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ABSTRACT

This paper describes the implementation of a Linear Quadratic Regulator

(LQR) control design for an infinite-order cantilevered structure. The control

design is derived and interpreted in terms of spatially distributed feedback

kernels acting on measurements of spatially continuous curvature and curvature

rate state functions. Predictions of the exact spatially distributed feedback

kernels are found computationally and, through the use of area averaging

sensors, implemented experimentally. The sensor shapes depend on the

particular state and control weighting chosen in the formulation of the LQR cost.

Two performance metrics are considered, and experimental closed-loop results

are provided to verify that predicted performance is actually achieved.
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Chapter 1

Introduction

1.1 THE NEED FOR SMART STRUCTURES

All structures are infinite-order systems, possessing an infinite number of

resonant vibration modes. Each resonant mode is a particular form of motion

that the structure experiences. They occur at particular frequencies of excitation.

When most structures are disturbed from a rest state, their lower frequency

modes dominate the overall motion. Aircraft surfaces, helicopter blades, solar

arrays and other flexible, lightweight structures all tend to vibrate at these lower

frequencies when disturbed by exterior influences. There are many advantages

to the use of lightweight structures, but their sensitivity to disturbances is not

desirable.

An advantage that heavier, rigid structures have is their insensitivity to

disturbances. However, such massive structures violate the weight and cost

efficiency requirements for many applications, including aircraft and spacecraft

design. Lightweight structures are compatible with these applications, but their

lightly-damped behavior can limit their applicability. What would be desirable

is to have structures behave more like rigid masses without actually having to

add large amounts of mass to their design. This can be achieved by integrating a

method of regulating the motion of the structure in to its design. These smarter,

lightweight structures would move to and remain in commanded positions



without experiencing large vibrations. A regulator, using sensors and actuators

to measure and influence the motion, would allow for the vibration control of

lightweight structures to be achieved. A common type of regulator is a feedback

controller [1], using measurements of a system's status to determine the correct

command signals to regulate some aspect of the system. Many controllers for

structures require the use of sensors and actuators at multiple locations. The

devices must therefore be lightweight, rugged, and compact so that their

presence doesn't change or hinder the structure's functionality.

Piezoelectric materials can be used in this type of control design. They can

be used as sensors that produce an output voltage proportional to any induced

strain. They can also be used as actuators that elongate or contract when a

voltage is applied to them. Some piezoelectric materials serve one of these

functions better than the other. Most of them are durable and lightweight, and

they can be glued on or imbedded into a structure without significantly changing

the system's overall dynamics.

One type of piezoelectric material is polyvinylidene floride (PVDF). PVDF

is a long chain polymer film. Straining the film causes a voltage across its two

sides to be generated. Many beneficial sensing applications using PVDF film

have been developed [2], since the relationship between the measured voltage

and the applied strain is linear for a large range of operation. The film is also

durable and flexible, allowing for its ease of integration into the structural

design. Each side of the film is coated with a vapor-deposited metal electrode.

The electrodes can be interpreted as spatial sensitivity weighting functions. They

can be shaped by the control designer to provide different filtering properties [3,

4, 5, 6, 17, 27, 31]. Several researchers have demonstrated some of the different

innovative properties that are possible. Collins and Miller [3, 4] researched many

different applications of PVDF film, including the determination of certain sensor



electrode shapes that would provide roll-off without phase lag. Collins [3, 4] and

Lee [5] investigated the use of film sensors with mode-shaped electrodes, and

Burke and Hubbard [27] looked the properties of PVDF film with rectangular

and triangular electrode shapes. These PVDF film sensors with shaped

electrodes are part of a class of measurement devices called area averaging

sensors [7]. An area averaging sensor is any form of apparatus providing a

continuously distributed measurement. The PVDF film is a useful medium for

creating area averaging sensors which give a distributed measurement of surface

strain.

The voltage output of an PVDF area averaging sensor is proportional to

the average surface strain over the area covered by the electrodes. The sensors

have an advantage over point sensors in that they can provide distributed

sensing. They can measure and filter information about the structure over the

entire area that they cover. They can also provide filtered information about a

single location. All these advantages are a function of the shape of the sensor

electrodes, and they can be exploited in different vibration control designs for

structures [3, 4, 5, 6, 17, 27, 31].

1.2 FEEDBACK CONTROL DESIGNS FOR STRUCTURES

Various feedback control designs exist to reduce the vibration of

structures. The controllers work to damp the structural motion, essentially

reducing their sensitivity to disturbances. They can also stiffen the structure by

shifting the vibration frequencies to higher values. Shifting the frequencies to

higher values also benefits the structure's response to commands. The optimal

time response for the structure is achieved with the right combination of

dampening and stiffening.



In establishing a control design, some measurable aspect of the structure's

motion is defined as the performance output. Reducing unwanted vibrations of

the structure corresponds to minimizing the effect of exterior disturbances on

this performance output. For example, with an aircraft wing, it is of considerable

interest to reduce any deflection of the tip of the wing due to wind disturbances

during flight. It is also of interest to reduce any twisting of the wing tip caused

during maneuvers. The performance output could consist of one or both of these

motions. The criterion for a good control design could be based on a

combination of the time response and steady state value of the performance, or

on minimizing some cost functional associated with the performance. The task

of finding the best design can be an iterative process, where the optimal design

would achieve the best time response and steady state value combination or the

lowest cost.

Optimal control design techniques exist that can accomplish this task [8,

28]. One of the basic techniques is the Linear Quadratic Regulator (LQR) control

design [8]. The LQR control design minimizes a quadratic performance index

based on the measured motion of the structure and the control authority of the

actuators. The minimization leads to the development of a control law. The

control law defines a feedback command signal which uses information about

the global motion of the structure to reduce the vibration. Applying the LQR

control design calls for a mathematically exact model of the structure's behavior,

capturing all of its resonant modes. Such a model requires the use of the

continuous, partial differential equation of motion for the structure subjected to

the appropriate boundary conditions. The structure's motion in this infinite-

order model is described in terms of continuous state functions. The LQR

feedback command signal relies on information from these state functions to

reduce the vibration.



In practice it is difficult or impossible to find an exact, closed-form LQR

control design for most infinite-order structures, except in some particular cases

[9]. Therefore, infinite-order structures are often modeled in a discrete

framework, using only a finite number of states. Finite element methods and

finite difference methods [10] are a few common examples among the many

methodologies used to develop finite-order control design models. The states are

the modeled degrees-of-freedom of the structure. They provide information

about a particular location on the structure. The equation of motion for a single

state is applied at each location. The equations collectively form a matrix

ordinary differential equation, which serves as the finite-order model of the

structure. The finite-order model gives an approximation of the global motion in

terms of the states. For a model of this form, the exact LQR control design can be

found computationally. The feedback control law defines the needed feedback

signal as a linear combination of all the states of the model multiplied by

feedback gains.

There are many problems with applying a finite-order control design to an

infinite-order structure. The finite-order model is essentially a truncated model

of the structure's behavior. Given that model truncation is one of the main

contributors to the spillover problem [11], it is best to include as many states in

the finite-order model as possible to increase the fidelity. This is a costly

approach, both in terms of computation and implementation. An increased

number of modeled states requires the use of more feedback sensors in the

implementation. The compensator used to generate the feedback signal will

need to multiply more feedback gains with the increased number of state

measurements. Also, the larger the size of the finite-order model, the more time

and effort it takes to calculate the needed LQR feedback gains. These aspects

decrease the attractiveness and the efficiency of applying a finite-order LQR



control design to an infinite-order structure. The problems are all a result of the

fact that the points sensors cannot provide all the information that is needed.

There is, however, a novel approach to implementing the LQR control

design that can circumvent these problems. The alternate method of

implementation is based on the infinite-order formulation of the LQR control

design. Instead of using point sensors, it employs area averaging sensors to

provide the needed feedback signal [7]. The formulation of the LQR control

design in an infinite-order framework defines the feedback control signal as a

convolution of spatially distributed feedback kernels with spatially continuous

state functions [9]. The state functions are those used to describe the spatial

motion of the structure in the continuous equation of motion. The feedback

kernels are spatial weightings on those functions. The implementation of this

type of signal requires continuously distributed measurements, which can be

provided for with area averaging sensors.

1.3 USEFULNESS OF AREA AVERAGING SENSORS

It is of particular interest in this thesis to investigate the behavior of PVDF

area averaging sensors on beams. Beams are very important structural elements,

and there are many systems which are simple cantilevered beams. Aircraft

wings, rotor blades, solar arrays, robot arms and helicopter blades are among a

few common examples. For an area averaging sensor attached to a simple

cantilevered beam, the voltage output has been shown to be the convolution of

the spatial sensitivity weighting function of the sensor with the beam's curvature

state function [7]. This parallel 'convolution' relation between the infinite-order

LQR control law and the output of an area averaging sensor attached to a

cantilevered beam is very useful. The sensor electrode shapes can be related to



the shape of the continuous feedback kernels from the infinite-order control law.

Area averaging sensors with certain electrode shapes would allow for an optimal

LQR vibration control solution to be implemented on a cantilevered structure.

What is needed to accomplish this is a method of calculating the feedback

kernels for specific LQR designs, which cannot be determined directly from an

infinite-order model of the beam. What can be determined with ease are the

feedback gains for a finite-order LQR control design. The solutions found for the

finite-order design are related to the infinite-order case, and the relation can be

used to solve for the kernels.

1.4 THESIS OUTLINE

This thesis develops the infinite-order LQR control design for beams as

well as a method of implementation using PVDF area averaging sensors. In

Chapter 2, the formulation for finite and infinite-order LQR control designs are

derived. The infinite-order control design for the beam is investigated, and a

method of determining the feedback kernels needed to implement the control is

shown. In Chapter 3, a control design for a reference example is done to show

the ability to predict and verify the kernel predictions. In Chapter 4, experiments

involving the derivation of the kernels and the control implementation through

the use of PVDF area averaging sensors are performed. Two performance

metrics are considered, and experimental closed-loop results are provided to

verify that predicted performance is actually achieved. Problems with the

implementation of the second performance metric motivate the work presented

in Chapter 5, where an alternate control design using an array of rectangular-

shaped area averaging sensors is investigated.



Chapter 2

Theory

2.1 OPTIMAL CONTROL BACKGROUND

The following formulations are for the finite and infinite-order Linear

Quadratic Regulator (LQR) control designs for a cantilevered, Bernoulli-Euler

beam. It is shown that the formulation of the infinite-order problem is similar in

nature to the more familiar finite-order case, and that the desired feedback signal

for the infinite-order case can be provided for by using area averaging sensors.

The control law in the infinite-order case is described in terms of displacement

kernels and displacement state functions. An equivalent form expressing the law

in terms of curvature kernels and curvature state functions is derived. This is

performed to make the feedback signal obtainable with PVDF area averaging

sensors.

2.1.1 Finite-Order LQR Control Design

In designing a finite-order LQR controller for a cantilevered beam, the

beam's structural behavior must first be characterized by some governing

equation. It is standard practice to use a matrix differential equation of motion.

The equation can be assembled using finite element methods [10]. The results

lead to a finite-order matrix equation of the following form,



Mswv+Cs*+Ksw = bsf, (2.1)

where Ms, Cs, and K, are the mass, damping and stiffness matrices, respectively,

and w is the generalized displacement state vector. The states in this vector are

the rotations and displacements at discrete points along the length of the

structure. The term bf describes the control action, accounting for how the

actuators affect the motion of the modeled beam. The matrix equation can be

reduced to a first-order, state-space form,

z = Az+Bf, (2.2)

where

A =[C B = b (2.3)
-Ms-1K s -Ms-'C s -Ms-'bs '

and the new state vector z consists of the generalized displacement and

displacement rate states. The finite-order LQR control design is applied to

system models in the form shown in Equation 2.3.

The LQR control law is achieved through the minimization of the

following quadratic performance index,

= lim 1 zTQz+ fwRf)St (2.4)

where Q and R are the state and control weighting matrices, respectively. The

performance index 3 is a minimum when a semi-positive definite solution I to

the following algebraic Riccati equation is found,

IA + A T 2 + Q - IBR-'B = 0. (2.5)

20



The resulting feedback control law is represented by Equation 2.6.

f = -R- 1 BT z = -[Gd Gd ]{ }. (2.6)

It is a linear combination of the generalized displacement and displacement rate

states multiplied by feedback gains.

In applying the LQR control design, the designer can pick a particular

performance output

y = Cz (2.7)

which she wishes to regulate, where C is the matrix defining y as a linear

combination of the structural states. By letting

Q = CTC (2.8)

in the performance index expression in Equation 2.4, the feedback signal derived

from the minimization of the index is tailored to regulate the performance output

y. The control weighting matrix R is chosen based on the desired levels of

authority on the actuators or combination of actuators. The stability of the

modeled, closed-loop system is guaranteed if the system vibration modes are

observable from the performance output y and controllable from the forcing

vectorf [8].

The finite-order LQR control design is not easy to implement on an

infinite-order structure. The finite-order control design model is essentially a

truncated approximation of the structure. The complexities that are introduced

by using this truncated approximation could be compared to the example of

21



using a lower-order model to design a controller for a system with a larger but

known finite number of states. An example system is given by Equation 2.9,

S -2P A Aps z+ BP]f (2.9)
is Asp Ass  Bs

where the subscript p denotes the modeled states and the subscript s accounts for

the remaining system dynamics. The modeled system is the truncated version of

Equation 2.9, represented by

2, = Ap Z + Bp f . (2.10)

The LQR feedback signal generated for the lower order model is

f = -Gz,, (2.11)

where the term G represents the LQR feedback gains generated for the lower

order model. The modeled closed-loop system is

, = (AP - BpG)zp, (2.12)

where the closed-loop dynamics are determined from the eigenvalues of the

matrix A,-BG.

The true closed-loop system would be

= P[A BPG ApsA z. (2.13)
Asp -B s G Ass

Its closed-loop dynamics would not be those guaranteed by the lower order

design model represented in Equation 2.12. Even assuming that the open-loop

companion matrix in Equation 2.9 possesses only stable poles, the presence of the

22



control spillover term -BsG in Equation 2.13 will alter the closed-loop system

from its desired behavior and possibly even de-stabilize the system. The

implementation of a finite-order LQR controller on an infinite-order structure

poses the same control spillover problem, where the off-diagonal and lower

diagonal terms of the companion matrix in Equation 2.9 would then represent

the infinite number of unmodeled dynamics.

There are other problems with the application of the finite-order controller

to the beam. First, increasing the number of states to increase the accuracy

increases the complexity of the computation for the design. Secondly, the

number of states in the model is directly related to the number of point sensor

measurements needed to implement the control. The more states that are used,

the more point sensors that are required. Thirdly, there are rotation states used

in the present model represented by Equation 2.2, and they are not easily

measured with point sensors. Applying the feedback control without the

contributions from these states could amplify the control spillover problem.

As an alternative, the model in Equation 2.2 could be reduced in size with

static condensation techniques, like the Guyan Reduction method [12]. Such

techniques provide a reduced order control design model of the beam with errors

that are less than those introduced by simply truncating the model.

Unfortunately, these alternate methods also cause the original model in Equation

2.2 to be a less accurate approximation of the structure's physical behavior,

further reducing the accuracy and achievable performance levels of the control

design. Therefore, an LQR control design in an infinite-order framework is

investigated to determine whether it is possible to avoid these problems.

2.1.2 Infinite-Order LQR Design

The approach and solution for an infinite-order LQR control design [9]



parallels the finite-order case. The beam's behavior is described by a continuous,

partial differential equation of motion,

82 6 64
pA 2 (X,t) + cs w(x,t) + EI 4 W(x,t) = f(x,t), (2.14)

8t 2 t 8X4

where w is the spatially continuous displacement state function describing the

transverse motion of the beam at any location or instant in time. The term pA is

the mass per unit length, c, is the damping per unit length, and EI represents the

beam's rigidity. The term f is the distributed force per unit length acting on the

beam. In the particular case for which the actuation is applied at a single point

x o, the forcing term can be modeled with a Dirac delta function [29]. The

expression for f becomes

f(x,t) = a(x- xo)f(t), (2.15)

where f is the force applied at xo. The magnitude of the Dirac delta function is in

units of inverse length. It is also advantageous, as it was in the finite-order case,

to reduce the expression in Equation 2.14 to a first order, state-space form,

8-(x,t) = a(x) (x,t) + b(x)f(t), (2.16a)
St

or more explicitly,

0 1 0
( m 0(x, t) ]w(x,t)

-t J(x,t)} El 84 cs w(x,t) a(x - x)f(t), (2.16b)
8t tpA 8x 4  pA pA

where the differential operators a and b are shown in their matrix form. The

vector contains the continuous displacement and displacement rate state
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functions. The infinite-order LQR control design is applied to the form of

Equation 2.16.

The infinite-order LQR performance index

1TL
= lim -ff ((q,) + (rf, f))8x&t

S10Too 0 0

(2.17)

is a minimum when the differential operator a in the following functional Riccati

equation is found,

oa + aa + q - obr-lboy = 0. (2.18)

The bars above the differential operators a and b denote the adjoint functions.

The resulting form of the infinite-order control law for the structure is

f(t) = -r- bo(x)* (x,t)

1 a(x - x) 1 o(X -
r 0 pA 1(X -

r a~ A i 21,(X -

= - a(x - xo) 0
1

pAr

0 12(x -

022(X -

o,,(x -
o21(X -

v)1

V)J

v)1
V)J

= a(x - xo) g(x,t)

L

= -(x - x.) [Kd(Xo - V) Kdr(X- V)]
(2.19)



where Kd and Kd, are the spatially distributed feedback kernels [7]. The form of

Equation 2.19 is that of the convolution rule [13].

The presence of the Dirac delta function in Equation 2.19 defines the

expression as a scaled impulse at xo. The symbol 8(x - xo) is not actually a

function as its name suggests; it is an operation. The definition of the symbol

specifies the operation

L

fa(x- xo)...6x (2.20)
0

which, when applied to a continuous function g(x,t), sifts out or selects the value

g(xo,t) of this function at the spatial point xo. This definition can be exploited to

obtain a more refined expression for the feedback force. By dividing Equation

2.19 by L and integrating it over the length of the beam, the feedback force f

applied at xo becomes

- f (t) 8x = f (t)L = f(t)
L0 L0

1L 1
- fa(x - xo)g(x,t)8x - g(xo,t)

Lo L

L

=1 -a(x - xo) [Kd(X - V) Kdr(X - V)]iO ) V 6x

o(v,t)
8t

0o

1 L L
L K- d(Xo- V)O)(v,t)6v - JKdrXo - V) C(v,t)6v . (2.21)

0
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By exchanging the length variable x for v, the control law can be rewritten as

L L

f(t)xo - fKd(xo- x)o(x,t)x -fKdr(xo - x)-cow(x,t)8x

L L

- Kd(X)W(Xlt)X - fKdr (X)W(X,t)8X, (2.22)

0 
0

where Kd and Kdr are the displacement and displacement rate feedback kernels,

respectively.

This is a profound, but not yet useful result. The implementation of the

displacement and displacement rate feedback kernels requires the use of

continuously distributed displacement and displacement rate sensors. The type

of distributed sensors currently available are the PVDF area averaging sensors.

These sensors measure the continuous curvature and curvature rate state

functions of the beam. Fortunately, the measurement of the displacement and

curvature state functions are related. The relation makes it possible to use the

output of PVDF area averaging sensors to obtain the infinite-order LQR feedback

command signal.

2.1.3 Providing the Feedback with PVDF Area Averaging Sensors

This subsection relates the displacement kernels to an associated pair of

curvature kernels. The LQR feedback control signal represented by Equation

2.22 is re-expressed in terms of the curvature kernels, showing that it can be

measured by a pair of distributed curvature sensors. The voltage output of the

PVDF area averaging sensors is defined to show that they can provide a

distributed measurement of the curvature along the length of the beam, and that

a pair of the sensors can provide the needed feedback signal.

PVDF area averaging sensors actually measure the surface strain, and for
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a simple Bemoulli-Euler beam, the surface strain E is defined as

h 82
E(x,t)h 2  (X,t), (2.23)

2 2 (X
2

which is the curvature times the distance h/2 from the beam's neutral axis to its

surface. The voltage signal from a PVDF area averaging sensor attached to the

surface of the beam is expressed in terms of the surface strain, and is given by

V(t) = e31f F(x) (x,t) x, (2.24)
Cf 0

where Cf is the sensor capacitance, e31 is the piezoelectric field intensity constant,

and F is the spatial weighting etched on the electrode.

The form of Equation 2.24 is beneficial. It shows that the control can be

implemented with these sensors if there is a way of expressing the control law in

terms of curvature kernels and curvature state functions. It is possible to do this

for a cantilevered beam structure. The displacement kernels from Equation 2.22

can be directly related to an associated set of curvature kernels. The relationship

transforms the feedback form in Equation 2.22 into an equivalent feedback of

curvature state functions along with point measurements. The point

measurements enable the ability to retain rigid body control.

The infinite-order LQR control law is transformed in this manner by

employing two simple mathematical operations. The first operation involves

introducing some formal definitions for the structure of the curvature kernels.

The second operation is integration by parts which, when used in conjunction

with the first, re-interprets the law as desired.

The process begins with defining the desired structure for the curvature

kernels. Using the first Fundamental Theorem of Calculus [30], the displacement
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kernel Kd can be expressed as

xK
Kd () fKd(g)6g. (2.25)

6xa

It is chosen that the integral expression in Equation 2.25 be defined as

X
fKd(g) 8 = Kr(x) = r (X) - kr(a), (2.26)
a

where Kr is defined as the rotation kernel. A similar definition is made for the

expression K,, where

8x6 6
K (x) K( - (x) ((x) - c(a)). (2.27)

6x a 6x 6x

In this equation, Kc is defined as the curvature kernel. The above definitions are

valid as long as the kernels are continuous over the domain including the lower

limit of the integral a [30]. In the statement of the fundamental theorem, the

choice of a is arbitrary, but it is advantageous to choose a to be equivalent to the

beam length L for the following formulations. The advantage to this is revealed

shortly.

Using the above definitions for Kr, Kc, and a, the second operation of

integrating by parts is performed. Doing this to the first part of Equation 2.22

yields

L

fd(t)xo = -fKd(X)W(X,t)6x
0

= - w(x,t)Kr(x)}l + fKr(X)8 (x,t)8x
0



- - (w(x,t) Kr(x)j 0  + 0(x,t) K(x)}

L

62
- WKx() ( (x, t)8x. (2.28)

0

and K, have been circumscribed to be zero at x equal to L. Applying these

conditions gives

L

fd (t)xo = o(X,t)Kr(X) - w(x,t)Kc(x) - Kc(x) x2 (xt)8x. (2.29)

0

Equation 2.29 re-expresses the first part of the control law in Equation 2.22

as the convolution of a curvature kernel with the curvature state function of the

beam plus point measurements of the rotation and displacement at the root. The

simplicity of the expression is based on the choice of the lower limit value a in

the kernel definitions. It is important to note that changing the value of a

wouldn't change the above calculations on any basic level. Doing so would just

express fd in terms of other kernel functions that are non-zero at x equal to L.

There is, however, a disadvantage in using other kernel functions: two additional

point measurements at the tip are needed to provide the feedback. The choice of

a equal to L makes the result in Equation 2.29 simpler and more analogous to the

PVDF sensor outputs.

Equation 2.29 can be reduced even further for a cantilevered beam. The

point measurements at the root are conveniently zero, as specified by the

geometric boundary conditions. Performing a similar sequence of operations for

the second half of Equation 2.22 yields an alternate form of the infinite-order

LQR control law,



L LS 62 3
f(t) = - K(x) 2 o(x,t)6x - Kcr (x) 6x 2 (x,t)6x, (2.30)

J 6ox -tJx
0o o

expressed in terms of curvature and curvature rate feedback kernels Kc and K,, as

desired. The explicit relationship between K, and Kd has been defined as

Kc(x) = ffKd(g) g 8, (2.31a)
LL

and the one between Kcr, and Kdr is

Kcr(x) = ffKdr(g) S . (2.31b)
LL

The definitions for the curvature and curvature rate kernels are

convenient mathematically, and they also make sense physically. For a

Bernoulli-Euler beam, the curvature is defined to be zero at the unconstrained

end. Along with the two geometric boundary conditions, the beam dynamics

represented by a fourth-order equation require two more boundary conditions to

provide a unique solution. One of these boundary conditions requires a zero

transverse bending moment at x equal to L, and this bending moment is directly

proportional to the curvature. Physically, there is no curvature at the free end to

apply any spatial weighting to. It is hypothesized that any formulation using

kernels that are non-zero at x equal to L would still be equivalent. It is possible in

such cases that the additional point measurements required at the beam tip

compensate for the effects introduced by the other types of kernels.

In contrast to Equation 2.22, the statement in Equation 2.30 is a profound

and useful result. A pair of area averaging sensors could be used to obtain this

type of feedback signal by directly relating the etched spatial weightings on the



sensor electrodes to the shapes of the curvature feedback kernels. This would

reduce the full state feedback expression into the linear combination of two

sensor outputs multiplied by gains G1 and G2, expressed by

L
e3lh I (2

f(t)x = -G, Fnso(x) - o(x,t)6x

- G2 e3h 86 I Fsensor2(x)- 6 (x, t)8x. (2.32)
2C, 8t f 8X2

0

The gains are used to provide the proper sensitivity scaling. For example, the

gain G, is determined by the expression

G,= ehK(x) (2.33)

SFsensorl(x)2Cf

where the electrode shape represented by the term Fse,,,,,sor is chosen to be identical

in shape to the curvature kernel K.

What is needed to progress further is a method of determining the kernels.

It is not possible to solve directly for the kernels in the infinite-order model

expressions shown above. It is possible, however, to solve for the LQR feedback

gains for any controllable, observable finite-order model in state-space form. The

parallelism that exists between the finite-order and infinite-order LQR

formulations can be exploited to use the feedback gains to solve for the kernels.

2.1.4 Existence of a Solution for the Kernels

The linear combination of states and feedback gains in the finite-order

control law is related to the integral expressions in the infinite-order case. As the
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number of states increases, the linear combination, or summation, approaches a

continuous integral over the length of the structure in the limit. The integral

achieved in the limit is exactly equivalent to the infinite-order expression shown

in Equation 2.22. The reverse is also possible. Using the available finite element

approximation techniques, the integral expression of the infinite-order control

law can be discretized. It can be approximated in terms of a finite number of

generalized states. With some finesse, this discretized form can be related to a

finite-order control law determined from a model with the same number of

states. Doing so yields an estimate of the displacement kernels Kd and Kdr.

The whole kernel estimation process is essentially a transformation of the

LQR displacement and displacement rate feedback gains. The gains are

transformed into a pair of kernel estimates Kd and Kdr. The displacement kernel

estimates are then integrated numerically to produce the curvature kernel

estimates Kc and Kcr. This is done since it is the curvature kernels that are used in

the implementation. The accuracy of the kernel estimates is a function of the

order of the control design model used to determine the feedback gains.

Some properties of the curvature kernel estimates actually vary with

model order, like the shape and magnitude. Fortunately, the varying properties

are convergent. By increasing the fidelity of the finite-order model, better

estimates of the kernels Kc and Kcr can be made. The best estimates would be

determined from the largest, most accurate finite-order model the control

designer's computer could generate. However, a sufficiently large enough model

needed to produce an accurate, implementable estimate of the curvature kernels

may not be available.

A more vigorous approach is to use a set of finite-order models. Each

individual model in the set contains invaluable information about the

convergence rate of the curvature kernel estimates. By using the set of models
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together, the rates of change of the kernel shapes and magnitudes can be

determined. Knowledge of the rates of change over a sufficient domain of model

orders allows for the true infinite-order values of the kernel shapes and

magnitudes to be found. The only restrictions on the finite-order models is that

they employ only physical states to describe the beam. This makes models

generated from finite element methods an ideal choice for such a procedure.

2.2 KERNEL DERIVATION TECHNIQUE

The path to achieving the true infinite-order curvature kernels is as

follows: a finite element model of the infinite-order beam is derived. An LQR

performance index is specified, and the generalized displacement and

displacement rate feedback gains are determined using standard Riccati solvers.

In parallel to these operations, the continuous expression of the infinite-order

control law in Equation 2.22 is discretized in a fashion similar to finite element

methods. Performing the discretization interprets the two displacement kernels

Kd and Kdrin terms of two unknown kernel coefficient vectors. The discretized

form of the infinite-order control law possesses a configuration similar to the

finite-order LQR control law in Equation 2.6, which is expressed in terms of the

feedback gains. Since the feedback gains are known, a direct solution of the

unknown kernel coefficient vectors can be found by equating the two relations.

The displacement and displacement rate kernel estimates are determined with

the coefficient vectors, and then integrated numerically to yield the curvature

and curvature rate kernel estimates Kc and Kcr. The curvature and curvature rate

kernel estimates are then decomposed into a linear combination of a finite

number of curvature mode shapes multiplied by weighting coefficients.



The weighting coefficients represent the important information achieved

in all these operations. By performing these operations for a number of models,

the changes in the weighting coefficients from model to model can be observed.

The curvature mode shapes are used in this manner mainly for convenience.

Observing the variations in the weighting coefficients is an easy way of

characterizing the changes in shape and magnitude of the kernels. It also puts

the needed feedback in a useful perspective. The amount that a particular mode

shape contributes to the feedback kernel shapes corresponds to the level that the

vibration associated with that mode is penalized in achieving the desired closed-

loop performance.

The observed behavior of the each weighting coefficients reveals the decay

rate of that particular mode contribution to the kernel shapes. As the model

order increases, the change in the value of the weighting coefficients decreases.

In fact, the plot of each coefficient versus the model order resembles a decaying

exponential function. The information in each plot can be modeled, and each

model can be evaluated at infinity to determine the infinite-order contribution of

that mode to the kernel shapes. Then all the infinite-order contributions can be

used to assemble the infinite-order kernel predictions.

The two following subsections put the above 'road-map' of the Kernel

Derivation Technique into mathematical expressions. The first subsection shows

how estimates of the displacement and displacement rate kernels are made by

discretizing the infinite-order control law. The second subsection shows how the

curvature and curvature rate kernels are determined, and how they are

decomposed into a linear combination of curvature mode shape vectors

multiplied by weighting coefficients. It also explains the form of modeling of the

weighting coefficient behavior that produces the infinite-order curvature and

curvature rate kernel predictions.



2.2.1 Kernel Derivation Technique: Solving for Displacement and

Displacement Rate Kernels

Estimates of the displacement and displacement rate kernels are made by

discretizing the infinite-order control law. The continuous integral expression in

Equation 2.22 is reinterpreted as a summation of integrals over N smaller

intervals, or elements, of the beam. Doing so involves no estimation, but is

simply an alternate way of expressing the integral over its domain. The equation

form of this is given by

f (t)x, Ifdt + fdr(t) = fd'(t) + I fdri(t) (2.34)
f 1 i Xo

where f and fdr are the contributions to the control action from the displacement

and displacement rate state functions, respectively. The superscript i denotes the

contributions from the different elements. Specifying the terms in the

summation, the control law is expressed as

N i N

f (t)x = f Kh(x) w(x,t)8x + Kir (x), t (x,t)6x (2.35)
1,-1 li-1

where K' and K', are segments of the displacement and displacement rate kernel

functions over each element i.

The segments of the kernels and the state functions are then approximated

with some simple cubic spline relations. The state functions are approximated to

be a linear combination of the finite element interpolation functions [10] and the

generalized states of that element. The approximation is represented by the

following equation form,
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W(x,t) - P(x)wi(t), li-1i x z li,
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P(x) = 1- + x-- +  -- +

T

wi(t) = (li -1,t) o(li-1,t) Co(li,t) o(lit) (2.36)
8x 8x

where P is the interpolation function matrix for a Bernoulli-Euler beam, and wi is

the generalized displacement state vector for the element i. The term Ie is the

element length. The displacement rate state function is estimated in a similar

manner.

The approximation for the displacement kernels expresses each segment

K' in terms of four unknown coefficients. The approximation for the segment is

represented by the following equation form,

Ki(x) ai (x) = ai+ bi x +CiX 2 +di x3 ,

ai = ai bi c, di,

p(x) = [1 x x2 X3 T,  (2.37)

where az, b, c,, and d, are the unknown coefficients defining the kernel segment

for element i. The approximation of the displacement rate kernel segments are

defined in a similar manner.

Using these approximations, Equation 2.35 becomes

N 11 N (1,

f(t)xo a- i i1S (x)P(x)Sx) w,(t) + I Yi iif P(x)P(x) x8x) wi(t)

N N

- aimwi(t) + 1 Yimwi(t). (2.38)
1 i



The interpolation function matrix P and the matrix P are known, such that the

integrals can be solved explicitly, generating the element matrix m. The solution

for m is

1e le2  le  1e2

2 12 2 12
31e 2  1e 3  71e2  1e 3

m = 20 30 20 20 (2.39)
em e3  1e 4  41e2  1e4

15 60 15 30
1e4  1e5  31e2  1e5

28 105 14 42

By re-expressing the summations in Equation 2.38 into a global matrix form, the

following equation is found,

fd (t)+ fdr T(t)TM YT M] (2.40)

expressing a discrete form of the infinite-order LQR control law in terms of a

finite number of states [7]. The terms a and y are the unknown kernel coefficient

vectors. They contain the coefficients for the cubic splines describing the

displacement and displacement rate kernels Kd and Kdr,. The global matrix M is

assembled from linear combinations of the element matrix m. This discrete form

is related to a control law for a finite-order model with the same number of states

(represented by Equation 2.6) to solve for a and y.

For a unique solution of the kernel coefficient vectors a and y to be found,

two sets of constraints need to be included. The first set of constraints are on the

slope and magnitude of the kernels between the elements. The continuity of the

kernels is enforced by requiring the slope and magnitude to be continuous along
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the beam length. The continuity requirements come from the application of the

first Fundamental Theorem of Calculus in Subsection 2.1.3, which is used to

define the structure of the curvature kernels. The constraints for the

displacement kernel, applied between each pair of adjacent elements, are

represented in equation form by

a, 1= ai + bile + Cile2 + dile 3

bi+, = b i + 2 cile +3dile2

1 0

le 1

12 21e

13 31
[0 0] = [a bi ci di ai+l bi+1 ci+ di+ -1 

-1 0

0 -1

0 0

0 0

= al c 1][s], (2.41)

where s is the inter-element constraint matrix. The constraints for the

displacement rate kernel are defined in a similar manner. The other set of

constraints are geometric boundary conditions for the beam. They are described

by Equation 2.42.

S 1000 m(t) (O,t) W(11,t) W(lt)

0 0 1 0 0 8x 6x

= [u]wi(t). (2.42)

The term u describes the geometric boundary constraint matrix. Using the above



Equations 2.40 through 2.42, the feedback gains Gd and Gdr can be related to the

unknown coefficient vectors a and y. The relation is given by

Gd T
Tc [ T]{} = g = G0T} (2.43)

0 Tdr 7 Gdr

The global matrix T is assembled from the matrices M, s, and u. It is square and

invertible, such that a unique solution for the coefficient vectors a and y is found.

The vectors are then used to generate estimates of the displacement kernels for

that model order.

2.2.2 Kernel Derivation Technique: Solving for Curvature and

Curvature Rate Kernels

The displacement kernel estimates are integrated twice to produce

curvature kernel estimates. The curvature kernel estimates are then decomposed

into a number of curvature mode shape vectors. The curvature mode shapes for

a Bernoulli-Euler beam [22] are described by the following functions,

r(x) = - 2 (sin rX + sinkX) + (cOs rL + coshr L) (COSkr X + cosh kr x).
+ (sinkrL - sinh hr L)

(2.44)

The subscript r in Equation 2.44 denotes the mode number. By using a finite

number of these functions, a matrix of the form

I = [ 1(x) 2 (X) . . . . . ..gn-(X) (pn(x)] (2.45)

can be assembled. The curvature mode shape functions form the vector columns



of . Each row of Pcontains the values of the mode shapes at a particular point.

Using a matrix of this form, the curvature kernel estimates for each model order

are decomposed into a weighted sum of the mode shape vectors, represented by

n

Kc = PrcCc, = 'Pccj  (2.46a)
r-1l

and

n

Kcr' = Pr Ccr, = WCcr j, (2.46b)
r=l

where Kj and K) are the curvature and curvature rate kernel estimates. The

superscript j in the above equation denotes the different size models. The vectors

cj and cJ contain the weighting coefficients for the curvature and curvature rate

kernels, respectively. The weighting coefficients characterize the contribution of

each mode to a kernel. The coefficients are found by performing a least-squares

fit of the columns of the matrix W onto the kernel function vectors. The equations

for the procedure are

Cc (TT l) - l Kd (2.47a)

and

cj  (IT TI)-I IT Kcj .  (2.47b)

Given a kernel vector with p points, the dimensions of W must be p by n.

The calculations are made for a set of finite-order models, and the individual

weighting coefficients of the vectors cJ and cd are observed as a function of

increasing model order.



The weighting coefficients are modeled as exponentially decaying

functions of model order. The models of the weighting coefficients are

essentially curve fits. They are observed in the limit as the model order goes to

infinity. The final value of each weighting coefficient model yields the infinite-

order mode shape contribution for that mode. The final values are used together

to construct the infinite-order kernel predictions.



Chapter 3

Reference Example

This chapter concentrates on validating the techniques used to find the

infinite-order curvature kernels. An approach to verifying the kernels is

presented. A Linear Quadratic Regulator (LQR) control design is derived for a

reference cantilevered beam influenced by a dynamic tip force. The associated

curvature kernels are predicted. Properties about the kernels are discussed,

relating them to the control objective. A verification model is used show that the

pair of distributed curvature kernel sensors can provide the needed feedback.

3.1 VALIDATING THE KERNEL PREDICTIONS: APPROACH

Figure 3.1 shows a uniform, cantilevered beam subjected to a dynamic tip

force. In formulating an LQR control design for such a structure, the desired

performance index must be specified. The index describes a specified

performance output and the desired control authority for the design. In

evaluating the design, it is important to observe the performance output transfer

function for open and closed-loop conditions. The performance output transfer

function is the transmission from the specified performance output to the force

acting on the structure. The open and closed-loop measurements can be

compared to show the effectiveness of the control design.
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Figure 3.1: Illustration of a uniform, cantilevered Bernoulli-Euler beam

subjected to a dynamic tip force f.

Another important transfer function to the control design is the loop

transfer function (LTF). The LTF is defined as the transmission from the LQR

feedback force to the tip force, and is illustrated in the block diagram of Figure

3.2. The feedback force represents a filtered measurement of the structural

motion, used to react against disturbances. When a disturbance sets the structure

into motion, the feedback force works to reduce that motion. Because of this, it is

very important for the feedback force to have the correct phase relative to any

induced motion of the structure. The incorrect phase would cause the system to

be unstable, with the feedback force to amplifying the motion of the beam

instead of reducing it. The relative phase of the feedback force to the induced



Figure 3.2: General block diagram, illustrating the LTF.

motion of the structure is represented by the phase of the LTF. For an LQR

control design, the LTF is guaranteed to have the correct phase to provide

stability.

The feedback force can also be biased to respond against certain types of

motion, represented by the mode shapes of the beam. The response to the

different modes may vary, and the relative magnitude of the feedback force to

these induced motions is represented by the magnitude of the LTF. For an LQR

control design, the relative magnitude the feedback force has and the frequency

range of modes for which it is effective at reducing vibrations are a function of

the control weighting in the control design performance index. The smaller the

control weighting, the larger the relative magnitude. For the beam, a common

pattern for a single-input-single-output LTF generated from an LQR control

design is to have an alternating pole-zero pattern. The pattern allows the LTF to

provide the desired large relative magnitudes to certain modes while

maintaining the proper relative phase to insure stability. These are among a few

of the interesting properties of the LTF for an LQR control design [8]. In

summary, the LTF captures enough information about the control design that it

can serve as an evaluation tool.
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Using a high fidelity, finite-order model of the beam, the LTF for an LQR

control design can be determined fairly accurately. The determination of the

LTF in this manner is represented by

HLTF(jw) = [Gd G,](jwI - A)-1 B (3.1)

where Gd and G dr are the LQR feedback gain matrices for the generalized

displacement and displacement rate states, respectively. The matrices A and B

are the companion and control transmission matrices for the finite-order model.

The LTF can also be determined from the infinite-order kernel predictions

associated with the LQR control design. The associated kernels can be

determined with the Kernel Derivation Technique outlined in Chapter 2. The

determination of the LTF from the kernels is represented by

HLTF(jm) = f[Kc(x) Kcr(x)] (jo - a(x))- b(x)6x (3.2)

where Kc and Kcr are the curvature and curvature rate kernels. The terms a and b

are the infinite-order companion and control transmission matrices. For the

kernel predictions to be valid, the LTF determined from the kernels must match

the LTF determined from a high fidelity, finite-order model of the beam. The

transfer function in Equation 3.1 can be generated very easily using finite-

element methods. There is also a way to determine the transfer function in

Equation 3.2. The approach is to essentially numerically integrate the expression

in Equation 3.2, determining the transfer function at each frequency point. The

better the spatial and frequency resolution used, the better the prediction of the

transfer function.

In the following sections, the uniform cantilevered beam in Figure 3.1 is

used as a reference example. An LQR control design is derived for the reference



beam, calculating the associated kernels. A prediction of the LTF is generated

from a high-order finite element model of the beam. A prediction of the LTF is

also determined using the kernel predictions. The two are compared in an effort

to verify the validity of the kernel predictions.

3.2 REFERENCE DESIGN: CONTROL OBJECTIVE

The characteristics of the reference beam are chosen to be those reported

in Table 3.1. The performance output is chosen to be the transverse tip

displacement of the beam. The LQR control design is tailored to regulate this

performance output. The performance index for the control design can be

represented by

= lim i(yy+ fpf)8t ,
T---* 0 f

(3.3)

where y is the performance output and f is the tip force actuator. The tip actuator

Table 3.1: Properties of the Reference Example

PROPERTY

Young's Modulus of Elasticity

Material Density

Structural Rigidity

Mass per unit length

Cantilevered Length

Width

Height

Displacement Sensor Gain

Control Actuator Gain

SYMBOL

E

P

EI

pA

L

b

h

K1

K
2

VALUE

70 GPa

2734 kg/m 3

7.113 N m 2

0.330 kg/m

0.6096 m

0.0381 m

0.003175 m

46.551 m/V

3.889e -3 N/V
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Open Loop vs. Closed Loop Performance, rho = le-5
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Figure 3.3: Open-loop and closed-loop performance output transfer functions

for the reference example. Performance defined as the tip displacement. Open-

loop (solid line), closed-loop (dashed-dotted line). LQR control weighting

chosen to be le-5.

control weighting p in the performance index is chosen to be le -5 . Figure 3.3

shows the open-loop and closed-loop performance transfer functions for the

reference example. The functions are determined with an accurate finite element

model of the beam. The LQR feedback gains are determined for the model using

standard Riccati solvers. The two functions can be represented by Equation 3.4.

HPoTF(j ) = - C(jwI - A)-1 B (3.4a)
f(jW) Open - loop

HpT(j ) = C(j- A + B[Gd Gdr])-1 BC (3.4b)Closed - loop
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As shown in Equation 3.4b, the closed-loop plot is determined using the LQR

feedback gains.

The LTF for the control design is shown in Figure 3.4. It is also generated

using an accurate finite element model of the beam and the LQR feedback gains

derived for the model. The formal definition of stability for the system is

specified by the Nyquist Stability Criterion [1, 8]. It requires that for all

frequencies that the phase of the LTF is at or below -180 degrees, the magnitude

of the LTF must not exceed 0 dB. Note that the LTF generated for the LQR

control design meets the stability requirements. Also note the alternating pole-

zero pattern that provides a stable phase profile for the LTF. These

characteristics are guaranteed for an LQR control design.

The LTF has its largest magnitude value at the first bending mode of the

beam. This suggests that the feedback force is most sensitive to vibrations

associated with the first mode. This observation is reinforced by the results for

the closed-loop performance transfer function in Figure 3.3. As shown, the

control effort predominantly penalizes the first bending mode.

3.2 REFERENCE DESIGN: KERNEL PREDICTIONS

The infinite-order kernel predictions are determined using the Kernel

Derivation Technique outlined in Chapter 2. The derivation technique uses

twenty finite element models of increasing model order to calculate the kernels.

The smallest model uses two beam-elements, and the largest uses forty.

The kernels are estimated for each model, and decomposed into the first

ten curvature mode shapes. The weighting coefficients for each curvature mode

shape are observed as a function of increasing model order. Plots of the

curvature kernel weighting coefficients versus model order are shown in Figure
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3.5 for the first four modes. The plots for the other six modes and for the

curvature rate kernel are not shown, but are similar in nature. In fact, all the

different weighting coefficients for the kernels appear to converge at the same

rate.

Weighting coefficient models are produced to capture the trends seen in

the plots of Figure 3.5. The models are used to determined the infinite-order

values of the weighting coefficients. The infinite-order values are shown in

Figure 3.6 Note that the first curvature mode shape is the largest contributor to

both the curvature and curvature rate kernel predictions. The infinite-order

values in Figure 3.6 are used to assemble the infinite-order kernel predictions.

The predictions are shown in Figure 3.7. The predictions are used in a

verification model that essentially derives the solution for Equation 3.2.

3.3 REFERENCE DESIGN: VERIFICATION OF KERNEL PREDICTIONS

The verification process uses a wave model of the cantilevered beam [14,

15]. The wave model can predict the frequency behavior of distributed curvature

sensors attached to the beam. It can generate the transfer function from a

distributed curvature sensor to a disturbance force at the beam tip.

The model essentially characterizes the behavior of the wave propagation

in a uniform structure or uniform member of a structure. The structural member

is modeled as a one dimensional wave guide with the appropriate boundary

conditions. This type of model can capture the wave transmission characteristics

of a uniform, Bernoulli-Euler beam. The approach is independent from the

assumptions and methods used to generate a finite-element model of the beam.

This allows the wave model to serve as an independent verification model for the

kernel predictions.
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First Mode Weighting Coefficient vs. Number of Elements
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Figure 3.5a: First and second mode contributions to curvature kernel versus

model order for the reference example kernels.
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Third Mode Weighting Coefficient vs. Number of Elements
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Figure 3.5b: Third and fourth mode contributions to the curvature kernel versus

model order for the reference example kernels.
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Final Curvature Kernel Modal Contributions
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Figure 3.6:
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Comparison of Kernels, rho = le-5
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Figure 3.7: Infinite-order kernels for reference example. Normalized curvature

kernel (solid line), normalized curvature rate kernel (dashed-dotted line).

In the wave model, the spatial weighting for the curvature sensor is

variable. This flexibility allows the wave model to predict the frequency

behavior of curvature sensors with different spatial weightings. In particular, the

wave model can generate a curvature kernel transfer function and a curvature

rate kernel transfer function. The two transfer functions correspond to the

frequency behavior of distributed curvature sensors with curvature and

curvature rate kernel-shaped electrodes, respectively. The prediction of the LTF

for the control design is determined from the sum of these two transfer functions.

The finite element LTF and the wave model LTF generated from the

kernels are compared in Figure 3.8. Besides some mismatching of the levels of

damping on some of the modal frequencies, the two functions are identical. The



Comparison of Wave Model LTF with FEM LTF
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Figure 3.8: Comparison of the wave model loop transfer function prediction

(dotted) based on the kernels and a high order FEM loop transfer function

prediction (solid).

wave model successfully verifies the kernel prediction techniques. The control

design is subject to the Bernoulli-Euler beam assumptions that have been made

about the reference structure. It should be possible to replicate the modeled

closed-loop results experimentally, as long as the test bed's behavior remains

within the chosen modeling regime.



Chapter 4

Kernel Implementation Experiments

This chapter reports the results of two experiments. The goal of the

experiments was to predict and implement the curvature kernels associated with

two different Linear Quadratic Regulator (LQR) control designs. The control

designs were for the vibration control of a cantilevered, aluminum beam. They

were implemented through the use of polyvinylidene floride (PVDF) area

averaging sensors attached to the beam. The setup for the experiments is

discussed, along with the fabrication techniques for the PVDF area averaging

sensors. Measured, closed-loop results are provided and compared with the

modeled results to verify the if predicted performance is achieved.

4.1 TEST BED DESCRIPTION

The experimental test bed was a cantilevered, aluminum beam based on

the reference example in Chapter 3. The properties of the aluminum beam are

reported in Table 4.1, and Figure 4.1 shows the experimental setup. Two large

metal blocks served as the clamp for the beam. The blocks were fastened

together with vices, holding the beam in between them. The blocks holding the

beam were fastened to a fairly rigid table. The beam was oriented such that the

transverse displacement was perpendicular to the gravity field. This reduced the

possibility of any gravity-induced stiffening or softening of the beam. There was
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one force actuator located at the free end of the beam, as shown. The actuator

was a non-contacting magnetic shaker. It produced a force by varying the

magnetic field between a small target on the beam and the actuator magnet. The

target was a small piece of steel shim-stock, which was placed on the beam with

a piece durable, double-sided tape. In the experiments, PVDF film sensors were

glued to the surfaces of the beam, covering the entire area. In this configuration

(shown in Figure 4.1b), the target was placed on top of the sensors.

Table 4.1: Properties of the Test Bed

PROPERTY SYMBOL VALUE

Young's Modulus of Elasticity EAL 70 GPa

Material Density PAL 2809 kg/m 3

Structural Rigidity EI 7.113 N m 2

Mass per unit length pA 0.339 kg/m

Cantilevered Length L 0.6096 m

Width b 0.0381 m

Height h 0.003175 m

Displacement Sensor Gain K1  46.551 m/V

Control Actuator Gain K2  1.809e -3 N/V

There was a roll-off associated with the actuator at about 250 Hertz. The

roll-off was a function of the inductor/resistor pole of the actuator and the

distance between the magnet and the beam. The actuator was placed as close as

possible to the beam to remain within a linear range of operation and to provide

the best achievable level of actuation. The system was modeled as a uniform,

cantilevered Bernoulli-Euler beam subjected to a tip force. The models of the

beam used in the Kernel Derivation Technique (which is outlined in Chapter 2)

were based on finite-element methods.
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(a) Illustration of the test bed

(b) Target configuration with sensors

Figure 4.1: Experimental setup of the test aluminum beam.
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Additional non-physical states to account for the actuator roll-off were not

included in the finite-order design models of the beam. The application of LQR

control designs to the models including the non-physical states would introduce

complications. The process would produce additional feedback gains for the

non-physical states. The additional gains would make the feedback dependent

on non-physical measurements. This dependence would affect the kernel

predictions. Performing this operation presented an unnecessary complication,

since the actuator dynamics didn't introduce any instability to the system. The

roll-off was also outside of the effective control bandwidth of the LQR designs.

The effective bandwidth for both designs encompassed only the first two

bending modes of the beam. Therefore, there weren't any problems introduced

by calculating the LQR feedback gains without accounting for the actuator roll-

off.

The following two sections discuss the results and engineering choices for

the two experiments. The control objective of the first experiment was to

penalize the transverse tip displacement of the beam. The objective of the second

was to penalize the difference between the transverse tip and mid-point

displacement.

4.2 EXPERIMENT 1: KERNEL PREDICTIONS

Experiment 1 was essentially an attempt to implement the results obtained

in the reference example of Chapter 3. The curvature kernel predictions for the

first experiment were found using the Kernel Derivation Technique outlined in

Chapter 2. The observed trends and characteristics of the derivation technique

were completely identical to those seen for the reference example in Chapter 3.
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Comparison of Axially Unsymmetric Kernels, rho = le-5
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Figure 4.2: Infinite-order kernel predictions.
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The predicted curvature and curvature rate kernels are shown in Figure 4.2a.

The resulting shapes were also identical to those derived in Chapter 3.

In an experiment, PVDF sensors fabricated with the unsymmetric

electrode shapes in Figure 4.2a would be sensitive to the bending and torsion

modes of the beam. The control design was for the vibration control of

transverse bending modes only. The sensitivity of the sensor outputs to torsion

modes would corrupt the achievable performance levels. Therefore, the sensor

electrodes were fabricated with the axially symmetric kernel shapes in Figure

4.2b. The sensors with the symmetric electrodes would be insensitive to any

torsional motion. The torsional contributions in the signals associated with the

top and bottom halves of these sensors would negate each other, and the output

signal would only capture the bending motion, as desired.

4.3 EXPERIMENT 1: SENSOR FABRICATION TECHNIQUES

The symmetric shapes were etched onto rectangular pieces of PVDF film

in the following manner. The sheets of film were chosen to have the same width

and length as the beam. Computer-generated images of the shapes were made.

The images were plotted to full scale on opaque, single-sided, adhesive paper.

The shapes were carefully cut out of the paper and applied to the surface of the

film. The adhesive paper now covered the desired surface area of the electrodes.

The unwanted, uncovered electrode surface was removed using a metal etchant.

The adhesive paper protected the desired electrode surface during the etching.

After the etching, the adhesive paper was removed from the desired electrode

surface of the new created sensors.

Initially, two sensors were created: a curvature sensor and a curvature rate

sensor. The sensors were glued to the two sides of the beam with epoxy, one
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sensor on each side. Thin, adhesive copper strips were used as signal leads. The

voltage signals from the film sensors were obtained with some simple

conditioning circuitry.

The first tests with the sensors showed that, due to ambient noise levels,

measured transfer function data from a tip disturbance to the output of the

sensors differed from their predicted behavior. A wave model [14, 15] was used

to predict the sensor transfer functions. One major difference between the model

and the measured data was in the phase of the zeros. The zeros in the measured

transfer function data were observed to be non-minimum phase, when they were

predicted to be minimum phase.

There were many possible causes for this behavior. If the zeros in the

transfer functions were very lightly-damped, the problem could be blamed on

the data acquisition resolution. With such lightly damped zeros, it is often hard

to discern if they are non-minimum or minimum phase from measured transfer

function data, especially if the ambient noise levels are appreciable. Non-

minimum phase behavior is also a common tendency with non-collocated

transfer functions. It was possible that the sensors might not be properly aligned

on the test structure, leading to the non-minimum phase behavior. Also, there

was no modeling accounting for the beam-epoxy-sensor interactions. It was

assumed that the epoxy layer was negligible and that it did not alter the surface

strain measurement.

A quantitative definition the problem was not discovered, but a means of

circumventing the problem was determined. It was found that the observed

errors could be alleviated by developing a common-mode-rejection circuit

design. Two of each sensor could be placed on either side of the beam with the

electrical signals of the pairs differenced. When the beam with these sensors

experienced bending, one side would be in compression while the other was in
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tension, and the signals from the two sensor pairs associated with the bending

would be amplified. Any noise or other signals common to both sides would be

canceled out. This four-sensor design is illustrated in Figure 4.3.

For the differenced pair of curvature sensors in the four-sensor design, the

desired voltage signal is represented by Equation 4.1a,

Vc(t) Gc Qf(t) G Q(t)
Cf ( Cf front

Q(t)
Cf Ifront

C Q(t)b
Cf Iback

Q(t) 1
Cf back

(4.1a)

(4.1b)
e31 h f 82
2 Cf F 8(x)2 (x,t) 8x.

0

Figure 4.3: Four-sensor fabrication design.

where

electrode
, shapes

Curvature Sensors,
one on each side

Curvature Rate Sensors,
one on each side

etched surface of
PVDF film



In this expression, the differenced voltage signal Vc is proportional to the charge

differential Qf between the two pieces of film on either side of the beam. The

term FC represents the etched shapes on the two PVDF curvature sensors, and the

term GC is the curvature gain, which is defined as

G Cf K (x) Farads -Volts (42)
e 31hFc(x) Coulomb 2

3- • meters
2

meters

This gain enables the following equality

Vc(t) = -fd(t), (4.3)
K

2

where fd is the displacement part of the feedback force, and K, is the newtons-to-

volts conversion factor for the experiment. Term Kc in the definition of the

curvature gain represents the curvature kernel prediction. The Kernel Derivation

Technique is scaled to produce curvature kernel predictions in units of volts,

such that the needed scalar gain Gc can be determined.

For the differenced curvature rate sensors, the desired signal is

represented by Equation 4.4a,

Vcr(t) = Gcr Req If(t) = Gcr (Req (t)lfront -Req I(t)back) (4.4a)

where

L

ReqI(t)front = -Re(t)back = Req cr(x) 2 (x, t)6x. (4.4b)

0

The voltage signal Vcr is proportional to the differenced current I. The term Fr

represents the etched shapes on the two curvature rate sensors, Req represents the
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equivalent resistance of the circuit used to measure the voltage signal, and G,,r is

the curvature rate gain, which is represented by Equation 4.5.

Kcr (x) Volts seconds (45)

Reqe 31 hFcr(X) Ohms C--mb meters
2

meters

The curvature rate gain enables the equality,

Vcr(t) - fdr(t), (4.6)
K 2

where fdr is the displacement rate part of the feedback force. The term K,,r in

Equation 4.5 represents the curvature rate kernel prediction. The Kernel

Derivation Technique is scaled to produce curvature rate kernel predictions in

units of volts seconds, allowing G, to be determined. In employing the four-

sensor fabrication design, the sum of the two voltage signals V, and V,, can be

used to provide the needed LQR feedback command signal.

4.4 EXPERIMENT 1: RESULTS

In the actual implementation, it was beneficial to take advantage of the

fact that the curvature and curvature rate kernels were almost identical in shape.

Instead of using the four-sensor design, a proportional-derivative (PD)

compensator could be applied to the output of the differenced pair of curvature

sensors to simulate the same behavior. Therefore, only two curvature sensors

were fabricated and applied to the beam. The implemented fabrication design is

illustrated in Figure 4.4. The compensator was constructed from simple analog

devices. The electric signals from the two curvature sensors were differenced,



Figure 4.4: Illustration of the application of two curvature sensors to the

cantilevered beam.

and the errors similar to those seen in the initial sensor tests were greatly

reduced over the effective control design bandwidth. The transfer function of the

required PD compensator is represented by Equation 4.7,

HPD(jW) = Gc+ Gcr (2pcrjW) (4.7)
(jw + 2xnpcr)

where GC and Gcr are the needed curvature and curvature rate gains defined

previously. The differentiation part of the PD compensator was chosen to have

the particular structure shown in Equation 4.7 because a perfect differentiator

constructed from simple analog devices would amplify any ambient high

frequency noise. The value of the cutoff frequency P,r shown in the



differentiation part of the compensator was chosen to be sufficiently large, such

that the transfer function resembled

HPD(jU) a Gc + GcrjU, j<<2nper. (4.8)

over the effective control design bandwidth. The implemented value of P, was

504 Hertz. This was well above the first four bending modes of the beam, and

the effective control design bandwidth only encompassed the first two modes.

The feedback was implemented with this PD compensator, allowing the loop to

be closed.

The performance transfer function was observed in open and closed-loop

conditions. The results showed a good match between the predicted

performance and the data, and are shown in Figure 4.5. As shown, the motion

associated with the first bending mode has been substantially reduced, as

desired. In contrast to the model, the experimental data manifested a slight

stiffening of the second bending mode of the beam, and a decrease in damping

for the third bending mode and third local zero.

It was probable that the cutoff frequency Pcr was actually too low. The

stiffening provided by the control design can be attributed to the proportional

part of the PD compensator, and the damping can be attributed to the

differentiation part. If Pcr was too low, it would offset the stiffness-to-damping

ratio in favor of more stiffening. This would have also decreased the damping

level over the same range, but this is not observed. The second bending mode

has been stiffened, but its measured damping level is comparable to its predicted

level. However, experiments using higher values of Pc, did cause the

compensator to amplify ambient high frequency noise, jeopardizing the

achievement of closed-loop results.
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The cause of the discrepancies in the closed-loop data was most likely due

the design choice of using the two curvature sensors in conjunction with the PD

compensator. This choice provided only an estimate of the behavior that would

have been obtained from the four-sensor design outlined in Section 4.3. It was an

estimation in the sense that the curvature and curvature rate kernels were not

exactly identical. The estimate was considered acceptable, but the consequences

appear to be the discrepancies seen in the closed-loop transfer function data.

The poor resolution observed in the data transfer functions below 5 Hertz

was due to the sensor used to measure the tip motion. The sensor was an

accelerometer, and it could not resolve signals below that range. The transfer

function data from the accelerometer was integrated twice to yield the tip

displacement transfer functions shown in Figure 4.5.

In summary, other than the slight differences observed in the experiment

mentioned above, the implementation of an LQR control design was successfully

achieved with the PVDF area averaging sensors. The results were slightly sub-

optimal, but the design was very easy to implement. The implementation was

much simpler than a design using a larger array of discrete point sensors, and the

experiment demonstrated the ability to integrate feedback measurement devices

into the design of a structure.
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Modeled Open Loop vs. Closed Loop Performance, rho = 1e-5
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Figure 4.5a: Open-loop and closed-loop performance output transfer
functions, model. Open-loop (dash - dotted), and closed-loop (solid).
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Measured Open Loop vs. Closed Loop Performance, rho = le-5
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Figure 4.5b: Open-loop and closed-loop performance output transfer

functions, measured data shown. Open-loop (dash-dotted), and closed-loop

(solid).



4.5 EXPERIMENT 2: KERNEL PREDICTIONS

It was of particular interest to show the success of this control design

approach for another case. The success of another case would help demonstrate

the versatility of this type of control design. It would also reveal any common

trends or characteristics present between different cases, be they good or bad.

Therefore, a second experiment was performed. The control design tailored to

regulate the difference between the transverse tip and mid-point displacement of

the beam. The performance index for experiment 2 is represented by Equation

4.9.

Z = lim 1 zT CT Cz + fT Pf)t

z CTCz = (w(L,t) - o(L/2,t))2  (4.9)

The control weighting p for the LQR control design was chosen to be le -6. The

associated infinite-order kernels for the control problem were predicted with the

Kernel Derivation Technique.

Plots of the modal weighting coefficients for the curvature kernel shape

versus model order are shown in Figure 4.6 for the first four modes. The four

plots are representative of the type of weighting coefficient trends observed for

the control design. Therefore, the plots for the other six modes and the curvature

rate weighting coefficients are not shown. The infinite-order values for the

different modal contributions to the kernel shapes are shown in Figure 4.7. The

distribution shows the kernel predictions to be dominated by the first and second

curvature mode shapes. The infinite-order kernel predictions for experiment 2

are shown in Figure 4.8.
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Figure 4.6a: First and second curvature mode shape weighting coefficients

versus model order. Weighting coefficients are for the curvature kernel.
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Third Mode Weighting Coefficient vs. Number of Elements
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Comparison of Kernels, rho = le-6
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Figure 4.8: Infinite-order kernel predictions.

These trends can be compared to those determined in Chapter 3 for the

tip-displacement regulator. In Chapter 3, the different modal weighting

coefficients all converge in a relatively similar manner and rate. Most of them

resemble a function of the form,

HWCM(j)Gr = Cr(1 - e J/rday), (4.10)

where Cr represents the infinite-order value for mode r that the function decays

towards. The term Ldecay represents the function decay rate, and variable j is the

model order.

The changes as a function of model order were mainly seen in the

magnitudes of the kernels in Chapter 3; the shapes of the kernels determined

from different models varied only slightly. Essentially, the final infinite-order



kernels in Chapter 3 were not very different in shape from kernels produced

from a two beam-element model.

If this result applied to every case, it would be very convenient. Good

estimations of the infinite-order kernel shapes could be found with very low

order models. The full application of the Kernel Derivation Technique would

still be required to find the infinite-order kernel magnitudes.

The kernel derivation results for experiment 2 show that these trends from

the control design in Chapter 3 are not common to all cases. The mode shape

weighting coefficients change in a completely different manner. This is visible in

Figure 4.6 by the changes in signs for some of the mode shape weighting

coefficients. The behavior corresponds to the fact that large changes in the kernel

shapes determined from the different size models occur. There are also changes

in the overall kernel magnitudes. The final infinite-order kernels for experiment

2 are very different in shape and magnitude from kernels produced from a low

order model.

It is hypothesized that the different trends observed are a function of a

performance output sensitivity to the model fidelity. It is probable that lower

order finite element models can capture the true physical behavior of the some

performance outputs very well, like the tip displacement. Other performance

outputs, like the difference between the tip and mid-point displacement, may

require a higher model fidelity to capture the true physical behavior.

The curvature and curvature rate kernel shapes in Figure 4.8 are

dissimilar. This outcome is also in contrast to the results in Chapter 3, where the

two kernel shapes are approximately the same. The dissimilarity between the

curvature and curvature rate kernel can be attributed to the different damping-

to-stiffness ratios achieved by the control effort for the modes.
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Figure 4.9: Modeled open-loop (dash-dotted) and closed-loop (solid)

performance output transfer functions for the LQR differenced-displacement

control design.

The kernels can be thought of as an optimal combination of modal sensors

[4, 5]. The amount that each particular mode shape contributes to the kernel is

related to the level that of vibration control achieved for that mode. The control

effort for each mode can be divided into two parts: stiffening and damping. The

stiffening achieved by the control effort is related to that mode's contribution to

the curvature kernel, and the damping achieved is related to that mode's

contribution to the curvature rate kernel.

For the differenced-displacement regulator, the ratio of damping-to-

stiffening is different for each mode. The modeled open and closed-loop

performance output transfer functions are shown in Figure 4.9. In particular, the

closed-loop damping-to-stiffening ratios achieved by the control effort for the



first and second modes are completely different. The different ratios of

dampening-to-stiffening correspond to the different ratios of first-to-second

mode shapes in the curvature and curvature rate kernel predictions, thus the

dissimilarity.

4.6 EXPERIMENT 2: RESULTS

Two PVDF sensors were constructed with the kernel shapes etched on

their electrodes. The transfer functions of the sensors were measured. It was

observed that the measured transfer functions differed from the wave model

predictions. There was a new form of error present in the data that was not seen

in the first experiment. The plots of the curvature and curvature rate sensor

transfer functions versus their wave model predictions are shown in Figure 4.10.

The errors start at about 100 Hertz in the measured data. There is a

shallow valley between the second and third modes of the measured transfer

function with no appreciable phase loss. In contrast, the modeled transfer

functions from the wave models have a lightly-damped, minimum phase pair of

zeros located between the second and third mode. The model predicts the

presence of lightly-damped, minimum phase zero pairs between all the modes.

Most of the zeros in the measured transfer function data appear as if they have

been "washed out" by noise. This is not the case, since the data does not appear

to be corrupted by noise.

The kernel shapes derived for the sensors electrodes were also validated.

A wave model of the beam could generate the loop transfer function (LTF) for

the LQR control design with the kernels. This wave model prediction matched

the LTF generated from a high-order finite element model, and is shown in

Figure 4.11. It was therefore assumed that the predicted kernels were correct,



Curvature Kernel Transfer Function, Data vs. Model

1 2
10 Frequency [Hz] 10

Curvature Kernel Transfer Function, Data vs. Model

1 2
10 Frequency [Hz] 10

Figure 4.10a: Modeled (dash-dotted) and measured (solid) curvature kernel
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Curvature Rate Kernel Transfer Function, Data vs. Model
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Figure 4.10b: Modeled (dash-dotted) and measured (solid) curvature rate

kernel transfer functions.
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Figure 4.11: Comparison of wave mode LTF derived from the kernel predictions

(dotted) versus LTF generated from high-order finite element model (solid).
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and that some unmodeled fabrication or environmental error existed in the data.

There were several possibilities for the presence of the error. It was

possible that the sensors were slightly mis-aligned on the beam. It was possible

that slight errors in the fabrication of the electrode shape could significantly

change the output behavior of the sensors. Also possible was the presence of

discontinuities or breaks in the PVDF. It was observed that differencing the

signals from sensors with these kernel shapes did not reduce or remove the

erroneous behavior.

The wave model of the beam was used to simulate the effects of different

types of fabrication errors. The kernel predictions were deliberately altered, and

the wave model predicted the transfer functions for sensors with the altered

shapes. A synopsis of the different types of fabrication errors that were

simulated are shown in Figure 4.12. Part (b) represents the simulation of sensors

with discontinuities, Part (c) and (d) represents the simulation of axially mis-

aligned sensors, and Part (e) represents simulations done for poorly etched

sensors. These and other types of fabrication errors were modeled.

Unfortunately, no exact match in behavior to the measured transfer function data

was found.

All the simulation evidence suggested that the unmodeled effects were

present in the test bed environment, and not in the fabrication of the sensors. It

was possible that the sensors were accurately made, but that the test bed

conditions, specifically those at the root, the tip, and the epoxy layer, were not

ideal. The combination of the metal blocks used for the clamp and the bench on

which the experiment was performed was not a completely rigid system, and the

force actuator did not really produce a point force, but a distributed load over a

small area. Measurements of the epoxy layers showed them to be about 1 mil

(25.4 [Im) thick on average, which was assumed to be negligible (since the film
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Figure 4.12: Illustration of the modeling of possible fabrication errors.
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thicknesses were 28 [tm and 52 [m, and the beam thickness was 3,175 Im). No

modeling of the sensor-epoxy-beam interaction was performed to confirm the

assumption. To verify the distinction between fabrication and environmentally-

caused errors, the experiment was repeated many times, constructing sensors for

different beams. Much care and attention was taken in perfecting the fabrication

process of the sensors. The same clamp and force actuator from the first

experiment were used, and effort was made to provide thin, uniform epoxy

layers less than or equal to 1 mil. Unfortunately, the transfer function data for

the repeated experiments showed results similar to the prior data.

A new approach was needed to expose the non-idealities in a quantitative

manner, accommodate for them, and allow for the successful implementation of

the control design. Rectangular-shaped sensors were used in a new design

attempting to accomplish these goals. In working with the PVDF film, it was

observed that sensors with rectangular-shaped electrodes were very well

behaved. The measured transfer function from the differenced signal of two of

rectangular sensors placed on opposite sides of the beam could be accurately

modeled. The reliability of the rectangular-shaped sensors was exploited to

circumvent the problems seen with the kernel-shaped sensors.



Chapter 5

Rectangular Array Experiments

5.1 METHODOLOGY FOR RECTANGULAR ARRAY EXPERIMENTS

An array of ten rectangular sensor-elements located along the length of a

cantilevered beam was constructed in the following manner. Two rectangular

pieces of PVDF film were placed on each side of a cantilevered beam, covering

the entire surfaces. Both pieces were divided into ten, equally-sized, rectangular

segments. The divisions were made by etching thin lines on the film electrodes.

Each parallel pair of rectangular segments, located on opposite sides of the beam,

formed a single sensor-element. The voltage outputs from the pair were

differenced to remove any noise common to both while amplifying the part of

the signal related to the bending of the beam. The voltage signals were

proportional to the average surface strain rate over the area covered by the

elements. The setup of the beam is shown in Figure 5.1.

The ten sensor-element array was advantageous in three ways. First, it

was hypothesized that the problems seen with the kernel-shaped sensors in

Chapter 4 were possibly due to local non-idealites located at the root or the tip of

the beam. The segmentation of the PVDF along the length presented an

opportunity to attempt to pin-point the source of the non-idealities, assuming

that they truly were a function of location. A wave model could be used to

generate transfer functions from the tip disturbance force to each sensor-element
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Figure 5.1: Illustration of a ten rectangular sensor-element array on a

cantilevered beam. A single sheet of PVDF was placed on either side of the

beam. The rectangular shapes were etched into the electrode surface.

signal, and the modeled results could be compared to the measured data to

reveal any differences.

Secondly, the elements could be used in unison to approximate different

transfer functions in the following manner. A linear combination of the sensor-

element transfer functions multiplied by a set of gains could produce an estimate

of some desired, nominal transfer function Gno,,,. The estimate generated from the

sensor-element array can be represented by

10

Gfit(j3) = gpHp(jm) Gnom(jM), (5.1)
p=1

where H, represents the transfer function for sensor-element p, and the term g,

rectangular sensor element pairs
(one on each side)

thin etched
separating lines



represents the electronic gain applied to element p. The transfer function H, is

proportional to the average strain rate over the area covered by the electrodes.

The term Gfit is the estimate transfer function. It is an approximation to the

desired, nominal transfer function Gnom. The accuracy of the approximation is

dependent on the choice of the gain vector g.

Lastly, the approach was advantageous in that the rectangular array could

generate estimates of many other transfer functions as well, each corresponding

to a different set of gains. With the proper gains, the array could be used to

implement a feedback control design. This is achieved by using a linear

combination of the sensor-element transfer functions to estimate the desired loop

transfer function (LTF) associated with that control design. In particular, the

rectangular array could be used to implement the LQR differenced-displacement

regulator design from Chapter 4. To test for the practicality of the rectangular

array design, the gains needed to implement the differenced-displacement

regulator were calculated and applied to the array in an experiment.

The approach to estimating the LTF with the rectangular array is as

follows: a gain vector g,, is determined to make an estimate Gfit of the

curvature kernel transfer function Gcker* The estimate is represented by Equation

5.2.

10 1
Gfit(j) = gcker Hp(j )  Gcer(j) (5.2)

p=1 j-

A different gain vector gcrker is determined to make an estimate Gft 2 of the

curvature kernel transfer function Gcrker. This estimate is represented by Equation

5.3.

10
Gfit 2 (j) = gcrker Hp(jM) Gcrker (jM) (5.3)

p=1



The two transfer functions Gcker and Gcrker correspond to the frequency behavior of

distributed curvature sensors with curvature and curvature rate kernel-shaped

electrodes, respectively. The sum of the two transfer functions Gcker and Gcrker

form the desired LTF for the LQR control design. The approximation of the LTF

made by the array is represented by

10
Gfitl,(jig) + Gfit2ckr + gcrkerp)Hp(j).

p=1
(5.4)

The process is similar to approximating the continuous kernel shapes with

a series of step functions, as illustrated by Figure 5.2. Each step in the figure

represents a different sensor-element located along the length. The different

magnitude levels of the steps correspond to the electronic gains applied to the

sensor-element signals. Ideally, a single PVDF sensor with this staircase-shaped

Figure 5.2: Illustration of an approximation of a curvature kernel shape

with a series of step functions.
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function etched on its electrode could achieve the same behavior. The array of

elements is a better design choice because it allows for adjustments. Also, each

sensor-element in the array has the same sensitivity to the surface strain rate over

the step lengths.

5.2 GAIN DETERMINATION TECHNIQUES

There are two possible methods for determining the gains needed to

implement the control design. Method 1 is based on the shape of the continuous

kernels. The gain for each sensor-element is found by picking the median value

of the curvature kernels over the area covered by the element. This is illustrated

by Figure 5.3. A gain vector gcker is determined based on the curvature kernel

along with a vector gcr, based on the curvature rate kernel.

Figure 5.3: Illustration of gain selection technique for Method 1. The

magnitude of each gain gp was chosen to be the median value of the kernel over

that segment.

Xmedian

step magnitude
corresponding

to gain on
sensor element p

>,,x
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Method 2 is based on the continuous kernel transfer functions. The

objective of this method is to minimize the logarithmic error between the desired

loop transfer function (LTF) and that achieved using the rectangular sensor

array. This logarithmic error is represented by

Eo(jm) = log(Gc ker (j)+ G(j+ G )) - log(Gfitl(j) + Gfit 2(jM))

= log(GLTF(jM)) - log(Gtl(jm)+ Gfit 2(J))

= log G LT F (j)

log htl(jM) + Gfit2(jM)

= log o GLTF (ji) 5)

S(gcker/j)+ gcrkerp) Hp(j) (5.5)
p = l

where GLTF symbolizes the desired LTF. The error Eo varies with the choice of

curvature and curvature rate gains gcker and gcrk. By employing a non-linear least

squares approach [16], the error Eo is minimized. The minimization process

varies the gains to determine the lowest value of the error Eo. This value is found

with the optimal choice of the two gain vectors gcker and gcrker The logarithm of

the error is used because it makes the minimization process sensitive to the zeros

of the transfer function. The structure of this minimization technique is covered

thoroughly in Ref. 16.

When employing this method, it is actually convenient to determine the

two gain vectors separately. The LTF is divided into two parts: a curvature

kernel transfer function Gcker, and a curvature rate transfer function Gcrker. Two

logarithmic errors are defined, one for the determination of each gain vector. The

two errors are represented by Equation 5.6.
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10 1
Eocke(jr ) = 1og(Gcker(j)) - log 1 gckerp Hp(i). I

= og Gcker() (5.6a)

ff1)
p=l gcker HP (jQ) j-

Ekcr,, (j0) = log(Gcrker(j)) - log( 1 gcrkerp Hp(j))

Gcrker (jG ker (j) (5.6b)

Y gcrker Hp(j )
,p=l

The errors EOcker and EOcrker are minimized separately, yielding the gains needed to

implement the control design.

Both methods can generate a set of curvature and curvature rate gains gckr

and gcrker needed to construct estimates of the curvature and curvature rate kernel

transfer functions from the rectangular array transfer functions. The methods

were applied to the wave model rectangular array transfer functions first, and

then to the measured data from the beam.

5.3 MODELED AND EXPERIMENTAL RESULTS

Figure 5.4 shows the results of applying Method 1 to the modeled sensor-

element transfer functions. The errors between the desired LTF and the estimate

increased with frequency, but they were minimal. The gains were not de-

stabilizing, because the estimate captured the alternating pole/zero structure of

the desired LTF. There was still room for improvement. The gains found from
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Figure 5.4: Linear combination of the modeled sensor-element transfer

functions (dashed-dotted) versus the desired loop transfer function (solid). Gains

obtained with Method 1.
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Summed Modeled Sens. Ele. TF. vs. Desired LTF, Method 2
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Figure 5.5: Linear combination of the modeled sensor-element transfer

functions (dashed-dotted) versus the desired loop transfer function (solid). Gains

obtained with Method 2.
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Figure 5.6: Comparison of gains for methods 1 (solid) and 2 (dash-dotted).
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Method 1 could be used as an initial guess for Method 2. Figure 5.5 shows the

results for applying Method 2 in this manner. A better match of the desired LTF

and the estimate Git1 + Gf t 2 was made with this method. The gains for the two

methods are compared in Figure 5.6. The largest gains are for sensor-element 1,

and the gains generally decrease for each consecutive element. For both

methods, the staircase patterns formed by the gains resemble discretized

estimates of the continuous curvature and curvature rate kernel shapes. The

continuous kernels decrease in magnitude as they progress along the length of

the beam, as seen in Figure 4.8. The predicted kernel transfer functions also

decrease in magnitude with increasing frequency, as seen in Figure 4.10. It is

assumed for both methods that the estimates Gfit and Gft 2 also decrease in

magnitude with increasing frequencies not shown, based on the staircase

patterns observed for the gains.

In the experiment, each sensor-element transfer function was measured

over the bandwidth of 0 to 1000 Hertz. A computer program produced a

prediction of the estimate Gfa + Gfit 2, given the desired gains gckei and gcrke? along

with the measured transfer functions Hp. The summed data did not match the

modeled rectangular array behavior. The results for the Method 1 and Method 2

gains are shown in Figures 5.7 and 5.8. The errors in the figures are similar to

the errors seen with the kernel-shaped sensor data from Chapter 4. The

individual transfer functions for each element were inspected.

The measured transfer functions versus their models for the first four

elements are shown in Figure 5.9. There were three discrepancies seen between

the measured data and the model. The first was a mis-modeling of the

fundamental frequency. It was lower than its predicted value by about 14

percent. This type of error was observed with all the measured data from

experiments using the magnetic non-contacting actuator. The proximity of the
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Figure 5.7: Linear combination of the measured sensor-element transfer

functions (solid) versus the desired loop transfer function (dash-dotted). Gains

obtained with Method 1.
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Figure 5.8: Linear combination of the measured sensor-element transfer

functions (solid) versus the desired loop transfer function (dash-dotted). Gains

obtained with Method 2.
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Sensor Element 1 Transfer Function, Model vs. Data
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Figure 5.9a: Transfer function for sensor-element 1, measured data (solid)

versus the wave model predictions (dash-dotted). A single pole roll-off at 250
Hertz has been added to the model to account for the actuator dynamics. Notice

the additional unmodeled high frequency dynamics present in the magnitude

plot.
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Sensor Element 2 Transfer Function, Model vs. Data
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Figure 5.9b: Transfer function for sensor-element 2, measured data (solid)
versus the wave model predictions (dash-dotted). A single pole roll-off at 250
Hertz has been added to the model to account for the actuator dynamics. There
is particularly good agreement between the model and data for element 2 as well
as for the other 8 consecutive elements.
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Sensor Element 3 Transfer Function, Model vs. Data
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Figure 5.9c: Transfer function for sensor-element 3, measured data (solid)

versus the wave model predictions (dash-dotted). A single pole roll-off at 250

Hertz has been added to the model to account for the actuator dynamics. The

second zero at about 450 Hertz is very lightly damped, accounting for the error in

the phase.
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Sensor Element 4 Transfer Function, Model vs. Data
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Figure 5.9d: Transfer function for sensor-element 4, measured data (solid)

versus the wave model predictions (dash-dotted). A single pole roll-off at 250

Hertz has been added to the model to account for the actuator dynamics.
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actuator to the beam may have made the free end condition non-ideal, lowering

the value of the first mode from its predicted value. Moving the actuator further

away would reduce the percentage difference between the modeled and

measured fundamental, but it would also reduce the available level of actuation.

The reduced level of actuation would reduce the signal-to-noise ratio, which was

not desired. The discrepancy was not caused by the PVDF sensors. The

measurements of the transmission from the actuator to a tip accelerometer, taken

before and after the PVDF sensors were applied to the beam, exhibited the same

shift in the fundamental. The discrepancy was also not de-stabilizing and was

therefore ignored.

The second was a decrease in phase and magnitude similar to a single pole

roll-off present in all the measured transfer functions. The roll-off could also be

accounted for by the actuator. It was a function of the inductor/resistor pole of

the actuator and the distance between the magnet and the beam. Measurements

of the transmission from the actuator to a tip accelerometer exhibited the same

roll-off.

The third discrepancy was a further decrease in magnitude in the data for

sensor-element 1. Element 1 was located adjacent to the root of the beam. There

were also some higher frequency dynamics present in the data for sensor-

element 1. This aberrant behavior could be due to non-ideal conditions present

at the root of the beam. Such a suggestion was strengthened by the fact that

linear combinations of the data from elements 2 through 10 could be modeled

with acceptable accuracy. Figure 5.10 shows a sample linear combination of the

data and modeled transfer functions for elements 2 through 10. The same roll-off

has been added to each modeled element transfer function. It was possible that

these same non-ideal conditions near the root of the beam were the cause of the

errors seen with the kernel-shaped sensors in Chapter 4. To remove suspicions
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Summed Sensor Element Transfer Functions 2 thru 10, Model vs. Data
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Figure 5.10: Sample linear combination of the measured sensor-element

transfer functions 2 through 10 (solid) versus the model (dash-dotted). The

sample gains used were the curvature gains from Method 2.

of fabrication errors, another beam with a rectangular sensor array was created,

and showed the same behavior.

Assuming that the test bed has remained within the Bernoulli-Euler beam

modeling regime, the behavior seen by the model of sensor-element 1 should be

the correct one. To use the Bernoulli-Euler beam assumptions, it is required that

a beam be long and slender, and that the tip motion experienced be small

compared to the length. The length-to-thickness aspect ratio was 192 to 1, and

the length-to-average tip displacement was about 96 to 1. Accepted length-to-

thickness aspect ratios for Bernoulli-Euler systems and some finite element codes

have been as low as 5 to 1. Also, the signal from all the sensor-elements had

105



acceptable signal-to-noise ratios. The measured transfer functions did not appear

to be corrupted by noise. Nonetheless, there was the undefined error hindering

the success of the experiment.

To progress further, a method of compensating for the error was

developed to allow the control design to be applied. It was possible to determine

the difference between the desired LTF and the estimated LTF generated by the

sensor-element transfer function measurements. This was possible given that the

desired LTF had the same frequency resolution as the measured transfer

functions. This quantitative difference could serve as the true system error. The

error could be minimized using techniques similar to those employed in Method

2.

5.4 APPLYING METHOD 2 TO THE MEASURED DATA

The Method 2 gains used in generating the plots in Figure 5.5 came from

minimizing an error between the desired LTF and the modeled sensor-element

transfer functions, as was explained in Section 5.2. Since non-idealities caused

the measured data to differ from the model, the true optimum gains needed to

produce an implementable estimate of the desired LTF were re-calculated. They

were found by applying Method 2 to the measured data. If the Method 2 gains

from Section 5.2 were a good initial guess, the true system error could be

minimized enough to provide a stable, implementable, closed-loop system. As

with the model, there were actually two errors minimized separately: one

associated with the curvature kernel transfer function and another associated

with the curvature rate kernel transfer function.

There were two risks associated with the implementation of the true

optimum gains. The first risk was that there were no guarantees that deviations
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from the gains wouldn't cause the system to be unstable. The second risk was

that there were no assurances about the behavior of the estimates at higher

frequencies not observed. As shown in Figure 5.8, the desired LTF rolls off at -20

dB per decade with increasing frequency. The desired LTF continues to roll off

even over the ranges not shown. This result is guaranteed for a Linear Quadratic

Regulator control design [1, 8]. The LTF is also guaranteed to satisfy Nyquist

stability criterion. There are no such guarantees for the rectangular array design,

even with implementing the correct gains. The severity of the risks were exposed

in the experiment.

Figure 5.11a shows the curvature kernel transfer function Gcke versus the

estimate Gitl and Figure 5.11b shows the curvature rate kernel transfer function

Gcrk versus the estimate Gft 2. Figure 5.12 shows the desired LTF versus the sum

of the two functions Gfi and Git 2. The optimum gains are compared with their

initial guesses in Figure 5.13. Over the observed bandwidth, the estimate Gfit +

Gft 2 in Figure 5.12 will give a stable closed-loop system.

To reproduce this result in a real-time experiment, an adjustable, analog

compensator was built. The initial sensor-element circuitry measured a voltage

signal proportional the surface strain rate, represented by

Ip+1

Vp (t) = 1 2Cf Fp(x) 2 - o(x,t)x = HpVom(t) (5.7a)

lp

where

Fp(x) = 1 (5.7b)

and Vcom represents the input voltage signal for the tip actuator. The subscript p

denotes the different elements. The compensator multiplied each of different the
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Figure 5.11a: The curvature kernel transfer function Gcker (dash-dotted)

versus the estimate G,,t, (solid).
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Linear Combination corresponding to smallest error e_crker
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Figure 5.11b: The curvature kernel transfer function Gcrker (dash-dotted)

versus the estimate Gft 2(solid).
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Desired LTF vs. estimated LTF generated from sensor array
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Figure 5.12: Desired LTF (dash-dotted) versus estimated LTF (solid)

generated from sensor-element transfer functions. The estimated LTF will give a
stable, closed-loop system over the observed bandwidth, given the gains are

correctly applied.
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Figure 5.13: Comparison of optimum gains (dash-dotted) with their initial

guesses (solid). The initial guesses were obtained by applying Method 2 to the

modeled sensor element transfer functions.
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sensor-element signals V, by

1
Gchannelp(j) = gcrker + gcker (j + 2tp) .  (5.8)

The compensator also sums the contributions from each element, represented by

10

Grit, + Gfit2 = Gchannelp -H(jM). (5.9)
p=1

Note that a single pole roll-off is used to provide the integration part for each

channel. This is because a perfect integrator constructed from analog devices

would amplify any small DC offset. The value of Pc was chosen to be 0.1 Hertz,

such that over the effective control bandwidth, each compensator channel

resembled Equation 5.10.

1
Gchannelp(j) gcrkerp + gcker * j>>2p (5.10)

Figure 5.14 shows the measured transfer function represented by Equation 5.9.

There were small high frequency errors introduced by the analog circuitry. The

presence of the errors required that a single pole roll-off be applied to the output

of the compensator to provide stability. The roll-off pole was placed at 267

Hertz, which was sufficiently above the bending modes that the control design

was working to penalize. Figure 5.15 shows the modeled and measured open

and closed-loop performance transfer functions for the differenced-displacement

regulator. The agreement between the measured and model performance

outputs verify the success of the rectangular sensor array control design.

The roll-off that was applied to the control signal is not an unusual step or

an undesired one, but it would have been of particular interest to have all the
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Modeled vs. Measured LTF
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Figure 5.14: Desired LTF (dash-dotted) versus measured LTF (solid)

generated from sensor-element transfer functions. The measured LTF has an

added control roll-off at 267 Hertz to guarantee a stable, closed-loop system over

and above the observed bandwidth. The control design primarily penalizes the

first and second modes. It is also designed to slightly affect the third mode. Since

the control roll-off has been added to the measured LTF, the third mode will not

be affected in the implementation.
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properties of the desired LTF estimate integrated into the shapes or the choice of

gains. The presence of high frequency errors introduced by the circuitry

prevented this, and typically all control designs are limited by such errors and

require a roll-off to prevent any interference from them.
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Modeled OL and CL Performance Transfer Functions
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Figure 5.15a: Modeled open-loop (dash-dotted) and closed-loop (solid)

performance output transfer functions for the LQR differenced-displacement

control design. Control and actuator roll-off included in the model.
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Measured OL and CL Performance Transfer Functions
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Figure 5.15b: Measured open-loop (dash-dotted) and closed-loop (solid)

performance output transfer functions for the LQR differenced-displacement
control design.
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Modeled, Measured CL Performance Transfer Functions
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Figure 5.15c: Comparison of measured (solid) and modeled (dash-dotted)

closed-loop performance output transfer functions for the LQR differenced-

displacement control design.
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Chapter 6

Conclusions and Recommendations

6.1 SUMMARY

The goal of this work was to implement a number of Linear Quadratic

Regulator (LQR) control designs on a cantilevered beam using polyvinylidene

floride (PVDF) area averaging sensors. The control designs were based on the

infinite-order LQR formulations for the cantilevered beam. The feedback control

signal in this formulation is the convolution of the continuous curvature state

functions of the beam with spatially distributed feedback kernels. The

implementation of the feedback control required distributed curvature

measurements. This type of measurement can be provided for using PVDF area

averaging sensors.

PVDF area averaging sensors are distributed, piezoelectric, surface strain

sensors. They consist of a thin layer of PVDF film with metal electrodes vapor-

deposited on each side. The voltage output of a PVDF area averaging sensor

attached to a cantilevered beam is proportional to the convolution of the

curvature state function of the beam with the spatial sensitivity weighting

function of the sensor. The spatial sensitivity weighting is determined from the

shape of the sensor electrodes. To implement the LQR control design, the spatial

weightings for the sensors were chosen to be the feedback kernels associated

with the infinite-order LQR control design.
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A method of calculating the kernels for specific LQR control designs was

accomplished by using an extrapolation of a set of discrete feedback gains. The

feedback gains were obtained from a finite-order LQR control design. The

extrapolation was based on the one-dimensional finite element interpolation

functions for a Bernoulli-Euler beam. An estimate of the spatially distributed

feedback kernels could be found based on the set of feedback gains. Each

estimate was dependent on the order of the model used to find the gains. A set

of models of increasing order were used in unison to extrapolate the infinite-

order feedback kernels.

To verify the validity of the kernels, a wave model was created which

would capture the behavior of the PVDF area averaging sensors on the beam.

The wave model produced the loop transfer function (LTF) that would be

generated from the output of the sensors. This wave model LTF was compared

to a high-fidelity finite element model LTF. The high-order finite element model

gave an accurate prediction of the desired LTF needed to implement the control.

If sufficiently accurate predictions of the kernels were made, the wave model LTF

and the high-order model LTF would be in good agreement. The results showed

that the methodology used to find the kernels was valid. The control design

could be implemented as long as the test structure remained within the

Bernoulli-Euler modeling regime. The results were reinforced by experimental

implementation.

For an experiment which penalized the tip displacement of the beam, the

associated sensors were implemented experimentally. Although there were

slight errors, the measured closed-loop performance for the experiment matched

the predictions well. For another experiment which penalized the difference

between the tip and mid-point displacement of the beam, the presence of non-

idealities hindered the achievement of closed-loop results. Many tests and
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simulations were done to attempt to quantitatively define the non-idealities, but

no definition was found.

An alternate design technique was investigated and implemented. The

technique used an array of rectangular area averaging sensor elements to mimic

the behavior of the kernel-shaped sensors. The rectangular shapes were chosen

for the sensor electrode patterns since their behavior could be modeled

accurately. The rectangular array design was advantageous in that it was

adjustable, and it could accommodate many different control designs. The

sensor array design also exposed the presence of non-ideal conditions near the

root of the test beam. The non-idealities were environmentally-induced errors,

and they may have been the cause of the problems with the second experiment.

The non-idealities were compensated for, and successful closed-loop results were

achieved with the rectangular sensor array design.

6.2 CONCLUSIONS AND RECOMMENDATIONS

A successful control application was achieved using PVDF area averaging

sensors. The film sensors were integrated into the fabrication of the cantilevered

structure with ease. They did not significantly alter the structure's dynamics.

Tip accelerometer measurements before and after the application of the sensors

were approximately identical. Only very simple circuitry was needed along with

the sensors to apply the control design, and even in the presence of

environmentally-induced errors, the sensors could assist in substantially

reducing the vibrations associated with the lower modes of a structure.

Considering the results seen in the above experiments, the best design employed

the rectangular sensor elements. In this design, the issues associated with

etching were removed, and the adjust-ability allowed for the implementation of
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different control designs as well as the ability to optimize the design in the

presence of the errors. Though the sensor array used rectangular shapes for the

sensor electrodes, it is possible that more flexibility could be gained with

trapezoidal shapes, as future research may show. A series of trapezoidal shapes

can possibly make a better approximation of the curvature kernels needed to

implement the LQR control designs.

The best improvement would come from clearly defining the errors seen

in the second and third experiments. It was hypothesized that conditions at the

root might be responsible for the errors seen in the experiments. At the root, the

beam experiences large stress concentrations. It is possible that the stresses

caused the first element to operate above its linear voltage-to-strain region. The

remedy might come from reducing the level of actuation the beam experiences.

Also at the root, the rotation angle may not have not been exactly zero due

to any motion of the blocks used for the clamp. It was observed that the first

element was most sensitive to the bench and clamp dynamics. Any

perturbations experienced by the bench and the clamp would increase the level

of which their dynamics were seen in the data for the first element. The remedy

for this lies in the creation of a more rigid clamp and bench for future

experiments.

If the problem was solely due to the clamped boundary condition, then

rectangular sensor-element array design presented an effective way to counteract

the affects caused by the non-ideal clamp. Many structural beam elements in

applications are modeled as cantilevered beams when, in reality, they are not.

The adjust-ability of the rectangular array design can successfully compensate for

this. Also, it would not be difficult to alter the modeling of the beam to allow for

a less rigid boundary condition. The control theory for the infinite-order LQR

control design can account for rigid body motions, however small they might be.
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The application of the control design without the rigid body contributions could

be observed to verify if their absence could cause the problems seen.

The only theory remaining that was not fully investigated was the film-

epoxy-beam interaction. The analysis of the interaction may turn out to be

laborious but necessary. As an alternative, relying only on the theory developed

in this thesis, more experiments may help to reveal the cause of the errors. The

investigation of a beam with a single sensor element located near the root may be

beneficial. It may also be beneficial to divide the element near the root into a

number of smaller segments. This might further clarify if the errors are a

function of the larger stresses or the slight non-idealities near the root.
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