed to be normal, then the probability of the estimate of the mean can be stated as:

P(I/1 - E{} <: k) = C (6.44)

If the variance is unknown, (in this case a standard deviation), the statistic for unbiased

estimate is
N 2

2 1

When assuming the fact that gt is normal, the statistic given above has a Student-t

distribution (with n-1 degree). For large N (above 30), it can be approximated as normal

and use same statistical analysis as for the mean with adjustment factor of _. Since

our simulations' runs are either 1000 or 2000 runs, the adjustment factor can also be

approximated to be a unity.

where, as examples for specific k and C are:
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0.674 50%

1.64 90%

1.96 95%

2.58 99%

3 (three sigma) 99.74%



Pecent Error (%) O x
102 . 1 f.. I

101

90% Confidence
100 .- - 95% Confidence

------- 99% Confidence

10-1 . . . . .. . . . . . . . .. . .

101 102 103 104 105
Simulation Runs (Number of Samples)

Figure 6-23. Simulation Run Requirements

The resulting error magnitude (as a percentage of one sigma of x) is plotted against the

number of simulation runs (number of samples) in Figure 6-23. When considering the

fact that the probability (0.9974) that a Gaussian deviate lies within three standard

deviations of its mean, any confidence band of fewer than three standard deviations

would be at best subject to misinterpretation since the associated probability for plus or

minus one standard deviation is only 0.6836 and only 0.9544 for two. It is difficult to

compromise for the adequate number of simulation runs because the convergence is

extremely slow with N. As shown in Figure 6-23, for 95% confidence, the percent error

reduces from 6% to about 2% by increasing the number of runs from one thousand to ten

thousands. The increase of the number of simulation runs by an order of magnitude is

extremely time consuming while the benefit in the improved confidence seems to be

minimal. For the simulation of AHSV air-data estimation, 1000 runs were taken because

of computation power and time constraints. This corresponds to about 6% error with

95% confidence. Obviously, a larger number of runs would result in a better estimate of

the performance.
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6.6.3 Simulation Results

The Monte-Carlo simulation has been performed with the vehicle, sensors and

estimator running simultaneously. The initial conditions are the flight velocity of

3000m/s (approximately Mach 10), 2.7 degree angle of attack (design value for steady

state), and zero pitch rate. The external disturbances are chosen to match the effective

acceleration disturbances, and they are: 0.1m/sA2 (roughly 1/100th of g) axial

acceleration, 0.1 deg./sec. angle of attack rate, and 0.01 deg./sA2 pitch acceleration. These

flight conditions and the effective acceleration are considered to be a mild operating

condition.

The air-data sensor configuration consisted of a realistic figure based on available

technology. The pressure sensor accuracy of 2% (SEADS) and the Rayleigh Scattering

sensor with 0.8% were used for the simulation. A set of typical estimator response is

plotted in Figure 6-24 through 6-26. Also a typical estimator performances are plotted in

Figure 6-27 through 6-29. As shown in Figure 6-28, the achieved performance of the

sensor-estimator combination does not meet the accuracy requirement of 0. idegrees. The

achieved angle of attack accuracy was off by factor of 2. Since the estimate of SEADS

performance was about 0.5 degree accuracy in angle of attack, the improvements in angle

of attack accuracy made by implementing an EKF are limited to a factor of two. This

result suggests that the hardware improvements are needed for further accuracy gains, but

less than order of magnitude improvements are needed.

The second configuration is based on the balanced design from Chapter 7

analysis, the pressure sensor accuracy of 0.6% and 0.2% for the optical sensor. For this

configuration, the estimation result confirmed its required performance. However, when

considering the fact that the sensor precision requirements are a function of the external

disturbance magnitude and since the precision requirements get tighter as the external

disturbances increase, the currently available pressure sensors are not applicable for the

AHSV application. Finally, the histograms of the estimation error are plotted in Figure 6-

30 and 6-31. These results indeed verfied that the EKF approximation is an adequate

application for this vehicle.
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Figure 6-31 Histogram of Estimation Error Pitch Rate
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Chapter 7

Estimation Driven Sensor
Precision Requirements

7.1 Motivation

For a given estimation problem, it is sometimes desirable to determine upper

bounds for sensor noise specifications such that if the sensors have noise specifications
below the bounds then the resulting estimator performance would meet the state estimation
accuracy requirements. The inverse problem to determining the estimator performance with

given models, sensors and initial conditions, is the problem of estimating the minimum
quality of the sensor performance. This problem can be defined in context of estimation.
A simple example would be a radar system following a flying object. For given
requirements from estimation, such as velocity and position accuracy of x meters and y

meters per second, the problem can be posed to obtain the performance specifications for

the radar parameters (e.g., bounds on signal to noise ratio, angular resolution, pulse width

and frequency etc.) that would result in satisfaction of the estimation requirements.

The problem can be approached in several different ways. One not very attractive

approach is to design an estimator with specific sensors and the associated sensor noise

specifications then perform a statistical analysis such as Monte-Carlo simulations to verify
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the estimator performance. If the performance of the estimator is not satisfactory, then the

estimator performance verification process can be iterated with different sensor noise

specifications. Perhaps, this procedure could result in tighter bounds than other means;

however, it requires laborious estimator design and computation-intensive Monte-Carlo

simulations of the vehicle and estimator. Consequently, the alternate approach of defining

the sensor performance requirements, which are dictated by the estimation accuracy

requirements (the upper bounds on the covariance of the state estimation error), is

investigated in this chapter.

In the case of the air-breathing hypersonic vehicle (AHSV) estimation problem, it is

also desirable to know the upper bounds on sensor noise specifications. Most air-data

sensor classes other than the Shuttle Entry Air-Data System (SEADS), are not proven in

flight. The optical sensors that are considered for use in future AHSVs, are mostly in-

laboratory studies or theoretical conceptions. Therefore the result obtained by this

investigation provides a good guideline for the design of these sensors. The work provides

a realistic sensor performance specification based on the estimation and control

requirements.

The methods that are being considered in this chapter are based on minimum

variance estimation criteria. The problem is approached by first defining the filtering

equations (propagation and update equations of conditional state probability density

function). The most tractable form of the estimator is the one that does not depend on

innovation and having the density solution in finite dimensional form. The second moment

equation of Extended Kalman Filter (EKF) does meet those criteria. Secondly, a given

required covariance measure, which is based on the state estimation requirements described

in the previous chapter, is used in the propagation and update of covariance equations

(second moment equations) to obtain the sensor noise bounds.

7.2 Problem Formulation And Approach

The main objective of this analysis is to obtain an inequality relationship between

the state conditional covariance and the sensor noise covariance matrix. The resulting

relationship is then used to provide a guideline for sensor selection criteria. For a particular

operating condition regime of the estimator, the problem can be defined as:
Find U s.t. R U(PR,x,t) for givenx,
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where R is the sensor noise covariance and PR is the desired upper bound of state

conditional covariance.

The relationship between the state conditional covariance and sensor noise

covariance can be extracted from the equation of evolution of second moments. For the

dynamic system, which is driven by the Wiener processes, as shown in equation (7.1)

below:
Process Law dxt = m(x,,t)dt + s(x,,t)d3

1 (7.1)
Observations dz, = h(x,,t)dt + R 2dv

the associated equation for the second moment evolution is:

dP, = [(E{x, mj} - Xi m )+ (E{mi xj}- i j)+ (sQs)

-(E{x i h}- i h)T R- (hx - h xj)dt (7.2)

({xx, h}- {E(,x,}h- £{xj h} - E{x hl+ 2xixh R-)R(dz, - hdt)

The resulting equation (7.2) is difficult to solve because the equation is a stochastic

differential equation (SDE) and the equation involves the innovation process at current

time. For practicality, an innovation independent equation is highly desirable. In order to

have an innovation independent equation for evolution of second moments, first order

approximations of dynamics and observation equations are used and an assumption of

symmetry for the conditional densities is made. Such an equation is, as previously shown

in 6.1, the Extended Kalman Filter formulation. The results from the visualization of

conditional densities in chapter 6 substantiate the assumptions of the EKF.

From the EKF formulation, covariance equations that are innovation independent

can be obtained. The necessary assumptions are:

* The estimation error is small most of the time.

* The drift, m(xt), and the observation function, h(xt), are smooth
functions.

0 The error is symmetrically distributed about its mean value so that the third
moment goes to zero with all other odd central moments.

For the AHSV air-data estimation problem, the EKF covariance equation with

continuous process and discrete measurements is used. The associated dynamics and

observation equations can be written as:
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x(t)= m(x,t) + s(x, t)w(t)

z(k) = h(x(k),k) + n(k)

with the assumptions applied identical to Chapter 6. The EKF covariance equation was:

Propagation: P(t)= F(i(t),t)P(t)+ P(t)F((t),t) +SQ(t)S

Update: P(k +1/k + 1)= [I- K(k + 1)H((k +1/ k))]P(k +1/ k)

K(k + 1) = P(k +1 / k)H(i(k +1 / k)) rT[H((k +1 / k))P(k +1 / k)H(k(k +1 / k))T + R(k + 1)

(7.4)

With the above propagation and update equations, we have an equation relating the

sensor noise intensity R with the required covariance of state P. The above equations are

not easy to implement into numerical algorithms because the propagation requires time

integration for each step. For simplicity of manipulation, the propagation equation is

discretized with same interval as the measurement update rate. Then the resulting equations

are a set of difference equations, as shown below:

Propagation: P(k + 1/k)= O'*((k),k)P(k/k)*(i(k),k)T + SQ(k)ST

Update: P(k + I / k + 1) = - K(k + 1)H(x(k +1 / k))]P(k +1 / k)

K(k + 1)= P(k +1/ k)H(i(k +1/ k))T[H(i(k +1/ k))P(k +1 / k)H(k(k + 1/ k)) T + R(k +1)] - 1

(7.5)

With the difference equations (7.5), one more important assumption is needed to

obtain a set of algebraic equations. The necessary assumption is the statistical steady state

of the estimation process. The covariance of state variables at k-th time step is assumed to

be reciprocating at (k+l)th time step. The assumption of a statistical steady state is a less

stringent requirement than a dynamical steady state. If such an assumption is applied, then

the equation (7.5) turns into:

Propagation: P(k +) = *'(.(k),k)P(k) *(x(k),k)T + SQ(k)S T

Update: P(k) = [I- K(k+)H(((k+))]P(k+)

K(k+) = P(k+)H((k+) (k))[H((k+))P(k+)H((k+)) + R(k + 1)] (7.6)

By replacing the covariance at the k propagation step into the update equation, the final

form of the equation is obtained which relates the covariance of state P to the sensor noise

covariance R, as shown below:
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P = Li- [[*PT + SQST]H TH[&P*T + SQST ]H + R] ]H[ PT + SQST (77)

The final objective of manipulating the equation (7.7) is to obtain an inequality

bound on R for a given bound on P. The problem associated with the solution process is

the convergence of the numerical algorithm. First, the objective is to obtain the initial

condition (or performance bound) of P such that the solution of R becomes a diagonal

matrix. If next, the solution process is set up as an iteration routine, then the problem

contains more unknowns than the number of equations. However, if the sensors can be

scheduled, meaning that the sensor noise covariance is assigned by a reference sensor

specification, then an easier solution process can be achieved. By setting up an initial

guess of R, which can be assigned by just picking the reference value, an iteration routine

is formed by taking advantage of the nonlinear equations solver.

7.3 Procedure and Numerical Implementation

Step 1) Form the sensor noise covariance matrix into a diagonal matrix with
reference to a scalar variable Ro, as shown below:

R,, 0 * * 0 kRo  0 * * 0
0 0 k2Ro

* * 0 0 *

0 * * 0 Rmm 0 * * 0 kmR

Also, prepare the linearization routine of the vehicle dynamics and observation. Generate

the nominal trajectory and the required bounds on P.

Step 2) The iteration starts here. First, compute the linearized matrix of the

nonlinear estimation problem (Vehicle dynamics and observation) for a reference point on
the nominal trajectory. Pick an initial value for Ro, and Q matrix.

Step 3) With the linearized problem of Step 2), solve the system of nonlinear

equation and obtain P for that particular condition.

Step 4) Observe the diagonal elements of P and form an inequality comparison

with the bounds on P. If the obtained solution is greater than the defined bounds, decrease
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the Ro and repeat the process from step 2). If the obtained solution is within the defined

bounds and within the zone of acceptability, then stop the iteration. The value of Ro at the

end of iteration is the final solution. Other sensor noise covariance can be recovered by
extrapolation. Otherwise, repeat from step 2) with a slight increase in the value ofRo,

7.4 Numerical Results

The problem of finding an AHSV air-data sensor precision requirement is

demonstrated by executing a few numerical examples from a realistic flight condition at

Mach 10. The nominal operating condition was Mach 10 flight speed with zero

acceleration and angle of attack of 2.7 degrees. The results are a function of the random

disturbance magnitude, operating conditions, and sensor configurations. Therefore, three

different cases of effective density disturbances were considered. The density fluctuations

were translated into effective acceleration random disturbances and are shown below.

Since the sensor noise covariance matrix must be scheduled with a reference

parameter, five different configurations of sensor arrangements that were considered to

explore the possible sensor combination. They are shown below.

BAL: Balanced Design between Optical and Pressure Sensors

POS: Poor Optical Sensor Case, Corresponds to 30m/s (one sigma) optical sensor

noise and 0.2PSF (one sigma) pressure sensor noise when normalized with

schedule coefficient of one.

GOS: Good Optical Sensor Case, Corresponds to 3m/s (one sigma) optical sensor

noise and 10PSF (one sigma) pressure sensor noise when normalized with

schedule coefficient of one.
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Effective Disturbances
Case 1 Vdelm, 2 de 0.5 degs, = 0o.lde 2

Case 2 Vde = 0.l /s2, 2 0de.deg de = 0.01deg 2

Case 3 de = 0.1/s2, de =. 0 1degs' de= 0.01deg 2



NOS: No Optical Sensor Case

NPS: No Pressure Sensor Case

The results are shown in Table 7-1 to 7-3 for three cases of external disturbances.

The sensor precision requirement results showed large sensitivity with respect to the

weighting factor between the pressure and optical sensors. If the balance between two

classes of sensor systems is shifted to one side by small fraction, then the algorithm tends

to rely on one type of sensor (the better quality sensor in relative terms) more heavily than

the other. For example, in Table 7-1, when the pressure sensors have an accuracy greater

than about 0.2%, only minor degradation is seen in the requirements on the optical system

even when we vary the pressure sensor precision from 0.2% to non-pressure-sensor

operation case. Similarly, a change of the precision of optical system from 0.1% to 4%

and to the extreme of the non-optical-sensor operation case has only a small impact on the

requirements for the pressure system. The results are consistent with other two disturbance

cases.

The results suggest that if one class of sensor is better than the other, then the

resulting improvement in the estimation accuracy by installing poor sensors is minimal

unless a large number of sensors are installed. However, for an AHSV air-data system,

the pressure sensor system does provide other air-data parameters (total pressure, static

pressure, etc.) that no optical sensor can provide. Also the Rayleigh scattering sensor has

the advantage of providing accurate density measurements. Therefore, the combinatory use

of an optical and pressure sensor system seems to be unavoidable.

The results of this analysis depend heavily on the magnitude of external

disturbances. As shown by comparing three different disturbance cases, the sensor

precision requirements can be relaxed if the external disturbances are decreased. By going

from case 1 to case 3, the precision requirements on the sensor system can be relaxed by a

factor of 4 to 5. Also the results are dependent on the operating condition of the AHSV.

The procedure can be repeated to cover all possible envelopes of the flight trajectory if

overall sensor precision requirements are needed.

The pressure sensors on the Shuttle Entry Air-Data System (SEADS) have a

precision of 2%. [Hon 1] Clearly the SEADS system can not meet the 0.1 degree angle of
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attack accuracy requirement with the current configurations. The reconstruction of data

from a Shuttle trajectory [Honl] confirms that the one-sigma angle of attack error ranged

from 0.3 to 0.7 degrees for Mach 10 to 15 depending on the external disturbance level.

The reference [Honl ] suggested that the SEADS performance can be improved by using

more accurate pressure data (0.02% one-sigma) available from recent transducer

advances and with the incorporation of actual flight data into the vehicle characterization

data. The results from this analysis show that the SEADS system can be used for AHSV

application if such an improvement is made on the air-data system.

Table 7-1 Sensor Precision Re uirements for Case 1

Pressure Sensor Requirements Optical Sensor Requirements

BAL 0.2% (1.6 PSF, 1-sigma at M=10) 0.07% (2m/s, 1-sigma at M=10)

POS 0.1% (0.8 PSF, 1-sigma at M=10) 4% (120m/s, 1-sigma at M=10)

GOS 0.5% (6 PSF, 1-sigma at M=10) 0.05% (1.6m/s, 1-sigma at M=10)

NOS 0.07% (0.7PSF, 1-sigma at M=10)

NPS 0.05% (1.5m/s, 1-sigma at M=10)

Table 7-2 Sensor Precision Recuirements for Case 2

Pressure Sensor Requirements Optical Sensor Requirements

BAL 0.6% (4.7 PSF, 1-sigma at M=10) 0.2% (6m/s, 1-sigma at M=10)

POS 0.35% (2.8 PSF, 1-sigma at M=10) 14% (400m/s, 1-sigma at M=10)

GOS 2.4% (19 PSF, 1-sigma at M=10) 0.2% (5.7m/s, 1-sigma at M=10)

NOS 0.35% (2.8 PSF, 1-sigma at M=10)

NPS 0.2% (5.5m/s, 1-sigma at M=10)

Table 7-3 Sensor Precision Requirements for Case 3

Pressure Sensor Requirements Optical Sensor Requirements

BAL 0.85% (6.8 PSF, 1-sigma at M=10) 0.3% (8.5m/s, 1-sigma at M=10)

POS 0.5% (3.8 PSF, 1-sigma at M=10) 19% (570m/s, 1-sigma at M=10)

GOS 3.2% (25 PSF, 1-sigma at M=10) 0.24% (7.5m/s, 1-sigma at M=10)

NOS 0.5% (3.7 PSF, 1-sigma at M=10)

NPS 0.24% (7.4m/s, 1-sigma at M=10)
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Chapter 8

Summary and Conclusions

8.1 Summary of Results

The main objective of this thesis has been to develop an air-data sensing and

estimation methodologies for generic air-breathing hypersonic vehicles (AHSVs). This

thesis presented a systematic approach to address an air-data estimation problem

motivated by the interaction between the vehicle attitude and the air-breathing propulsion

system that is a unique characteristic of the AHSVs. The design and analysis tools, that

are acquired by following the presented analysis and demonstrated solutions, will be

directly applicable for future development of the AHSV technology. The methodologies

covers steps from the problem formulation and modeling through the resulting nonlinear

estimator design. The core emphasis of the AHSV air-data estimation strategy was to

improve the accuracy of the angle of attack estimate to meet the goal that are necessitated

by the stringent operational requirements of the air-breathing propulsion and flight

stabilization systems.

On the basis of the preliminary analysis of the vehicle dynamics and the

associated propulsion sensitivity as discussed in Chapter 4 and 5, the flow angle

parameters such as angle of attack and side-slip angle were considered to be the most
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critical parameters to control, measure, and estimate. The criteria of performance and

stability of the air-breathing engines can not be addressed without prescribing the angle

of attack condition. Largely, the observation requirements on the angle of attack were

posed by the propulsion performance and control constraints. In order to formulate an

appropriate estimation problem for this particular case, several preparatory research

efforts were needed. A vehicle configuration was selected and designed based on the

Draper Laboratory developed design and simulation code for the Mach 10 to 15 flight

envelope. [Chal] Resulting equations for the vehicle dynamics and plots of the vehicle

model parameters were shown in Chapter 5. State of the art hypersonic air-data

instrumentation techniques were reviewed in Chapter 4 and modeled in Chapter 5 for the

estimation purpose.

With the defined foundations of the conceptual AHSV design, an estimation

problem was formulated to improve the estimate accuracy of angle of attack. The chapter

6 was devoted to describe the development of the air-data estimation. This chapter

begins with the theoretical backgrounds, estimation problem formulation and estimator

design procedures. By observing the nonlinearities within the AHSV dynamics and the

air-data sensor models, it was highly suspected that the problem might require a more

sophisticated and difficult nonlinear filtering technique that accommodates for the

deformation (spatial deformation and temporal variations) of the state conditional

probability density functions. However, the resulting statistical behavior of both the

vehicle and the flight control was uncertain and that combined dynamics were needed to

address the estimation problem. The advantage of the flight control was considered to be

in its stabilizing and linearizing efforts via feedback. The stringent regulatory control of

angle of attack and physical constraints that can be imposed on the AHSV motion may

result in a locally linear behaving estimation problem.

In order to select an appropriate nonlinear filtering technique, an analysis that

visualizes the statistical behavior of the closed loop system (dynamics of the combined

vehicle and control) was needed and developed. In section 6.5, a visualization method

that is based on the Monte-Carlo simulations and statistical analysis is presented. Based

on two thousand runs of the flight simulations at Mach 10, 13 and 15 and along with the

statistical analysis on the observation nonlinearities, the visualization showed that the

state conditional probability density would be nearly Gaussian (at least nearly symmetric

and unimodal). This evidence substantiated the initial hypothesis on the behavior of the

closed loop dynamics. In later part of Chapter 6, a statistical analysis was performed on
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the estimation error trajectories that are generated by the simulation of the vehicle and

estimator. Histograms of the estimation error confirmed the prediction of the

visualization results by exhibiting nearly symmetric and unimodal behavior. The results

can be extended to any differently configured air-breathing hypersonic vehicles as long as

the stringent restrictions are imposed on the regulation of angle of attack and vehicle

motion.

In order to complete the analysis and design described in previous paragraphs, a

flight control system was needed and designed. In section 6.4, the controller design

procedure is described and the simulation results are presented. Also an alternative

control strategy is formulated and discussed in Appendix D. The motivation of the

control system design was based on the estimation strategy. In nonlinear estimation

problem, the control action affects the deformation of state conditional probability

density.

The visualization results suggested applicability of the Extended Kalman Filter

technique. The design and results from implementation of the EKF were shown in

section 6.6. When realistic values were assigned for the sensor noise, the angle of attack

estimation accuracy improved by a factor of two. The assumptions on the sensor

specifications were based on the SEADS pressure transducer performance and the

laboratory demonstrated performance of the optical system. The accuracy enhancement

by the EKF with a set of realsitic sensor suite was not significant enough to meet the

initial goal of 0.1 degrees in angle of attack accuracy (at Mach 10). The result suggests

that hardware improvements are needed for further accuracy gains with the current

estimator. When considering the fact that the simulation did not include the source of

performance degrading effects such as modeling errors and the sensor precision

requirements get tighter as the external disturbances increase, even better sensors are

recommended to achieve the desired performance goal.

In Chapter 7, the sensor precision requirements were derived based on the

assumptions of the EKF implementation. The problem was posed to find an inequality

relationship between the state estimate error covariance and the sensor noise covariance

to bound the maximum allowable sensor noise when given a performance bound on the

EKF. A digital implementable numerical algorithm has been developed based on the

EKF covariance equations with the assumption of statistical steady state and a sensor

scheduling technique. For the case with larger external disturbances, at least a factor of
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10 improvements for the pressure transducers and a factor of 4 improvements for the

optical sensors are suggested. The results from this analysis concluded with same answer

as the EKF performance verification results. Better hardware is needed if the EKF is the

only source of improving the estimate of angle of attack.

The configurations and design of the future developmental vehicle may be

different from the one analyzed here. However, the general constraints imposed by the

air-breathing engines on the AHSV system will result in the vehicle closed loop dynamics

with the similar statistical behaviors. The estimator design methodologies described in

this thesis may be used as a guideline for a future development of the AHSV air-data

estimator and the air-data sensor technology.

8.2 Suggestions for Further Research

The analysis and demonstrated solutions provided in this thesis has been limited

to the longitudinal motion. The lateral motion is predicted to be as sensitive to the flow

angle (side-slip angle for this case) as the longitudinal case. The analysis and design for

lateral direction require an accurate propulsion model and a vehicle lateral dynamic

model. If such data are available, then the methodologies presented in this thesis may be

used to acquire insights of lateral effects. Also another estimator formulation is needed to

cover the supersonic and lower Mach number (M<6) hypersonic flight phase. For this

formulation, the derivation of the vehicle equations of motion presented in Chapter 5 can

be used as the vehicle model and the ramjet propulsion system should be modeled. Since

the wind disturbance is the dominant factor for this part of flight trajectory, the

atmosphere model should be emphasized for the wind contributions. Fortunately, more

information on external disturbances and the propulsion sensitivity is available for this

segment of flight.

The estimator problem formulation presented in this thesis is not a unique way of

approaching this problem. Different designs, different models can be formulated. For

example, this problem could have been approached similar to the air-data estimator of the

high angle of attack research vehicle [Kasl]. This formulation would result in much

simpler estimation problem; however, the formulation presented in the thesis is

considered more applicable for the AHSV application since the propulsion and
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aerodynamic models contain rich information on angle of attack. Also the differences are

the AHSV flight control is always in regulatory mode and the resulting AHSV motion is

limited. As long as we can compose very accurate models for the propulsion and flight

system, the technique described in this thesis should be a better formulation. Therefore, it

is recommended to look into the effect of modeling uncertainties on the estimation. It is

suspected that the usefulness of these models fades as the modeling uncertainties

increase.

A formulation of parameter identification algorithm would be useful for further

improving the accuracy of the air-data estimator by updating the model coefficients. The

acceleration measurements can be used to obtain the more precise mapping between the

control action to the resulting forces. The problem associated with the parameter

identification is the identifiability of the parameters with given small set of

measurements.

Based on the results shown in this thesis, the estimation and sensing of angle of

attack variable is a very difficult problem. Further improvements of air-data sensors

seem to be a very challenging problem. The pressure measurement sensors have inherent

error sources such as alignment error, flow field modelling error, orifice and flow error.

The optical sensors have problems of alignment and the optical window. May be the

problem should be approached from the engine performance alone. Since the stringent

accuracy requirement of angle of attack is mainly due to the propulsion performance, a

different instrumentation strategy can be approached. As suggested in Chapter 4, several

inlet and nozzle sensors may be installed to detect the propulsion process aft of the

oblique shocks. In principle, the angle of attack can be extracted from the propulsion

processes. If we can have accurate models or relationships between the inlet and nozzle

parameters and the flight control actuators, then we can take advantage of direct control

of the propulsion parameters with the flight control actuators. This approach seems to be

more promising since we don't have to measure the angle of attack directly. For example,

if we can detect the pressure jump inside the cowl lip (as discussed in Chapter 4),. then

the resulting sensitivity increases. However, it is difficult to obtain an accurate model of

the propulsion processes. The pressure jump inside the inlet is a very complex process

including the shock-boundary layer interactions. Therefore further research is

recommended to model the inlet processes and to obtain a functional relationship

between the inlet parameters to the control actuators.
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Appendix A
Coordinate Transformation Matrices

cos Ocos Ag

sin Qsin Ocos Nf

-cos Osin NJ

cos Osin Ocos Nf

+sin Osin W

cos Osin W

sin Osin Osin v
+cos Ocos W

cos 4sin Osin W

-sin Ocos WJ

-(sin Ocos yx)O

-(cos 0 sin w)

(cos Osin Ocos NJ

+sin Osin )

+(sin Ocos Ocos N)0O

+(-sin qsin Osin N

+cos (cos Os)

(-sin Osin Ocos y1

+cos Osin )0

+(cos Ocos Ocos )O

+(-cos Osin Osin xg

+sin Ocos W)Nf

(cos Osin Osin W1

-sin 4cos w)#

+(sin Ocos 0sin W)0

+(sin Osin Ocos W

-cos (sin W)W

-(sin 4sin Osin W

+cos Ocos W)O

+(cos Ocos 0sin )6

+(cos Osin Ocos W

+sin Osin xW)y

(cos )cos 0)
-(sin Osin 0)6

-(sin Ocos 0)0

-(cos Osin 0)0
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CBE =

-sin 0

sin Ocos 0

cos Ocos 0

-(sin 0sin W)0

+(cos 0cos OJ)
-cos 00

CBE =



CBW =

cos acos f
sin P

sin acos 13

-cos csin 1

cos 13

-sin asin 1

-sin a

0

cos a

cos Ocos W

sin Osin Ocos y

-cos Osin W

cos Osin Ocos i

+sin Osin W

cos Osin W

sin 4sin Osin N

+cos Ocos

cos Osin Osin y

-sin Ocos V
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-sin 0

sin Ocos 0

cos Ocos 0
o = 0w
0 = 0w



Appendix B
Further Simplifications

Starting from the longitudinal equation of motion (Equation (5.10), flat earth

approximation). The Equations (5.10) through (5.13) can be put together and be

simplified to one equation. The equations (5.10) through (5.13) are

Fx - mgsin 0 = m(i + Wx)+ mq(w + Wz)

Fz + mgcos 0 = m(w~ + Wz)- mq(u + Wx) (5.10)

=M- y

X E Wz Wz

C cos -sin 0
E

sin 0 cos 0

(5.11)

where

And from the previous results on incorporation of wind,

velocity is
awx

W F ax
Wz E aWzOx

aWx
az
aWz
Dz _E

the time change of wind

Vxt
a zZ
a_ at E

awi
where the last at terms can be neglected

derivatives of wind terms are derived and

resulting equation is,

W TX C13 IWXV~l

due to the frozen field approximation. If time

expressed in an Earth attached frame, then the

E IE
(5.13)

where

E q[ -sin 0

Scos 0
-cos 0

-sin 0

The coordinate system suggests that
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and C E = C BT

[ = VT [cos a
w I L sin x J

(B-l)

(B-2)

(B-3)VT Cr os a sin a [i W

-V~a -sin a cos a B w]

_VT( Vi7

The objective of this simplification is to obtain one equation that combines

equations (6.10) through (6.13). It is desirable to have an equation which can be

described with parameters which are measurable. The chosen states are u and w. All the

inertial parameters are assumed to be measured using inertial sensors. Equation (6.10)

can be rewritten in terms of accelerations as shown in Equation (B-4).

ax + -sin 0 [1 ] Wx] [ +[ Wz
az g cos 0 Wz u - Wx

(B-4)

Applying wind terms as defined in inertial coordinates and using equations (6.13) and (B-

1),

S] +g[ -sinO C B
az cg COS 0 (B-5)

awx
az x -C] q "  ] qC -CB{[ Z _" )

SWz \Z E -X E
DZ E

Since

Z B B -lr-B W CBWqC z -CE"_]-qC z -qC C =] qCk z-X E -X E -X E
Equation (B-5) becomes -X

Equation (B-5) becomes

aw E E ]-X E

Z E

Since
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aWx

ax

(B-6)

awx

E aw,=- - a -gxz

X u Wx E
-E W Wz E

W,+ B[ Wx qCB[ Wz

Wz E E E



X -CqC X =q q W q
Equation (B-6) becomes,

-wx wx1
ax +g -sin CB x z +q[ (B-7)az cg CE az Wz Z -u

ax aZ _E E

If the terms are rearranged then Equation (B-7) becomes,

SW x Wz

[-[W qaB X z X a] -sin (B-8)LE z Wz Z E cos 0ax Dz E

The resulting complete equation of motion is,

Sawx 1
i w cos 0 -sin 6 ax a z ax -sin (B-9)

sin 0 cos 0 aWz Z E cos 0
ax az E

The states are w and u. Equation (B-9) can be evaluated with information on pitch angle

0, pitch rate q, inertial velocity X and Z, the wind gradient Jacobian, and accelerations.

All the inertial quantities, which excludes the wind gradient Jacobian, can be obtained

from the inertial sensor measurements. Note that these inertial measurements may

depend on the states.

If the states are chosen as a and VT, start from equation (B-8) which is

DWx awx
=- q[W] - Dx z X + [ ax +g -sin o (B-8)-u E a Wz ameZ z -E 

cos
ax az E

and let

B ax aZ

E= WE Z and a = 1 (B-10)
W _zE L az cg

Lx 8z E
Also use the relation

_VT, cos a sin a [ l
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Then equation (B-8) becomes,

B VT] W

-VT -u
-C1 +a+ g

-sin ]
cos 0

[u] T[cos a]
w sin aJ

C-V Tw =
-VTOC

qVj sin a
-cos a

-Ci +a+

Carry out the transform to the right hand side,

VT

-VTO C
= - qVTC [ sin

-cos a
SC1C, + CW + CgC

- qVTCB [ sin a
L -cos a

-qVT cosa( sina ][
L -sin a cosa L

qV sin acos a - sin acos a
'l- sin asin a - cos acos a

The equation (B-13) can then be written as

VT]

-VT j

0
qV,

= qV 0]
1

axcg - gsin 0

azcg + gcos 0
(B-14)

(B-15)SVT 0  + w axcg -gsin 0 -cl
-VT qVT Lazcg + gcos - c2

Cx axcg - gsin 0 - cl
Cz] _azcg + gcos 0 - c2

KVT +VT[ Cxcos a + Czsin a
-ve| qVT Czcos a - Cxsin (x
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Since

(B-11)

-sin 0

cos 0
(B-12)

Since

-sin 0

cos 0
(B-13)

sin a
-cos a

Let
C1 

lC2C2

Then

Let

then

Since

-C1 +
- I + CB



- C C = -[ cos (a
-sin a

sin a
cos a

cos 0

sin 0

-sin 0

cos 0

aWx
ax

aWz
ax

aWX
Dz

awz
az E

_E

The final expression is

VT

Lai
0

-q

Cx

Cz
VT

cz
Cx
VT

cos a

sin ax

a WXXE+ z Ea iWx in 0
axcg - gsin 0 - x E+ ZEOs o + ZXE + Z sin

azcg + gcos 0+ x XE + XE sin + XE + z Eos 0
,Lua vr\Dz aZsin
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Appendix C
Linearization of LVLH Model of AHSV

Linearization is sometimes required for analyzing linearized behavior of vehicle

dynamics, constructing a control system or formulating an Extended Kalman Filter

(EKF). In some cases, linearization can help understanding the vehicle characteristics in

a localized region around some nominal state trajectory. The vehicle model in LVLH

frame described in Chapter 5 is used for the linearization. Two linearization results are

presented here. First linearization is for the flight control system in section 6.4 and

second linearization is for the EKF design in section 6.6.

C.1 Linearization Results for Control

The vehicle equations of motion in LVLH frame are:

dV. -K sinF + Fxw(M, a, 8 e , 6,v) (C-la)
dt- R

V = !-KR) cosF+2oEV- Fz,(M,,eSTv) (C-lb)

dq -1 My(M,a,8,,,,,v) (C-lc)
dt - IY

d= q (C-ld)

where KR = g(R) - 2 R

The vehicle dynamic Equations (C-1) used here assume vehicle motion over a

spherical earth. The vehicle motion in an inertial Newtonian frame is described in Local

Vertical Local Horizontal (LVLH) coordinates. The equations are transformed into body

axis coordinates. The equations describe only longitudinal dynamics and include all the

forcing terms found in the equations that describe aerodynamics, propulsion, and control.

If we assume nearly constant dynamic pressure trajectory and also assume that the

variations in aerodynamics and propulsion coefficients with respect to altitude are small

during a selected flight trajectory segment (Mach 10 to 15 for our case), then we can

obtain a simpler functions for the linearization. These equations can be described as a
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system of nonlinear differential equations with four state variables and three control

variables. The state variables contain the vehicle inertial velocity, flight path angle, pitch

rate and pitch angle. The control input vector contains elevon deflection angle, throttle

setting, and thrust vectoring. The Equations (C-1) can be written as below.

XI = f(X,t)+ g(X, U,t)

X E R 4XR' and where X = [V, G, q, 0]

Ue R3 XR' and where U= [e, 6,3v]

The linearization results are obtained by

'k = foX" , x, g
X = f 0 (Xt)+ x (X - XO)+go(X 0 I U 0 +- ( X,) + - L0 )+ a (U - U)

and forms a linear system of the form:

sX = (F + Gx)X + G,8U

Linearization Results:
The partial derivatives of the nonlinear functions of the system variables form the

linearized matrices F, Gx, and Gu. The results of linearization are shown below.

Elements of F Matrix:

f_ QS dC dCD )dM
8V m  dM dM dV

df 2  1 KR QS + C d QM (C )
dv R V2  mV dM dM dV mV 2

f, 3 QSc (C,, +c,,, dM f 4 0

av I dM dM dv dV

f = -KR cos r +Q Cv C a
dT m da da dV

d+ sin+
dF R V mV da dcxa )d
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df3 _ QSc (dCm

dr- y

0fl=

+ da
a r

adf - QS dCT daC, ao
da dox

df 2 - QS (dC . dC dX
da d)

df_ QSc (dCm
d -IT, day

+ ada
da ) deo

Elements of Gx Matrix:

dg - QS d
dV f-(dM + xT

dM
d+ (± Mv CTV + CX3T) + C5v( adM

+cx dM
dM )) dV

dg2  QS+ C
dv -mV

2 z6e z+ C z5 v (CzST - CT,)

dC Z
dM

ac
+ zT

dM
dac

+± (cz - CT,) + c j
dCzT daCTcl dM
dM dM )) dV

dg3 - QS
dV I, ( dM

dCe
dM

+ -M- (Cm, + C m) + Cm( Cm M dM
dM )) dV

dg1 - QS ( dC

dg2 _ QS (dC
d mV( dao

+a+T+ dx+

da+--

d (CV +

+ d cd8aze

CST) +x v x

- CTl) + cz dCz

+ S d
dc )) dF

dCT, da
d p
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df 4 -0

dF

dq

df 4

dq

df 4 d0de

g4 -=V
dV



dg 3 = QS me

dg4 = 0
dr

dg

,= QS (
ado m da

+ -

dg 2

dq

+
da

+ da (CT + C,)

ag 3 =o
dq

C+ (CdC

aCm8f
da

ag 4 =0
dq

+ CxT)+ Cx, (da

- CT,,)+ C, da

+ Cmp) + Cns,{
acM,da

dg 4 = 0
d8

Elements of G. Matrix:

dg, QS dCx&5
d, - m  as

dg3  QSc dCM,,
as - I o d

dg2 _ QS dC8z
ae  mV ds,

g4 -0
dSe

S(1+ C S) T
M (v 6

dg2 - QS(1+C ) dC.T
d6T mV • T

dg _ Sc( 1
OfT V

+ cm) aCm

dg QCxivj- - m(TVCXST)g, QS (CI + CxT) d6vv ,,

9maa ~cz " ia'6,

dg4 =0

dg 2 ___dC

dg2 QS (CC 5Cav
d v  mV kzT rCT) d9 v

=g4 0
d6v
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dC p )) da
da dF

0

dg 3 _
do-

+ d0
dCST)) d
~dc dO

da

da
dacx

+ da

+ da
QSC
IV

da (C 

da (C,mb

dCmj dac

aCm,+ da
da )) dOa

adg,
d6T



C.2 Linearization Results for Estimation

For the Extended Kalman Filter algorithms, the control variables are now

functions of state variables (by assuming full state feedback). Therefore, the control

variables can be defined as:

be = 8e(V, a, q, 8) 8, = S,(V, a, q, 8) 8, = ,,(V, a,q, 0)

With the vehicle dynamic equations of:

[ = [o R- g(R)]sin( - a)+ Q(R V)S[C(M, , R) - C(M, a)]

+ Q(R, V)S [Cx&(M, a, e) + Cx57(M, a, S)]

+ Q(R,V)S [+Cx6g(M, a, 8)[Crv(M, a, R) + Cxa.(M, a, Tr)]]

[ g(R) V wR Q(R,V)S
V R V ]cos(6O-a)+q-2oE Vm [C(MR)+CL(Mc)]

- Q(R,V)S [Cza(M, a, ) + Cz,(M, a, ST)]

- Q(R, V)S [Cz(M, ac, 8v)[ C T(M, a, ST) - CTn(M, a, R)]]

Q(R, V)Sc [Cmp(M, a, R) + Cma(M,a ) + Cm,(M, a, &) + Cm&(M,a , 8T)]

IY

+ Q(R V)S [Cm(M, a, &v)[Cm(M, a, 6T) + Cmp(M, a, R)]]
Iy

and with polynomial representation of each coefficients, a set of appropriate linearization

matrices can be obtained. Each elements of linearized matrices are shown below.

Elements of F matrix:

df I df3= 0  = + 4 i ]cos(O-a) f3
dv v

a = -KR cos( a)  !2 IV K ] sin( - a) f3 =

dfI d=0 =f2 1 f3 =0
aq dq dq
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-[c -CD + CX +CxT + Cxv(CTV + CT)]

dM
+ dM

+M dM
dM )) dV

2m [s c, + L + c, + c + cC. - c)]

+ dM (c -CT) +CZ dcM ,
aCrn IM

M
dM )) dV

dg3 _ VSc[c +
dv I Cm + Cr + Cm9T + CmV(Cm8 T +Cmp)

V2Sc (cd
2Iy dM

dg - es ( dCe +-
da - m da

+ dM dM
~dM m6T

+da (CTV

+CM)+C C, d C+ dM
dM )) dV

+ CX) + xCv, da

dg2  QS a
da mV daC

dg 3  QSc (

dq

dae
da

d+

d+ d
da

dg2Oq

+ d (C -"

"da (Cmr
dC xv

- CTn)++l ( d
+ da C))
X da)

+ o+ a, da +-da

dg3 =0dq

Linear Model of Density Disturbances:
dp
dt= Mp + Bw

The above linearization results and the linear system representation of density models can

be augmented to form a full set of the linearization results.
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Appendix D
Alternative Control System

Design Methodology

D.1 Motivation

In general, the desired estimator design in both theory and practice depends upon

a specific history of control inputs. The difference in the desired estimator design,

especially in the case of nonlinear and/or non-Gaussian noise, is due to the shape of the

state conditional probability density function (PDF); and the equations which depict the

evolution of PDF depend upon control variables. Therefore, the main objective of this

chapter is to address the design and analysis of a realistic and robust control system that

manages the AHSV flight dynamics such that the simulations of the closed loop

dynamics can be used to provide the characteristics of the state probability density

function.

For high Mach number flight, there exists a stable controller design by Chamitoff

[Cha2] whose design is based upon Lyapunov stability criterion and an A-star search

method applied in a manner similar to that used in nonlinear dynamic programming.

However, when considering the estimator design, it is undesirable to have the controller

in the form of numerical search codes; rather, an analytic form, especially a regulatory

feedback controller, is highly attractive. In addition to the control system design

provided in section 6.4, another control system design approach is derived in this

Appendix.

D.2 Assumptions and Background

To obtain a particular AHSV controller design applicable to high Mach number

flight, the LVLH kinematics formulation is used along with the parameterized form of the

forcing (aerodynamics and propulsion) terms. The non-dimensionalized forcing

coefficients are generated by the Draper developed AHSV design and simulation

codes[Cha2] in the form of multi-dimensional numerical tables. Then the coefficient

tables are curve-fitted with polynomials to form an approximate model of the vehicle
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dynamics. The state vector is defined as in Chapter 5 (vehicle modelling section).

Included in the vector are velocity, flight path angle (or angle of attack), pitch rate, pitch

angle, and altitude.

D.3 Control Strategy

The major control problem involves stabilization of a highly nonlinear as well as

inherently unstable plant(vehicle dynamics). For this particular control problem, the

solution of the feedback control is approached by finding the control input trajectory

which results in the particular trajectory of applied forces on the system. If the forces

applied on the vehicle can be controlled precisely, then the states can be regulated to

certain accuracies since the kinematics of the vehicle are relatively well known. In order

to visualize the controller design procedure, it is best to view the AHSV vehicle dynamics

as two functional segments as shown in Figure D-1.

8w
disturbances

x F(x,t) G(x, u, t) u

Kinematics Forcing Terms

Sum of the forces
and moments

Figure D-1 Block Diagram of AHSV Vehicle Dynamics

The Kinematic block is separated from the forcing terms by distinct differences in

available information on its coefficients. If the vehicle structure is assumed to be rigid,

the kinematics of the AHSV are well defined with relatively well known gains such as the

vehicle inertia matrix. On the other hand, the forcing terms, which include aerodynamics

and propulsion interactions with the vehicle, are difficult to know or measure accurately.

As a consequence of the differences, it is a much easier task to control from the forces to

states instead of from control actuators to states.

Three assumptions are needed to control via forces. The first assumption that is

required for this particular control approach is that all components of applied forces are

observable with good accuracy and linearity. This assumption is needed since the control
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system requires an inner feedback loop which causes the actual forces to follow the

command forces. Observability is required for the forces. Linearity and good

measurements are not necessary conditions, but they are highly desirable since they

simplify the control design and make it easier to deal with modelling uncertainties. The

second assumption regards the sensitivity and smoothness of the forcing terms. Within a

reasonable bound of control inputs and forces, it is justifiable to assume that the forcing

terms are infinitely differentiable upon consideration of the physics of flight and

actuators. Also if the inner loop (from forces to command forces) is much faster than the

time variations of kinematic state variables, then the variations of the forcing functions

from the scheduled nominal condition would be small and the forcing functions would

then just be dependent on the control input signal. This third assumption is necessary in

order to segment the problem into two blocks. The physics of air-breathing hypersonic

flight confirm the validity of this assumption.

The procedure of the AHSV control system design can be visualized as follows.

The control problem is segmented into two by considering the inner feedback loop from

the force command to actual applied forces as one element and the outer loop of control

system which stabilizes the kinematics as the other.

8w

x F(x,t) Fc
Kinematics

YF

C1 (x, t)
Controller

Figure D-2 Controller Design for Vehicle Kinematics Stabilization

For the outer loop, the controller is designed assuming that the control action

occurs at the point of application of forces and moments as shown in Figure D-2. The

feedback controller is designed to stabilize and to regulate the states near the desired

steady state values while rejecting the disturbances. An appropriate cost functional for

this control system is defined and the control problem becomes an effort to find a optimal

and robust solution. The optimal control is sought since the coefficients to the kinematics
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are well known and the perturbation of angle of attack will directly influence the total

fuel consumption.

A subsequent task is to obtain the control actuator trajectories which will emulate

the applied force on the vehicle to the force command output of the designed controller.

The task of obtaining the control actuator signal from the desired force command is to

invert the mapping defined by the forcing terms as shown in Figure D-3. In other words,

the identity or linear relationship is needed, via linearization, from the force command to

the actual force applied on the vehicle.

8w

x F(x,t) G(x, u, t) u.
Kinematics F Forcing Terms

CI(x, t) G1'(x, u, t)

Controller Inverse Map of G

Figure D-3 Controller Configuration When Inverse Map of G is Available

There exist several possible problems to consider in obtaining the inverse

mapping of the forcing block. First, the forcing block must be analyzed to verify that the

mapping between the control actuators and the applied forces is one to one and onto at

least locally within the operating region if not globally. Even a smooth forcing function

may not have a unique inverse map, or the map may be asymptotically ill-behaved. The

saturation regions of the forcing block must be defined. An elevon control as would be

used for AHSV longitudinal rotation management has a limited range of motion which

produces the desired torque to the vehicle due to the shadowing effects as well as the

shock - aero-surface interactions. The throttle control has limited thrust variation due to

the stringent combustion constraints. Because scramjet propulsion does not fully burn

Hydrogen fuel, and added Hydrogen fuel lowers the exhaust molecular weight, often the

optimal stoichiometric ratio which causes best Isp can be found somewhat higher than 1.0

(fuel rich). Consequently, for the best fuel efficiency, thrust variation outside the

optimum propulsion performance regime should be minimized. Also the thrust vectoring,

which is produced by varying nozzle lip length, is bounded by limited motion of nozzle
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lip actuators. Consequently, the required force control trajectories must satisfy these
constraints.

For the case when the inverse map is difficult to obtain or difficult to put in

analytic form, even though it is one to one and onto (at least in a piecewise manner), the
inversion can be obtained by simple feedback strategy as shown in Figure D-4. If the

model of the forcing terms is available, then the local feedback can be designed to match

the output of the forcing model with the force command. However, the local feedback
loop should be much faster than the overall feedback loop to insure the separation of

controller interactions.

x F(x,t) G(x, u, t)
Kinematics forcing models Forcing Terms

Gm(x , u, t)
Model of

Forcing Terms

Cl(Xt) Fc I ki -Fc-"-•
Controller I

Figure D-4 The Inverse Map Obtained by Local Feedback

The performance of the control system design in Figures D-3 and D-4 strongly

depend on the accuracy of the forcing models or its inverse. In reality, these terms can
not be known exactly. The gains (coefficients) of the model can not be obtained exactly,

even though extensive tests and in-flight tests maybe performed; moreover, the structure

of the model may not be certain either. In order to overcome the inaccuracy of the model,

a couple of additional control strategies can be added to those discussed above.

If the acceleration (torque and forces) measurements are available, then the slow

adaptation rule can be used to tune the model of the forcing terms by taking advantage of

the differential between the measurements and the force command as shown in Figure D-

5. In this adaptive scheme, stability is the most significant problem. The problem is not

trivial since there is a hidden information route (feedback) from the states to each of the

functional blocks in this controller design; furthermore, the controller design results in a
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local feedback route from the differential force error to the main control loop. The

stability and performance analysis strategy for this highly nonlinear feedback structure is

unknown.

Figure D-5 Slow Adaptation of Model Parameters via Acceleration Measurements

Figure D-6 Final Configuration of AHSV Controller
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Similarly, if the acceleration measurements are available, then another controller

can be designed and augmented to the existing control structure as shown in Figure D-6.

The local feedback loop, which includes the model of forcing block, attempts to linearize

or invert the complicated nonlinear forcing equations while the secondary controller

compensates for the errors accumulated by the inexact modelling. This secondary

controller will have higher bandwidth than the primary control loop and will null out the

differences between the measured forces and the commanded forces.

D.4 Design Procedure

The final design of the control system is structured as shown in Figure D-6. The

design procedure is outlined below:

1) Find the necessary conditions for the existence and uniqueness of the

inverse map. Define the bounds on input and output images of the forcing function G(.)

such that the inverse map exists within that bound.

2) Design the controller C2 such that the inner loop is stable and provides

good tracking performance from the force command to actual force applied on the

vehicle. The design block diagram for C2 is shown in Figure D-7. The first order linear

dynamics have been included into G(-) in order to accommodate the actuator lag. The

poles for the dynamics are assumed to be much faster than the fastest eigenvalues of the

vehicle dynamics. For this approach, the actual state variables of the vehicle do not

contribute directly to the states of the local feedback loop. The state variables will

change the gains G and Gi. However, assuming that the state variables do not change

greatly within the time frame of the local feedback loop, the control problem can be

viewed as a linear control system with varying gains.

Inverse of

Figure D-7 Force Control Block Diagram
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3) Obtain the closed loop dynamics structure of the local feedback loop with

uncertainty. As shown in Figure D-8, the closed loop dynamics are represented as the

nominal part which tries best to create an identity matrix, and the uncertainty part which

augments all the modelling uncertainties after the loop has been closed.

Fc + G

Figure D-8 Simplified Closed Loop of Control System

4) Linearize the kinematic equations around the nominal trajectory. Based

on feedback linearization, the kinematic equations are linearized such that both gain

scheduling and linear theory can be implemented. The control inputs for this case would

be the forces and moments.

5) Based on linearized kinematic equations and uncertainty structure of the

procedure step 2), design the C1 controller with the cost functional associated with

physical state variables. The structure for this control system design is shown in Figure

D-9.

X F(x,t)
Kinematics

Figure D-9 Closed Loop Block Diagram with Modeling Uncertainties
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D.5 Uniqueness Conditions

Definition 1) Let A be an open set A c Rn , and let f: A -> R be a function. The
value of f at x = (x,.....,x,) is denoted f(x) = f(x,.....,x,). Let f be C". A function

f is analytic if it is C" and for each point x E A, 3 Neighborhood U of x" s.t. the

Taylor series expansion of f at x0 converges to f(x) for Vx e U.

Definition 2) Let U E R" and V e R" be open sets. A mapping F: U -- V is a

diffeomorphism if it is bijective (i.e. one to one and onto) and both F and F-' are of

class C".

Theorem 1) Inverse Function Theorem: Let A be an open set A c R", and let
F: A -> R' a C' mapping. If the Jacobian x is nonsingular at some point x e A, then

there exists an open neighborhood U of x' in A such that V = F(U) is open in R" and

the restriction of F to U is a diffeomorphism onto V.

x a u
f(x,t) G(x,u,t)

Condition for Existence of Inverse Mapping:

Assume that the vehicle is completely controllable from u -> x. Which implies

that there exists at least a control trajectory u* such that x -> x° in finite time. In

addition assume that u* is unique for each trajectory of x -> x0 . In such case, the

mapping G is implicitly said to be one to one, and there is a unique a* for given u. For a

unique u*, in a sense of controllability, there exists a* such that x -4 x° in finite time.

The important issue here is to show bijectivity of mapping G (one to one and onto).

Let G to be C" mapping and u* E [0, T]. Define

a= supu*(t) and a=infu*(t)
t T t T

Let I= [a,i]

If det 0 then 3 DI such that detG 0. By the inverse function theorem, if
du, du,

such conditions are met, then the restriction of G to U (u e U) is a diffeomorphism onto

A (a E A). By definition 2, the function G is bijective (i.e. one to one and onto) and

both G and G-' are of class C".
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D.6 C1 Controller Design

Objective: The main objective of this regulator is to command the state x to

follow the scheduled state trajectory x,, while minimizing the defined cost functional C.

The constraints are defined by the limitations on the available and survivable acceleration

magnitude.

Problem Statement: Let the state error ex be defined as ex = x - xs then the

problem is to find force control Fu (acceleration in this case) such that
minlex J12

while satisfying the input constraints

lF< M by considering lul < N.

In this case, the 2 norm of error defined by the weighted sum of squares becomes the cost

functional to be minimized.

Controller Implementation:
The controller design strategy of previous section will be implemented using the

LVLH formulation of the AHSV dynamics. First, the controller for the kinematic block

will be derived for the high Mach number flight regime. During this flight regime,

several assumptions can be made to simplify the equations without loss of fidelity. The

full AHSV equations of motion in LVLH frame are,

dt- m gR -(g(R) - toR) sin F

V-- = m- I-FZw -(g(R)-CR--2 cos F + 2o
E
V

dt I

dO_
dt

dR = Vsin T
dt

Apply small angle approximations on flight path angle. Which implies:

F=small = sin = T = cosF = 1

Also assume that the variations in R are small such that any function which depends on R

(which is earth radius plus altitude) will be considered constant during short time period.

Define new variables Co(R) and u as:
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C, = C (R) = wR - g(R)

and

ui =- Fxw, u u2 F zw, u3 M

Then, the equations can be written as:

dV

d- -+-+2o -u
dt V R E V 2

dq
dt U3

dO
dt q
dR
dt

By inspecting the equations above, it is clear that the pitch dynamics are

decoupled from other equations and can be controlled separately. Also the pitch

dynamics are linear second order, a double integrator; therefore, a simple proportional-

integral-differential (PID) controller can be implemented. However, the forcing function

which represents the u3 has to be analyzed assuming that the applied torque is within the

saturation limit of the actuators.

The velocity equation can be also be decoupled from other equations by assuming

that the CoF term is very small during level flight. We can also apply nonlinear feedback

on the ul to eliminate that term. Before designing the nonlinear feedback law, it is

desirable to understand the three equations from above,

dV C F +U
dt 0+u

dr C+-+ 2  -
dt V R E VU2

dR-dR = VT
dt

The CoT term consists mainly of the gravity contribution on the tangential velocity axis.

Therefore, most of the changes in the tangential velocity would come from the

aerodynamic drag and propulsion terms in ul during level flight. The major effector of
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the altitude derivative term is the flight path angle F, since the flight path angle is the

only variable which can change its sign. Simply, the direction of the velocity vector is

moved around the horizon in order to gain or lose altitude. The second equation, which

represents the acceleration normal to the velocity axis, consists of gravity, centripetal, and

Coriolis terms.

For simplicity, the nonlinear feedback is applied on the first equation to decouple

it from the rest of the equations. Let,

U1 = -CFm + u

where Fm is the measured flight path angle. Then a simple PID feedback controller is

applied to ut to control and improve the command following characteristics of the

velocity. Then the nonlinear feedback is applied on the second equation to control both

the flight path angle and the altitude. Let,

u2 = C,+ +2EVm + VmU 2The resulting control strategy is shown in Figure D-10 and D-11.m

The resulting control strategy is shown in Figure D- 10 and D- 11.

Figure D-10 Block Diagram of Kinematic Controller C1
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Figure D-11 Pitch Controller
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