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Abstract

Previous attempts to analyze indentation of sandwich panels have been
based on small deflection theory and an assumed elastic core behaviour.
The agreement with experiments was poor. The present work includes core
crushing and large deflections of the face sheets in a simplified model of
sandwich contact indentation. The model assumes transverse isotropy with
respect to the load axis and is based on an infinite, elastic face sheet on a
core bonded to a rigid foundation. The core is assumed to be elastic in
tension and elastic-ideally plastic in compression. After initiation of core
yielding the problem is separated in two regions. In the inner, plastic region,
the core has yielded and exert a constant reactive pressure on the face
sheet. In the outer region the core acts as an elastic foundation. The plastic
radius is found by matching boundary conditions for the two regions.

The outer region is modeled as a plate on an elastic foundation. The inner
region is modeled using three different approaches. For small deflections
classical plate theory with shear corrections is used. For intermediate
deflections an upper limit of the contact force is given by first order large
deflection plate theory and a lower limit by small deflection plate theory.
The asymptotic behaviour at large deflections is given by an approximate
solution based on membrane theory. The three solutions, which all require
iteration, have been put in dimensionless form and tabulated. The approach
due to Hertzian contact has been included in the plate solution. Bounds
have been given for the residual indentation after unloading. Approximate
expressions are given for analysis of orthotropic face sheets.

Good agreement with experiments was found for sandwich panels of
different materials and thickness. The often observed, approximately linear,
load-indentation relation is found to be the combined effect of softening due
to core crushing and stiffening due to face sheet membrane effects. A
limited parametric study indicates a strong influence of the core yield stress
and the face sheet properties, and a relatively weak influence of the
thickness and elastic properties of the core. The local indentation model
may be used in a global impact model to predict impact response of
sandwich panels, or as a starting point for more detailed stress analyses for
prediction of damage due to impact and contact loads.
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NL Quantity related to the nonlinear solution
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1 Introduction

The growing use of fibrous composite materials in aircraft structures has

lead to an increasing concern for impact damage, since laminated composite

materials have been found to be particularly sensitive to impacts. An

extensive review of theories and experiments dealing with impacts on

laminated composites was given by Abrate (1991).

A sandwich panel may be considered as a composite structure where thin

and stiff facesheets have been combined with a light and soft core to

produce a highly weight effective structural element. The flexural stiffness

per unit weight of a sandwich panel is considerably higher than for

monolithic panels of the same flexural stiffness. The tradeoff is lower shear

and through-the-thickness stiffnesses which will be of particular importance

for concentrated loads such as impact loads. Common face sheet materials

in aircraft applications are fibre composites and aluminium. Most core

materials are cellular, either with randomly oriented cells (foams) or

uniaxially oriented (honeycombs). Common core materials are either plastic

foams, or honeycombs of aluminium or resin impregnated papers such as

Nomex TM .

Damage resulting from impact in monolithic laminates may result in

significant reductions of their strength and stability. Damage typically

consist of delaminations, matrix cracks and broken fibres. Similar damages

have been observed in laminated face sheets of impacted sandwich panels.

In addition, other damages, such as core cracking and face sheet-core
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debonding, may occur. Reductions of panel compressive and tensile strength

of over 50% have been observed even at low impact energies and with no

visible face sheet damage.

Impact response of plates may be divided in two major categories; response

governed by wave propagation (small mass impact) and response governed

by fixed boundaries (large mass impact). Wave controlled responses may be

further subdivided in responses governed by either dilatational/shear waves

or by flexural waves. The distinction has been discussed in detail by

Olsson (1993) who showed that the kind of response is governed primarily

by the impactor/plate mass ratio. Fig. 1.1 schematically shows response

controlled by: (a) shear and dilatational waves, (b) flexural waves, (c) fixed

boundaries.

(a) (b) (c)

Figure 1.1 Classification of different plate impact responses.

Impact resistance, which is a measure of the structural damage caused by

a given impact load, is most commonly determined experimentally.

Analytical methods, however, are necessary both to predict damage

initiation in a preliminary design stage and to design experiments more

rationally. Numerical impact analyses are normally based on finite element

models or mode summation methods like the Raleigh-Ritz method. Solutions



on closed form are often obtained using simplified models based on dashpots,

springs and masses. A review of closed form analyses of impact on

composite plates was given by Olsson(1993).

In an impact analysis the dynamic equations for the impactor and target

motion are coupled through an equation describing the contact between the

two bodies at the point of impact. To reduce computational effort both

numerical and closed form analyses normally rely on a simplified load-

indentation relation which may be determined either from experiments or

derived from a more detailed local analysis of the contact problem.

The underlying assumption, often not stated, is that there is a negligible

coupling between the global deflection and the local indentation problem.

This assumption requires that the local problem affects only a very local

region of the total structure and that the stresses due to the global

deflection are negligible in comparison to the stresses in the local problem.

An obvious geometrical condition is that the resulting plate curvature is

small in comparison to the curvature of the indentor.

Each of the response forms shown in Fig. 1.1 may be associated with a

simplified structural model describing the local and global response of the

structure. As an example consider the boundary controlled response in

Fig. 1.1c, which is typical for cases where the impactor mass is larger than

the plate mass. A simplified model of this case consists of a series of two

masses and two springs, Fig. 1.2. The effective plate mass can be obtained

from the static stiffness and the fundamental vibration frequency of the

plate. The global stiffness of the plate is generally nonlinear but may be
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considered linear when large global deflections and shear need not be

considered. A simplified spring system modeling shear and large deflection

effects was proposed by Shivakumar, Elber and Illg (1985).

Impactor
mass

Contact
stiffness

Effective
plate mass

aGlobal
stiffness

Figure 1.2 Simplified structural model for impact analysis

Completely different structural models apply for the global response to

small mass impacts, which is governed by transient flexural waves or

shear/dilatation waves. Generally, decreasing impactor masses give shorter

impact times. Below a given impactor mass, the impacted plate is only

deflected locally and smaller masses result in a response which is

increasingly dominated by the local (contact) stiffness.

Irrespective of the global model, any impact analysis must also include a

model of the local contact response. The local response model, which should

describe the load-indentation relation, may be linear or nonlinear but is

essentially independent of the global response as long as material rate

effects and inertia effects can be neglected in the indentation problem.

16



Extensive experimental evidence shows that for practical use in impact

analysis the load-indentation behaviour of monolithic laminates can be

sufficiently accurately described by a closed form generalization of Hertz'

contact theory for isotropic bodies, as discussed by Olsson(1993). For a

sphere indenting a flat surface the force is proportional to the indentation

raised to power 3/2, as shown schematically in Fig. 1.3.a.

Force, FForce, F

3/2
F o

Indentation, wo

a) Monolithic plate

Indentation, wo

b) Sandwich plate

Figure 1.3 Load-indentation behaviour for plates indented by a sphere.

In many cases the contact compliance of monolithic plates is of minor

importance in comparison to the flexural compliance. By contrast the

contact compliance of a sandwich plate can be of the same order as the

flexural compliance, as shown experimentally by Mines, Worrall and Gibson

(1990) and Williamson and Lagace(1993).



Due to the facesheet-core interaction, indentation of sandwich plates is

significantly more complex than indentation of monolithic plates. The soft

core results in a local deflection of the face sheet in addition to the actual

indentation of the face sheet, Fig. 1.2. It has been found that inelastic

crushing of the core cells takes place even at small loads. Previous

analytical solutions for indentation of sandwich panels show severe

disagreement with experiments, except for a negligible initial phase.

Empirically, the load-indentation relation has been found highly nonlinear,

although from a gross perspective approximately linear for large values of

indentation, as shown schematically in Fig. 1.3.b.

As shown by Jackson and Poe (1993) and Lagace et al. (1993), large mass

impacts and static loading on monolithic laminates give virtually identical

relations between damage size and peak load. Observations on the

equivalence of damage resulting from static loads and quasi-static impact

loads on sandwich panels have been reported by Williamson and

Lagace(1993).

The peak impact force may be obtained from experiments or from an

impact analysis. For impactors much heavier than the impacted plate, the

system in Fig. 1.2 may be considered as a one-degree-of-freedom system.

We note that the impact force will be related to the effective stiffness of the

spring system and that this stiffness will be dominated by the most

compliant spring. In the asymptotic small mass case, where no global

deflections occur, the peak force is obtained by assuming an infinite global

stiffness. Obviously, the local stiffness is even more important for the peak

force during small mass impacts.



In monolithic laminates, impact loads slightly above the damage threshold

usually result in delaminations having a size several times the plate

thickness. In contrast, the initial damage in sandwich panels is highly

localized, and normally confined to the permanent dent, which initially has a

diameter much smaller than the panel thickness. For typical sandwich

panels the local damage due to a given contact load appears to be

independent of the global boundary conditions. For example, Williamson and

Lagace (1993) observed identical damages in sandwich panels having a flat

backface support and similar panels having an unsupported backface but

two sides clamped. Thus, initiation and size of damage in sandwich panels

with small to moderate span to thickness ratios is likely to depend on the

peak contact force but not on the kind of global impact response.

In addition to providing a load-indentation relation which can be used to

predict the peak impact force, a theory for sandwich indentation may also

serve as a basis for further analysis of the local deformations that govern

initiation and size of indentation damages caused by impact or other events

resulting in concentrated loads.

The purpose of the present work is to develop a theory for the indentation of

sandwich plates, based on the constitutive behaviour of the core and face

sheet materials. Although the load-indentation relation will generally not be

linear, it may be used as a basis for linear or other simplified

approximations that can be used in a global impact model. In addition it is

hoped that the present analysis can contribute to improved understanding

and prediction of initiation and size of impact damages in sandwich panels.
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The thesis is organized as follows:

In Chapter 2 we will review previous work on the present problem as well as

other problems related to the present analysis.

In Chapter 3 the theory for indentation of transversely isotropic sandwich

plates will be derived using three different approaches, all based on an

elastic-ideally plastic compressive behaviour of the core. The first model is

valid for small indentations and is based on small deflection plate theory.

The second model, based on pure membrane theory, represents an

asymptotic solution to the contact stiffness for large indentations. A third

model based on first order large deflection corrections to the linear plate

theory represents an intermediate solution. The solutions for deflection

versus load are presented in dimensionless form.

In Chapter 4 we discuss additional considerations such as approximate

methods to analyze anisotropic face sheets by the use of effective flexural

and shear properties, unloading behaviour and methods to calculate the

effective foundation stiffness of the core.

In Chapter 5 the theory is used for parametric studies and comparisons

with published experimental data for several different material systems

including cores of foam as well as Nomex and aluminium honeycomb.

In Chapter 6 recommendations for the use of the present theory will be

given. We will also discuss the implications for impact analysis of sandwich

20



panels and give some preliminary conclusions on the formation of

indentation damage together with recommendations for future work in this

area.

In Chapter 7 the most important conclusions of the present work will be

summarized.



2 Previous work

2.1 Topics of interest

Structural sandwich plates typically consist of stiff face sheets bonded to a

compliant core. Under concentrated lateral loads, the deflection of the face

sheet may be considerably larger than the face sheet thickness. Clearly, in

addition to dealing with previous works on indentation and impact analysis

of sandwich panels, a serious attempt to analyze sandwich indentation

must touch on several additional topics such as constitutive behaviour of

the core material, theories for face sheets on elastic foundations, and plate

and membrane theories needed to analyze large deflections.

2.2 Impact and indentation of sandwich panels

The number of references dealing with impact on monolithic composite

laminates is already extensive, as can be seen in the review by Abrate

(1991). The number of works dealing with impact on sandwich panels is

significantly smaller, but exceeds 60 references. A recent and relatively

complete collection of references on sandwich impact was given by Tsang

(1994).

A majority of the works cited by Tsang (1994) consist of experimental

studies of how different parameters affect damage size and residual

strength versus kinetic energy of the impactor. From the introduction it is

clear that the results of such studies are limited to the particular test
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configuration, since the peak contact force depends on the total structural

stiffness. Furthermore they give no information on the load-deflection

history and how it is related to damage. Experimental works use various

impact metrics - energy, mass, velocity and impact force. The following

discussion will use the impact metrics as they are used in each work cited.

The main contribution of these works is to show that impact on sandwich

panels can result in significant (250%) reductions of the residual strength

even at low impact energies and when no external damage is visible. Typical

results have been given by Oplinger and Slepetz (1975). A general

observation in all studies of impact on sandwich panels is that face sheet

damage is preceded by core damage which occurs even at very low impact

energies. Core damage usually consists of crushed core cells, while face

sheet damage consists of delaminations and matrix cracks, followed by fibre

breakage at higher impact energies (impact forces).

For a given load the local indentation in sandwich panels is significant and

can easily be of the same order as the global deflection, even in relatively

flexible panels. Experimental evidence can be found in the works by Mines,

Worall and Gibson (1990) who studied large square panels and by

Williamson (1991) who studied smaller beam-like specimens.

The static indentation behaviour of sandwich panels has been studied

experimentally either by indenting a panel with a supported backface, or by

measuring the difference in deflection of the upper and lower face in panels

with supported edges. The two test methods were shown to give identical

results for beam-like specimens tested by Williamson (1991). These results
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are indirectly supported by the studies by Tsang and Dugundji (1992), Lie

(1989) and Mines, Worall and Gibson (1990) who all based their predictions

of impact response on indentation tests on panels with a supported

backface.

A common result from all studies is an overall approximately linear force-

indentation relation, which may be divided into an initial softening followed

by a gradual stiffening. The behaviour has been observed in several different

material systems. Graphite/epoxy skins on a Nomex honeycomb were

studied by Slepetz et al. (1974), Lie (1989) and Williamson (1991),

glass/epoxy skins on aluminium honeycomb by Mines, Worral and Gibson

(1990) and graphite/epoxy skins on a Rohacell foam core by Tsang (1989).

Selected results were later republished by Oplinger and Slepetz (1975) and

Tsang and Dugundji (1992).

Possible dynamic material effects were revealed by Slepetz et al. (1974)

who performed low- and high-speed non-impact indentation tests on

graphite/epoxy skins on a Nomex honeycomb core. Signs of an increased

softening were seen at the higher displacement rate.

The importance of including local indentation in sandwich panels was shown

in a parametric study by Ericsson and Sankar (1992) who presented a

serial solution to analyze concentrated static loads on simply supported

sandwich panels with elastic orthotropic core and face sheets. The face

sheets were modeled as laminated plates on a three-dimensional orthotropic

solid.
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Analytical models of sandwich indentation, as presented by Slepetz et al.

(1974), Tsang (1989) and Lie (1989), have been based on assumptions of

elastic core properties. Indentation experiments show an initial agreement

with predictions, followed by a very significant softening at relatively small

loads, obviously due to core crushing. These results clearly show the need to

include core crushing in analytic indentation models.

Published impact analyses have almost exclusively dealt with large mass

impacts, which result in a quasi-static response.

Mines, Worall and Gibson (1990) successfully predicted large mass impact

response and damage initiation in sandwich panels using a serial spring

model based on experimentally determined local and global panel stiffness.

Less simplified impact analyses have been based on either modal expansion

techniques or on finite element analysis. Modal expansion was used by Lie

(1989) and Tsang (1989), Tsang and Dugundji (1992). A three-dimensional

analysis of an axisymmetric plate problem was performed by Nemes and

Simmonds (1992), while Sun and Wu (1991) and Lee, Huang and Fann

(1993) used plate elements to analyze two-dimensional beam problems.

Comparisons between predicted and experimentally observed face sheet

damage were given by Lie (1989) and Sun and Wu (1991). All analyses

except two were based on experimentally determined force-indentation

relations. Lie (1989) assumed an elastic core and used an assumed mode

and energy minimization to model the local indentation behaviour while

Nemes and Simmonds (1992) incorporated core yield by using a constitutive

yield model for elastomeric foams.
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The above analyses have been applied to large mass impact on a number of

different systems of face sheets and cores. In all cases the agreement with

experiments has been satisfactory. Analyses based on experimentally

determined indentation behaviour have generally produced more accurate

results.

A purely theoretical parametric study of small and large mass impacts on

sandwich panels was performed by Riis (1992), who developed an efficient

numerical analysis for simply supported panels. The total displacement was

obtained by adding global panel deflection, face sheet compression and local

face sheet deflection under the assumption of an elastic core.

All of the above analyses can be expected to be less accurate for small

mass impacts, where the response is governed by transient flexural waves

which are associated with higher modes and large strain gradients.

A theory for small mass impact on sandwich panels was developed by Koller

(1986) who postulated that the contact stiffness was only governed by the

face sheet properties. Experimental agreement was satisfactory for low

velocity impacts where deflections were in the order of one percent of the

face sheet thickness. However, the assumed independence of core

properties must be questioned at larger face sheet deflections and impact

forces, which will occur at higher velocities.
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2.3 Face sheet-foundation models

Structural sandwich plates typically consist of stiff face sheets bonded to a

compliant core. Most sandwich cores have been observed to yield at a low

and relatively constant stress in compression while the behaviour in tension

remains linearly elastic until final failure. These observations suggest that

the deflection of sandwich face sheets may be modeled as a plate on an

elastic-plastic foundation.

The deflection of plates on elastic foundations has been treated by several

authors. Many references can be found in the review by Hetenyi (1966) and

the monographs by Selvadurai (1979) and Gladwell (1980). The classical

work by Schleicher (1926) assumed the foundation to be a continuum of

independent springs normal to the plate surface, a so called Winkler-

foundation. Later workers have included shear springs, resulting in a so

called Pasternak-foundation. A unified treatment of foundation shear was

given by Vlasov and Leont'ev (1966) who considered a non shearing plate on

a three-dimensional foundation where the vertical displacements of the

foundation were described by a shape function. Pane (1975) considered a

shear deformable plate on a Winkler foundation and obtained a similar

governing equation. Recently Chen and Gtirdal (1990) presented an

analytical method to analyze a point load on an infinite orthotropic plate on

an elastic foundation. Deviations from the classical theory for plates on an

elastic foundation for the case of a thin elastomeric foundation have been

studied by Dillard (1989).
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The only reference found dealing with plates on elastic-plastic foundations is

a finite element analysis of a uniform load on a square patch of a square

plate done by Lewandowski and Switka (1991).

Three dimensional solutions for rigid bodies indenting an elastic layer bonded

to a substrate with different elastic properties have been presented by Yu,

Sanday and Rath (1990) and Oda and Kubota (1992). However, these

solutions are limited to linearly elastic isotropic materials and small strains,

and are thus of limited value in the analysis of sandwich indentation.

2.4 Large deflection plate solutions

Impact and indentation on sandwich panels often result in local face sheet

deflections considerably larger than the face sheet thickness. An extensive

treatment of large deflection analysis of plates was given in the monograph

by Chia (1980) which also covers anisotropic plates.

Equations for moderately large deflections of plates have been derived by

von Karman, who assumed small strains and rotations while allowing for

large deflections. The accuracy of von Karman's equations has been

discussed by Hamada and Seguchi (1965) and Zhou and Zheng (1989) who

compared them with the more general Reissner plate equations. Exact

solutions to the coupled von Karman's equations have only been found for a

few cases. Approximate solutions are usually found using Fourier series,

perturbation methods or variational methods such as Ritz', Galerkin's or the

principle of minimum of potential energy. Discussion and numerous

examples are given by Chia (1980).
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Large deflections due to a point load on a clamped finite circular plate on an

elastic foundation were studied analytically and experimentally by Datta

(1975). This solution is of limited practical value for the analysis of

sandwich indentation, since the core will not behave elastically after

crushing of core cells, which has been observed even at small face sheet

deflections.

A large deflection analysis of the face sheet will generally involve the

combined loading of a point load and a non uniform reactive normal pressure

from the core, acting on a region with complex boundary conditions. Closed

form solutions are only available for simple cases of combined loads and

boundary conditions. Saibel and Tadjbaksh (1960) considered von Karman's

equations for an immovably clamped plate under uniform pressure

combined with a point load and obtained a perturbation solution based on

the plate deflection. Schmidt and DaDeppo (1976) used nonlinear Kirchhoff

plate theory to obtain a similar perturbation solution for the same

combination of loads on a plate with edges in sliding clamps. Nowinski and

Ismail (1964) presented a perturbation solution for a simply supported

plate under combined point load and uniform pressure by using the two

loads as perturbation parameters. Unfortunately this solution is of limited

practical value since negative deflections are obtained even at relatively

small loads.

Single load solutions (point load or uniform pressure) are not directly

applicable to the present problem but are useful as benchmark tests for the

combined load solutions. Volmir (1962) presented approximate solutions
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based on the Galerkin method for both concentrated and uniform loads on

plates with movable and immovable clamped and hinged edges. Similar

solutions were given by Ferriss (1991) for the immovably clamped and

simply supported (moving hinge) cases. Banerjee (1983) considered a point

load on a plate with different boundary conditions by using a modified

expression for the elastic energy including large deflections.

An exact power series solution for an immovably clamped plate under

uniform load was given by Way (1934). Due to the complicated calculations

involved the presentation is graphical rather than in closed form and results

were given for deflections only slightly larger than the plate thickness. A

recent Raleigh-Ritz solution to this problem was given by Schmidt (1987)

who also provided an extensive discussion on previous results. The influence

of inplane and rotational constraints on large deflections of uniformly loaded

circular plates was studied by Cheng (1989).

An inherent weakness in all the approximate solutions above is the

assumption that the deflection shape remains unchanged from the shape

given by linear theory even when deflections are large. In addition the

solutions are limited by the basic von Karman assumptions of small strains

and rotations. A theory for axisymmetric deformation under arbitrarily

large strains and rotations was developed by Brodland (1988) who

considered uniform pressure on clamped and hinged circular plates. Later

Dolovich, Brodland and Thornton-Trump (1988) applied Brodland's theory to

a concentrated load on a rigidly clamped plate and obtained approximate

polynomial expressions for load versus deflection.
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A change in the deflection shape was also included in the analysis by Bert

and Martindale (1988) who considered both uniform pressure and a point

load on rigidly clamped plates. Numerical results based on nonlinear finite

element analysis and an efficient differential curvature method were given

by Striz, Jang and Bert (1988) who considered both uniform pressure and

point loads on rigidly clamped and simply supported plates.

An interesting approach to the problem of a point load on a simply

supported plate was provided by Frakes and Simmonds (1985) who used

perturbation methods to derive overlapping asymptotic solutions for small

and large ratios of bending stiffness versus membrane stiffness.

2.5 Membrane solutions

The literature on membrane theory is extensive, but only a few works deal

with concentrated loads on membranes. The problem of a point load on an

initially flat membrane was originally studied by Schwerin (1929), who

solved the problem of a circular membrane with fixed edges and a Poisson's

ratio not exceeding one third. A general solution for a point load on an

initially flat membrane with prescribed edge displacement or edge stress

was given by Jahsman, Field and Holmes (1962) who also performed an

experimental verification. Schwerin's limitation to a Poisson's ratio not

exceeding one third was removed by allowing for complex quantities in the

equations. Fligge (1966) considered the related problem of a point load on an

inflated balloon. Simplified membrane solutions for a point load on

prestressed membranes have also been given by Leonard (1988). Another

work of some interest is the one by Frakes and Simmonds (1985) who



obtained asymptotic solutions for a point load on a simply supported plate

by using a perturbed membrane solution with non-zero bending stiffness.

2.6 Core behaviour

Sandwich cores typically consist of cellular materials, either in a two-

dimensional structure of parallel cylinders (honeycombs), or a random

three-dimensional cell structure (foams). An excellent and thorough

presentation of cellular materials and their properties can be found in the

book by Gibson and Ashby (1988), where an exhaustive review of previous

works is given. The book includes both theories and experimental results for

the constitutive behaviour of cellular material. Typical stress-strain curves

for out-of-plane compression of cellular materials are given by Gibson and

Ashby (1988) and have been shown schematically in Fig. 2.1.

Pressure

Pcu
Pc

Pressure

Strain 1

a) Elastic-plastic or elastomeric

Figure 2.1

Strain 1

b) Elastic-brittle

Typical behaviour of cellular materials during
out-of-plane compression.
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Under out-of-plane compression of cellular materials the initial elastic

region is followed by elastic buckling of the cell walls, a plateau region and a

final densification region where the modulus approaches that of the solid

material. The plateau level in plastic materials is governed by plastic

buckling of the cell walls, while the magnitude of the initial stress peak

depends on the cell wall buckling load. For elastomeric materials the plateau

stress is determined by the cell wall buckling and no initial peak is observed.

Very brittle core materials fail through a sequence of cell fractures giving

oscillations around an average plateau stress level. Constitutive models of

cellular materials do of course depend on the failure mechanisms in the

particular material. Published closed form models for the constitutive

behaviour can be found in the book by Gibson and Ashby (1988).

More recent papers include a theoretical and experimental study of the out-

of-plane properties of Nomex honeycombs by Zhang and Ashby (1992) and

a similar study of several non-metallic honeycombs by Huang and Hahn

(1990). A very general (and very theoretical) paper on the elastic properties

of materials with randomly distributed cells was presented by Hall (1991).

Goldsmith and Sackman (1992) studied dynamic crushing of honeycombs

experimentally and made comparisons with published static crush theories.
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3 Theory

3.1 Problem definition

The problem under consideration is to determine the relation between load

and indentation for an elastic hemispherical body indenting a sandwich

panel. The apparent indentation may be separated into a local deflection of

the face sheet and a very local actual indentation of the face sheet. In the

vicinity of the contact load a complex three-dimensional stress state will be

present. The constitutive behavior of structural sandwich panels is

dependent on the constituents, which typically consist of stiff elastic face

sheets bonded to a compliant core. The core yields at a low and relatively

constant compressive stress while the tensile behavior remains linearly

elastic until failure. Due to the compliant core and relatively thin face

sheets, indentation of sandwich panels often results in face sheet deflections

that are considerably larger than the face sheet thickness.

In the following analysis we will model the face sheet/core system as a linear

elastic, infinite plate on a foundation which is elastic in tension and elastic-

ideally plastic in compression. The foundation is assumed to be bonded to a

rigid base, so that no global bending is allowed.

In addition we make the following simplifying assumptions:

* The face sheet and core are both transversally isotropic with

respect to the load axis, allowing an axisymmetric treatment.

* The contact pressure can be modeled as a resulting point load

when calculating the local face sheet bending deflection.
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* The contact pressure can be modeled as a uniform pressure

over the contact area when calculating shear deflections.

* Transverse shear and large deflection effects can be neglected

at some distance from the contact load.

* The curvature of the upper face due to local face sheet deflection

is negligible in comparison to the curvature caused by indentation,

so that the indentation and deflection problems are uncoupled.

* The core obeys the assumptions of a Winkler foundation, so that

the reactive pressure at any point is proportional to the face sheet

deflection and independent of deflections at neighboring points.

The assumed model problem is shown schematically in Fig. 3.1, where a

point load F is applied normal to the face sheet. The coordinate axes r and z

are aligned with the face sheet and load directions respectively, with the

origin under the contact point at the face sheet midplane. The corresponding

displacements are labeled u and w. The face sheet plate with thickness h is

characterized by the radial plate stiffness Dr, the inplane modulus Er ,

Poisson's ratio vr and out-of-plane shear modulus Grz. The core is

characterized by the compressive "yield" stress po, and by the foundation

modulus k= -Iz/w, which relates surface pressure to displacements. The

foundation stiffness k is related to the core thickness, hc and the core elastic

properties EUj and vij.

Under the assumption of ideally plastic core behaviour in compression the

plate-foundation model of Fig. 3.1 may be divided in two regions; one outer

region, modeled as a plate on an elastic foundation, and an inner region,

modeled as a plate on an ideally plastic foundation, as shown in Fig. 3.2.
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Figure 3.1 Assumed model problem.

Elastic foundation model:

-0,M -

N
w

Plastic foundation model:

8, M

N,u Q-A.

, M

o N,u

Po

Figure 3.2 Substructuring of the model problem.
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The loads acting on the face sheet are the contact load F, the reactive core

pressure po, and radial stress resultants given by the moment Mr, the shear

stress Qr and the normal stress Nr. The resulting plate deflection is

characterized by the deflection w and the slope angle 6=-dw/dr. The

transition from plastic to elastic core behaviour occurs at the plastic radius

a.

For convenience we use the following simplified notation for face sheet

elastic properties and stress resultants, deflection and slope angle at the

plastic radius:

Dr ---> D Er  E Vr --> v w(a)-> wa  (3.1)

Qr (a) --> Q Mr (a) -- M Nr (a) -> N dw(a)/dr --> -0

Stress resultants and slope, which are only considered at the plastic radius,

have been given no subscript. The deflection at r = a has been given the

subscript a, since we will also consider deflections at other locations. To

simplify the analysis we also define the following characteristic length and

dimensionless quantities:

44 = D/k (3.2.a)

= poira2 /F (3.2.b)

F= FI(po'rk 2) (3.2.c)

M = M/(pLo2 ) (3.2.d)

p = r/4 (3.2.e)

Pa = a/Lo = J (3.2.f)
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Here p is a general dimensionless radius, a is the dimensionless plastic

radius, F the dimensionless contact force, M the dimensionless edge

moment at r = a and Lo a characteristic length dependent on the plate

stiffness and foundation stiffness.

For a known edge moment and plastic radius, the deflections in the inner

and outer regions are given by published elementary solutions. The major

difficulty in the problem is that the edge moment and plastic radius are

unknowns.
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3.2 Overview of analysis

The unknown plastic radius and edge moment can be determined by

matching the boundary conditions for the inner plastic region and the outer

elastic region. Once the plastic radius and edge moment are known the

deflections in the inner region can be calculated.

We will assume that the deflections in the outer region remain

comparatively small, so that transverse shear and large deflections of the

face sheet need not be considered. Thus the outer region will be analyzed

using classical theory for plates on an elastic foundation. The deflection Wa

at the plastic radius can then be obtained simply by dividing the elastic

foundation modulus by the compressive yield stress of the core, i.e. wa=k/po.

In the inner region we will consider both transverse shear and large

deflections of the face sheet. The analysis of the inner region is illustrated by

Fig. 3.3 which shows a simplified model for combined indentation and

deflection of an elastic circular plate, proposed by Shivakumar, Elber and

Illg (1985).

In this model the contact force is balanced by the force due to contact

indentation of the face sheet upper surface. The latter force is balanced by

forces due to bending, shear and membrane deformation of the face sheet,

where bending and shear deformations are assumed to be uncoupled.

The stiffnesses associated with contact indentation, bending, shear and

membrane deformation are symbolized by ka, kb, ks and km respectively.
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Note that all stiffnesses are functions of the plastic radius, and hence

functions of the contact load. In addition, the shear stiffness is also a

function of the contact radius, which is also a function of the contact load.

The displacement of the upper face in the inner region is obtained by

summing the displacement Wa at the edge of the plastic region, the relative

approach a due to contact stresses, and the relative displacements wb due

to bending and w, due to shearing.

ka

Face sheet upper
surface at r=O

Face sheet middle
plane at r=O

km

Undeflected position

Face sheet middle
plane at r=a

Figure 3.3 Simplified model of the face sheet in the inner region.

Generally, contact, shear, membrane and bending effects are coupled. The

model with separate springs is based on the simplifying assumption that

the load-deflection relations for the different effects are uncoupled.

The contact indentation is uncoupled from the face sheet deflections due to

the assumption that the curvature caused by face sheet deflection is
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negligible in comparison to the surface curvature due to indentation. The

shear deflection is, however, coupled to the contact deformation through the

dependence of the contact radius, which both are functions of the load.

For small deflections (w/h<<l) the membrane effects are negligible and

shear and bending deflections uncoupled.

For larger deflections, membrane effects become increasingly important

and couple with the shear and bending effects. For very large deflections

(w/h>>1) the behaviour is dominated by membrane effects.

In order to cover the whole range of deflections three different approaches

will be employed to model the inner plastically supported region: classical

plate theory with shear corrections for small deflections, first order large

deflection plate theory at intermediate deflections and membrane theory for

large deflections.

For a given contact force and model of the inner region, the plastic radius

and the edge moment can be obtained after iteration by satisfying the

boundary conditions for the inner and outer region. In the present analysis

the resulting equations have been put in dimensionless form and the

solutions have been tabulated so that no further iterations are required to

use the presented expressions.

For small deflections (w/h<<l) we will use classical plate theory with shear

corrections and neglect membrane effects (km=O). The total center deflection



wo is then obtained by adding the displacements due to contact indentation

a, bending deformation wb, shear deformation ws and edge displacement wa:

wo(F) = a(F)+ Wb(F)+ ws(F)+ wa (3.3)

For large deflections (w/h>>1) we will use membrane theory (kb=ks=O) to

model the inner region. In this case the contact indentation is not relevant

since a membrane will have the same curvature as the indentor. The total

displacement is obtained by summing the membrane deflection Wm and the

edge displacement wa :

wo(F) = wm(F) + wa (3.4)

For intermediate deflections (w/h- 1) we will use the complete simplified

model in Fig. 3.3 which corresponds to a first order large deflection plate

theory:

wo(F) = a(F)+ wb(Fbs)+ Ws(Fbs)+ Wa
(3.5)

where F = Fbs + Fm = kbwb + km(wb + w3

Here Fbs is the contact load required to obtain the deflection wb +ws when

small deflection theory is used and F is the contact force required to obtain

the same deflection when large deflection membrane effects have been

included.
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A solution of Eq. (3.5) will generally require an iterative procedure since

increments in the load F will result in increments in the plastic radius which

affects the stiffness values. The iterative procedure is avoided by an

approximate solution based on a first order approximation for the relation

between load and plastic radius.



3.3 Equations for the elastic region

A theory for plates without shear on a solid elastic foundation with shear

was given by Vlasov and Leont'ev (1966). A similar theory for a shear

deformable plate on a Winkler foundation was presented by Panc (1975)

who also showed how the analysis could be extended to a two parameter

foundation. The complete equations for the two theories are presented in a

unified notation in appendix A.

Since our main interest is core yielding and its effect on the face sheet

deflection, a refined analysis in the elastically supported region will not be

pursued. Thus, we will neglect core and face sheet shear effects in the

elastically supported region. In this case, both theories result in the

following equilibrium equation for axisymmetric deformation of a plate on an

elastic foundation:

Ap 2w+w = q/k

(3.6)

where Ap = d2/dp 2 +p-1 d/dp

Here k is the foundation stiffness (reactive pressure/unit displacement) and

q the load applied on the upper surface of the plate. The dimensionless

radius p has been defined in Eq. (3.2).

Prior to core yielding the elastic region includes a point load at the origin and

the general equilibrium equation, Eq. (3.6), takes the following form:
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Ap 2w + w = 3(0)F/k (3.7)

For the case of an infinite plate the solution to this equation is given by:

w(0) = (3.8)
8D 8 -kj

The reactive pressure in the elastic area is given by p =kw. Hence, after core

yielding, the deflection wa at the elastic-plastic transition radius will be

given by

w, = Po / k (3.9)

where po if compressive yield stress of the core. The critical load at initiation

of core yielding is obtained by combining Eqs. (3.8) and (3.9):

F k 2 8p = 8poL 2  (3.10)

After core yielding the point load at the origin is excluded from the elastic

region and the general equilibrium equation, Eq. (3.6), takes the following

form:

Ap 2w+ w = 0 (3.11)

The general solution to the homogenous differential equation, Eq. (3.11) is

given by:
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w(p)= CIuo(p) + C2V (p) + C3f(p) + C4go0(p) where

(3.12)

Un (P)+ ivn(P) = Jn (pe" ) fn (p)+ ign (p) = H) (pe') V = Ir/4

Here the real functions un, vn, fn and gn are the real and imaginary parts of

the n-th order Bessel function J, and the n-th order Hankel function of the

first kind, Hn(I). Note that go as given by Vlasov and Leont'ev(1966)

involves a sign error since gn (p) = Im Hn)(peiI) = - Im H(2)(pe- i').

The function fo is bounded everywhere. The function go is unbounded at the

origin while the functions uo and vo are unbounded at infinity. Consequently

the constants C1 and C2 must be set to zero in order to obtain finite

deflections in the present infinite plate problem. The constant C4 need only

be set to zero when the foundation is elastic at the origin which results in

the solution given by Eq. (3.8).

Thus, for an infinite plate on an elastic foundation the general solution to the

equilibrium equation, Eq. (3.11), is given by:

w(p)= C3f(p)+ C4go0 (p)

dw 1 4dw = 1 I CiOi (P)
dr LO i=3

D  4 ()] (3.13)

i=3

D 4

Qr = - Ci i(P)
i=3

46



Here Mr is the moment and Qr the shear force on surfaces normal to the

radius. The functions fo, go,Oi, Mi, M and Qi are given by the following

expressions:

fn= Re H()(pi)

gn = ImH() (p-)

03 =(f1- l)/2

M3 = -go

M3 = 0 3/P

Q3 = -0

= - (-1)n kein P

= (-1)n kern P

04 = (f +g)/-2

M4 fo

M4 = 04 /P

Q4 = 03

In the latter expression fn and gn have been expressed in terms of Kelvin

functions using Eq. (9.9.2) of Abramowitz and Stegun (1970) althoughf, and

gn may be obtained directly from the tables by Panc (1975).

The unknown plastic radius and the constants C3 and C4 can be determined

by matching three of the expressions given in Eq. (3.13) with corresponding

expressions for the inner region.

When shear is included in Eq. (3.6) the argument Vy in Eq. (3.12) will vary

from n/4 to n/2 and the functions in Eq. (3.14) are modified as shown in

appendix A.
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3.4 Linear plate analysis

3.4.1 Equations for the plastic region

The solution for small deflections in the plastic region is based on Kirchhoffs

linear plate theory, and a superimposed transverse shear displacement.

This solution neglects membrane stresses and shear-bending coupling,

which are negligible for deflections significantly smaller than the plate

thickness. As will be shown in section 3.6 the maximum ratio of deflection

versus thickness where linear theory is still applicable ranges from one

fourth to one, depending on the required accuracy, the type of load and the

boundary conditions.

Using linear plate theory and neglecting shear we find the governing

equations of the problem:

Ar 2W = [6(O)F - po]/D r < a

(3.15)

where Ar = d 2/dr 2 + r- 1 d/dr

With the use of classical plate theory, as described for example by

Timoshenko and Woinowsky-Krieger (1959), the general bending solution Wb

of Eq. (3.15) is obtained by superposition of the deflections due to a central

point load, a uniform pressure and a constant edge moment on a simply

supported plate:
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Fa2 (3 + v)
Wb = 16 rD(1 + v)

Fa

41D(1 + v)

_ Poa4 (5+ v)

64D(1+ v)

Poa3

8D(1 + v)

Ma2

2D(1+ v)

Ma
D(1 + v)

With the use of the dimensionless quantities defined in Eq. (3.2) the above

expressions may be rewritten as:

wb = 2 16z2 po( +v)[(3+ v)-a2(5+ v)/4+8M/jF]16 7 2 pOD(l + v)

6= FPa4- 2 -2 + 8M/F]
87D(1 + v)

(3.16)

(3.17)

The edge shear force Q is obtained from vertical equilibrium of the inner

plate region:

Q = (pora2 - F)/(2 ra) = (2 - 1)F/(2ra) (3.18)
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3.4.2 Determination of the plastic radius

After core yielding the compatibility conditions at the plastic radius are:

w(a+)= w(a_)= Wa = Polk

O(a) = 0(a_)

Q(a+) = Q(a-)

(3.19)

The slope and shear force for the plastic region are given by Eqs. (3.17) and

(3.18). The sectional quantities for the elastic region, given by Eq. (3.13),

can be recast in the following form:

Wa = (Polk)[C3fo + C4o]

0 = (plk)[C303 + C404]/L

M= (po/k){C3[M3 -(1- V)M 3] + 4[M 4 -(1- v)M4 ]}DIL42

Q = -(po/k)[ C3 + Q 4]D/~4 = Qr,(a)

where we have introduced the dimensionless constants

C3 = C3 k/po and C4 = C4 k/po

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

The functions fo, go, 0,, Mi, Mi and Qj have been defined in Eq. (3.14).
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Now the three unknowns C, C4 and p, can be determined from the three

compatibility equations (3.19). Eq (3.20) and the displacement condition in

Eq. (3.19) immediately give:

C4 = 1- 3fo]/g 0
(3.25)

Matching shear loads, Eqs. (3.18) and (3.23), and using Eqs. (3.2) and (3.25)

we find

PokL [C3(Q3 -4 fogo)+ Q4/go ]

Solving for C and using Eq. (3.2.a) we obtain:

3 = [(FPa-Pa)/2 - Q4 /go]/[Q3 - Q4fo/go]

Matching the slopes, Eqs. (3.17) and (3.21) gives

(3.26)

FPak [2- &2 +8TF]
8 rD( + v)

PO [3 3 + C44]
k4

Using Eq. (3.2) and rearranging we find

PaF[(2- 2 )/8 +HF]/[C303 +C44 -
(1+ v) =

Using Eqs. (3.2) and (3.22) we finally get the following dimensionless

equation relating p, to F:

S1- d2)F
2 PaLO



(2F-' + I{C'3[M 3 -(l-v)4] 3 ] +±Pa [(2 Pa2 (l+V)[C3 03 + 4] 4 _ 1 = 0

(1+ v) C3 83-44]
where F 2 Fcr = 8/'7

(3.27)

Here the functions O,, M, and M which are functions of Pa have been defined

in Eq. (3.14) , the dimensionless load F in Eq. (3.2.c) and the critical yield

load Fcr in Eq. (3.10). The solution to Eq. (3.27) was obtained by numerical

iteration to find F for different values of the argument p,. The plastic radius

was then obtained from the relation in Eq. (3.2.f) and has been plotted

versus dimensionless force in Fig. 3.4. The solution has also been tabulated

in appendix B for various values of v. The resulting edge moment is

dependent on Poisson's ratio, while no effect was seen on the plastic radius

for Poisson's ratios between 0 and 1/2.

"0

U)

MME
h..010
PO

(DC)

C)

0 8/n 5 10 15 20 25

Load, F

Figure 3.4 Dimensionless plastic radius versus load for the plate solution.
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3.5 Membrane analysis

3.5.1 Determination of the plastic radius

For large deflections (w/h>1) the face sheet stress state will gradually be

dominated by the membrane stress qr, Fig. 3.5. Obviously, since slopes in

the outer region are small, the major membrane effect will come from the

inner region. In this section we will model the face sheet in the inner region

as a pure membrane, while the surrounding face sheet is still modeled as a

plate.

Figure 3.5 Membrane under combined loading

Vertical equilibrium for the inner region is given by:

F - pora2 - 27rachO = 0

The last term on the left hand side is the vertical component of the

membrane stress resultant at the membrane edge.
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The boundary conditions at the plastic radius become:

w(a_)= w(a+)= wa = pol/k

M(a_)= M(a+) = 0 (3.29)

,(a_)hO = - Q(a+)

since membranes are unable to carry moments and shear. Equations (3.20)

to (3.24) are still valid for the outer, elastically supported, region.

Satisfaction of Eq. (3.20) together with the displacement boundary condition

in Eq. (3.29) gives:

UC4 [1 -0fo] o  (3.30)

Satisfaction of Eq. (3.22) together with Eq. (3.2) and the moment boundary

condition in Eq. (3.29) gives

M = C3{[M 3 -(1- v)M 3 ]- [M 4 -(1- )M4 ]fo/go}+[M4 -(1- )M4 = 0

Solving for the constant C3 we obtain

C3 = 1/{fo - [M 3 -(1- v)H 3]go/[M4 -(1- v)A ]} (3.31)

Combination of Eqs. (3.23) and (3.28) and the boundary condition for

vertical forces in Eq. (3.29) results in the following equation:

F-pora2  pD [( f/ 4 /o]
2 ra = 3 4 f3 O/ ) +
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Rearranging terms and using Eqs. (3.2.a) and (3.2.f) finally gives the

following equation for the dimensionless plastic radius versus dimensionless

load:

[FlPa -Pa]/[c3 ( -Q4fo/0o) + 0Q4go]
- 1= 0 (3.32)

where C is given by Eq. (3.31). The solution has been plotted in Fig. 3.6.
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LM"O0

I

(3

(U")

0=

Cn

I I

i 5
8/C

10 15 20 25

Load, F

Figure 3.6 Dimensionless plastic radius versus load for the
membrane solution.
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3.5.2 Determination of edge constraints

In order to calculate the membrane deflections in the inner region we must

determine the relation between the radial stresses and displacements at the

boundary, i.e. the constraint imposed by the surrounding face sheet. The

general solution for an axisymmetric membrane stress state, which can be

found for example in Timoshenko(1951), is given by:

r = A/r 2 +A2 (1+21nr)+2A3 (3.33)
G, = -A 1/r 2 + A2 (3+ 21nr)+ 2A3

If plane stress is assumed the radial strain is given by the following

expression:

er = dur/dr =(ar - va c E (3.34)

The boundary conditions for the outer region are:

r (a)= 

r (r )  0 as r - oo (3.35)

ur(r ) ~ 0 as r -oo

Satisfying the stress condition in Eq. (3.35) at infinity forces the constants

A2 and A3 to vanish. By solving for the constant A1 we obtain the following

expressions for the stresses:

-a = ar = o (a/r)2 for r > a (3.36)
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By inserting Eq. (3.36) into (3.34), integrating, and satisfying the

displacement condition in Eq. (3.35) we obtain the following expression for

the radial displacement in the outer region:

-a2

ur Er (l+ v) for r a (3.37)
Er

At the plastic radius we obtain the following constitutive relation between

the edge stress and edge displacement:

u/a = -(1+ v) (3.38)
/E

If a uniform stress state is assumed in the inner region we obtain:

ar(r)= a () = a for r <a (3.39)

By inserting Eq. (3.39) into (3.34), integrating, and satisfying the symmetry

condition of zero radial displacement at the origin we obtain the following

expression for the displacement in the inner region under uniform stress:

ur = r(l- v)vr/E for r<a (3.40)

If the stresses are caused by deflection of the inner region this is the

necessary stretching when the edge of the inner region is fixed. The required

stretching of the inner region in the constrained case is obtained by adding

the displacement of the outer region at r = a to the required stretching for the
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case with a fixed edge of the inner region. By using Eqs. (3.37) and (3.40) we

obtain the following equation:

(1 - v) = fed (1- v) - (1 +v)
E E E

where a is the radial edge stress in the cases with radially constrained edges

and ofixed is the stress when the edges are fixed. By solving for the radial

edge stress awe obtain the following relation:

a = Ufixed (1- V)/2 (3.41)

Eq. (3.41) will be used to estimate the appropriate boundary conditions for

large deflection plate solutions.
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3.5.3 Membrane deflection when core pressure is absent

A general solution for a point load on an initially flat membrane with

prescribed edge displacement or edge stress was given by Jahsman, Field

and Holmes (1962) who also performed an experimental verification. The

solutions become identical in the case of a linear relation between edge

stresses and edge displacements. Thus the solution given by Jahsman, Field

and Holmes (1962) is generally applicable to a point load on a membrane

with prescribed linear stress-displacement relations at the edge. The

solution is given by the expressions:

F/(2ncEah) y-sin y (3.42)
(a/E)3/ 2 - sin3(y/2)

WmF/a - y (3.43)
(a/E)1/ 2  sin(y/2)

u/a y - sin y - (1+ v) (3.44)
alE sin2 (y/2)tan( y/2)

where a and u are the radial stress and displacement at the edge of the

membrane with radius a and Wm F is the out-of-plane displacement due to a

central point load F. The constant y is determined from the boundary

conditions. Note the typographical errors in the equations (19a,b) of

Jahsman et. al. and the sign change in WmF adopted here.

Combination of Eqs. (3.42) and (3.43) gives the following expression for the

central deflection under a point load in terms of the load and other known

quantities:
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WmF,3Fa 2  1/3 (3.45)
WmF = 2(y - sin y) iEh

By using a Taylor expansion the expression containing y can be written as

follows:

Y3  -3

y - sin y y- y+ y3/3! - y/5! +... (3.46)

6

1 - y2/(4.5) + y/(4.567)-....

When no uniform pressure po is present Eq. (3.28) results in the following

expression for the edge slope angle:

F
2 raho

Combination of the above equation with Eqs. (3.42) and (3.43) gives the

following expression for the edge slope angle:

= - sin y (3.47)
ysin2(y/ 2 ) Wm/a

We observe that the expressions in Eqs. (3.42) to (3.47) are all even with

respect to the constant y so that the solution is only dependent on the

absolute value of y. Combination of Eqs. (3.44) and (3.38) gives the following

equation for y:
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y- sin y
sin 2 (y/2)tan(y/2)

The above equation has solutions of the form

y = +nz n = 1,2,3, .....

Inspection of Eq. (3.47) shows that y= r represents the physical limit of the

slope angle where O=wmF/a, which corresponds to a straight cone. Larger

values of ycorresponds to larger (unphysical) slope angles.

The solution when no reactive pressure is present is thus given by inserting

y = Ir in Eq. (3.45):

SirFa 2 11/3
WmF = 2 -J (3.48)

2Eh

By using the dimensionless quantities in Eq. (3.2) the above equation can be

rewritten to:

r F2 2 p1/3

WmF = P (3.49)E2poEhj
The solution of Eq. (3.45) when y approaches zero can be studied by using

Eq. (3.46). It is seen that y= 0 corresponds to the solution for rigidly fixed

edges and a Poisson's ratio v =1/3, as given by Frakes and

Simmonds (1985).



3.5.4 Membrane solution for combined loading

The addition of a reactive uniform pressure on the membrane loaded by a

point load will result in a reduced deflection. Obviously the solution given by

Eq. (3.49), which neglects the reactive pressure, represents an upper bound

on the deflection in the combined load case. The deflection in the case of

interacting loads cannot be obtained through superposition of the single load

cases, due to the nonlinear nature of the membrane equations. The inclusion

of a reactive pressure in the solution by Jahsman, Field and Holmes (1962)

is associated with significant mathematical difficulties. In the present

section an approximate solution will be derived using Ritz method, which

minimizes the potential energy of an assumed deflection mode. Due to the

character of Ritz approach this solution also represents a lower bound of

the exact solution for the combined load case. The deflected shape under

combined loading is shown schematically in Fig. 3.5.

In the present case we use, for simplicity, the shape of a cable under

uniform vertical pressure as the assumed deflection shape. The cable is

fixed at the origin, while the other end is required to match the boundary

conditions of the outer region with an elastically supported face sheet. The

shape is described by a second order polynomial and has been given by

Leonard (1988). After considering the boundary condition of zero deflection

at the membrane edge (r = a), the assumed deflection shape may be written:

w = Wm[l + C(r/a) -(1 + C)(r/a)2] (3.50)
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where w,,, is the central membrane deflection due to the combined load. Note

that the assumed solution is actually of a different nature than the true

membrane solution, which involves logarithmic terms. The assumed

deflection shape in Eq. (3.50) can be rewritten on the following form:

w = [1+ C(s - s2) -s2]wn2  (3.51)
where s = r/a

The membrane slope is given by:

dw/dr = [C(1 - 2s) - 2s]w la (3.52)

The radial strain in a membrane element can be derived by considering

Fig. 3.7.

dr Cyr
dw -dw/dr

ds

Figure 3.7 Straining of a membrane element due to deflection.

From Fig. 3.7 it can be seen that the radial strain caused by deflection of an

initially unstressed membrane is given by the following expression:

E ds-dr= + (dw/dr)2 - 1 (dw/dr)2  (3.53.a)El- dr 2
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where we have assumed small slope angles so that (dw/dr)2<<1. An initial

stress due to a prescribed edge displacement u causes an additional

constant radial strain which is given by

ErHI = u/a (3.53.b)

The total radial strain for small slope angles is now given by

1 (dw 2 U
Er - - +- (3.54)

2 dr a

Expressions for the strain energy of linearly elastic materials can be found

for example in Timoshenko (1951). If linearly elastic material and plane

stress is assumed the total potential energy of the membrane can be

expressed as

oo a

-1 = U -W f (Ur2 +P -2ver(T )2xhrdr- Fwm -fqw2irhrdr (3.55)
0 0

where U is the internal strain energy and W the work done by external

forces. Inspection of Eqs. (3.52) and (3.54) shows that the problem involves

three unknown constants, u, Wm and C, which must be determined.

By use of Eq. (3.51) the work function W can be written on the following

form:

1

W= Fwm + 2l 2a qwsds
0
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By noting that q=-po and by using the dimensionless relations in Eq. (3.2) we

obtain the final expression for the work function:

W= -Fw[6- 2(3+ C)] (3.56)

For small rotations, dw/dr<<1, the horizontal equilibrium equation given by

Jahsman, Field and Holmes (1962) can be shown to simplify to the following

relation:

o, = r + r dar /dr (3.57)

where oi=N./h. In the following analysis we will assume that the stresses in

the inner region are related as in an inextensible membrane, for which

dordr=-O. The above equation then results in the following assumed stress

state:

UP = (r = Er El(1- v) for r <a (3.58)

It can be observed that the above assumption will result in an

overestimation of the strain energy in the inner region since d,/dr<O. Thus,

the solution will be stiffer than if the difference in radial and circumferential

stresses had been included and the Ritz solution will remain a lower bound

for the membrane deflection. It can also be noted from the solution by

Jahsman, Field and Holmes (1962) that large gradients in the radial stress

only occurs for small values of the radius r, which reduces the effect of the
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last term in Eq. (3.57), especially when the strain energy is integrated over

the membrane radius.

The stresses in the outer region are obtained by combining Eqs. (3.36) and

(3.34):

-o = Tr = Er E(1+ v) for r 2 a (3.59)

Note that the assumed membrane slope and stress state are discontinuous

at the plastic radius. In practice there will be a transition region with a

decreasing slope, resulting in a smooth change of the stress state.

By using Eqs. (3.51), (3.58) and (3.59) we may write the strain energy in

Eq. (3.55) as follows

a

U= 2 (1-v)r22zhrdr+E 12(1+ v)ar22rhrdr

0 a

Ehra 2 2d+ Eha 22sds
S r) Er22s ds +  -- 2s ds

(1-v)0  (1+ v)

The radial strain for the inner region is given by Eq. (3.54) and the strain in

the outer region by differentiation of Eq. (3.37) and combination with

Eq. (3.38). The total strain energy can then be written as follows:

Eha21 l(dw4 dw )2 +(U 2 sds + Eha2 U 2 ds

U h a 2 1 - + -d - g sds + fo n 2(I I 3S
1- v 4 dr dr a a 1+v a s

0 1

Rearrangement of terms and integration gives the following expression:
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(3.60)Ehna2 1 2dw ( dw)4 + 2 2 u
U = Ehaf(dwi dw+ 2 -u s ds +

l-v 0 dr 2 dr a 1+v a

The unknown constant u is obtained by differentiating the total potential

energy and setting the equation to zero. Note that the work function in

Eq. (3.58) is independent of u so that u is given by the following equation:

dn dU 2Ehra[J dw 2--- u- - sds +
du du 1- v 0dr

The edge displacement u is then

following equation:

2 u
l+v a

related to the other constants by the

u/a= -(l + v) (wm/a)2 (C2 +4C +6)/6 (3.61)

The above expression is now inserted in Eq. (3.60). The resulting expression

for the strain energy involves quartic polynomials in s and the unknown

constants C and w,. After lengthy algebraic manipulations and integrations

we finally obtain the following expression for the strain energy:

Ehiw4
U= Eh f(C)

36(1 - v)a2

where the function ftC) is defined by:

(3.62)
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f(C) =

I-[C 4(9 -5B) + C3 (72 - 40B) + C2(252 - 140B) + C(384 - 240B) + 240 - 180B]

where B = (1+ v)/2
(3.63)

By inserting Eqs. (3.56) and (3.62) in Eq. (3.55) we obtain the following

expression for the potential energy of the membrane:

I-I=U-W

=F rEh 2 4 f(C)-[6 2 (3 + C)]w
6 6(1- v)Fa 2

Differentiation with respect to C and w, now results in the following

equation system:

6 dn zEh w4 f'(C)+ 2 W =

F dC 6(1 - v)Fa2

6 n irEh 3 4f(C)-6- (3 = 0
F dw, 6(1- v)Fa2wm

If the deflection is assumed to be nonzero, the first equation can be divided

with Wm and the above equation system can be written on the following form

f'(C) i2 Wn3

[4f(C) 2(3+C)-6] 1=

where (3.64)

SiEh 3

Win3 - 6(1- v)Fa2 Wm

and ftC) is given by Eq. (3.63). The constant C is determined as a function of

the dimensionless plastic radius by setting the determinant of Eq. (3.64) to

zero:

68



[2(3+ C)- 6]f'(C)- 4 2f (C) = 0 (3.65)

where f(C) is given by Eq. (3.63). The central deflection w, is then obtained

from Eq. (3.64):

WM[6(1- v)ja2 Fa2 11/3
Wm -irf' (C) Eh

By use of the dimensionless plastic radius defined in Eq. (3.2) the above

equation can be rewritten on the following form:

Wm = fwWmF = fw [2poEh

where (3.66)

fw= 12(1- v)a2 -1/3

f K2 f(C)]

Note thatf, is in effect a correction factor to WmF, which is the solution for a

membrane loaded only by a point load, given by Eq. (3.49). The function fw

ranges from 0.67 to 0.77 and has been tabulated in Appendix B.2. The edge

slope angle is obtained by evaluation of Eq. (3.52) at the plastic radius (s=l):

0 = -(dw/dr)ls= = (2 + C)wm/a (3.67)

We note that the physical limits of 0 corresponds to a value of C in the

range -2 _ C -1. The function fw and the normalized edge slope angle

0/ (w / a) for v=0.3 are shown in Fig. 3.8. It can be noted that the
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normalized slope angle for large deflections (loads) is very close to the value

2/3 which applies to a rigidly fixed membrane under a point load when no

core pressure is present, as given by Frakes and Simmonds (1985).

L_

O
O

C

0 0.7.

LM
0

0.6
0 5 10 15 20 25

Load, F

Figure 3.8 Membrane deflection and slope angle normalized by the values

for a point load acting alone.
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3.5.5 Cusp correction

According to the membrane theory a point load will result in a

noncontinuous slope (a cusp) at r=O. In practice the load is distributed over

a small area and locally the radius of curvature of a perfect membrane will

be equal the to the tip radius of the indentor. The local geometry under the

indentor is shown in Fig. 3.9.

R zi W(r) w(O)

Figure 3.9 Geometry under the indentor.

The equation for the indentor surface is given by:

(R-Z) 2 + r 2 = R 2  or

Z = R[1 - 1 - (r/R)2 R[- (r/R)2] for (r/R)2 << 1 (3.68)

dZ r = r/R for (r/R)2 << 1
dr R 1- (r/R)2

The previously derived solution is based on the assumption that the radius

of contact between the indentor and the face sheet is much smaller than the

plastic radius, or equivalently s<<l. From Eqs. (3.50) and (3.51) we conclude
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that the deflection and slope of the membrane in this area approximately is

given by:

w = w,[ + C(rla)]

dw/dr = Cwl/a
(3.69)

for r/a <<

The equating of slopes in Eqs. (3.68) and (3.69) gives the following

expression for the radius of contact rl, between the membrane and indentor:

(3.70)r, = CRw,m/a
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3.5.6 Corrected membrane deflection

After the cusp has been removed, the deflection is given by inserting

Eq. (3.70) in Eqs. (3.68) and (3.69):

WmFcorr = Wm[1+C(r/a)] + Z(rl)

=Wm[l -RC m/a 2] + RC2(wm/a) 2

= W[1{- C2 Rwm/a 2]

By combining the above equation with Eqs. (3.66), (3.49) and (3.2) we finally

obtain the following expression for the membrane deflection after correction

for the cusp:

W = fw[ F2 2 1/3 1 C2fR P 2 41/3 (3.71)
m 2poEh 2 2FEha4

where the last square bracket represents the cusp correction. The

uncorrected expression corresponds to an indentor with zero tip radius. For

small values of the plastic radius the underlying assumption of a contact

radius much smaller than the plastic radius is violated, and the expression

may result in an unphysical negative deflection. In such cases it is proposed

to set the membrane deflection to zero.
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3.6 Large deflection plate analysis

3.6.1 Introduction to large deflection analysis

The linear Kirchhoff plate theory used in section 3.6 only includes bending

stresses and is based on infinitesimal deflections from the unloaded shape.

It is obvious that generally membrane stresses will be present since any

deflection from a flat shape to a doubly curved requires stretching of the

plate midplane in addition to bending. Increasing deflections increase both

the magnitude and the vertical component of the membrane stresses,

resulting in a geometrically nonlinear load-deflection relation. In the

following the concepts linear and nonlinear solution refer to solutions based

on small and large deflection theory. The small deflection solution is based on

linear theory, although the core crushing results in a nonlinear load-

displacement relation.

The limit of applicability of small deflection theory depends on the type of

load and the plate boundary conditions, as well as the required accuracy of

the solution. Generally the deviation from linear (small deflection) theory is

negligible for w/h < 0.2 and almost always significant for w/h > 1.

Equations for moderately large deflections of plates have been derived by

von Karman, who assumed small strains and rotations (02<<1) while

allowing for large deflections (w/h - 1). Von Karman's equations in polar

coordinates have been given, for example by Szilard (1974). These equations
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are coupled and nonlinear, and solutions have only been found in a few

cases.

Approximate solutions for large plate deflections are often based on

corrections of Kirchhoffs equations for small deflections by considering the

membrane stresses caused by the small deflection solution.

As discussed by Volmir (1962) first order large deflection theory neglecting

shear generally results in load deflection relations of the following type:

FNL b k 
(3.72)

where V = wo/h and F = Fa2/(lEh4)

and where the subscript NL refers to the nonlinear solution. The constants

kb andkmare dimensionless stiffnesses for the particular load case

associated with small deflection plate bending theory and additional

membrane effects given by first order large deflection theory, respectively.

The general form of Eq. (3.72) can be understood by considering Fig. 3.7 and

Eq. (3.53.a). In first order large deflection plate theory the deflection shape

is assumed to remain unaltered by the membrane stresses. Thus the

deflection shape is given by the small deflection solution where all slopes are

proportional to the peak deflection. Assuming small rotations ( <<1) the

additional vertical force component V due to large deflections is given by:

V=-N r dw C dw c ( dw w (3.73)
dr r r dr
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The linear small deflection solution w<<1 is obtained by neglecting the

second term in Eq. (3.72). The ratio between the forces given by the

nonlinear (NL) and linear (L) solutions for a given deflection can then be

written:

FNLFL l+kmW 2
NL + (3.74)

where m= km kb

Generally the constant k depends on the boundary conditions and the type

of load. Clearly the expression (3.74) is sensitive to the stiffness km. The

works by Dolovich et al. (1988) and Striz, Jang and Bert (1988) both

indicate that simple first order variational solutions overestimate the

nonlinear stiffness coefficient k, appreciably. In addition the solution by

Dolovich et al (1988) show that the ratio k. is decreasing with increasing

deflections. Large deflection plate theory is generally valid for deflections in

the order of the plate thickness, but becomes increasingly inaccurate for

larger deflections. We conclude that the present solution, which neglects the

effects of changes in the deflection shape, is valid only for intermediate

deflections, where it will give an upper estimate of the actual load.

The present problem involves the combined loading of a central point load

and a uniform reactive pressure as well as rotational and radial edge

constraints. No general analytical solution has been found to this problem

and solutions for a combined point load and uniform pressure on a circular

plate are only available for a few elementary boundary conditions. Saibel

and Tadjbaksh (1960) considered von Karman's equations for an immovable

clamped plate under combined loading and obtained a perturbation solution
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based on the plate deflection. Schmidt and DaDeppo (1976) used nonlinear

Kirchhoff plate theory to obtain a similar perturbation solution for the

combined loading on a plate with sliding clamps.



3.6.2 Nonlinear stiffness under different boundary conditions

In this section solutions for a uniform pressure interacting with a point load

will be given for boundary conditions in four limiting cases:

a) Edges in fixed clamps

An approximate perturbation solution to von Karman's equations for this

problem was given by Saibel and Tadjbaksh (1960) who used the center

deflection as perturbation parameter. The first two terms of the solution,

which corresponds to a first order large deflection analysis are given by:

8( +) Fl 2 12 (1- v2 1 2 + 382(l -v2)]3/2 3 ]/[12(1- 2 ]3/2
(1+1//3) [1) k - L

(3.75)

where

A, = 4/(1+ 4#)

3- ~14[3( i 1 a,2 +- al -
3 641[rk 811 36 414)

+fl(a3 9a2 ) 600+ 1728 (5a3 77)]
24( a3 42 -2 7 600

a 1 = (9-7v)/(1- v) a2 = (16-11v)/(1- v)

= F/( qra2)

Note: / = F/(-po a2 )= - 1/2 in the present problem

a3 = (5-3v)/( - v)

The above equation can be rewritten on the following form:

3= 4 2 )1 [1 + m ]

3(1- v2)

(3.76)

where km = 48(1- v 2 )A3/A 1
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The parameters P, /11 and A; in Eq. (3.76) are defined in Eq. (3.75). A

misprint in the original expression for a, has been corrected as proposed by

Schmidt and DaDeppo (1976).

The radial stress at r = a is given by the following expression:

N,(a)= Eh 2k 48Eh3

3(1- v2)a2 XI f2k ( W 3a 2

where Wm=2 j12(1- v2 ) (3.77)

V2( -)= _12[2 (aj -7)/4+ (a 2 -1 )/18+(a 3 -3)/48]

The functions used in Eq. (3.77) have been defined in Eq. (3.75). The

truncation of the serial expansion of Nr after k=1 corresponds to the first

order large deflection solution given in Eq. (3.75).

b) Edges in sliding clamps

An approximate solution for this problem, based on large deflection

corrections to Kirchhoffs theory, was given by Schmidt and DaDeppo

(1976). The first two terms, which corresponds to a first order large

deflection theory are given by the following equation:

Fa2  4qa4

7rEh4  Eh4

4P/1i + (1212 p3A + 46 p2L2 1-- fl3A1 + 2190)W 3

S3(1- v 2 ) 810064 16

The above equation can be rewritten on the following form:
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Fa2 -qa 4  4 3 lT [1 + k-W2]

rEh4  Eh4  3(1-v 2)

(3.78)

where k= - v2)[332I3 + 4409 2 12 -9731 + 2190]/10800

The parameters 3, A~ and A3 in Eq. (3.78) have been defined in Eq. (3.75).

c) Edges in fixed hinges

No solution was found for mixed loads on plates with hinged edges. We will

therefore use the solutions for the clamped cases to derive an approximate

solution with sufficient accuracy in the range where large deflections

normally occur. For the combined point load and reactive pressure case we

observe that the solutions for hinged and clamped cases will be identical

when U2 =2, which corresponds to M,(a)= 0 in the clamped case and 0 (a)=O

in the hinged case. For hinged plates an additional reactive force is due to

the edge slope which results in a vertical component of the edge membrane

stress:

6F = 2 caNr(a)0 (3.79)

To estimate the stiffening effect in the case of immovably hinged edges we

use the expression by Saibel and Tadjbaksh (1960) for the radial edge stress

in an immovably clamped plate, Eq. (3.77). For zero edge slope ( 2 =2) this

stress will be identical to the edge stress in the immovably hinged case. To

predict the edge slope 0 we use the expression given by the linear solution

for a hinged plate:
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FLhi(2 -a2) (3.80)

8nD(1 + v)

where the subscript L refers to the linear solution and hi to hinged edge

conditions. For large deflections of a plate with immovably hinged edges the

increase in load for a given deflection is partly due to the resistance to

stretching and partly due to the vertical component of the edge membrane

stress. Here we will assume that the load increase due to stretching is equal

to that of an immovably clamped plate, which is virtually independent of the

load ratio Z2=poza2/F. With the above assumption and by use of the

definition of the dimensionless force F given in Eq. (3.72) the ratio between

the nonlinear and linear solutions for a hinged plate of radius a can be

written

FNLhi FLhi = FNLcl/FLcl + 2raNrhiO/FLhi

where the subscripts NL and L refer to the nonlinear and linear solutions

and hi and cl to hinged and clamped edge conditions. The nonlinear solutions

are given by Eqs. (3.76) and (3.78) while the linear solutions are obtained by

dropping the last term in these equations. For zero edge slope (a 2=2) the

assumption of an equal stiffening due to stretching in the hinged and

clamped plate will be completely satisfied since the deflection shapes of the

two plates are identical in this case. As the edge slope increases the

stiffening due to stretching will be increasingly different for the clamped and

hinged plate. A qualitative estimate of the difference can be obtained by

comparing the average strains in the deflected shapes of a clamped and
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hinged plate loaded only by a point load. It is seen that the average strain in

the clamped plate is only a few percent higher than in the hinged plate,

which indicates that the difference in stiffening due to stretching should be

moderate.

An approximate solution for the case with fixed hinged edges is now obtained

from the following first order Taylor expansion around e=0 (d2 =2):

NLhi FNLh d Lhi

FLhi FLhi 0=0 dO FLhi  0=0

FNLhi 
2 aNrhi + 2raO dNrhi

FLhi 0=0 FLhi 0=0 FLh A 0=0o

0 2 lraONrhi dFLhi 0
FLhi2 "0 0=0

By neglecting higher order terms in 0 and by noting that the solutions for

the hinged and clamped plate are identical for 0=0 (a2=2) we obtain the

following approximate large deflection solution for the hinged plate:

FNLhi FLcl

FLhi FLcl 0=0

2 aINrci
+ 0

FLcl 08=0

The use of Eqs. (3.76), (3.77) and (3.80) for v=0.3 and j 2=2 (0=-0) gives the

following solution for the plate with fixed hinges:

FNLL = 1+ 0.466 + E( 2  0. 296 w2
4D(1 + v)

For a homogenous transversely isotropic plate Eh3 =12(1-v 2)D and the above

equation can be rewritten to:



../. 1+ ,w 2 =1+ [0.466+3(1- v)(2 _-2)0.296W2 (3.81)

The present approximate solution, Eq. (3.81), has been tabulated for

different values of a2 in Table 3.1. The minimum value of the dimensionless

plastic radius is i2=0 while an upper physical bound is Z2=2, since the slope

angle in Eq. (3.80) is zero or positive. We note that the deviation from known

closed form solutions in Table 3.1 is 20-35% for i2=0 and 0% for d2=2,

where the solutions for hinged and clamped plates coincide due to zero edge

slope. Thus the proposed solution is expected to have acceptable accuracy,

especially since we only consider large deflections in the plastic region which

do not occur for very small values of the plastic radius.

d) Edges in sliding hinges

As for the case with fixed edges we may conclude that the solutions for

edges in sliding clamps, Eq. (3.78) and sliding hinges will be identical for

a2 =2. The solution for vanishing plastic radius (fl 2 =0) is given by the single

load solutions for a point load, which are shown in uppermost part of

Table 3.1. It is seen that the ratio is almost the same as for i2=2. No

additional edge forces will occur for 60 since N=0 at r = a. We conclude that

the stiffness ratio in the plate with edges in sliding hinges will be virtually

constant for 0 i2<' 2 and in Table 3.1 and the following analysis it has

been assumed that the stiffness ratio is equal to the value at 2 =2.

The values in Table 3.1 for j
2=0 and Z2=0 correspond to single load

solutions for a point load and a uniform pressure, respectively, calculated by
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a variety of methods and published in the references shown in the table.

Note the disagreement between many of these values. It should also be

mentioned that the stiffness ratios are discontinuous in the interval

2: 2 o00, since there is a sign change in the deflection at a certain value of

d2 . Thus the stiffness ratios for a uniform pressure alone cannot be used as

asymptotic values for the case of zero edge slope, which occurs at i22 2.

References for Table 3.1

1) Volmir (1962)

2) Banerjee (1983)

3) Ferriss (1991)

4) Bert and Martindale (1988), w/h=1

5) Way (1934), w/h=l1

6) Schmidt (1987), w/h=1

7) Dolovich, Brodland and Thornton-Trump (1988), w/h=1

8) Striz, Jang and Bert (1988), FEM-analysis, w/h=1

9) Eq. (3.76), Saibel and Tadjbaksh (1960)

10) Eq. (3.78), Schmidt and DaDeppo (1976)

11) Eq. (3.81), Olsson (present work)

12) Assumed value in present analysis

References 4) to 8) are improved solutions with non-constant km.
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Table 3.1 Dimensionless stiffness for different loads
and boundary conditions

F l=2 =1/ 2  km (v=-0.3)
fixed sliding fixed sliding

clamps clamps hinges hinges

0 * 0 -0.39 8) -0.92 8)

0* 0 0o -0.36 7)

* 0 oo -0.45 4) 0.208 3)

00 0 o 0.430 2) 0.110 2) 1.260 2) 0.160 2)

00 * 0 00 0.443 1) 0.200 1) 1.430 1) 0.272 1)

2.574

2.960

3.802

5.005

7.861

10.253

12.057

15.075

17.293

22.217

24.240

27.795

-40

0.004

0.084

0.262

0.450

0.733

0.878

0.959

1.062

1.171

1.217

1.248

1.295

1.500

2.000

-250

-11.905

-3.817

-2.222

-1.164

-1.139

-1.043

-0.942

-0.893

-0.822

-0.801

-0.772

-0.667

-0.500

0.445

0.444

0.443

0.441

0.440

0.440

0.440

0.439

0.439

0.440

0.440

0.441

0.444

0.466

0.20010)

0.201

0.203

0.206

0.209

0.211

0.213

0.216

0.218

0.222

0.223

0.225

0.233

0.26410)

1.71011)

1.657

1.546

1.399

1.254

1.163

1.113

1.088

1.013

0.981

0.933

0.904

0.777

0.46611)

0.264 12)

0.264 12)

- 1000 -0.001 0.546 9) 0.18510) - 0.264 12)

0* 00 0 0.544 1) 0.146 1) 1.852 1) 0.262 1)

0* 00 0 -0.56 4) 5) -1.46 8) 0.221 3)

0* oo 0 -0.59 6)

0* 1 0 -0.53 8)

* Single load solutions NOTE: References given on the preceding page.
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3.6.3 Ratio between large and small deflection solutions

In the present case the edges of the inner plastic region are radially and

rotationally constrained rather than rigidly clamped. We will seek an

approximate solution based on interpolation between the solutions for the

four elementary boundary conditions given in the previous section.

From section 3.5.2 we recall that the edge stress for a radially constrained

membrane under uniform stress was approximately one third of the stress

for a membrane with immovably fixed edges, where the exact ratio of the

stresses depends on Poisson's ratio. A comparison with the results by

Jahsman, Field and Holmes (1962) shows that the addition of a point load

only causes a relatively local deviation from the prestressed uniform stress

state. We will assume that the membrane stress state is representative for

the membrane stresses in a plate undergoing large deflections.

As shown by Pettersson (1954), for radial edge loads and axisymmetric

transversal loads interacting on a circular plate of radius a, the ratio

between the transversal loads required to obtain a certain deflection for the

cases of radial edge load NK and zero edge load is given by:

F(N = NK)
F(N = ) = I + NK/Ncr (3.82)
F(N = 0)

where Ncr is the lowest critical buckling load of the plate. For the case where

the edge loads are caused by large deflections, so that F(N=NK) corresponds

to FNL(N=NK) and F(N=O) to FL(N=O) we get the following relation:
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FNL(N= NK)/FL(N=O) -1 = mK 2 = NKNcrK (3.83)
FNL(N = O)/FL(N= 0) 1+kmslide W

where kmslide and kinK are the dimensionless membrane stiffnesses

associated with stress free edges and the edge stress NK , respectively. The

quantity NcrK is the buckling load associated with the boundary condition

which results in the edge stress NK. The approach was checked by verifying

that the stiffness ratio for plates with fixed edges could be obtained from the

solutions for sliding edges (N=O) by inserting proper values of the critical

buckling load and edge stresses as given by solutions for fixed edges.

By taking the ratio of Eq. (3.83) for the cases with constrained and fixed

edges we obtain an expression relating the dimensionless stiffnesses to the

ratio of the edge loads. By using the assumed relation between N and Nfixed

given in Eq. (3.41) and solving for the unknown membrane stiffness in the

constrained case we obtain the following expression:

km = [(1+ v)mKslide + (1- V)mKfixed/2 where kiK = mor kmhi (3.84)

where the subscript K refers to either clamped (cl) or hinged (hi) edge

conditions and slide and fixed refer to radially free or fixed edges. To include

the effect of rotational constraint we will use a linear interpolation between

the hinged and clamped case where the dimensionless edge moment M(F, v)

is expressed as a fraction of the corresponding moment Mc for a clamped

plate. By using Eq.(3.2) and equations from linear plate theory as given for

example by Szilard(1974) we find that the dimensionless edge moment of a

clamped plate can be written as follows:
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Mic = a 2 -2 (3.85)

The resulting nonlinearity coefficient for the present plate with radially and

rotationally constrained edges will now be given by:

km = hi + (M/Mic )[kcl - knihi (3.86)

where the quantities on the right hand side are given by Eqs. (3.84), (3.85)

and in the table of Appendix B.1.

The dimensionless force F defined in Eq. (3.72) involves the plastic radius a.

By plotting the small deflection solution for the dimensionless plastic radius

versus force F in a log-log diagram it is seen that the relation can be

approximated by the following relation:

- 2  COFP (3.87)

where the exponent p only changes slowly with the dimensionless force,

except for loads just above the load for initiation of core yielding. The value

of p has been tabulated in Table 3.2.

Two factors contribute to the increased force during large deflections of the

inner region. The first is due to resistance to midplane stretching and the

second is due to the vertical component of the membrane edge force, which

acts a fictitious edge shear load. Only the latter contributes to an increasing

plastic radius. As previously we will assume that the stiffening due to
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stretching is approximately equal in the hinged and clamped plates. The

effective force FNL contributing to an increase in plastic radius is then

obtained by subtracting the force contribution for a clamped plate. The ratio

of plastic radii is now approximately given by:

aNL2/_2 [N/L+ =[(~m - cl i2 (3.88)

Using Eqs. (3.2), (3.72) and (3.87) we obtain the following expression for the

ratio between dimensionless forces in the nonlinear and linear solutions:

FNL FNLaNL FNL 2aNL 2  FNL 2

FL FLaL2  FL2 L2  2 mFL]

where aNL and aL are the plastic radii associated with the nonlinear and

linear solutions, respectively. Solving for the ratio of barred forces and using

Eq. (3.74) we finally obtain:

FNL/FL = ( + mW2 )/[ + ]m- kmc)W2 (3.89)

where the values of km and p for v=0.3 are given in Table 3.2. Equation (3.74)

gives the ratio of the forces for the nonlinear and linear plate solution for a

plate with constant radius, while the solution in Eq. (3.89) in an

approximate way takes into account the effect of the increase in radius

caused by the increased edge load. By definition FNL/FL is equal to, or larger

than unity. For small values of the plastic radius, where this condition may

not be satisfied by Eq. (3.89) it is proposed to set FNL = FL.
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Table 3.2 allows for a comparison between the dimensionless edge moment

M of the inner region with that of a clamped plate, M,1 . The membrane

stiffness ratio k, for the radially constrained inner region can also be

compared with the values k.hi and k,,cl for a hinged and clamped plate

having the same radial constraint. For practical calculations, the

parameters F, &2 and 8M/F are used in the linear analysis of Eq. (3.16),

while the resulting deflection w and the parameters km, kc1 and y are used

for the nonlinear correction in Eq. (3.89).
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Table 3.2 Dimensionless nonlinear stiffness k, versus

dimensionless load F, (v =0.3)

F a2  8 8M/F clamped hinged present p

(I.2 2) kmcl kmhi k I
2.546

2.574

2.960

3.802

5.005

7.861

10.253

12.057

15.075

17.293

19.674

22.217

24.240

27.795

00

0

0.004

0.084

0.262

0.450

0.733

0.878

0.959

1.062

1.120

1.171

1.217

1.248

1.295

2

00

+10

1.569

0.188

-0.345

-0.648

-0.689

-0.690

-0.673

-0.656

-0.637

-0.617

-0.603

-0.577

0

-2

-1.966

-1.916

-1.738

-1.550

-1.267

-1.122

-1.041

-0.938

-0.880

-0.829

-0.783

-0.752

-0.705

0

0.286

0.286

0.287

0.288

0.290

0.291

0.292

0.294

0.295

0.297

0.298

0.299

0.301

0.335
I L ________ I I

0.770

0.752

0.713

0.661

0.611

0.579

0.561

0.552

0.526

0.521

0.515

0.498

0.488

0.335

3.232

1.134

0.759

0.578

0.447

0.402

0.383

0.367

0.354

0.349

0.344

0.338

0.335

0.335

00

-200

6.6

2.5

1.6

0.8

0.6

0.5

0.4

0.3

0.3

0.3

0.3

0.3

<0.3



3.7 Contact deformation

The local compression due to the contact stresses between the indentor and

the face sheet may be analyzed using a modification of Hertz's contact

theory, which is based on linear elasticity of isotropic bodies. Hertz's theory

relates the total contact force F, to the approach a, which is the maximum

relative displacement of the bodies in contact. Here we define a as the

relative displacement between the center of curvature of the indentor and

the lower surface of the face sheet, Fig. 3.10.

a = W2 - W1  (3.90)

2 2R

w2

Figure 3.10 Definition of the local contact problem.

When a hemisphere is pushed into a halfspace with a contact force F,

Hertz's theory states that the approach a is given by:

a = (F /ka)2,3  (3.91)

where ka = gQa -- (3.92)
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with Qi = Ei/(1- vi2 )  (3.93)

and 1/Qa = 1/Q1 + 1/Q2  (3.94)

where index 1 refers to the face sheet and index 2 to the indentor. For cases

where the indentor is much stiffer than the face sheet Eq. (3.94) simplifies

to Qa = Q1. The contact radius is given by the following expression;

c = -- = FR/Qa )1/3 (3.95)

and the contact pressure by:

q(r) = 2 1- r2/c 2  (r < c) (3.96)

The above expressions remain valid for the indentation of a transversely

isotropic halfspace but Q1 must be replaced by the expression:

1 = 1/(itk') = 2 Gzr/A 22 (A 1 A 22 - A 1)A2 / 4 2 + Gzr) 2 -(A 12 + Gzr) 2

where A,, = Ez(1- Vr)1

A 22 = Er(l- Vzr 2S)P 1 + Vr) (3.97)

A12 = ErVzrf

P = (1/- r -2zr 26)

5 = Er/Ez

which originally was derived by Conway (1956) and later put into the more

convenient form of Eq. (3.97) by Greszczuk (1982).
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In most cases the local indentation is very small in comparison to the face

sheet deflection and we may use an approximate expression for the out-of-

plane stiffness based on a simple generalization of Eq. (3.93):

Q = Ez/(1- VrzVzr)= Ez/(1- vrz2 Ez/E,) (3.98)

In most laminated face sheets Vrz=1/ 2 and Ez/E r <<1 and the expression

simplifies to

Q = Ez (3.99)

It should be noted that Ez of a laminate generally is higher than Ez of a single

ply, which has been discussed by Olsson (1993).

Although the present equations were derived assuming indentation of a

surface of infinite depth it has been shown by Olsson (1993) that the

contact stresses are small for depths larger than c and negligible for depths

larger than 2c. Thus the assumption of a halfspace will be acceptable for

2c < h. The cases where this condition is not fulfilled will normally correspond

to load levels where the local indentation is negligible in comparison to the

global face sheet deflection.
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3.8 Shear deformation

The shear deformation of the face sheet in the plastic region is composed of

the shear deformations due to a concentrated load and a uniform pressure.

It should be noted that the size of the contact area must be taken into

account since a point load yields infinite shear deformations.

Although the actual pressure distribution is parabolic, we will assume that

the contact load is uniformly distributed over the contact area and use the

following expression for the central shear deflection WsF due to a load F

uniformly distributed inside a small radius c:

sF -(1-4VrzGzr/ Er)(1+ n[c/a]) F (3.100)
WsF = F (3.100)

Gzr h

This expression was given by Shivakumar, Elber and Illg (1985) who used a

model of the type shown in Fig. 3.3 to analyze large deflection impacts on

circular transversely isotropic plates.

Assuming plane stress, the central shear deflection wsp due to a uniform

pressure on an isotropic circular plate has been given by Timoshenko and

Woinowsky-Krieger (1959). An obvious generalization to transverse

isotropy is obtained by replacing G related to transverse shear with Gzr and

v/E related to radial strain caused by transverse pressure with z,/Er. The

shear deflection wsp of a transversely isotropic plate due to a uniform

pressure po is then given by:
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poa [ 3 4v,1 a2 (3-4v Gr/E,) F
P 8h G, Er 8r G,h

(3.101)

where we have used the definition of J given in Eq. (3.2). Now the total

shear deformation is given by:

Ws = wsF - Wsp =

(1-4 rzG z/E)(1- 2/8 + 31n[a/c]) - 2/4
4GzF

a Grzh

where

_3 Fpo , R2
= InU+j1n7 4O + 1n F )

6PoR

Here we have used Eqs. (3.2) and (3.95) to express In (a/c ).
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3.9 Resulting load-indentation solutions

The solutions resulting from the previous analysis can now be summarized.

The squared plastic radius and edge moment given by the plate and

membrane solutions for v=0.3 have been compared in Fig. 3.11 below.

2-
2.-- Plate

Membrane

o 0 1  I ... .. "

Ua) 0- - - - - -

- \

8M/F

-1 i I i i

0 8/n 5 10 15 20 25

Load, F

Figure 3.11 Comparison of the squared plastic radius and edge moment
given by the plate and membrane solutions for v=0.3.

When compared with the plate solution it is seen that the membrane

solution results in a zero edge moment and a slightly smaller plastic radius.

In Fig. 3.11 the difference between the two solutions has been enhanced by

the squaring of the plastic radius. It is also seen that the plastic radius is

zero for dimensionless loads equal to or smaller than 8/n. In such cases the

solution for a fully elastic foundation applies.



3.9.1 Resulting small deflection plate solution

Prior to core yielding, F < 8/z

Neglecting shear and using Eqs. (3.91) and (3.8) we find that the deflection is

given by:

w = a +Wb =

(3.103)

(Flka)2/3 + F/k-

where k is the foundation stiffness and ka is the contact stiffness defined in

Eq. (3.92).

After core vieldina. F > 8/c

Combining Eqs. (3.91), (3.9), (3.16) and (3.102) we find the deflection to be

given by:

w = a +Wa + Wb + s

2 -2

(F/k a ) 2/3 PO _ F2 [(3 +
k 16r2poD(1+ v)

v) - 2 (5+ v)/4 +8M/F] +

(1- 4vrzGrZEr) 4- 2+3+4n(-Qa/po ) +n(F I/R)] - 2

4 i Grzh
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where i 2 is obtained by solving Eq. (3.27). The dimensionless edge moment

M is then obtained by dividing the right hand side of Eq. (3.22) with the

dimensional quantities, which can be seen from the definitions in Eq. (3.2).

The solution is shown graphically for v=0.3 in Fig. 3.11 and has been

tabulated for different values of Poisson's ratio in appendix B. If contact

indentation and shear deformation is neglected the solution may be written

on the following dimensionless form:

WI/Wa = (Wa + Wb)/Wa

(3.105)

1 + 6(1+ [(3 + v)-I2(5+ v)/4+8M/F]
16(1 + v)

3.9.2 Resulting large deflection plate solution

For large deflections, w/h >1, the relation between the load obtained using

large deflection analysis (NL) and small deflection analysis (L) for a given

deflection is given by:

FNL/FL = ( + Km l+(2 (m -)/[W]" (3.106)

where the values of ki, k-m,, and y for v=0.3 have been given in Table 3.2.
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3.9.3 Resulting membrane solution

Under the assumptions of membrane theory, shear and contact

deformation are not relevant. In addition, the membrane solution is only

assumed to be used after core yielding has occurred. Thus, the resulting

membrane solution is obtained by combining Eqs. (3.9) and (3.71):

W= Wa+Wm =

(3.107)

PO F2 2 1/3- IA2 fw R  PO2  1/3

k [2poEh 2FEhI 4

The function fw, which is normally in the order of 0.7, has been tabulated in

Appendix B.2. For a point load (R=0) the solution may be written in the

following dimensionless form:

w/wa = (Wa +Wm,R=O)/Wa=

1 2  -1/3 (3.108)
=1+ f -

241-v2a2
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3.9.4 Comparison of membrane and plate solutions

The dimensionless membrane solution has been compared with the linear

and nonlinear plate solutions in Fig. 3.12 below. Prior to core yielding

(w/Wa=l) the load-indentation is linear. After this point the linear (small

deflection) plate solution shows an increasing softening. The nonlinear (large

deflection) plate solution shows a weak but monotonous stiffening and is

initially stiffer than the membrane solution. At some point it is intersected

by the membrane solution, which represents an approximation of the

asymptotic behaviour for large indentations. The point of intersection is

dependent on the ratio w/h , which is related to the magnitude of large

deflection effects which are present at the initiation of core yielding.

0 5 10 15

W/Wa

Fig. 3.12 Comparison of load-indentation solutions

20
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The linear plate solution represents a lower limit of the true solution, since it

neglects the additional stiffness due to membrane effects. The large

deflection plate solution is only valid for intermediate deflections. In this

range it represents an upper limit of the stiffness, since large rotations and

the change in deflection shape are neglected. The approximate membrane

solution represents an upper limit for large indentations, since Ritz method

yields solutions which are stiffer or equal to the "true" solution. The method

for removal of the membrane cusp represents an additional constraint since

the relaxation of stresses caused by a distributed contact load is not taken

into account.

Depending on the accuracy of the models, the "true" solution will be more or

less close to the large deflection solution and membrane solution in their

respective ranges of validity. At the present stage of analysis the best

approximation is probably given by the upper envelope of the three solution

approaches, i.e. for increasing indentation first by the linear plate solution,

then by the nonlinear plate solution, and finally by the membrane solution.
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4 Additional considerations

4.1 Anisotropic face sheets

4.1.1 Introductory remarks

In the previous analysis we have assumed that the core and face sheets are

transversely isotropic with respect to the out-of-plane axis (z-axis), i.e. they

have isotropic inplane properties. In practice foam cores generally are

isotropic while honeycombs are orthotropic with a moderate difference

between the inplane stiffness in the width and length ribbon directions.

These differences do, however, not affect the analysis of the present work

since only core out-of-plane properties are considered.

A more important factor is the anisotropy of the face sheets. In practice

virtually all face sheets made of anisotropic plies are also macroscopically

anisotropic. Even so called "quasi-isotropic" laminates, which possess

inplane isotropy, are usually not isotropic in bending. However, many

laminates used in practice can be approximated as "specially orthotropic" in

bending and inplane extension. In a specially orthotropic laminate the

bending-stretching coupling coefficients D16 and D26 in the plate stiffness

matrix are zero, which in practice is obtained by stacking equal orthotropic

plies symmetrically with respect to both the laminate midplane and an

inplane coordinate axis. Here we will only consider application of the present

model to specially orthotropic face sheets.

103



4.1.2 Effective face sheet membrane properties

The properties involved in plane stress analysis of a transversely isotropic

membrane are Er and v,, or in the present simplified notation E and v. To

analyze orthotropic face sheets we propose the following effective

(averaged) inplane properties:

x/2
E* = Er(O) dO (4.1)

0

2 r/2
V*=- vr()dO (4.2)

0

Integration over /2 is sufficient due to the assumed symmetry with respect

to the laminate x-axis. For cross-ply laminates it is sufficient to integrate

over n/4. In practice the integration was performed using numerical

integration by stepwise rotation of the laminate and using the output

engineering quantities Ex and v, from a standard laminate program.
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4.1.3 Effective face sheet plate properties

Using classical plate theory we find that the bending of specially orthotropic

plates is governed by the following single partial differential equation:

Dxw w, + 2D w=,y + DyW,yyyy p(x, y)

where Dy = 2D12 +D66  Dx = D11  Dy = D22

The deflection of orthotropic plates was first treated by Huber in the

beginning of the century, and a thorough review of his works in this area

was given by Huber (1923). For the particular case Dxy2=DxDy, as pointed

out by Huber (1923), Eq. (4.3) can be transformed to an equivalent isotropic

plate problem by use of the following rescaling to effective plate stiffness

and lengths:

D= -- x( bD)1/4  -y D) 14  (4.4)

To derive an approximate expression for the effective plate stiffness of a

generally orthotropic plate we consider Eq. (3.8) which may be rewritten as:

8wo/F = 42 /D* (4.5)

where 4 and D*are equivalent isotropic quantities for the orthotropic plate.

A point load on an isotropic plate results in a circular deformation pattern.

Obviously, the corresponding deformation pattern on an orthotropic plate

will be more similar to ellipses. For the orthotropic plate we consider a
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rotated coordinate system x', y' and use a directional version of Eq. (3.2.a)

to scale the length L to the rotated system:

L(0) = [Dr(O)/D'(O)]1/4

We now approximate the effective radius and plate stiffness in this system

by the geometric average of the values in the directions x' and y':

(4.6)

2 = DD 1/4 D' = DyD

These two approximations can be recast into the following single expression:

42/D= 2(D*2DxD l4

where

Dx = Dx cos4 0 + 2Dy cos2 0 sin2 0 + Dy sin4 o

D; = D cOS4 + 2Dx cos2 0 sin2 0 + Dx sin4 

(4.7)

(4.8)

To get the best possible approximation of D* we take the average of

Eq. (4.7) over angles 0 to r/2 and equate it with Eq. (4.5):

1/-5. = (2/7r)

1

4-5,

z/2

S(DD' -1/4 d

2
Ir

or using Eq. (4.8)

dO

(DxDy ) 1/4 (cos20+sin2 0)2 +(A-1)2cos 2 0sin2 0

where A= DxyDxD
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Using trigonometric identities this may be written

(DxDy 11  / 2dO 2 7r/2 d

i o + I+(Al-1)sin 2 28 o ,1--(1-A)sin29

Observing that this is an elliptic integral we find that the effective plate

stiffness may be written:

D */FDxD = (f/2)/K (1 - A)/2)2 0 A<1

D*/ Dy = -(r/2)[(A + 1)/2]K( (A -1)/(A + 1))2 1< A

(4.9)
where A = D/DxyD

r/2 dO

and K(s) =J dO
o -s 2sin 2 6

K (s) is the complete elliptic integral of the first kind and can be found in

more comprehensive mathematical tables. Results for different values of A

are shown in Tab. 4.1:

Table 4.1 Effective plate stiffness for different anisotropy ratios

A 0.0 0.2 0.4 0.6 0.8 1.0 1.5 2 5 10

D*D-xD, 0.717 0.783 0.816 0.843 0.949 1.000 1.085 1.243 1.790 2.565

It is interesting to observe that, without using the above averaging

assumptions, the same expression was derived independently by Frischbier

(1987) and Olsson (1989,1992) when considering impact response controlled
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by flexural waves in orthotropic plates. A simplified expression for the

effective plate stiffness given by Olsson (1992) has been found less useful.

Note that A=I (Dy2 =DxDy) corresponds to the scaling from a circle of radius

Lo to an ellipse with the same area. Values of A #1 correspond to more or

less deformed ellipses, as shown in Fig. 4.1.

A=]

LO(O)= 4[Dr()/D *]1/4 A>
A<]

Figure 4.1 Length scaling to orthotropic plate from
equivalent isotropic plate

Physically A >1 corresponds to a plate with a relatively high torsional

stiffness, as would be seen in an angle-ply laminate. Similarly A <1

corresponds to a relatively low torsional stiffness, as would be seen in a

cross-ply laminate where the fibres are aligned with the x-y-axes.

To obtain the peak deflection of an orthotropic laminate it is sufficient to

use the effective plate stiffness given by Eq. (4.9). If needed, the shape of

the deflected area can be obtained by the scaling indicated in Fig. 4.1.
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4.2 Unloading behaviour

4.2.1 Constitutive modeling of core unloading

Estimates of the residual face sheet deflection after indentation is of

interest for damage detectability and for damage tolerance analyses. A

theory for the complete unloading history is of interest in impact analyses.

The analysis of the unloading behaviour is complicated by the fact that the

outer parts of the previously plastic region will behave elastic, but with a

new neutral position. The following analysis will be limited to establishing

upper and lower bounds on the residual deflection. To obtain a permanent

face sheet deflection it must be assumed that the crushed part of the core is

able to sustain some degree of tensile stress, o , since an undamaged

facesheet will otherwise return to the original undeflected position. For

convenience we define the vertical pressure on the core, p= -az(z=h/2).

Consider a cylinder of elastic-ideally plastic core material compressed by a

face sheet deflection to Wi and then partially decompressed when the face

sheet is displaced to a residual equilibrium position with a deflection w as

shown in Fig. 4.2.
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W

Pu a A ?a

Figure 4.2 Loading-unloading cycle with core crushing

The crushing of the core reduces the effective thickness of the core that can

unload elastically from hc to ih*, and thus the core stiffness is proportional

to Qc(7 h*). For cases where the peak deflection is much smaller than the

effective core thickness we have i7=1. For essentially plastically crushed

cores the tensile stress Pu required to "unwrinkle" crushed cells will

approach po while Pu in essentially elastically crushed cores will approach

zero.

Before unloading the energy stored per unit area in the plastic area is:

w

o, = Jpdw = poWa/2+po(- wa)
0

After unloading the energy per unit area is:

(4.10)
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wp = J pdw + pdw (4.11)
0 V

A lower bound for the local plastic work is reached if pu=0. From Fig. 4.2 it is

seen that the local plastic work in this case is given by:

Op > aPO(Wa) +(1 - r)POWa

where the right hand side corresponds to unloading to zero residual stress.

Thus, the lowest possible value of the local plastic work after unloading is

obtained by assuming i7=1:

opmin = Po(W - Wa) (4.12)

An upper bound on the local plastic work is obtained by assuming that the

crush stress po corresponds to a completely plastic deformation of the core

cells. If strain hardening effects are neglected the absolute value of the

"unwrinkling" stress" Pu must equal the crush stress Po and we obtain:

0, 2 poWa + 2po( - Wa)+( 1- )PoWa

where the right hand side corresponds to unloading to w=0. Thus, the

highest possible value of the local plastic work after unloading is obtained by

assuming j7=0:

pmax = 2po(- Wa)+ POWa (4.13)
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A more detailed description of the energy consumed in elastically deforming

the core requires knowledge of the "unwrinkling stress" Pu and the remaining

elastic fraction r of the core.
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4.2.2 Unloading of the face sheet after core yielding

Consider the deflected face sheet after core yielding. In the plastic region the

core is under constant pressure p=po, which may be modeled by equally

contracted springs, i.e., the distance between the face sheet and the other

end of the foundation springs is constant.

F

WO

Figure 4.3 Model of plate on spring foundation after core yielding.

In the adopted "first order" large deflection analysis the face sheet deflection

is assumed to be given by the linear (small deflection) solution, i.e. w=f (FL).

Membrane stresses are assumed not to affect the deflection, but contribute

to the total load through a magnification factor of the load FL associated

with the linear solution.

Thus, for predicting the deflection during unloading we neglect, as a first

approximation, the strain energy due to membrane stresses and consider

the linear solution. Since this system is linear it will unload linearly from the

peak load FL. The strain energy UL stored in the system is given by:
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Wo

UL =fFLdw -WP=WL-WP (4.14)

where WL is the work resulting from the point load as given by the linear

solution and Wp is the plastic work consumed in core crushing.

Obviously, the actual unloading curve will be nonlinear due to additional

membrane contributions to the load.

A lower limit for the plastic work is obtained by integrating Eq. (4.12) over

the plastic radius:

Wpmin = I OpmindS= If Po(w - wa)dS = f Po( - Wa)2nrrdr = {sets = r/a}

= 2poira2 Sw(s)sds = 2FL 2fSw(s)sds

Here Sw(s) = (s) - w, is the deflection at s=r/a of a simply supported plate of

radius a under a central load FL, a uniform pressure -pO and edge moment M.

Using standard plate solutions, as given by Szilard (1974), we obtain Sw(s)

from

Sw(s) = F La 2 [(3+ v)( 1-s2)+ 2(1 + v)s2 ns]
16 ziD(1 + v)

-64D(a 4  [2(3+ v)( S2)_(+ V)(s4)]+ 2 ( S264zD(l + v) 2D(1+ v)

where s = r/a
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By use of Eq. (3.2) the above equation can be rewritten as

3w(s) =

FL2 a 2 2(3 + v)2 -2(1-s2)
64z 2 (1+ V)poD 2

+(+ v8S2 s + 2 (1-4)+32(1-2)

Thus, the minimum plastic work is given by

1

Wpmin =2FLa1 fJw(s)sds
0

FL3a 2 (3
- 32r 2 (1+ v)pOD

+(1+ V)f8s 2 In s 18S 4 + (2 4 + 3 2 - )M/

FL3a 2 (3+ v)(2 2

- 32 2 (1+ v)poD[(3
)/2 + (1+ v)(-1/2 + 2/3)+ 8M/F]

The final expression for the minimum plastic work is:

FL3a2 [(5 + v)/2- a2(7 + v)/6 + 8M/F]
Wpmin - 321r2(1+ V)POD

The corresponding upper limit of the plastic work is given by

Wpmax - OpmaxdS = 1f[2wOpmin + 3Po Wa/2]S = 2 Wpmin + ff PowadS

= pmin 2Wpmin 23W 2
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FL

U

WO
wo WO

Figure 4.4 Unloading determined from elastic and
plastic energies at peak load.

Assuming linear elastic unloading, we find that the residual deflection,

Fig. 4.4, is obtained from the relation:

(~ -o)fL/2 = U = WL - W

Solving for the residual deflection gives:

= wo - 2(WL - W,

Taking physical limits into account we obtain that the upper and lower

bounds of the residual deflection are given by:

Wo >max 0; o-2(WL-Wpmin)/FL)
( W /( (4.17)

Wo !min(,; o -2(WL-2Wpmin)/L+3 2Wa)

where Wpmin is given by Eq. (4.15) and the external work to peak load WL in

the linear solution is given by:
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wo

WL = FLdw (4.18)

0

The external work could theoretically be expressed in terms of the

dimensionless solutions of Chapter 4. However, the deflection is a complex

function of several different contributions, and it is therefore more

convenient to calculate WL by numerical integration of the load-

displacement relation in a particular problem.

Any attempt to give a more accurate prediction of the unloading behaviour

requires that the "unwrinkling stress" Pu is known. The calculations are

complicated by the fact that the outer parts of the initial plastic region will

behave elastic while the inner parts will have reached the unwrinkling

stress.
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4.3 Calculation of the foundation stiffness

A plate on an elastic foundation involves the interaction between a plate

with a given plate stiffness D, and a foundation of a given thickness h, and a

vertical stiffness Qc related to the elastic properties of the foundation. For a

transversely isotropic foundation the out-of-plane stiffness modulus Qc is

given by:

=c Ezc /(1 - Vrzc Vzrc) (4.19)

where indices r and z refer to the vertical and radial directions and the

subscript c is used to indicate a core property.

For honeycombs Gibson and Ashby (1988) have shown that vzrc=0.3 and

rzc<<l so that Eq. (4.19) simplifies to:

O0 =E, (4.20)

For foams, which are isotropic, Eq. (4.19) simplifies to:

Q = Ec (1 - vC2 )

For convenience the bending stiffness of the face sheet is defined as follows:

(4.22)Qb=12D/h3
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Before discussing the displacements of an elastic foundation under a plate it

is useful to consider the maximum surface displacement of an isotropic half-

space under a uniform surface pressure qo over a radius a given by

Selvadurai (1979):

2F
Wo = 2qoa/Qc = - (4.23)

Obviously, as the radius under pressure decreases we will approach the

solution for a point load, resulting in an infinite displacement. For an infinite

radius under pressure, on the other hand, the half space will be in a uniform

state of plane strain. We now proceed to the elastic foundation under a

plate.

A uniform displacement w of the face sheet results in a uniform pressure on

the core, which will then be in a state of plane strain. The foundation

stiffness of an elastic transversely isotropic core is then given by:

k = - ac - Q w/hc Qc/h c  (4.24)
W W W

The corresponding deflection for the simple one-dimensional core model is

found by insertion of Eq. (4.24) into Eq. (3.8):

F 2

w = -FD where 4D = /k= [Dhc/Q1 / 2  (4.25)
8W1D kDD 8D
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We note that the foundation stiffness based on the one-dimensional

assumption of plane strain results in an infinite displacement as the core

thickness h, approaches infinity.

No solution has been found for an elastic plate on a transversely isotropic

halfspace. Solutions for a plate of infinite shear stiffness on different

foundations have been discussed by Sneddon, Gladwell and Coen (1975). The

original solution for a plate bonded to an isotropic halfspace was given by

Hogg in 1938 (as reported by Sneddon, Gladwell and Coen(1975) ). The

central deflection under a point load is given by

W3D = where 23D = [2D/Qc]2/3  (4.26)
W3D 9D

Thus, the three-dimensional solution gives a finite deflection under a point

load on a plate bonded to an elastic halfspace. It is interesting to note that

the same result can be obtained by assuming a plate floating without shear

stresses on an elastic halfspace, as done by Timoshenko and Woinowsky-

Krieger (1959, p.280). This is due to the assumption of infinite shear

stiffness of the plate. The analogy between floating plates and plates on

elastic foundations was discussed by H6tenyi (1966).

Now the ratio between the three- and one-dimensional solutions is given by:

W3D 8/ 3 D 8-3 [2D/Q ]2/3  8,3 16D 11/6
W3D 3D (4.27)
Win 9 4 1D 9[2DhIc/Q] 2  9 Qhc3  (4.27)

Using the definition in Eq. (4.22) the above equation may be rewritten as:
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W3D = 8-_3 4Qbh3 1/6 (4.28)

wlD 9 3Qhc3  (4.28)

Obviously the plane strain assumption has been violated when W3D/W1D<1

and we may in that case assume that the deflection is given by the three-

dimensional solution rather than by the one-dimensional solution. The above

analysis is fully applicable only for isotropic (foam) cores, but should remain

relevant for most honeycomb cores. The reason is that the three-

dimensional effects essentially involve interaction between transverse

normal stresses and shear stresses for which the corresponding elastic

modulii have a relation similar to isotropic cores.

By setting the ratio of deflections in Eqs. (4.27) or (4.28) equal to unity we

may define an effective one dimensional core thickness for the three

dimensional solution for a halfspace foundation:

3D 128 2D1/3=h 64 4Qb 1/3h[ h- (4.29)
27 Qe 27 3@

The effective core thickness hc* to be used in Eqs. (4.24) and (4.25) is then

given by:

hc = h for hc h3 D (4.30)

h =h3c for hc > h3

The above definition of the effective core thickness was based on matching

the peak deflections for a one-dimensional and a three-dimensional core
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model. Finite element analyses and analyses based on other matchings

result in minor corrections of Eqs. (4.29) and (4.30) and have been discussed

by Scott (1981).

The difference in Eqs. (4.25) and (4.26) clearly shows that the deflection at

any point of a plate on an elastic halfspace also depends on the deflections

at neighboring points. Thus the appropriate foundation stiffness and

effective core stiffness of thick cores are not constants, but rather depend

on the local distribution of slopes and deflections. The definition of the

effective three-dimensional core thickness, Eq. (4.29), results in an accurate

prediction of the central deflection in the initial phase with a completely

elastic core. The prediction of the onset of core yielding and subsequent

deflections in the outer (elastic) region will be less accurately described.

Further studies are required to determine the most appropriate definition of

the effective core thickness for predicting initiation of core yielding and face

sheet deflections in the outer region. Note that a complete solution for thick

cores only can be obtained by solving the corresponding three-dimensional

problem. In the comparisons with experiments in chapter 5, the effective

core thickness is defined using Eqs. (4.29) and (4.30), and this procedure is

recommended until further studies have been done on the problem.

The interaction of shear stresses and normal stresses in cores has been

modeled using two-parameter (Pasternak) foundations involving coupled

shear and normal springs. However, these models are unable to describe the

thickness variation of strains in the core which can only be captured in a

three-dimensional analysis. Thus, the fundamental problem of determining

the effective vertical foundation stiffness remains unresolved.
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5 Results and correlations

5.1 Comparison with loading experiments

5.1.1 Introductory remarks

In the following section the analytical predictions have been compared with

indentation experiments on a number of different sandwich panels, involving

different thicknesses and materials of the face sheets and core. Predicted

loading curves have been calculated from the equations in Section 3.9 and

the tables in Appendix B. The effective properties of the core and face sheet

have been calculated from Sections 4.3 and 4.1, respectively.

Parametric data needed for the calculations have normally been taken from

the experimental references. Data not reported in the references have been

taken from manufacturers data sheets, from other studies of the same

material, or as a last resort estimated from the equations given by Gibson

and Ashby (1988). Reported data have only been discarded when there was

a significant deviation both from manufacturers data sheets and other

experimental studies. Since the contact approach a is negligible except for

very small face sheet deflections no attempt was made to accurately

determine the contact modulus Qa, which was assumed to be 12 GPa for all

graphite/epoxy face sheets and 10 GPa for the glass/epoxy face sheet.
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5.1.2 Graphite/epoxy laminate on foam core

Table 5.1 Parameters in experiment by Tsang (1989)

Reference: Tsang (1989)

Method: unsupported panel backface, displacement differentials measured

Indentor: 12.7 mm diameter steel indentor

Core material: Rohacell 71 WF

Face sheet lay-up and material: (±45/0)s , AS4/3501-6 tape

Face sheet ply properties:

E1 = 142 GPa E2 = 9.81 GPa E3 = 9.81 GPa

G12= 6.00 GPa G13= 6.00 GPa G23= 3.77 GPa

v12 = 0.30 V13 = 0.30 v23 = 0.34

tply= 0.134 mm

Core properties

Ec=105 MPa

hc=12.7 mm

vc=0.30

hc*=12.7 mm

po=1 .7 0 MPa

Face sheet properties

h=0.807 mm D*=3.00 Nm

E*=51.3 GPa Grz=4.89 GPa

Contact quantities

Qa=12.0 GPa R=6.35 mm

v*=Vr*=0.3 14

vrz=0.320
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Figure 5.1 Predictions compared with experiment by Tsang (1989).

The agreement with experimental data is very satisfactory in this example.

Core yielding is predicted to occur at 0.187 mm indentation. Large deflection

effects are moderate and can be completely neglected before core yielding

occurs. At the loads 450 N and 1200 N the experimental curve shows jags

followed by a decreasing slope, which probably indicates face sheet matrix

cracking or delamination. The event at the lower load may also be

associated with core cracking, which has previously been reported for this

brittle foam material.
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Table 5.2 Parameters in experiment 1 by Sun and Wu (1991)

Reference: Sun and Wu (1991)

Method: supported panel backface, machine stroke measured

Indentor: 12.7 mm diameter steel indentor

Core material: Rohacell 200 WF

Face sheet lay-up and material: (02/90)s, AS4/3501-6 tape

Face sheet ply properties:

El = 138 GPa E2 = 10 GPa E3 = 10 GPa

G12= 6.90 GPa G13= 6.90 GPa G23= 3.86 GPa

V12 = 0.30 v13 = 0.30 v23 = 0.30

tpy= 0.127 mm

Core properties

Ec=128 MPa

hc=12.7 mm

vc=0.30

hc*= 12.7 mm

po=9 .0 1 MPa

Face sheet properties

h=0.762 mm D*=1.498 Nm

E*=41.8 GPa Grz=5.38 GPa

Contact quantities

Qa=12.0 GPa R=6.35 mm

v*=vr*=0.439

vrz=0.300
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Figure 5.2 Predictions compared with experiment 1 by Sun and Wu (1991).

In this example core yielding is predicted to occur at an indentation of

0.813 mm. Thus, core yielding and residual indentation should not be

observed. However, the experimental unloading curve and the residual

indentation of 0.15 mm, which are not shown in the present graph, indicates

a relatively significant core yielding. The membrane solution is initially

stiffer than the plate solution, since it does not include the approach due to

Hertzian contact. Both solutions are more compliant than observed

experimentally which can be partly explained by the fact that the theory

does not include large deflection effects prior to core yielding. A slightly

improved agreement with experimental data can also be obtained by using

Ec=206 MPa, which is the core modulus given by the material producer.
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5.1.3 Graphite/epoxy laminate on aluminium honeycomb core

Table 5.3 Parameters in experiment 2 by Sun and Wu (1991)

Reference: Sun and Wu (1991)

Method: supported panel backface, machine stroke measured

Indentor: 12.7 mm diameter steel indentor

Core material: 5052 Aluminium honeycomb, 1/8"-0.001", density =4.5 lb/ft3

Face sheet lay-up and material: (02/90)s , AS4/3501-6 tape

Face sheet ply properties:

El = 138 GPa E2 = 10 GPa E3 = 10 GPa

G12= 6.90 GPa G13= 6.90 GPa G23= 3.86 GPa

V12 = 0.30 V13 = 0.30 v23 = 0.30

tply= 0.127 mm

Core properties

Ezc=887 MPa

hc=12.7 mm

po=1.70 MPa

hc*=7.11 mm

Face sheet properties

h=0.762 mm D*=1.498 Nm

E*=41.8 GPa Grz=5.38 GPa

Contact quantities

Qa=12.0 GPa R=6.35 mm

v*=v*=0.439

vrz=0.300
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Figure 5.3 Predictions compared with experiment 2 by Sun and Wu (1991).

In this example core yielding is predicted to occur at an indentation of

0.014 mm. The predicted load is lower than the experimentally observed,

which is probably due to the fact that the initial compressive strength a,,

(Fig. 2.1) in common aluminium honeycombs is significantly higher than the

following crush stress po. This conclusion is also supported by the fact that

the experimental and predicted values are approaching each other at larger

values of the indentation, where errors in the assumed stresses in the

elastic region are less influential.
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5.1.4 Graphite/epoxy laminate on paper honeycomb core

Table 5.4 Parameters in experiment by Williamson (1989)

Reference: Williamson(1989)

Method: supported panel backface, machine stroke measured

Indentor: 25.4 mm diameter steel indentor

Core material: Nomex honeycomb, cell size =3.2 mm, density =48 kg/m3

Face sheet lay-up and material: (0/90), AW193/3501-6 (AS4/Epoxy fabric)

Face sheet ply properties:

E1 = 64 GPa E2 = 64 GPa E3 = 9.81 GPa

G12= 6.27 GPa G13= 5.00 GPa a) G23= 5.00 GPa a)

v12 = 0.15 V13 = 0.45 a) V23 = 0.45 a)

tply= 0.175 mm a) = assumed properties

Core properties

Ezc=150 MPa

hc=25.4 mm

po=1.4 1 MPa

hc*=6.47 mm

Face sheet properties

h=0.350 mm D*=0.191 Nm

E*=37.5 GPa Grz=5.00 GPa

Contact quantities

Qa=12.0 GPa

v*=vr*=0.503

vrz=0.450

R=12.7 mm
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Figure 5.4 Predictions compared with experiment by Williamson (1989).

The agreement between predicted and experimental values in this example

is very good, although the experimental data are rather scattered. Large

deflection effects are significant, but can be neglected before core yielding,

which is predicted to occur at an indentation of 0.061 mm. At a load of

600 N there appears to be an increased compliance, which is probably due

to face sheet matrix cracking or delamination.
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5.1.5 Glass/epoxy laminate on aluminium honeycomb core

Table 5.5 Parameters in experiment by Mines, Worrall and Gibson(1990)

Reference: Mines, Worrall and Gibson(1990)

Method: supported panel backface, machine stroke measured

Indentor: 50 mm diameter steel indentor

Core material: 3003 aluminium honeycomb, 1/4" cell size, density =5.2 lb/ft3

Face sheet lay-up and material: (0/90),, glass/epoxy fabric

Face sheet ply properties:

El = 18.0 GPa E2 = 18.0 GPa E3 = 9.00 GPa

G12= 4.60 GPa G13= 4.60 GPa a) G23= 4.60 GPa a)

v12 = 0.09 v13 = 0.45 a) V23 = 0.45 a)

tply= 0.187 mm a) = assumed properties

Core properties

Ezc=1200 MPa

hc=25.4 mm

po=1.6 0 MPa

hc*=2.34 mm

Face sheet properties

h=0.375 mm D*=0.0719 Nm

E*=15.0 GPa Grz=4.60 GPa

Contact quantities

Qa=10.0 GPa

v*=Vr*=0.2 6 1

Vrz=0.30 0

R=25 mm
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Figure 5.5 Predictions compared with experiment by Mines et al. (1990).

In this example the response is completely dominated by membrane effects

since the maximum deflection is more than ten times larger than the face

sheet thickness. Core yielding is predicted to occur at 0.003 mm indentation

and the tabulated solutions in Appendix B cover only a fraction of the entire

load-deflection curve. The membrane solution in Appendix B has been

extrapolated to a dimensionless load of 2200 and is in good agreement with

the experimental results. The load drop at 4400 N is associated with fibre

failure in the face sheet.
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5.2 Comparison with unloading experiments

5.2.1 Introductory remarks

Experimentally observed unloading behaviour has only been reported in a

few references. In this section the predicted upper and lower limits for the

residual indentation, derived in section 4.2, have been compared with the

unloading behavior in two experiments. For clarity the unloading has been

shown as a straight line from the peak load although it is recognized that

the real behaviour will be nonlinear.
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5.2.2 Graphite/epoxy laminate on aluminium honeycomb core

This experiment was performed by Sun and Wu (1991) and is identical to

the experiment described in Table 5.3. The comparison between predicted

and experimentally observed behaviour is shown in Fig. 5.6.

In this case the experimentally observed residual indentation is

approximately in the middle of the predicted interval.

900

600-

Load
[N]

300-

o--
0.0 0.80.2 0.4 0.6

Indentation [mm]

Figure 5.6 Comparison between predicted and observed unloading
behaviour in experiment by Sun and Wu (1991).
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5.2.3 Graphite/epoxy laminate on paper honeycomb core

This experiment was performed by Williamson (1989), and differs from the

experiment described in Table 5.4 on two points. In the present case the

indentor radius was 19 mm and the indented panel had two clamped edges

instead of a supported backface. In the experiment the indentation was

measured as the difference in displacement of the upper and lower face of

the panel. A comparison between the predicted and experimentally observed

load versus indentation is shown in Fig. 5.7.

The experimentally observed residual indentation is again found to be close

to the average of the predicted lower and upper bounds. It should also be

noted that virtually identical load-indentation relations were obtained by

Williamson (1989) during experiments on panels with supported backface.

This observation indicates a negligible coupling between the global bending

and local indentation, and hence the applicability of the present model which

is based on the assumption of a supported panel backface.

136



2000

150 - Experiment " "

---- Unload min.

Load
[N] 10 ..... ..... Unload max

500-

0-
0.0 1.0 2.0 3.0

Indentation [mm]

Figure 5.7 Comparison between predicted and observed unloading
behaviour in experiment by Williamson (1989).
behaviour in experiment by Williamson (1989).
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5.3 Parametric studies

5.3.1 Model parameters and their relative importance

The membrane and plate models involve a total of eleven parameters and a

presentation of the effect of all parameters could easily distract the

attention from the parameters of importance. The dimensional quantities

can be combined to dimensionless groups in several different ways, but any

presentation will still involve several different dimensionless parameters,

which may not be easily related to physical quantities. Thus, the

parametric study will be presented using dimensional quantities.

In order to make the presentation tractable, Tsang's (1989) experiment

with a 0.807 mm thick carbon/epoxy face sheet on a 12.7 mm rigid foam

core was chosen as a reference case. The material data have been given in

Table 5.1. The predicted relative magnitude of the contributions due to

bending, shear and Hertzian approach in this experiment are compared in

Fig. 5.8. It is seen that shear and Hertzian approach is of minor importance

except for relatively small values of the indentation. Thus, the quantities

related to shear (Grz and vrz) and contact stiffness (Qa and R) can be

considered as secondary parameters in the present case. The Young's

modulus and Poisson's ratio can be treated as a single stiffness quantity so

that five major parameters remain. These are the face sheet bending and

inplane stiffness (Qb), the core vertical stiffness (Qc), the face sheet

thickness (h), the core thickness (he) and the core crush stress (po).
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Figure 5.8 Comparison of contributions due to bending, shear and
Hertzian approach for the example in Fig. 5.1.

In most design cases the stiffness range of the face sheet material is

relatively limited and the choice is governed by overall strength or stiffness

requirements. Thus, the parametric study was limited to four parameters:

1) Core crush stress (po)

2) Face sheet thickness (h)

3) Core thickness (he)

4) Vertical core stiffness (Qe)

The parametric studies were done by varying one parameter at the time in

the case described in Table 5.1. The results are presented in the following

sections. In each case results have been shown for moderate indentations

(up to 1 mm) using the nonlinear plate solution and for significant

indentations (up to 5 mm) using the membrane solution.
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5.3.2 Effect of core crush stress

The effect of the core crush stress, Figs. 5.9 and 5.10 is substantial, and

affects both the yield point and loads in the subsequent region of partially

crushed core.
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Figure 5.9 Effect of the crush stress on the nonlinear plate solution.
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Figure 5.10 Effect of the crush stress on the membrane solution.
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5.3.3 Effect of the face sheet thickness

The effect of an increased face sheet thickness, Figs. 5.11 and 5.12, is even

stronger than the influence of the core crush stress. Effects are seen both

prior to, and after core yielding. After core yielding an increased face sheet

thickness increases the load both in the initial region where the behaviour

can be described by the plate solution, and in the region where the

membrane solution is becoming increasingly valid. The effect on the plate

solution, however, is larger than on the membrane solution, which is to be

expected since the plate stiffness is proportional to the cube of the face

sheet thickness while a linear relation applies for the membrane stiffness.
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Figure 5.12 Effect of the face sheet thickness on the membrane solution.
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5.3.4 Effect of the core thickness

The effect of the core thickness, shown in Figs. 5.13 and 5.14, is small and

primarily affects the core yield point and the preceding elastic region. It may

be concluded that the elastic properties of the core, which only affect the

outer elastic region, have a small effect on the behaviour when significant

core crushing is present. The fraction of the contact load which is balanced

by the pressure in the plastic region is directly related to the dimensionless

plastic radius. The contact load is completely balanced by the reactive

plastic pressure when the dimensionless plastic radius is equal to one, which

from Figure 3.11 occurs at a load less than three times the load for initiation

of core yielding. Furthermore, in the present case there is no influence of the

core thickness for core thicknesses exceeding 17 mm since the behaviour in

the outer region will then be governed by the three-dimensional solution for a

plate on an elastic half-space. The influence of the elastic region is also

diminished by the increasing influence membrane stresses due to large

deflection effects.
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Figure 5.13 Effect of core thickness on the nonlinear plate solution
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Figure 5.14 Effect of core thickness on the membrane solution.
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5.3.5 Effect of core stiffness

No results are presented for the influence of the core stiffness modulus Qc,

since the effects were very small and similar to the effect of the core

thickness shown in Figs. 5.13 and 5.14. Obviously the elastic properties of

the core, which are related to the core modulus and thickness, are of small

importance when the core crush load has been exceeded and the core is

partially yielded.
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6 Discussion and recommendations

6.1 Main features of the model

By the inclusion of core yielding (crushing) and large deflection effects, the

present theory has been able to explain the load-indentation behaviour

observed for sandwich panels. Upper and lower bounds have been given for

the residual indentation, which is of interest for damage detectability and

damage tolerance. Approximate expressions for the average transversally

isotropic properties of orthotropic face sheets have been developed. The

predictions have been compared with indentation experiments on a number

of different sandwich panels, involving cores and face sheets of different;

materials and thicknesses. The face sheets were all orthotropic and both

honeycomb and foam cores have been considered. The agreement between

predictions and experiments is surprisingly good, in spite of the large

uncertainty in several material parameters, in particular for the out-of-

plane properties. We may also conclude that the expressions for average

properties of orthotropic face sheets appear satisfactory for use in the

present theory.

The predicted behaviour involves an initial phase where the core is elastic

and a secondary phase where the core is locally yielded. For typical

sandwich panels indented to final face sheet failure it is seen that the initial

phase in most cases is of small importance in comparison to the secondary

phase.

147



The vertical displacement in the plastic region has been obtained by

modeling the face sheet either as a plate or as a membrane. For small

deflections a solution based on linear plate theory is applicable. For

intermediate deflections, corrections based on large deflection plate theory

have been proposed. An approximate solution based on pure membrane

theory represents the asymptotic behaviour for deflections significantly

larger than the face sheet thickness. Initially, the nonlinear plate solution is

stiffer than the membrane solution. For larger deflections the two solutions

intersect and the large deflection plate solution becomes increasingly

inaccurate.

In the plate model the total indentation has been modeled as the

superposition of an approach of the indentor and face sheet due to contact

stresses, and local face sheet deflection due to shear and bending. The

superposition method is based on the assumption that the different

deformation modes are uncoupled, which is valid only for small deflections.

The load-indentation relation in the initial elastic phase is virtually linear.

The only sources of nonlinearity in this phase are the contributions from

approach due to Hertzian contact, which is included in the model, and large

deflection effects of the face sheet, which are not included for the initial

phase.

The load-indentation relation in the partially plastic phase is nonlinear. The

softening caused by increasing core yielding is gradually resisted by an

increasing stiffening due to membrane stresses caused by large face sheet

deflections. For loads significantly larger than the load at initiation of core
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crushing, the resulting overall load-indentation is approximately linear, as

observed in experiments.

The predicted asymptotic load-indentation relation for large plastic radii is

approximately of the form F-w3/2. This applies both for the large deflection

plate solution in Eq. (3.89) where y approaches 1/3, and for the membrane

solution, Eq. (3.71), where the squared plastic radius for large loads is

virtually independent of the load as can be seen in Fig. 3.6. Surprisingly, the

load-indentation relation for large face sheet deflections has the same

mathematical form as in Hertzian elastic contact, Eq. (3.91). It is

interesting to note that Lie (1987) postulated a load-indentation relation of

Hertzian form, based on assumed elastic core behaviour and small

deflections. In fact it is seen that neither of the assumptions was satisfied,

and that if they were the relation would be linear, as long as the contact

approach is small in comparison to the local face sheet deflection.

6.2 Parameter bounds in the solution

Physically, the partially plastic phase consists of an increasing face sheet

deflection under gradually increasing load and plastic radius. Vertical

equilibrium for the face sheet in the plastic region shows that the contact

load is balanced by a uniform core pressure and the edge load at the plastic

radius. The increasing load from the uniform pressure results in a

decreasing slope at the plastic radius. A lower physical bound on the slope

angle is obviously zero, since the core pressure changes sign for negative

deflections, which would result from a negative slope angle.
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A lower bound on the edge moment M is obtained by requiring a positive

slope angle in Eq. (3.17). Eq. (3.18) shows that the shear force Q is positive

for d2>1. Inspection of Fig. 3.2 shows that for positive shear forces Q a

positive slope angle 0 can only be realized if the edge moment M is negative.

From Eq. (3.17) we conclude that the moment is negative for J 2>1. The

bounds on the edge moment are now given by:

8MI/F> 2 ' -2 for 0 aU2 2(6.1)

8M/F <0 for 1 2 2

From Eq. (3.17) and the condition that the slope angle at the plastic radius

must be positive we obtain the following upper bound on the plastic radius in

the plate solution:

U2 < 2 for a plate (6.2)

A similar upper bound for the plastic radius in the membrane solution is

obtained by considering vertical equilibrium in Eq. (3.28) under the

assumption that the slope angle is positive. The upper bound in the

membrane solution is then given by:

Z2 1 for a membrane (6.3)

It should be noted that the difference in plastic radius for the plate and

membrane solutions at a given load is exaggerated in Figs. 3.5 and 3.6, since

these graphs show the square of the plastic radius.
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No attempt has been made to examine the asymptotic behaviour of the

equations for the plastic radius, Eqs. (3.27) and (3.32), and it should be

recognized that the asymptotic values given by these equations could be

smaller than the physical bounds given by Eqs.(6.2) and (6.3).

6.3 Conclusions and recommendations

Comparisons with previous attempts, which were all based on elastic core

behaviour and small deflection theory, shows that the present model

represents an important step towards a more realistic description of the

sandwich indentation problem. However, several issues remain for further

study. These include the initiation and size of damages resulting from

indentation, a complete description of the unloading behaviour, the effect of

including shear and analysis of the effect of the core thickness. Other issues

include dynamic effects and improved experimental data for the out-of-plane

properties of the materials. A more rigorous treatment of the membrane

problem is also of interest.

The present model can provide all the information needed to predict flexural

and membrane strains in the face sheet. Future studies must examine the

quantitative ability of the model to predict initiation of face sheet damage.

In its present form the model gives an exact value of the plastic radius and

upper and lower bounds on the residual deflection. The above quantities are

identical to the core crush radius and dent depth, which are both important

parameters in residual strength predictions, exemplified in the study by

Tsang (1994).
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For most cases of interest, the flexural strains in the outer region are likely

to be comparatively small, resulting in face sheet damages confined to the

plastic region, so that the damage area is approximately proportional to the

square of the plastic radius. For linear load-displacement relations a simple

energy balance equation, as given for example by Olsson (1993), shows that

the peak impact force in quasi-static impacts is proportional to the square

root of the kinetic energy. For loads significantly exceeding the load at

initiation of core yielding, the overall load-indentation relation for sandwich

panels with undamaged face sheets is approximately linear. The squared

plastic radius is then approximately proportional to the square root of the

peak force, as can be seen from Figs. 3.5 and 3.6.

It has been shown that face sheet membrane action is dominating in most

cases of interest. Furthermore, the face sheet inplane modulus is relatively

insensitive to face sheet matrix cracks and delaminations. It may be

concluded that the squared plastic radius, and thus the delamination area,

should be approximately proportional to the fourth root of the impact

energy. This relation gives a sharp initial increase in delamination area

versus impact energy followed by very moderate increases for larger

energies, which is in agreement with the experimental observations by

Tsang and Dugundji (1992) and with the numerous experimental studies

referenced by Tsang (1994). Thus, it seems possible that the present model

can be used for at least qualitative predictions of the face sheet damage

size. Further studies are needed to determine the quantitative value of such

predictions.
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A limited parametric study indicates that the load-indentation behaviour is

primarily governed by the core crush stress and face sheet thickness (and

modulus). The influence of core modulus and thickness, which are of some

importance prior to core yielding, diminishes quickly after initiation of core

yielding.

The comparison with experiments in Ch. 5 indicates that the residual

indentation is fairly accurately bounded by the expressions given in

Sect. 4.2, at least when significant crushing is present. The comparison with

the experiment in Fig. 5.2 indicates that the predictions may be less useful

for peak loads close to the initiation load for core yielding. This could be due

to an inaccurate prediction of the yield point, caused by the simplifications

of the one-dimensional core model, which were discussed in Sect. 4.3.

Further work is required to obtain closer bounds for the residual indentation

and the entire unloading curve, which may be needed in global impact

analyses.

Effects of face sheet and core shear in the outer elastic region were not

included in the present analysis, but can easily be taken into account by

using the expressions in Appendix A, which should improve the results

quantitatively.

A more important fundamental issue, however, is to study the relation

between the simplified one-dimensional core model used in the analysis and

a three-dimensional core analysis for cores of different thicknesses. The

results should be used to improve the one-dimensional model, rather than to

replace it. A general use of a three-dimensional description is likely to make
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the problem intractable for analytical solution, which has clear advantages

in spite of the fact that the three-dimensional problem cannot be completely

described in a one-dimensional core model.

In Ch. 4 the solution for a point load on a plate resting on an elastic

halfspace was compared with the solution for a one-dimensional foundation

of finite thickness. The effective stiffness (thickness) for thick cores was

then obtained by matching the deflections under the point load. However, as

shown by Scott (1981), different values are obtained by matching the

deflections at other points. An important issue is to find a matching which is

relevant in the elastic region close to the plastic radius. It should also be

noted that the matching of core pressures requires a different effective

stiffness, which will affect load for initiation of core yielding.

Dynamical effects should be considered before the present solution is used in

impact analyses. In most cases, inertial effects are likely to be of minor

importance, since the masses in motion are small due to the local character

of the face sheet deflection. However, material rate effects, and dynamic

buckling of the core cells, could have a significant effect on the response at

larger strain rates.

Finally, there is a need for more reliable data on material out-of-plane

properties, particularly for the core materials. Ideally, such properties

should be determined in situ in complete sandwich panels, since the face

sheet-core adhesive seems to have a significant effect on the core

behaviour.
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7 Summary

Numerous experiments show that contact indentation of sandwich panels

normally is associated with crushing of the core cells and large deflections of

the face sheets. In the present work, these two effects have been

incorporated in a simplified model of sandwich contact indentation. The

model is based on the assumptions of an infinite face sheet resting on a core

bonded to a rigid foundation, where both the core and face sheet are

transversely isotropic with respect to the load axis. The face sheet is

assumed to be completely elastic while the core is elastic in tension and

elastic-ideally plastic in compression.

For contact loads where core yielding occurs, the problem is separated into

an inner plastic region, where the face sheet is supported by a constant

pressure, and an outer elastic region, where the face sheet is supported by

an elastic foundation. The unknown plastic radius is found by matching

boundary conditions for the inner and outer regions.

In order to obtain solutions for the whole range of face sheet deflections,

three different approaches for describing the inner region have been

proposed. For small deflections, a classical plate theory with shear

corrections is proposed. For intermediate deflections, an upper limit of the

contact force is given by a first order large deflection plate theory, while a

lower limit is given by the small deflection plate theory. The asymptotic

solution for large deflections is represented by the pure membrane solution.

The resulting solutions are obtained after iteration to obtain the plastic
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radius. They have been put in dimensionless form and tabulated so that no

further calculations are required to use the equations. To allow analysis of

orthotropic face sheets, approximate expressions have been developed for

their effective average plate and membrane properties.

At the initiation load for core crushing all three solutions are obtained from

the small deflection solution for a point load on a plate on an elastic

foundation. Initially, the large deflection solution is stiffer than the

membrane solution. For larger deflections the latter solutions intersect, and

the asymptotic behaviour for large deflections is given by the approximate

membrane solution.

Qualitatively, it is shown that the approximately linear load-indentation

relation observed in experiments is in fact the combined effect of softening

due to core crushing and stiffening due to membrane effects in the face

sheets.

The predictions of the model have also been compared quantitatively with

results from indentation experiments on several sandwich panels having

different face sheets and honeycomb or foam cores of different thickness

and materials. Good agreement with experiments is found well beyond the

point where core yielding is initiated. At significantly higher loads, an

additional softening is observed, apparently due to matrix cracking in the

laminated face sheets, which results in an increasing deviation from the

predicted behaviour.
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A limited parametric study indicates that the load-indentation behaviour is

primarily governed by the core crush stress and face sheet thickness (and

modulus). The influence of core modulus and thickness, which are of some

importance prior to core yielding, diminish quickly after initiation of core

yielding.

When comparing with previous attempts, which were based on small

deflection theory and an assumed elastic core behaviour, it may be

concluded that the present model gives a much better description of the

local face sheet deflection and the controlling parameters during contact

indentation of sandwich panels.

The local indentation model may be used in a global impact model to predict

impact response of sandwich panels, or as a starting point for more detailed

stress analyses for prediction of damage due to impact and contact loads. A

natural continuation of the work is to determine the ability of the present

simplified model to predict initiation and extent of face sheet damage.

Future workers may want to include face sheet and core shear, which

should improve the results quantitatively. A more important fundamental

issue, however, is to determine the most appropriate expressions for the

foundation stiffness in the outer elastically supported region for different

finite core thicknesses.
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Appendix A Solution for plate on elastic foundation

For axisymmetric deformation of a transversely isotropic plate on an elastic

foundation we may define the quantities:

L 4 = Dlk p = r/L Ap = d2/dp 2 + p - l d/dp (A.1)

The equilibrium equation for a Kirchhoff plate on a shear deformable

foundation is given by Vlasov and Leont'ev (1966) as follows:

Ap2w-2AApW +w = p/k

(A.2)
h

where X = c 2(z)dz
2-Dk Z

Here Vr(z) is a suitable shape function for the vertical displacements in the

foundation.

The corresponding equilibrium equation for a shear deformable plate on a

Winkler foundation is given by Pane (1975):

Ap 2w-2A pw+w = (1-2XAp)p/k

(A.3)

where = 3
5Gh

Panc (1975) also showed that the analysis could be extended to a two-

parameter foundation with the same homogenous equation if X and Lo were

defined as follows:

k= + 5(1- v)k l]
I k2  5(h-

212 k, 5(1 - v)
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For A smaller than one, which is the case encountered in practice, the

general solution of the homogenous Eqs. (A.2) and (A.3) is given by:

w(p)= CIuo(p) + C2vo(p) + C3fo(p)+ C4go (P)

dw 1 C,()
=--I Ci0i(P)

dr Lo i=1

1 4(0r = - Ci Oi(P)
/' i=1

Mr= CD c[Mi(P)-(1- v)Mi(P)]

D 4

i=1 (A.5)

where u(p)+ ivn(p) = J,(pei f) fn(P)+ ign(p) = H() (pei) *

and iy/= [Ir-arctan x-2- 1 ] /4i/5 r/2

* Note the incorrect sign of gO in Vlasov and Leont'ev (1966) since

g (P) = Im H(1) (pe ) = -Im H(2 ) (pe-i )"

Here wr is the rotation of the plate midplane normal, the functions uo, vo, fo

and go are real and the function 0 is given by:

01(p) = ul(p)cos V - vl(p)sin 4

02(p) = ul(p)sin + vl(p)cos (A.6)

03(P) = fl(p)cos - gj(p)sin 4i

04(P) = f 1(p)sin / + gl(p)cos /

For an infinite plate C1 and C2 must be set to zero since uo,vo-oo as p-+o.

At the origin fo=1/2 and go is infinite.

For a plate with infinite shear stiffness on a shear deformable foundation

Vlasov and Leont'ev (1966) give the following expressions for the midplane

rotation and sectional forces:
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O,(p)= i (P)

M,(p)= uo(p)cos2- vo(p)sin2

M 2 (p)= uO(p)sin2yV+ vo(p)cos2y

M3(p)= fo(p)cos2Vf-go(p)sin2Vf

M4(p)= f 0(p)sin2y+go(p)cos2yf

Mi = Oil P

Ql(p) = ul(p)cos3f- vl(p)sin3yf (A.7.a)

Q2(P) = ul(p)sin3y + vl(p)cos3y

Q3(p)= f 1(p)cos3yf-gl(p)sin3yf

Q4 (P) = f 1(p)sin 3i + g(p)cos3V

For a shear deformable plate Pane (1975) give the following expressions:

oi(p)= -ul(p)cos3yf-vl(p)sin3yf

02(P)= ul(p)sin3y -vl(p)cos3 1f

03(p) = - fl(p) cos 3 - gl(p)sin 3 /

04(P)= fl(p)sin3yf -gl(p)cos3yp

M(p)= -uo(p)cos2y/ -vo(p)sin2y

M2(p)= uo(p)sin2y -vo(p)cos2yf

M3(P) = -fo(p)cos2 - go(p)sin2 y/

M4(P)= fo(p)sin2v -go(p)cos2V

Mi = milp

QI(P) = - ul (p)cos y - vl(p)sin V/ (A.7.b)

Q2(P) = ul(p)sin y - v1(p)cos

Q3(P)= - fl (p)cos yf - gl(p)sin V

Q4 (P)= f 1(p)sin V - g (p)cos y
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From Vlasov and Leont'ev (1966) the deflections due to a point load on an

infinite plate are given by:

w(p) = F2 f 0 (p) (A.8)
4Dsin 2V

The corresponding expression from Pane (1975) is:

w(p= F2 [-f 0 (p)cos4 + go(p)sin 4 ] (A.9)
4D sin 2 V

Obviously, since go is infinite at the origin, a finite deflection cannot be

realized for a point load on a shear deformable plate. Rather, the load must

be assumed to be distributed over a finite area, as given by a contact stress

analysis.
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Appendix B Plastic radius and moment versus load

B.1 Plate solution

Table B. 1 Dimensionless plastic radius and edge moment versus load for plate

F 2 8M/F v=0.5

v=0.0 v=0.3 v=0.5

2.546

2.637

2.725

2.834

2.960

3.802

5.005

5.857

6.810

7.861

9.009

10.253

12.057

13.022

14.028

15.075

16.163

17.293

18.463

19.674

20.925

22.217

23.550

24.975

26.338

27.795

0.000

0.015

0.033

0.056

0.084

0.262

0.450

0.553

0.648

0.733

0.809

0.878

0.959

0.995

1.029

1.061

1.091

1.120

1.146

1.171

1.195

1.217

1.238

1.256

1.277

1.295

00

2.475

1.694

1.160

0.764

-0.256

-0.623

-0.720

-0.770

-0.791

-0.795

-0.789

-0.771

-0.760

-0.747

-0.735

-0.721

-0.708

-0.695

-0.681

-0.668

-0.655

-0.643

-0.634

-0.618

-0.607

00

3.813

2.792

2.091

1.569

0.188

-0.345

-0.502

-0.595

-0.648

-0.677

-0.689

-0.690

-0.686

-0.681

-0.673

-0.665

-0.656

-0.647

-0.637

-0.627

-0.617

-0.607

-0.597

-0.587

-0.577

00

4.705

3.524

2.711

2.105

0.484

-0.160

-0.356

-0.478

-0.553

-0.597

-0.622

-0.636

-0.637

-0.636

-0.633

-0.628

-0.622

-0.615

-0.608

-0.600

-0.592

-0.583

-0.575

-0.566

-0.558

Note: ?2 was obtained by solving Eq. (3.27) and 8M/F from Eqs. (3.22) and (3.2).
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B.2 Membrane solution

Table B.2a Dimensionless plastic radius versus load for membrane, v=0.0

F 2 C fw

2.546

2.635

3.183

3.422

3.985

5.799

7.159

8.711

10.452

12.379

14.490

17.591

19.263

21.016

22.850

24.765

26.761

28.836

30.993

33.229

34.378

35.546

36.736

37.944

39.174

40.326

41.695

42.980

44.290

45.623

0.000

0.060
0.154

o.187

0.251

0.388

0.453

0.506

0.551

0.589

0.621

0.657

0.673

0.687

0.700

0.712

0.723

0.734

0.743

0.752

0.757

0.761

0.765

0.769

0.772

0.778

0.779

0.783

0.786

0.789

Note: i2 and C were obtained from Eqs. (3.32) and (3.65), f from Eq.(3.66).
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-1.271

-1.279

-1.293

-1.298

-1.308
-1.331
-1.344
-1.354

-1.364
-1.372
-1.380
-1.388
-1.392
-1.396
-1.399
-1.402
-1.405

-1.408

-1.411
-1.413
-1.415
-1.416
-1.417
-1.418

-1.419
-1.421

-1.421

-1.422

-1.423

-1.424

0.788

0.783

0.776

0.773

0.768
0.756
0.750

0.745
0.741
0.737
0.734
0.731
0.729
0.727
0.726
0.725
0.724

0.722

0.721
0.720
0.720
0.719
0.719

0.718
0.718
0.717

0.717

0.717

0.717

0.716



Table B.2b Dimensionless plastic radius versus load for membrane, v=0.3

Sa2 C fW
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2.546 0.000 -1.206 0.776

2.600 0.112 -1.218 0.767

3.137 0.204 -1.229 0.760

3.397 0.238 -1.233 0.757

3.998 0.303 -1.241 0.751

5.492 0.410 -1.256 0.742

6.850 0.473 -1.265 0.736

8.401 0.525 -1.273 0.731

10.141 0.568 -1.280 0.727

12.068 0.604 -1.285 0.724

14.179 0.635 -1.291 0.721

17.281 0.669 -1.298 0.717

18.953 0.684 -1.300 0.716

20.706 0.697 -1.304 0.714

22.540 0.710 -1.305 0.713

24.455 0.721 -1.308 0.712

26.451 0.732 -1.310 0.711

28.527 0.742 -1.312 0.709

30.684 0.751 -1.314 0.709

32.920 0.759 -1.315 0.708

34.069 0.763 -1.316 0.707

35.237 0.767 -1.317 0.707

36.428 0.771 -1.318 0.707

37.635 0.775 -1.319 0.706

38.866 0.778 -1.319 0.706

40.028 0.783 -1.320 0.706

41.387 0.785 -1.321 0.705

42.672 0.788 -1.321 0.705

43.982 0.791 -1.322 0.704

45.315 0.794 -1.323 0.704

Note: Z2 and C were obtained from Eqs. (3.32) and (3.65), f from Eq.(3.66).



Table B.2c Dimensionless plastic radius versus load for membrane, v=0.5

2.546

2.657

3.147

3.442

4.088

5.248

6.609

8.164

9.907

11.836

13.950

17.054

18.728

20.482

22.317

24.233

26.230

28.306

30.464

32.701

33.850

35.019

36.209

37.417

38.648

39.818

41.169

42.455

43.765

45.098

F a2 C[ f_

0.000

0.184

0.257

0.291

0.352

0.429

0.490

0.540

0.581

0.616

0.645

0.678

0.692

0.705

0.717

0.728

0.738

0.748

0.756

0.764

0.768

0.772

0.776

0.779

0.783

0.788

0.789

0.792

0.795

0.798

-1.244

-1.244

-1.245

Note: ~' and C were obtained from Eqs. (3.32) and (3.65), f, from Eq.(3.66).
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-1.157

-1.172

-1.179

-1.182

-1.188

-1.196

-1.203

-1.209

-1.214

-1.219

-1.222

-1.227

-1.229

-1.231

-1.233

-1.234

-1.236

-1.237

-1.238

-1.240

-1.240

-1.241

-1.241

-1.242

-1.242

-1.243

-1.243

0.767

0.752

0.746

0.743

0.738

0.731

0.725

0.721

0.717

0.713

0.710

0.707

0.706

0.704

0.703

0.702

0.701

0.700

0.699

0.698

0.698

0.697

0.697

0.697

0.696

0.696

0.696

0.695

0.695

0.695


