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The objective of this thesis is to examine the implementation issues of local structural

control. Local control is used to alter those dynamic properties of a structure which

can be completely defined at a particular structural cross-section: transmission and

reflection coefficients. Local control includes impedance matching, which absorbs

power from the system, and energy shunting, which minimizes the transmission of

power in specified directions. Any local controller can be shown to implement some

proportion of both impedance matching and energy shunting, and offer high stability

robustness due to its positive real nature.

Time delays and sensor/actuator noncollocation are two common effects which

cause loss of positivity. Time delay can be accommodated by modifying the local

model. Impedance matching and energy shunting control are investigated on testbeds

incorporating time delay. Noncollocation invalidates the assumptions used to create

the local model, requiring a global model. Global design techniques which capture

the characteristics of the local controllers are assembled.
Three of these techniques are implemented on the AMASS solar array simula-

tor, which exhibits both time delay and noncollocation. Modal frequency shifts in

the AMASS flight experiment place high requirements on stability and performance

robustness. A reduced order, multimodel compensator is designed which provides

acceptable damping and robustness. An alpha shifted compensator enforces closed

loop damping. Damping is high, however, the controller is analytically found to be

comparatively unrobust. A modified feedthrough controller increases the modal ob-

servability of the structure. Analytical robustness is high, and predicted damping is

nearly equal to the alpha shifted compensator. However, the measured damping is

lower than predicted, possibly due to nonlinearities in the piezoelectric actuator.
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Chapter 1

Introduction

Active control has been investigated in numerous contexts. Feedforward control [1],

classical feedback control [2], and modern or optimal feedback control [3] have re-

ceived a great deal of attention. This work has examined issues of nominal stability

and performance, as well as robust stability and robust performance [4] and imple-

mentation [5] of feedback control. These concepts have been applied to the control of

servo systems, and more recently, flexible structures [6, 7].

The advantages of active control include the ability to more precisely hold a desired

attitude or pointing angle, reject disturbances introduced by a basebody, minimize

disturbances induced into a basebody, or decrease structural mass. These advantages

are gained at the expense of increased engineering effort, cost, power requirements,

system complexity and attendant potential for failure. For feedback systems, closed

loop instability can lead to damage or loss of the hardware. The advantages of active

control may only outweigh the costs and risks for structures whose development or

deployment costs are already exceptionally high, or when passive methods are simply

not sufficient to achieve the required performance.

Space applications are an area in which costs are sufficient to justify the expense

of an active control system. Per-kilogram launch costs drive the mass of a spacecraft

downwards. The mass reduction enabled by an actively controlled system may be suf-

ficient to recoup the expense of the design. Satellite sizes and masses are being driven

down by advances in system miniaturization, the desire to lower the risk inherent in



launch and deployment, and by dividing payloads among smaller launch vehicles.

This trend decreases the mass budget for passive isolation. At the same time, the

requirements for isolation are increasing. As payload mass fraction increases, the

effects of on-board disturbances on the spacecraft and on other instruments increase.

Requirements on disturbance rejection and attitude control will only become

tighter. More precise line-of-sight instruments, tighter communications links, in-

cluding the development of laser communications, and the potential for biological

and industrial processes designed to take advantage of a microgravity environment,

all will tighten the spacecraft design tolerances. Passive systems may be unable to

provide the necessary performance. Active control becomes an enabling technology.

Minimizing Solar Panel Induced Jitter. A specific example of conflict between

spacecraft mass and performance is the necessity of providing power. Solar arrays

are generally used. Since the spacecraft often maintains a certain orientation with

respect to the Earth, the arrays are moved to track the sun. When the array mass is

small compared to the satellite bus, the jitter induced is negligible. However, while

spacecraft mass can decrease, a fixed solar panel area is required to provide power.

Flexibility in the panels will eventually limit the pointing accuracy.

In order for active control to be a viable technology for control of flexible space-

craft, the stability performance of the active system must be guaranteed to a high

degree of confidence. Many approaches may be taken. A particularly promising ap-

proach is the use of a local controller, which is designed from a local model. A local

model throws out all information about the parts of the structure spatially removed

from the control actuator and sensor. The part which remains, the local response, can

often be characterized accurately, even when little is known about global structure.

Further, if the control hardware is designed properly, the control can be designed

to take advantage of certain stability guarantees. The performance may degrade due

to mismodeling, however, the closed loop system will be stable. These guarantees

follow from the duality of the sensor and actuator. The important characteristic of

duality is the phase-boundedness of the frequency response from the actuator to the



sensor [8].

Previous Approaches to Local Control. Some of the original work on local con-

trollers concerned bridge feedback designs which were designed based on impedance

matching ideas from electrical engineering [9]. The impedance of a structural system

was defined and used to design an optimal damping controller. The approach was

combined with other methods in a layered control architecture which used the damp-

ing controller to enhance stability margins in a series of progressively higher authority

control loops [10].

Another approach to structural impedance matching was presented by Miller [11].

Structural motion was decomposed into component wave modes, explicitly represent-

ing the directional nature of energy flow. The wave model is derived from an explicit

Partial Differential Equation description of the plant. Minimizing the flow of power

away from the control location creates a controller which absorbs power. While the

control is generally not physically implementable, various methods for arriving at an

implementable approximation are shown.

Yet another local control methodology was presented by MacMartin [12]. Ap-

proaching the problem from the context of Statistical Energy Analysis (SEA), the

structural response is considered to be uncertain, highly resonant (i.e.. lightly damped)

and modally dense [13]. The "known" portion of the response is the logarithmic

mean of the resonant response, which is equivalent in some sense to a local model.

A combined H2/7H1 cost is defined, and the minimization of the cost is shown to be

equivalent to minimizing power.

Spangler approaches the local control design from the context of state space, i2

optimization [14]. The issues in creating a perfectly collocated sensor and actuator

are investigated. The approach is to measure the impedance of the actuator, in order

to back out the structural motion. The results thereby tie into previous impedance

matching work. The connection is strengthened, through the real-pole constrained

form of the 7I2 optimal controller, by the fact that the MacMartin local model and

H 2/7'Hi optimal controller are both parameterized as real-pole entities.



Topics of Investigation. The current work seeks to build upon the last three

citations. The thrust will be towards addressing implementation issues. The results

of the local modeling and local control design are reviewed in Chapter 2. Impedance

matching implementation is discussed. A second power flow local control objective,

energy shunting, is introduced, and the relationship of the two is investigated. Based

on the statement that any local controller can be described in terms of the mixture of

impedance matching and energy shunting, an investigation of the globally T 2 optimal

local controller is presented.

Secondly, the effects of non-idealities on the implementation of impedance match-

ing and energy shunting are explored in Chapter 3. Many effects can be posed in the

local framework. However, some non-idealities do not fit into the local framework.

The objectives of the local design are reflected into the global design framework. A

number of approaches to meeting these objectives are presented.

Finally, implementation of the local controllers is presented for a representative

structure in Chapter 4. The AMASS testbed is the ground prototype of a Controlled

Structures Interaction (CSI) flight experiment. The experiment examines the ability

of passive and active components to reduce spacecraft jitter due to appendage flexi-

bility. Analytical and experimental results are presented and assessed in terms of the

design goals.



Chapter 2

Positive real systems

Stability and performance robustness are of primary importance to active control of

space systems. Many techniques have been investigated for increasing the robustness

of active controllers to uncertain or time-varying plant parameters. The greatest

degree of stability robustness can be attained when both the plant and the controller

are positive real (PR) [8]. A system is positive real when the real part of the frequency

response of the system is positive. This characteristic requires that the phase of the

response is bounded by ±900.

The attribute of positive realness must be designed into the plant. One way to

create a positive real plant is to choose the sensor and actuator to be collocated and

dual. Dualness in turn refers to the property that the product of the sensed and

actuated quantities is power. Given a positive real plant, a controller which is also

positive real is guaranteed to produce a stable system when interconnected using

negative feedback. Termed hyperstability [8], such a guarantee is a powerful way to

robustify against any plant uncertainty. The collocated nature of the sensor and

actuator gives rise to the term local control. Local control requires a knowledge of

the response of the structure at the control location. A local model, which captures

the desired response, is required.

Performance robustness is also a desired attribute of any compensator. Using a

dual sensor and actuator, the designer can control the closed loop power flow. By

controlling the power flow at the control location, the designer can effect the desired



performance improvement. Closed loop power is a function of the plant response at

the control location, termed the local response. Since the local system is likely to be

characterized better than the global structure, the performance will also be robust to

changes in the structure as a whole.

The local model can be used to describe the power at the control. Depending

on the topology of the structure to be controlled, the designer may re-direct energy

or absorb energy. The latter technique has been termed impedance matching, since

the controller has a specific relationship to the impedance of the structure as seen

through the control hardware.

2.1 Impedance matching

The structural impedance match is derived by minimizing the closed loop power flow

away from the control location. A local model is used to describe the power flow.

In the global system, motion at the control location produces, and is produced by,

motion in other regions of the structure. By using a local model, knowledge of the

global response of the structure is removed from the problem. That is, incoming

disturbances are no longer correlated with outgoing energy. The control only has one

opportunity to affect the power before it departs into the rest of the structure. As

a result, the controller minimizes the local power by absorbing the greatest possible

proportion of the incoming power.The first step, in deriving the impedance match is

to obtain a local model of the structure.

2.1.1 Local Modeling

The measured, reverberant response arises from the interaction of energy arriving

from other parts of the structure with energy introduced by the actuator. The desired

local model captures the direct field response, the motion due solely to the energy

imparted by the control. Local models have been obtained analytically, using a

wave model. The wave modeling approach is suitable for structures composed of

an assemblage of one-dimensional waveguide-like members, for example trusses. It



was developed by von Flotow [15]. From a wave perspective, the local model consists

of reflection and transmission (scattering) coefficients of the controlled structural

cross-section. Since such a description is not always applicable, approximations to

the direct field can be derived from measurement data, or from more conventional

modeling techniques such as Finite Element modeling. These approximations were

suggested by MacMartin [16].

Wave Model

The wave model is a technique for describing the motion of a system in terms of wave

modes which propagate around the structure. It can be used to describe structures

which can be modeled as an assemblage of one-dimensional waveguides (Figure 2.1).

The structure is composed of a number of linear members which allow energy to prop-

agate primarily along their longitudinal axis. Members intersect at junctions, which

reflect and scatter energy. In the wave concept, motion arises from the combined

response of independent wave modes which travel along each member. Wave modes

arise from control and disturbance forces.

In steady state, wave modes travel around the structure and return to their point

of origin to interfere with themselves. The relative phasing determines whether such

interference is constructive, as at a modal frequency, or destructive, as at a zero. The

analysis is conducted in the frequency domain and describes steady-state behavior

of the structure. The following chapter is a summary of [11], to which the reader

is referred for further information. The results will be used for control derivations

presented in succeeding chapters.

The basis for the wave model is a transformation from wave mode amplitudes,

w, to physical variables, y = , where u and f are the strains and stresses in a

member. The physical deformation u at a particular cross-section of a given member

can be expressed as the sum of independent wave modes passing the cross-section:

u(x, t) = wlefteiket + iwt Wrighte- iht+t (2.1)

The wave mode amplitudes wlft and wright are subscripted according to the direction
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Figure 2.1: Generalized structural junction: The wave model describes trans-
mission of energy along the members.

of their origination. Leftward waves wl,ft originate to the right of the cross-section.

If they are propagating waves, they travel leftward. Rightward waves w,,ght similarly

originate towards the left, and if they are traveling waves, travel rightward.

The wave number, k, relates the wavelength to the frequency of the wave. The

wave number is obtained from the partial differential equation (PDE) of the member.

The PDE is Fourier-transformed in the temporal domain, and placed into a state-

space form:

[; = A(w)f = A(w)y(w) (2.2)

A(w) is the frequency-dependent state-space matrix of the medium. The characteristic

equation

det [kI- A(w) = 0 (2.3)

is the dispersion relation. The solutions to Equation 2.3 are the wave numbers k

whose inverses give the wavelengths which the medium supports at a particular fre-

quency. Real wave numbers correspond to unattenuated propagating waves (Fig-

ure 2.2). Imaginary wave numbers correspond to evanescent waves, that is, waves
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Re{k)

Figure 2.2: Complex wave number k: for passive systems, k must lie in the
second or fourth quadrants.

whose spatial distribution is exponential rather than sinusoidal. Complex wave num-

bers indicate propagating waves whose amplitude attenuates or amplifies. For passive

structural systems the waves must attenuate, hence complex wave numbers must lie

in the second or fourth quadrant of the complex plane.

Given the wave number k, a transformation matrix Y(w) can be defined, which

maps wave mode amplitudes w = into physical variables y = u in
Wright fm

the member at each frequency w:

y(w) = Y(w)w(w) (2.4)

The transformation Y is square, reflecting the fact that the number of independent

wave modes equals the number of cross-sectional variables.

The wave transformation Y is the basis for the description of junctions in the

wave model. Junctions can be physical discontinuities in the structure, such as the

intersection of two or more members. Junctions can also be defined at arbitrary

locations, such as at disturbance or control force inputs, or at locations where the

V



structural response is desired. The general form of the junction boundary condition

is

Bu Bf U = Q (2.5)

where non-zero elements in the matrices Bu and B1 pick out the combinations of

member forces and deflections which are specified at the junction. The vector Q

describes the imposed forces and displacements, and can include both actuator forces

as well as geometric and natural boundary conditions.

The wave transformation Y can be used to transform the boundary condition

(Equation 2.5) into wave coordinates:

Bu Bf[Ufm = B B1Yw=Q (2.6)

The wave modes w can be grouped into modes which originate at the junction (out-

going waves wo) and those which originate elsewhere (incoming waves wi), so that

w = If the columns of the wave transformation Y are ordered correspond-

ingly, the boundary condition in wave coordinates, Equation 2.6, can be arranged as

follows:

B. B1  Y . [ ; Q (2.7)

The subscripts (.),, (.)uo, (.)f, (.)fo, denote those elements of Y which relate the

internal deflections u to the incoming and outgoing waves, and the internal forces f

to the incoming and outgoing waves, respectively.

It is useful to re-arrange this equation so that the outgoing waves wo are a linear

combination of the incoming waves w, and the junction forces Q:

w(w) = S(w)w%(w) + I(w)Q(w) (2.8)

where

S -= [ B =,Y+ BY 0 I [ BYi + BY, ] (2.9)

= [BYo + B YIo] (2.10)



Equation 2.8 is the junction description in wave coordinates, and is fundamental to

wave-based local control. S is the scattering matrix, which describes how incoming

wave modes mix and scatter. The generation matrix IF describes how externally

imposed forces and displacements generate outgoing waves.

To model a structure composed of multiple junctions, a description of wave propa-

gation between junctions is needed. Wave propagation along members is described by

the transmission matrix . The transmission matrix (Xl, x 2 ,w) describes how waves

w2 at a location x 2 along a member are related to waves wl at another location xl:

W2 (W) = W(X 2 ,) = (X 2 , X1, W)W(Xl, W) = 2- 1 W(X 1 ,W) =- -l 1(w) (2.11)

where x1 can be thought of as "upstream" of x 2, that is, waves travel from x1 towards

x2. There will be another (2x2 , x 1,w) = 2-1 which describes how waves at xa relate

to waves at x 1. For a passive, reciprocal member, 1-2 and 2-1 will be identical,

indicating that the member can support two sets of wave modes, traveling in opposite

directions. The (s are used in the global model, to relate waves departing one junction

to the waves incoming at other junctions. The junction matrices, S and T, and

transmission matrix, , are the basic elements of the wave model.

Appendix A discusses the assembly of the wave model elements into a global

model. Reference [11] discusses in detail the assembly of more complicated elements

from various types of members (such as beams and torsion members) in more extensive

combinations such as truss structures. The derivation of local control does not require

such complicated models. However, global wave models will be derived for use in

simulating the global behavior of at structure under the influence of local controllers.

The key to the use of the wave model in local control is that the generation matrix

T is exactly the local model desired. If the incoming wave modes wi are zero, the

response at a junction is due only to the outgoing waves generated by the control

force through T. Thus T is the exact direct field response. If the control force Q

is considered as feedforward of incoming waves, Q = Fw, junction control can be

described as modification of the scattering matrix:

Wo = (S + TF)wi = S,1w, (2.12)
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Figure 2.3: Rod example

Control can be posed as explicitly specifying entries in S,1. Alternatively another

metric such as power flow can be minimized. Using the transformation matrix Y,

feedforward of wave modes can be posed as feedback of physical variables.

Example 1: Wave Model of a Rod Figure 2.3 shows a simple structural system,

consisting of a rod supporting axial motion. The left end is free, and supports an

external force q. The right end is rigidly attached to an inertial base. A wave model of

the rod will be constructed. In wave terminology, the rod is composed of 5 elements.

The two ends and the location x 2 are junctions, and the segments a and b of the rod

are members.

The rod is uniform with cross-sectional properties EA and pA, where E is Young's

modulus, p is mass density, and A is cross-sectional area. The junctions are the left

end, the response location x 2, and the right end. These are numbered in Figure 2.4

as junctions 1, 2, and 3 respectively. The global wave modes given by

L21eft

Wi2right

W 13 (2.13)
Wo Wo'

lW21eft

WO2right

Wo 3
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Figure 2.4: Rod example: global wave modes

To find the wave model S, T, and ( matrices, the junction transformation Y is

found from the PDE.

The PDE of a rod is given by

EA 2 (, t)
EAx 2 S 2 =X, t)

A t2 =

Fourier transforming 2.14, the PDE in the frequency domain is

EA 2U(Xw) - pAw2u(, w) = 0
The PDE is placed in state space form:2

The PDE is placed in state space form:

0 AEA

pAw2 0

EA

EA ou(9Oxc

- A(w)y(w)

The dispersion relation, Equation 2.3, can be solved for the wave numbers:

k = +± wp E

The two wave numbers for the rod are real and of opposite sign.

pendent, unattenuated traveling wave modes are supported, one i

w = Weft .The waves are unattenuated. The physical displa
Wright

the sum of the displacements caused by each wave:

u(x, t) = wi'eteikx+ iw t + Wrighte-ikx+iwt

Using the relation of strain to internal force:

au
f = EA

(9

Thus two inde-

n each direction:

cement u(, t) is

(2.18)

(2.19)

(2.14)

(2.15)

(2.16)

(2.17)

ds u a

ax EA a
9X



the cross-sectional variable state can be expressed in terms of wave mode amplitudes:

Sua 1 w t (2.20)
EA ikEA -kEA Wrigh

which has the form of the junction transformation matrix.

Since at junction 1, w2 are leftward-traveling waves and w are rightward-traveling

waves, the junction transformation matrix Y is the same as Equation 2.20. The

boundary condition at junction 1 is given by

au
- EA = q (2.21)

Equation 2.21 can be written in terms of the cross-sectional state vector y:

0 -1 a B= Bf B] q (2.22)
EAaJ EAau

This is the junction description, Equation 2.8. The scattering matrix Si and genera-

tion matrix 1i can be found from Equation 2.9 and Equation 2.10, respectively:

S= B BY BY 1 ]o [ BYuz + B Y, 1  (2.23)

- 0*1+-1*-ikEA 0*1+-1*ikEA

[ BYo0 + Bf Yf o (2.24)

= + -1 *-ikEA

1

ikEA

The right end, constrained boundary condition (junction 3) is given by

Bu Bf ] = 1 0 au 0 (2.25)

giving the scattering and generation matrices, S3 and T 3 , as

S3 = -1 (2.26)

XF3 = 1 (2.27)
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Figure 2.5: Rod example: Junction 2 boundary conditions

The implication of I3 is that if the boundary were given a commanded displacement,

Ac, waves would be generated in the rod.

The treatment of the response location x2 is instructive. If there are no forces

acting at x2 , any arriving waves will pass unchanged through the junction: wo = wi. It

will be useful to derive the full junction model of the form of Equation 2.8. Figure 2.5

shows the boundary conditions that must be satisfied. At the response location, there

are four independent cross-sectional variables: ul and u,, the deflection of the left and

right elements, and (EA )i and (EA ),r, the internal stresses. The subscript (.)left

will denote properties of the left side of the cross-section, and (.)right, of the right

side.

The junction 2 transformation

and rightward waves ordered into

matrix Y2 is given by E

incoming and outgoing

ul 1 0 1 0

U, 0 1 0 1

(EAa) -ikEA 0 ikEA 0

(EAu) 0 ikEA 0 -ikEA

Equilibrium requires that u, - ul = 0, and that (EA

can be stated more generally as:

-1i

0

Ul

Ur

(EA )I

(EA ),

quation 2.28, with leftward

waves:

Wi2left

W2ight (2.28)
WO21eft

"02right

a) - (EAa) = 0. This

Arel

Fe= t

(2.29)



where Are, is a commanded gap and F,,t is an external force applied at that cross-

section. The commanded gap Are, might arise for example from a strain actuator

such as a piezoelectric wafer bonded to the beam.

Partitioning the transformation matrix into quadrants, the junction scattering

matrix and generation matrix can be found from Equations 2.9 and 2.10, respectively:

S 2  + o Y f0 , B,, Y,,= + BY (2.30)

1 1 -ikcEA -1
~'2 [ B,Y 2 + BfYf 2  2ikEA kEA -1(2.31)

2[kEA ikEA -1

As expected, the open loop scattering behavior of the junction does not change waves

passing through it. Note, however, that in order to completely control all wave

modes traversing the junction, it is necessary to have both elements of Q2 = A re
Fext

as actuators. This is equivalent to stating that, in order to completely specify the

deflection of a cross-section, there must be as many independent actuators as physical

degrees of freedom. In the current example, the actuator will be external force:0
SQ2 Fe t

The final elements of the model are the transmission matrices for the left and

right segments. The lengths of the segments are denoted as 1I and 12, respectively.

Across the left member, waves travel a distance 11 and undergo a phase change of kll,

hence 1 = eikll. Waves traversing the right member undergo a phase change of kl2,

hence ~2 = eik l2. The complete transmission matrix is thus given by

wi 0 eikll 0 0 wo,

W = Weft 0 0 21ft = globWo (2.32)

2right 0 0 0 eik l W2,right

WZ O0 0 eikl2 0 Wo



From Equation A.4, the wave model is:

-1

wi 0 0 0 0 0 eikll 0 0 0 0

wi, 0 0 0 0 eikl 0 0 0 0 0

W, 0 0 0 0 0 0 0 eikl 0 0

w3 I+ 0 0 0 0 0 0 eikl2 0 0 0 q

Wo, 1 0 0 0 0 0 0 0 ikEA 0 FeXt
-1wo, 0 0 1 0 0 0 0 0 0

Wo 2 Left 0 100 0 0 0 02ikEA

W ,right 0 1 0 0 0 0 0 0 0 -1i
2ikEA

wo3 0 0 0-1 0 0 0 0 0 0

(2.33)

Equation 2.33 can be solved at a set of discrete frequencies {w} for a set of wave

mode amplitudes {W}. Using the global transformation matrix, the wave amplitudes

at each frequency can be transformed into physical stresses and deformations:

Yglob = YglobW (2.34)

resulting in a transfer function from input force q(w) to any desired physical variable.

General local modeling

The wave description derived above has been applied to a relatively limited number

of plants. The use of wave-based local models for larger structures such as trusses is

problematical. It is not clear where the local structure ends, that is, how much of

the structure contributes to the direct field response. For example, one approach to

creating simplified models of trusses has been to use Timoshenko beams to represent

straight truss members [17]. The Timoshenko model captures the gross response

characteristics of the truss, but not behaviors of the individual members. The wave

model can be used to create an exact representation of the Timoshenko model [11],

from which the direct field can be found. However, such an approach has not been

found to yield good compensator designs when implemented on trusses, because the

direct field response of the Timoshenko beam is not the same as the truss. As a result,

the compensator derived from the local model is in error.
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Figure 2.6: Generic wave junction

Figure 2.7: Arbitrary structure

The truss has the necessary waveguide-like characteristics to fit well into the wave

model framework. More complicated structures such as plates also have a PDE

description, now in two spatial dimensions. Theoretically it is possible to formulate a

two-dimensional wave description for the purposes of control design, but this has not

been done. Even more complicated structures, with more intricate geometries, will

compound the difficulty.

Critical damping MacMartin uses an alternative method for generalizing the

wave-based local model [16]. The structure is represented as an arbitrary body subject

to a control force f and with a collocated, dual measurement u.

Control action produces a disturbance wave which travels out into the structure.

When it reaches a boundary, it reflects. Some of the energy reflects back towards

the control location, to become an incoming wave. It scatters again, mixing with

other waves at that location to produce the physical motion. In steady state, the

relative phasing of the incoming and outgoing waves wi and wo determines whether

constructive or destructive interference occurs. The concept is identical to the wave

model, however, there is no mathematical way to model the directional behavior of

the waves. Instead, the local behavior is approximated by characterizing the response

as the combination of the direct field Gd and a reverberant field, which carries the



information about the rest of the structure:

u = Gdf + d (2.35)

The sensed output u and control force f are dual. The disturbance d is composed

of energy reflected from the rest of the structure, combined with energy due to other

forces acting elsewhere in the structure. The reverberant portion of the structural

response is included in d.

One can derive an approximation to the direct field by creating a full-order model,

with all of the poles critically damped. By damping the global poles, the amount

of reflected energy returning to the measurement u is reduced, thus the response

approaches the direct field response. A local model derived from a reverberant model

is termed a dereverberated model, and is only an approximation to the direct field.

Log averaged local model The critically damped approximation to the direct

field is justified using energy arguments. The effect is to average the logarithm of the

response [18, 13]. A second approximation to the direct field can be found by explic-

itly averaging the logarithm of the frequency response. The goal is a model which

captures the "backbone" of the reverberant transfer function from a measurement of

the reverberant data. Typically the model is parameterized as a low order set of poles

and zeros, for example 3-4 real poles. A cost is formed, composed of the logarithmic

error between the reverberant transfer function and the direct field approximation,

integrated over frequency:

J =W 2 (log G(jw) - log Gfit(]w))2 dw (2.36)

where

Z(s - zn)
Gfit(Jw) = k _ (2.37)

S8s=3,W

The cost J is minimized using a numerical search procedure.

The log averaged model will capture the same behavior as the critically damped

model. The computational cost is considerably smaller, and the resulting model will



be low order relative to the plant. In contrast, the critically damped fit requires a

full-order model, which is computer-intensive to generate. If only measurement data

is available, the model must be obtained via a curve-fitting routine. Further, the

resulting model will be high-order relative to the log averaged model.

Example 2: Rod direct field approximation. The two dereverberated mod-

eling techniques will be demonstrated on the rod example of the previous section.

The exact direct field will be obtained from the wave model. A critically damped

dereverberated model, and a real-pole log averaged model will be obtained. Two

input/output locations will be used. In the first case, the dereverberated response

from left end force q to collocated displacement is found. Second, the dereverberated

response of external force at junction 2 to collocated displacement is modeled.

Exact Direct Field. At the left, free end, the exact direct field response is

given by I1, Equation 2.25:
1

1- kEA (2.38)

By Equation 2.17, the direct field response as a function of frequency is

1 1 1 1
T1(w) 1 (2.39)A pE iw ApE s(.)

At junction 2, the direct field due to force actuation is given by X92 as

1 -ikEA -1 0 -1
2 EA 2kEA (2.40)

2ikEA2EAkEA -iJ] [2

since Q2 = Fext. Equation 2.40 gives the response from Fext to u U21
1 U2,

The measurement is dual to the actuation, so the direct field is in terms of inertial

(or absolute) displacement:

Aabs U2,+u 2 = [1 1 2 (2.41)
U2,



so that the exact direct field from external force to displacement at junction 2 is

-1 -1 1 1 1 1
1 1 2ikEA (2.42)

-1 ikEA A pE iw A pE s
2ikEA

which is the same as the free end case.

Dereverberated Models. The critically damped and real pole approximations

are generated from reverberant data from a wave model. The full order model is a

40-state fit to the reverberant transfer function from 0.1 to 10 Hz. The poles are then

critically damped, giving a 40*h-order dereverberated model. The log average fit is a

2-real-pole fit to the reverberant transfer function.

Comparison of Dereverberated Models with Direct Field. The transfer

functions of the resulting models are plotted against the reverberant transfer function

in Figures 2.8 and 2.9. Figure 2.8 shows the behavior when the input is at the left end

of the rod, junction 1. Notice that the zeros of the reverberant data are evenly spaced

with frequency. The exact direct field lies along the backbone of the reverberant

response. Figure 2.9 shows the behavior when the input is located in the midsection

of the rod. The reverberant zeros have shifted in frequency, relative to the end force

case. The critically damped and log averaged models approximate the reverberate

field, so they vary as the reverberant zeros change. That is, they vary depend on

the input location. The exact direct field, on the other hand, is the same at any

cross-section.

The exact direct field for the rod, when plotted on a log-log axis, is a line with

slope -1. Both measurement approximations are in error at the lower and higher

frequencies. Below the first mode, the reverberant data deviates from the exact

direct field. Any approximation will not be valid below the first mode. The log

average model captures the high frequency behavior well. The critically damped

model shows more high-frequency error, due to truncation effects. The poles and

zeros of the 40-state model occur in complex pairs. The relative degree of the full-
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order model must therefore be 2n, where n is an integer. So at high frequencies the

critically damped approximation cannot capture the -1 slope of the exact direct field.

It should be noted that both reverberant transfer functions were derived from

wave models, which are exact solutions of the rod equations of motion. Reverberant

data from finite element models will have errors due to discretization, which will add

additional error. Some structures such as the rod are amenable to approximation

techniques such as log averaging, due in part to the fact that there are only two

reflection points in the structure. In general, a complex structure can have many

discontinuities and partial discontinuities which will affect the local response. The

error inherent in the approximations is an unavoidable result.

As a final note, it is important to realize that the log averaging technique is valid

in regions of high modal density, when the modal spacing is on the order of the half

power bandwidth of the modes. It is not intended, and is of questionable validity,

when the modal spacing is large. For many physical systems, the modal spacing

may not be enough to justify the use of a log averaged model. The log averaging

technique may be the only route available to a local model suitable for impedance

matching local control.

2.1.2 Impedance Matching control design

The optimal control problem is posed as the minimization of some cost by proper

choice of a dynamic compensator K(s). The cost is often stated as some global

objective, such as keeping one point motionless or keeping two or more points aligned.

When the structural model has been reduced to a local model, it is not possible to

explicitly state a global objective. The global cost must be stated via a local objective.

Additionally, the controller must be stable when applied to the global system.

An example of a local objective is the maximization of power absorption by the

control, or equivalently, the minimization of total power. Such a power objective can

be thought of as maximizing damping, which always improves performance. Pure

damping is the globally optimal control strategy in two cases: 1) when the dynamics

of the plant are uncertain or modally dense [12], and 2) when the disturbance and/or



the performance cannot be characterized well. The stability of the closed loop system

can be guaranteed in the power framework by requiring that no power be put into the

structure at any frequency. For a conservative system, the amount of power returning

to the control location will always be less than or equal to the amount generated by

the control. Thus if power is always attenuated, the closed loop system will be stable.

The following chapter is a summary of the work of Miller [11]. The reader is referred

to that reference for further information.

The unconstrained power-minimizing compensator will in general be non-causal.

That is, the control requires future information about the disturbance. Such a non-

causal control cannot be implemented in real time. Thus additional constraints must

be placed in the problem to achieve a causal, implementable compensator. Two

equivalent power formulations are presented. First, the impedance match is derived

in closed-form in the wave domain. Second, the general local model of Section 2.1.1

is used to derive the impedance match for the general structure.

Unconstrained Wave Impedance Match

The wave impedance match is found by describing the power at the control junction as

a function of incoming and outgoing waves. Parameterizing the control as feedforward

of incoming waves, the total junction power as a function of the feedforward matrix

is minimized. The unconstrained impedance match is determined by choosing the

feedforward matrix to minimize power at all frequencies, without regard for causality.

The instantaneous power at a cross-section can be written as the product of in-

ternal stresses f and deflections u:

P = (,t)Tf( t) (2.43)at

where u and f are vectors whose components are of like type - linear velocity and

force, rotational velocity and moment. By averaging Equation 2.43 over all time, the

expected value of junction power can be described:

Pag = lim 1 au(xt)Tf(, t)dt (2.44)
T-oo 2T -T at



The time averaged power flow Pa,,g can then be transformed into the frequency

domain using the Power Theorem , a variation of Parseval's Theorem:

1 oo
Pa = - iwu(x, w)Hf(x, w)dw (2.45)

2r -oo

The integrand of Equation 2.45 describes the steady-state power as a function

of frequency. Using the wave transformation Y, the steady state power flow can be

written in terms of wave modes w:

Pa,g = Re {wuHf (2.46)

= Rew H oH ' [ Y Yf o (2.47)

= Re wH 0H1 (2.48)

O ,y Y fi Yfo Y f o Y,
[W L YY 1 YzYfZ0 J [o fU j O

= -wH (2.50)
2

where the power matrix P is

yf fi y . yf o Hy

P f= sw YJ Yf 1[ f% ut Jo (2.51)
YH Hfi U fo fH Uo fo UO

Since P is hermitian , Pang is always real.

The power matrix, Equation 2.50, describes the steady-state power flow through

the junction in terms of incoming waves wi and outgoing waves wo. Power is carried by

incoming waves, by outgoing waves, and by the interaction of incoming and outgoing

waves. Incoming power is defined to be negative power. Outgoing power is positive.

If the junction is non-dissipative, the outgoing power will equal the incoming power

and the net power will be zero. If the junction is dissipative, for example due to

control forces adding damping, the net power Pavg becomes negative. The control

objective can be stated as minimizing the net power.



A cost J is defined, composed of junction power and control effort:

J = -E wHPw
2 00o

w[ HW

+ QHRQ) dw]

+ QHRQ) dw] (2.52)

The control penalty R is needed to ensure finite control effort.

Using the junction relation, Equation 2.8 , the control can be expressed as feed-

forward of incoming wave modes, Q = Fw 2 , so that the closed loop scattering matrix

is given by

SCI = S + TF

The cost J can be written in terms of the incoming waves wi and the feedforward

matrix F:

Str EJ = -E (r2 -

1
= -tr E

2

1 M
= -tr
2 J-

SH + FH H

SH + FHTH

SH + FHFH

SP wi + WyHFHRF w

S+ IF

I

I[ S±+Fj
P

I

S+¢F

+ FHRF)

+ FHRF) 41. dw)

where the cost is expressed in terms of the expected value of the incoming wave

modes: 4,,ii = E [we wH .

Partitioning the power matrix P:

Pio

Poo
(2.54)

the cost is given by

1
J =1

2 ftr ([P + (SH + FH I H)P
-00

(SH + FHqTH)Poo(S + T.F)] (w,,) dw (2.55)

Allowing any feedforward matrix F, the cost of Equation 2.55 can be set to zero

dw

wiwH dw

(2.53)

1 oo
= E
2



frequency-by-frequency, independent of 4,,,. The feedforward matrix F which ac-

complishes this is given by ([11]):

F=[Hp R]~H[P.PS]F=- H ooT + R I Poi + PooS (2.56)

The control weighting R is needed when HP o o T is singular, and can be set to zero

otherwise. Equation 2.56 can be transformed to feedback of physical variables u using

the transformation matrix Y.

The cross-sectional variables have the form y [= where uTf is power. The
f

actuation Q can be any linear combination of internal deflection rates u and stresses

f. Given Q, one can define a set of sensed variables U, as a combination of u and

f, where UTQ is power. In other words, the sensed variables U, are the duals of the

actuated variables Q. If there are 2n independent cross-sectional variables, there are

n independent actuators, i.e. Q is an n x 1 vector. If a subset Q is used, i.e. m

actuators, with m < n, Q can be written as eQ. The n x m matrix e is a matrix of

ones and zeros.

Using the junction transformation Y, the new control variables can be related to

the controlled junction wave modes:

U, u wi

= T -=TY
Q f Wo

Inverting and partitioning Equation 2.57 gives

Wi u (TY)- 1  (TY) -1u = (TY) (TY) (TY)12

where the incoming waves can be described in terms of the

variables:

(2.57)

u,

actuated

wt = (TY)1'Us + (TY)'IQ = (TY)-1 Us + (TY)-1eQ

Using the feedforward matrix F, the control can be expressed in terms of

physical variables:

(2.58)

and sensed

(2.59)

feedback of

Q = Fwi



= F(TY) 1 U, + F(TY) 'eQ

[= - F(TY)-e]-1 F(TY)-xU,

- GU, (2.60)

where G is the desired feedback matrix.

Unconstrained General Impedance Match

MacMartin extended the structural impedance matching results to general systems

[16]. The following is a summary and discussion of that work. The dereverberated

model Gd is the log averaged or critically damped model of Section 2.1.1. It captures

the portion of the response due to the actuation f. Since u and f are dual, the

control problem can be stated as a SISO formulation. Gd is a therefore a scalar. All

information about the global structure is lumped into the disturbance d and is treated

as uncorrelated with the actuation.

The cost is the average power flow at the control location, as in Equation 2.44,

which can again be expressed as a function of frequency through Parseval's Theorem:

1 T BU(z, f 1 
PY = lim I T(z u(X, , t)dt = iwu(x, w)Hf(x, w)dw (2.61)T-.oo 2T - T t 27-o

In the wave power minimization, the power is expressed in terms of wave modes

wi and wo. For the general structure, the cost can be expressed in terms of the

dereverberated model, Gd(s), the compensator, K(s), and the disturbance d(s).

The control force f is expressed as a feedback of the measurement u:

f(s) = -K(s)u(s) = -K(s)Gd(s)f (s)- K(s)d(s) (2.62)

so that

f(s) = -(1 + K(s)Gd(s))-1Kd(s)

= H(s)d(s) (2.63)

The measurement is

u(s) = (1 + Gd(s)H(s))d(s) (2.64)



The expressions for u and f above can be substituted into Equation 2.61.

The integrand of Equation 2.61, as a function of the Laplace variable s, is then

J = d* (H*(l + GdH) + (1 + GdH)*H) d (2.65)

where the notation (.)* is the extension of the Hermitian operator to the complex

plane, i.e. G*(s) = Gd(-s)T. The cost in Equation 2.65 can be expressed in terms of

its trace:

J = E {tr (dd* (H*(1 + GdH) + (1 + GdH)*H))}

= tr ((H*(1 + GdH) + (1 + GdH)*H) Add) (2.66)

where 4)dd = E {dd*} is the spectrum of the incoming power.

Using the symmetry of Equation 2.66, H* = H at the optimum, so that the

derivative with respect to H can be calculated:

OJ
= 2 bdd + 4ddH(Gd + Gd) + (Gd + G*)H4@dd (2.67)

OH

Setting Equation 2.67 equal to zero, the H which minimizes Equation 2.66 frequency-

by-frequency can be found:

Hot = -(Gd + G*) - 1  (2.68)

Solving for the feedback compensator K(s) from Equation 2.63:

Kopt = -Hopt(1 + GdH)-1

= (2.69)

Equation 2.69 explicitly shows the non-causal nature of the impedance match. Only

if Gd is constant with frequency will the compensator K(s) be causal, and in fact the

optimal compensator will be constant gain feedback.

In general the compensator will be a function of (-s). Left half-plane (LHP)

dynamics are characteristics of both unstable systems and non-causal systems. A

non-causal system is stable in negative time. Information about the future response

is required to determine the current control. Such a control cannot be implemented



in real time. It is therefore necessary to minimize the cost functionals Equation 2.55

and Equation 2.66 subject to a restriction on the causality of the compensator K(s).

The resulting causal compensator is an approximation of the exact impedance

match. The fidelity of the match will vary with the degree of non-causality of the

impedance match, and the frequency range over which power absorption is desired.

Hence, while the unrestricted compensator minimizes the cost independent of the

disturbance spectrum, the causal approximation must be a function of the incoming

disturbance spectrum. The approximation will more closely match the noncausal

compensator at frequencies where the disturbance energy is higher.

The sensor and actuator need only be dual to within a temporal integral or deriva-

tive. Strictly speaking, the only true dual pair is force and displacement rate. Struc-

tural impedance is defined as rate over force. The transfer function from force to rate

is a mobility. The mobility G(s) can be found by measuring the response from force

actuation to a rate sensor, or from integrated force to displacement. That is,

.9X
G(S) - F - F (2.70)

8

The designer has some freedom in choosing the sensor and actuator pair.

Furthermore, the temporal integration, or derivative in Equation 2.70, can be

included in the compensator. For example, the response of the dual pair of force

and rate is equivalent to filtering the response of force to displacement through a

differentiator. Thus, for a control pair consisting of force and displacement, the

necessary dynamics to create an impedance can be included in the compensator.

Example 3: Rod power minimization The impedance-matching compensator

for a rod can be derived using the wave model in Section 2.1.1. The power absorbing

abilities of the impedance match will be examined when both actuators are available,

as well as when only external force is used.

For the controlled, midsection junction, the scattering and generation matrices

are:

0 1
S2 -

1 0



1 -1
2 2ikEA

The matrices Poi, Poo are the partitions of the power matrix P, Equation 2.51. With

the elements of Y2 as defined in Equation 2.28,

Poo = 2kEAw 1 i (2.71)
0 1

PoZ = (2.72)
0 0

The signs on the diagonal elements of Poo indicate that leftward-traveling waves carry

positive power. The signs of both diagonal elements of Poo can be made positive, re-

defining power flow outward as positive, without loss of validity.

When both Ar,, and F,,t are available as actuators, the optimal feedforward is

-1 1
F - 1  (2.73)

ikEA ikEA

The physical feedback relation G is given by Equation 2.60, which requires that the

matrix TY be known. The transformation T gives the transformation from indepen-

dent cross-sectional variables to actuated and sensed variables:

Aabs 1 1 0 0 uL

Frer 0 0 1 1 u,= (2.74)
Arel -1 1 0 0 (EA" )I

Fabs 0 0 -1 0 (EA ),

Note that the lower two rows of T are the boundary condition for junction 2. The

junction transformation Y2 is given in Equation 2.28. Equation 2.73 can then be

Aabs 1
expressed as feedback: of US = abs

G 2 = ikEA (2.75)
ikEA 0



where Q = G2U8 . Using the expression for the wave number, k = w (Equa-

tion 2.17), the control can be expressed as a function of frequency:

0 -1
0G = A iw (2.76)

= -ApEiw 0

Since Q ret and U, = Fre , the feedback given by Equation 2.76 is
FeXt Aabs

uncoupled feedback through dual variables:

-1

Aare = pAiw

Fet = -A pAiwAabs (2.77)

The closed loop scattering matrix can be found from Equation 2.12:

00
Sci = O (2.78)

0 0

The ability to zero all the elements in the closed loop scattering matrix is due

in part to having a sufficient number of independent actuators at the cross-section.

In general, the closed loop scattering matrix cannot be the zeroed. The following

example demonstrates a case in which the number of actuators at the junction is not

sufficient to zero the closed loop scattering matrix. The impedance match then con-

trols those combinations of cross-sectional variables which carry the greatest portion

of the power.

The closed loop power flow in the rod is a function of the eigenvalues of the closed

loop power matrix:

-1 0
P = 2EAkw (2.79)

0 -1

which has 2 eigenvalues of -2EAkw. Since the eigenvalues are always negative, the

compensator never produces power, and the closed loop system will be stable.

If the actuator is limited to Fxt, that is, Q Q , the feedforward compen-

sator which minimizes junction power is



F2= [ikEA ikEA] (2.80)

The feedback matrix is

G2 = A i] 0 (2.81)

which is collocated feedback of rate to force. Rate feedback is the typical active

damping compensator. For the rod, rate feedback at this specific gain gives the most

damping possible. In this case the optimal damping compensator is causal.

The closed-loop scattering matrix is

Sc,= 2 2 (2.82)

2 2

The closed loop power matrix is

1 1
2 2P2 = 2EAkw [2 ] (2.83)

which has eigenvalues of 0 and -2EAkw. Again the closed loop system never pro-

duces power. However, the junction cannot remove all the power arriving from the

disturbance (as was the case when both Are, and Ft were actuated). In fact, certain

wave mode combinations pass through the controlled junction without dissipation.

Figure 2.10 shows the transfer function from disturbance force q to collocated

velocity in open loop and in closed loop. When both actuators are available, the

compensator removes all the power arriving at the junction, and the global modes

are completely damped. When force is the only actuator, the compensator cannot

remove all the power crossing the junction. As a result, the damping in the closed

loop poles is not as high. The single actuator cannot remove all the disturbance

energy because it travels both through a combination of absolute force with inertial

displacement, and through relative force and relative displacement. When only a

subset of those variables are controlled, energy has an uncontrolled path through

which to travel.



1

- -1
10

Frequency [Hz]

Figure 2.10:

Figure 2.11:

Open and closed loop transfer functions from q to collocated
velocity at the left end.

The Brass Beam testbed at SERC. Disturbance energy is in-
troduced at the left end using a torque actuator. The left end
is controlled using a force actuator and collocated displacement
sensor.
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2.1.3 Brass Beam Impedance Matching Experiments

The impedance matching concept was validated on a brass beam testbed (Figure 2.11).

The beam is controlled at the free end, through a force actuator and a collocated dis-

placement sensor. At the pinned end, a torque motor acts to introduce a disturbance

torque. A collocated angle sensor allows a transfer function measurement to be made.

The first mode frequency is roughly 0.5 Hz, and the modal density is high. A high

authority control technique such as LQG would be high order, due to the number of

plant modes. Implementation would be difficult. Stability of the closed loop system

would be difficult to guarantee, because of the difficulty in accurately characterizing

the frequencies and damping ratios of the beam modes. However, the geometry of the

beam is such that a Bernoulli-Euler (BE) wave model captures the horizontal-plane

dynamics. Using the results of the last section, impedance matching compensators

can be designed around the controlled junction at the free end.

Three compensators are implemented. Two are approximations to the impedance

match. The third is rate feedback, the standard damping compensator. Predicted

damping performance based on local power dissipation is compared among the three

compensators. Experimental transfer functions are measured to confirm the predic-

tions. The two compensators based on the impedance match are found to add more

damping in a selected frequency range than rate feedback.

Hardware. The Brass Beam testbed consists of a 7.3 meter brass beam. The height

to width ratio makes shear deformation negligible, leading to the use of a Bernoulli-

Euler (BE) model. A wire suspension with six attachment points allows freedom of

movement in the horizontal plane. The suspension is configured to suppress vertical

bending and torsion. The beam properties are listed in Table 2.1. The boundary

conditions are pinned-free.

A non-contacting sensor and actuator pair acts at the free, controlled end. The

control force is created using a magnetic actuator, forcing against a small perma-

nent magnet attached to the beam. Displacement is measured using an eddy-current

non-contacting linear displacement sensor. The steel sensor target is located on the



Table 2.1: BE beam testbed parameters

width 10.2 cm
thickness 0.3175 cm
L 7.32 m
pA 2.85 g
EI 31.1 Nm 2

Actuator

A/D preamp Antialiasing '--------------- Smoothing Crown

Filter Control Filter Amp
Computer

Figure 2.12: The real-time control computer and
filters.

supporting amplifiers and

opposite side of the beam from the permanent magnet, producing a collocated mea-

surement. The use of the non-contacting sensors minimizes the mass loading at the

beam tip.

The control is implemented using a digital control computer (Figure 2.12). The

computer is a 68030-based processor running at 33 mHz, with a floating point Su-

perCard vector coprocessor. Controllers can be designed in a Matlab environment,

discretized using standard Matlab commands, and run automatically at 6 kHz. The

control loop includes a variable-gain A/D preamplifier with a high-pass filter, a 4 pole

anti-aliasing Bessel filter, and a Crown amplifier driving the magnetic actuator.

The performance is evaluated by looking at the frequency response at the left end

(see Figure 2.11). The fixed motor axis creates a pinned end condition, about which

a torque proportional to voltage is applied. Collocated rotation is measured using a



G G

Amp Torque Beam Sensor
Motor Conditioner

Tektronix
Fourier Analyzer

Figure 2.13: Performance is evaluated by measuring the pinned-end fre-

quency response.

non-contacting linear displacement sensor which measures the motion of the torque

motor bracket. Since the bracket is effectively rigid, and the angles induced are small,

the measurement is proportional to beam tip rotation. Signal acquisition and transfer

function estimation is performed using a Tektronics 2641 Fourier analyzer. Matlab.

Control Design. The modal density of the brass beam testbed is such that a full-

state controller based on a global model will be extremely high order. The low open

loop damping will make the performance sensitive to mismodeling. In contrast, a

local controller, for example the impedance match of the last section, is designed

using a local model. In this case the model will capture the behavior of the free end.

As a result, sensitivity to mismodeling of the global system is low, and performance

robustness is high.

Impedance Match. The impedance match can be found from the junction

description of the right, controlled end. The PDE which describes the beam is

0 v A 2v
EI + pa = 0 (2.84)

894 at2

where E is Young's Modulus, I is the area moment of inertia, p is mass density, and

A is cross-sectional area. Denoting the partial with respect to x as (.)', the PDE in



state space form is

a8
89:

V
v

EIv"

0

0

-pAw 2

0

v

-Elv"'

Elv"

(2.85)

where v is transverse displacement, v' is cross-section rotation, -Elkv"' is internal

shear stress, and Elv" is internal moment. The dispersion relation is

k4  pA 2 = 0
El (2.86)

with solutions ±iZ4  
7 , ± ,. The wave number k is therefore ' . Four

wave modes are supported:

v(x, t) = Wpe - ikX + iwt e-kx + iwt ikx + i t lekx+ iwtv(x' t) = W~e +±Wree- +wp, +We (2.87)

where the notation (.)rp, (.)p refers to propagating waves, and (.)r,, (.)le refers to

evanescent waves. Evanescent waves have an exponentially decaying, rather than

sinusoidal, spatial shape.

Differentiating Equation 2.87, the transformation matrix Y is found:

v

-EIv'"

Elv"

1

-ik

-iElk 3

-Elk 2

1

-k

Elk3

Elk2

1

ik

iEIk3

-Elk 2

1

k

-Elk3

Elk2

Wrp

Wre

Wlp

Wle

(2.88)

At the right end, w- =

is

where qF, qM are externally

wr ] and

'7.Dr

wo = lp The right end boundary condition
Wle

V

0 1 0 v' qF

00 1 -EIv'" qM

Elv"

imposed force and moment, respectively.

(2.89)



Using the correct submatrices from Equation 2.88 (i.e., in = right , out = left),

the junction scattering and generation matrices are:

S = (2.90)
1-i i

1 i [ (2.91)
2Elck3 1 -i"k

The impedance matching compensator is also a function of the partitions of the power

matrix P. For the beam, the matrices Po, Poo are:

Poo = 4EIk3w 1 0 (2.92)
0 0

Pi = 4EIk3w 0 0 (2.93)
0 -i

Note that in contrast to the rod, the matrix Poi is not the zero matrix. Poi describes

the power generated by the interaction of incoming and outgoing waves. The non-zero

entry indicates that power is propagated by the interaction of incoming and outgoing

evanescent waves.

The actuator is external force only: Q = q1 = eqF. The impedance match
0

feedforward matrix, FBE, is

FBE EIk[ -1-i 1-i i (2.94)

This can be transformed into physical variables using Equation 2.60. Since the actu-

ator and sensor quantities Q and U, are the cross-sectional variables -EIv"' and v,

T is the identity matrix. The actuator Q is qF. Therefore

qF = EIk3 (1 + i)1 0 (2.95)
2 0 V'

Equation 2.95 shows that the impedance match uses collocated feedback through

dual variables qf and v. Using the expression for the wave number, k = 74/, the



feedback can be expressed as a function of w.

+i /2
qF = (pA)3/4(EI)1/41  3/2v

2

= (pA) 3/4(EI)1/4(_iw) 3/2v

= (pA) 3/ 4(EI)/ 4(-s)3/2v (2.96)

where s is the Laplace variable. Equation 2.96 shows that the impedance match for

the BE beam is irrational and non-causal. Note that the impedance match would be

the same at the free end of any BE beam with the same height, width and material

properties, regardless of differences in the structure away from the control location

(including its length).

The impedance match is proportional to (-s)3/2, which is noncausal (due to the

dependence on a fractional power of -s) and cannot be implemented in real time.

Causal approximations must be created. The non-causal impedance match removes

all the power in the controlled variables, at all frequencies. The causal approximations

can only match the non-causal over a limited bandwidth, so the bandwidth to be

damped must be known. The brass beam compensators will be designed to damp in

a 1-10 Hz window. Three impedance matching approximations will be designed and

implemented, and compared to rate feedback, the standard damping compensator.

Gain-Matching Approximation. The frequency dependence of this compen-

sator is chosen to be s3/2 and the gain is chosen to minimize Equation 2.55 (for

4D,,= 1I, i.e. unit disturbance power at all frequencies) . The optimal compensator

is (from [11])
1 (pA)3/ 4 (E) 1 /4 3 / 2  

(2.97)

The causal, irrational function s3/2 can be approximated to arbitrary accuracy using

a rational transfer function [19].

This causal approximation has the same magnitude at all frequencies as the op-

timal compensator of Equation 2.96. The phase deviation from the non-causal is a

constant 90 degrees. The compensator never removes as much power as the optimal

impedance match, but it removes the same amount of power at all frequencies. In



fact, Equation 2.97 can be shown to be the solution to the 7-(,ominimization of power

flow for the BE beam [16].

The technique of matching the gain of the non-causal compensator, while allowing

the phase to deviate, will be referred to as gain-matching. Note that the gain-matching

compensator has not been shown to be the 7I, power-minimizing compensator in all

cases. A six-pole rational approximation to Equation 2.97 was created. However,

the compensator could not be rolled off due to time delay caused by the digital

implementation, and closed loop results cannot be presented.

Phase-Matching Approximation. The gain-matching compensator has a phase-

matching counterpart. The phase of the non-causal compensator is 45 degrees. The

causal function s1/2 has the same phase as the impedance match at all frequencies.

However, the logarithmic slope is 1 decade per decade, rather than 1. Thus the

gain of the phase-matching compensator can only match the gain of the non-causal

compensator at one frequency. At that frequency, the compensator will extract all

the power in the beam. At higher and lower frequencies, the gain will deviate. To

achieve damping in the 1-10 Hz window, the compensator gain is chosen so that the

magnitude match occurs at 3Hz, the center of the (logarithmic) frequency range. A

six-pole rational implementation is created.

Rational Approximation. The gain-matching and phase-matching compen-

sators can be thought of as the extrema of a spectrum of approximations to the

non-causal impedance match. The gain-matching compensator removes equal power

at all frequencies. Thus it gives the best possible broadband performance. The

phase-matching compensator gives perfect power absorption at one frequency, thus is

in some sense a narrow-band compensator.

Compensators can be designed which allow phase and gain deviations to be traded

off against one another. The design can be carried out by explicitly minimizing the

closed loop power, Equation 2.55, where the spectrum of the disturbance power 4,W

is band-limited. Alternatively, a set of poles and zeros can be fit to the magnitude
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Figure 2.14: Non-causal impedance match and experimentally implemented
approximations.

and phase of the non-causal impedance match. A frequency weighting can be used to

determine the bandwidth of the fit. The smaller the bandwidth, the more accurate

the fit. If a match at a single frequency is specified, the match will be exact.

For the brass beam experiments, a compensator was designed using the curve-

fitting technique, with a boxcar weighting from 1 to 10 Hz.

Rate Feedback. Rate feedback is the standard damping compensator for a force

actuator and a displacement sensor. As a comparison, a rate feedback compensator

is implemented. The gain is chosen so that the magnitude of the rate compensator

intersects the impedance match at 3 Hz.

Compensator Evaluation. The damping performance of the compensators can

be predicted based on the deviation in magnitude and phase from the noncausal

impedance match. Figure 2.14 shows the frequency response of the impedance match-



ing approximations, plotted against the non-causal impedance match. The solid line

represents the impedance match.

The dashed curve is the rational approximation, arrived at by a 1-10 Hz curve fit

to the non-causal solution. Notice that the magnitude matches the non-causal closely

from 3 to above 9 Hz. The phase deviates in this range by a maximum of about 35

degrees, intersecting the non-causal at 2 and 8.5 Hz. Where the gain match is good,

the phase match is worsened, and vice versa.

The phase-matching approximation matches the gain of the non-causal in the

center of the 1-10 Hz window. At 3 Hz, the compensator has the correct gain and

phase to remove all incident power. At higher and lower frequencies, the gain deviates

from the non-causal.

The rate feedback gain is chosen such that the maximum damping occurs at 3Hz.

The phase is never near the non-causal phase, so the rate compensator cannot achieve

the damping of the impedance match at any frequency. Note, however, that the rate

feedback gain remains close to the impedance match for a wide range. Thus damping

can be expected to be more broadband than either of the impedance approximations.

The gain matching compensator is not plotted because the time delay of the digital

implementation caused instability in the closed loop.

Stability of the Impedance Matching Approximations. The non-causal

impedance match removes all the power in the controlled cross-sectional variables at

all frequencies. The stability of the system arises because power is never generated.

The causal compensators were selected for their ability to mimic the gain and phase

of the optimal non-causal impedance match. Stability, a global attribute, must be

determined for each. However, using the fact that the plant is positive real, it follows

from positive realness theory (see for example Reference [8]) that the closed loop

system will be stable if the compensator is positive real, without recourse to a global

model. All of the compensators were positive real.

Of course, no physical system is truly positive real. For the brass beam implemen-

tation, time delay causes the system phase to become unbounded. Since the control



computer was run at 6kHz, and the frequency range to be damped was from 1-10

Hz, time delay was ignored in the impedance matching approximations above, and

did not affect performance. However, the delay was enough to cause instability in

the gain-matching approximation. Design of impedance matching compensators in

the presence of time delay will be treated in Chapter 3. For the present, note that

the gain matching compensator has the highest slope of the compensators designed.

The rolloff requirements are therefore impossible to accommodate using the given

hardware.

Performance of the Impedance Matching Approximations. The objec-

tive is to introduce damping into the closed loop system. Modal damping, like sta-

bility, is a global characteristic. Rather than relying on a global model to predict

performance, one still wants to judge the local compensators using a local model.

Damping is accomplished by removing power from the system. By analytically de-

termining the amount of power removed by the impedance matching approximations,

the performance of the compensators can be compared.

The closed loop power matrix can be found from Equation 2.55. The closed loop

power is a function of the feedforward gain matrix F:

P = tr([P + Sa Poi + P,oSe, + S PS 1] ,, (2.98)

The controllers are implemented as a feedback of physical variables, G, from a single

input to a single output. Writing the junction feedback as GeeT, where e is the vector

which determines the actuators used, the closed loop scattering matrix can be written

in terms of the feedback:

Se = (I - lIGeeYuo) -1 (S + IGeeTY,) (2.99)

By assuming a disturbance spectrum 4,,i, Equation 2.98 can be solved at each

frequency for the closed loop junction power.

Figure 2.15 shows the analytical junction power flow for the three implemented

compensators (Equation 2.98), compared to the non-causal impedance match. The

disturbance input spectrum has been frequency-shaped to have unit power at all
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magnitude. The rate feedback implementation has the worst power absorption over

the bandwidth of interest. However, it absorbs power over a significantly broader

band than the other causal compensators.

The analysis shows that the power absorption of the impedance matching approx-

imations is related to the deviation, in magnitude and phase, from the non-causal

impedance match. Since global damping is introduced by dissipating energy at the

junction, the damping introduced in the global modes will be higher at those frequen-

cies where more power is dissipated. In the next section, the impedance matching

approximations will be implemented. The global damping will be assessed from mea-

surement data and correlated with the analytical results above.

Closed loop results. The three impedance matching approximations were im-

plemented on the brass beam. To measure the performance of each, a white noise

disturbance was put into the beam using the torque motor, and the rotation of the

pinned end was measured. The closed loop performance frequency responses are

shown in Figures 2.16 through 2.18, plotted against the open loop.

The rational approximation has the best damping in the 1 to 10 Hz bandwidth.

The damping is fairly evenly distributed throughout this frequency range, except

below 2 Hz where modal damping seems to be decreasing. The predicted power

absorption also decreases below 2 Hz (see Figure 2.15 above), confirming that the

compensator is less effective at the lower end of the range. The reason can be found

in the logarithmic error curve fit used in the rational approximation approach. The

function to be fit (the impedance match) has a positive slope on a log-log scale, which

tends to emphasize the higher frequencies. The effect could be alleviated by including

a frequency weight with the opposite slope.

The performance of the phase-matching compensator is shown in Figure 2.17. As

predicted, the controller introduces the greatest amount of damping at around 3 Hz.

Away from 3 Hz, the amount of damping decreases, as predicted by the junction

power absorption. The damping is quite narrowband, but all the power at that one

frequency is removed. Such a design could be useful if the disturbance energy is at a
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Figure 2.16: Measured brass beam frequency response from torque to rota-

tion, with the rational approximation implemented on the right

end of the beam.

single frequency.

It should be noted that the phase-matching compensator which was implemented

is not the only compensator which would achieve the same level of damping at that

frequency. Any compensator which similarly matches the magnitude and phase of

the noncausal compensator at that frequency would damp as well.

The rate feedback performance is shown in Figure 2.18. Damping is broadband,

relative to the impedance matching approximations implemented. However, the

damping introduced in the region of interest is never as good as any of the impedance

matching approximations. Note that, as predicted, the performance is best near 3

Hz, where the gain and phase most closely approach the impedance match.

Conclusions. The brass beam experiment demonstrated the impedance matching

approach applied to a physical system. The control was designed using a wave-

based local model. The optimal impedance match was found to be non-causal. Two
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Figure 2.17: Measured brass beam frequency response from torque to rota-

tion, with the phase-matching approximation implemented on
the right end of the beam.

causal compensators were derived by approximating the phase and magnitude of the

impedance match. Global stability and performance were inferred from the local

junction model. Based on the local power dissipation, the closed loop damping as

a function of frequency was predicted. The experimentally measured closed loop

damping was found to be higher where the predicted power absorption of each of

the compensators was greater. The results indicate that the impedance match is the

optimal compensator for damping the global modes.

The impedance matching approximations were derived using fairly unsophisti-

cated techniques. Particularly, the ability of the curve fitting technique to match

the noncausal compensator at specific frequencies could be examined further. If the

modal spacing of the plant were known to be significant (half a decade or a decade),

the weights could be sharp spikes at the expected modal frequencies. The causal

compensator would intersect the impedance match at those frequencies, in order to

damp the modes. At intermediate frequencies, where less power flows in the beam,

100 101
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Figure 2.18: Measured brass beam frequency response from torque to ro-

tation, with rate feedback implemented on the far end of the

beam.

the compensator can deviate from the impedance match. Provided the compensator

is positive real, the closed loop system will be stable. However, some performance

robustness will be sacrificed.

The same design techniques could be applied to a general structure. Using the

real-pole approximation to the direct field, given in Section 2.1.1, and the resulting

non-causal impedance match, Equation 2.69, an approximation could be designed

by fitting a causal compensator using frequency weights. Note that two levels of

approximation, of the local model and of the impedance match for that model, are

introduced. Thus two stages where significant error could arise form part of the design

procedure. Alternatively, MacMartin looked at 7Hi[16] and mixed - 2- 'Ncdesign [12],

for the case when uncertainty in modal frequencies drives the control design.

Loss of positive realness, due to time delay, was responsible for the instability of

the gain-matching approximation. Time delays will exist in any system, and could

be a driving factor in digitally controlled systems. The time delay in the brass beam

100 101



experiments did not introduce significant phase loss in the bandwidth of interest. The

accuracy of the wave model was not compromised in that range, so the performance

of the compensators on the testbed was predicted well by the model. However, it was

significant enough that the controller could not be rolled off successfully. In Chapter

3, the effect of time delays on rolloff, as well as time delay within the bandwidth of

interest, will be addressed.

The brass beam testbed possessed a number of attributes which made it particu-

larly suitable for an impedance matching control design. The control was located at

the end of the beam, and only external force was available for control. No moment

could be applied, and no power could exist in the moment/rotation pair. All the

power at the beam tip is in the form of force interacting with displacement, hence it

can all be seen and absorbed by the control. The situation in which power flows past

the control in an uncontrolled set of variables is avoided.

An additional consequence of the beam topology is that damping is the best

strategy available. The disturbance input and performance output are collocated and

separated from the control. The control can only change the amount of disturbance

energy which reaches the performance by preventing energy from reflecting back to

the performance. If the control hardware were located on a transmission path between

the disturbance and performance, the control could prevent transmission from one to

the other.

The concept of reflecting energy away from certain locations is termed energy

shunting. The following section investigates the uses of the shunting concept, and

demonstrates that some of the difficulties of the impedance match can be avoided

by using a shunting approach. The stability and performance robustness of the

impedance match can be shown to hold.

2.2 Energy Shunting

The impedance matching controller is a powerful way to guarantee robust performance

and stability. However, as seen in the last section, there are fundamental limitations to



performance for certain control locations and actuators. Power flows in combinations

of the cross-sectional components of displacement and force. When the control can

affect only a subset of the combinations, a portion of the power can cross the junction

unaffected.

A different power cost can be used to minimize the power transmission across

the junction. Such a strategy is termed energy shunting. Shunting can be achieved

through a constrained minimization of a subset of the junction power. Shunting is

applicable at a transmission junction, that is, when the control is located between the

disturbance and the performance. The closed form solution is not known in general.

Rather, the desired energy transmission is minimized, and the resulting closed loop

junction power flow is analyzed. As with the impedance match, causality of the

compensator is not guaranteed, and a causal approximation may be required.

2.2.1 Shunting model

Energy shunting minimizes the transmission of energy through the cross-section. Con-

sider Figure 2.19, which shows a general control junction in the middle of a member.

A disturbance force acts on the structure, to the left of the junction, producing in-

coming waves w,,. The homogeneous behavior of the junction allows the waves to

traverse the junction to arrive at the performance z. That is, the open loop behavior

is purely transmissive:

wo 0 I wi (2.100)
Wo, I 0 wi,

The waves which arrive at z create motion. E{zTz} could represent the RMS motion

of a pointing payload on a spacecraft. The control objective is to minimize the amount

of energy which reaches z.

An applicable control strategy is the impedance match. However, as shown by

Equation 2.69, the required control could be non-causal, and therefore a suboptimal

approximation can be necessary. Even if the optimal impedance match is causal, it

will not remove all the power from the member unless all cross-sectional variables are

controlled, as shown in Section 2.1.2. An alternative strategy is to cause the closed
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Figure 2.19: General control junction in the transmission path between a
disturbance d and output z

loop junction to be reflective:

Se = 0 (2.101)
0 1

The energy in wo,, due to w-,, and the energy in wo, due to wt,, are minimized. Thus

any energy which approaches from the left is reflected away, and the performance is

isolated from the disturbance.

Shunting is a competing strategy with the impedance match. The shunting com-

pensator removes no power. Power is simply re-directed. Hence, shunting a portion

of the incoming energy necessarily means that it is not damped. Zero power absorp-

tion can be shown to be a constraint on the shunting control derivation, although no

closed form solution for the constrained problem has been found.

2.2.2 Shunting control derivation

The feedforward matrix for accomplishing the shunting objective can be found by

specifying the closed loop scattering matrix (SId). Then, the feedforward control is

given by:

F = '-1 (Sacd - S) (2.102)

where all actuators are available. The desired scattering matrix can be realized exactly

when the rank of the left-hand side of Equation 2.102 is equal to the rank of F, that

is, to the number of available actuators. However, when the number of actuators is



not sufficient, the desired closed loop scattering matrix Scld is no longer attainable.

The problem is then to minimize the combination of waves which carry the greatest

proportion of power along the desired directions. This motivates the formulation of

a power minimization problem.

Partitioning the waves into those in the left member, denoted ()1, and those in

the right member, denoted ()2, from Equation 2.55, the junction power matrix is

pcI =

r i 1f P i ,

Pii21

+ w H o Pa;i

0 2 Poi

Using the closed loop scatter

tution into Equation 2.103:

2

S

Pill2 1F j + i W P201  P1012 1[ 1
Pii 22 Jwi Pio 0021 Po 02 2 o 02

ing matrix, wo can be found in terms of wi, for substi-

S11 Si 2 1

S21 S22 2

11 + 'F1F S12 + T'lF2

21 + ' 2F1 S22 + X'2F2

F2

Wi

Wi 1

i2

(2.104)

The junction power is then

Pci=[W W (H 1pii P

1Pi21 P1222

±[Piol Pioz12 S11 + I1F S12 + I 1 F2

Pio02 1 P 022,, j S21 + XJ2F1 S22 + 'I 2F2

S1± F 1S 1+ F2
1  Ipo P il2 1 (2.105)SH + FHSH F HH pOi p.Z22

1 1 2122
SH HTH S11 + F2H pH

SH HH S + F2H H P00 11 P0 0 12 [S11 + I 1F1 S12 + J 1F2  IW11

SH FHIH S H FI H Poo 2, Po2 J[ S21 + 12 F 1 S22 + 2 F2  iW2

The control objective is to minimize w,02 due to wit, and wo, due to w,, . The

steady-state power in the pair [w , wo2 ] is a function of the partitions of Equa-



tion 2.105 which relate those two wave modes. Denoting the partition of Pt1 which

relates wi, to wo0 2 as Pd1I,

Pe i = W. Pii + W PioWoW +W H o21 H PooW, + oW

=w [Pi, 1 + Pio12 (S21 + ' 2F1) + (H S + F H1) po012 +

(s21 + ) Poo,0 (S 21 + F1  (2.106)

Similarly for [w,2 , wo1 ]:

Pc1, = W [ri- 2 2 + Pio 2 1 (S 1 2 + TI 1 F 2 )+ (sH i 
FH ) P0oil12

(S F2 1 ) Poo,, (S1 2 + ' 1F 2)] wi, (2.107)

The minimizing solution can be found using the same techniques as the impedance

match. By comparison with Equation 2.55, the power minimizing feedforward is

F1 = - ( P0oo22 2 + R) -  2t (POi21 + Poo22 S21)

F 2 =-( Poo1 1 ' R) - 1 H (Poi1 2 + P00oo11 S 12 )

F1 is the feedforward of waves w, to control force Q, and F 2 is feedforward of w 2,.

Again the matrix R can be set to zero if the appropriate inverse exists. The complete

feedforward matrix is

F=[F 1  F 2 ] (2.108)

Note that the derivation does not constrain the closed loop power to equal the

open loop power, as desired. The open loop junction power matrix P, and closed

loop power matrix PI, are

P = w H [P + PoS + Hp + SHpooS] wi (2.109)

Pci = wH [Pii + Pio (S + F) FH+ H) Pi+

(SH + F H ) Poo (S + TF)] w, (2.110)

In order that P., = P, the terms in F must sum to zero:

(P' + SHP0 0') F + FH (HP, + 'HP 0 0S) + FH Hp 0H PF = 0 (2.111)
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Figure 2.20: Rod example: energy shunting at junction 2 to minimize trans-

mission from disturbance to performance.

or

AF + FHAH + FHBF = 0 (2.112)

The shunting compensator minimizes Equations 2.106 and 2.107 subject to Equa-

tion 2.112. The closed form solution has not been found. Rather, the appropriate

controller can be found from Equation 2.108, and the dissipation characteristics ana-

lyzed by solving for the eigenvalues of the closed loop power matrix. If the open loop

junction is conservative, the closed loop power matrix is identically Equation 2.112.

Example 4: Rod shunting The rod example offers a useful means to evaluate

the performance of the shunting strategy, as compared to the impedance match of

Section 2.1.2. The shunting compensator will be derived for the midsection junction

when only external force is available as an actuator (Figure 2.20). The objective will

be to minimize the transmission of power across the junction. The junction relations

are

0 1

2iEAk

T2 -1
2 L2iEAk J

PO = 2EAkw 1

Po ]
00



Using the shunting result derived above,

S1 -1 -1
F,1  - ( 2 IEA 2 EAkw2iAk (0 + 1 * 2EAkw)

2iEAk 2iEAk
= 2iEAk

Similarly,

F2 = 2iEAk

The feedforward compensator which minimizes transmission is thus

F=2iEAk[1 1

Compare the rod shunting compensator with the impedance match of Equation 2.80.

The feedforward is almost identical, except for a factor of two.

The closed loop scattering matrix is found to be

0 1 -1 0Sri = + 2iEAk 12iEAk 2iEAk (2.116)
0 -1 ( 6 0 -1

The relevant submatrices, S 11 2 and S 12, have been zeroed. For the rod example,

the number of actuators is not sufficient to control all the elements of Sd, but can

control all the entries which correspond to transmission across the junction. Thus, the

disturbance to performance transmissibility is zero and the performance is perfectly

isolated. The same actuator, acting alone, was not able to zero transmission when

the impedance match was attempted.

The power absorption characteristics of the junction are given by the eigenvalues

of the closed loop power matrix (Equation 2.110):

-2EAkw 0 0 -1 2EAkw 0 0 -1
PCt-= +0 -2EAkw -1 0 0 2EAkw -1 0

= ] (2.117)
0 0

There are two eigenvalues, both zero. Thus the closed loop junction is conservative.

The open loop junction is also conservative, so the energy flowing through the junction

(2.113)

(2.114)

(2.115)
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Figure 2.21: Equivalent junction boundary condition produced by the shunt-

ing feedforward.

has not changed. Only the direction of propagation is different. While the junction

scattering matrix prevents energy from traveling across the junction, it does not

remove any energy. Energy shunting therefore improves the performance based on

the relative location of the disturbance and performance. Note that the conservative

property is a characteristic of the particular problem. In general, the closed loop

junction will not be conservative.

Compare the entries of Si1 with the fixed end scattering matrix of the rod, given

by Equation 2.27. The shunting junction is mimicking a fixed boundary condition in

the center of the rod (See Figure 2.21).

The physical variable feedback matrix can be found from Equation 2.60. The

feedforward compensator will be derived using a factor e times the feedforward matrix

F. When e -- 1, the compensator approaches the shunting compensator. The reason

0 Aabs
will become apparent. The actuator is Fe,t and the sensor is U, abs

1 Fret

With (TY) - 1 defined as in Section 2.1.2, the feedback is

G = ( - F (TY)' 1 e) _F (TY)71 - -1
4kEA 4 4iEAk

] 

(2.118)
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Figure 2.22: Another shunting objective can be posed as minimizing the
RMS of z, when disturbances act on both sides of the control.

which is high gain, collocated rate feedback from displacement to external force. In

fact the optimal shunting gain is infinite as E -- 1. Physically, the control imposes

zero displacement at the control location. The conservative nature of the junction

can be readily explained using this information.

Power flows in the rod through the mixture of internal stress and strain. At

the junction, the displacement is zeroed. The internal stress in the rod is exactly

matched by the external force, so no force is transmitted across the junction. Hence

the incoming power cannot create stress and strain in the opposite side of the junction.

In broad terms, energy exists in the product of a generalized force with a generalized

displacement. If either force or displacement goes to zero, no energy can propagate.

This is the fundamental property of the energy shunting compensator.

Other shunting objectives. The compensator in the previous example was de-

rived to minimize transmission across the junction. Other shunting objectives can be

posed. Consider the rod in Figure 2.22, which is identical to the previous example,

except that an additional disturbance d2 acts at the right side of the junction. In this

case, the junction derived above would reflect all of the energy input by d2 towards

the performance z. Another local performance objective can be defined: minimize the

power in [wil, w 0o2, as before, and in [wi2, wo,2]. That is, minimize the power carried

into the right half of the rod. The feedforward which accomplishes the first objective

is F1 as given in Equation 2.113. The submatrix of Pet which captures the second

objective is

PC122 [ [Pi-22 + Pi0,,22 (S22 + 2F2) + (SH + F2H2) Poi22+



(SH + F2H ) oo00 22 (S 22 + 92F 2)] Wi 2  (2.119)

The feedforward matrix F2 which minimizes Equation 2.119 is

F2 = - (TP, 2) 1 (P, 2 + P00 S22S22)
1 -1 + O

- 2EAkw 1(0-0 2EAkw)(112iEAk 2EAw2iEAk (+0 EA)

= 0 (2.120)

The total feedforward matrix is

F=[ 2iEAk 0 (2.121)

The feedback matrix is

G =[ iEAk -1 (2.122)

or

Fex, = A pE(iw)Aabs Frel (2.123)

The feedback is finite gain, but both sensors are required. The closed loop scattering

matrix is

0 1 - i111
Sc, = S + F + 2i2iE 2iEAk [ (2.124)

2iEAk

Note that the control has zeroed the outgoing wave into the right member (Fig-

ure 2.23). The closed loop junction is a one-way energy path, termed a directional

shunt. In addition to isolating a noisy payload from a disturbance source, as in the

present example, the directional shunt might be used to bottle up energy in an unim-

portant portion of the structure. For example, a number of directional shunts might

surround a passive or active damping element.

The closed loop power matrix is

2EAkw 0 -1 0 22EAkw 0 -1 1
Pa= +0 2EAkw 1 0 0 22EAkw 0 0

0 2EAkw (2.125)

2EAkw 0
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Figure 2.23: The directional shunt: energy is allowed to flow in only one
direction.

Since the power matrix is non-zero, the junction is no longer conservative. The eigen-

values of PI1 are ±2EAkw, indicating that power is produced for certain combinations

of incoming power.

The closed loop power P is

S= tr Pe (2.126)

where ,D , ; ,1,2,; 2 are the variances of the incoming disturbance waves, and 4, W,

D;2 h are the covariances. The net junction power flow will be zero if the left and

right waves are uncorrelated. For a finite system, incoming waves are in part due to

outgoing waves which reflect from distant points on the structure. For a closed sys-

tem, the left and right waves can be correlated. Thus the power P can be non-zero. P

cannot be determined to be negative or positive without a global model. The global

closed loop system is not necessarily unstable. Since stability is a function of global

parameters, stability robustness becomes a factor. This illustrates the importance

of knowledge of the junction power, and the utility of constraining the closed loop

junction to be dissipative.

Note that the causality of the rod shunting compensators is a fortunate outcome.

Causality for the rod is not a surprise in light of the fact that the impedance match

was causal. The shunting solution is not constrained to be causal. As with the

impedance match, a causal approximation can be necessary. However, the shunting

feedforward matrix has been found to transform to high gain collocated feedback,



for many problems. At high gain, the phase of the approximation tends to be less

important. Thus high gain feedback through a causal compensator can effectively

mimic the shunting solution.

The ability of the compensator to zero transmission is particular to the rod. The

rod only supports linear displacement, so power will flow as a combination of linear

displacement and force. Any possible actuator will control either force or displace-

ment, so the only available energy path is controlled. In general, when the number

of actuators is not sufficient to zero all the relevant entries in the closed loop scatter-

ing matrix, the shunting compensator will control those elements which, alone or in

combination, carry the greatest portion of energy across the junction. Such partial

shunting will be examined in the next section.



Figure 2.24: The 20-bay single leg truss testbed, and supporting equipment.

2.2.3 Truss Energy Shunting Experiments

An experiment is performed to investigate the performance of energy shunting com-

pensators, compared to impedance matching approximations. The experiment testbed

is a 20-bay free-free truss (Figure 2.24). The truss is constructed of aluminum struts

with aluminum nodes. Each bay is 0.25m long, for a total length of 5m. The cross-

section is triangular. The truss is suspended on 0.5m springs attached at the 1/4

and 3/4 length locations. Suspension modes are a decade below the 22.5 Hz first

bending mode. As a result the dynamic boundary conditions are free-free. A vertical

disturbance force is input at the left end by a Bruel and Kjaer shaker. The input

force is measured with a PCB 208B load cell, and together with a collocated Kistler

accelerometer provides a measure of the input impedance.

Control is implemented using a Physik Instruments P-843 piezoelectric active strut

located at bay 6. The active strut is significantly stiffer than the truss, hence it acts

to enforce displacement. A PCB load cell in series measures collocated relative force.

By the argument made in Section 2.1.2, collocated displacement and force can be

made a power pair by appropriate choice of the compensator. The compensator is

implemented on a VME-based 68030 digital processor.

I.
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Figure 2.25: The dereverberated model of the truss testbed.

Modeling. Two models are needed: one local model for local control design, and

one global model for evaluation of the global performance. The local model is a log

averaged model, as derived in Section 2.1.1. The global model is a 2-dimensional

finite element model composed of rod elements. The 2D model captures most of the

relevant dynamics of the truss, except for torsional modes. The applicability of a

Timoshenko model is also discussed.

The local model must capture the response of the truss through the control hard-

ware, from piezo voltage to load cell voltage. A log averaged model is created. The

log averaged model is a 7 pole curve fit to the frequency response of the control hard-

ware. The log averaged model is shown in Figure 2.25, plotted against the measured

reverberant response. The truss exhibits good pole/zero spacing to about 200 Hz.



After 200 Hz, the local modes of the individual struts begin to dominate.

A global wave model was attempted, using a Timoshenko beam model. The use

of Timoshenko beam models to capture the behavior of beam-like trusses has been

suggested elsewhere[17]. The open bay structure of a truss can allow large shear

deformations, which can be represented by a Timoshenko model. In the wave model

derivation, Miller presented a wave model treatment of the Timoshenko beam element

[11]. With such a wave model, the exact direct field local model could be found, similar

to the previous BE experiment. Using the exact direct field, a suitable impedance

matching approximation could be found.

A Timoshenko wave model was created by choosing the beam parameters so that

the beam modes matched the modes of the truss. Subsequent control designs based

on the Timoshenko model showed poor performance. The poor results are explained

by the fact that the physics of the structural motion determine the direct field. While

the truss may show approximately the same global mode frequencies and shapes as

a continuous beam, the pattern of stresses and strains underlying the response is

considerably different.

Control design. The global performance of the two local control objectives, the

impedance matching (damping) technique, and the energy shunting objective, are

to be compared. The impedance matching compensator can be found from Equa-

tion 2.69:
1

Hnc (2.127)

where Gd(s) is the dereverberated model derived above. The optimal compensator is

non-causal, so a causal approximation must be found. The techniques in the last sec-

tion are applicable. However, the error in the dereverberated model Gd is potentially

large. Any approximation which matches Equation 2.127 at specific frequencies is

performance limited by that error. It is therefore unwise to attempt to target specific

frequencies. The impedance match is implemented as a gain matching approximation:

1
Hc = (2.128)

Gd



which is the conjugate of the noncausal impedance match. The magnitude will be

approximately correct over a broad frequency band. However, the phase will be in

error.

The shunting compensator can best be designed using a wave model with the

power minimization as presented above. However, by generalizing the wave result

that the shunting compensator is typically high gain feedback through dual variables,

the shunting compensator is chosen to be high gain negative feedback of force to

displacement. Energy shunting is designed to alter the scattering behavior at the

junction without changing the power dissipation characteristics.

If the actuator is external force, in open loop, the force is zero. There is motion,

but power, the product of force and rate, is zero. For high gain feedback from dis-

placement to force, the control will zero displacement. Again power is zero, however,

where in open loop the force is zero, in closed loop displacement is zero. The energy

scattering behavior of the control location has necessarily been changed.

Truss experiment: Control Evaluation The Finite Element model offers a use-

ful comparison of the shunting and impedance matching techniques. The shunt-

ing compensator will be bandlimited on the truss testbed due to time delays, sen-

sor/actuator dynamics, and so on. The Finite Element model can be used to compare

the ideal performance of the compensators.

The closed loop performance of the impedance match is shown in Figure 2.26.

There is only moderate damping in the first three modes. This could be due to a

lack of fidelity in the Finite Element model, or to errors in the impedance matching

approximation. Note that performance degrades in the fourth and fifth modes. The

performance transfer function is taken from the end of the truss, so all modes are

observable in the performance. However, the control is situated in the interior of the

truss, so there will be near pole-zero cancellation of some modes. The control will

have less authority over these modes.

The performance of the high gain shunting compensator is shown in Figure 2.27.

Note that the response at the first three open loop modal frequencies is almost flat.
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Figure 2.27: The high gain shunting compensator on the truss Finite Element
model.

The first modes do not appear in the closed loop transfer function until nearly 200

Hz. The amplitudes of most modes have been decreased. An exception is the mode

at 280 Hz which has become more prominent.

A fundamental difference exists in the impedance matching compensator and the

energy shunt. The impedance match damps the closed loop modes. The shunt adds

no damping, because no power is removed. In the closed loop system with the shunt-

ing compensator applied, the first three modes have not been damped. They have in
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fact been removed. In a wave sense, modes result from constructive interference of

waves which travel along the truss. Those waves have been broken up by the shunting

junction. The shunting compensator is in effect an active impedance mismatch. The

waves have been prevented from crossing the controlled cross-section. Waves origi-

nating at the disturbance cannot reach the performance. In particular, the control

commands that no force be transmitted by the strut.

The Finite Element model offers a useful way to visualize the closed loop response

of the shunting compensator. The first six mode shapes of the open and closed loop

structures are shown in Figures 2.28 and 2.29. The command zeros the force carried

through the strut, thereby actively removing the controlled strut from the structure.

The bending moment in the strut is zeroed. Bending moment is a major component

of the first few modes.

Closed loop results. The impedance matching and shunting compensators are

implemented on a digital control computer running at 6 kHz. Since the truss supports

its own weight, through the two suspension points, zeroing the force carried by the

strut at DC would allow the truss to sag.Therefore, the compensators were rolled off

at DC.

Since the shunting compensator cannot be truly infinite gain, the gain was chosen

to minimize the RMS of the performance output from the first to the third mode

(22 Hz to 110Hz). Neither of the compensators were stable at the design gain. The

shunting compensator was implemented at 0.8 of the design gain, and the impedance

match at 0.9 of the design gain.

Figure 2.30 shows the frequency response of the compensators (at the implemented

gains). The shunting compensator has a higher gain through the bandwidth of in-

terest. The phase of the impedance match is lower than the shunting compensator,

causing the impedance match to be unstable at a lower gain than the shunting com-

pensator.

The performance transfer functions for the impedance matching and shunting

compensators are shown in Figure 2.31, plotted against the open loop. The shunting
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Figure 2.28: Mode shapes of the FE model: Open loop mode shapes of the
first six modes show beam-like deformations.



Figure 2.29: Mode shapes of the FE model: Shunting compensator is actively
removing the control strut at bay 6.
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Figure 2.30: Measured transfer functions of the shunting (solid) and the
impedance matching (dashed) compensators.

compensator lowers the magnitudes of all the modes in the 20-110 Hz bandwidth.

The impedance match does not achieve the same reduction in response over the same

bandwidth. At 82 Hz there is a closed loop mode which has a significant resonance.

This is likely the mode which limited the gain of the impedance match.

The Finite Element model results showed that the performance of the shunting

compensator was due to the fact that the modal resonances were removed. The closed

loop modes of the truss were not damped, but changed significantly. The experimental

results do not show the same degree of improvement because the experimental gain

is limited. However, it is possible to analytically close the high gain feedback loop on

data. The resulting analytical frequency response can be compared to the measured
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Figure 2.32: The analytical high gain open loop (dashed) plotted against the
measured open bay truss (solid).

response of the truss with no strut in bay 6. If the shunting compensator is indeed

actively removing the strut, the analytical high gain transfer function should overlay

the measured open-bay transfer function. As shown in Figure 2.32, the analytical and

measured transfer functions almost exactly overlay. It is therefore possible to extend

the conclusion made for the Finite Element truss, that the shunting compensator

actively removes the strut from the structure.
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Conclusions. The energy shunting compensator is designed to address a short-

coming of the impedance matching formulation. Specifically, the impedance match

cannot minimize the power transmission across a control junction. By controlling

transmission, using the shunting formulation, two advantages are realized. First, the

impedance match can only zero transmission when all cross-sectional variables can be

actuated. The shunting compensator requires fewer actuators to zero transmission.

Therefore, if the global objective can be stated as minimizing a transmissibility, the

shunting strategy is inherently suited. Secondly, the impedance match will never zero

the response at the control location, since zero motion implies that no power is being

removed. A number of situations have been presented in which the desired global cost

will be lower for zero motion than for maximum energy absorption. These situations

arise when the disturbance input is separated from the performance output by the

control junction.

The impedance matching and energy shunting examples presented above have

all been one-dimensional, open topologies. In more complicated controlled structure

geometries, the compensator which minimizes the global cost can perform a mix of

energy shunting and energy absorption. The combination of the two strategies will

be investigated in the following section.

2.3 Combinations of Impedance Matching and Shunt-

ing

The local control techniques derived above are intended to reduce the power carried in

the controlled cross-sectional variables. The global cost is not the minimized quantity.

For example, the impedance match cannot zero the velocity at a sensitive location.

This would result in zero power dissipation. If the control is collocated with the

disturbance or the performance, zeroing the velocity is optimal in an RMS sense. The

shunting compensator was formulated to address this need. However, the shunting

compensator is still designed to minimize a local objective, specifically the power

crossing the junction, not the global objective.
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Figure 2.33: Local control options: For a controlled structure with a sin-
gle disturbance path, shunting can be used when the sensitive
portions of the structure are concentrated to one side of the
control Q (right). On the left, energy shunting would reflect
energy back to the performance, thus the impedance match will
be used.

The choice between the impedance match and the energy shunt is made, broadly

speaking, based on the locations of the disturbance and performance relative to the

control. A controlled structure with a single energy path is illustrated in Figure 2.33.

A controlled force Q, acting in the middle of the structure, is used to minimize the

energy from disturbances dl, d2 which reach the performance represented by z1 , z 2. On

the left, situations calling for the impedance match are represented. A disturbance dl

acts on the system, and the disturbability of performance outputs zl, or zl and z 2, is

to be minimized. When there is a component of the performance near the disturbance,

shunting disturbance energy back towards d, will increase the energy reaching that

component. On the right of the figure are situations in which shunting would be

beneficial. The performance output(s) are located the far side of the coontrol. Now

the shunting compensator can drain energy away from the output(s).

The above analysis applies when the control has authority over all the power

introduced by dl and d2. The situation becomes more complicated when alternate

energy flow paths exist around the control. Such alternate paths can be physical, such

as exist in a closed structure. For example, an active element in a truss is surrounded

by alternate paths, through the surrounding struts. The brass beam experiment
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Figure 2.34: The general local control problem: a subset of the disturbance
paths are controlled. The remaining paths are characterized as
a structural transmissibility T(s).

(Section 2.1.3) showed that alternate paths also consist of uncontrolled cross-sectional

variables. For the BE beam, power can flow as a combination of shear force and shear

rate, and as bending moment and curvature rate. If only force actuation is available,

some power will cross the junction uncontrolled in the moment/rotation pair. When

uncontrolled paths exist, the RMS optimal control, which minimizes the disturbability

of the performance, may be a combination of shunting with impedance matching. The

combination is a function of the number of controlled paths versus the total number

of paths.

The global objective of minimizing disturbability, when controlling a subset of

energy paths, is represented in Figure 2.34. A disturbance d enters the structure where

it splits. A portion travels through the compensator K(s), and the remainder travels

through the uncontrolled path which is represented by T(s). T(s) is a generalized

structural transmissibility which can range from purely transmissive (T = 1) through

absorptive (T = 0) to purely reflective (T = -1). The objective is to design K(s)

to minimize E{zTz}. If the uncontrolled path absorbs or reflects all energy (T =

0, -1), the optimal compensator is the energy shunt. The output z will then be

completely isolated from d. If the structure is transmissive (T = 1), K(s) must be

purely absorptive. Any energy which is shunted will travel unattenuated through the

uncontrolled path. Hence the impedance match is the RMS optimal compensator,
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Figure 2.35: The BE beam simulation: the control K(s) is optimized for
each location from 0 to L.

provided a global model does not exist. For any T which is partially transmissive

(0 < T < 1), the RMS optimal compensator will be a combination of the energy

shunt and the impedance match.

2.3.1 RMS optimal compensator for a BE beam

The ability of local controllers to minimize a global 7i2 performance metric is in-

vestigated using a simulation of a free-free BE beam. The beam is represented in

Figure 2.35. Mass per unit area pA, stiffness EI, and length L are used to character-

ize the beam. A disturbance d enters at the left end, as transverse force. Transverse

displacement at the 0.7L location along the beam is the measure of performance.

Control is implemented through transverse force to displacement. As noted above, a

portion of the power flows as moment/rotation, and is uncontrollable. The propor-

tion varies with the location along the beam. A small amount of open loop damping,

approximately 1% modal damping, is incorporated in the model.

To investigate how placement affects the RMS optimal control, the control hard-

ware can be swept along the beam. When the control is between 0 and 0.7L, the

situation is similar to that shown in the right side of Figure 2.33. The disturbance

and performance are separated by the control. Thus the compensator can shunt en-

ergy away from z. When the control is to the right of 0.7L, the situation is captured



by that shown in the top left of Figure 2.33.

The true RMS-optimal compensator for these cases is the Linear Quadratic Gaus-

sian (LQG) compensator [3], when a complete and accurate global model is available.

However, the compensator that will be used has the form of the non-causal impedance

match. From Equation 2.96, the impedance match for transverse force to displace-

ment for a BE beam is

nc- (pA)3/4(EI)/4(-_s)3/ 2  (2.129)

H,, is the same at any location in the beam. The analysis is designed to investigate

the relative merits of shunting and damping, hence the (non)implementability of H,,

is not a concern. The design compensator will be Hn, with a multiplicative gain a:

H = aH,, (2.130)

That is, for a = 1, H = Hn. The gain will be varied to minimize E{zTz} at

each control location as the control is swept from 0 to L. For a > 1, less power is

being absorbed, which can be interpreted as partial shunting. The closed loop power

absorption can be found from Equation 2.66. Since the RMS optimal compensator H

is a function of the optimal impedance matching compensator H,, which is in turn

a function of the direct field response Gd, the closed loop power absorption reduces

to a scalar function of a:
2a

S= 1 a (2.131)
1 + a2

Note that as a -- oo, the compensator is approaching a high gain shunting compen-

sator. Since only one set of cross-sectional variables is actuated, the shunt will not

be complete.

The gain a was optimized at 334 locations. The RMS-optimal gain a is shown

in Figure 2.36, plotted as a function of location. As stated, a = 1 is the impedance

match. Note that only when the control is at the far right of the beam does the RMS

gain go to the impedance gain. As expected when controlling at x = L, shunting

only reflects power towards z, so absorbing power is the only way to prevent it from

appearing at z. The gain goes to oo at two locations: when the control is collocated
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Figure 2.36: The gain a which minimizes E{zTz} as a function of location.

with d and with z. In the former case, high gain zeros the disturbance input power by

clamping the beam. In the latter case, the control clamps the performance location.

When the control is at an intermediate location, between 0 and 0.7L, the gain is

approximately 5 times the impedance gain. Thus some fraction of the power seen by

the control is shunted, rather than absorbed, and the compensator is using a mixed

shunting/matching strategy.

The RMS cost, given by E{zTz} as a function of location, is plotted for four

cases in Figure 2.37. The RMS-optimal compensator zeros the RMS output at two

locations, which correspond to collocation of the control with the disturbance and

with the performance. For control beyond 0.7L, the RMS optimal compensator has

about the same RMS as the impedance match. In other words, the impedance match
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Figure 2.37: The RMS cost E{zTz} as a function of control location, for the
RMS optimal compensator, the impedance match, the high gain
shunt, and the open loop.

is the RMS optimal compensator when the control is not between the disturbance and

the performance. When the control is located between d and z, the impedance match

does not achieve the best RMS. Since the gain in this region is higher, some energy

is necessarily being shunted away from z. Since the compensator cannot control all

cross-sectional variables, some combinations of wave modes are not reflected. Thus

not all power can be shunted. If all variables were controlled, the compensator could

zero z from anywhere in the 0 to 0.7L range.

The RMS of the impedance match is interesting. One of the desirable attributes

of the impedance match is its insensitivity to global variations. The location of

the control along the beam changes the observability of the global modes to the
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Figure 2.38: Power absorption of the RMS optimal compensator, as a func-

tion of location.

compensator. However, the RMS of the output changes minimally as the location

of the impedance match varies. This is both a disadvantage and an advantage. The

RMS performance is often not as good as it can be, however, the sensitivity to location

is very low. The performance achieved by minimizing a global metric will be more

sensitive to global plant uncertainties, possibly reducing the achieved performance.

Thus the increased performance of the RMS optimal design has been achieved with a

sacrifice in performance robustness. Also note that in order to achieve reduced motion

at 0.7L, the RMS optimal controller has most likely increased motion elsewhere. If

the objective is to minimize a distributed RMS motion, for example the motion of

the surface of a mirror, the RMS optimal controller might be closer to the impedance

match.



The normalized power absorption of the RMS-optimal solution is plotted in Fig-

ure 2.38. The quantity plotted is the power absorbed by the RMS optimal controller,

al,, divided by the power absorbed by the impedance match. The power which

flows in the moment/rotation combination is not accounted for. Three regions are

evident, corresponding to three control strategies: total power absorption, zero power

absorption, and partial absorption. At 0 and 0.7L, no power is absorbed, since the

control can zero input power or the output z. For the control location to the right

of 0.7L, the RMS optimal control absorbs about the same amount of power as the

impedance match, which attempts to remove all power. When the control is located

between the disturbance and performance, a combination of shunting and impedance

matching is used. Power absorption is around 40 percent. Sixty percent of the energy

is being shunted away from the output.

The performance of the RMS optimized compensator has been interpreted in terms

of power absorption and shunting. Obviously, the control also has a modal interpre-

tation. The high gain shunt is effectively pinning the control location. Rotation can

occur, but no displacement. When the disturbance input is pinned, no power can

enter the beam. The disturbance does not create any moment, so the beam does not

rotate around the control. When the performance output is pinned, the beam will

rotate around the output location, but the output will not be sensitive to this motion.

At other locations, the performance of the beam is simply dependent on the modal

observability and controllability of the beam in that configuration. The combined

shunt and impedance match is essentially trying to hold the beam as still as possible.

The rapid transition from zero power absorption to nearly unity between 0.7L and

0.8L is a region in which the increasing flexibility of the beam is decreasing the ability

to hold z fixed.

The impedance matching and energy shunting controllers were derived to use

minimal information about the plant. The objective was to desensitize the resulting

local controller to changes in the plant at distant locations, robustifying performance.

However, the typical control objective is a global one. A compensator explicitly

designed to meet that objective is going to have nominal performance at least as



good as the local controller. In most cases the performance will be better. The

tradeoff is a loss in performance robustness. The extent of the tradeoff must be

investigated. To do so, it is desirable to state the objectives of the local control in a

global framework. Additional advantages for a global design are the tools which are

available. For example, many linear algebra tools exist to solve state space problem

formulations. Also, in the course of implementation of the local controllers, non-

idealities arise which cannot be treated in a local framework. These non-idealities are

treated in Chapter 3.

2.3.2 Global Characteristics of the Impedance Match and

Energy Shunt

H2 optimization has been examined in a number of frameworks. The unconstrained

i 2 optimal controller for the beam example presented above is known to be the Linear

Quadratic Gaussian (LQG) controller. It is desirable to constrain the LQG problem

in such a manner that the LQG solution is the impedance match, or the energy

shunt, or some recognizable mixture. The formulation of the impedance matching

and energy shunting problems in the state space domain is not presently known. The

difficulty is in removing the global character of the response, that is, the knowledge

that outgoing energy eventually returns. In lieu of an explicit state space formulation,

the global characteristics of the local controllers will be examined. A number of state

space 7F2 formulations which capture the same behavior will be presented.

The global H2z control design problem can be stated as minimizing the disturbabil-

ity of some performance output z from a disturbance w, using a compensator which

feeds back a measurement y to an input u. The global system can be represented as[ G..(s) G..(s) (2.132)
S G,, (s) G,, (s)

where the transfer functions G,,(s), G,,(s), G,,(s), Gy,(s) relate the output signals

z, y to the inputs w, u. They are global quantities which capture the reverberant

nature of the structure.



The local control techniques offer high stability and performance robustness be-

cause they do not rely on information from G,,(s), G,,(s), G,,(s), and only extract

the local portion of G,,(s). Stability can be guaranteed when G, is positive real

[8]. Guarantees of performance robustness are more difficult to quantify, and will be

approached as two separate issues. First, the control transfer function G,, may be

inaccurate. Second, the disturbance w and its effect on the performance, given by

GzW, may be known inaccurately, or not at all.

The impedance match is designed using the dereverberated portion of GY,. The

dereverberated model Gd(s) is either a smoothed version of G,,, from a log average, or

a transcendental function of s from a wave model. In either case it is a "smooth" func-

tion of s, that is, the magnitude and phase change relatively slowly with frequency.

For a lightly damped plant pole, the magnitude and phase can change dramatically

( 1 decade magnitude shifts and 1800 phase shifts) in a few Hertz. If the plant pole

is slightly shifted in frequency, the magnitude and phase of the compensator are

nearly the same at the new modal frequency, hence the amount of damping is almost

unchanged.

The optimal impedance match is generally noncausal. A causal approximation

is required, which will only be able to approach the noncausal solution at certain

frequencies. The approximation can be chosen to trade off nominal performance with

robustness.

Consider w to be a white noise disturbance. The open loop disturbance which

reaches the control is a colored noise y with a spectrum determined by the plant:

y = G,,w (2.133)

Assuming the plant is lightly damped, the colored disturbance will be relatively large

at the plant modal frequencies. The optimal impedance matching approximation

will attempt to match the noncausal solution exactly at the modal frequencies. A

near match may be possible using lightly damped poles. The response of the causal

compensator then deviates greatly from the noncausal between the modal frequencies

(for example the dashed curve in Figure 2.39). If the modal frequencies are in actuality
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Figure 2.39: Accuracy of the impedance matching approximation: the ap-
proximation can be made an exact match to the noncausal
impedance match (solid) at a discrete set of modal frequen-
cies (dashed) or an inaccurate match across a broad frequency
range (dashed) by the choice of input spectrum.

slightly shifted, the compensator gain and phase can be greatly in error at the new

frequency. If, however, the compensator were designed to match over a broader range,

it would not be able to match exactly at any frequency, but instead would attempt

to match in an average sense (the dotted curve in Figure 2.39). The performance

sensitivity is a function of how quickly the gain and phase of the approximation

vary with respect to the noncausal optimal compensator. Thus the smoothness of

the impedance match is one key to its performance robustness. The energy shunt is

similarly smooth. The same arguments made above can be applied.

The second issue in performance robustness is the degree of knowledge of the

effect of the disturbance w on the performance z. When the '- 2optimal compensator

has knowledge of the G,, transfer function, it can make a mode uncontrollable from

the disturbance. This can be more efficient than damping the mode. The mode

is made undisturbable by placing a zero in the G,, transfer function. However,

1 1 I



zeros are properties of the input/output structure of a system, and thus depend on

the disturbance location. If another disturbance acts elsewhere, the mode will be

undamped.

The impedance match, on the other hand, attempts to remove energy from the

system. The result is added damping in the closed loop modes. Since the modes are

characteristics of the system, and not of the input/output behavior, the performance

from any unmodeled or mismodeled input disturbance will be improved. The energy

shunt attempts to prevent energy from reaching z. As discussed in Section 2.2, the

required knowledge is the relative physical location of z and w.

The robustness properties of the impedance match and shunting compensators

can be stated in global terms as follows. Stability is guaranteed because the local

controllers are positive real, and are implemented on a PR plant. The H-2 compensator

can be constrained to be PR. Performance robustness to mismodeling follows from the

smoothness of the compensator. Performance robustness to unknown disturbances

follows by guaranteeing damping in the closed loop modes.

It is desired to state the 7R2 problem so that its solution mimics the impedance

match and energy shunt as far as possible. Stability robustness for a positive real

plant can be guaranteed by a positive real compensator. For a non-positive real plant,

the guarantee no longer holds, regardless of the positive realness of the compensator.

Stability becomes a global design issue. Techniques such as multimodel design [20]

can be used to guarantee stability in the face of known plant parameter changes.

Performance robustness of the first type can be added by creating a smoothed

compensator, for example using a reduced order compensator which must achieve

broadband control of a large number of plant modes using relatively few compensator

modes. Alternatively, the controller can be constrained to consist of real dynamics

only. Performance robustness of the second type can be increased by forcing the

compensator to damp system poles rather than canceling them. The real pole con-

straint will leave the compensator unable to cancel complex modes. Alpha shifting

[21], which shifts the design plant model poles into the right half plane, can be used.

Rather than perform an unstable pole zero cancellation, the compensator must shift
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the closed loop pole leftward. These techniques will be presented in the following

section.

2.3.3 7H2 Minimization

A large body of theory and experience has been accumulated for linear control design.

Minimization of an H 2g performance objective, in the framework of linear, state space

control has been widely investigated. It is the purpose of this chapter to examine

various state space control techniques for the characteristics which were enumerated

above. Formulations of the 7 2 problem will be presented which achieve the same

objectives as the impedance matching and energy shunting controllers. The chapter

is intended to be an outline only. For an in-depth analysis of these techniques and

others, a good source is Grocott [22].

Unconstrained H7-2 Optimal Controller

The R2 optimal controller takes the form of the Linear Quadratic Gaussian (LQG)

compensator. The nth order global system, Equation 2.132, can be represented in

state space as

x = Ax + Bw + B,u

z = CZx + Dz,u (2.134)

y = Cx + D,,w + Du

A dynamic compensator of order n, of the form

:c = Acxc + Bcy

U = cxuc (2.135)

is desired to minimize the quadratic cost

J = E lim - (zTz + pTu) dt (2.136)
T--.oo T o/

The 7 2 optimal, LQG compensator is given by

A, = A - BK - HCy + BuDuCy
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B,=H

=c K (2.137)

where the matrices H, K are the solutions of

1
K = -BIP (2.138)

P

1
PA + ATP + CTC, - -PBBP = 0 (2.139)

P
1

H= -QC, (2.140)

1
AQ + QAT + B,B T - -CyQ = 0 (2.141)

The LQG controller is the same order as the plant (nc = n). The above result is well

known and can be found in any optimal control text, for example Reference [3]. A

short discussion of its features will be given.

The LQG controller assumes perfect knowledge of the plant. No uncertainty in the

plant model given by Equation 2.134 is taken into account. Thus the LQG controller

can be undesirably sensitive to variations in plant parameters, and modifications

to the problem presented above must be included to desensitize the controller to

mismodeling. In addition, the controller assumes knowledge of the disturbance w.

Since the problem formulation minimizes control cost as well as state cost E{zTz},

the LQG controller often finds it more efficient to cancel closed loop poles with zeros,

rather than damping the poles.

Reduced Order Control Design

A compensator of the form of Equation 2.135 which minimizes the cost Equation 2.136

is designed. However, the compensator is of order less than the plant, i.e. n. < n.

The order may be dictated, for example, by a limitation in controller size which can be

implemented, or by the number of plant poles which appear in the performance. If a

plant mode does not greatly affect the cost in Equation 2.136, computational overhead

can be reduced by leaving it uncontrolled. The Separation Principle which allows the

decoupling of the optimal LQG problem into two separate Riccati equations, no
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longer applies. Instead, the cost is modified and the gradients with respect to the

compensator matrices are found. The cost is then minimized numerically using a

numerical gradient search.

The closed loop system created by impinging the reduced order controller on the

plant is

:i A BuCc X B,

;ic BCC, Ac + BcDy,Cc xc 0

z = C, [ (2.142)

Defining the closed loop states c = , the closed loop system in Equation 2.142
Xc

is

~ = A; + Bw

z = C~ (2.143)

The cost is

J = tr {OTOQ} (2.144)

where Q is the closed loop state covariance matrix found as the solution to:

AQ + QA T + BBT = 0 (2.145)

At the optimum,

PA + ATp + fT = 0 (2.146)

Adjoining Equation 2.145 to the cost with the Lagrange multiplier P,

J = tr {OTQ + P (AQ + QA T + BBT) } (2.147)

The gradient of the augmented cost Equation 2.147 can be found, with respect to the

compensator. Partitioning P,Q and the product (PQ) into n x n,n x nc,nc x n, and

nc x nc elements,

P = P, 12 = 11 Q12 (2.148)
P21 P22 Q21 Q22
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The gradients are:

8J
= 2(PQ)22  (2.149)

aAc

J (B = ((PQ) 21CT + (PQ)22 CD + P21B,D12T) (2.150)
Bc 

2

aJ
ac = 2 (BI (PQ) 12 + DBC (PQ)22 + P1

2CzQ 1 2 + DDuCcQ22 ) (2.151)

(2.152)

(PQ)22 ,(PQ)21, and (PQ)1 2 are the n~ x nr, n x n, and n x n, blocks of the matrix

product PQ. These equations cannot be solved in closed form. In practice, a numer-

ical gradient search is implemented. For an overview of numerical search algorithms

and a discussion of the practical issues involved, see [23].

For this work, a modified BFGS search procedure [23] is used to minimize the

cost in Equation 2.147. The solution terminates when the gradients Equation 2.149-

Equation 2.151 are smaller than a selected tolerance. The problem is not guaranteed

to be convex, so local minima exist. A good initial guess is critical. Additionally, the

closed loop system under the initial guess must be stable. The gradients are functions

of the covariance of the closed loop system. Since the covariance of an unstable system

is infinite, the gradients are not well-defined, and the algorithm cannot stabilize an

unstable closed loop system.

Typically, the LQG is used to create an initial guess, which is then truncated

down to the desired order. To minimize the number of free parameters in the search,

the compensator form is constrained. However, constraining the form can introduce

additional local minima. For example, in the path from the initial compensator to

the 7-20optimal compensator, complex poles may coalesce to form real modes. The

constrained form should capture this behavior. A tridiagonal form for A, has been

found to yield good convergence results:

all a 12  0 0

AC = 0 2 1 a 2 2 a0 2 3  0 (2.153)
0 a 3 2 a 33 a 3 4
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The parameterization reduces the number of search parameters for Ar from n2 to

3n - 2.

The purpose of the reduced order control design in an impedance matching and

energy shunting sense is to prevent pole/zero cancellation. By designing the compen-

sator order to be much less than the optimal LQG order, n, <K n, it is desired to

force the compensator to reproduce the average response of the LQG controller, that

is, to smooth it.

Positive Real Constraint

Given a positive real plant, the closed loop system will be stable for any positive

real controller (Note that if the plant is not positive real, the guarantee is destroyed,

regardless of the compensator). MacMartin investigated a Riccati cost functional

which guarantees a positive real compensator [24]. Alternatively, Spangler constrains

the compensator form to search over positive real compensators [14]. The state space

controller has the form

de = Acxx + Bcy

u = B ,

AC = A T  (2.154)

Again the compensator cannot be solved for in closed form. The augmented cost

can be defined, in an identical manner to Equation 2.147:

J = tr {O T Q + P AQ + QA T + Br'T ) (2.155)

The gradients of the cost with respect to the controller are

8J
= 2(PQ)22  (2.156)

aAc
B = 2 (BT (PQ)1 2  DT B(PQ)2 2 + DT CzQ 12 + DT Dz,CQ 3) (2.157)

(2.158)

The symmetry constraint on Ac can be implemented by searching over the upper

triangular elements of Ac, and constraining the lower elements to be the transpose.
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A tridiagonal form can be implemented for the positive real controller, similar to the

reduced-order controller:

all al1 2  0 0

a= 1 2 a 2 2 a 2 3  0
dc = (2.159)

0 a 2 3 a 3 3  1 3 4

The search parameters x are

a 11

a 12

x= a 22  (2.160)

a 23

in addition to the elements of Be. Typically the controller will be both reduced order

and positive real. Since the procedure is a numerical search, like the reduced order

control design, local minima will exist and the initial guess must be good. Finding an

initial guess is more difficult than in the reduced order design since the initial guess

must be positive real. For nc < n, it is generally possible to begin with a low order

compensator, adding states until the performance does not improve noticeably.

Real-Axis Compensator Poles

The purpose of the reduced-order controller is to force the compensator to control

several plant modes with a single compensator mode. The desired effect is to smooth

the compensator response. A similar smoothing can be achieved by constraining the

compensator poles to lie on the real axis. If the compensator is diagonal, all of its

eigenvalues will be real:

a1 1  0 0 0 ...

0 a 22  0 0

0 0 a 33 0
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Again a numerical search algorithm is used. The cost and gradients are identical to

the reduced-order compensator, Equation 2.147 and Equations 2.149-2.151.

The similarity can be drawn between the real-pole constrained '-H2 compensator

and the log averaged model of Section 2.1.1. The log averaged model is an attempt

to derive a smoothed model of the plant, from which a smooth compensator will be

obtained. The errors inherent in the log averaged model limit the performance of

the general impedance match. The real-pole constrained 7 2 compensator sidesteps

these errors. Since it cannot cancel lightly damped poles, it is forced to damp them.

Additionally, by incorporating the global performance, the high gain energy shunting

strategy is included in the control design process.

a-Shifting

In contrast to the previous H - design techniques, alpha-shifting [21] changes the

design plant model, rather than constraining the compensator. Alpha-shifting relies

on the stabilizing property of the LQG compensator. As the control weighting is

increased in the LQG cost (Equation 2.136), the stable open loop plant poles remain

in the same location in closed loop. Open-loop unstable poles are reflected across

the imaginary axis. Alpha-shifting changes the design plant model A, by adding a

constant, positive real part to the plant poles:

Aa = A + aI (2.162)

When the compensator is moved to the true plant A, the closed loop poles are shifted

left, increasing their damping. If the true plant model is parameterized in modal

form, the a-shifts of each mode can be tailored individually:

Ol w1  0 0 ... al

-wj a0 0 0 al

A,= 0 0 a2 w2 + a 2  (2.163)

0 0 -w 2 a0 a 2
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where oa,w, are the real and imaginary parts of each plant mode, and a- are the

desired mode shifts. The parameters ai, a 2, etc. are chosen to give the highest

damping possible in the closed loop modes.

A secondary benefit to the a-shift is that the resulting compensators tend to

be smoother, relative to the LQG controller for the same plant. This is because

the necessity of stabilizing the a-shifted modes overrides the necessity of minimizing

control effort. Pole/zero cancellations are prevented, as desired.

Multi-Model Control Design

The multimodel (MM) technique is another method which changes the design plant

model. For further information see [25]. The MM objective is to robustify the com-

pensator to plant changes. To this end, the compensator is applied to several different

plant models, and a weighted sum of the LQG costs for each is minimized.

= aitr {C('CQI + P (AiQ% + QiA + B 1B)} (2.164)

where the models are A% = A + SA., and the scalar weight ai sets the relative impor-

tance of each model in the cost. The perturbations 6A. capture the physical uncer-

tainties in the plant models. For example, an uncertain modal frequency, known to

an accuracy of 5%, can be accommodated by designing a MM compensator based on

the nominal model, and two additional models with the uncertain mode shifted by

±5%. The relative weights ai can be chosen merely to assure stability to a 5% shift,

in which case the weights of the perturbed models are small. Since the closed loop

stability is only known for the design models used, no guarantee is made that the

closed loop system will be stable for all models in between the nominal and the per-

turbed models. Alternatively, some nominal performance is lost, but approximately

equal performance can be reached on all models, if the weights are equal. It is not

the purpose of this thesis to examine the nominal performance versus performance

robustness trades which can be made. The reader is referred to [22] for an in-depth

examination.

For the impedance matching and energy shunting objectives, a smooth compen-
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sator is desired. That is, rapid shifts in compensator magnitude and phase are to be

avoided. The MM design technique can produce a compensator with these charac-

teristics, if the proper perturbations SAj and performance weights ai are chosen.

Nondual Sensor and Actuator

The local control formulations derived above are dependent on the use of power dual

sensors and actuators, for example, rate and force. The sensors and actuators avail-

able to the control designer will not always be power duals. For example, embedded

piezos can be used as both sensors and actuators for structural systems [26]. However,

piezos act as strain devices, hence the actuated and sensed quantities are the same. If

the piezos are collocated, the feedthrough from the command to the measurement will

be high. Since the command is known, the feedthrough implies that only a portion

of the measurement is useful information for control.

The high feedthrough will cause the transfer function from actuator to sensor

to resemble a constant, with numerous near pole/zero cancellations superimposed.

These near cancellations indicate that little structural motion is being measured.

The feedthrough of command to measurement appears as a D term in the state

space model (Equation 2.134). A large D term corresponds to high feedthrough.

Altering the D term causes the zeros of the model to shift. If a different D term, D 2,

could be chosen, the zeros of the system could be moved away from the poles, making

the latter more observable. Because the poles are more observable, greater control

authority can be exerted over them.

The feedforward in the model can be altered by choosing a new measurement,

which has the desired feedthrough:

Yd = Cx + D2u (2.165)

The difference between the desired measurement yd and the actual measurement y is

denoted by y:

= Yd- Y = (D 2 - D)u (2.166)

The signal y is in some sense an error. It is known (since u is known), and can be
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Design Plant Model

U Y
C(sI-A) B+D

D, -D

C,(sl-A ) Q Y

--- - -- - - -- -.-- -- .-- -- -- - -- --

True Plant

C(sI-A) B+D

2-- t,-- --- - ----- - --- : - --- -- ---2 2 2 2 2 22 2 --- -- -- --

D, -D

CQ(sI-A ) B

Compensator

Modified feedthrough design model: The design model includes
the desired feedthrough D2 (left). When the control is imple-
mented on the true plant, the feedthrough is folded into the
compensator (right).

added to the actual measurement y to create a signal with the desired feedthrough:

Yd = Y + y = Cx + D 2u (2.167)

The design system is now

& = Ax + Bu

yd = Cx + D2u (2.168)

The desired control technique (7 2 or any applicable technique) can then be used to

create a controller.

The resulting controller is

Xi = Acxc + Bcyd

U = CcXe (2.169)

where the controller is driven by the desired measurement Yd. The compensator is

implemented on the true plant, Equation 2.134, whose output is y (see Figure 2.40).

The component of Yd in Equation 2.169 which is due to u can be folded into the
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K(s) '
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Figure 2.41: Design model with time delay: When the measurement is a

filtered version of y (for example through a time delay), the

plant D term cannot be canceled directly (dashed line). Instead,
it must be canceled with a signal composed of u filtered by a

model of the time delay, F.

compensator matrix Ac. The controller dynamics are

ic = Acxc + Byd

= Ax + + Bcy + Bc(D 2 - D)u

= Ac + Bcy + Bc(D 2 - D)Ccxc

= [Ac + Bc(D 2 - D)Cc] x, + Bcy

(2.170)

The command is, as before,

u = Ccx2 (2.171)

Since the controller operates on the unaltered measurement y, the argument that

the feedthrough modification alters the modal observability is somewhat misleading.

It may be more accurate to state that the method alters the modal observability

to the control design. The technique is motivated as an attempt to capture the

good pole/zero spacing of a true power dual input/output pair. The connection to

sensor/actuator duality has not, however, been fully explored.

The analysis presented above is correct when there is no time delay in the loop.

If time delay exists, then y + y will no longer be the desired measurement. The

measurement y is delayed, while y is not. Consider the time delay as a filter in
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series with the plant (Figure 2.41), represented by a transfer function F(s) ( other

dynamics in the loop, such as antialiasing filters, can be included in F(s)). The plant

measurement (seen by the compensator) is now a filtered version of the plant output

Y:

Yf = F(s)y

= F(s)C(sI - A)-Bu + F(s)Du (2.172)

(2.173)

The desired measurement yd at the plant output is (as above)

Yd = C + D 2U (2.174)

Now the compensator does not directly see the plant output. It sees a filtered version:

Yd, = F(s)C(sI - A)-Bu + F(s)D2u (2.175)

The difference between the desired and actual output, y, is thus

y = F(s)(D2 - D)u (2.176)

In order to create the desired measurement, y must be added to the actual measure-

ment. However, F(s) consists of a time delay, which is irrational, possibly in addition

to high-order filters. It must therefore be approximated using a finite order system,

for example a Pade approximation.

An approximation, denoted as F(s), can be realized in state space form as

Xff = Afxf + Bfu

yf = C x f + D u (2.177)

The measurement "error" y can then be approximated by filtering the correct pro-

portion of the command feedthrough through F(s):

y, = F(s)(D2 - D)u (2.178)
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The filtered desired measurement, Ydf, is now equal to the filtered plant output yf

added to yy.

Ydf = Yf + Yf

= F(s)C(sI - A)-1Bu + F(s)Du + F(s)(D2 - S)u

F(s)C(sI - A)-1Bu + F(s)D2  (2.179)

The approximation is good over the bandwidth in which F(s) e F(s). Note that

since ydf is proportional to u, it rolls off at the same rate as the compensator does.

The filter F(s) need only be a good approximation to F(s) over the bandwidth of the

controller.

The design plant is created by augmenting the true plant dynamics, Equation 2.134,

with the dynamics of the time delay F(s). This can be accomplished by fitting the

response of the plant from u to yf. That is, the data used to create the plant in-

cludes the time delay. This creates a model which has the filter F(s) included. The

dynamics of the augmented design model can be written as

id = Adxd + Bdu

y = CdXd + Ddu (2.180)

The design model is created by augmenting the filtered plant, Equation 2.180 (which

represents the true plant with time delay), with the realization of F. The systems

are driven in parallel, and their outputs subtracted (See Figure 2.42):

i A O x B
= +

:if 0 Af X Bf

S[l 1 D
Yd = C (D2 - D)Cf + u (2.181)

Xf (D2 - D)Df

The compensator is created using the design model. To implement it on the true

plant, Equation 2.180, the filter approximation is augmented with the compensator:

SAc + BDf(D2 - D)Cc BcC f  ]x BC

if B(D 2 - D)Cc Af 0
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Design Plant Model

C (sI-A) B+D F(s)

(D2-D)q (s-4)

-1 Yd:

C (sl-Ac)B
C C Cl

Figure 2.42:

True Plant

yC(sI-A)+D F(s)

........-...-.. .............. ......... ....... --.... ..Compensator-4)
Compensator

The design plant consists of the true plant (including F(s))
augmented with the dynamic approximation F. On implemen-
tation, the compensator is augmented.

u= Cc 0 C
xf

(2.182)

The resulting controller will be referred to as the Modified Feedthrough (MF) con-

troller.

Note that since the filter approximation F(s) is augmented to the compensator, its

order must be taken into account if there is a constraint on the size of the compensator.

Second, the bandwidth of the approximation need be no greater than the bandwidth

of the control. Errors in the approximation will not be destabilizing. Only the ability

to accurately cancel the D term will be affected. Finally, it is assumed that the

feedthrough of the plant is high, necessitating this technique. For high feedthrough,

the zero locations in the compensator measurement, yd,, can be highly sensitive to the

D 2 term. The robustness of the compensator to zero locations must be assured. The

local control techniques in the previous chapters tend to be quite insensitive. However,

a high authority LQG-type compensator, which relies on pole/zero cancellation, can

be quite sensitive.

The applicability of the modified feedthrough formulation as presented is limited

by nonlinearities in the response of the piezoelectric actuator. Specifically, the piezo
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voltage to strain coupling term (for a piezo wafer, the d31 term) is amplitude de-

pendent. This will appear as a nonlinear gain in the control loop. The effect of the

nonlinearity is small if the dynamic range of the command voltage is limited. Thus

the MF design is applicable if the control commands are expected to be small (they

remain in the linear range of the piezo). The modified feedthrough results could be

extended through a software modification, or a hardware modification.

The software modification would take the form of a model of the piezo nonlinearity.

The commanded strain would be passed through the inverse of the piezo nonlinearity

before being output through the D/As. When the voltage creates a nonlinear strain

in the piezo, nonlinearities would cancel, creating a strain proportional to the desired

command. The software has two main drawbacks. Additional computational time

is required, and the command to counteract the nonlinearity is created open-loop,

creating the need for a good nonlinear model.

A second modification would entail feeding back actuator strain to enforce the

desired actuation. The feedback would be done using analog circuitry. The advan-

tages to enforcing strain actuation include removing other piezo nonlinearities such as

hysteresis, as well as removing the additional computational burden of the software

modification.
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Chapter 3

Nonpositive Real Systems

The local control techniques derived above depend on a dual sensor and actuator.

Control is then posed as influencing the power at the control location. The stability

of the closed loop is guaranteed at the same time. It follows from duality that the

transfer function through the control hardware is positive real. The controllers are

constrained to be positive real (this is equivalent to a constraint that the closed loop

junction never produces power). It follows from absolute stability theory [8] that the

closed loop system will be stable.

In order to permit implementation of the impedance matching and shunting com-

pensators on a wider class of physical systems, the implications of a nonpositive real

plant need to be addressed. Control design for any real system will encounter time

delays, model truncation, sensor/actuator dynamics, and possibly sensor/actuator

noncollocation, which will destroy the positive real nature of the plant transfer func-

tion.

The effects of such non-idealities can occur within the control bandwidth, or be-

yond it. Loss of positivity beyond the control bandwidth can be dealt with by con-

straining the rolloff of the loop transfer function. If the effects are significant within

the control bandwidth, performance (as well as stability robustness) will suffer. The

design plant model can be modified by creating a "pseudo positive real" model. Alter-

natively, a global model incorporating the non-idealities can be created. The design

then proceeds using a global technique which captures the features of the local con-
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trollers (for example the techniques presented in the last chapter). Note that in all

cases, the stability guarantee is no longer absolute, although stability and performance

robustness may be extremely high.

Two types of non-idealities are treated in the following section, time delay and

sensor/actuator noncollocation. Time delay will exist in any physical system, and

may be a driving factor in control design for digital implementations. Sensor/actuator

noncollocation can result in missing or nonminimum phase zeros [27].

3.1 Systems with time delay

Any real system will have time delays. For analog systems, time delays may be neg-

ligible. For digital control implementations, time delay can be significant, degrading

both the performance and stability margins. The effects of time delay on the rolloff

are first considered. Second, the impedance match is modified to account for time

delay in the control bandwidth which degrades damping performance.

3.1.1 Stability in the presence of time delay

The impedance match and energy shunt of the previous section could in theory control

energy over an infinite bandwidth. In practice, the control will be targeted at a specific

bandwidth. For example, the system could be subject to a bandlimited disturbance.

Alternatively, the control could be designed to damp in the rolloff region of a higher

authority (perhaps MIMO) controller, increasing robustness [28]. Beyond the control

bandwidth, the local controller is rolled off. The rolloff is begun at a frequency w,.

By frequency wf the loop must be rolled off, with a gain margin of gm (Figure 3.1).

First, rolloff for an ideal system, with no time delay, is investigated.

The loop must be phase-stable within the rolloff range, and gain stabilized at the

end of the range. The difficulty in rolling off a structural loop is that the response is

difficult to model exactly: modes are often lightly damped, and mode frequencies are

not well known. It is desirable to parameterize the rolloff in terms of quantities which
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log IG(jw)

OdB log w

Figure 3.1: Rolloff for a structural loop.

may be known more accurately, such as the maximum magnitudes of resonances, and

the minimum phase attained by the response.

In general, the modes in the rolloff range might not be known accurately. For

example, finite element models suffer a loss of fidelity at higher frequencies. However,

the modes are know to lie on the "backbone" response, which can be more reliably

modeled, for example by a log average. The reverberant poles and zeros are perturba-

tions to the backbone, with a certain height h. The height h establishes an envelope

around the backbone. In order to gain stabilize the loop (ignoring the gain margin

gm for now), the envelope must be below the OdB line by wf(Figure 3.2). In other

words, rolloff of the loop transfer function is guaranteed by rolling off the envelope

determined by the log average g(jw) and the reverberant mode height h(C).

The perturbation height for mode i, hi, is a function of the modal damping Ci.

The height h. may be estimated from (i by approximating mode i as a second order

resonator. The reverberant system can be put in pole-residue form:

G(s)rls + ri (3.1)
s2 +2Xwis + w

where (,w, are the mode i damping and frequency, and rl1 , r0 are the residues.

Each of the terms in Equation 3.1 is a second order oscillator (Figure 3.3). The
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log IG(yw)

OdB

Figure 3.2:

g(jw) + h(C)

log w

Loop magnitude for a structural system: if the envelope deter-
mined by the log average g(yw) and the reverberant mode height
h(C) is rolled off, the loop will be gain stable.

rlis+ro
log s 2

+2CiwisT+w

OdB

Figure 3.3: The reverberant mode height h(Ci) can be approximated using
the residue expansion of G(s).
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log magnitude of the backbone is approximately the DC magnitude of the 2nd order

system. The height hi is approximately the difference between the log magnitude

of the resonant system at the damped pole frequency, Wdi = wi 1 - ,C2 and the log

magnitude at DC.
ri s+roi

s2 +2Cjws+w~

hi r log "=s w (3.2)
rl i s+r0i

s2 +2Cjwis+W s=o

For lightly damped systems, wd , wi, and r1i 0. The height is then

ro.

hi log
roi

1
, log (3.3)

2(i

Assuming approximately constant modal damping, h((i) 4 h(().

If the magnitude of the backbone is represented by g(jw), the log magnitude of

the reverberant transfer function can be bounded:

log G(jw) < g(jw) + h(C) (3.4)

The loop must be below OdB at w1 to be gain stable. This is guaranteed if the

envelope is below OdB.

log IG(3wf)| I g(jwf) + h(C) < 0 (3.5)

For a constant rolloff slope n = ( , the magnitude of the backbone at wf is related

to the magnitude at wi by

g(Jwf) = 9(3wi) + n (log wy - log wi) (3.6)

Therefore, the loop envelope is gain-stable at wf if

g(j3w) + n (log wf - log w.) + h(C) < 0 (3.7)

Equation 3.7 can be satisfied by requiring

n < -(g(wi) + h(()) (3.8)
log w /wi

121



log IG(w)|

OdB

LG(3w)

90

90 0 n

log w

g(3w)

log w

Figure 3.4: The loop phase for a structural system: the plant perturbation
phase, ,p, is the difference between the backbone phase, 900 n,
and the lowest plant phase.

Thus a gain margin constrains the loop to roll off faster than a certain rate. If a gain

margin gm is desired,
-gm - (g(jw1 ) + h(())

log wf /w;
In other words, in order to be gain-stable by wf, a certain slope is required.

A phase margin qm constrains the slope to be greater than a certain value.

function with a slope n on a log magnitude vs log frequency axis, i.e. f(s) oc

has a phase of 90 0n (Figure 3.4). The loop phase is the backbone slope, n, plus

3.9)

A

S n
,

the
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additional amount, Op, due to plant resonances. The phase margin is the difference

between -180' and the loop phase:

,m = (90°n + ,p) - (-1800) (3.10)

For a specified phase margin,

90on + Op + 180 > Om

1 1
n 2> 1m P - 2 (3.11)

900 900

Thus, a faster rolloff necessitates a smaller phase margin. The gain requirement

Equation 3.9 and phase margin Equation 3.11 cannot necessarily be satisfied at the

same time. The maximum frequency wf may need to be increased, to give a wider

rolloff frequency range. Note that the gain margin must account for uncertainty in

the knowledge of the damping, through h(C). Damping is difficult to predict, hence

the choice of h(C) may potentially be very conservative.

The above analysis does not include time delay. Time delay will be present in any

physical system, and may be a significant factor in a digital implementation. The

presence of time delay in the loop is investigated. Time delay adds a linear phase lag.

For a time delay T, the phase loss is

180o
OTD = -- W T (3.12)

7r

The loop phase is now
180

90°n + O, - 1wT (3.13)

which is a function of frequency. With no rolloff (n = 0), the loop phase will cross

-1800 eventually. Thus the bandwidth of the loop (wf) will have to be below a

certain frequency, and the designer cannot arbitrarily choose wf. For a specified

phase margin, at the rolloff frequency wf, the slope must be

1 1 180
n > -Om - 9 + --- wfT (3.14)

900 900

However, the gain margin still requires that

n< -9m - (g(w) + h(()) (3.15)
log wf/wi
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With no time delay, the rolloff bandwidth can be increased to accommodate both the

gain and the phase margin. Here, the system must be gain stable before the time delay

causes phase instability. For zero phase margin and zero slope, the frequency at which

the loop phase crosses -1800 is s180+) rad/sec. The loop must be gain-stable by

this frequency, so wy must be a lower frequency.

Certain assumptions made above can be relaxed. For example, the rolloff slope

need not be constant. A faster rolloff can be accommodated at lower frequencies, at

which the phase lag of the time delay is less significant. However, if the rolloff cannot

be accomplished, the initiation of rolloff, at w,, must be made at a lower frequency,

decreasing performance.

The results above show that the plant perturbation phase O, is very important.

Op is a result of the sensor and actuator used for control, thus a good choice of

sensor and actuator is fundamental to robust implementation of either the impedance

match or the energy shunting compensator. A useful example is the BE beam of

Section 2.1.3. The controlled end is free to translate and rotate, thus either force or

moment actuation can be used. The dual sensors are linear rate and rotational rate,

respectively. The transfer functions through both sets of hardware are positive real,

that is, the phase is bounded between +900 and -900. As defined above, p, is the

difference between the lowest plant phase, -900, and the phase of the backbone.

The backbone response of the beam is given by the direct field, which in turn is

found from the generation matrix I, Equation 2.91:

L-11
1 +i -1 (3.16)

qM + (3.17)[-zJ
The generation matrix I describes how wave modes are formed by F and M. Using

the wave transformation Y, the wave modes can be transformed into physical coordi-

nates, and the correct displacements (displacement and rotation, respectively) found.

The wave number k can be expressed as a function of frequency. Differentiating the
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Figure 3.5: The control design with time delay. The inverse of the time delay

is added to the model, creating a "pseudo-positive real" plant.

results, the direct fields are

2V2 1
gF(s) = (A)(EI) 2 (3.18)

(pA)I(EI)Z
24 1

gM(s) = ) 2s (3.19)
(pA)'(EI):T

which have phases of -45' and 450. The plant perturbation phases are therefore 450

and 1350. The force to linear rate pair has an additional 90' of phase margin.

3.1.2 Performance in the presence of time delay

Significant time delay can add phase to the loop in the control bandwidth. If the

compensator is designed for the nominal plant, without time delay, the loop phase

will be in error, and the performance will degrade. The difficulty will be greatest

in the impedance matching compensator, because of the requirement of matching

the noncausal phase. The energy shunting compensator is generally insensitive to

phase errors which do not create instabilities, because of the high gain approximation

normally used. Hence the performance discussion will be centered on the impedance

matching approximation.

Consider Figure 3.5, in which the actual plant G(s) is represented by a positive

real component, G(s), and a nonpositive real part, consisting of a time delay of T

seconds. The objective is to design K(s) using impedance matching techniques which

are developed for positive real systems. They cannot be used on the actual plant G(s)

since it is not positive real. However, they can be used to find the (assumed noncausal)
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impedance match for the positive real part G(s). Rather than approximating that

compensator, denoted as H,c(s), a causal approximation is found for e"TH,c. The

loop phase for the impedance match with phase lead, when implemented on the actual

plant G(s), is

G(s)e" THc = G(s)e-"Te"TH,(s) = G(s)H,(s) (3.20)

which has the correct phase. When the noncausal compensator with lead is approx-

imated, the phase lead in the approximation cancels out the phase lag in the actual

plant.

Care must be taken in the general impedance derivation. The general impedance

match is
1

nC =(3.21)
Gd(S)*

where Gd(s) is the dereverberated mobility of the positive real plant G(s), not the

actual plant G(s). If the reverberant data includes the time delay, the dereverber-

ated model must be created in such a manner that the time delay does not appear.

Fortunately, in the case of the log average, the restriction is simple to implement.

Since the time delay appears as a phase perturbation only, the log average should be

created by minimizing only the magnitude error.

Note that the technique forces an approximation step, even if the exact impedance

match is causal. A rational Pade approximation to the time delay can be created. A

single-pole approximation is

ejwT s - 2/T
+ 2/T (3.22)

s + 2/T
which is stable but nonminimum phase. The actual plant model is

G(s) G((s) - 2(3.23)
s + 2/T (3.23)

and the noncausal compensator for the nonpositive real system, which includes a

phase lead, is

s + 2/T-s +2T c (3.24)
s - 2/T

The phase lead therefore consists of right half-plane (RHP) dynamics. By the same

arguments that the noncausal compensator is stable but noncausal, the phase lead,
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and therefore the augmented impedance match, is noncausal. Thus a causal approxi-

mation step will be required. The most straightforward approximation is the weighted

curve fit shown in Section 2.1.3.

3.2 Noncollocation

The fundamental assumption made to derive the local controllers of the previous

section is the collocation of the sensor and actuator. Stability robustness follows

from collocation and duality, as a result of the positive real response of the system

through the control hardware. Performance robustness results from ensuring that the

closed loop system extracts power over a broad frequency range. However, it can be

necessary to use a nearly collocated sensor and actuator in some applications. Nearly

collocated refers to the separation of the sensor and actuator being comparable to

the dimension of each. For example, in applications with embedded piezoelectrics,

the piezos must be displaced from one another to avoid near-field interaction from

swamping the measurement with feedforward of the actuator signal. The physical

spacing is such that it is still reasonable to consider the influence of the control on

local power. However, the control transfer function is no longer necessarily positive

real. Effects such as missing or nonminimum phase zeros will appear [27].

The local models derived above are no longer sufficient to capture the behavior

of the control location. Global characteristics of the system, such as boundary con-

ditions, will effect the control transfer function. It is necessary to use a global model

of the system for control design. A secondary benefit to the use of a global model

is the wealth of tools available for design and analysis. The 7-12 design techniques of

Section 2.3.2 are ideally suited.

Power Observer Interpretation It is stated above that nearly collocated sen-

sors and actuators can be used to influence power. Due to the noncollocation, the

product of the sensed and actuated quantity is no longer power. However, the near

collocation allows the conception of the compensator as composed of an estimator of
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the appropriate physical variables at the actuated cross-section, as well as the dy-

namic compensator which acts to remove power. Since the physical measurement

variables at the sensed cross-section are related to the power dual variables at the

control cross-section by a small and presumably relatively homogeneous portion of

the structure, such estimation will not require knowledge of the global states of the

structure. The estimator is in effect modeling the propagation of information from

the actuated cross-section through the structure to the sensor. It is suggested that

the estimation is done implicitly in the I 2 designs. No work has been done on explicit

formulation of such a physical state estimator.
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Chapter 4

AMASS Active Materials Testbed

The Advanced Materials Applications to Space Structures (AMASS) program is an

investigation of a number of advanced materials and technologies. The hardware

consists of a deployable solar array simulator, gimbal-mounted to an instrumented

spacecraft bus. The experiment will investigate techniques for minimizing the space-

craft jitter induced by the array. A metal matrix Solar Array Drive Assembly (SADA)

drives the array in two axes of motion, simulating a sun-tracking profile. A passively

damped joint and a active composite yoke, actuated with embedded piezoelectrics,

are used to control the array. The active control is implemented by four Multi-Chip

Module (MCM) microcontrollers attached to the yoke. The active control design is

of interest because the disturbance, in the form of the SADA torque, is not mea-

surable. Additionally, the active control must be highly robust to modal frequency

shifts. The impedance matching and energy-shunting techniques of Chapter 2 are

promising candidates.

4.1 AMASS Flight Experiment

The array simulator flight hardware consists of a deployable solar panel simulator, an

active composite yoke with embedded piezoelectric actuation and sensing, a viscoelas-

tically damped joint, and the SADA gimbal (Figure 4.1). The passive joint can be

locked out with a caging mechanism. The testbed is bolted to the back of the STEP 3
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Figure 4.1: The AMASS testbed.

spacecraft, between the functional solar arrays. Four Intel 80196KD microcontrollers

implement the active control. The controllers are uploaded from the ground control

station. Accelerometers on the array and the spacecraft measure motion induced by

the gimbal stepper motor. Spacecraft jitter is measured in four configurations: un-

damped, passive damping only, active control only, and combined passive damping

and active control.

The Intels also operate in two system identification (ID) modes. A sine sweep

mode drives the array with a swept frequency sine wave. The microcontroller collects

and downloads the Fourier coefficients of the frequency response. A Schroeder mode

drives the array with a Schroeder-phased input, which contains equal power at all
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frequencies, and collects the time response. Since the sine sweep accumulates the

transfer function directly, it produces a much more compact set of data, and requires

no post-processing. However, it requires more time to complete than the Schroeder

ID.

The active control design is interesting and challenging from a number of perspec-

tives. No accurate model is available prior to the flight. The control design will be

based on the on-orbit system ID. A Controlled Structures Interaction (CSI) problem

exists due to the coupling which will occur between the AMASS dynamics and the

functional arrays. While this problem exists for AMASS since it is not the functional

array, an actively damped, functional array could interact with flexible payloads on

the bus. The CSI problem is therefore general in scope.

Additionally, the data-collecting ability of the array host restricts the amount

of data which can be taken. The system identification consists only of the control

channels. The disturbance to performance transfer functions, and cross-coupling be-

tween the control and the performance, are unknown. The flight controller must be

insensitive to the directionality of the disturbance.

Finally, the desire for stability robustness is high. Locating the source of instability

from the ground station would be time-consuming and expensive. In the case of a

functional array, an unstable controller could result in failure of the array and loss of

the spacecraft. The attributes of stability robustness and insensitivity to disturbance

directionality are exactly those of local control, motivating an investigation into the

potential applications of energy shunting and impedance matching.

The proposed control design sequence will be presented. A series of designs will be

created, and experimentally evaluated on a ground version of the AMASS array. The

performance of the compensators will be compared to one another and to standard

damping compensators. The stability attributes of each of the compensators will be

discussed. Finally, a discussion of the flight control design procedure will be given.
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Table 4.1: Identified Modes of the AMASS ground testbed.

Mode Freq [Hz] Damping [%] Modeshape
1 0.9582 1.7218 1"t bending
2 5.4960 0.5356 1 st torsion
3 9.8558 0.5796 2 nd bending
4 20.2347 0.8494
5 28.5356 0.6842

4.2 AMASS Ground Testbed

The AMASS ground testbed is the prototype flight hardware. All of the hardware

capability is in place. The array can be bolted to an inertial base, or mounted on a

gimbal assembly. Prototype Active Control Drive Electronics (ADCE) breadboards

are bolted to the active yoke. The ADCEs are controlled via an RS-232 link to the

host PC. The host PC controls the ADCE and piezo drive power sources, uploads

the controller matrices and scaling factors, and downloads compensator diagnostics

parameters. The ADCEs cannot communicate. Control must be implemented via

separate single-input, single-output (SISO) compensators, one per ADCE.

An independent data acquisition system is used to measure frequency response and

time domain data. The data acquisition system is MacIntosh-based, running LabView

software. Stand-alone 6-pole Bessel filters are used for antialiasing. The software

does not incorporate any digital filtering. Partially as a result, the antialiasing filter

dynamics tend to corrupt the data above about 80% of the test bandwidth, and

introduce an approximately linear phase loss at lower frequencies. Data reduction is

performed in Matlab.

The first five modal frequencies and shapes are given in Table 4.1. Based on

a Finite Element model of the coupled spacecraft and array, the first three modes

are the greatest contributors to jitter. The fourth and fifth modes are the most

significant modes in the rolloff range. The Intel controller can run an uploadable, 12

state compensator at a sample rate of 250 Hz. The targeted modes are well within

the control bandwidth.
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Figure 4.2: ADCE positions on the active yoke. The ADCEs operate inde-
pendently on embedded piezo actuators and sensors.

4.2.1 Modeling

The AMASS testbed is inherently a multiple-input, multiple-output (MIMO) struc-

ture. Each ADCE input is highly observable in the outputs of the other ADCEs.

Cross-coupling of the controllers cannot be neglected. The four ADCE drive amps

are the inputs. Nominally, there are eight outputs: four nearly collocated sensors ,

designated as S,,, to S,,, and four collocated sensors, designated S, to S,. These

are reduced to four outputs by the weighted summation of the sensor signals. The

piezo feedthrough in the collocated sensor is extremely high. The plant modes are

nearly unobservable. As a result, only the nearly collocated sensor is used for control.

The plant frequency responses from each actuator to each nearly collocated sensor

are shown in Figures 4.3-4.6. The inputs and outputs are numbered according to the

ADCE locations. The ADCEs are numbered from 1 to 4, clockwise beginning at

the left diagonal (Figure 4.2). First mode is quite observable to ADCEs 1 and 4

(Figure 4.3 and Figure 4.6), on the diagonal members. Third mode is moderately

observable, and second mode appears. The cross-member ADCEs have lower modal

observability, and second mode is essentially unobservable.
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Note that the individual transfer functions of the array though the piezo struts

are nonpositive real. In the diagonal strut responses, a zero is missing between second

and third modes. The phase drops through 0O at the third mode. The plant transfer

function is therefore not positive real.

MIMO frequency response data is used to create a 50-state, 4 input, 4 output

evaluation model. The model is created using a unique two step process utilizing

a Frequency-domain Observability Range Space Extraction FORSE algorithm to

create an initial model [29], and an iterative Log-Least Squares algorithm to reduce

and tune the model [30]. The model captures the array response to 100 Hz. A 22-

state, 4 input, 4 output design model is created by truncating out the modes of the

evaluation model above 60 Hz. The models contain a time delay capturing the 250 Hz

sampling rate of the ADCE, with a zero-order hold. The transfer functions through

the ADCEs used for control, ADCEs 1 and 4, are plotted against data in Figures 4.7-

4.10.

The agreement of the fit to the data for the collocated channels, G11 and G4 4 , is

excellent. The first discrepancies are noted at about 30 Hz. More error occurs in the

cross-transfer functions, G14 and G41. However, the agreement to 30 Hz is acceptable.
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Figure 4.3: G 11 : Measured response from ADCE 1 drive amp to S,,,
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Figure 4.4: G2 2 : Measured response from ADCE 2 drive amp to S,,n.
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Figure 4.5: G 33 : Measured response from ADCE 3 drive amp to Sc,.
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Figure 4.6: G4 4 : Measured response from ADCE 4 drive amp to S, 4 .
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Figure 4.7: G 11: measured (solid) and state-space fit (dashed).

Frequency [Hz]

Figure 4.8: G1 4: measured (solid) and state-space fit (dashed).
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Figure 4.9: G 4 4 : measured (solid) and state-space fit (dashed).
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Figure 4.10: G41 : measured (solid) and state-space fit (dashed).
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4.2.2 Control Objectives

The control objectives of the AMASS ground experiments are determined by the

needs of the flight experiment. The objective of the flight experiment is to minimize

the jitter induced in the spacecraft. The two drivers of the flight controllers are that

the disturbance-to-performance response is not known explicitly, and that the modal

frequencies of the structure will change significantly as thermal load varies.

Knowledge of the transfer functions from disturbance to performance (the perfor-

mance transfer functions) would allow the controller to explicitly minimize the effect

of the disturbance on the performance. This is a standard h 2 control cost. The RH2

optimal controller may be an impedance match, or an energy shunting compensator,

or more likely, a combination. However, since the performance transfer functions

cannot be measured, the controller must be designed to give good performance for

disturbances which enter anywhere on the structure. The impedance matching con-

troller offers such performance robustness, by damping the closed loop poles. Since

the closed loop poles are properties of the system, the closed loop response to any

disturbance will be reduced, regardless of where it is introduced.

The first three modes are expected to contribute most to the jitter induced in the

spacecraft. The controllers will be designed to introduce damping into the first three

plant modes. Since the most lightly damped mode will dominate the closed loop

response, the closed loop compensator poles must also be damped. The objective can

be stated as maximizing the minimum damping ratios.

Modal frequencies vary due to the changing thermal loads, as the array passes

from shadow to sunlight and back. For example, expansion of the gimbal bearings

will result in stiffness changes in the gimbal. Modal frequency shifts of up to ±10%

are expected. The controller must maintain good performance as the modes shift over

the expected range.

The design goal is robust performance for +10% and -2% shifts in the frequen-

cies of modes 2 and 3. The values are based on the mode shifts between the AMASS

ground testbed and the flight hardware. The thermal loads which the flight experi-

ment will experience on-orbit will not be simulated on the ground. The robustness
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Figure 4.11: The general control design procedure for the AMASS ground
testbed.

of the compensators can be experimentally determined by applying them to both

testbeds on the ground.

4.2.3 7H2 Control Design Procedure

The requirements on stability and performance robustness suggest the use of a local

controller. However, the available sensors preclude the use of the impedance match

and energy shunt. The collocated sensors limit performance due to the low observabil-

ity of the plant modes, and are not used. The plant response is more observable from

the nearly collocated sensors. However, the noncollocation results in a missing zero

between the second and third modes. Thus the plant transfer function is nonpositive

real, and the impedance match and high-gain shunt are not applicable.

The alternative is a global control technique, for example a constrained 7-2 tech-

nique which combines elements of the state space formulations presented in Section

2.3.2. The six techniques presented are variants of the LQG compensator. Three

are derived by constraining the LQG solution: these are the reduced order, positive

real, and real-axis compensators. The other approaches modify the model: an alpha-

shifted model changes the real parts of the model poles, multimodel design optimizes

the same compensator for multiple plants, and modified feedthrough model can be

used to improve modal observability for a nondual sensor and actuator. Two con-

straints can be ruled out: the positive real compensator constraint will not yield any

stability guarantees, and the real-pole design will necessarily limit the bandwidth to

below the second resonance.

All the LQG variants are numerical, gradient searches. Numerical techniques

also can incorporate the SISO compensator limitation imposed by the ADCEs.The

SISO controllers can be simultaneously designed on the MIMO model by posing the
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problem as a MIMO control design, with a constrained compensator topology. The

MIMO controller is block-diagonal, that is, the A, matrix is nonzero in n, x n blocks

along the diagonal:

ACJ 0

AC = 0 Ac, (4.1)

All other entries are zero. Similarly for the B. and C. matrices:

Be 0

BC = 0 Bc,

Ccc 0 ...

Cc 0 Cc2

(4.2)

Each block of Ac represents one SISO ADCE controller. This topology will be re-

ferred to as block-SISO. No closed form solution can be found when the block-SISO

constraint is imposed, but the constraint can be easily included in a numerical search

framework.

Three i 2 control design processes are evaluated. The first is a reduced order LQG

design. The a-shifting technique is used to create a compensator with high closed

loop damping. Finally, a modified feedthrough compensator is created, in which

closed loop damping is increased by making the plant modes more observable to the

controller. All of the controllers are stabilized to +10%/ - 2% mode shifts using the

Multi-Model technique. The controllers are optimized for a nominal plant, with the

measure mode frequencies, a second model with second and third modes shifted up

10%, and a third model in which the same modes are shifted down 2%. In order to

robustify the performance, each of the models is weighted the same. Each controller is

designed in 3 stages: a full-order, SISO, Riccati initial design, an iterative reduction,

and a series of constrained gradient H 2 optimizations (Figure 4.11).
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Table 4.2: Design control and sensor noise weights.

Design # p p

1 5 0.5
2 0.5 0.05
3 0.05 0.005

A number of design parameters are retained for all three approaches. Three levels

of control weight p and sensor noise ,a are used (Table 4.2). [L is always a factor of 10

below p. The compensator which produces the highest closed loop damping at the

end of the design process is used. A control weight which penalizes low frequencies

is used to force the gain down at low frequencies.

Since the disturbance to performance response of the plant is not available, the

inputs and outputs of the uncontrolled ADCEs are used as disturbance inputs and

performance outputs, respectively. As pseudo-disturbance sources, they provide a

vital function. If the disturbance enters at the control location, the optimal controller

attempts to make the control location undisturbable, rather than damping the plant

poles.

The initial LQG design and reduction is a method of producing an initial guess

for the gradient search methods. The gradient search methods are susceptible to

local minima, so the initial guess must be near the optimal. The LQG equations

cannot return a block-SISO compensator. The approach taken consists of creating

the weighted model (which includes the alpha shifts and feedthrough modification,

if necessary). The weighted model will be referred to as the design model. A SISO

LQG design is found, which is then reduced and put in the block-SISO form.

The initial LQG controller is designed for ADCE 1, with ADCE 4 as the dis-

turbance. The iterative reduction approach uses a combination of Hankel Singular

Value (HSV) reduction and direct truncation. HSV reduction removes compensator

states with low observability and controllability [31]. Direct truncation simply refers

to specifying the states to remove, and is used to remove controller poles outside the
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damping bandwidth. After each reduction, the reduced-order controller is tuned to

minimize the R2 output error between the full-order controller and the reduced con-

troller (See Appendix B). The reduction is halted when the controller has 7 states.

Six of the states control the three plant modes of interest. The seventh, real mode

is intended to allow additional flexibility in placing compensator zeros, in somewhat

the manner of a D term.

The resulting controller is no longer optimal. It must be turned into a block-SISO

compensator, optimized for the multimodel plant. Generally the controller will not

be stable in block-SISO form on the MM plant. The optimization must proceed in

steps: a SISO R2 optimization, a second optimization in which the SISO controller

is placed into block-SISO form, and the multimodel optimization.

The block-SISO design incorporates another constraint. The same controller is

applied at ADCEs 1 and 4. The reasons are to ease the logistics of uploading the

controllers, and to desensitize the controller to zero shifts. Since the array is sym-

metric, the response from ADCEs 1 and 4 is nearly identical, differing slightly in zero

frequencies. The result is a multimodel-like desensitization to zero shifts. For the

block-SISO (MIMO) design, ADCEs 1 and 4 are controlled, and ADCEs 2 and 3 are

the disturbances.

Each gradient search step must have a stable initial guess. The SISO i 2 design

can be stabilized by redoing the truncation step. The multimodel controller can

be designed using homotopy, as follows: a multimodel shift is found for which the

closed loop is stable. The controller is optimized, generally causing it to be stable

for a larger shift. The shift is increased and the design re-optimized. The iteration

concludes when the design goal is attained. The most critical step is when the SISO

reduced order controller is placed into the block-SISO form. If it is unstable, there is

no homotopy step which can be performed. The design must be redone from an earlier

stage, possibly the reduced order design. However, for alpha shifted compensators,

the first stage, in which the alpha shifting parameters are found, may need to be

redone.

The desired stability robustness to shifts in the first three modal frequencies is
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Figure 4.12: Reduced-order LQG control design process.

±10%. The criterion is driven by expected shifts due to varying thermal loads on the

flight experiment. Stability and performance robustness to these shifts is implemented

using a multimodel (MM) approach (2.3.2). The MM design models are the nominal

model, a model with modes 2 and 3 shifted up by +10%, and a third model with the

same modes shifted down by -2%. The design model shifts are based on observed

differences between the AMASS ground testbed and the flight testbed. The flight

testbed modes are 10% higher than the ground testbed modes due to differences in

physical dimensions.

Rather than attempt to replicate the thermal loads the flight testbed will see

on-orbit, the robustness of the controllers could be evaluated by assessing the per-

formance on both the ground and flight testbeds (the controllers were not tested on

the flight hardware since the flight ADCEs were not available). Successful implemen-

tation on both sets of hardware will indicate that the control design procedure can

achieve the necessary robustness for the flight controllers.

Controllers are evaluated based on closed loop damping (on the true model) and

design "cost", that is, the effort required to reach the final design. The poles are

grouped according to frequency, into ranges determined by the open loop frequencies.

The minimum damping ratio in each group is maximized.

4.3 AMASS Control Designs
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4.3.1 LQG

The first control design is reduced-order LQG. The design process is diagrammed in

Figure 4.12. For each control weight, a SISO, weighted Riccati LQG controller is

designed for ADCE 1. The LQG solutions are 3 8th order. The LQG controllers are

truncated to 7 states, using the iterative truncation and tuning method. The retained

states are in the 1 to 10 Hz damping bandwidth. The reduced LQG controllers are

re-optimized on the AMASS plant. The SISO controllers are then impinged on the

AMASS model in block-SISO topology. All of the compensators are stable initially,

allowing the 7(2 minimization for the MIMO compensator to proceed.

The final stage is to apply the block-SISO compensator to the multimodel plant.

All LQG designs are stable on the design multimodel plant, to +10%/ - 2% shifts in

modes 2 and 3. A comparison of the closed loop poles shows that lowering the control

weight increases the closed loop damping. The highest-gain compensator, designed

with p = 0.05, achieves the highest closed loop damping. The highest gain LQG

compensator is plotted in Figure 4.17, with a solid line. The closed-loop poles are

given in Table 4.5.

Lowering the control weight further will eventually lead to diminished perfor-

mance. If the gain is too high, the closed loop poles are damped onto the real axis

and become nonresonant. At this point the compensator is inefficient at removing

energy from the system. Since the actuator location has become actively stiffened, a

smaller amount of strain energy can enter the active yoke to be damped. Most of the

energy remains in the solar panel, which is still undamped.

4.3.2 Alpha-shifted LQG

The alpha-shifting technique creates a design plant for which certain modes are shifted

into the right half-plane. The LQG compensator stabilizes these modes, moving them

leftward. When the compensator is impinged on the true plant, the plant modes will

move leftward, resulting in increased closed loop damping.

The first three modes of AMASS are targeted for damping. At each level of control
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Figure 4.13: The alpha shifted LQG control design process. The design plant
is iteratively chosen, then the controller is iteratively reduced
and optimized.

weight, the a-shifts are iteratively adjusted to optimize the closed loop damping

(Figure 4.13). The iteration involves choosing the design model alpha shifts, solving

for the Riccati-based LQG controller on the design plant, then applying the controller

to the true plant.

The alpha shifts must be iteratively chosen to create the maximum damping in

the closed loop system. Two effects drive the choice the a-shifts. Increasing the

a-shift damps the closed loop plant pole, but the closed loop compensator mode can

become more lightly damped. An optimal a-shift exists for each value of p at which

the closed loop plant and compensator mode have the same damping. Second, for

poorly observable modes, increasing the a-shift causes the compensator pole to move

into the right half plane. It is desirable to have a stable compensator for several

reasons. The open loop frequency response of the Intel compensator can be used to

scale the state space matrices. Failure of the sensor will make the system unstable,

possibly resulting in damage to the array and/or spacecraft.

Table 4.3 shows the alpha shifts which give the best closed loop damping. For

decreasing p, the design shifts become smaller. The closed loop damping is uniformly

better than the LQG controller. To reduce computational overhead, the same alpha
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Table 4.3: Alpha shifts for modes 1, 2, and 3.

p= 5  p=0.5 p=0.05

Mode Open Loop Pole a-shift a-shift a-shift

1 -0.1037 ± 6.01943 2.2 1.3 0.8

2 -0.1850 ± 3 4 .5 3 2 13 0.1 0.2 0.2

3 -0.3589 ± 61.92473 5 7 5

shifts are used for each step in the design process. Although the performance might be

improved by iterating over the alpha shifts at each gradient search, the computational

burden would be excessive.

Note that the alpha shifts for each mode are extremely large, indicating that the

design plant poles are shifted far into the right half-plane. Decreasing p and A will

cause the closed loop poles to go to the stable reflections of the design poles, that is,

far into the left half plane. The compensator modes, however, would become unstable.

The 26-state compensators are truncated to 7 states, and re-optimized using the

7 2 gradient search. When the resulting controllers are impinged on the two-input,

two-output plant in block-SISO architecture, the highest weighted compensator (p =

5) is found to be unstable. Only the two lower weighted compensators can be advanced

to the next, multimodel stage.

Neither of the two a-shifted compensators is stable for the design multimodel

plant. The controllers must be stabilized to the desired +10%/ - 2% shifts using

homotopy. Table 4.4 shows the steps which were taken. Neither controller could be

stabilized for any negative frequency shift. The lowest weight controller (p=0.05)

could not be stabilized to the desired +10% shift. In both cases, numerical condi-

tioning problems prevented the search algorithm from converging.

The initial alpha shifted design achieved higher damping as control weight p

was decreased. The lowest weighted controller introduced the highest closed loop

damping. However, after the gradient search procedures were performed, the lowest

weighted controller achieved less damping. The initial high performance was achieved

at the expense of robustness. To achieve the necessary robustness in the search pro-
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Multimodel homotopy steps taken to stabilize the a-
shifted controllers to +10%/ - 2% shifts in mode fre-
quency.

Gradient Search

I 1 I I I

Figure 4.14: The MF compensator control design process. The plant model
is modified to increase the observability of plant modes to the
controller.

cedure, performance was sacrificed. Since the medium weighted controller (p = 0.5)

achieved higher damping, it was chosen as the compensator to be implemented. The

closed loop poles of the final alpha shifted compensator are shown in Table 4.5. Again,

the design objective is to maximize the minimum closed loop damping ratios. The

alpha shifted compensator creates much higher damping in the first mode than the

LQG. The frequency response of the alpha shifted controller is plotted with a dashed

line
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Table 4.4:

p=5 p=0.5 p=0.05
Step + shift - shift + shift - shift + shift - shift

1 - - 1% 0% 1% 0%
2 3% 2%
3 5% 3%
4 7% 4%
5 8% 5%
6 9% 6%
7 10% 7%
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Figure 4.15: Effect of varying feedthrough: The zeros of the plant shift as

the D term is varied.

4.3.3 Modified Feedthrough Compensator

The modified feedthrough (MF) compensator of Section 2.3.2 is implemented. A

modified model is created by varying the plant model D term, as described in Section

2.3.2. A reduced order LQG design procedure is followed. Finally, the modified D

term is folded into the compensator. For the modified compensator, only one control

and sensor noise weight is used, for comparison to the highest-gain LQG controller

and the alpha shifted controller. The control weighting p is 0.05, and sensor noise /

is 0.005.

The design plant model is created by choosing the desired D term, D 2, to maximize

the pole/zero separation of the plant response as seen by the ADCE. The filter F(s)
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Figure 4.16: The G 11 transfer function at the chosen design value of D 2 ,
showing the improved modal observability.

must be chosen. Since it must be appended to the controller state vector, a low order

filter is desired. A 1-state Pade approximation to the 1 cycle digital time delay is

used. The Intels operate at 250 Hz, with a half cycle delay due to the sample and

hold, for a total time delay of 3 1 seconds. The feedthrough of the performance

transfer function is also modified, to increase modal observability in the performance.

Choice of the feedthrough term D 2 is motivated by the design to create the power

dual sensor to the piezo actuator. The exact value of D 2 which creates the power

dual sensor is not known, but it is known to give good pole/zero spacing. The dual

is approximated by choosing the feedthrough to improve the pole/zero spacing of the

model.

The effect of varying the feedthrough appears as a shift in the zeros. Figure 4.15
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shows G11 as the D term is varied. The response of the model with nominal feedthrough,

D2 = D,,om, is the solid line. As feedthrough is decreased, the zeros shift as shown by

the dash-dot lines. The first zero moves left to the origin, the second zero moves left

to the first mode, and two zeros appear between second and third modes. The lowest

feedthrough, shown by the dotted line, has moved the zeros past the optimum.

Ideally, the zeros of the design plant would be exactly between the poles, for

maximum observability. In that region, the zero locations are highly sensitive to the

D term. As a compromise between sensitivity and modal observability, the zeros

are moved part of the way from their initial positions, with a 33% reduction in the

feedthrough. The design model is then created from the Pade approximation and the

nominal plant. The modified G11 response is shown in Figure 4.16. The modified

plant rolls up at high frequency, because the Pade approximation is in error above 40

Hz. This does not create a problem, because the controller will roll the loop off.

As a result of the increased modal observability, a sensitized LQG method can be

used to create the initial compensator. "Sensitivity- Weighted" LQG, or SWLQG,

modifies the LQG cost to decrease sensitivity to particular modes. Details can be

found in [22]. For frequency shifts, the SWLQG modification can be parameterized

in terms of a scalar p. For the nominal plant, which has poor observability of the

second and third modes, increasing , causes the second compensator mode to become

unstable. However, for the modified plant, the f factor causes the SWLQG compen-

sator to become more heavily damped, which in turn results in lower sensitivity to

mode shifts.

Because the SWLQG formulation is a modification of the Riccati-based LQG

controller, it can be solved in closed form for the initial design. The initial design

is then reduced to seven states. The seven state compensator is found to be stable

when impinged on the block-SISO, multimodel plant. By the use of the feedthrough

modification, combined with the SWLQG method, the three steps required to get

the reduced order LQG controller into block-SISO, multimodel-stabilized form shown

above, have been reduced to a single step.

Lastly, the 1-pole Pade filter is appended to the controller, as in Equation 2.182.
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Figure 4.17: AMASS compensator designs: reduced order LQG (solid),
alpha-shifted (dashed) and MF (dash-dot), plotted with the

open-loop plant response G11 (dotted).

The response of the resulting 8-state controller is shown with a dash-dotted line in

Figure 4.17. The closed loop poles are given in Table 4.5. For the same p, the closed

loop damping is higher than the LQG closed loop. It is less than that achieved by

the best alpha shifted compensator.

In the next section, the LQG, alpha-shifted LQG, and MF controllers will be

analyzed and compared using the measured plant data. The robustness of controllers

to frequency shifts in the first three modes will be analyzed using the evaluation

model.
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Table 4.5: Closed loop poles for the final designs.

LQG a-shifted MF

Mode Freq [Hz] Damping [%] Freq [Hz] Damping [%] Freq [Hz] Damping [%]

1 0.4948 68.30 0.6328 48.98 0.3988 33.18

0.5176 21.85 1.6473 52.13 0.4025 89.09
0.9073 30.44 1.9689 89.52 0.9644 32.05

2 5.5321 1.70 5.5837 01.19 5.6247 1.14
6.3594 8.50 6.4245 12.24 8.4402 15.45
6.4112 8.15 6.7012 10.09 8.7800 31.04

3 9.8331 9.38 9.6288 20.88 10.5218 13.00
10.9405 19.24 13.2982 12.55
10.9745 10.04 13.6195 27.15

4.4 Analytical Evaluation of AMASS Controllers

A useful way to analyze the compensators is to "close the loop" on measured data.

Closed loop stability can be assessed using a Nichols chart, a variant of the Nyquist

plot. Since the MIMO Nyquist criterion involves a determinant of the MIMO loop

transfer function, robustness margins cannot be determined. The closed loop sensi-

tivity can be used look for marginally stable modes, which may be unstable when

the controller is implemented on the plant. Finally, the closed loop response can be

calculated and compared to the response of the model.

Since the AMASS controllers are designed to give performance and stability ro-

bustness to large modal frequency shifts, it is desirable to quantify the achieved ro-

bustness. Using the model, the closed loop output covariance of the sensor at ADCE

1 will be found as the first, second, and third modes are independently varied in fre-

quency. The covariance will go to infinity as the closed loop system becomes unstable.

The plot of output covariance versus mode shifts is a form of robustness bucket. The

width of the bucket indicates the range of modes shifts which can be stably accom-

modated. The "flatness" of the bucket is a measure of how the performance degrades

for stable frequency shifts.
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4.4.1 Analytical Tools for Assessing Stability and Perfor-

mance using Data

MIMO Nichols Chart The MIMO Nyquist criterion states that for positive feed-

back, the closed loop system will be stable if the number of clockwise encirclements

of the -1 point by

- 1 + det(-I + G(jw)K(jw)) (4.3)

is equal to the number of unstable poles in the open loop plant and compensator. I

is the identity matrix, and G(jw)K(jw) is the MIMO loop transfer function evalu-

ated along the imaginary axis. G(jw) is the matrix of plant transfer functions. For

the AMASS controllers, GK is a 2 x 2 matrix (at each frequency) composed of the

measured transfer functions:

G(3w) = Gii(jw) G 1 4 () (4.4)
G 41 (jw) G 4 4 (W) ]

where Go is the transfer function from input i to output j. The compensator response

K(jw) is 2 x 2 and diagonal, due to the uncoupled ADCEs. The diagonal entries are

identical due to the single-compensator implementation:

K(yw) k(w) 0 (4.5)
0 k(jw)

The transfer function k(jw) is the SISO response of one ADCE controller, evaluated

at all the frequencies in the data frequency vector. The data vectors are cycled

through point by point, creating the plant and compensator matrices and calculating

Equation 4.3 at each data point.

The MIMO Nyquist criterion is used by plotting the real part of Equation 4.3

versus the imaginary part at all frequencies. Since the number of open loop unstable

poles is zero, there must be no encirclements of the -1 point. For a structural system

with many lightly damped poles, the Nyquist plot can become difficult to decipher.

An alternative is the Nichols chart, which consists of the logarithmic magnitude of

Equation 4.3 plotted against the phase. The critical point -1 is represented by those
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points with unity magnitude and -180' + 3600n phase, where n is an integer. Using

the Nichols chart, stability can thus be inferred directly from the data. However,

since the quantity plotted is found from a determinant, which is a highly nonlinear

operation, stability margins cannot be inferred. The Nichols plot is only useful in

predicting stability.

Closed Loop Sensitivity The closed loop sensitivity S(jw) provides one measure

of stability robustness. The sensitivity is given by

S(jw) = (I + GK)-' (4.6)

and have been used to assess the effect of disturbances on the mean-square track-

ing error [3]. The singular values (SVs) of the sensitivity can also be used to spot

potentially unstable modes.

Modes which are nominally stable, but are on the verge of instability, will be

lightly damped. The maximum sensitivity SV will increase sharply at that frequency.

Thus spikiness in the sensitivity SVs is an indicator that closed loop modes may be

near the jw axis, without showing which side. It is generally useful to compare the

sensitivity on the data to the sensitivity of the closed loop on the model. If the

spikes appear in the model, the measured SVs may be showing the effects of noise.

Otherwise, the spike may arise from a discrepancy between the actual plant and the

model, and the closed loop may be unstable.

Closed Loop Frequency Response Compensator performance can be assessed

from the data by forming the closed loop response from the plant and compensator

transfer function matrices. The closed loop response is

Ga(jw) = (I + GK)-1 G (4.7)

There is a danger in using the closed loop response to judge the AMASS controllers.

Pole/zero cancellations can reduce the closed loop response without increasing the

system damping. Instead, the response using data is compared to the response of the

closed loop model. If the responses are similar, the closed loop system are inferred to

be similar to the poles of the model, which are known to be well damped.
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Robustness Bucket The mode shifts for which each compensator is stable are

found. The robustness bucket for the first mode shift is calculated by shifting the

first mode of the plant model slightly, impinging the compensator, and solving for the

closed loop output covariance of ADCE 1. The mode shift is increased and the process

repeated until the covariance becomes infinite, indicating an unstable closed loop. The

process is repeated for the second and third modes. When the covariance is plotted for

the shifted mode frequency, the plot takes the form of a "bucket". The width of the

bucket indicates the percentage mode shifts which can be stably accommodated by

the compensator. The flatness of the buckets indicates the performance robustness.

4.4.2 LQG analysis

The analytical examination of the controllers is first performed for the LQG controller.

The MIMO Nichols chart for the LQG controller is shown in Figure 4.18. The vertical

dotted lines are lines of -180' + 360'n phase, and the horizontal line indicates a

magnitude of 1. The magnitude of the response is below 1 at all phase crossings,

indicating the closed loop will be stable.

The closed loop sensitivity maximum and minimum SVs are plotted in Figure 4.19,

obtained from the data and the model. The features of concern are the spikes. The

most prominent spike is at 0.9 Hz. Such spikes can result from noise in the data, or

can be indicative of lightly damped closed loop modes. Sensitivities of greater than

10 indicate a high probability of instability on the physical plant. The singular values

on the data are much lower, and all but the 0.9 Hz match the model closely. It can

be concluded, based on the information provided by the Nichols and sensitivity plot,

that the LQG controller will be stable on the experimental structure.

The closed loop response of the structure, through ADCE 1, is plotted for the

model and the data in Figure 4.20. The predicted response on the data matches the

model closely. The compensator should achieve approximately the same damping on

the testbed as on the model.

The robustness buckets are plotted in Figure 4.21. The y axis is covariance of the

output of ADCE 1. The x axis is the frequency of the shifted mode. The nominal
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Figure 4.18: Nichols plot of the LQG compensator: The plot must pass below

the critical points, marked by "x"s.

mode frequencies are marked with vertical dotted lines. As each mode is shifted, the

other modes are fixed at their nominal frequencies. The gray shaded areas represent

a ±10% shift in the nominal frequency. The width of the bucket is the stability range

of the compensator. The LQG controller is stable to first mode shifts of -37% and at

least +300% (the covariance was only checked for +300% shifts). Second mode shifts

of at least -300% and +23% are stable, and third mode shifts of -30% and at least

+100% are stable. The increase in covariance at 20 Hz be be stable, or the system

may be unstable for a narrow range of mode shifts. Since the analysis calculates

the covariance for a discrete set of frequency shifts, two finite covariance points may

bracket a frequency at which that mode causes the closed loop system to be unstable.

Note that the closed loop system remains stable even when the second mode is
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Figure 4.19: LQG compensator sensitivity singular values, calculated from
the data (solid) and the model (dashed).

shifted below the first mode. This is because the modes have the same sign residue.

There will always be a zero between them, so the phase will remain bounded. The

third mode can be increased indefinitely because the loop is gain stable. The most im-

portant source of instability is when the second mode increases, or the third decreases.

This region is where the plant phase crosses 00. However, the compensator has eas-

ily achieved the design goals for stability robustness to mode shifts, and the relative

flatness of the buckets indicates that damping performance is also quite insensitive

to plant mode shifts.
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Figure 4.20: The closed loop response for the LQG controller: obtained from
data (solid) and the state space model (dashed). The open loop
data is also plotted (dotted).
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Figure 4.21: The covariance of the output of the ADCE 1 sensor, as modes

1, 2 and 3 are varied. The nominal frequencies are marked by

the vertical dotted lines.
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4.4.3 Alpha shifted LQG analysis

Next the alpha shifted controller is analyzed. The MIMO Nichols plot for the alpha

shifted compensator is shown in Figure 4.22. The critical points at 1800 and -180o

are approached more closely than by the LQG design. With the proviso that the

Nichols plot does not clearly relate to stability margins, one can predict that the

alpha shifted compensator will not be as robust to mode shifts. The closer approach

is between the second and third mode frequencies, due to the attempt to enforce

damping in those modes.

The sensitivity SVs for the alpha shifted compensator are shown in Figure 4.23

for the data (the solid line) and the model (the dashed line). Once again some

spikiness is evident near first mode. The spike at 20 Hz is sharper. However, the

spike appears in the model singular values also, indicating that the mode has been

stabilized. The conclusion can be made that the alpha shifted compensator will be

stable when implemented on the testbed.

The closed loop response of the plant, when the alpha shifted compensator is

applied, is shown in Figure 4.24. The first three modes are all damped. However, the

off-resonance response has been increased. This should not be considered a severe

difficulty. The response can be interpreted as an active softening of the array. In open

loop, the active yoke is stiffer than the solar panel. Strain energy tends to concentrate

in the softer elements. By actively destiffening the yoke, the controller increases the

proportion of strain energy in the yoke, thus more energy is available to be damped.

The robustness buckets for the alpha shifted controllers are plotted in Figure 4.25.

As before, the nominal modes are shown as vertical, dotted lines, and the desired

±10% shifts are the shaded regions. Clearly the robustness of the alpha shifted model

is lower than the LQG model. The closed loop is barely stable for ±10% second mode

shifts. The first mode stability range is quite acceptable at -58%, +200%. The third

mode is stable for -28%,+50%. The stability robustness is therefore within the design

goal, although the second mode is marginal. Subjectively, performance robustness is

also lower than the LQG design, based on the curvature of the buckets. A small shift

in mode frequency results in a large loss of performance.
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Figure 4.22: Nichols plot of the alpha shifted LQG compensator: The plot
must pass below the critical points, marked by "x"s.

The choice between the LQG and alpha shifted LQG is clear if robustness is the

only concern. However, a substantial increase in nominal closed loop damping is

gained by the decrease in stability and performance robustness. First mode has more

than twice the closed loop damping for the alpha shifted design than for the LQG

design. If the required stability robustness bounds can be relaxed, the alpha shifted

compensator offers clear performance advantages.
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Figure 4.23: alpha shifted LQG compensator sensitivity singular values, cal-
culated from the data (solid) and the model (dashed).
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Figure 4.24: The closed loop response for the LQG controller, calculated
from data (solid) and the state space model (dashed). The
open loop data is also plotted (dotted).
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Figure 4.25: The covariance of the output of the ADCE 1 sensor, as modes

1, 2 and 3 are varied. The nominal frequencies are marked by
the vertical dotted lines.

165



4.4.4 Modified Feedthrough Controller analysis

The modified feedthrough controller is now analyzed. The Nichols plot for the MF

compensator is given in Figure 4.26. The controller is stable on the data. The

proximity to the Nyquist point appears to be greater than the LQG design, but less

than the alpha shifted LQG. The Nichols plot rolls off well before the second critical

point at -540'.

The sensitivity SVs for the D term compensator are plotted in Figure 4.27. The

SVs of the data are the solid curve, and the model SVs are dashed lines. Spikes

occur at 0.9 Hz and 6 Hz. The spikes at 6 Hz are present in the model. Again, the

first mode appears most likely to pose a stability problem when the loop is closed.

However, the spike may arise from noise in the data. The MF controller appears to

be stable on the structure, based on the Nichols and sensitivity plots.

The closed loop plant response achieved by the modified feedthrough controller is

shown in Figure 4.28 for the model and the data. The first and third mode damping

appears to be higher than the LQG design. The off-resonance response has not been

increased in the manner of the alpha shifted design. The only questionable feature

is that second mode seems to be less damped than either the alpha shifted or the

LQG designs. However, it is not clear from the transfer function whether the LQG

compensator, above, is damping the second mode, or canceling it with a zero. A

conclusive assessment of the second mode damping, between the LQG and modified

feedthrough compensators, cannot be made from the predicted closed loop response.

The robustness buckets for the modified feedthrough compensator are shown in

Figure 4.29. The first three nominal plant modes are marked with vertical dotted

lines, and the ±10% frequency ranges are shaded gray. As with the LQG controller,

the closed loop system is stable even if first and second modes flip. The closed loop

is stable for up to -47% shifts in first mode, and for at least a threefold increase in

frequency. Second mode can range between -300% and +26% without destabilizing

the closed loop system. Third mode can vary from -29% to more than +300%. The

covariance plots as a function of modal frequency shift are relatively flat, indicat-

ing minimal loss in performance for stable mode shifts. Performance robustness is
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Nichols plot of the modified D term compensator: The plot

must pass below the critical points, marked by "x"s.

comparable to the LQG design.

The results of experimental implementation of the three control designs will now

be presented.
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Figure 4.27: MF compensator sensitivity singular values, calculated from the
data (solid) and the model (dashed).
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calculated from data (solid) and the state space model (dashed).

The open loop data is also plotted (dotted).
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4.5 Experimental Evaluation of AMASS Controllers

The three state space controllers are implemented on the ground testbed in the can-

tilevered configuration. Three types of measurements are made. The frequency re-

sponse of the Intel microcontroller is measured, to ensure that the compensators are

being implemented by the ADCEs. Second, the closed loop plant response through

the ADCE 1 piezo drive amplifier to nearly collocated sensor is measured, while each

compensator is implemented on ADCEs 1 and 4. The results will be compared to the

predicted closed loop response. Since the closed loop poles of the model are known,

a similar measured closed loop response will indicate that the closed loop poles of

the structure are in approximately the same locations. Finally, time domain impact

tests are conducted. The flight experiment is intended to minimize jitter induced

by a series of step commands. The actual objective is to minimize a transient con-

dition, while the 7i 2 design methodologies presented above minimize a steady state

motion. Hence the impact tests will result in a more representative comparison of

the controllers.

4.5.1 Measured Compensator Frequency Response

Measurement of the compensator response is done by feeding a white noise into the

nearly collocated sensor A/D port, and measuring the filtered D/A output while the

Intel runs the state space controllers. The white noise amplitude is set to be the same

as the sensor signal amplitude when the plant is driven open loop. The matrix scaling

parameter 0 is adjusted for this input amplitude (see Section C). Since the closed

loop system will be more highly damped, this is a conservative scaling. In open loop,

a 1 volt RMS white noise input produces about a 1 volt RMS sensor output.

The continuous controllers are implemented on the Intel by discretizing them to

run at 250 Hz, placing them in real modal form, then finding their integer represen-

tations, A*,B*,C*, and D*. The matrix divisor element, a, is chosen to be 32,000.

Table 4.6 shows the errors in the Intel pole locations, compared to the continuous

pole locations. The discrete poles are the eigenvalues of _, which have been mapped
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Table 4.6: Continuous and discrete pole frequencies for the compen-
sator poles, showing the effects of compensator discretiza-
tion and roundoff error.

LQG a-shifted LQG Mod. Feedthrough LQG
Cont's Discrete Error Cont's Discrete Error Cont's Discrete Error

Hz Hz % Hz Hz % Hz Hz %

0.484 0.484 0.222 0.537 0.539 0.701 0.378 0.380 0.664
6.309 6.297 0.199 5.803 5.798 0.077 9.8993 9.956 0.577

11.643 11.5638 0.704 6.140 6.155 0.238 12.118 12.043 0.767
58.247 74.243 27.463 14.461 14.301 1.106 47.713 46.451 11.419

123.372 139.091 113.2315

into the continuous domain using the relation z = esT, where T is the sample fre-

quency. The error is a combined result of the warping effect of the continuous to

discrete transformation, and the roundoff of the integer representation. The greatest

errors are in the high frequency poles, where warping is the dominant source of error.

Within the control bandwidth, the largest error is slightly over 1%.

The compensators are uploaded to ADCE 1, and a 1 volt signal is used to drive

the ADCE. For the LQG, alpha shifted, and modified feedthrough compensators,

ps of 10, 7.5, and 10, respectively, are found to yield good compensator frequencies

responses. The measured compensator responses are plotted against the continuous

compensators in Figures 4.30-4.32. Since the measured compensators include a full

cycle time delay due to the digital implementation, the continuous compensators are

also plotted with the expected phase loss of 3 1 180.2 250 7r

The LQG controller implementation is quite accurate (Figure 4.30). The largest

magnitude discrepancies occur at low frequency. The discrete first pole appears to be

at slightly above 5 Hz, rather than 4.84 Hz. A low frequency ID confirmed that the

effect is not due merely to a lack of low-frequency excitation, or to having too few

frequency points in that range. Since the first mode to be damped occurs at 0.9 Hz,

where the magnitude has recovered, the error should not be significant.

The measured phase exhibits more loss than expected, on the order of 100 at

10 Hz. The effect is partially due to the antialiasing filters in the data acquisition
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Figure 4.30: Discrete LQG compensator measured through the ADCE

(solid), plotted against the continuous compensator with pre-

dicted time delay (dashed).

hardware, and is not representative of the actual compensator response. However,

the additional phase loss is greater than the measured loss of the filters. Possibly the

weighted filter which combines the Intel D/A outputs is the source.

The alpha shifted compensator is plotted in Figure 4.31. The low frequencies are

again slightly in error. The most significant error occurs in the third compensator

pole. The Intel discrete pole error is only 1%. The discrepancy between the measured

and continuous compensators in Figure 4.31 is not due to the discretization or to

roundoff. It is possible that due to the light damping in the 14 Hz mode, the B1/C,

scaling is sensitive. The output is software-limited. A white noise signal which drives

the other compensator states enough to get good signal to noise may overdrive the
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Figure 4.31: Discrete alpha shifted LQG compensator measured through the
ADCE (solid), plotted against the continuous compensator with
predicted time delay (dashed).

14 Hz mode. It may not overflow, but the output can be clipped. The result would

be apparently increased damping at that mode, and no effect would appear at other

frequencies.

The modified feedthrough controller is plotted in Figure 4.32. Again a low fre-

quency error is noted. The occurrence of the same error in all three responses suggests

that the microcontroller is somehow at fault. The ADCE implementation also shows

some error at the higher frequencies around 10 Hz. However, the response is very

close.

As a side note, the Intel has been used to implement compensators with poles

which have lighter damping than the controllers above. The frequency response er-
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Figure 4.32: Discrete modified feedthrough compensator measured through

the ADCE (solid), plotted against the continuous compensator

with predicted time delay (dashed).

rors were no greater, leading to the conclusion that lightly damped compensator poles

are not themselves causes of error, and do not necessarily need to be avoided. How-

ever, lightly damped poles can increase the stability problems caused by the Intel

implementation errors.
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Figure 4.33: Closed loop frequency response through ADCE 1, measured

(solid) and modeled (dashed), with the LQG controller closed
at ADCEs 1 and 4.

4.5.2 Measured Closed Loop Frequency Response

The three controllers are uploaded to ADCEs 1 and 4. ADCE 1 is driven with an

additive white noise, and the ADCE 1 nearly collocated sensor is measured. The

resulting closed loop responses are shown in Figures 4.33-4.35. Also plotted is the

response of the closed loop state space model.

The measured LQG closed loop response is shown with the closed loop model

response in Figure 4.33. The measured response is the solid line. The model response

is the dashed line. The open loop is plotted for reference with a dotted line. The

experimental data actually shows a lower average response than the model response.

From arguments made previously, this does not indicate that the achieved damping

176



010-

------ Mode---

10 -2'

101  100 101
200

1clo00 Measured at ADCEs 1 and 4.

Modis better than the damping in the model. However, the similarity of the responses

in the testbed can be inferred. Note that the spike which appeared in all of theOL

Figucompensators show anyClosed loopightly dampedquency response at or near the first1, mode fasrequency.

cThe experimentalosed alpha shifted LQG closed loop is shown in Figure 4.34. The4.

is better than the damping inis the solidmodel. Howeverline, the similarityclosed loop modelthe response is plotted with a

locdashed ine, ands the model poles. Since the damping of easured open loop is shown with a dotted line. Again some

minor discrepancies are present between the model and the data. In this case, the

177



)00

10

10 100 10
200

100

0-

1 10 10100 -10, 1
Frequency [Hz]

Figure 4.35: Closed loop frequency response through ADCE 1, measured

(solid) and modeled (dashed), with the modified feedthrough
controller closed at ADCEs 1 and 4.

increased off-resonance response of the closed loop is associated in the model with

increased modal damping. The lower magnitude of the measured data may indicate

the achieved closed loop damping is less than the closed loop model damping.

The measured closed loop response achieved by the modified D term compensator

is plotted in Figure 4.35. Once again the average measured response is lower than the

response of the model. The first mode appears to be slightly less damped than the

model first mode. The response at the third mode agrees closely between the measured

and modeled responses. The measured closed loop second mode response appears to

be significantly lower than the model second mode. This potentially indicates some

cancellation-type effect which does not translate to improved disturbance attenuation
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for other disturbances.

A series of time domain tests are performed, to examine the performance when

the plant is subjected to disturbances which were not modeled in the control process.

This type of test will tend to emphasize the damping ability of the controllers.

4.5.3 Measured Closed Loop Impact Tests

A series of impact tests are performed to assess the modal damping of the closed

loop structure. Time domain testing captures the transient performance which will

be important to the flight experiment. Three tests are conducted for each of the

controllers, and on the open loop plant. Each test consists of a sharp impact at

some location on the structure. Sensor data from the ADCEs is used to measure the

number of cycles over which the induced motion dies out.

The magnitude of the impact scales the maximum sensor output. The number

of cycles needed to damp the array is independent of the force, so the impact force

was not measured. The data is compared by normalizing it by the first positive peak

amplitude. The impact was delivered by rapping the array sharply with the finger

tips, thus the impact is not a pure impulse. However, the force should have gone to

zero by the first positive peak. Three locations were selected to deliver the force to,

in order to excite the first, second, and third modes independently.

The impact locations are shown in Figure 4.36. First mode is the first bending

mode of the array. The first mode impact point is in the vertical plane of symmetry,

three-quarters of the way up the panel. Second mode is the torsion mode. The impact

point is at the edge of the array, low to the base to minimize the excitation of bending

modes. The third mode is the second in-plane bending mode. The impact point is

on the vertical line of symmetry, on the lower face of the array simulator panel.

Array motion is measured using the nearly collocated sensors on the diagonal

members, on ADCEs 1 and 4. The sensor signals are fed through a pair of antialiasing

filters, and into the data acquisition computer. The computer is configured in a time

capture mode. When the input voltage exceeds a preset trigger voltage, the computer

collects a block of data. There is a finite trigger delay, partially proportional to the
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Figure 4.36: The impact locations on the AMASS array: (1) first bending
mode , (2) first torsion mode, (3) second bending.

sample frequency, and partly a fixed length delay before the computer can begin to

store data. The sensor data from each sensor is stored separately. It can be averaged

to partially remove the response of other modes. In-plane bending modes produce

sensor outputs which are in phase. By averaging the two signals, torsional motions

can be subtracted out of the data. Torsion data is filtered by subtracting the sensor

signals to remove the contribution of in-plane modes.

The sample rate for each mode was chosen to give at least 10 samples per mode.

The number of points taken at each frequency was chosen to capture at least 10 cycles.

The first mode data consists of 1000 samples taken at a sample rate of 20 Hz. The

measurement is the sum of the sensor signals, to cancel out torsional motions. Only

the first 20 seconds of data will be shown, since the controllers uniformly damp the

first mode in three or fewer cycles. For the second mode, 300 samples were taken at

80 Hz. The excitation tended to create more output from the more lightly damped,

higher modes. The signals are differenced to measure torsion. The third mode data

consists of 600 points taken at 400 Hz.

The FFTs of the three open loop measurements are shown in Figure 4.37. The
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Figure 4.37: FFTs of the tome domain data. A) 1 t mode excitation, av-

eraged sensors. B) 2nd mode excitation, differenced sensors.

Shown is the postprocessed, filtered data (solid) against the un-

filtered (dashed). C) 3 rd mode excitation, averaged sensors.

upper and lower plots give the FFTs of the raw open loop data, for impacts at the

mode 1 and 3 impact locations, respectively. The sensor data has been averaged to

remove the appearance of torsion modes. The FFTs show that the excitations for

these modes were very clean. The first mode is exclusively excited. The third mode

impact point also excites first mode, however, the signals are easy to discriminate in

the time domain data. Unfortunately, the second mode impact test creates motion in

several modes, of comparable magnitude to the second mode. It is nearly impossible

to pick out the second mode contribution.

The time domain data can be post-processed with a digital filter. Using a 4-pole
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discrete time Butterworth filter, the data sequence can be filtered once in the forward

direction. The filtered data is then reversed and filtered again. The final filtered

signal has zero phase distortion and an effective 8 pole filter. The cutoff frequency

is 10 Hz. The center plot shows the FFT of the filtered second mode data (solid)

plotted against the FFT of the unfiltered data (dashed). The 10 Hz response has

been reduced, and the higher contributions completely eliminated. The desired 5.5

Hz response is unattenuated. Note that the filtered time data will show the effects

of initial conditions near the start and end times. Since the filter and the plant are

linear systems, the damping of the system will not be distorted by the filtering. Since

all three signals to be compared are filtered, the filtering process does not effect the

validity of the conclusions.

The closed loop ringdown data are shown in Figures 4.38-4.40. The first mode

damping is uniformly good. The second mode damping is fairly low. The third mode

response is damped by all three controllers, although not as heavily as the first mode.

The alpha shifted compensator produces the quickest ringdown of first mode,

in about one and a half cycles. Surprisingly the MM compensator damps the first

mode better than the MF compensator. However, the MM controller response does

not completely settle until about 4 seconds have passed. The modified feedthrough

controller response seems to settle in about 3.5 seconds.

The second mode is damped best by the LQG multimodel controller, although the

damping is too light to show the number of cycles to damp. The alpha-shifted and

modified feedthrough controller achieve about the same performance. The damping in

the third closed loop mode is about equal for the alpha-shifted and the MF controllers.

About six cycles are required to damp the oscillations out. The MM controller requires

about seven cycles.

4.6 AMASS Ground Testbed Conclusions

Three 7-20optimal control techniques were used to design compensators to actively

damp the AMASS ground testbed. The techniques were LQG, alpha shifted LQG,
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Figure 4.38: LQG compensator: measured ringdown for first, second, and
third mode excitations, in closed loop (solid) and open loop

(dotted). Second mode has been postprocessed.

and Modified Feedthrough (MF) LQG. All involved a multimodel optimization. The

controllers were analytically examined for robustness, and experimentally compared

to determine which gave the highest performance. The objectives, determined from

the AMASS flight experiment, were to design controllers which gave high damping in

the first three modes, and were stable to +10% and -10% mode shifts in the same

modes. Additionally, complexity of the design process is a factor.

The AMASS controllers were designed to be stable for +10% and -2% mode

shifts. These values were based on the differences in mode frequencies in the ground

and flight testbeds. It was desired to confirm the robustness of the designs to mode

frequencies experimentally. Unfortunately the flight hardware was not complete at
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Figure 4.39: alpha shifted LQG compensator: measured ringdown for first,
second, and third mode excitations, in closed loop (solid) and

open loop (dotted). Second mode has been postprocessed.

the time the experiments were performed. However, the robustness analysis showed

that all the control design procedures were stable to +10% and -10% mode shifts.

The alpha shifted compensator is the only marginal design, for the second mode shift.

Therefore the control design processes all should be capable of giving the same degree

of stability robustness to the flight controllers.

Performance robustness was found, analytically, to be markedly better for the

LQG and MF compensators. While the alpha shifted compensator gives better damp-

ing to the nominal plant, performance degrades rapidly as the modes shift. Addition-

ally, the design process for the alpha shifted compensator begins with an iteration

to determine a set of alpha shifts. The iteration involves a Riccati LQG solution at
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Figure 4.40: MF compensator: measured ringdown for first mode excitation,

in closed loop (solid) and open loop (dotted). Second mode has
been postprocessed.

each step. The computational cost is high, and many steps are needed because of

the highly nonlinear interaction of mode shifts with the closed loop poles, and the

necessity of a stable compensator.

The MF compensator also requires a design model to be iteratively chosen. How-

ever, the iteration does not require a Riccati solution. Only a single parameter, D2 ,

is varied, and the desired behavior of the plant is very clearly related to the variation

of D 2. Hence the creation of the design model is a minor task, generally quicker than

the choice of control and performance weights. The MF compensator process is the

same order of difficulty as the LQG design.

The alpha shifted compensator achieved the highest first mode damping, andz -1 t ttt
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damped third mode well. Performance of the LQG and MF controllers on the AMASS

ground testbed was found to be more similar than the analysis suggested. Based

on analytical tests, the modified feedthrough controller was expected to give better

performance on the structure. It is suggested that the experimental performance of

the MF designs was less than predicted because nonlinearities in the piezoelectric

actuators were not accounted for.

However, both the LQG and MF controllers achieved acceptable damping in the

first and third modes. None of the compensators damped second mode well, although

some damping was evident.

Based on the robustness tests of the previous section, the alpha shifted model is

most likely a poor choice for the flight controller. The modified feedthrough controller

requires only slight additional effort, for some improvement in the predicted response.

No robustness on the plant model is sacrificed. If the performance of the MF controller

on the testbed can be increased to its predicted level, the flight controller will have

similar performance to the alpha shifted controller for a large increase in robustness.
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Chapter 5

Conclusions

The purpose of this thesis has been to examine the implementation of local controllers.

Local control techniques which control the flow of power through the controlled loca-

tion were examined. Specifically, impedance matching was shown to be the optimal

method to damp a structure. The energy shunting approach was shown to be the op-

timal local controller formulation for zeroing transmissibility through the controlled

location. Their ability to guarantee stability and a certain level of performance make

them ideal for structural control. Further, any local controller can be described as a

combination of impedance matching and energy shunting.

The derivation of local control for structures was then extended to structures

which are not positive real, to capture effects which will be present in many physical

systems. Two representative effects, time delay and noncollocation, are examined.

Time delay, which can result from a digital implementation, is considered in terms

of its effect on the stability and on the performance of the local controllers. Stabil-

ity in the presence of time delay is found to place constraints on the rolloff of the

controller. For the desired bandwidth of control, certain time delays cannot be accom-

modated. The local controller in the presence of time delay is found by incorporating

the inverse of the time delay into the optimal impedance match, and approximating

the augmented controller. The result is compared to the creation of a positive real

design model from the actual, nonpositive real plant.

Noncollocation removes a fundamental property of the local controllers, that the
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actuator and sensor together control power. If the requirement is not met, the

impedance matching and energy shunting techniques are not applicable. This fol-

lows from conceptual reasons, since the quantity being controlled is no longer power.

Also, the local model is no longer accurate. As an alternative, the global attributes

of the impedance match and energy shunt are examined, and a number of state space

techniques which capture these attributes are enumerated. Three of these are exper-

imentally investigated on the AMASS solar array simulator.

The experimentally implemented techniques are reduced order multimodel design,

alpha-shifting, and a modified feedthrough compensation scheme. The alpha-shifting

adds damping to the closed loop modes. First mode damping of 48% on the analytical

mode is achieved. The MF design increases the modal observability of the design

model, which increases the damping in the predicted closed loop modes from 22%

to 32% in the first mode, and from 9% to 13% in the third. Second mode damping

is limited to less than 1.5% in all controllers, by a combination of low observability

and the need to transition the loop phase through -180' between second and third

modes. However, this represents a factor of 3 improvement over open loop second

mode damping.

The experimental results confirm that the alpha-shifted compensator achieves the

highest damping. However, analytical results indicate a lack of robustness. The MF

controller achieves approximately the same level of damping on the testbed as the

MM compensator. The inability of the MF controller to achieve the predicted levels

of damping is suggested to result from the failure to account for nonlinearities in the

piezoelectric actuator.

Future Work. A number of research paths have been opened up by the work in this

thesis. The highest potential advantage could be gained by stating the local control

objectives in terms of a global, state space model. The state space 72 techniques

used on the AMASS structure are not related directly to the local power costs. State

space formulations whose minimizing solutions are the impedance match and energy

shunt are desired.
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A second potential area of research is the modified feedthrough control design.

Two questions must be researched. First, the motivation for the design is to create

the correct power dual sensor for the given actuator. The connection between the MF

formulation and power dual sensor must be made explicit (this may also lead to con-

nections with the simultaneous sensing and actuation of [14]). Second, modifications

to counter the effect of piezoelectric nonlinearities must be incorporated.

A final question concerns the noncollocation of the sensor and actuator. It was

suggested in Section 3.2 that an impedance matching compensator could be derived

for a nearly collocated sensor and actuator by designing an observer which would

estimate the velocity at the actuator location based on the velocity at the sensor

location. Such a physical state estimator would enable an impedance match to be

designed.
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Appendix A

Global Wave Model

A global wave model of an arbitrarily complex waveguide-like structure can be con-

structed from the wave coordinate junction description, Equation 2.8, and the trans-

mission matrix Equation 2.11. Consider Figure A.1, a truss structure composed of

M separate members, intersecting at N junctions. The structure is separated into its

component members, and the junctions are identified. At each junction n, n = 1..N,

a set of incoming and outgoing wave modes [ are defined. Using the boundary
won

conditions at each junction n, the scattering matrices S(w), and I(w), for each junc-

tion are found. The member transmission matrices m, m = 1..M, are determined

('m is the transmission matrix from one end of member m to the other).

A vector of global wave mode amplitudes is defined by stacking the individual

junction wave mode amplitudes together:

Wit

Wi 2

W =[ ] (A.1)

wo0 2

where the numerical subscripts indicate the junctions at which the wave amplitudes

are described. The incoming wave modes at each junction are related to the out-
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Figure A.1: Truss structure

going waves at the other junctions by Wi

assembling the individual member (s, eg.

W 
i

Wi
2

W23

= globWo. The matrix 'glob is created by

0 '2-1

1-2 0

~1-30 0

3-1

0

wo,

Wo2

Wo
3

(A.2)

Similarly, global scattering and generation matrices can be assembled from the

individual junction scattering and generation matrices, such that Woglob = SglobWiglob +

globQ glob . The resulting global model can be combined such that:

W al ob + (A.3)

Wo Sglob O Wo glob

With a specified forcing condition Qglob, this equation can be solved at each frequency

196



for W:
/ F -1

W = - s0 Glob J globQglob (A.4)
S I Sglob 0

where I is the appropriately sized identity matrix, and W, 'glob, Sglob, and Tglob are

functions of frequency.

The transformation matrix Y can be used to transform the wave mode amplitudes

back into physical coordinates:

U 1

UuN = Ylob(w)W(w) (A.5)
F fi

fN

where Yglob is assembled from the individual junction transformations:

YU., 0 ... Yo, 0

Y9lob = (A.6)

0 Yfi2  0 Yf02

For example, by setting

fi(w) 0

Q(w) = f,(w) 1 (A.7)

fN(w) 0

f, is modeled as a white noise input. By solving Equation A.4 at a vector of fre-

quencies w, and converting to physical coordinates, a transfer function from force f,

to physical displacements un at the junction can be calculated. The power of the
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wave model is that it is an exact solution to the governing PDE of the structure,

unlike a finite element model, for example, which is only accurate for a certain num-

ber of modes. The main drawbacks to the wave model are that tools for constructing

complicated models are not widely available (in contrast to finite elements), and that

connections to state space representations are not readily made.
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Appendix B

Reduction and H2 Tuning

The iterative reduction and tuning of the AMASS control design (Section 4.2.3) uses

two reduction schemes to remove undesired dynamics from the state space controller.

The reduction schemes are balanced reduction and direct truncation. Balanced re-

duction places the controller into a form whose states have equal controllability and

observability. The controllability and observability is captured in the Hankel Singular

Values (HSVs) of the balanced system. States with small HSVs have a small effect

on the output, and can be removed with a small impact on the response of the sys-

tem [31]. The technique is typically used for model truncation. Optimal reduction

involves capturing the effect of the truncated poles in a D term. Since the controller

is restricted to have no feedthrough, the reduction is a suboptimal method.

Direct truncation refers to selecting specific compensator poles to remove, for ex-

ample based on frequency. ordering the controller into a block-diagonal form. States

which are outside the bandwidth of control are eliminated. Each reduction changes

the frequency response of the controller. In order to ensure that the response of

the reduced controller captures the important features of the full-order controller,

the tuning is performed to minimize the output error between the full-order and the

reduced controller. The tuning is performed after each reduction.

The tuning step is performed using a gradient search process. At an intermediate

stage in the reduction process, stage i, the reduced order controller is

X~ = Arz + B,,y
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U, = C, Z, (B.1)

The reduced order controller has been created in i steps from the n, order initial

compensator, whose dynamics are

ic = Acxe + Bry

U = i CxZ (B.2)

In the reduction step performed to create the ith reduced order controller, above, from

the (i - l)th controller, states are removed from the latter system. The truncated

states may be above the control bandwidth, or within it. Removing states within

the bandwidth tends to introduce larger errors in frequency response than removing

states from outside the bandwidth.

The ith system is tuned using a gradient search minimization technique to reduce

the error in response of the reduced system (Equation B.1) to the full order system

(Equation B.2). The cost to be reduced is the RMS error of the reduced response:

J= E ((u -z )2 (B.3)

Minimizing this cost will reduce the N 2 error between the reduced order controller

response and the full order controller response. In the frequency domain, the tech-

nique attempts to match the transfer function of the n, order controller as closely as

possible with the transfer function of the nr, order controller.

The reduced order controller which minimizes the cost in Equation B.3 cannot be

solved in closed form. Instead, a gradient search procedure, similar to the H 2 control

design methods of Section 2.3.2 is carried out. An augmented state space system is

created, whose output is the error e = u - u,:

dc A 0 x] B
= + Y

ir 0 Ari r2, Bri

e = C r-C, w (B.4)
X
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which is written in simplified notation by defining a state vector =

state dynamics are

xT
The

aX = A + By

(B.5)

The closed loop covariance of the error system Equation B.4 is Q, where

AQ + QA T + BB T = 0 (B.6)

Q is symmetric and positive definite. The cost J can be written in terms of Q:

J = tr {OTOQ (B.7)

At the optimum,

PA+ATp + OTO = 0 (B.8)

P is also symmetric and positive definite.

Adjoining Equation B.6 to the cost with the Lagrange multiplier P,

J= tr TCOOQ + P(AQ + QAi + B3T) (B.9)

The gradient of the augmented cost Equation B.9 with respect to the reduced order

compensator matrices A,,,B,,,and C,, is found. Partitioning P, Q, and (PQ) into

n. x nn x ni,,,n,, x rn,, and n x nri elements,

P1

P2

Q 1
QT

Q 2

Q3
(B.10)

Since P and Q are symmetric.

The gradients are

= 2(PQ)22

= 2(PB)2

-2(CQ) 2
cr

acri

(B.11)

(B.12)

(B.13)

(B.14)
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(PQ)22, is the n, x nr,,block of the matrix product PQ. (PB)2 is the lower n,, x 1

portion of PB:

P f- P1 P2  Bc P1Bc + P2B,. (B.15)
pT P3  Bri PTBc + P3Bri,

Similarly for CQ:

OQ O c -Q Q2 C2 (B.16)
Q Q3 CQ2 - CTriQ3

The cost in Equation B.9 was minimized using a numerical search technique

utilitizing a modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. For an

overview of numerical optimization techniques,and a discussion of the practical issues

involved, see [23].
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Appendix C

Controller Implementation

The ADCE package contains the Intel microcontroller as well as analog charge sensors

and filters. As noted, each ADCE is wired to a single actuator and sensor. The collo-

cated and nearly collocated sensor signals are conditioned using two charge amplifiers,

to produce voltages proportional to strain. The signals are fed into two 10-bit A/D

converters which are integral to the microcontroller. The signals are then combined

in a weighted sum to create a single measurement. The compensator command signal

is converted to a 10-bit output, and sent to two 8-bit D/As. The digital outputs are

combined and smoothed by a weighted analog filter, which in turn drives an Apex

PA88-based charge amplifier circuit.

The Intel operates in fixed precision. It is capable of 32-bit, integer math oper-

ations. State space matrix elements are stored as 16-bit integers and a single 16-bit

divisor. As a result a maximum of 4 orders of magnitude between the largest and

smallest elements can be attained. Special procedures must be used to scale the

controller before it is uploaded. The dynamic states are 16-bit integers. Issues of

roundoff error and overflow can arise if the sensor signal is too small or too large.

Roundoff error occurs if the states are too small. The signal to noise ratio will be

high. Overflow will cause the states to "wrap" to a number with the opposite sign.

If overflow occurs often, the compensator response will be poor.

The controller is implemented by splitting the block-SISO compensator into its

component nr x nc blocks. The blocks are all identical, as noted above, so the fol-
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lowing steps are only done once. The continuous controller is discretized. The Tustin

(bilinear) transform is used (for a discussion of the issues associated with digital

implementation of continuous controllers, see for example [32]). Note that the dis-

cretization introduces a feedthrough (D term) into the compensator matrices.

The discrete-time controller dynamics are represented in state space form as:

Xk+1 = Acxk + Bcyk

Uk = CXk + Dcyk (C.1)

where the subscript (.)k refers to the kth time step. There are n, real states. To min-

imize calculation overhead, the controller is implemented in "real modal" tridiagonal

form. In real modal form, the real poles ai are stored as diagonal entries. Complex

poles oai jwi are stored as 2 x 2 blocks on the diagonal of Ar:

Xri U, Xr bi,

+ Yk (C.2)
XZ 0"1 W1 X2 b%

X+ 1  -W1 a 1  Xi+ 1  b+1

k+1 k

All the other entries of A, are zero. The compensator is placed into real modal form

with a two-step transformation which uses the eigenvectors of the A matrix. Denoted

in matrix form by V:

V - 1AV = D (C.3)

D = (C.4)
U1 + JWl

91 - JWi

where V and D are sorted so that the first n diagonal elements of D are the real

poles. A second transformation denoted T converts the diagonalized A, to real modal
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form. Since the first n, eigenvalues are already real, the first n, x n, block of T is

the identity matrix. Each complex mode in D is transformed with a 2 x 2 block of

the form

[i ] (C.5)

so that T is zero except along the diagonal, for the first n, entries, and in 2 x 2

blocks corresponding to the complex modes of D, for the rest of the diagonal. T

transformation is

1

T = (C.6)
1 -3

1 3

The real modal controller controller is

Xk+1 = T-1 V-AVTxk + T- 1V-1Bcyk

uk = CcVTxk + DcYk (C.7)

In real modal form, the real state updates involve only 3 operations:

x,+, = arixik + biyk (C.8)

Complex states are updated in pairs, in a total of 8 operations:

+ 1 = + yk (C.9)
Xi+1 k -i 9i i+1 k bj+l

As a result, the full state update at each time step is performed in 3n, + 4(n. - n,)

operations, compared to n' + n for a full matrix Ac. Additionally, the storage

requirement for Ac is reduced from nc to n, since each 2 x 2 block of Ac has only

two independent elements, Ua and wi.

Real model storage also simplifies the scaling of the states. The scaling advantage

of real modal form results from the independence of each real state and complex state

205



pair. Each real mode state is driven by the element b, of B,, independent of the rest

of the elements. The same state contributes to the output through its own element of

Co. If the sensor signal is large, causing the state to overflow, b,, can be decreased until

the state no longer over flows. c,; is increased by the same amount, to give the same

transfer function. If the sensor signal is small, b, is increased and cT is decreased. For

the complex mode states, the same scaling applies to the corresponding 2 elements

of B. and C,. Care must be taken, when scaling lightly damped modes, to allow for

the amplification of signals near that frequency.

Additional scaling parameters are denoted a,P, and y. a is the common divisor

used to represent A,,B,, C., and D,:

A* B* C* D*
A = ,B- = ,De - (C.10)

where A*, B*, C, and D* are integer matrices. a is chosen by fixing the maximum

allowable element size. It must be representable with a 16-bit integer. The maximum

(in absolute value) element of AC,Bc,Cc, and Dc is set equal to that value. a can be

solved for. The elements of the ()* matrices are the nearest integers to aAA,aBr,aCc,

and aDa.

The choice of a trades off the discretization of the unit circle against the possibility

of overflow during the state update and output calculations. Larger as divide the

unit circle into a finer grid, allowing the discrete poles to be placed more accurately.

However, as a increases, the size of the elements of the integer matrices A*, B*, C*,

and D* increase. The size of the dynamic state vector increases proportionally.

A parameter p is coded which allows the input to be scaled up, scaling the state

vector by the same amount. The output is then scaled down by 1

Xk+1 = Acxk + B (PYk)

1
Uk = (ck) + DcYk (C.11)

The effect is identical to the Be/Co scaling above. However, f scales all the states

equally. It allows an in situ scaling, for example, for different input levels. To enable
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attenuation of the states if necessary, 3 is stored as a ratio of integers:

- = (C.12)100

ip is chosen based on the expected disturbance input. The ADCE software diagnostics

download the current states of the Intel, when poled. An input of the correct spectrum

and RMS can be fed to the ADCE. 0 is then chosen by looking at the states directly.

None of the states should below 100 often, or above 10,000 often. Alternatively, P can

be increased until the ADCE command signal exhibits frequent spiking, indicating

overflow within the processor.

Finally, an output gain y is included to provide a scaling of the output:

U=7( Ccxk) + Dr3yk (C.13)

y is implemented in integer form as --. The sign of the compensator can be changed

easily by changing the sign of -. Also, a design flaw in the D/A filter was accounted

for using y = 1350.

An additional scaling for which y could be used is to match the signal amplitudes

at the A/Ds and the D/As. The signal amplitudes should be matched so that the

full bit range of the A/Ds and the D/As are used. Ideally, an analog gain would be

included at the output of the D/As. The compensator gain would be scaled (using

y) so that the maximum gain of the compensator is unity. Any signal which does not

overload the D/As would propagate through the controller and arrive at the D/As

with an amplitude no greater than it had at the D/As. The signal to noise of the

discretization in the A/Ds and D/As would then be matched. The analog gain would

be scaled up by 1 to give the correct loop gain. The current ADCE does not include

an analog gain stage.

The sample frequency of the controller is also variable. On-chip memory limits

the maximum compensator size to 12 states. The Intel can run 12 states at 250

Hz. By reducing the number of states, the maximum sample rate can be increased.

However, a higher sample rate adversely affects the ability to place the discrete poles.

As the sample rate increases, the magnitudes of all the discrete pole locations go to
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1. The precision required to differentiate between the poles increases. Since the Intel

is limited to 16 bit precision, the pole locations degrade. Additionally. there is no

reason to increase the same rate, since the highest mode to be controlled is at 10 Hz,

a decade below the 125 Hz Nyquist frequency of the controller running at the design

sample rate.
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