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Abstract

The longitudinal stability and flying qualities as well as a parameter estimation ap-
proach are investigated for the Generic Hypersonic Aerodynamic Model Example
(GHAME) vehicle along an optimal trajectory. The stability parameter provides
very accurate stability information based on three simple aerodynamic coefficients
and ambient density. The accuracy of the stability parameter is investigated in two
approaches. One is a numerical solution and the other is the bound of an asymptotic
solution derived from the Generalized Multiple Scales (GMS) technique. The stabil-
ity parameter shows that the stability improves along the trajectory. The numerical
solution and the bound of the solution based on the GMS theory also show the same
results. Extended flying qualities criteria (EFQC) are based on the GMS theory,
which provides analytical solutions for time-varying systems. The EFQC specify fly-
ing qualities in terms of variable system responses. The EFQC are applied to the
GHAME vehicle to analyze the flying qualities of the short-period, phugoid, dutch-
roll, spiral and roll modes. The spiral mode is the only mode which has adequate
flying quality during the entire trajectory. Finally, a parameter estimation approach
using the GMS theory is investigated. The advantages of the GMS method over the
direct-integration (DI) method to estimate initial states are examined in terms of
computational time. For the second order dynamics, the GMS method is 419 times
faster than the DI reference case. For the fourth order dynamics of the GHAME
vehicle, the GMS method is 447 times faster than the reference case. The benefit
of using the GMS method in computing time is substantial and it will expedite the
parameter estimation process.

Thesis Supervisor: Professor Rudrapatna V. Ramnath
Title: Adjunct Professor of Aeronautics and Astronautics



Acknowledgment

I sincerely wish to thank many people who made this thesis possible. First of all, I

would like to express my deepest gratitude to Professor Rudrapatna V. Ramnath for

his guidance and inspiration throughout the course of this study. I enjoyed his very

interesting and wonderful stories related to the science and engineering fields.

I would like to thank Jon Anh, Bryan Kang, Seung Jin Song and other KGSA

members for their consideration and encouragement. I would like to thank my friends

Hansuk, Hunwook, Hyuck, Ian, Jinkyu, Mike, Minsuk, Sangjun, Shin-Juh, TJ, Yongki

and others for their phone calls and encouragement. I also would like to thank my

friends in Korea Donghee, Hosik, Jaehwa, Jiho, Kyungduk and others for their letters

and Christmas cards.

Special thanks go to all of my professors at MIT and Rensselaer Polytechnic

Institute. I owe thanks to all the teachers at Glen Rock High and Kyunggi High. I

wish to thank Mr. Lee who was my fifth grade teacher years ago and who is now a

Professor at a college. He inspired me to pursue life-long education.

I also wish to thank Rev. Kim, brothers and sisters of the Korean Church in

Cambridge.

A great deal of appreciation must go to my grandparents and other relatives for

their love, support and advice.

I thank God for his everlasting love, and I praise the Lord who made this study

possible from the beginning.

My very special thanks go to Jiyean for her phone calls, prayer and encouragement

throughout this study.

Finally, I would like to express deepest thanks to my parents and sister, Yoona,

for their constant love, prayer and support. I would not have been here without them,

and their love and support goes beyond my ability to express through words.



In memory of my grandfather,

Han Ki Choi,

who gave so much but expected nothing in return.



Contents

1 Introduction

1.1 Background .............

1.2 Thesis Overview ...........

2 GHAME Vehicle and Trajectory

2.1 Description of the GHAME Vehicle

2.2 Description of Trajectory . . . . . .

3 Generalized Multiple Scales Theory

3.1 Description of General Theory . . .

3.2 Second Order GMS Solution . . ..

3.3 Fourth Order GMS Solution . . .

4 Equations of Motion and Stability Parameter of the

cle

4.1 Introduction ................. .. ... .

4.2 The Second Order Equation of the Motion for Longitu

4.3 The Fourth Order Equation of Motion for Longitudina

4.4 Stability Parameter for Longitudinal Dynamics . . .

4.5 Stability of GHAME Vehicle ..............

GHAME Vehi-

dinal Dynamics

I Dynamics

. . . . . . . . .

5 Application of Extended Flying Qualities Criteria to the GHAME

Vehicle

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



5.2 Description of the Flying Qualities . .................. 56

5.3 Flying Qualities for Steady Flight Conditions . ............ 58

5.4 Flying Qualities for Variable Flight Conditions . ............ 59

5.5 Extended Flying Qualities Criteria for Longitudinal Dynamics . . . . 61

5.5.1 Extended Flying Qualities Criteria for Short-Period Mode . 61

5.5.2 Extended Flying Qualities Criteria for Phugoid Mode .... . 62

5.6 Extended Flying Qualities Criteria for Lateral Dynamics ...... . 62

5.6.1 Extended Flying qualities Criteria for Dutch-Roll Mode . . .. 63

5.6.2 Extended Flying Qualities Criteria for Spiral Mode ...... 63

5.6.3 Extended Flying Qualities Criteria for Roll Mode ...... . 64

5.7 Flying Qualities for GHAME Vehicle based on EFQC ......... 64

6 Parameter Estimation using Generalized Multiple Scales Theory 75

6.1 Introduction ................................ 75

6.2 Parameter Estimation .......................... 75

6.3 Importance of the Initial State in Parameter Estimation ...... . 78

6.4 State Estimation with GMS for Second Order Dynamics ...... . 86

6.5 State Estimation with GMS for GHAME Vehicle . .......... 91

6.5.1 State Estimation with GMS for Longitudinal Dynamics . . .. 91

6.5.2 State Estimation with GMS for Lateral Dynamics ...... . 100

6.6 Discussion on Parameter Estimation with GMS Method ....... . 108

7 Summary and Conclusion 110



List of Figures

2-1 Configuration of GHAME vehicle

2-2 Characteristics of reentry trajectory

4-1 Roots of Short-period Mo

4-2 Roots of Phugoid Mode

4-3 Roots of Dutch-roll Mode

4-4 Root of Roll Mode . . .

4-5 Root of Spiral Mode ..

4-6 Roots of Roll Mode vs. t

4-7 Roots of Spiral Mode vs.

4-8 (a) Stability parameter (]

Ambient density (p) vs.

4-9 Stability parameter (P) vs

4-10 Stability parameter (P) vs

4-11 (a) Cosine-like numerical

( (0 to 5.0 x 104) ....

4-12 (a) Cosine-like numerical

( (5.0 x 104 to 1.0 x 105 )

4-13 (a) Cosine-like numerical

(1.0 x 105 to 1.5 x 105)

4-14 (a) Cosine-like numerical

(1.5 x 105 to 2.0 x 105)

de . . . . . . . . . .

............

(sec)

t (sec) ........

P) and aerodynamic

s. time . . . . . . . .

solution, (b) Sine-like

............ solution, (b) Sine-li

solution, (b) Sine-like

solution, (b) Sine-like

solution, (b) Sine-like

coefficients VS. (b)

numerical solution for

.............numerical solution for

numerical solution for

numerical solution for

f



4-15 (a) Cosine-like numerical solution, (b) Sine-like numerical solution for

( 2.0x 105 to 2.5x 105) .................. ........ 48

4-16 (a) Cosine-like numerical solution, (b) Sine-like numerical solution for

( 2.5x 105 to 3.0x 105) ....................... . 49

4-17 exp(f K,.()d)vs.. .......................... 51

4-18 I 4Zo(()- Zi(() 2 v- 1/ 4 VS. . ....................... 52

4-19 4Zo(()- Z,() 2 [-1/4 exp(f K,.()d) vs. . .............. 53

4-20 (a) Z 1 vs. 4, (b)Zo vs. 4, (c) K, vs. 4, (d)K, vs. 4 . .......... 54

5-1 Flying Quality for Short-Period Mode by EFQC . ........... 67

5-2 Flying Quality for Phugoid Mode by EFQC . . ..... ........ 68

5-3 Flying Quality for Phugoid Mode by EFQC (In detail) . ....... 69

5-4 Flying Quality for Dutch-Roll Mode by EFQC . ............ 70

5-5 Flying Quality for Spiral Mode by EFQC . ............... 71

5-6 Flying Quality for Roll Mode by EFQC ................. 72

5-7 Flying Quality Level for Longitudinal Dynamics by EFQC: (a) Short-

Period Mode, (b) Phugoid Mode .................... 73

5-8 Flying Quality Level for Lateral Dynamics by EFQC: (a) Dutch-Roll

Mode, (b) Spiral Mode, (c) Roll Mode . ............. . . . 74

6-1 (a) M, vs. time, (b) M6 , vs. time .................... 79

6-2 Input and Output ............................ 80

6-3 Parameter estimation for correct initial state . ............. 83

6-4 Parameter estimation for 0.1 % error in the initial state ........ 84

6-5 Parameter estimation for 1 % error in the initial state ......... 85

6-6 Comparison between Direct-Integration and GMS solutions for (a)

Sine-like case, (b) Cosine-like case . .................. 87

6-7 CPU time vs. Step Size for Direct Integration and GMS approach . . 88

6-8 (a) Maximum Error vs. Step Size, (b) Steady State Maximum Error

vs. Step Size for Direct Integration and GMS solutions ........ 89



6-9 Comparison between Direct-Integration and GMS solutions for Longi-

tudinal Fourth Order Dynamics: Case 1 [ y(O)=O, y(0)( 1)=0, y(0)( 2)=0,

y(0)( 3)=0.1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6-10 Comparison between Direct-Integration and GMS solutions for Longi-

tudinal Fourth Order Dynamics: Case 2 [ y(O)=O, y(0)(')=1, y(0)( 2)=0,

y(0)(3)=0] . .. .. .. .. ... .... .. . .... . . .. .. .... 94

6-11 CPU Time vs. Step Size for Direct Integration and GMS approach:

Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 95

6-12 Maximum Error vs. Step Size for Direct Integration and GMS ap-

proach: Case 1 .............................. 96

6-13 CPU Time vs. Step Size for Direct Integration and GMS approach:

Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 97

6-14 Maximum Error vs. Step Size for Direct Integration and GMS ap-

proach: Case 2 .......................... .... 98

6-15 Comparison between Direct-Integration and GMS solutions for Lateral

Fourth Order Dynamics: Case 1 [ y(0)=0, y(0)(1)=0, y(0)( 2)=0, y(0)(3)=-1]101

6-16 Comparison between Direct-Integration and GMS solutions for Lateral

Fourth Order Dynamics: Case 2 [ y(0)=0, y(0)(1)=1, y(0)( 2)=0, y(0)( 3)=0] 102

6-17 CPU Time vs. Step Size for Direct Integration and GMS approach:

Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 103

6-18 Maximum Error vs. Step Size for Direct Integration and GMS ap-

proach: Case 1 .............................. 104

6-19 CPU Time vs. Step Size for Direct Integration and GMS approach:

Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 105

6-20 Maximum Error vs. Step Size for Direct Integration and GMS ap-

proach: Case 2 ........................... 106

6-21 Maximum-likelihood estimation with GMS method . ......... 109



List of Tables

2.1 Parameters of the GHAME vehicle . .................. 17

4.1 Comparison for Settling Trajectory Length . .............. 50

5.1 Classification of aircraft ......................... 57

5.2 Flight phase categories .......................... 57

6.1 Comparison between error of initial state and error of parameter esti-

m ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . 81

6.2 Parameter estimation for correct initial state . ............. 82

6.3 Parameter estimation for 0.1 % error in the initial state ........ 82

6.4 Parameter estimation for 1 % error in the initial state ......... 82

6.5 Comparison between GMS and Direct-Integration . .......... 90

6.6 Comparison between Direct-Integration and GMS for Longitudinal Fourth

Order Dynamics(0 to 300 sec): Case 1 [ y(O)=0, y(0)(1)=0, y(0)(2)=0,

y(0)(3)=0.1] & Case 2 [y(O)=0, y(0)(1)=0, y(0)( 2)=1, y(0)( 3)=0] .... 99

6.7 Comparison between Direct-Integration and GMS for Lateral Fourth

Order Dynamics (0 - 500 seconds): Case 1 [y(0)=O, y(0)(1)=0, y(0)( 2)=0,

y(0)(3)=1] & Case 2 [y(O)=O, y(O)(1)=1, y(0)( 2)=0, y(0)( 3)=0 ] . . .. 107



Chapter 1

Introduction

1.1 Background

With the emergence of new technology, human exploration and the development of

space are expanding enterprises of the future, such as missions to Mars and space

stations. These new explorations require advanced space vehicles. Since the first voy-

age of the space shuttle Columbia on April 12th, 1981, space shuttles have completed

numerous successful missions, including the recent repair mission on the Hubble tele-

scope. The space shuttle has been successful as a research and multipurpose spacecraft

on many flights. However, the space shuttle program requires special and expensive

launch facilities and rocket boosters that must be recovered from the ocean after each

launch.

The present research interest has been focused on the development of fully reusable

space vehicles, which will have single-stage-to-orbit (SSTO) capabilities and will be

able to take off and land horizontally on conventional runways. These space vehicles

will fly from subsonic through hypersonic speeds in excess of Mach 6. These im-

proved modifications will provide increased versatility and lower costs of operation.

The National Aeronautics and Space Administration (NASA) has proposed several

hypersonic vehicles with these capabilities; perhaps the best known is the National

Aerospace Plane (NASP). A successful flight of the NASP would represent the next

generation of aerospace development and significant achievements in many engineer-



ing fields.

In the development of this vehicle, one of the difficult issues is the problem of

predicting the dynamics and flying qualities of a hypersonic vehicle during its reentry

into the Earth's atmosphere. The equations of motion describing the dynamics of

the space vehicle are non-linear time-varying differential equations because the flight

conditions of a vehicle change drastically during its reentry. It is impossible to obtain

exact analytical solutions to these equations, and many approximation solutions have

been attempted. In the past, such approximations to reentry dynamics have been

developed by many restricting assumptions on the nature of the vehicle and reentry

trajectory [8, 9].

In this thesis, the Generalized Multiple Scales (GMS) theory, which was devel-

oped by Ramnath [3, 6] on the basis of asymptotic analysis, is used to analyze the

dynamics and flying qualities, and the GMS theory is also used to expedite the pa-

rameter estimation process. The major advantages of using the GMS theory are that

it eliminates restrictions on the nature of vehicle and trajectory, and that it provides

asymptotic solutions in the form of simple elementary functions. The GMS theory

has been used to predict dynamics in various applications including the space shuttle,

satellites and Vertical Take-Off and Landing (VTOL) aircraft [3, 4, 5].

In this study, the Generic Hypersonic Aerodynamics Model Example (GHAME)

[1] along a space shuttle's trajectory has been used. The GHAME vehicle, which was

developed at the Dryden Flight Research Facility in 1988, is a computer simulation

model designed to estimate aerodynamic coefficients for a generic hypersonic vehicle.

1.2 Thesis Overview

This thesis is organized into seven chapters. The current chapter describes the back-

ground and motivation for this thesis.

Chapter 2 describes the GHAME vehicle and the trajectory on which the GHAME

vehicle is studied. The reentry trajectory was designed to minimize the weight of the

thermal protection system of the space shuttle orbiter 049 vehicle [2].



The conceptual foundation of the GMS theory is presented in Chapter 3. The

analytical approximations of the GMS solutions for the second order and fourth order

linear time-varying (LTV) differential equations are detailed.

In Chapter 4, the second order and fourth order longitudinal equations of motion

as well as the fourth order lateral equation of the motion of the GHAME vehicle

are presented. The stability parameter for longitudinal dynamics based on the GMS

theory is also presented. The angle-of-attack perturbation dynamics are used for

this investigation. The stability of the GHAME vehicle is investigated along the

trajectory, and changes in degree of stability along the trajectory are investigated.

Application of the extended flying qualities criteria for the GHAME vehicle for the

longitudinal and lateral modes are demonstrated in Chapter 5. The flying qualities

of the GHAME vehicle are analyzed based on the extended flying qualities criteria.

Chapter 6 presents the parameter estimation process with the GMS method in

initial state estimation. The advantages of the GMS method in the state estimation

process are investigated in the second order system. The fourth order longitudinal

and the fourth order lateral dynamics of the GHAME vehicle are also investigated

for the state estimation process with the GMS method. The use of the initial state

estimation with the GMS method in the parameter estimation is discussed.

The results are summarized and discussed in Chapter 7.



Chapter 2

GHAME Vehicle and Trajectory

2.1 Description of the GHAME Vehicle

The need for realistic hypersonic aerodynamic data increased with the recent interest

in the development of hypersonic vehicles. The Generic Hypersonic Aerodynamic

Model Example (GHAME) was developed at NASA Ames Research Center, Dryden

Flight Research Facility, to provide realistic hypersonic aerodynamic data [1].

The GHAME model was developed as a combination of existing vehicles and the-

ories. The sources were actual data from the space shuttle orbiter, a lifting body type

vehicle, a swept double-delta configuration, and a 60 half-angle cone using a modified

Newtonian impact flow method. The longitudinal aerodynamic coefficients were a

mix of various sources at all Mach numbers. The lateral aerodynamic coefficients

were taken from space shuttle data and a swept double-delta configuration except for

Mach numbers greater than 8, when the lateral aerodynamic coefficients were taken

from space shuttle data only. The drag coefficients were modified in order to provide

a realistic L/D ratio when compared with that of the space shuttle. The longitudinal

and lateral aerodynamic coefficients were adjusted for reference span and reference

area.

The GHAME model was developed for a single stage-to-orbit (SSTO) mission.

This mission consists of a powered horizontal takeoff from conventional runways, and

acceleration to orbital velocities with air-breathing engines to reach a low-Earth-orbit



(LEO). After completing its mission in orbit, the vehicle would reenter the Earth's

atmosphere and maneuver to a gliding horizontal landing.

The configuration of the GHAME model consisted of simple geometrical shapes

as seen in Fig. 2-1. The fuselage was modeled as a cylinder 20 ft in diameter and

120 ft in length. A pair of 100 half-angle cones were attached to form a nose and

a boat-tail in the fuselage. The delta wings and vertical tail were modeled as thin

triangular plates. The GHAME model had a mid-wing configuration, and there was

no dihedral on the wings. The engine module was wrapped around the lower surface

of the fuselage and strakes were extended behind the wings. The reference area was

6000 ft2, the reference chord was 75 ft and the reference span was 80 ft.

The mass properties of the GHAME model were assumed to be on the same order

of magnitude as existing supersonic cruise aircraft and the estimates of the GHAME

model were derived from the XB-70. The takeoff gross weight was estimated to be

300,000 lb and 60% of this weight was assumed to be the liquid hydrogen fuel. For

the purpose of this study, the GHAME model is considered at the fuel burnout weight

of 120,000 lb and the moments of inertia are also taken at fuel burnout condition.

The complete set of parameters of the GHAME vehicle is shown in Table 2.1.



(a) Side view

(b) Top view

(c) Front view

Figure 2-1: Configuration of GHAME vehicle



Table 2.1: Parameters of the GHAME vehicle

Length, 1 233.4 ft

Reference area, S 6000 ft 2

Reference chord, c 75 ft
Reference span, b 80 ft

Weight,Wo (At takeoff) 300,000 lb

Mass, mo 300,000 slug
Ixx 1.16 x 106 slug-ft 2

IY, 23.3x 106 slug-ft 2

Izz 24.0 x 106 slug-ft 2

Ixz 0.28x106 slug-ft2

Weight, We (At fuel burnout) 120,000 lb
Mass, me 120,000 slug

Ix 0.87 x 106 slug-ft2

IY 14.2x 106 slug-ft 2

Izz 14.9 x 106 slug-ft2

Ixz 0.28 x 106 slug-ft2



2.2 Description of Trajectory

The dynamics of the GHAME vehicle are studied as it re-enters the Earth's atmo-

sphere along a prescribed trajectory which was originally designed to minimize the

thermal-protection-system (TPS) weight of the space shuttle orbiter 049 vehicle [2].

In order to obtain the optimal trajectory, the method of steepest descent was applied

to minimize the total heat load.

This optimal trajectory was studied by Ramnath [3], and angle-of-attack, flight

path angle, velocity, altitude, and time are shown as functions of a non-dimensional

variable ( in Fig. 2-2. The non-dimensional variable is the number of vehicle lengths

traveled along the trajectory.

The space shuttle orbiter trajectory covers a range of 0 to 290,000 vehicle lengths

and an altitude from 400,000 ft to 100,000 ft. The angle-of-attack varies from 530

to 190, and the flight path angle varies from 00 to -4". The reentry starts at Mach

number 25.7 and it terminates at Mach number 3.1. The total time of the reentry

trajectory is 1886 seconds.
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Figure 2-2: Characteristics of reentry trajectory



Chapter 3

Generalized Multiple Scales

Theory

3.1 Description of General Theory

The General Multiple Scales (GMS) theory, which was developed by Ramnath [6,

7], is an asymptotic approach for approximating solutions for linear and non-linear

time-varying systems. The concept of asymptotic solutions is based on the work of

Poincare [10, 11] and has been applied to many fields such as astrodynamics and fluid

mechanics. The GMS theory has been used to study dynamics of various applications

including the space shuttle, satellites and VTOL aircraft [3, 4, 5].

One very useful application of the GMS theory is that of approximate solutions

for linear time-varying (LTV) differential equations. Although the first order LTV

differential equations in general have exact solutions in terms of simple mathematical

functions (such as exponential), only some higher order LTV differential equations

have exact solutions in terms of functions such as Bessel or Mathieu functions, which

are usually available in tabulated forms. The GMS theory provides approximate

solutions to higher order LTV differential equations in terms of simple mathematical

functions.

The GMS theory is based on the extension of the independent variable to a set of

new independent scale functions. In this approach, the general solution is separated



into several modes which occur at different rates. The extension allows the dynamics

to be separated into several modes which are then combined to make a complete

solution. Applying the extension to an ordinary differential equation generates a set

of partial differential equations with new independent variables.

3.2 Second Order GMS Solution

In this section, the GMS theory is applied to a second order LTV differential equation

and the GMS solution is obtained by two time scales such as fast and slow scales [3].

Consider the second order LTV differential equation,

+ Z(t)L + Zo(t)y = 0. (3.1)

The characteristic roots which describe the solution of Eq. 3.1 are given by the

second order algebraic equation,

S 2 + Z1S + Zo = 0. (3.2)

As developed by Ramnath, the GMS solution for Eq. 3.1 is obtained by using two

time scales. The fast part of the solution provides frequency information and the

slow part of the solution provides correction for the amplitude. The GMS solution

for Eq. 3.1 is given by

y(t) = y,(t)y1 (t) (3.3)

where the fast solution is

yf(t) = Clexp( K,.(t)dt)ain(j Ki(t)dt) + C2exp(j K,(t)dt)cos(j Ki(t)dt) (3.4)

and the slow solution is

(t)= 14Zo(t) - Zz (t)2'-1/4 (3.5)



Based on the initial condition, arbitrary constants C1 and C2 are determined, and Ki

and K, are the imaginary and real parts of the characteristic roots of Eq. 3.2.

3.3 Fourth Order GMS Solution

In this section, the two-time scales GMS theory is applied to a fourth order LTV

differential equation [6, 7]. Consider the fourth order LTV differential equation,

d4y d3y d2yd- + Z + Z2 2 + Zl(t) + Zo(t)y = 0. (3.6)

The characteristic roots which describe the solution of Eq. 3.6 are given by the

fourth order algebraic equation,

S 4 + Z3 S 3 + Z 2 S 2 + Z 1 S + Zo = 0. (3.7)

Since the coefficients of the equation are time-varying, it is clear that the char-

acteristic roots of this system also vary with time. Depending on the nature of the

coefficients, the four roots of the algebraic equation are consisted of pairs of complex

conjugate or real roots. A particular mode is represented by either a pair of complex

conjugate roots or a single real root.

As developed by Ramnath, the GMS solution for Eq. 3.6 is obtained by using two

time scales. The fast part of the solution provides frequency information and the slow

part of the solution provides correction for the amplitude. If a mode is represented

by a single real root, K, then the GMS solution is given by

y(t) = Clexpj K(t)dt. (3.8)

If a mode is represented by a complex conjugate pair of roots, K = K, ± iKi,

then the GMS solution is given by

y(t) = y,(t)y(t) (3.9)



where the fast solution is

y1 (t) = Clexp( K,.(t)dt)sin(j Ki(t)dt) + C2exp(j K,(t)dt)cos(j Ki(t)dt)

(3.10)
and the slow solution is

t K,(t)
(t) = exp( 2 t) dt). (3.11)

The complete GMS solution to the fourth order equation Eq. 3.6 is obtained by a

linear combination of the approximations to each of the modes. For example, consider

a system which contains three modes consisting of a pair of complex roots and two

real roots. If the complex parts are given by K = K, ± iKi and the real roots are K1

and K 2, then the full GMS solution to the system is given by

y(t) = Clexp(j K(t)dt) + C2exp( K 2 (t)dt)

K,(t)
2+C3e iKp( 2 ) dt)ep( K,(t)dt)sin( Ki(t)dt)

+C4ep( 2 ) dt)ep( t Kr(t)dt)cos(' Ki(t)dt). (3.12)

The arbitrary constants C1, C2, C3 and C4 are determined by initial conditions of

the differential equation.



Chapter 4

Equations of Motion and Stability

Parameter of the GHAME Vehicle

4.1 Introduction

In this chapter, the second order and the fourth order longitudinal equations of the

motion as well as the fourth order lateral equation of the motion of the GHAME

vehicle are presented. The stability of the second order longitudinal dynamics of

the GHAME vehicle is investigated later in this chapter. The stability of a variable

system such as the GHAME vehicle is difficult to predict in most cases. The GMS

theory provides analytical insight into the dynamics in simple mathematical functions

and the stability parameter, which was developed by Ramnath, is presented based on

the second order GMS solution.

4.2 The Second Order Equation of the Motion

for Longitudinal Dynamics

Under the assumption that a vehicle experiences lift without rolling or yawing motion,

the equations describing the longitudinal motion of a vehicle are developed. The x-

axis is tangential to the instantaneous flight path in this coordinate system and the



equations of the motion in the plane of the symmetry are described by [3, 8, 10]

dV pSCODV2dV pSDV2 _ gsin7 (4.1)
dt 2m

SpSCLV
2  V2

V = - (g - )cos (4.2)
2m R

pSICmV2  3g I - (43
S( )sin20 (4.3)

21yy 2R 1,

and the kinematic relations are

V
6 =q+ Vcosy (4.4)

R = Vsin- (4.5)

O = 7 + a. (4.6)

After the Taylor series expansion about the nominal trajectory, and elimination

of 0 and q in Eqs. 4.1-4.3, a change of the variable is made [3, 8]. The independent

variable time is replaced by a non-dimensional variable ( with the relationship

1 o
= - V(t)dt. (4.7)

The new independent variable is the number of the vehicle lengths traveled along the

trajectory. This change of the variable leads to a general equation for the angle-of-

attack perturbation,

d2 a da
d2 + Z() d + Zo()a = 0 (4.8)

where

z (V) = S(CLC - Y(CM& + Mq)) + V (4.9)

Zo() = -6(Ca + -CDacosy) + 6'CLa + &-CL
V2  ) V

_ 2 (CLc(OCmq + CDO) + CLOCDO)



31 gl+ g cos2( + o) (4.10)
RV 2

and

8  PSI (4.11)
2m

ml 2S 12  
(4.12)

I

Iwo - Izz (4.13)
IVY

The prime represents the differentiation with respect to the new independent variable

4.3 The Fourth Order Equation of Motion for

Longitudinal Dynamics

In this section, the fourth order equations of motion for longitudinal dynamics and

the lateral dynamics of the GHAME vehicle are presented. The state space form of

equations of motion can be transformed into the differential equation in a scalar form

which describes the dynamics of the vehicle [10, 12]. The longitudinal dynamics of

the GHAME vehicle are represented by [10]

d4y d3y d2y dy
+ Z3  + Z2t + Z '(t) + Zo(t)y = 0. (4.14)

dt4 dt d dt

where
L

Z3 = L - Mj + Dv (4.15)

Z2 = Dv - Dv M - ML-- - M, - D +LV (4.16)
V Vo V V

L, Lv Lv
Z = MvD, - M,Dv - DvM - + DaMi -vgM-- (4.17)

V0 Vo Vo



L, Lv
Zo = g(Mva - M )  (4.18)Vo Vo

The fourth order GMS solutions, which are detailed in Chapter 3, approximate

solutions of a differential equation by separately approximating the dynamics of the

each mode of the motion. These approximations require those characteristic roots

associated with each of the GHAME vehicle's modes. The characteristic roots of the

longitudinal equation of motion are determined by solving the algebraic equation

S4 + Z3S3 + Z2S2 + Z1S + Zo = 0. (4.19)

The roots associated with the modes of motion will not remain stationary because

coefficients of Eq. 4.19 are time-varying.

Fig. 4-1 clearly illustrates the roots of the short-period mode and the time-varying

characteristics during the entire trajectory. The roots of the short-period mode remain

in the left-half plane throughout the entire trajectory. The damping associated with

short-period increases as the GHAME vehicle traverses further into the atmosphere

and the frequency associated with this mode increases until 1200 seconds then it

decreases.

Fig. 4-2 clearly illustrates the roots of the phugoid mode and the time-varying

characteristics during the entire trajectory. It is clear that the roots of the phugoid

mode behave in a non-conventional manner. In the beginning of the GHAME vehicle's

reentry, the roots are in the right-half plane as a pair of complex conjugate roots. As

the vehicle progresses into the atmosphere, a pair of complex conjugate roots moves

into left-half plane and then returns to the right-half plane at 312 seconds. At 400

seconds into the reentry trajectory, the pair of complex conjugate roots suddenly

becomes a pair of real roots. One of them is a positive root and the other is a

negative root. These real roots move towards the origin, then two roots become a

pair of complex conjugate roots at 685 seconds. The roots stay as a pair of complex

conjugate roots until 1670 seconds and then these roots become two real roots again

at the end of the trajectory.



The peculiar behavior of the phugoid mode requires more careful use of the GMS

theory to study the vehicle dynamics. The points at which the roots transform from

complex conjugate roots to real roots, or the reverse, are known as the 'turning

points' and represent a change in the nature of the mode between oscillatory and

non-oscillatory behavior.

The lateral dynamics of the GHAME vehicle are represented by [10]

d4y d3y d2y dyd4  Z 3  + Z2  + Z(t) + Zo(t)y = 0. (4.20)

where

Z3 = -L - N, - Y (4.21)

Z2 = VN, - L,N + YL + N,.(Lp + Y) (4.22)

Z1 = Yv(L,N - N,L) - gL, + VNL, - VLN ,  (4.23)

Zo = g(L,N, - N,L,) (4.24)

The fourth order GMS solution, which is shown in Chapter 3, requires that the

each mode of motion and its corresponding roots be identified. The characteristic

roots of the lateral equation of motion are determined by solving the algebraic equa-

tion

S4 + Z3S3 + Z2S 2 + Z1S + Zo = 0. (4.25)

The roots associated with the modes of motion will not remain stationary because

coefficients of Eq. 4.25 are time-varying.

Fig. 4-3 clearly illustrates the roots of the dutch-roll mode and the time-varying

characteristics during the entire trajectory. The roots of the dutch-roll mode remain

in the left-half plane throughout the entire trajectory. The damping associated with



dutch-roll increases as the GHAME vehicle traverses further into the atmosphere

and the frequency associated with this mode increases until 1200 seconds, then it

decreases.

Figs. 4-5 and 4-7 clearly illustrate the roots of the spiral mode and the time-varying

characteristics during the entire trajectory. The roots of the spiral mode remain in the

right-half plane throughout the entire trajectory. The root moves toward origin until

800 seconds and then it moves away from the origin until the end of the trajectory.

Figs. 4-4 and 4-6 clearly illustrate the roots of the roll mode and the time-varying

characteristics during the entire trajectory. The roots of the roll mode remain in the

left-half plane and the roots move away from the origin throughout the trajectory.
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4.4 Stability Parameter for Longitudinal Dynam-

ics

A second order LTV differential equation, which describes the GHAME vehicle's

angle-of-attack perturbation, is used in this section [3]. The stability of a system

with time-varying coefficients such as the GHAME vehicle is very difficult to predict

in most cases. Simple stability criteria applicable to this case had been developed by

Ramnath.

d2a da
+ Z (W). + Zo(O)a = 0 (4.26)

where , a non-dimensional variable, is the number of vehicle lengths traveled along

the trajectory. Based on the GMS solution, the bound of a can be defined in the

following form:

-1/4 P
I a( ) J= 14Zo() - Z() 2 - exp] K,.()d (4.27)

It is clear that a is stable when K, is negative, and K, can be written in terms of

aerodynamic coefficients in Eq. 4.28

-Z, -1 V'
K, = = ((CL, - O'(CM + CMq)) + -) (4.28)

where
V' gl
V = -SCD sin (4.29)V V2

CD = CDO + CDa (4.30)

= psI (4.31)
2m

ml 2

0 = M1 (4.32)

After substitution of Eq. 4.29 and Eq. 4.30 into Eq. 4.28, this yields Eq. 4.33:



-1 gl
K, = ((CL - (CDO + CDa) - (CM& + CMq)) - V2(.

Since CDa, CM and 7 are negligible, these values are assumed to be zero for simpli-

fication. Then K,. is simplified as,

--1
K, = 1 ((CLa - CDO - 'CMq)). (4.34)

Based on Eq. 4.34, the stability parameter (P) is defined as

P = 6(CL - CDO - aOCMq) (4.35)

When P is positive, a is stable and a is unstable when P is negative.

The stability parameter (P) and aerodynamic coefficients (CLa, CDo, CMq) are

shown in Fig. 4-8(a). Fig. 4-8(b) shows that ambient density, p, plays a significant

role in the stability parameter because the density changes significantly (from 5.545

x 10-10 to 1.061 x10- 31b/ft3 ) from altitude 400,000 ft to 100,000 ft. Therefore, the

density term, which is included in 6, must be included in the stability parameter.

Figs. 4-9 and 4-10 show the stability parameter (P) vs. ( and vs. time, respectively,

which show the stability increases as the trajectory progresses.

4.5 Stability of GHAME Vehicle

The stability of the GHAME vehicle on the given trajectory is investigated in two

other methods. One is the comparison of numerical solutions along the trajectory

in terms of the relative stability. The other method is the bound of the solution

throughout the trajectory. In order to investigate the stability, the trajectory is

divided into six segments and their relative stabilities are compared. Figs. 4-11 - 4-16

illustrate that the solution becomes more stable as the trajectory progresses. This

result is consistent with the result from Fig. 4-9, which shows increasing P as the



trajectory progresses. From Figs. 4-11 - 4-16, 'settling trajectory length' for 0.5 and

0.1 amplitude are compared between six segments of the trajectory. For the range 0

to 5 x 104', the convergence is very slow. For instance, it takes 30220 to satisfy 0.5

amplitude bound for cosine-like solution and 22020 to satisfy 0.5 amplitude bound

for sine-like solution. For this range, 0.1 amplitude bound does not meet for both

cosine-like and sine-like solutions. For the range 5 x 104 to 1 x 1051, the convergence

is faster than in the previous case. The 0.5 amplitude bound is satisfied within 11900

( and 10420 ( for cosine-like and sine-like solutions, respectively. The 0.1 amplitude

bound is satisfied within 22460 ( and 21660 ( for cosine-like and sine-like solution,

respectively. The summary is given in Table 4.1.

The same conclusion can be drawn from Figs. 4-17 - 4-19, which show the bound

of a. Fig. 4-17 shows a rapid decrease and the plot reaches zero after 70,000 ,

and Fig. 4-18 also shows the decreasing plot. Therefore, the solution becomes more

stable as the trajectory progresses and the major contribution for the a bound comes

from exp(J 0 K,( )d ). Fig. 4-20 shows that the K,. term is negative throughout

the trajectory and K, decreases as the trajectory progresses. As a consequence, K,.

dominates the stability of the solution and the stability parameter, P, which was

derived from K, in Eqs. 4.34 and 4.35. The stability of this trajectory increases as

the trajectory progresses. This result can be shown from the stability parameter

(Fig. 4-9) and the solution for the trajectory (Figs. 4-11 - 4-16). This result also

can be shown from the bound of a (Fig. 4-19). Therefore, all three methods agree

and the stability parameter P is the easiest way to estimate stability information of

a vehicle during the flight because it only requires three aerodynamic coefficients and

ambient density.

Another interesting result can be obtained from the comparison of the Figs. 4-17

- 4-19. From the GMS theory, it is known that the fast solution provides frequency

information. The change of the frequency is most significant between ranges 0 -

5 x 104 and 5 x 104 - 1 x 10s according to the Figs. 4-11-4-16. From Fig. 4-17, it is

shown clearly that the slope of the plot is changed most significantly between ranges

0 - 5 x 104 and 5 x 104 - 1 x 10s1.



In conclusion, the stability parameter (P) provides accurate stability information

with three simple aerodynamic coefficients and ambient density. Therefore, this sta-

bility parameter can be obtained easily with existing flight measurement systems, and

the stability parameter can be available to the pilot during the flight.
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Table 4.1: Comparison for Settling Trajectory Length

Cosine-like solution ( ) Sine-like solution (()
Range (() 0.5 Amp. 0.1 Amp. 0.5 Amp. 0.1 Amp.

0 to 5 x 104 30220 NA 22020 NA
5x 104 to 1.0x 105 11900 22460 10420 21660
1.0 x 105 to 1.5 x 105 1420 4900 860 5260
1.5x 105 to 2.0x 105 210 1380 380 1580
2.0 x 105 to 2.5 x 105 110 710 210 590
2.5x 105 to 3.0x 105 70 310 110 370
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Chapter 5

Application of Extended Flying

Qualities Criteria to the GHAME

Vehicle

5.1 Introduction

From the beginning of manned flight, the flying qualities of aircraft have been a

topic of significant research interest [13]. The analysis of the equation of motion

has provided information about the flying qualities. Until now, the analysis of flying

qualities has been based on constant flight conditions. However, the nature of flight

vehicles has changed drastically. For example, hypersonic vehicles, such as the Na-

tional Aerospace Plane (NASP) and the High Speed Civil Transport (HSCT), have

time-varying systems and they also have very large flight envelopes. Therefore, the

conventional flying qualities criteria may not be appropriate for these hypersonic ve-

hicles, and it is necessary to develop an analytical approach to specify complete flying

qualities for these vehicles.



5.2 Description of the Flying Qualities

The flying qualities can be defined as the stability and control characteristics that

have an important bearing on the safety of flight and on the pilot's impressions of the

ease of flying [13]. The pilot expects the flying qualities of the aircraft according to

the flight phase and the type of aircraft. The aircraft are classified into four classes

as shown in Table 5.1, and the flight phases are categorized into three categories as

shown in Table 5.2 [14].

The specifications of the flying qualities are separated into three levels [14].

Level 1: Flying qualities clearly adequate for the mission flight phase.

Level 2: Flying qualities adequate to accomplish the mission flight phase, but

some increase in pilot workload or degradation in mission effectiveness,

or both, exists.

Level 3: Flying qualities such that the airplane can be controlled safely, but

pilot workload is excessive or mission effectiveness is inadequate, or

both Category A flight phases can be terminated safely, and Category

B and C flight phase can be completed.

These levels can be related to a well known subjective rating system, Copper-Harper

handling qualities rating scales [15].

Level 1: Copper-Harper Scale = 1 - 3.5

Level 2: Copper-Harper Scale = 3.5 - 6.5

Level 3: Copper-Harper Scale = 6.5 - 9+



Table 5.1: Classification of aircraft

Table 5.2: Flight phase categories

Category A Nonterminal flight phase that requires rapid maneuvering, precision
tracking, or precise flight-path control. Included in the category are
air-to-air combat ground attack, weapon delivery/launch, aerial recov-
ery, reconnaissance, in-flight refueling (receiver), terrain-following, an-
tisubmarine search, and close formation flying

Category B Nonterminal flight phase that are normally accomplished using gradual
maneuvers and without precision tracking, although accurate flight-
path control may be required. Included in the category are climb,
cruise, loiter, in-flight refueling (tanker), descent, emergency descent,
emergency deceleration, and aerial delivery

Terminal flight phase
Category C Terminal flight phase are normally accomplished using gradual maneu-

vers and usually require accurate flight-path control. Included in the
category are takeoff, catapult takeoff, approach, wave-off/go-around
and landing

Class I Small, light airplanes, such as light utility, primary trainer, and light
observation aircraft

Class II Medium-weight, low-to-medium maneuverability airplanes, such
as heavy utility/search and rescue. light or medium trans-
port/cargo/tanker, reconnaissance, tactical bomber, heavy attack and
trainer for Class II

Class III Large, heavy, low-to-medium maneuverability airplanes, such as heavy
transport/cargo/tanker, heavy bomber and trainer for Class III

Class IV High-maneuverability airplanes, such as fighter/interceptor, attack,
tactical reconnaissance, observation and trainer or Class IV

Nonterminal flight phase



5.3 Flying Qualities for Steady Flight Conditions

The flying qualities specifications for a steady flight condition are discussed in this

section. Consider a second order linear time-invariant (LTI) differential equation

which describes the dynamics of the short-period, phugoid or dutch-roll mode in

steady flight conditions,

d d d2y dy
S+ Zx- + Zoy = 2 + 2w, + w2y = 0 (5.1)dt2 dt dt2  dt

where C is the damping ratio and wc is the undamped natural frequency. The solution

can be written as

y(t) = C1 exp(-(w,(t))[sin(wnV - C2(t) + 0)]. (5.2)

Therefore, the characteristics of a second order linear time-invariant (LTI) system can

be obtained in terms of (w, and w,~v1 - C2), and simplified flying quality criteria

can be defined following Hagelauer [16]:

Level 1 AA1,,min 5 C W AAlm,, and BB1,,min w, 1 1 -( K BBlma,,

Level 2 AA2min wn AA2ma, and BB2min w, n/1 -I BB2ma.

Level 3 AA3,in < (Wn AA3m,,, and BB3min < wnV1 - 5 BB3ma,,

Consider a first order linear time-invariant (LTI) differential equation which de-

scribes the dynamics of the spiral or roll mode in steady flight conditions,

dyd Zy = 0. (5.3)

The solution can be written as

y(t) = C, exp(-Z(t)). (5.4)

Therefore, the characteristics of a first order linear time-invariant (LTI) system



can be obtained from Z, which is related to the time constant (t,) as

Z = -to. (5.5)

The first order system dynamics are described by time for the doubling (t2 ) or halving

(t1/2) amplitude, and these are defined as

ln2
t1/2 or t2 = (5.6)

I tc I

Based on the above results, simplified flying quality criteria can be defined as,

Level 1 AAlmin h AA1ma,,

Level 2 AA2min < < AA2,mam

Level 3 AA3min < 2< AA3,ma,

5.4 Flying Qualities for Variable Flight Condi-

tions

The basis of the extension of handling qualities to time varying systems was developed

by Hagelauer, who developed extended handling quality criteria for the short-period

mode with Level 1 and Level 2 requirements [16]. Consider a second order linear time-

varying (LTV) differential equation which describes the dynamics of the short-period,

phugoid or dutch-roll mode in variable flight conditions,

+ Zl(t) + Zo(t)y = + 2('(t)wn(t)- + w2(t)y = 0. (5.7)dt2  d dt2  dt n

Based on the Generalized Multiple Scales theory, the fast part of the asymptotic

approximation is written in the following way,

y(t) = C exp(- I: C(r)wn(r)dr)[sin( .w(r) 1 - ( 2(r)dr) + q]. (5.8)



The extended flying quality criteria for variable flight conditions can be defined as,

AAlmin < AA < AAlma

AA2min < AA < AA2ma,,

AA3min < AA < AA3,ma

and

and

and

BBlmin < BB < BBlmaz

BB2min < BB < BB2ma,

BB3,min < BB < BB3ma

1 ft+T
AA= -T

T t

1 t+T
(-r)w,(r)dr, BB = T t w,(r) 1 - (2(r)dr.

A first order linear time-varying (LTV) differential equation describes the dynam-

ics of the spiral or roll mode in variable flight conditions,

The solution is

(5.10)

(5.11)

+ Z(t)y = 0.

y(t) = C, exp(- I Z(r)dr) = Ci exp(j tc(r)dr).

Based on the above results, the extended flying quality criteria for variable flight

conditions can be defined as,

AAlmin < AA < AAlma,

AA2min < AA < AA2m ,

AA3min < AA < AA3,ma

1 [t+TIn 2
AA = - jtd I ) dr.

T e t t(r)

Level 1

Level 2

Level 3

where

(5.9)

Level 1

Level 2

Level 3

where

(5.12)



5.5 Extended Flying Qualities Criteria for Lon-

gitudinal Dynamics

In this section, the extended flying qualities criteria for the longitudinal dynamics are

developed, first for the short-period mode, and second for the phugoid mode. The

EFQC are developed for the GHAME vehicle, which is classified as Class III according

to Table 5.1 and the trajectory is Category B according to Table 5.2.

5.5.1 Extended Flying Qualities Criteria for Short-Period

Mode

The values of C and

1797A.

Level 1

Level 2

Level 3

0.30 <

0.20 <

0.05 <

w, (rad/sec) of the short period are obtained from MIL-STD-

C< 2.00

C< 2.00
(

and

and

and

0.46 < wn < 3.50

0.36 < w, < 6.00

0.36 < wn

The appropriate choice for T is a complete period of the short-period mode. Since

the period of the short-period mode is about 6 seconds, T is used as 6 seconds in this

study. Based on this, the EFQC for the short-period mode is written as,

Level 1 0.14 < A < 7.00 and 0 < B < 3.30

Level 2 0.07 < A < 12.0 and 0 < B < 5.90

Level 3 0.02 < A

where

A = 1 f t +6 wn(r)C(r)dr

B = ftt+6 w(r) 1 - C(r) 2dr
6=



5.5.2 Extended Flying Qualities Criteria for Phugoid Mode

The flying quality specification for the phugoid mode is the following. The values of

C and T2 of phugoid are obtained from MIL-STD-1797A.

C > 0.04

S>0

T2 > 55 seconds (for unstable root)

The Level 3 requirement can be written in terms of Cw, in Eq. 5.13.

I-(w, I < 0.0126

The appropriate choice for T is a complete period of the phugoid mode.

the period of the phugoid is about 30 seconds, T is used as 30 seconds in this

Based on this, the EFQC for the phugoid mode is written as,

(5.13)

Since

study.

Level 1 0.04 < C

Level 2 0 < C

Level 3 0.0126 > D (for unstable root)

where

C =L f t+30 ()drC = f y+ o -(r)d d
D=- f t30-(7)Wn(r) I d-.

5.6 Extended Flying Qualities Criteria for Lat-

eral Dynamics

In this section, the extended flying qualities criteria for the lateral dynamics are

developed. The extended flying quality criteria, first for the dutch-roll mode, second

for the spiral mode, and finally for the roll mode are developed.

Level 1

Level 2

Level 3



5.6.1 Extended Flying qualities Criteria for Dutch-Roll Mode

The flying quality specification for the dutch-roll mode is following. The values of C,

wn and (w, of the dutch-roll are obtained from MIL-STD-1797A.

Level 1

Level 2

Level 3

0.08 < C

0.02 <

o<C

0.40 < w,

0.40 < wn

0.40 < wn

0.15 < Cwn

0.10 _< Cw

The appropriate choice for T is a complete period of the dutch-roll mode. Since

the period of the dutch-roll is about 3 seconds, T is used as 3 seconds in this study.

Based on this, the EFQC for the dutch-roll mode is written as,

Level 1 0.15 < E and 0.08 < F

Level 2 0.10 < E and 0.02 < F

Level 3 0 < E and 0 < F

where

E = ftt+3 W(r)C(()dr

F = f t+3 ((r)dr.

5.6.2 Extended Flying Qualities Criteria for Spiral Mode

The flying quality specification for the spiral mode follows. The value of t 2 of the

spiral mode is obtained from MIL-STD-1797A.

Level 1

Level 2

Level 3

20 < t2

8 <t 2

4 < t 2

The appropriate choice for T is a time constant for the spiral mode, and the time

constant of the spiral mode is about 20 seconds. Therefore, T is used as 20 seconds

in this study. Based on this, the EFQC for the spiral mode is written as,



Level 1 20 < G

Level 2 8 < G

Level 3 4 < G

where

G = _ f+20 I 2dr.

5.6.3 Extended Flying Qualities Criteria for Roll Mode

The flying quality specification for the roll mode follows. The value of tl/2 of the roll

is obtained from MIL-STD-1797A.

Level 1 1.4 _ tl/2

Level 2 3.0 > tl/2

Level 3 10 > tl/2

The appropriate choice for T is a time constant for the roll mode, and the time

constant of the roll mode is about 2 seconds. Therefore, T is used as 2 seconds in

this study. Based on this, the EFQC for the roll mode is written as,

Level 1 1.4 > H

Level 2 3.0 > H

Level 3 10 > H

where

H 1 ftt+2 In 2 dr.

5.7 Flying Qualities for GHAME Vehicle based

on EFQC

In this section, the flying qualities for the GHAME vehicle are investigated. Fig. 5-1

illustrates the flying quality for the short-period mode based on the EFQC. The flying



quality on the short-period mode starts from below Level 3. Until 900 seconds, the

flying quality remains below Level 3 then the flying quality enters Level 3 after 900

seconds. The first half of the flight is below Level 3 and it reaches Level 2 at the end

of the trajectory. Therefore, the short-period mode is not safely controllable for the

pilot during the first half of the flight, and the second half of the flight is controllable

with excessive workload for the pilot.

Fig. 5-2 illustrates the flying quality for the phugoid mode. Due to the 'turning

point', which was discussed in Chapter 4, flying quality was not analyzed for the

entire trajectory in the phugoid mode. Fig. 5-3 shows the detail of Fig. 5-2. The

flying quality of the phugoid mode starts from Level 3 then it enters Level 2 and

Level 1. However, the flying quality degrades to Level 3 at 312 seconds. Between

312 seconds and 685 seconds the flying quality is not investigated due to the 'turning

point'. From 685 seconds the flying quality remains at Level 1 until 1670 seconds

then the 'turning point' occurs again. These analyses show that flying quality of

the phugoid mode fluctuates between Level 1 and Level 3. Therefore, it will be very

useful to have a flight display window for the pilot to provide information about flying

qualities during the flight, especially for the phugoid mode.

From Fig. 5-4, it is clear that the flying quality for the dutch-roll mode is inad-

equate because it satisfies only the Level 3 requirement during the entire trajectory.

Therefore, workload for the pilot is excessive for the dutch-roll mode.

Fig. 5-5 illustrates the flying quality for the spiral mode. The extended flying

quality for the spiral mode meets the Level 1 requirement during the entire trajectory.

However, the roll mode does not satisfy the Level 3 requirements. Therefore, the roll

mode is not safely controllable for the pilot. The spiral mode is the only mode which

has adequate flying quality throughout the trajectory.

Based on these analyses, the GHAME vehicle is not safely controllable for the

pilot or the workload for the pilot will be excessive. Therefore, the GHAME vehicle

needs augmented control systems. In addition, the flight display window for the pilot

will be very useful especially for the phugoid mode which fluctuates between level 1

and Level 3. Figs. 5-7 and 5-8 illustrate extended flying qualities for each mode in



the flight display window. For the safety reason, the 'turning point' is considered

as Level 3 in the phugoid mode because the dynamics of the 'turning point' have to

be investigated further. The investigation of the 'turning point' is not carried out

because it is beyond scope of this thesis.
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Chapter 6

Parameter Estimation using

Generalized Multiple Scales

Theory

6.1 Introduction

The extraction of unknown stability and control derivatives from flight data has been

of interest since the early 1920's [17, 18, 20]. The stability and control derivatives

play a very important role in development and modification of aircraft. For example,

these derivatives are used in the flight planning, flight control system modification

and verification of aircraft performance and characteristics. The systematic method of

obtaining the stability and control derivatives is parameter estimation. The parameter

estimation is explained in the following section.

6.2 Parameter Estimation

A set of differential equations with unknown parameters describes an aircraft system.

The unknown parameters are determined by the following procedures. The system

is excited by a given input, and the input and the output are measured. The val-

ues of the unknown parameters are deduced based on results from the actual system



response and the model response with the given input. The unknown parameters

can be identified easily through this approach. There are many parameter estima-

tion techniques available including the maximum-likelihood and the Kalman filter

techniques.

In this thesis, the maximum-likelihood estimator, which has been used for space

shuttle vehicles and the F-14, is used for parameter estimation [17, 21, 22]. A brief

explanation of the maximum-likelihood method is following [17, 19, 22, 23, 24]. The

first procedure is to define the system (equations of motion) in the form as

X(to) = xo

.i(t) = f[x(t), u(t), C] + F(C)n(t)

z(t) = g[x(t), u(ti), C] + G(C)7i

(6.1)

(6.2)

(6.3)

where

x = state vector

C = vector of unknowns

z = observation vector

u = control input vector

n = state noise vector

77i = measurement noise vector

The measurement noise vector is assumed as a sequence of independent Gaussian

random variables with zero mean and identity covariance, and the state noise vector

is assumed as zero-mean white Gaussian and stationary. The maximum-likelihood

estimator minimizes the cost function

N

J(C) = 1/2 [z(ti - ic(t)]T(GGT)-1 [z(t - ic(ti)] + 1/2(C - m)TP-l(( - mC) (6.4)
i=1

where

-= predicted estimate

P = covariance

£¢ = computed response

GGT = measurement noise covariance matrix

m e = mean of the prior distribution of C



If Eqs. 6.2 and 6.3 are linearized,

X(to) = xo (6.5)

i(t) = Ax(t) + Bu(t) + Fn(t) (6.6)

z(t,) = Cx(ti) + Du(t,) + G . (6.7)

The £C(tj) term of Eq. 6.4 can be approximated by

ic(to) = Xo(C) (6.8)

,C(t,+j) = ¢iC(ti) + i[u(t,) - u(ti+1)]/2 (6.9)

£C(t,) = C£Fc(t,) + Du(t,) (6.10)

where the transition matrix 0 and the integral of the transition matrix b are given

by

S= ep[A(ti+~ - ti)] (6.11)

V= ep(Ar)dr. (6.12)

Then the minimization technique is used to minimize the cost and in this case the

Gauss-Newtonian algorithm is used. The maximum-likelihood estimator estimates

unknown parameters by iterative procedures. The accurate initial states lead to

accurate parameter estimation results and this minimizes computational time. In

order to obtain accurate initial states, the direct-integration method has been used.

However, this method is time-consuming. Therefore, an alternative method is needed

for saving CPU time.



6.3 Importance of the Initial State in Parameter

Estimation

In this section, the importance of the initial state is investigated in the parameter

estimation. A first order LTV differential equation (Eq. 6.13), which describes the

GHAME vehicle's pitch rate, is used for investigation.

+ Mq(t)q = M,e(t)Se (6.13)

Fig. 6-1 shows the time varying nature of coefficients, which are Mq and M6,, in

Eq. 6.13. Fig. 6-2 shows the input and output during one second. The input for Se is

repeated every second for simulation.

The maximum-likelihood estimator is used for the comparison test. The correct

value of the initial state q is 10 deg/second in this case. The error is introduced into

the initial state and errors on the parameter estimation are compared. When the

correct initial state is given, the estimations of Mq and Me are correct. When 0.1

% error is introduced into the initial state, error in the Mq is 4.5 % and error in the

M6 , is 6.0 %. When 1 % error is introduced into the initial state, error in the Mq

is 45.2 % and error in the Mbe is 59.4 %. When 10 % error is introduced into the

initial state, error in the Mq is 447.9 % and error in the Mbe is 586.5 %. Therefore,

the initial state estimation plays a very important role in the parameter estimation

and the initial state error is proportional to the error in the parameter estimation.

The summary is given in Table 6.1 The parameter estimation is shown in Tables 6.2

- 6.4 and the iteration plots are shown in Figs. 6-3 - 6-5.
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Table 6.1: Comparison between error of initial state and error of parameter estimation

% error of initial state % error of M % error of M6,e

0.1 4.5 6.0
0.2 9.1 12.0
0.3 13.6 17.9
0.4 18.1 23.8
0.5 22.6 29.8
0.6 27.1 35.7
0.7 31.7 41.7
1 45.2 59.4
2 90.3 118.7
10 447.9 586.5
20 887.1 1153.8



Table 6.2: Parameter estimation for correct initial state

# of iteration J Mq Me Mq M6e
1 4.2908 x10-1 -2.4894 x10- 2 -5.4424 x10-1 -2.4786x10 - 2 -5.4492x10-1
2 1.5888 x10 -5  -2.4894 x10-2 -5.4424 x10- 1 -2.4894x10 - 2 -5.4424x10 - 1

3 2.0609 x10 - 13 -2.4894 x10 - 2 -5.4424 x10 - 1 -2.4894x10 - 2 -5.4424x 10- 1

4 1.8560 x10 -1 3  -2.4894 x10- 2 -5.4424 x10- 1 -2.4894x10 - 2 -5.4424x10 - 1

Table 6.3: Parameter estimation for 0.1 % error in the initial state

# of iteration J Mq M6e Mq Mb,
1 3.4917 x10 - 1 -2.4894 x10- 2 -5.4424 x10 - 1 -2.5932 x 10- 2 -5.7721x 10- 1

2 6.2807 x10- 4 -2.4894 x10- 2 -5.4424 x10 - 1 -2.6020x10-2 -5.7664x10 - 1

3 6.1756 x10- 4 -2.4894 x10-2 -5.4424 x10 - 1 -2.6020x 10- 2 -5.7664x10 - 1

4 6.1756 x10- 4 -2.4894 x10-2 -5.4424 x10 - 1 -2.6020x10-2 -5.7664x10 - 1

Table 6.4: Parameter estimation for 1 % error in the initial state

# of iteration J Mq Ms, Mq Mse
1 6.3781 x10-2 -2.4894 x10- 2 -5.4424 x10-1 -3.6147x 10 - 2 -8.6788x10- 1

2 6.1684 x10-2 -2.4894 x10 - 2 -5.4424 x10-1 -3.6147x10-2 -8.6786x10 - 1

3 6.1684 x10-2 -2.4894 x10-2 -5.4424 x10- 1 -3.6147x10 - 2 -8.6786x10 - 1

4 6.1684 x10- 2 -2.4894 x10- 2 -5.4424 x10- ' -3.6147x10 - 2 -8.6786x10 - 1
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6.4 State Estimation with GMS for Second Order

Dynamics

In this section, the results from the GMS method are compared with the results from

the direct-integration method in two categories: CPU time vs. maximum error and

the CPU time vs. steady-state error (CPU time is based on the IBM RS6000). A

second order LTV differential equation, which describes the GHAME vehicle's angle-

of-attack perturbation, is used for comparison.

d2a da
d + Zi(t) jt + Zo(t)a = 0 (6.14)

Fig. 6-6 illustrates the accuracy of the GMS solution with comparison to the direct-

integration solution. The direct-integration method with step size A( = 20 is used

as a reference case. Figs. 6-7 and 6-8 show the relationship between the CPU time

and step size, maximum error and step size, and steady-state error and step size. In

order to get accurate results from the direct-integration method, the step size has to

be at least A( = 154. The CPU time which corresponds to this run is 23 seconds. In

contrast, the GMS method can use step size A( = 7150 without significant increased

maximum error and steady-state error. The CPU time which corresponds to this run

is 1.64 seconds. As a consequence, the GMS method is 14 times faster than the DI

method. From Table 6.5, the comparison between the GMS solution with step size

A = 7150 and the reference case shows that the GMS case is 419 times faster
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Table 6.5: Comparison between GMS and Direct-Integration

CPU time S.S. Error Max. Error
Method (Sec.) Cos Sin Cos Sin

D.I. A = 20 687
(Reference Case)
D.I. A = 40 190 8.6x10 -12  3.3x10-11 5.9x10 -8  4.9x10-8
D.I. A = 50 125 2.2x10 -1 1  8.6x10 -'1  1.5x10 - 7  1.3x10 - 7

D.I. A = 100 39 4.2x 10-10  1.5x10 -9  2.5x10 - s  2.1x10 - 6

D.I. A = 111 36 9.3 x 10- 9  2.2 x 10-8 3.8 x 10- 6  3.3 x 10-6
D.I. A = 118 35 1.2x 10-8 2.7x10- 4.7x 10-6 4.1x 10-6
D.I. A = 125 31 1.5x10-8 3.5x10 -8  6.1x10- 6  5.3x10- 6

D.I. A = 154 23 3.5 x 10-8 8.0x 10-8  1.4 x 10-5  1.2x10 - 5

D.I. A = 182 19 7.0x 10-2 7.0x10-2 5.5x 100 5.5x 100
D.I. A = 200 17 1.0 x 1084 1.0 x 1084 2.5 x 1036 2.5 x 1036

GMS A = 50 3042 2.3x10 - 6  1.3x10 - 6  1.9x10- 1  8.4x10 - 2

GMS A = 100 511 2.3x10 - 6  1.3x10 - 6  1.9x10- 1  8.4x 10- 2

GMS A( = 200 140 2.3x10 - 6  1.3x10 - 6  1.9x10-1 8.4x 10- 2

GMS A = 1000 12 2.3x10 - 6  1.3x10 - 6  1.9x10-1 8.4x 10- 2

GMS A = 2000 5.9 2.3x10 - 6  1.3x10- 6  1.9x10 - 1  8.4x 10- 2

GMS A( = 2860 4.11 2.3x10-6 1.3x10- 6  1.9x10-1 8.4x 10- 2

GMS A = 7150 1.64 2.5x10 - 6  1.6x10- 6  1.9x10 - 1  8.4x 10- 2

GMS A4 = 14300 0.87 1.5x10 -5  1.65x10-5  2.4x10-1 1.16x10 - 1

GMS A( = 28600 0.5 4.0x10- 4 1.8x10 - 4 2.5x10-1 2.8x10 - 1



6.5 State Estimation with GMS for GHAME Ve-

hicle

6.5.1 State Estimation with GMS for Longitudinal Dynam-

ics

In this section, the results from the GMS method are compared with the results from

the direct-integration method in fourth order longitudinal dynamics of the GHAME

vehicle. A fourth order LTV differential equation, which describes the GHAME ve-

hicle's longitudinal dynamics is used.

d4y d3y d2y dy
dty + Z + Z + 2 Z(t) d + Zo(t)y = 0 (6.15)

Due to the 'turning point' in the phugoid mode, the first 300 seconds of the longi-

tudinal dynamics are used for comparison. Fig. 6-9 illustrates the accuracy of the

GMS solution with comparison to the direct-integration solution in case 1 (y(0)=0,

y(0)(1)=0, y(0)(2)=0, y(0)( 3)=0.1). The direct-integration method with step size At =

0.1 is used as a reference case. Figs. 6-11 and 6-12 show the relationship between the

CPU time vs. step size and maximum error vs. step size. The DI method becomes

unacceptable with step size At greater than 2 seconds. However, the GMS method

does not increase the maximum error up to step size At= 20 seconds. In Table 6.6,

the comparison between the GMS method with step size At = 20 seconds and the

reference case shows that the GMS case is 125 times faster.

Fig. 6-10 illustrates the accuracy of the GMS solution with comparison to the

direct-integration solution in case 2 (y(0)=0, y(0)(1)=1, y(0)(2)=0, y(0)(3)=0). The

direct-integration method with step size At = 0.1 is used as a reference case as before.

Fig. 6-13 and 6-14 show the relationship between the CPU time vs. step size and

maximum error vs. step size. The result is very similar to the result from case

1. The DI method becomes unacceptable with step size At greater than 2 seconds.

However, the GMS method does not increase the maximum error up to step size At=



20 seconds. In Table 6.6, the comparison between the GMS method with step size

At = 20 seconds and the reference case shows that the GMS case is 141 times faster.
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Table 6.6: Comparison between Direct-Integration and GMS for Longitudinal Fourth
Order Dynamics(0 to 300 sec): Case 1 [ y(O)=0, y(0)(1)=0, y(0)(2)=0, y(0)(3)=0.1] &
Case 2 [y(O)=O, y(0)(1)=0, y(0)(2)=1, y(0)( 3)=0]

Case 1 Case 2
Method CPU time (sec) Max Error CPU time (sec) Max Error

D.I. At = 0.1 150.5 168.6
(Reference Case)
D.I. At = 1 12.5 6.5x 100 14.2 1.9x 100
D.I. At = 2 5.8 8.2x 100 6.1 2.2x 100
D.I. At = 3 3.8 2.7x 103 4.0 8.5x 103

GMS At = 0.1 1550.6 1.4x101 1580.7 3.3x 100
GMS At = 1 32.3 1.4x 101 36.4 3.3x 100
GMS At = 2 15.0 1.4x 101 16.1 3.3 x 100
GMS At = 5 4.8 1.4 x 101 5.4 3.3 x 100
GMS At = 10 2.4 1.4 x 101 2.5 3.3 x 100
GMS At = 20 1.2 1.5x 101 1.2 3.5x 100
GMS At = 50 0.5 5.0x101 0.5 7.0 x101
GMS At = 100 0.2 2.0x102 0.2 1.5 x102



6.5.2 State Estimation with GMS for Lateral Dynamics

In this section, the results from the GMS method are compared with the results from

the direct-integration method in fourth order lateral dynamics of the GHAME vehi-

cle. A fourth order LTV differential equation, which describes the GHAME vehicle's

longitudinal dynamics is used.

d4y d3y d2y dy
d Z - + Z 2 - + Zl(t) + Zo(t)y = 0 (6.16)
dt4 dt3 dt2 dt

Fig. 6-15 illustrates the accuracy of the GMS solution with comparison to the

direct-integration solution in case 1 (y(O)=0, y(0)(1)=0, y(0)(2)=0, y(0)( 3)=1). The

direct-integration method with step size At = 0.1 is used as a reference case. Figs. 6-

17 and 6-18 show the relationship between the CPU time vs. step size and maximum

error vs. step size. The DI method becomes unacceptable with step size At greater

than 2 seconds. However, the GMS method does not increases the maximum error up

to step size At= 20 seconds. In Table 6.7, the comparison between the GMS method

with step size At = 20 seconds and the reference case shows that the GMS case is

378 times faster.

Fig. 6-16 illustrates the accuracy of the GMS solution with comparison to the

direct-integration solution in case 2 (y(0)=0, y(0)(1)=1, y(0)(2)=0, y(0)( 3)=0). The

direct-integration method with step size At = 0.1 is used as a reference case as before.

Figs. 6-19 and 6-20 show the relationship between the CPU time vs. step size and

maximum error vs. step size. The result is very similar to the result from case

1. The DI method becomes unacceptable with step size At greater than 2 seconds.

However, the GMS method does not increase the maximum error up to step size At=

20 seconds. In Table 6.7, the comparison between the GMS method with step size

At = 20 seconds and the reference case shows that the GMS case is 447 times faster.
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Table 6.7: Comparison between Direct-Integration and GMS for Lateral Fourth Order
Dynamics (0 - 500 seconds): Case 1 [ y(O)=O, y(0)(1)=0, y(0)(2)=0, y(0)(3)=1] & Case
2 [y(O)=O, y(0)(1)=1, y(0)(2)=0, y(0)(3)=0 ]

Case 1 Case 2
Method CPU time (sec) Max Error CPU time (sec) Max Error

D.I. At = 0.1 453.5 625.6
(Reference Case)
D.I. At = 1 41.2 3.5x 100 40.9 3.9x 10- 1

D.I. At = 2 17.1 7.9x 100 16.7 8.9x 10- 1

D.I. At = 3 10.1 2.7x 107 10 8.5x 101

GMS At = 0.1 3936.6 1.2x 101 3945.7 1.9x 100
GMS At = 1 51.3 1.2x 101 52.4 1.9x 100
GMS At = 2 18.9 1.2 x 101 19.0 1.9 x 100
GMS At = 5 5.6 1.2x 101 6.0 1.9x 100
GMS At = 10 2.6 1.2x 101 2.9 1.9 x100

GMS At = 20 1.2 1.2x 101 1.4 1.9 x100

GMS At = 50 0.5 2.6x 102 0.6 9.8 x 101
GMS At = 100 0.3 7.2 x 102 0.3 2.3 x 102
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6.6 Discussion on Parameter Estimation with GMS

Method

From previous sections, the saving of the computational time on the initial state esti-

mation is substantial with the GMS method, and the parameter estimation requires

accurate initial state estimation. If the GMS method is used for the initial estimation,

which will be used in the parameter estimation, then the saving of the computational

time will be significant. For example, the GMS method is 378 -447 times faster than

the conventional direct-integration method in the fourth order lateral cases (0 - 500

seconds). The longer the range of the state estimation, the greater the saving on

the CPU time. For example, the fourth order longitudinal cases are 125 - 141 times

faster because they are investigated only for 0 - 300 seconds. The maximum error

is also smaller with lateral cases. The longitudinal cases have 2.1 % maximum error

for case 1 and 1.1 ' maximum error for case 2. The lateral cases have 0.46 % max-

imum error for case 1 and 0.23 % maximum error for case 2. As a consequence, the

use of the GMS method will expedite the parameter estimation, and the longer the

range of the state estimation, the greater the saving on the computational time. The

concept of the GMS method with maximum-likelihood process is shown in Fig. 6-21.

In conclusion, the GMS solution gives significant savings on the CPU time, and the

combination of the maximum-likelihood estimation process with the GMS solution

will expedite the parameter estimation process.
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Chapter 7

Summary and Conclusion

In this thesis, the longitudinal stability and flying qualities as well as a parameter esti-

mation problem of the Generic Hypersonic Aerodynamic Model Example (GHAME)

vehicle are investigated along an optimal trajectory which had been designed for the

Space Shuttle orbiter 049 vehicle. The Generalized Multiple Scales (GMS) theory,

which was developed by Ramnath, is used throughout this study.

The accuracy of the stability parameter, which was developed by Ramnath, is

investigated in two other approaches. One is a numerical solution and the other is

the bound of the solution which is derived from the GMS approximate solution. The

stability parameter shows that the stability improves as the trajectory progresses. For

the numerical solution, the trajectory is divided into six segments and the relative

stability is compared among segments. The results agree with the results from the

stability parameter. The bound of the solution also gives the same results. The

stability parameter provides very accurate stability information based on three simple

aerodynamic coefficients and ambient density. Therefore, the stability parameter can

be obtained easily with existing flight measurement systems and stability information

will be available to the pilot during the flight.

The conventional flying qualities criteria have been based on constant flight con-

ditions. However, the nature of the flight vehicle has changed drastically, and many

high speed vehicles have time-varying systems as well as very large flight envelopes.

The extended flying qualities criteria (EFQC) are defined based on the GMS theory,
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which has analytical solutions for a time-varying system. The EFQC specify flying

qualities in terms of variable system responses.

The EFQC are applied to the GHAME vehicle to analyze the flying qualities of

the short-period , phugoid, dutch-roll, spiral and roll modes. For the short-period,

the flying quality does not meet the Level 3 requirement for the first 900 seconds

during 1886 seconds of flight. At the end of the trajectory, the flying quality satisfies

only the Level 2 requirement. Therefore, the short-period mode is not controllable for

the first half of the flight and the second half of the flight puts an excessive workload

on the pilot.

The flying quality of the phugoid mode is not analyzed for the entire trajectory

due to the 'turning point'. The flying quality starts from Level 3, then reaches Level

2 and Level 1. However, the flying quality degrades to Level 3 at 312 seconds. Due

to the turning point, the flying quality is not analyzed between 312 seconds and 685

seconds. The flying quality remains at Level 1 from 685 seconds until 1670 seconds

then the 'turning point' occurs again. The results show that the flying quality of the

phugoid mode fluctuates between Level 1 and Level 3. Therefore, it will be very useful

to have the flight display window for the pilot to provide flying qualities information

especially for the phugoid mode.

For the dutch-roll mode, the flying quality satisfies only Level 3 requirements.

Therefore, the workload for the pilot will be excessive. The flying quality of the

spiral mode satisfies the Level 1 requirement throughout the trajectory. However,

the flying quality of the roll mode does not meet Level 3 requirements. Therefore,

the roll mode will be uncontrollable for the pilot. The spiral mode is the only mode

which has adequate flying quality during the entire trajectory.

Based on these analyses, either the GHAME vehicle is uncontrollable for the pilot

or the pilot's workload becomes excessive. Consequently, the GHAME vehicle needs

augmented control systems and the flight display window would be very useful.

Finally, the parameter estimation with the GMS theory is investigated. The

advantages of the GMS method over the direct-integration (DI) method in estimating

initial states are investigated.
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For the second order dynamics, the relationships between the CPU time and

step size, maximum error and step size, and steady state error and step size are

investigated. For the DI method, the step size has to be at least A = 154 and the

CPU time for this run is 23 seconds. In contrast, the GMS method can use step size

A = 7150 without significantly increasing maximum error and steady-state error,

and the CPU time for this run is 1.64 seconds. Consequently, the GMS method is

14 times faster than the DI method with A = 154 and 419 times faster than the

reference case.

For the fourth order dynamics of the GHAME vehicle, the relationships between

the CPU time and step size, and maximum error and step size are investigated.

The longitudinal dynamics are investigated first and then the lateral dynamics.

For the DI method in longitudinal dynamics with case 1, the step size has to be at

least At = 2 and the CPU time for this run is 5.8 seconds. In contrast, the GMS

method can use sten size At = 20 without increasing maximum error and steady-state

error, and the CPU time for this run is 1.2 seconds. Consequently, the GMS method

is 4.8 times faster than the DI method with At = 2 seconds and 125 times faster than

the reference case.

In longitudinal cases, the results for case 2 are similar to those of case 1. The step

size has to be at least At = 2 for the DI method and the CPU time for this run is 6.1

seconds. In contrast, the GMS method can use step size At = 20 without increasing

maximum error and steady-state error, and the CPU time for this run is 1.2 seconds.

Consequently, the GMS method is 5.1 times faster than the DI method with At = 2

seconds and 141 times faster than the reference case.

For the DI method in lateral dynamics with case 1, the step size has to be at

least At = 2 and the CPU time for this run is 17.1 seconds. In contrast, the GMS

method can use step size At = 20 without significantly increasing maximum error

and steady-state error, and the CPU time for this run is 1.25seconds. Consequently,

the GMS method is 14 times faster than the DI method with At = 2 seconds and

378 times faster than the reference case.

In lateral cases, the results for case 2 are similar to those of case 1. The step size
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has to be at least At = 2 for the DI method and the CPU time for this run is 16.7

seconds. In contrast, the GMS method can use step size At = 20 without significantly

increasing maximum error and steady-state error, and the CPU time for this run is

1.4 seconds. Consequently, the GMS method is 11.9 times faster than the DI method

with At = 2 seconds and 447 times faster than the reference case.

The longer the state estimation, the greater the saving in computational time.

Therefore, the benefit of the GMS method in computing time is significant and the

GMS method will expedite the parameter estimation process.
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