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Abstract

The focus of this work is on identifying the processes behind the sustained
initiation of ionization, or "ignition", at the inlet of a self-field magnetoplasma-
dynamic thruster (MPDT). Plasma accelerators generate high Isp thrust via a
combination of high power densities and low mass densities, resulting in strong
gradients of temperature and density, particularly in the areas of current concen-
tration. Thermodynamic equilibrium is generally a poor assumption under such
high power loading and this effects the excited state population distribution which
is needed for calculating the overall recombination coefficients used in numerical
flow models. These nonequilibrium conditions must be understood in order to
accurately model the plasma.

A classical approach is adapted to characterize the nonequilibrium ionization
problem. Atomic or ionic species are modeled by their electronically excited state
structure for detailed finite-rate analysis of multi-step ionization processes, in-
cluding both inelastic collisions and radiation (in a parametric form). The time
scales for the excited states are found to be small enough compared to the ground
state's to make the quasi-steady-state-solution assumption, which allows the ex-
cited state population distribution relative to the ground state to be determined
by a modified mass balance law. Neglecting radiative effects, which are shown
to be small in MPDTs, the overall rate coefficients for electron-neutral ionization
collisions and electron-electron-ion recombination collisions are calculated for the
hydrogen atom, and the argon atom and first ion.

These rate models are applied to the problem of ignition in a self-field MPDT,
where the propellant is injected into the thruster neutral, but the plasma must be
at least partially ionized at the inlet for effective electromagnetic thrust. Back-
diffusion is assumed to be responsible for transporting electron-ion pairs back to
the inlet wall (which is ion-attracting), and sustaining the initiation of ioniza-
tion there. This approach is similar to that taken in diffusion flames, and other
diffusion-reaction situations. Results from a simple, but illustrative, constant
speed igntion model indicate that there is a "blowoff speed" ignition criterion.
That is, if the propellant is injected at a speed less than the blowoff speed, then
back-diffusion is sufficient to supply the inlet wall with enough electrons to ini-
tiate ionization. If the propellant is injected at a speed greater than the blowoff
speed, then diffusion cannot supply the inlet with electrons, and the ionization
front gets "blown" downstream. This explanation should hold generally even for



the more realistic accelerating flow case. For atomic injection, the blowoff speed

depends on the ambipolar coefficient, and the ionization rate constant of the pro-

pellant. Therefore, propellants of high diffusivity and low ionization potential
will ignite more readily at a given temperature. Although temperature variation

in the ionizing region is found to have little effect on the ignition of a constant

speed plasma, the ionization rate coefficient is a strong function of the electron

temperature, which is set by an overall energy balance in the channel. In the ac-

celerating plasma ignition model, both momentum and energy are accounted for

self-consistently. The resulting inlet speeds were generally small enough to avoid

"blowoff", and the ionizing length scales were on the order of mm and were shorter

than the magnetic diffusion scale length under typical self-field MPDT conditions.

It was found that increasing the contraction ratio in the thruster channel lowered

the electron temperature, which tended to quench ionization and stretch out the

ionizing region. This work has shown that the initiation of ionization at the inlet

of an MPDT may be explained by convective, diffusive, and collisional ionization

processes alone, and is the first step towards a complete understanding of the

initial ionization process in self-field MPDTs.

Thesis Supervisor: Professor Manuel Martinez-Sanchez
Department of Aeronautics and Astronautics
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An A parameter in the ignition models.

T Optical depth.

Xk Coefficient of 6 1 in equation 3.21.

Vkk Radiative term in equation 3.21.



Voltage.

Nondimensional streamwise length.

77 Nondimensional frequency.

v Frequency.

,o/2 Half-width at half-height frequency.

a Electrical conductivity.



Chapter 1

Introduction

1.1 Objective

The goal of this work is to investigate the processes which act in the steady- state transition

from an injected gas (of unknown but small ionization fraction) to a plasma (ionized gas) at

the inlet of a self-field magnetoplasmadynamic thruster (MPDT). This work will explain the

experimentally observed presence of a sustained mm-scale ionization front by first building

up a model of the collisional ionization process, and then using this model in channel flow

models which approximate MPDT flow. The steady-state maintenance of the ionization

region, or "front", at the inlet is referred to here as ionizational "ignition".

This must ultimately be done within the physical context of the gas injection method

used, which may involve complicated flow and current interactions in two or three dimen-

sions, but such complications are not considered here. Instead, the focus will be on the

physical processes which may influence ignition themselves, and the quasi-one-dimensional

approach taken here is justified within the context of other researchers' work on similar

problems. The propellant will be assumed to be injected through a porous backplate which

results in essentially a one dimensional (the streamwise direction) flow problem, and this

will be the basis for the analysis.

The next few sections will outline the ionizational ignition problem and the approach

that will be taken here to analyze it. First, self-field magnetoplasmadynamic thrusters

(MPDT) are described briefly, within the field of space propulsion in general. Next, nonequi-

librium ionization issues in MPDT are discussed, followed by a discussion of the background



of research on relevant nonequilibrium ionization and ignition problems and the approach

taken here. Finally, the organization of the main body of the thesis is outlined.

1.2 Self-Field Magnetoplasmadynamic Thrusters

Rocket-powered vehicles produce thrust by imparting momentum and energy to their pro-

pellant as it is expelled from the vehicle. This may be achieved by chemical combustion,

by heating (nuclear or electrical), or by electromagnetic acceleration. All are self-contained

in that the working propellant must be carried on-board. While all rockets work on the

same basic principles, there are several different types, each of which may be attractive for

particular missions. [28] The following paragraphs briefly outline some of the fundamentals

To change the velocity of a space vehicle by an amount Av (which is a function of the

orbital maneuver being undertaken), using a thruster with exit velocity of u,,e, requires that

the ratio of propellant mass used in the thrusting (Mp) to the initial mass of the spacecraft

(Mo) (including the propellant) is governed the "rocket equation" [32] [28]:

MO
= 1 - exp(-Av/uex)

Mo

For smaller Av/u,,, the propellant fraction is smaller. Thus, the exit velocity of the pro-

pellant, ue,, is an important factor. Another parameter which is used in the field, which

has the advantage of having the same units in either the fps or mks system, is the specific

impulse, Ip = uex/g, where g is the gravitational acceleration at the earth's surface.

There are three major types of rocket propulsion. Chemical, which includes both solid

and liquid propellants, is by far the most prevalent. These devices create a high pressure in

a combustion chamber via chemical reactions. In nuclear thermal rockets, a reactor heats

the propellant directly or indirectly. Electric propulsion includes electrostatic (ion engines),

electrothermal (resistojets, or, at higher power, arcjets), and electromagnetic (including the

so-called magnetoplasmadynamic thrusters: MPDT) accelerators.

Chemical rockets have the advantage of carrying the energy source along inside the

fuel and oxidizer, which is a savings in dead-mass. They are, however, limited to specific

impulses of approximately 250-300 s for solids, 220-230 s for hydrazine, and 450 s for a

hydrogen-oxygen mixture.



Nuclear rockets are very attractive because they offer the potential of both high spe-

cific impulse and thrust density. However, there are several issues which complicate their

development, such as radiative contamination issues and the associated shielding structure

(perhaps a large mass penalty) and operating lifetime.

Electromagnetic accelerators must carry external power supplies, which may be technical

challenges by themselves in cases where the power needed is great (which is the case for

MPDTs, which require power on the order of megawatts). However, they are limited in

impulse only by the power supply available and perhaps by physical instabilities, and other

limitations on thrust efficiency. High specific impulse is mass-efficient, although trip times

using continuous, low thrust trajectories may be longer than for chemical propulsion, using

impulsive maneuvers, for many missions. For a constant acceleration, a = T/M, where T

is the thrust and M is the mass of the spacecraft, the trip time is the total velocity change

divided by this acceleration:

Av
a

so there is a time penalty for operating at lower continuous thrust. Comparison to impulsive

thrust trip times is not direct since the trajectories include considerable coasting time, so

that low-thrust trajectories may actually take less time for very long missions. Plasma rock-

ets achieve relatively high specific impulses by using high power densities to accelerate low

density propellants. Arcjets accelerate the flow electrothermally, magnetoplasmadynamic

thrusters (MPDT) electromagnetically, and ion engines electrostatically.

While many of these plasma accelerators have been studied for 30 or more years, there

are still many aspects of their operation which are not fully understood. Part of the lin-

gering difficulties is due to the wide range of operating regimes which occur in different

experiments (different thruster geometries, currents, propellants, diagnostic techniques).

The complicated nature of plasmadynamics for an ionizing, accelerating, heating propellant

has slowed the progress of analysis and has required many simplifications. This thesis will

focus on the ionizational processes in a self-field MPDT.

Figure 1.1 is a schematic of the channel geometry for a 1-D self-field MPDT. In reality,

they are coaxial devices, with a cylindrical anode (of radius ra) outside of a cylindrical

cathode (radius re), so that the diagram shows the upper half of such a thruster. Typical

length scales for MPDT are: thruster length L - 0.2m, and electrode to electrode gap of



H = r, - r, 0.02m (cathode radii are on the order of .05m). In the quasi-1-D approach

taken in this work, the flow will be considered to be completely axial, the current will be

assumed to be completely transverse and the induced magnetic field will be into the page.

The plasma is accelerated by the Lorenz force (the cross product of the current and

magnetic field). In applied MPDT, an external magnetic field is used. In self-field MPDT,

the magnetic field induced by the current flowing in the plasma is used.

Figure 1.1: Simple 1-D, constant area MPDT channel

The purely electromagnetic thrust, T, of a self-field MPDT with applied current J is

[32], [38]

T = bJ 2 = ruei

where b, the self-field electromagnetic coefficient [21] is, using miks units:

b = In + 3 10- 7

S c 4

and J is the discharge current, rhi is the mass flow rate, and u,,e is the exhaust velocity.

The thrust efficiency is

2rhuex

2JV

where V is the discharge voltage, which is a function of the current and thruster conditions.

[51]

Anode (+)

Inlet Flow x H Exit

Cathode (-)

L



MPD thrusters operate in an attractive regime. They have higher thrust densities than

ion thrusters, but less than that of chemical rockets. Their specific impulse is higher than

that of chemical rockets, but lower than that of ion engines. Therefore, MPDTs provide

mass savings over chemical rockets, but not with the time penalty of ion engines.

MPDTs have also been shown to operate with a fairly wide variety of of inert and

available gases, and over a wide range of thrust and specific impulse [17]. Argon, molecular

hydrogen, molecular oxygen, molecular nitrogen, helium, lithium, and ammonia, [21] have

been used.

Unlike ion thrusters, for example, MPDTs do not have distinct ion sources or ionizing

regions and acceleration regions. As Niewood [51] has shown numerically, both ionization

and acceleration may occur throughout the length of the device.

An important limitation on MPDT operation has been seen in experiments. As the

current is increased, a limit appears, referred to as "onset". This behavior has been seen to

scale as the ratio of the square of the applied current to the mass flow rate. Several explana-

tions have been extended to explain this phenomenon, or perhaps phenomena, characterized

by high frequency voltage oscillations, and increased electrode erosion. [42] In this work, it

is assumed that the thrusters are operating below the onset limit, so that conditions may

be taken to be steady and laminar.

1.3 Nonequilibrium Ionization in Self-Field MPD Thrusters

Both the interpretation of spectroscopic diagnostics and the numerical simulation of plasma

accelerators require accurate knowledge of the ionizational state of the plasma. Prediction of

the ionization fraction under the typically high power to mass loading found in the thrusters

requires a full accounting for a variety of non-equilibrium effects: rapid density changes,

charge pair diffusion to walls and radiation escape, among them.

The total energy input into a self-field MPDT is higher than the ionization energy of

the working gas, as the propellant is both ionized and accelerated. Combined with short

residence times, and low densities, the plasma is likely to be out of local thermodynamic

equilibrium (LTE) in some, if not all, of the thruster. If these devices are to be under-

stood thoroughly, including the interpretation of optical diagnostics and the development

of accurate numerical models, nonequilibrium analysis will be required.



Much work, both analytically and numerically, has been done assuming equilibrium or

frozen flow, or by using nonequilibrium rate equations which are not appropriate for some

of the conditions found in plasma accelerators. Some of these models were designed for

use only within a specific temperature range, some ignore species variations and neglect

significant differences, and some are based on assumes ranges of densities and temperatures

which do not correspond to realistic accelerators. This thesis will first develop the tools

necessary to improve on such work, and then extend the analysis by considering a case of

special interest.

For this analysis, the atom or ion of interest will be analyzed in detail. The atom or

ion structure is defined by energy states: its ground state, its electronically excited states

(actually states lumped into more convenient levels), and its continuum (the next higher

ion) [49] [7]. This model is necessary to accurately account for the processes responsible

for the overall ionization rate. For example, the overall ionization rate may primarily be

due to direct ground state to continuum collisional or radiative transitions (likely at high

electron temperatures, as will be shown in Chapter 3). Alternatively, the overall rate may

be primarily due to multi-step transitions where the atom is excited to higher and higher

states by collisions or radiation until it reaches the continuum, or ionizes (this is the case at

low temperature, as was exploited by Hinnov and Hirschberg's analysis [29], and will also

be shown in Chapter 3).

We are interested in the processes which produce the initial ionization region at the

inlet, as the performance of the thrusters will depend on whether some ignition condition is

met. Preliminary to this work, we will carry out a detailed look at nonequilibrium ionization

processes.

Of particular concern in this analysis are the roles of:

* Metastables. The metastable excited states (or pseudometastable lumped states), or

at least the low-lying electronic states, may be significant in the ignition process, as

relatively long-lifetime stages of multi-step ionization.

* Diffusion. Ambipolar diffusion, both streamwise and transverse, may contribute to

the ionizing processes by direct loss or gain of atoms and/or ions and electrons (which

then are available to ionize neutrals).

* Radiation. Photoionizing radiation may reach the inlet region from downstream. This



is a non-local effect, requiring information about the state of the downstream plasma.

The parameters which influence ionizational ignition may involve the following variables:

inlet density, temperature, and ionization fraction, as well as current density, applied electric

field, and channel dimensions.

Besides the primary goal of analyzing nonequilibrium ionization effects on inlet ioniza-

tion, this work will yield some results that are useful to the study of additional problems.

One example is the calculation of the excited state population distribution of an atom or

ion, which is needed if line radiation (from radiative decay between excited states) is con-

sidered, both for production and absorption calculations. Radiative effects are only likely to

be significant in the production of ions near the inlet, where low temperatures and electron

number density combine to reduce collisional effects [14], but there may still be some energy

loss due to radiation, and, more importantly, there may be sufficient radiative emission for

spectroscopic measurements to be made in the laboratory. An overall ionization rate model

for an atom (and, for argon, an atom/ion mixture) which includes the effects of the excited

states in a form which is compatible with computational models is developed in this thesis.

Such a model can be used to bridge the gap between detailed flow calculations and spec-

troscopic diagnostics [59] and aid in the interpretation of such experimental measurements

[36]. This is because the excited state populations may be backed out of the computational

model in post-processing, as described in Appendix D.

1.4 Previous Work in this Field

1.4.1 Nonequilibrium Ionization

The standard method used for nonequilibrium ionization modeling is the so-called Collisional-

Radiative (CR) model, which models an atom or ion as a ground state, its electronically

excited states, and the continuum (the next higher ion). Intra-state transitions via both

collisions (excitation/de-excitation, ionization/recombination) and radiation (radiative de-

cay/stimulated excitation, photoionization/recombination) are included in rate equations

- linear in the excited state populations - for each state. Collisional-radiative modeling of

nonequilibrium plasmas has been analyzed by many authors for the last 30 years. Following

is a brief review of some of this work that is relevant to the present work. The work that



follows in chapter 3 is based on the framework that these researchers have built.

Van der Sijde, et al. [71] have published a comprehensive description and review of CR

modeling in plasmas which covers the aims and limitations of this work. CR models aim

to study elementary collisional and radiative processes by comparison with experiment, to

determine the distribution of excited state populations, and calculate rate coefficients, to

determine electron density and electron temperature from spectroscopic diagnostics, and

to model plasma discharges and light sources, such as gas lasers. The CR modeling done

in this thesis has as its primary goal the second aim listed: the calculation of overall

ionization and recombination coefficients, with the excited state population distribution

of significant but secondary interest. The limitations include the exclusion of molecular

species (molecular ions) and the associated creation/destruction processes (their addition

would require the addition of vibrational and rotational states), the assumption (generally)

that the electrons have a Maxwellian velocity distribution, and that the model is limited

to electron driven collisions (the addition of heavy particle - heavy particle collisions is

possible, but it makes the rate model nonlinear in the excited state populations in a self-

consistent model). They conclude that it is possible to have a qualitative, and, in some

cases, a quantitative description of CR models of plasmas, that it should be possible to

apply these models to atoms other than hydrogen (for which the original CR models were

designed), and that the global character of analytic models of atoms may be simplified for

the upper excited states when the time scales for the excited states' reactions are much

smaller than the other characteristic time scales for the problem. This last point, the quasi-

steady-state-solution assumption, allows the population distribution of the excited states

to be calculated by imposing a dynamic balance on the excited states that is akin to the

law of mass balance. In this case, radiative effects, and the influence of the ground state,

which has a longer characteristic time scale, are included. This will be tested and then

taken advantage of in chapter 3 of this thesis.

Bates, Kingston and McWhirter first proposed the classic CR model which considered

a simple 3-level hydrogen atom The effect on the rate of loss of the population of an excited

level by radiation was included in a parametric manner. The radiation produced by the

spontaneous decay of an excited atom and resulting in an atom at a lower energy state may

be locally absorbed by another of the lower energy atoms. This is known as the optically

thick case, and if this is so, there is no net effect on the population of either the higher or



lower state, since each level loses and gains one particle per event. In optically thin plasmas,

there is no local reabsorption of the radiation, and each spontaneous decay of an excited

atom results in a loss of one particle to that level, and a gain of one particle to the lower

level. Bates, et al., presented results for optically thin [7], and optically thick [8] plasmas.

The net rate of number density production was written for each level plus the continuum -

the ion - including excitation and ionization (and their reverse processes) via both collisional

and radiative processes. This formulation is the basis for most collisional-radiative mod-

eling. Their work was an investigation of the recombination process, both collisional and

radiative, for dense and tenuous plasmas, and noted that the overall "collisional-radiative

recombination rate coefficient" had both a temperature and density dependence (as will be

shown in chapter 3).

Hinnov and Hirschberg [29] developed a model for the overall three-body (electron-

electron-ion) recombination rate of hydrogen atoms by assuming that the entire atom-

continuum multi-step pathway is driven by a critical electronically excited level approxi-

mately 0.25eV lower than the ionizational potential energy. This assumption posits that the

ionization process is multi-step, and that when the atom reaches an excited state at or above

the critical level, it is essentially ionized, since the reaction rates above the critical level are

very fast. This assumption was made for temperatures below 3000 K. Their model has been

used in the past both for nonhydrogenic atoms and at temperatures well above their sug-

gested temperature limit. As will be seen later in this chapter, use of the Hinnov-Hirschberg

formula for other atoms at higher temperatures may yield results in error by several orders of

magnitude. At temperatures below their recommendation of 3000K, the Hinnov-Hirschberg

formula is in good agreement with experimental observations. For temperatures between

3000K and 11600K (1 eV), their formula overestimates the recombination coefficient found

in experiments by a factor which is less than ten [49], and at higher temperatures, the error

grows. The Hinnov-Hirschberg formulation gives almost the same result as the much earlier

Thompson model of recombination (extended to electron-electron-ion recombination [49])

which does not distinguish between atomic species.

Suckewer used a similar CR model as Bates, et al. [65] and assumed that each level's net

production rate consists of excitation up from lower levels, and de-excitation down from the

level into the lower levels (both collisional and radiative). This assumes that net ionization

and net transitions to higher states are small compared to collisional excitation to lower



levels. This simplified the algebra for solving for the populations of the levels, as only the

levels below a particular level affect that levels population. This is somewhat similar to the

formulation that will be used here, except all transitions are retained in the model outlined

in Chapter 3 of this thesis.

Bacri and Gomes [4] [5]) have considered detailed, multi-level CR models of both the

argon atom and ion in order to analyze the conditions for Local Thermal Equilibrium (LTE)

of the excited states, and the determination of kinetic temperatures for atoms, ions, and

electrons in argon plasmas. The standard CR model was applied to stationary arc discharges

at atmospheric pressure, over an electron temperature range of 5000 K < Te < 13000 K,

and an electron number density range of 1011 cm - 3 < ne < 1017 cm - 3 (which correspond

to the asymptotic region of an argon constricted arc plasma). Their models of the structure

of both the argon atom and ion will be adopted and extended here. They also evaluated

the role of atom-atom collisions in a C-R model [24], and concluded that, at atmospheric

pressure, atom-atom collisions will play a role in the determination of the populations of

the upper excited states for ionization fractions below 10- 2 . In the cases of concern in this

thesis, the electron temperature is high enough so that the influence of atom-atom collisions

(which are characterized by the heavy particle temperature) is lower.

Braun and Kunc [11] used a three-level model to calculate steady-state overall collisional-

radiative rate coefficients in nonequilibrium, partially ionized argon plasmas. They coupled

the standard rate equations for the ground state, a lumped excited state, and the continuum

to the Boltzmann equation for a self-consistent approach, over the electron temperature

range 8000 K < Te < 25000 K and the electron number density range of 1014 cm - 3 < n, <

101s cm - 3 . They argue that the three-level argon model should be reasonable since three-

level models for hydrogen have yielded fairly good results in the past. The same atomic

model will be used here in this work for a three-level model (the lumped excited state of

Braun and Kunc is the first lumped excited level in the argon atom model used here),

except assuming that the electrons are Maxwellian. As Braun and Kunc state, however,

and will be seen in chapter 3 of this thesis, neglecting the upper excited states will result

in underestimating the overall recombination rate coefficient, particularly at low electron

temperatures. They do point out that there is a great deal of uncertainty in the collisional

rate coefficients involving the upper excited levels, which will add some uncertainty to the

results of a multi-level model, and this must be kept in mind.



Owano and Kruger [52] recently published results of their research on the three-body

collisional recombination coefficient of the argon atom. They conducted experiments on a

flowing argon plasma in a 15 kW radio frequency inductively coupled plasma torch, using

spectroscopic measurements to measure the electron-electron-ion three-body recombination

rate. The spectroscopic measurements are used as a database for a two-dimensional ax-

isymmetric computational code which takes into account various nonequilibrium effects,

and from which the recombination rate coefficient is determined. These recombination co-

efficients compare well with those calculated by the approach described in chapter 3 of this

thesis.

1.4.2 Inlet Ionization

Several researchers in the past have measured thin (mm-scale) ionization fronts in MPDT

channel experiments. Other experiments have indicated that there are distinct differences

in MPDT performance with different propellants, and attributed some of these differences

to incomplete or delayed ionization. These observations suggest that there are significant,

and species-related ionization initiation issues which influence performance, and for which

there has been no full explanation to date. This section summarizes past research which is

relevant to the problem of inlet ionization, which is the main focus of this thesis.

Experiments by Abramov, et al. [1] in 1968 used spectroscopic diagnostics and found a

thin ionization front. The thickness of the front was much smaller than could be explained by

the classical ionization length. Randolph, et al. [59], again using spectroscopic diagnostics,

has recently found ionization fronts of a few millimeters. The calculated ionization length

assuming Maxwellian electrons was found to be between one and three orders of magnitude

larger than the measured value.

Toki, et al. [68] used a multi-channel MPDT to approximate an ideal two-dimensional

discharge. This device allowed easy access to the discharge region for optical measurements

with either argon or hydrogen as propellants. They measured delayed ionization with molec-

ular hydrogen propellant and point out that there are some advantages to this behavior via

what they describe as a situation resembling thermal pinch phenomenon in arcjet thrusters,

except now there is significant additional thrust from the electromagnetic force. They also

determined that anomalous ion excitation occurs in the discharge region in argon flows,



lowering the efficiency.

Uematsu, et al. [69] tested a wide variety of molecular and atomic propellants for use

in MPD thrusters: hydrogen, helium, neon, nitrogen, oxygen, argon, xenon, water, carbon

dioxide, carbon monoxide, and ammonia. Experiments evaluated performance characteris-

tics such as efficiency, thrust, erosion, and found three distinct groupings: atomic, molecular,

and hydrogenous molecular propellants. Of particular significance to this thesis is the very

low ionization fractions measured with molecular hydrogen injection (a, the ionization frac-

tion, is the ratio of the electron density to the overall density of nuclei. With hydrogen

propellant, they found a - 0.05). They also suggest that the attractive thrust-to-power

ratios found for the molecular gases may be due to the low ionization potential for molecular

ions, and/or the recovery of their ionization energy through recombination.

Tahara, et al. [66] have reported results from experiments in a "one-dimensional" MPDT

channel with several different propellants. They found that the current distribution de-

pended strongly on the gas species injected, most importantly on whether the propellant

is initially atomic (helium and argon were used) or molecular (hydrogen, nitrogen, and a

hydrogen/nitrogen mix were used). Tahara, et al. posit that the ionization process of molec-

ular species is slower than that of monatomic ones owing to the time lag for the dissociation

process, especially at lower current levels. That is, ionization in molecular gases occurred

further downstream and thus the current was more concentrated further downstream than

for monatomic gases.

Experiments carried out by Heimerdinger and Kilfoyle [27], [36] have observed the de-

tailed physics of self-field magnetoplasmadynamic (MPD) thrusters, and motivated this

work. Based on these studies, we have a good idea of what the characteristics of the accel-

erator plasma are. At the exit, electron densities appear to range from 1020 m - 3 and up, at

high ionization fractions. While electron temperatures vary somewhat around an average

of 12000K - 24000K, there is evidence that the ion temperatures may range from well

below the electron temperature, up to several electron volts [36]. Heimerdinger [27] also ran

experiments with flared (expanding) channels, and noted that the initiation of ionization in

the thrusters was difficult as the expansion was increased. An explanation of this will be

developed in Chapter 4 of this thesis.

There have been several attempts to overcome the difficulties of modeling the ionization

region in analytical and numerical models. More recently, work has focused on the structure



of the ionizing zone or front measured in experiments.

The simplest way to model ionization is the hydrodynamic model, which applies when

the diffusion-reaction scale length is much smaller than the characteristic flow scale and

the reaction zone may be assumed as a front, as described in the case of combustion by

Buckmaster [13]. Kuriki, et al. [39] treated the thin ionization front as a jump condition

across a deflagration wave. The ionization fraction rises from essentially zero to one across

this jump. While this method allows for consideration of the frozen flow energy loss due

to the endothermic ionization process, it says nothing about the ionization front itself, its

structure or its scale. Brushlinskii, et al. [12] used an "ignition switch" in a numerical model

of plasmadynamic channel flow in quasistationary plasma accelerators. They argued that

the equilibrium ionization fraction increases rapidly over a small temperature interval, so

that a discontinuous change at some critical ionization temperature would be a reasonable

simplification (if the parameters of the jump were chosen correctly). They identified two

regimes for ionizing channels: a stationary regime, where there was a fixed ionization front,

and a periodic regime, where the ionization front fluctuates. The regime was determined by

the ratio of total current squared to mass flow rate (a higher value implied a more stationary

front).

Numerical models of the thruster channel, such as those of Niewood in in one dimen-

sional [50] and axisymmetric [51] geometries, may be forced to assume a "reasonable" inlet

ionization fraction. This a must be large enough so that the ionizing rate at the inlet is

not so small that ionization does not effectively occur within the thruster channel, and

small enough not to conceal the effects of the ionization process and invalidate frozen loss

calculations, for example. While this may be quite reasonable in the context of simulat-

ing the overall thruster, there is no way to pin down the inlet ionization fraction beyond

bracketing it within a range of safe values, and no way to explain the ionization region.

Other numerical models have either assumed equilibrium ionization [64], or a frozen, fully

ionized plasma [40]. As discussed above, it is highly unlikely that either of these two ideal

conditions are met in an MPDT.

Chouieri, et al. [17] [18] explain the thin ionization fronts found in Randolph's experi-

ments [59] by anomalous ionization caused by plasma microturbulence. This produces a su-

perthermal tail in the electron distribution that may increase the ionization coefficient, and

therefore decrease the ionization length scale enough to produce mm-scale ionizing regions.



Their results do indicate that microturbulence may play a role in increasing the ionization

coefficient, but their model is not self-consistent with respect to the overall thruster chan-

nel flow, using typical values of the inlet speed and number density taken from disparate

experiments. Therefore, their results should be considered to be illustrative of a possible

effect, but inconclusive in application to self-field MPDT inlet ionization.

Burton and Tiliakos [14] considered supersonic injection into a 1-D MPDT channel,

and patched their model with a channel-flow solver. Their work looked at the details of

the "preionization" region at constant bulk speed and varying electron temperature, and is

somewhat similar to this work; however, in the supersonic case, back-diffusion does not play

a significant role. They included a crude radiation model, but found that while radiation

serves to start up the ionization process from very low ionization fractions (a less than

about 10- 6 ) up to a s 10-5, ionization could not be supported solely by photoionization

throughout the region. The preionization region was found to be a few mm long, and

increased with decreasing density (increasing speed for fixed mass flow rate), indicating

that collisional ionization must play a crucial role. However, the inlets of self-field MPDTs

are not expected to be supersonic, per the calculations of Martinez [46], Niewood [50] [51]

and Seals and Hassan [61]. The inlet ionization work carried out in this thesis will consider

subsonic injection.

1.5 Approach to Solving the Inlet Ignition Problem

There are two steps taken in solving this problem. First, accurate ionization rate models

for the gases of interest are developed, and then these rate models are applied to the inlet

ignition problem.

A detailed finite-rate model is developed by adapting a kinetic approach, and applying

it first to steady, stationary (i.e., discharge tubes) plasmas (hydrogen, argon atom, argon

ion). This initial work has three purposes: to apply a known approach to ionization to the

species of interest, to determine the population distribution of the excited levels of these

species under a variety of conditions, and to calculate overall recombination coefficients

based on these distributions.

The nonequilibrium ionization work presented here was motivated by interest in several

issues relevant to plasma accelerators. Briefly, they are



* Ionization may be primarily due to multi-step processes in some regimes; most criti-

cally, in the low electron density/low electron temperature regime near the inlet.

* The results from detailed atom/ion models may be used to determine equivalent

overall rate coefficients for ionization and three-body recombination. These mod-

els (specifically for the argon and hydrogen atoms and the argon ion) may be used in

flow models.

The second part of this work considers back-diffusion of ion-electron pairs as an expla-

nation for steady-state inlet ignition. This is explained through a series of 1-D analyses

of increasing realism, which allow identification of the key parameters governing ignition

and of their interplay in the complex phenomena near the inlet, under different assumed

conditions. The ionization region itself will be assumed to be of constant area throughout.

The key hypothesis in this analysis will be that ion-electron pairs diffuse back towards the

ion-attracting inlet wall, and that the back-diffused electrons are the drivers for ignition.

This was inspired by and is similar to diffusion flames in combustion theory [76] [23],

and unpremixed reaction-diffusion problems in general [58], in which diffusion provides the

primary transport mechanism for and the mixing of the reactants necessary to sustain the

reaction in steady-state.

The addition of back-diffusion in the problem increases the order by one and so requires

a new boundary condition, which is that the electron-ion pairs pass through a pre-sheath

heading towards the inlet, and that the ions enter a sheath (not modeled explicitly here)

right at the inlet wall at the Bohm velocity, which is the classical result from sheath theory

[16] [10].

1.6 Thesis Organization

Chapter 2 sets the stage for the the 1-D flow calculations for a self-field MPDT, introducing

the equations of motion, and discussing several transport properties of significance to this

work. An analysis which estimates the influence of radiation on the inlet ionization problem

and on the rate equations in general follows.

The collisional-radiative model adopted here is presented in chapter 3. The standard

collisional-radiative set of rate equations for a multi-level atom or ion is reformulated in



such a way as to include the influence of the excited states on the overall ionization rate

directly. The effect of radiation on the overall rate coefficients is also analyzed in a simple

3-level model. The final results most relevant to this work will be the calculated overall rate

coefficients for various atoms and/or ions, which will be used in the ignition flow models of

Chapter 4.

A series of numerical models are included in Chapter 4, covering constant speed and

accelerating flows, constant and varying temperature flows and both atomic and molecular

(dissociating) species injection.

Chapter 5 is a discussion of the results of this work, a summary of its conclusions, and

recommendations for further work on the topics covered in this thesis.



Chapter 2

Steady-State One Dimensional

Flow and Radiation Transfer

The dominant topic of interest here is the transition between the injected cold gas and the

downstream plasma. The situation to be considered is that of injection through a porous

backplate, which is essentially a 1-D flow. This chapter will first present the 1-D model

equations of motion, then discuss some details and transport properties, and finally estimate

the possible role of radiation in volumetric production. Figure 2.1 shows the configuration

of a quasi-1-D self-field MPDT, with the x-axis in the axial direction and the transverse y-

axis starting at a position halfway between the anode and cathode. Here, B is the magnetic

field, j is the current density, H is the interelectrode gap, and L is the channel length.

This is actually a quasi-1-D model, since transverse ambipolar diffusion to the walls will be

included. Quasi-1-D models for self-field MPDTs have been developed in the past by many

researchers. [46] [37] [50]

2.1 Equations of Motion

The flow is assumed to be inviscid, and transverse heat conduction and magnetic diffusion

are neglected. However, transverse ambipolar diffusion is retained, which may play an

important role at low densities, as observed in Niewood's 1-D MPDT channel computations

[50], the analysis of Heimerdinger [27], and as will be shown in Chapter 4 of this thesis.

The steady-state quasi- one- dimensional equations of motion for a nonequilibrium plasma



Figure 2.1: Constant area MPDT channel

are: overall continuity, electron continuity, overall momentum, electron energy, heavy

species energy, and a magnetic field equation [50] [53] [46]. In addition, it is assumed

that the ionization front is in a constant area channel, or at least that area variation effects

are negligible.

The overall conservation of mass equation is, with ng representing the total number

density of nuclei, and u the average or bulk velocity:

dung = 0 (2.1)
dx

The ion (or electron) continuity equation is:

Oune 8 Ine DOneS o(Da - (D ) e (2.2)
ax Be ax By By

where ne is the number density of electrons (and ions too, if there are only first ions present),

Da is the ambipolar diffusion coefficient, and he is the volumetric production rate of ions,

via collisions and/or radiative effects.

The overall momentum equation, neglecting friction, is:

dngu 2  dp -
S =- + x (2.3)

dx dz

where p is the gasdynamic pressure, B is the azimuthal (induced) magnetic field,j is the

current density, and jx B is the Lorenz force.

Anode (+

Cathode (-)

.4 L.



The electron energy equation, neglecting electron-heavy energy transfer, friction, trans-

verse heat conduction, and radiative loss, is

3 dnguaTe d dTe j 2

kB dx dx K + Eacne (2.4)
2 dx dxe d/ a

where the Te is the electron temperature, kB is Boltzmann's constant, a = ne/ng is the

ionization fraction, Ke is the electron heat conduction coefficient, j is the current density, a

is the electron electrical conductivity, and Eac is the magnitude of the energy gap between

the ground state of the atom and the ion.

The heavy particle energy equation, neglecting electron-heavy energy transfer, friction,

and transverse heat conduction, is replaced with the assumption that Tg, constant.

The following steady-state Maxwell's equations are also used (the magnetoquasistatic

form [47]):

VxE = 0 (2.5)

poI= V x B (2.6)

V. = 0 (2.7)

from which the following magnetic field equation can be arrived at, which neglects transverse

magnetic diffusion:

dB +uB 0 1 B (28)
+ -- )(2.8)

at ax 0X Pea 8

The pressure, from p = C, n,kBT,, for a two temperature plasma is

p = kB[(1 + a)Tg + aTe] (2.9)
mi

where p = ming is the mass density and mi is the nuclei mass.

A generalized Ohm's law is also used. Derivation of this expression and the definition

of /, the Hall parameter, are given in section 2.1.1.



2.1.1 Details of the Equations of Motion

Here, some of the physics of the flow is analyzed. First, the generalized Ohm's law is

derived, then the Lorenz force term in the momentum equation is used to define a "magnetic

pressure". Finally, the electrodynamic power term in the energy equation is used to identify

an important non-dimensional parameter, the magnetic Reynolds number.

Generalized Ohm's Law - Hall Effects

The generalized Ohm's Law is derived from the electron species-momentum equation, after

dropping the electron inertia terms (assuming that electrons carry very little momentum

due to their mass). If subscript r designates all other species, then the force density balance

for the electrons is:

electrostatic force + Lorenz force + pressure force = collisional friction force(s)

or:

eneE' + enee x B + Vpe = Zmeneve,(i - ie)

Where E' is the electric field in the moving frame:

E = E + i'x B

and Ve, is the total collisional frequency between electrons and all other species, r.

Now, if the other species are heavy enough so that I <1 e I, then j = -enefe, and

the electron momentum equation becomes:

enE j x B + VP, -ve3

or

1
j + x p = aE - VPe (2.10)

ene

Where a is the DC scalar conductivity,

ea = ne 
(2.11)

me ve

S_ = eB - the Hall parameter.



Note that B we is the cyclotron or gyro frequency, so that P = - (which is
me Ver

dimensionless). Thus the Hall parameter is the number of Larmor cycles (in radians)

between collisions. For we < ve, the Hall effects are negligible - in a highly collisional

plasma, the cyclotron motion is arrested as electrons experience many collisions per cycle.

The Momentum Equation; Magnetic Pressure

The Lorenz force term in the momentum equation (eq. 2.3) may be simplified as follows:

-+ _+ 1
j xB = -(Vx B)xB

Ito

1 1
S [(B. V)B - -VB 2 ]

Ao 2

Now, if the plasma flow is assumed to be two-dimensional, the currents are constrained

to cylindrically longitudinal planes. This requires that B = BO~e, where eo is the azimuthal

unit vector and that the first term in the last expression above is zero in the 2-D case.

Neglecting viscous effects, the one-fluid axial momentum equation 2.3 may be written in

1-D as:

dmi + + B 2 1= 0 (2.12)
dx + d 2 LP

The quantity 2 appears in the same manner as the pressure, prompting its being

referred to as the magnetic pressure. In most MPD thrusters, this is significantly larger

than the gasdynamic pressure. However, normal pressure effects are not small at the inlet

and exit, where the gradients may be comparable to the magnetic field gradients.

The Energy Equation; The Magnetic Reynolds Number

The E -j term drives the energy equation - the only energy added to the plasma comes from

this electrodynamic power. A useful non-dimensional ratio may be found by expanding this

term.

Using equation 2.10 to solve for E (neglecting electron pressure effects):

Then:



-4-E = • x B)+3"

-+v.(j x B)

= rate of ohmic heating + rate at which useful (thrust) work is done.

Comparing these two terms yields a meaningful parameter, the magnetic Reynolds num-

ber (Rm). The last equation is used for the ratio, and an order-of-magnitude analysis is

carried out:

useful work vjB

ohmic heating m j2

and using j B from equation 2.6,

Rm = oavL (2.13)

where v and L are appropriate characteristic speed (generally based on the axial flow) and

length scale, respectively.

Note that, for effective performance as a thruster, Rm > 1. Large Rm may result from

a combination of large conductivity (a), and axial Lorenz force (assuming that the bulk

of the flow is always axial). Small Rm can be attributed to low conductivity or a short

channel. The Magnetic Reynolds Number is also equal to the ratio of convection of the

magnetic field to its diffusion in the magnetic field equation (1-D, equation 2.8):

SV[uB]
Rm - 1 d2B

io dx
2

Using the definition of the characteristic time scale of magnetic diffusion from Melcher

[47], Tm = paL2 , the magnetic Reynolds number can also be seen as:

Rm = Tm
Tc

Here, T, is the characteristic time scale of the bulk plasma's passage through the channel,

L
TO-'V



2.2 Diffusion

2.2.1 Streamwise Ion-Neutral Slip

The streamwise slip of ions plays an important role in this work, so some care is taken in

evaluating it. Since ions are being directly accelerated while the neutrals are accelerated

by collisions with ions, there are actually two effects (acceleration and density gradients)

leading to ion-neutral slip. This section will develop an alternative to Fick's Law applicable

to the inlet ignition model.

Starting with the 1-dimensional neutral momentum equation, in which electron-neutral

collisional forces are neglected compared to ion-neutral forces,

dv, dpn
minnvn dx - + minneinQin(V - V,) (2.14)

dx dx

where nn is the number density of neutrals, the species velocity of the neutrals is v,, and

the slip velocities of the neutrals and ions are, respectively, V, and Vi. The ion-neutral

thermal velocity is Ein, and the ion-neutral momentum transfer cross-section is Qin. We

assume that Iv, - ul = |V,j < u everywhere, so that

dvn du

dx dx

Overall mass continuity requires that nVn + neVi = 0, and the neutral pressure is

Pn = kBnnTg

With constant Tg, we can rewrite equation 2.14 as:

du dnn
minnu = -= kBTg + mingnecinQinVi (2.15)

dx dz

where ng = ne + nn is the number density of the heavy particles. Solving for n, V, the ion

slip flux,

ne Vi = Q dun + kB dn (2.16)
nn n-ncnQ dx mi d

If we use the ambipolar diffusion coefficient [49], which has units of m 2 /s:

ks(T + Tg) Te /rksT, 1Da= T + (1+ ) (2.17)
MicinQ ing Tg mL 2 Qinn,



as well as the definition of the Bohm velocity:

kB (Te + Tg)
VB= (2.18)

mi

then equation 2.16 can be recast as:

neVi = D n a-B + dnn (2.19)
a v2 dx dx

where the parameter 0 has been defined:

T0 e TH (2.20)
Te + TH

If we assume that the acceleration term is negligible and that there is no total pressure

gradient, then

Sdn dn,

dx dx

and Fick's law results:

dne da da
(neVi)F = -Da d = -Dan d= -Ca (2.21)

d ad d x dz

where ng has been assumed to be constant.

However, retaining the inertia term and making no assumption about the total pressure

gradient is more realistic, especially due to the large acceleration present in the inlet region.

In this case, using the overall continuity equation (2.1), and the definition of the ionization

fraction,

ne

ng

in 2.19, then the general expression for streamwise ion-neutral slip is

S= Dan0 (_ 1 d da (2.22)

Note that, for this alternative formulation, acceleration with a constant at u < -OVB yields

backward ion diffusion (relative to the flow) - the neutrals are moving forward at a faster

speed than the ions due to the pressure gradient which provides the acceleration. In this

regime, the slip is gradient dominated. Acceleration at u > V-OVB means that the ions are



moving faster than the neutrals, and slip is inertia dominated. (Note that v/OVB =- m

is roughly the heavy particle thermal speed.)

The ambipolar diffusion coefficient can also be expressed as

Da Ca
ng

where Ca = Dang is a function of temperature only. Using the form for Da in equation

2.17, Ca for the argon atom is

Ca= 1.274 x 1019 ( T Tg(m-'s- 1 )

Note that Ca is a fairly weak function of temperature, particularly in comparison with

the collisional rate coefficients, which may vary exponentially with Te.

From the Fick's Law form, and the ion continuity equation, one can set up a balance

between convection and axial diffusion to find the characteristic length scale for axial back-

diffusion:

dune d dn,
-D

dx dx dx

Da Ca

Uref G

2.2.2 Accounting for Transverse Diffusion

In this section, the transverse diffusion of particles is taken into account in a channel of

height H. This addition to the quasi-1-D model is necessary to strike a balance far down-

stream in the continuity equations. Particles may be lost to the walls via transverse diffusion

and catalytic walls.

The origin of the y-axis will be the middle of the channel, so that y = ±H/2 represents

the walls. Assuming a parabolic distribution across the channel, the loss rate is uniform,

since the diffusion rate term is a second order derivative. As in Niewood [50], the profile

of particle densities for particles of type k (where k may represent an excited state, or ion,

and nk(x) is the average density of level k across the channel.) is then

nk(y,x) 1-- (2y)2]
2 (x H yj]



so that the diffusion loss rate for a level k, for an assumed parabolic transverse density

distribution,

'92nk 12 Dknk
Dk y2  H2

or, using h = H/v/1,

D 2nk Dknk
Dk By 2  h 2

The excited state diffusion coefficients are:

Dk kBT 9  1
mDz 2 Qjk Ejck nj

For the case of ambipolar loss (coupled diffusion of electrons and ions), we assume ion-

attracting walls, a uniform loss rate (again a parabolic density profile), and require that at

the edge of the sheath, the ions stream into the sheath at the Bohm velocity, or

Bdn,
nevB = -Da d (2.23)

Ody

where v = kB(T +T) is the Bohm velocity and the ambipolar diffusion coefficient, Da,

is defined in equation 2.17.

Assuming again that the transverse distribution is parabolic,

ne(, x) = Ay 2 + By + C (2.24)

and subject to equation 2.23, plus a symmetry condition, which sets B = 0, and the

condition that the average density across the channel is ne(x):

1 JH/2
ne() = H/2n(y, x)dy

H -H/2

These conditions applied to equation 2.24 result in the following two equations for the

two remaining unknowns, A and C:

H2
n(x) = A + C

12

and

]A + C y -DaHA
4



The rate of ambipolar loss, denoted here as 7, is

dfne
S= -D = -2DaA

and, solving for A, and substituting, this is

12Dan

R H 2  (2.25)
1+ 6D

VBH

Two regimes are identifiable here - one constrained by the diffusion rate and one con-

strained by the rate that ions stream into the sheath. Looking at the variable term in the

denominator,

6Da 3r/- T

VBH HngQin,

Since Da oc 1/ng, the quantity (HRZ/ne) is a function of Hng, and, more weakly, ,
Tg,

and Tg. For T 0(1), and using Qin, 1.4 x 10- 18 m 2 for argon [44], 6DV is unity when

Hng, 101 9m -2.

The ion loss will be direct to the walls for HngQin < 1, and limited by diffusion (i-

n collisions) at high values. Most cases of interest for plasma accelerators are near the

transition point, Hng 9, 1019 m - 2 .

The nondimensional form of HR/ne is

12
H HngQtn (2.26)

e k Te 1+ ngQi,

Figure 2.2 is a plot of equation 2.26 as a function of HngQin. This shows that assuming

diffusion only is reasonable down to roughly HngQin 1.0 to stay within a factor of two

with the overall rate, which is a reasonable approximation for this work.

2.3 Collisional and Transport Processes

Ionization/recombination and excitation/deexcitation inelastic collisions will be covered in

detail in chapter 3. In this section, some of the other collisional and, in particular, transport

processes of interest to this work are discussed.
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Figure 2.2: Nondimensionalized HR/ne showing the regions where direct ion loss and

diffusion dominate the ambipolar loss rate to the walls.

2.3.1 Electron Electrical Conductivity

The electron electrical conductivity as defined in equation 2.11 may vary as a function of

both the electron temperature and the ionization fraction. This behavior is seen by recalling

that the DC conductivity [10] is

nee 2

me Ve

e - Zei + Ven

= niQeie + nnQen'e

where ni is the number density of ions and nn is the neutral particle density, and ce is the

electron thermal speed (Te in degrees Kelvin):

ce = -- = 6 2 1 1  em
Sme s

Here, Qei is the Coulombic electron-ion collision cross-section [44] [60]

Qei In327re2(kBTe)



where the nondimensional variable, A using mks units, and temperatures in K is

A = 1.24 x 107'

where ne is the number density of electrons, and the electron temperature is Te, in K. Also,

Eo is the permittivity constant, and kB is Boltzmann's constant.

The electron-neutral momentum cross-section for argon in the temperature range of the

first argon ion from Liberman and Velikovich [44] is

QLV = [-0.488 + 3.96 x 10- 4 Te] x 10 - 20 m2

Bittencourt [10] reports a species-independent electron-neutral cross section of

QB = 4.186 x 10- 2 4 Te m 2

which is within 25 % of QLV at Te = 5000K, and better at higher temperatures, and will

be used here.

The electron-ion (Coulombic) collisional rate for the argon atom, from Bittencourt [10],

is then:

vei = 3.62 x 10-6niT-3 /2 InA s - 1

and the electron-neutral collisional rate for the argon atom, also from Bittencourt [10], is:

Ve, = 2.60 x 10- 1 6nnTe/ 2  - 1

so that the DC conductivity

e 2  n e

me 3.62 x 10- 6 In AniT 3 /2 + 2.60 x 10-16n nTe/ 2

or, assuming that In A 10 and using the ionization fraction, a - ne/ng,

Aa
c= 1 3

B(1 - a)T 2 + DaTe 2

with A = 2.81 x 10- s , B = 2.6 x 10- 16, D = 3.62 x 10- s for the argon atom. Figure 2.3

shows the electrical conductivity of argon for equilibrium ionization.

If the temperature is constant, then a reference conductivity can be calculated at the
3

high a end: aef A Te, and we can write
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Figure 2.3: Argon electrical conductivity (si/m) vs electron temperature (at equilibrium

ionization fraction). The densities are in m - 3 . Note that the density variation due to

variations of In A are ignored in this calculation.



r a 1

aref ar-3/2 + (1 - a)qr/2 -3/2 + ( - 1)q1/2 (2.27)

where T,,ef is a reference temperature, and 7 = Te/Tref is the nondimensional electron

temperature, and q is:

B 2 2 T 2

q = Te = 7.2 x 10- 12 Te f
D ref

The parameter q is roughly the minimum ionization fraction for Coulomb collision dom-

inance at Tref, and q is generally of order 10- 3 . The reference conductivity would be

approximately 1000 to 2000 Si.

2.3.2 Electron Heat Conduction

The rates for ionization and recombination in a plasma are strongly dependent on the

electron temperature. Comparison of the characteristic diffusion scale length, which is

effectively the scale for the ionizing region, per results of the analysis in Chapter 4, to the

heat conduction scale length results in a parameter which gauges whether temperature can

be safely assumed to be fixed in the ionizing region, which would simplify the analysis. This

is the Lewis number [13]:

Le _3 kBnrefDa ID

2 Ke Icond

The thermal conductivity for a plasma [49] (with no magnetic field, or only along the

magnetic field, and including only the electronic contribution and Coulombic scattering) is:

1.7142k2 Ta
Ke = e2K- Be

so that the Lewis number, with nref ng, becomes

3/2e2  Ca[B(1 - a)Te/ 2 + DTe 3/ 2]
Le - 1.7142kBA a e

or

Le = 9.628 x 10-8Ca[B( - 1)T- 1 / 2 + DTe-5 / 2 ] (2.28)

so that Le = Le(Te, TH, a) (and the a dependence only appears at low a). (Note: the

constants A, B and D are the same ones used in the previous subsection on conductivity.)



loglo Le \

2.0

0.0-

-- 2.0

0. 2500. 5000. 7500. 10000. 12500. 15000. 17500. 20000. 22500. 25000.
Te

Figure 2.4: Lewis number vs Te, for argon, with equilibrium ionization fraction.

Here Ca = Dang. Figure 2.4 is a plot of Le vs electron temperature. The abrupt rise in Le

at lower Te is not realistic, and is due to the fact that only the electronic contribution to

Ke is included in equation 2.28 and there are few electrons available at low temperatures.

Note that Le drops with Te. This is because Ke rises with Te faster than Ca does.

The Lewis number is the ratio of the diffusion length scale to the electron thermal

conduction length scale. Low Lewis numbers then imply that the electron temperature

varies on a scale much longer than the diffusion scale, so that it is effectively frozen on the

diffusive scale. Since the results of the analyses of Chapter 4 indicate that successful ignition

occurs when the ionization length scale is on the order of the diffusion length, this means

that zero Le (infinite Ke) implies a constant temperature ionizing region. For"typical"

MPD thruster conditions, Le 0(10-1), which implies that electron temperature variation

on the ionizing region length scale is likely to be small.



2.4 Radiation Transfer in a Nonequilibrium Plasma

Although the emphasis in this thesis is on collisional production of ions, direct photoioniza-

tion and photoexcitation may play roles. In order to estimate the possible effects of radiation

on ionization at the inlet of an MPD thruster, some details of radiative transfer must be

considered. The basics of the radiative transfer formulation to be used in this research as

well as some preliminary calculations and estimates are presented in the following, and then

estimates of the radiative scale lengths are made to justify neglecting radiation under the

conditions typically found in a magnetoplasmadynamic thruster. Radiation will therefore

not be included in the ignition models of Chapter 4. A standard parametric method of

treating radiation, using radiative escape factors, will be outlined, and used in in Chapter 3

to estimate what effects radiation could have on the population distribution of the excited

states of an atom and the overall ionization and recombination rate coefficients.

Radiation in a plasma may be produced by spontaneous or stimulated emission and

depleted via absorption in processes involving the ground state, the excited states, and the

ion. The loss or gain of energy of one of the states of an atom or ion is associated with

a change in electronic state. In this section, estimates of the effects of radiation on the

volumetric rates of interest to this work are outlined.

Figure 2.5, from Samaras [60] illustrates the definition of the specific intensity of radia-

tion, I, which is: [53], [60]

I lim ( dE
dA, dO, dt, dv-*o dA cos 0 di dt dv

where dE, is the total amount of radiant energy in the frequency range between v and v+dy,

passing through the element of surface area dA and in a direction confined to an element

of solid angle dQ during an element of time dt. The angle 0 is the angle of the direction

of radiation (unit vector s 1 ) with the outward normal to the surface A (unit vector A'), so

that dA cos 0 is the area element perpendicular to the ray considered. The dimensions for

the specific intensity are joules/(m2 steradian).

The specific intensity is governed by the radiative transfer equation, which states that

the rate of change of the intensity with respect to space is due to the following three processes

(written in terms of the Einstein coefficients, Anm, Bnm and Bmn, to be discussed further

below):
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Figure 2.5: Geometry of radiation flow. From Samaras.

* radiation produced by spontaneous radiative decay of level n down to level m: En,,, n eA O(v)

* radiation produced by stimulated emission of the transition n - m (typically a small

effect, except in lasers): E,,nnB,,Bm (V)Inm

* radiation absorbed at level m and resulting in an m -+ n excitation: Enm,,nBm,,I,, (V)

Where 4(v) is a shape factor, with units l/v, and assumed here to be the same for each of

the three processes outlined above. The steady-state radiation transfer equation written in

terms of the Einstein factors is then (for each line n > m):

i - VI,,, -= E,,,,n,, A, Enm(n,Bnm - nmBmn)Iv.,,,](V)
4r

(2.29)

The three Einstein coefficients are related by the following two constraints [49] which

are required by equilibrium balance 49]:

82rh

rtm Bc
(2.30)

and

Bnmgn = Bmngm (2.31)



The radiation transition probabilities for spontaneous emission, Alk, Ack, can be found

tabulated [75] [35].

The following is the typical radiation transfer formulation [53], except for the application

to nonequilibrium level populations. Equation 2.29 can be rewritten as:

g, c gn11 - VIv, = EnnBmnOb(V) [v C2 ± - -I) In] (2.32)

At complete thermal equilibrium, the excited levels are populated according to a Maxwell-

Boltzmann distribution:

x= - (h (2.33)

n* gn kBTe}

where the superscript * denotes an equilibrium value. Also, there is perfect balance between

photon emission and absorption (the righthand side of equation 2.32 is zero). Then

0 n* gm 2h (n* gmn gn c2 n gn

or

2hy nm
IC B B (2.34)

exp(h), -1

which is black-body radiation intensity, and Bm,, is Planck's radiation function.

Now the radiation transfer equation, equation 2.32 may be rewritten. First, the absorber

density nm is pulled out as a common factor,

nn gm 2huL ng
l - VI, = nmEnmBmnO(V) 2 + - IVm

nm gn c nm gn

where the term outside the brackets on the righthand side is the absorption coefficient,

defined as

k, = nEnmBmn~O() (2.35)

Then the equilibrium distribution (equation 2.33) can be used to obtain

n, _ m - hnm 2hnm + , nm -hnm
fl - VIV," = k [nnexp( 2nm exp( ) - ,

nr nL m kBTe n* nm kBTe

Stimulated radiation is insignificant whenever



nn m* exp( ) <
n* nm kBTe

which is a reasonable assumption for most lines, particularly the strong resonant lines (where

the lower, absorbing level is the ground state). Therefore, stimulated radiation will not be

considered anymore in this work.

A modified, nonequilibrium production term, B , m. can be defined as

B n" exp(-hnm h (2.36)Sn* nme ksTe) c

or, in terms of the Planck radiation function,

n nm exp( hv)-

If exp(h ) > 1, then

BV.m B ,,mB
n nm

Then the equation of radiation transfer (equation 2.32) may be rewritten as

VI = - ) (2.37)

where / = carries the angular direction information, and k ,  B EmnBmnnm(v) is the

absorption coefficient for the line nm.

2.4.1 Photon Mean Free Paths

From inspection of the nonequilibrium radiation transfer equation (equation 2.37), the

mean-free path (mfp) for radiation is A, = 1/k. From the definition of the absorption

coefficient in equation 2.35, and using the relationships between the Einstein coefficients,

rtmgnEnmc2 Anmq$(z')
k, = nmEnmBmn(v) = nmnE c2Am(V)

87rgmhvunm

where c is the speed of light, subscript n represents the higher energy level, subscript

m represents the lower energy level, and Enm is the energy gap between the two levels.

Assuming that the line has a Lorenzian absorption shape [49], such as in the case of a Stark

broadened line, then
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1 2

Ar 1 2 (2.38)

7TI 1+ 42

where 7 - 2(v - vo)/Av. Substituting the line shape from equation 2.38, the absorption

coefficient is

k - nmgEnmc2 Anm 1 10 22 m
S2

8igmh m (v -v o)2 +(Af)2 ne

and the absorption coefficient at the line center k(V = Vnm) = ko is

C 2 nmgnAnm c 3 nmgnAnm

47r2gmyV2 A v  4r 2 gmv 4 Av

since

c v2AAAv = AA -
A2  c

The "core" of a line may be defined as follows, relative to the mfp. If there is a charac-

teristic length for the problem at hand, Lref , then a portion of the line is effectively trapped

if A,/Lef < 1, or if

A, 1 + 712
- «<1

Lre/ Lrefkv,

Therefore the core of a line is that portion of a line (the range of |7qj) which is virtually

trapped relative to the relevant length scale. This is determined by

1 + 12
=1

Lef kvo

or, defining (77)core as the value of 71 where this is satisfied,

()core = Lref ko - 1 LreIkv

Using a "typical" Stark-broadened case, full-widths at half-height from Griem [26] are

shown in table 2.1 for various lines in the argon atom and ion. The widths are linear



Table 2.1: Line widths, in Angstroms, for several argon atomic and ionic lines, From Griem

(1974).

functions of ne: the argon atom (AI) widths were calculated with ne = 1022 m - 3 and the

argon ion (AII) widths were calculated with n, = 1023 m - 3 in Griem [26].

For the resonant line of the argon atom (a combination of the AI 1067 and 1048 lines),

E21 = 11.468eV = hv, v = 2.82 x 101s-1), (n = 2 (the first lumped excited state), m = 1

(the ground state), 6A - 0.0005 angstrom, and Av 10 9 s - 1 . The absorption coefficient at

the line center (in mks units) is then: ko = 7.3 x 10-1 7ni m - 1 .

Consider now three mfp's: for ionizing radiation (A,), for the "core" of a particular line

(A,), and the "wings" of the line (All).

1.3 x 1016
nl

and in the wings, for a Lorenzian line, the mfp is:

1.3 x 1016 ( _ Vo 1.3 x 101 6

All = 1.3 10 1 6  + )2) (1 + r 2)  (2.39)

The photoionization cross-section for a hydrogenic atom from a level with principal

quantum number m (m = /EH/Ekc is the effective quantum number [74], where E H is

the ionization potential of the ground state of the hydrogen atom (13.6 eV), and Ekj is the

ionizational potential of the level k of interest.) is [49]

Qm 8 x 10- 22m Enc)

At the threshold (where Emc = hv), the mfp for direct ionization of the ground state

via radiation is

Temperature (K)

Species Line (Ang) 5000 10000 20000 40000

AI 1067 4.75e-4 5.41e-4 6.23e-4 7.11e-4

1048 4.60e-4 5.25e-4 6.04e-4 6.89e-4

3554 0.199 0.247 0.303 0.347

AII 724 6.62e-3 4.93e-3 3.64e-3 3.21e-3

4102 0.595 0.480 0.419 0.397



1.25 x 1021

nl

Liberman and Velikovich [44] state that the mfp for photoionization in the argon atom

is 106 times the mfp of the line center of the resonant line. Here, we see that it is roughly

a factor of 105 larger.

Generally nl 1022 m - 3 in MPDT flows. This would mean that A 10-6m and

Ac - 0.1m. These results indicate that line radiation is likely to be ineffective in the

production of excited states (or even ionization of ground states from resonant ionic lines,

which have length scales about ten times longer) because they are trapped locally. In

addition, the photoionization scale length is longer than the scale lengths of interest for an

ionizing front in an MPDT. Thus radiative effects will be dropped in the ignition problem

analysis. However, the effects of radiation on the volumetric rate equations will still be

considered in Chapter 3, in a parametric form described in the next section.

2.4.2 Radiative Escape Factor Method

This section describes a method used to simplify the inclusion of radiative effects in a CR

model, namely the "escape factor" method. The escape factors for radiative decay processes

k - j, Pkj, are indications of the optical thickness of the plasma to the individual radiative

lines, and each escape factor is the net emission for the line divided by the spontaneous

emission. Therefore, the product of the escape factor and the spontaneous emission (Akjnk)

is the net emission. This allows radiation to be included in kinetic models in a parametric

manner.

The net emission in all directions, per unit time, per unit volume, for the entire kj line

is the spontaneous emission minus the absorption plus the stimulated emission:

Akjnk - L o Bjk jk (v)Injddv + + 4 Bkjnk jk(v)I ,dfdv
Vo-oo ovo- o

Combining the two integral terms,

=Aknk - L + j Bjk ki(V)I ( 7 - nk ddv

The escape factor is simply this divided by spontaneous emission, Akjnk. Thus, the

escape factor for the kj line is [49]



Oki ) 1 -( 4 Ikdfidv (2.40)
k 9k Ak v JJO

The case where Okj = 0 corresponds to a plasma optically thick to the line, so that no

radiation escapes the vicinity of its origin, and every decay event caused by spontaneous

emission is balanced by its inverse process when the radiation is absorbed. Thick lines,

then, have no net effect on the kinetic balance.

The case where Pkj = 1 corresponds to a plasma optically thin to the line, so that all

radiation produced escapes from the volume of interest. Since no radiation is absorbed,

there are no excitation events to counter the decay caused by emission and the emitting

level registers the maximum possible net loss.

Realistically, due mostly to the fact that the populations of the excited states are low,

radiative lines between the excited states are likely to escape the plasma volume, so that

Pkj 1, j > 1. However, resonant radiation lines (where the ground state is the lower level)

are more likely to be captured since the ground state population is relatively high, so that

Pk1 0.

Radiation effects are twofold: they influence the excited state populations and they

contribute directly via radiative recombination. We treat radiation in a simplified manner

here, following the approach of [7], [24], and [49]. This allows us to parameterize the

radiation effects in a convenient way. Each transition probability, Alk (1 > k) is then

multiplied by a radiative-escape factor, /lk in the kinetic rate equations.

For the resonant radiative line between the first excited state and the ground, for exam-

ple, the escape factor at a depth x in a slab of thickness h, can be found, following Holstein

[30] [31]. The result is [49]:

1321 - k/(- 1 + H-

where k2 1 is the absorption coefficient at line center. For the large absorption coefficients

for the first resonant line of the argon atom found above, the space-averaged escape factors

will be small, perhaps on the order of hundredths, but generally lower than that.

Note that the radiative power loss per unit volume is:

S(E nk OkAkEkj)
k>1 j<k



Most of the radiative power is in the resonant line from the first excited state since n2 E 2 1

is large. However, resonant lines are most likely trapped (Plk1 << 1), so most of this power is

reabsorbed before it can escape the plasma. Assuming a slab geometry, the power density

from the remaining losses due to radiative decay of the excited states is well below the

electromagnetic power density found in plasma accelerators (no more than a few percent).

In the model, the escape factors are varied somewhat, although, in general, experimental

evidence seems to indicate that Olk 0 for 1 = k < 1, and Plk 1 for 1 < k < 1; ie.,

most plasmas are optically thick towards the ground state, but optically thin for all other

inter-level transfers.



Chapter 3

Modeling Nonequilibrium

Ionization

As stated in the Introduction, self-field magnetoplasmadynamic thrusters (MPDT) operate

under conditions which make it highly unlikely that the working plasma is in ionizational

equilibrium. In particular, near the inlet, where rapid ionization, heating of the electrons,

and acceleration take place, the plasma may be far from equilibrium. In order to study

the inlet ignition problem properly, it is therefore necessary to look first at the details of

nonequilibrium ionization, to both justify and develop a convenient and accurate overall

volumetric production rate model. This rate model has the advantage of including the ef-

fects of the excited states on the overall net ionization rate without having to actually solve

continuity equations for the individual states. This is a big advantage, since there are 19 or

more excited levels, depending on the species modeled, and the additional continuity equa-

tions may be stiff. All of the results of this analysis are characterized by the local electron

temperature, Te, and/or electron number density, n,, both of which must be determined

self-consistently by a complete model of the thruster channel.

In addition, this approach allows the excited state population distribution in a thruster

channel to be determined. This is of significance to spectroscopic diagnostics, where knowl-

edge of the population distribution is needed to properly interpret either absolute or relative

line radiation intensity measurements. This may be done by using the overall rate model

developed in this chapter in a realistic flow simulation, and then generating the popula-

tion distribution through post-processing. However, this issue is of secondary interest to



this thesis, and will be considered briefly in Appendix D, both for a stationary case (glow

discharge) and for some of the ignition cases.

This chapter will focus on a reformulation of the standard collisional-radiative (CR)

rate model for atoms and ions, and the calculation of overall collisional rate coefficients for

ionization and recombination. In the standard CR model, the structure of both atoms and

ions is modeled as a ground state, a group of lumped electronically excited states, and the

next higher ion, or continuum. Rate equations are then written for each of the modeled

excited levels which include the effects of excitation, ionization, and radiative decay, and

the inverse processes.

A schematic of the energy-structure of a typical atom or ion is shown in figure 3.1.

(This figure is based on the hydrogen atom, for which excited state k has energy Ek =

Elc(1 - 1/k 2 ), where El, is the ground state to continuum energy gap - the ionization

potential energy.) The ground state (which will be denoted by index k = 1 in this analysis)

is at zero energy. As is typical for most atoms and ions, the energy gap between the ground

and the first excited state (k = 2) and the continuum (k = oo) is several times the energy

gap between the first excited state and the continuum (k = oo). The simplest model of

such an atom or ion is a two-level one: the ground state and the continuum. A three-level

model would add either the actual first excited state, or a lumped excited level containing

several close-lying (by energy) states. A multi-level model will be defined here as an atom

or ion model which includes the ground state, several excited levels (actual states or lumped

levels) and the continuum.

The ionizational equilibrium referred to here is "Saha-Boltzmann equilibrium", which is

a statement of the law of mass action. That is, the plasma is in a state of equilibrium due

entirely to collisional transitions amongst the excited levels as well as between the levels

and the continuum. In a situation where equilibrium exists, each level's population is then

calculated by the Saha-Boltzmann equilibrium formula applied to that level.

There are several distinctions to be made about what equilibrium is in a multi-level

model [55] [72]. Thermal equilibrium would require that the levels are all populated as per

the Saha-Boltzmann equation, the radiation fields are black-body, and the plasma is uniform

in the volume of interest. A more likely case is local thermodynamic equilibrium (LTE), in

which case each of the levels is at its Saha-Boltzmann (S-B, equilibrium) population, and

the radiation field is unconstrained. Complete LTE (CLTE) occurs when all the levels are in



Figure 3.1: Electronically excitation energy structure of a multi-level atom or ion model

the S-B distribution, and partial LTE (PLTE) when the uppermost levels have equilibrated

with one another by electron-atom (or ion) collisions, although they do not necessarily obey

the S-B populations at the local electron temperature. It will be shown here that PLTE

occurs most often under the conditions of interest in plasma thrusters.

Table 3.1, following Drawin's categorization (Chapter 3 in [72]) illustrates some of the

variety of plasma conditions. Plasma accelerators are most likely to operate in the nonsta-

tionary, dynamical and partial LTE (or PLTE) regime.

Since the collisions in this model are all due to interactions between light, fast electrons

and heavy, slow atoms or ions, a significant ratio relative to a transition between levels j

and k is the ratio of the electron average kinetic energy to the energy gap between the levels,

ksBTe/Ejk. The addition of the intermediary levels means that it is likely that a ground

state atom will jump the gap E 12 to the first excited level before ionizing. Gaps of E 2c

and smaller are then of particular significance for ionization and recombination. Therefore,

3kBTe/E2c is a reasonable ratio to scale temperatures for this problem. An energy of 2E 2c

corresponds to a temperature of 31000K for argon and 26300K for hydrogen. Temperature

on this order are commonly found both experimentally and computationally in MPDTs.

All approaches to the ionizational rate problem rely at some level on experimental

k = oo (continuum)

k = 2 (first excited state)

k = 1 (ground state)
E=O



Condition: Plasma Classification:

all nk 4 n* complete non-LTE

only a few nk # n* partial non-LTE

an& = 0 steady-state
at --

ankt 0 transient

ak = 0 andat

V. (ni)k = 0 steady-state and homogeneous (uniform)

at 9 0 and

V - (n< >)k 5 0 transient dynamical

an = 0 and
at

n-  ,rad < V (n < ~ >k) steady-state diffusion-dominated

Table 3.1: Plasma Conditions

results, either to determine collisional cross sections or to fit rates directly. Most then

express the net ionization rate as due to the difference between two-body (e-a) ionizing and

three-body (electron-electron-ion) recombining collisions, neglecting radiation, and written

in a form similar to:

he = nenaSac - n2niSca (3.1)

where Sac and Sea are the overall ionization and recombination collisional rate coefficients,

respectively, and n is a number density with units particles/unit volume. (The subscripts i

and a refer to the continuum (the next higher ion) and the atom, respectively, and e refers

to the electron.) When all species are in equilibrium (denoted here by superscript *); i.e.,

the ionization and recombination rates are balanced (overall microreversibility). Then,

Sac ( neni* Sca
na

and the net ionization rate (equation 3.1) can then be expressed as:

ie = nen*n Sca Ia - n *I (3.2)

In this thesis, it will be assumed that the electron density is a given, or calculated

quantity, and that ne = n*, ni - ni . Thus, equation 3.2 will become



e = n Sca - 1 (3.3)

which is the general form that will be used later in this chapter to rewrite the standard rate

equations.

In the full standard rate model adapted here, both collisional and radiative (in a para-

metric manner) volumetric losses and gains for the ground state, the excited states and the

ion are accounted for. The radiative effects will be twofold: they may influence the excited

state population distribution and they may contribute directly via radiative recombination.

As will be seen, radiative effects are strongest at electron number densities and electron

temperatures that are low compared to typical MPDT values.

3.1 Equilibrium Ionization Basics

Before discussing nonequilibrium ionization, the equilibrium case should be described. This

is, again, equilibrium between the rates of ionization and recombination. The net ionization

rate equation, as in equation 3.1, can be written most generally as the difference between a

gain term (ionization) and a loss term (recombination):

gen _ lo (3.4)

There are two important limits to this rate equation. When the rate coefficients and/or

densities are small (where "small" is determined relative to the time scale of the problem

at hand), then
i e gain jloss O

i e n e  0

the plasma is considered to be frozen, and reactions do not contribute to the determination

of the densities of the excited states.

The other limit occurs when the rate coefficients and/or densities are high (again, the

definition of 'high" depends on the other time scales involved), so that the reactions are

rapid enough to drive the plasma virtually to equilibrium:

< hgain , loss
'he << ,e

If the ionization time scale is much smaller than that of any other process in the problem at

hand (i.e., diffusion, convection), then (hgalin- ,hosS) -+ 0 very quickly compared to the rest



frozen gain , loss/ Iain remains finite he = N/7; r -- 00

equilibrium Aaian / -+00 loss ain 1 he = N/; N

Table 3.2: Summary of frozen and equilibrium cases. Here "0" and "oo" are relative to the

other terms in the ion/electron continuity equation.

of the processes acting in the plasma, and this is an equilibrium plasma, where the excited

state populations are solely dependent on the reactive balance.

To summarize the difference between frozen and equilibrium cases, equation 3.4 can be

rewritten as

e = .angain 1 _ -- (3.5)
e g /

and then table 3.2 summarizes the frozen and equilibrium cases.

Schematically, in the equilibrium case, the balance is

atoms + ionization energy = ions + electrons

The law of mass action for this case is, from Pai [54]:

PiPe = CTs/2 exp( Eac

Pa ekBTeI

where pi, Pe, and Pa are the partial pressures for the ion, electron, and atom species,

respectively, and Eac is the ionization energy for the atom. The factor C is determined from

statistical mechanics, and involves the partition functions of the three species involved. In

the case of ionization, the balance is referred to the Saha-Boltzmann equation [49]. For a

level k of plasma species s, the Saha-Boltzmann (S-B) equation is:

(27rmekBTe\ 3 1 2 g; E n
S(s k Te - 2  2g exp(- ) = ( (3.6)

P gk kTe k
where g is the degeneracy of the ion ground level, g-' is the degeneracy of the level k, Ek, is

the energy difference between the continuum and the level k, and hp is Planck's constant.

The number densities are: for the level k, n; for the electrons, ne, and for the continuum

(next higher ion), ni'.



Assuming that E n - n', then the law of mass action applied to the balance between

overall gain and loss yields the following equation for the ground state (level k = 1) of

species s

S( 1(3.7)

Consider now a single gas species, so that the species superscript can be dropped.

Defining the ionization fraction as the ratio of free electron density (ne) to gas nuclei density

a- ne/ag

then, from equation 3.7,

S(s, 1, Te)= eq
1 - aeq

Solving for the equilibrium ionization fraction, aeq,

aeq A (1 + 4A2  i)- (3.8)

which is a function of one parameter,

ng

S(s,1,Te)

The values of aeq at high and low values of A2 are

aeq - L as A 2  0oo

aeq -+ 1 - A 2 as A 2 - 0

Figure 3.2 is a plot of the equilibrium ionization fraction versus the parameter A2 . Figure

3.3 is a plot of the equilibrium ionization fraction versus the electron temperature for various

number densities. Note that, although the ionization fraction drops with increasing overall

density n, at a particular temperature, ne/S(s, 1, Te) is a monotonically rising function of

ng.
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Figure 3.2: Equilibrium ionization fraction as a function of the parameter A2.
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Figure 3.3: Equilibrium ionization fraction in argon as a function of electron temperature

for various heavy particle densities (the units of ng are m-3).
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3.1.1 Ionizational Equilibrium with Second Ions

For the case where second ions, of argon, for example, are present, the S-B (law of mass

action) equations for the argon I and II species must be combined to determine the individual

densities. Define

S(a,1, Te)= nen = So (3.9)
n 1

++
S(i, 1, Te) =nn- = S+ (3.10)

ni

where all of these densities are equilibrium densities. Then, using n, = n + + 2n + + , the

equilibrium densities are (using now the superscript * to indicate an equilibrium quantity):

2

(n)* = e (3.11)
ne + 2S +

(n++)* = ne S (3.12)
n, + 2S+

ne(n+)* n,
(n -)* e (3.13)

So SO(ne + 2S+)

Then, if the total number of nuclei in the gas is ng = (n + )* + 2(n ++ )* + n*, or

2 neS+ n3

ng + + e
S n. + 2S +  ne + 2S +  So(ne + 2S + )

yielding the following equation for the ionization fraction, a = ne/ng (which can now be

greater than one),

a3A2 + a - - = 0 (3.14)

where A2 is as before, and

A f = (= atom ( ion El -E+A
2+- exp kBTe 2

Note that in the limits, as A2 --+ oo, the single ion result of the previous section is ap-

proached, and as A2 -> 0, a* -- 2.

To reflect the fact that some of the ions are first ions and some are second ions, and

using ne = n + + 2n ++ , the ratio



Figure 3.4: Equilibrium ionization fraction and (* as a function of the parameter A2 with

both first and second ions present.

n
+

ne

is defined. (( a 1 for plasmas that are weakly ionized, and only the first ion is present

regardless of the ionization fraction). ( drops to zero when the plasma contains only second

ions and electrons. For most cases relevant to plasma accelerators, ( a 1 except for certain

hot, low density regions.) Note that the equilibrium ion ratio is

= tne aeq
n, + 2S +  aq+ 1/A +

Figure 3.4 is a plot of both a* and (* for argon. In this plot, for simplicity, A+/A2 -

6 exp(-2) The ionization fraction approaches 2 when all of the ions are second ions.

3.1.2 Ionizational Equilibrium with Two Gas Species

Besides the cases of singly and doubly ionized plasmas of one species, there are cases where

there are two different singly ionized species present in the same plasma. One such situation

occurs when a higher ionization fraction is desired in a plasma of a particular species under



fixed conditions, in which case it is common to "seed" the plasma with a gas of lower

ionization potential in order to produce more free electrons. Another situation where a

second species may be introduced into a plasma is when a second gas, again of lower

ionization potential than the original species (which implies more highly populated excited

states) is used to produce more intense spontaneous decay line radiation when spectroscopic

diagnostics are used in an experiment [36].

Consider then a case where two atomic species, sl and s2 are present in a mixture, at

the same temperature. The relevant temperature here is Te, which is common. For atomic

gases, differing Tg will not have an effect on the partition functions. Assuming that the

n, = C nk a nj; that is, that most of the each atomic species is in the ground state, then

the equilibrium ionization fraction for each species is found from

(a2 ) S(s, 1,Te) ,) 1

Writing this expression for both species, and dividing one by the other, the result is

(2 _ * (1-)n 1CS- 
E___ * )

e x p  _- )
a a2 1 gi nj k Te

where Eif is the energy gap between the ground state (1) and the continuum (c) for each

species. The S-B equilibrium ionization fractions are equal at the following "crossover

temperature", T,:

E 2 - E31
T, 1c 1c

The crossover temperature, for a two gas species, T,(sl, s2), is the temperature beyond

which the equilibrium ionization fraction of species 1 will be greater than that of species

2. For example, for several species combinations, at n' = n'2 : T,(A, H) 10, 100K,

T,(A, Cs) 55,400K, and T(H, Cs) = oo (since H and Cs have the same ground state

and first ion degeneracies). Figure 3.5 illustrates the crossover temperature for the hydro-

gen/argon pairing. Shown are the equilibrium ionization fractions for each species at 5

different total number densities. Below T,(A, H) 1 10, 100K, at the same densities, the

hydrogen ionization fraction is higher than that of argon, and above T,, the argon ionization

fraction is the larger of the two.
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total number densities. The solid line represents hydrogen and the dashed line is argon. A

vertical line is drawn at the crossover temperature, T, 10100 K.



3.2 The Standard Collisional-Radiative (CR) Model

Here, the collisional-radiative model is presented. This is a standard approach, using vol-

umetric production rate equations as in Bates [7], Gomes [24], and Mitchner and Kruger

[49] as a basis. We then work with the steady-state continuity equations for each species s

(either an electronically excited level or the continuum):

V (nil4) = A

The h, terms are the volumetric production rates for each level and the continuum.

The assumptions behind the model, the processes included in it, and the formulation of the

problem are discussed below.

The model for the atom or ion in question consists of its ground state, its electronically

excited states, and the continuum - the next ionic species. As described in appendix B, the

actual excited states are not used; instead lumped levels are used, with the assumption that

states with very close energies are likely to be quickly equilibrated amongst themselves.

3.2.1 Standard CR Assumptions

The following standard set of assumptions have been made in order to make the collisional-

radiative modeling problem more tractable. Results from calculations by earlier researchers

bear out that they are not overly constrictive [7] [49], and they do not conflict with the

conditions found in MPDTs.

1. The electrons are assumed to be sufficiently equilibrated amongst themselves through

collisions so that a Maxwellian distribution can be used for them. This, coupled

with assumption 3, allows the rate coefficients for collisional processes to be easily

calculated.

2. A two-temperature plasma is assumed. The electrons are assumed to have a Maxwellian

distribution with a temperature Te, and all of the heavy particles (atoms and ions)

are at T,.

3. It is also assumed that all of the inelastic collisions which have an effect on the number

densities are driven by the electrons. This is generally a fair assumption in an MPD

thruster - see figure 2 from [22] for a typical case.



4. The plasma is quasineutral, so that conservation of charge applies.

3.2.2 Standard CR Processes Included

Ten collisional or radiative processes which populate or depopulate a given excited state of

an atom or ion are included in the standard CR model [7] [49]. The following is a description

of the actual events behind the processes. Assume that we are focusing on an energy level

k of atom or ion A: Ak. Then, for j < k < 1, we have:

1. Collisions which excite atoms in lower electronic levels to the level k - a gain: e + Aj

e + Ak

2. Collisions which deexcite atoms in level k down to lower electronic levels - a loss:

e + Ak - e + Aj

3. Collisions which excite atoms in electronic level k up to higher levels - a loss: e + Ak -

e + At

4. Collisions which deexcite atoms in higher electronic levels down to level k - a gain:

e + Al - e + Ak

5. Singly ionizing collisions which deplete level k atoms - a loss: e + Ak -+ e + e + A +

6. Three body recombination collisions which produce level k atoms - a gain: e+e+A+

e + Ak

7. Net radiative decay from level k atom to lower levels - a loss: Ak - Aj + hvjk
( Ek-E 3 )

8. Net radiative decay from higher levels down to level k - a gain: At - Ak + hvkl

(Vkl = El-)E Processes 7. and 8. are combined by means of the "escape factor",

0 < kj < 1.

9. Radiative recombination events resulting in level k atoms - a gain: e + A+ - Ak + hvk,

(where vk = ,-E where c is the continuum index and h is Planck's constant)

10. Photoionization (inverse of 9.) from level k. Processes 9. and 10. are combined by

means of the "escape factor", 0 < Oick < 1.



3.2.3 Definition of The Degree of Nonequilibrium

The standard collisional-radiative rate equations [7] [49] (also see Appendix C) can be

rewritten through use of the microreversibility relationships between the collisional rate

coefficients. The resulting equations deal directly with the effects of nonequilibrium of the

electronic states. Writing the ratio of a level's deviation from equilibrium to its equilibrium

population as

6k 1 (3.15)
k

yields a useful variable, 6 k, to be referred to in this work as the degree of nonequilibrium

of a level k. When the level k is at its S-B population, then 6 k = 0. When the level k is

underpopulated relative to its S-B value, then 6 k will be negative (the limit is an empty

level, in which case, 6 k = -1), and overpopulated levels have 6 k > 0. Van der Mullen, et

al. [70] refer to 6k as the relative overpopulation of level k.

In the next sections, the standard CR equations are rewritten using the degree of

nonequilibrium variable instead of the actual number densities, which was the original form.

In these equations, it will be assumed that ne is known.

3.2.4 Collisional Excitation and De-excitation to and from a Level

The net rate of change of number density of an excited level, k, to and from some other

level, j, via excitation and/or de-excitation collisions is equal to the loss by deexcitation

collisions down to the lower level plus the gain by excitation collisions from the lower level

[49] [7]:

k) -eL kS + fnenjSjk

where nj and nk are the number densities of levels j and k, respectively, only electron-

heavy collisions have been included, and Skj is an excitation or deexcitation rate coefficient

for the j -+ k transition. (See Appendix C for details of the choices for both collisional

cross-sections and rate coefficients.)

(i) 1 = -heSjj (n-:- n )



Microreversibility (detailed balance) requires that the two rates be balanced when they are

in their Saha-Boltzmann distribution. Taking advantage of this,

where the superscript * denotes an equilibrium value. Regrouping,

°(f) = -neSjflY(n * -

Finally, using equation 3.15,

SS
( -l) n ,kjT ( - 'k) (3.16)

k ei S(s, k, Te)

where S(s, k, Te) is the S-B equation for level k of species s, as defined by equation 3.6.

3.2.5 Collisional Ionization from and Recombination into a Level

The net rate of change of number density of an excited level, k, to and from the continuum

is equal to the difference between ionization and recombination:

((iLk)S)c = -enSi-c + n 2 s s

where Skc is the ionization rate coefficient and Sck is the three-body recombination rate

coefficient. Regrouping,

((hk)')c = -nSk en  k - n
•ek k S * - n:)

and taking advantage of microreversibility, assuming that n(n i )* nen:

((hk)S)c = -neSk n (  ) * - ni_ r n

or

((ihk) 8 )c = -nfl7 Sk (s

and, using the degree of nonequilibrium variable, 6, this becomes

((hk)S)c = -2n S 6k (3.17)



3.2.6 Radiative Losses from and Gains to a Level

The net rate of change of number density for a level k due to radiation is the sum of losses

to lower levels, gains from higher levels, and net gain due to photorecombination.

(i), = - nkjAk + E nll3lkAlk + nens/3 ckAck
j<k l>k

where Akj are the Einstein probabilities for radiative transitions (the inverse of the mean

radiative lifetime), and /3k are the radiative escape factors defined in chapter 2. The escape

factors allow for radiation to be considered parametrically: when 3 kj = 0, no radiation

escapes, the spontaneous emission associated with a decay from level k to j is balanced by

absorption and excitation back up from j to k, and there is no net effect on the rate; when

Pkj = 1, then the effect is a net rate of loss of level k number density and a net rate of gain

of level j number density. The nen/ckAck term represents the net rate of production of

level k number density due to the sum of photorecombination minus photoionization. Note

that under conditions of strong irradiation and/or low local emission, the radiative escape

factors may be greater than unity.

The microreversibility relations do not appear naturally here. However, they are still

used in order to obtain the 6k form:

n,nS nk nnW ni
(i), = - , - kjAkj + l Ik A l k + nenickAck

S(s, k, Te) j<k (n)* l>k S(s, 1, T.) (nl)*

and finally:

(k), - SkkjAkj + E /kjAkj (3.18)
S(sk Te) j< j<k

+nen!4[ (61 + 1)kAlk] + nen 3 ckAck
l>k S(s, 1, Te)

3.2.7 The CR Equations in the Sk Form

Using the terms derived above, the full rate equations may be written. The species super-

script has been dropped for convenience.

For the continuum the net ionization is the sum of the ionization terms from the indi-

vidual levels (see equation 3.17) minus the net radiative recombination term:



,e = neni E 6kSck - n. E Ac lk (3.19)

and for the individual levels, grouping the terms derived above and given by equations 3.16,

3.17, and 3.19, results in:

tn[2 n (6j - Sk)Sk - 6kSk

jf k S(s, k, Te)

+ ne 6[Alkk E 6kAkjk

l>k S(s,,Te) j<k S(s,k,Te)

+ neni[Ack/
3 k + -A -

I>k S(s' Te) <kS(s, k, Te)

(3.20)

For those cases where there are multiple ions in the plasma, then conservation of charge

requires:

E Z5bnj' = nZ

where ZS is the charge of the ion of species s divided by e.

The final line of equation 3.20 shows that, even when the levels are all in their S-B

equilibrium distribution (i.e., all 6k are zero), there may still be a rate of change for all

levels due to radiation. However, S-B equilibrium usually implies high electron number

density, and then radiative effects on the rates are comparatively insignificant in affecting

the excited state distribution (although this may not mean low radiation power loss).

3.3 Formulation of the CR Equations with Dynamic Equi-

librium of the Excited States

So far, the standard CR equations have simply been rewritten in a convenient new form.

Now, with the help of an assumption that will be tested first, the CR equations may be recast

in a form which will make it possible to determine both the population distribution of the

excited levels and overall ionization and recombination coefficients. This key assumption is

that the excited states are in a dynamic balance because their characteristic time scales are



much smaller than the convective and diffusive scales found in MPDTs (the quasi-steady-

state-solution case). This is critical, since if the excited states varied on time - and length

- scales similar to the convective and diffusive scales in the thruster, then the only way to

include the effects of the excited states would be to include continuity equations for each of

the states in a numerical simulation of the flow.

The upper levels relaxation time is on the order of the collisional time tkj - "", while

the ground state relaxation time must be coupled to the diffusion time, which depends on

whether diffusion is perpendicular (ambipolar boundary layer) or parallel (which is only

likely near the inlet region of a channel) to convection:

(td)I =

Cin Ain

(td) 'i 2
ref

where Akj is the excitation mean free path, AX, is the ion-neutral mean free path, e is a

thermal velocity, and uef is a characteristic speed, which is typically 0(102) - O(103)'

[27] for an MPD thruster. The resulting ratios are

tk -in Ain Akj

(td)I E h h

tkj Akj ref Uref

(td)l An ce in

For the perpendicular case, the first two ratio factors on the right-hand side should be

small enough so that the ratio is small, even if the last term is not. However, in the parallel

case, the ratio is not necessarily small. Near the inlet, we will have to consider diffusion

and convection of the excited levels. However, if we limit ourselves to ambipolar boundary

layers, then the upper level relaxation time scale is very short compared to the ground state

and diffusive time scales.

This can be quantified by applying the rate equations, and requiring that the volumetric

production time scale of each of the excited states be much smaller than the mechanical

time scales characteristic of an MPD thruster device (i.e., convection and diffusion. This

will be done only for the argon atom) The collisional time scale for a level k is



tK nk

ik ne SK

where SK = Zjk,c Skj. The mechanical time scale is tm = Iref l/Uref. For the bulk plasma

in an MPD thruster, of length L - 0.2m and uref - 8000m/s from the MPDT work of

Martinez [46]. Thus the bulk mechanical time scale is

tmb = L 2.5 x 10-5s
Uref

At the inlet, we use the back-diffusion length scale, 1,ref = Ca/G, and a characteristic

speed of a few hundred m/s, uref ? 200m/s, which is appropriate average based on the 1-D

MPDT calculations of Niewood [50] and Martinez [46] and the reference to experimental

values of the inlet speed by Chouieri [18]. For a typical MPDT G = ngu = 8 x 1024

(corresponding to nh/A = 0.5-, used by Martinez [46] ), and the definition of Ca, the

mechanical time scale at the inlet, tmi, due to back-diffusion is

Ca
tmi Ca e 1.7 x 10-s Ts

Guref

for Te = 2T,. Then, tk < tmb and tk < tmi imply: neSK > 400001 and neSK >

1.18 x 10s//s - 1 , respectively.

Figure 3.6 is a plot of tmb/tK for the first lumped excited level of the argon atom, using

bulk plasma conditions. This level is chosen for the comparison since the level to level

energy gaps decrease as the continuum is approached, so the first excited level will have the

largest tK. The assumption that tmb/tK > 1 is shown to be quite reasonable in an argon

plasma at MPDT conditions.

Figure 3.7 is a plot of tmi/tK, again for the first lumped excited state of the argon atom.

For typical inlet densities (ng 10 2 2 m-3), the dynamic equilibrium assumption for the

excited states would be valid at a > 0.001 or more, which is very reasonable for the cases

encountered in this work.

Another way to look at the time scale issue is to simply look at a stationary plasma,

perturbed from equilibrium, relax back to equilibrium over time. If the excited states (and

to be conservative, only the 7 lowest excited levels will be used here) relax much faster

than does the ground state, then the excited level may be considered to be volumetrically

balanced on the time scale of the ground state. The set of resulting equations is
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where n, is either one of the atomic levels (ground state or excited) or the continuum.

This problem is expected to be quite stiff if the excited states time scales are indeed much

smaller than that of the ground state. The integration is carried out from time t = 0 using

a 4th order Kaps-Rentrop step routine for stiff equations which was adapted by Press and

Teukolsky [57] for use with the one-dimensional marching drivers in Numerical Recipes [56].

The initial condition is somewhat arbitrary, although n, and 6 k should be chosen so as

to avoid both the frozen and equilibrium limits. The choice made here is n, = 1020 m 3 ,

and 6k(t = 0) = 1 or nk = 2n*, at Te = 20000 K. Figure 3.8 shows the results for the first 4

levels (recall that k = 1 is the ground state, k = 2 is the first excited level, and so on). The

excited states are seen to approach their equilibrium values much quicker than the ground

state does - the excited level time scales are in fact three or four orders of magnitude less

than the ground state's for the assumed conditions.

Having established that the time scale for the excited levels is much smaller than that
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of the ground state (which is tied to the MPDT mechanical time scales), we can assume

that all the excited states are dynamically balanced (setting hk/(n r2ni 0 to determine

the population distribution, not to imply that it is frozen) and that only the ground state

rates are on the order of convective and diffusive terms in the continuity equation. This

condition is referred to as the quasi-steady-state-solution (QSSS) by van Der Sijde, et al.

[71]. In this case, equation 3.20 could be used to solve for all of the 6k as a function of the

ground state, 61 in a form:

6k = Xk(, ne, Te)61 + ?kk(, ne, Te) (3.21)

where represents the matrix of escape factors, and 1k is entirely due to radiation escape,

coming from the last line of equation 3.20. The density dependence comes from the fact

that the radiative and collisional terms carry different powers of ne.

This method allows the rate equations for the excited states to be solved independent

of the ground state (or continuum) equations. The degree of nonequilibrium of the ground

state, 61, is determined by the ion or the ground state continuity equation (assuming the

electron density and total number density are known) which includes the effects of convec-

tion and diffusion. Equation 3.19 is now

he = n (6 + lkk) Sck - ne~i E Ackck (3.22)

Under the QSSS assumption, equation 3.20 yields the following equation, which can be

used to calculate the coefficients Xk and 'ck:

0 (81(Xj - Xk) ( 2O - Ok))Sk' - (61Xk + Ok)Sck
3 k S(s, k, Te)

(61Xl + 01)Alk lk (lXk + k)Ak-zkj

1>k neS(s,3,Te) j<k neS(s,k,Te)

+ Acck ck Alklke - Akjkj) (3.23)
ne l>k neS(s,1,Te) j<k neS(s, k,Te)

This is a modified version of the law of mass action for each level k, with the influences of

radiation and the degree of nonequilibrium of the ground state included.



3.3.1 Calculating Population Distributions

Ultimately, the goal of this analysis is the calculation of the overall ionization and recom-

bination rate coefficients, but in order to include the influence of the excited states, it is

necessary to find their population distribution (actually, the degree of nonequilibrium of

each level) first. The population distribution of the excited states is now a function of

61, the electron temperature, and the set of radiative escape factors. In the formulation

outlined above, the distribution was characterized by Xk and ibk.

Without Radiation Effects

If radiation effects are dropped (equivalent to setting all of the escape factors in equation

3.23 to zero; physically, this would mean that all of the Anmm/ne factors in equation 3.23

are negligible), then all k are zero as well, and we have (assuming that 61 5 0)

0 = (Xi - Xk)Skj XkSck] (3.24)
k -S(s, k, Te)

Or the set of N equations, k = 1, 2, ... , N (for a model with N excited levels, including the

ground), to be solved for the Xk factors:

Z(Xj - Xk)Skj = XkSckS(s, k, Te) (3.25)
jICe

Recalling that, by definition, X1 = 1, the equations may be solved for the other Xk ,

and then from equation 3.21, the population distribution of all of the upper excited states

relative to the ground may be obtained; ie,

n k  ni

With Radiation Effects

Including the radiative effect introduces the electron dependence in the determination of

the X and i factors. The premise is that the coefficients, Xk and ok are independent of the

state of the plasma itself, represented by 61. Therefore, referring to equation 3.23, the net

coefficient of 61 and the net term not multiplied by 61 must be independently zero, leaving

two sets of N equations for the Xk>l and lk>1 factors of the N excited states:



k S(s k, Te) >ke S(s, ,T) <k ne S(s, k, Te)

(xi - k) - Xk ±A xkl -OkAkik

0 E - kSck+
ne >k ne S (s, 1, Te) -<k Te S (s, k, Te)

where now Xk>1 and Ok>l depend on Te and on the factors Anm nm/ne, which is the way

that the electron density enters in these equations. In addition, X, = 1 and '1 - 0.

3.3.2 Overall Rate Coefficients

Given the information about the populations of the excited states, it is possible to calculate

the overall rate coefficients for ionization and recombination which can be used for the

reaction rate model in an MPDT flow simulation. Although no radiative effects will be

included in the final rate models used in flow problems, the influence of radiation will be

considered in the analysis of this Chapter. What follows is a straightforward method to

calculate these coefficients once the population distribution of the excited states has been

characterized by the calculation of the Xk and Ok values.

Atom Model

Applying equation 3.21 to equation 3.19, the continuum rate equation, and assuming that

the number density of atoms is approximately equal to that of the ground state since the

excited state populations are orders of magnitude less than the ground state's: na ni,

then

he -- n (61Xk + k)Sck - n Ack/3ck

or, expanding the degree of nonequilibrium of the ground state,

he - 3 (n1 XkSck + E kSck - n 2Ack/ck

or, multiplying through,



'e = 1 Xkck - n k + nA CkSck - nLAckJ ck

Now, grouping terms,

he = nenlS(s,l,Te) ZxkSck
k

-n, Z[Xk - Vk]Sck - n Ackck (3.28)
k k

We can compare this with the standard form, equation 3.1. The corresponding overall rate

coefficients, neglecting the radiative recombination term, are collisional ionization:

Sac = S(s, 1, Te) Z XkSck (3.29)
k

and collisional recombination:

Sea = [Xk - 2k]Sck (3.30)

k

and now the overall collisional ionization and recombination rate coefficients, Sac and Sca,

respectively, depend on Te and the Anm/nm/ne factors. In these summations, the reader

should be reminded that X1 = 1, 01 = 0, by definition (see equation 3.21).

Formally, the radiative recombination term should be included in an overall recombina-

tion coefficient, so that the complete he may be written as he = nenSac - n 3Sa, where

now,

Sa = ([Xk --yk]Sck + (3.31)

and the radiative part, Ack/ck/fe, depends on ne inversely as before. In fact, this is probably

the preferred form in general, because there is no longer an absolute separation between

"collisional" and "radiative" effects. The form in equation 3.30 is most directly applicable

in the case of low AnmPnm/ne, when radiative effects can be expected to be small.

It should be noted that, although the recombination terms, Sck diverge as k -- oo,

the factors Xk fall off fast enough with k so that the series will converge. Note also that

equations 3.29 and 3.30 (or equation 3.31) show that overall microreversibility,



Sac = S(s, 1, Te)
Sea

will only hold when the plasma is collisionally dominated: that is, when all AkjIkj/ne <

E Ski, so that all 'k = 0.

Atom/Ion Combined Model

In the case where both atoms and ions are being ionized, then the approach is similar to

that for atomic ionization alone. The difference is that now bookkeeping must account for

the two different ion species. The volumetric rate equation for an ion of species s analogous

to equation 3.22 is just

, = n 2 (6 X + O)S3k - nen.1 Akf~k (3.32)nk e ne ni

where the superscript s is the species index, and n! is the number density of the next higher

ion of species s, and the degree of nonequilibrium for each species is of the same form as

used above:

(n)*

The volumetric rate equation for the ion of species s analogous to equation 3.23 is

2 6 iZ( 6;(X - X') + (? - I))Sk - +
• = 7 k S(s, k, Te) (1xk k c

± xen ++ 7)])A 8 (68X3 +1

+ ne n Ak/3k + A -) SA3T = 0 (3.33)
e z>k c +E 

-1k S(Si 1i ) <k S(s, k , Te) 0

Equations 3.26 and 3.27 apply as well for each species, without modification, since the

factor n appears in each term of equation 3.33. Therefore, the pair of equations are solved

for each species to obtain the coefficients Xk and /k. The overall ionization rate coefficient

for either the atom or ion species is

S c (n S(s, 1, Te) 5xS (3.34)



and the overall recombination rate coefficient (including the radiative recombination term)

for each species is

(Sc = E - 03)S-k + ~Ak k (3.35)

By conservation of charge,

E Z'nis = n.

where Zf = qs/e, and qj is the charge of the next higher ion of species s. Given ne, this

indicates another constraint on the first and second ion populations.

3.4 Three-Level CR Models

Now that the framework for calculating the population distribution of the excited states,

and the overall rate coefficients has been set, it is possible to analyze the behavior of the

plasma under a variety of conditions. In order to do so, a simple three-level species model

consisting of the ground state (subscript 1), the first excited state (2) and the ion (c) will be

used. The advantage of this model is that the X2 and 0 2 terms can be found and calculated

easily, and the resulting trends are easier to identify and interpret.

Recalling that 62 = X26 1 + 0 2 , assuming that the excited state in a three-level model

is in dynamic equilibrium is equivalent to solving the single linear equation: equation 3.23,

for k = 2. This is

0 = [6 1(X1 -2) (- ( - ' 2 )S 2 1 - ( 6 1X2 + ¢ 2)Sc2

S(s, 2, Te)

( 6 1X2 +- '0 2 )A 2 1 0 2 1 + Ac23c2 A2121

neS(s, 2, Te) ne neS(s, 2, Te)

Section 3.3.1 presents the general expressions used to find the rate coefficients. In this case,

the two resulting equations are, assuming that 61 / 1:

S= (X1 - X 2 )S 2 1 2 S 2 - x2A21021

S(s, 2, Te) ne S(s, 2, Te)

(0 1 - 0 2 )S 21 _ Sc2 - 2A 21 0 21  Ac2c2 A 21/ 21

S(s, 2, Te) ne S(s, 2, Te) ne neS(s, 2, Te)



and, solving for X2 and 02, with X1 = 1, 01 = 0 by definition, and Sc2S(s, 2, Te) = S2c via

microreversibility,

X2 Te, Anmnm S21 + 2 2 (3.36)
ne S21 + $2c + ne

(qe Anmlnm1 -A 2 1/ 2 1 + Ac2/c 2 S(s, 2, Te) (337)
n ne (S21 + S2c + A2 1

The electron density dependence is due entirely to the radiation effects. At the limits:

ne -4 0, X2 = 0, ' 2 = -1 + (A 2 c2 S(s, 2, Te))/(A2 11 2 1 ); ne - oo, X2 = S21/(S21 + S2c),

p2 = 0.

Next, to take a more direct look at the effect of radiation on the overall rate coefficients,

consider the ratio of the overall recombination coefficient with radiation divided by that

without radiation. Using equation 3.30, the overall recombination coefficient for no radiative

effects (all Akj/kjl/n < E Skj) for the three-level model is:

Sc2 S21
(Sca)n, = SS1 + X cSc2 = Sc1 +

S21 + S2c

and the overall recombination coefficient, including radiative effects, following equation 3.31,

is

1 Aclocl + Ac2Ac2
(Sa), = Scl + (xF - 1'0)Sc2 +

Sc2S21 + (A 21 21 - A c 20c2 S(s, 2, Te))/le A 1 1 + Ac2/c2
= SC1 + +A21021 n.S21 + S2c + n.e

R: (S'a)r
R (Sa)nr

This fraction, R, is an indication of the effects of radiation on the overall recombination

coefficient (When radiative effects are negligible, R ? 1). In general, R can be written as

1 + fe(1 + fr)R=
1+ fe

where the collisional and radiative factors are, respectively,

Sc2 S21
S l (S21 + S2c)



A21 21 - Ac 2ic 2 S(s, 2, Te)

ne S 2 1

The difference between the overall rate coefficients relative to the no-radiation coefficient is

a more useful variable. This is R - 1:

R- 1 = f- (3.38)
1+ fe

The relative difference is small under two conditions. The first case is when f, goes to

zero, regardless of the value of fe, or the radiative terms are much smaller than the collisional

ones. This corresponds to high electron density, and/or high electron temperature. The

second case is when fe goes to zero. This corresponds to all of the ionization coming from

the ground state, so there is no radiation effect, because no excited states are involved.

3.4.1 Results From A Three-Level Atomic Argon Model

Figures 3.9 and 3.10 show log1 0 X2 and ' 2 for the argon atom as a function of Te and ne- X2

is an indication of the collisional coupling between the ground and the excited state, and

'k2 is the radiative coupling. Using k1 = 0.01 here corresponds to a fairly thick (optically)

environment (only 1 percent of the emitted line is not reabsorbed locally). The radiative

escape factor for continuum-excited state radiation is taken to be one.

Figure 3.11 is the overall recombination coefficient (S',) corresponding to the X2, '02

plots. (The Drawin cross-sections are used to calculate the collisional rate coefficients.)

3.4.2 Results From A Three-Level Atomic Hydrogen Model

Figures 3.12 and 3.13 show log1 0 X2 and '02, now for the hydrogen atom as a function of

Te and ne. Again, Pk1 = 0.01, and the radiative escape factor for continuum-excited state

radiation is taken to be one.

Figure 3.14 is the overall recombination coefficient (S") corresponding to the X2 plot.

(The Drawin cross-sections are used to calculate the collisional rate coefficients.)
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radiation is the electron number density dependence. The first excited state is strongly

coupled to the ground state via collisions at low temperatures and is more strongly coupled

to the electrons at higher temperatures.
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Figure 3.14: Hydrogen atom, three-level model: Overall recombination coefficient (mks

units).

3.5 Multi-level Model Results

In what follows we will show specific examples of calculated excited state distributions

and of the recombination rates which should result from them. Solution of the kinetic

balance equations for each of the excited states and the continuum requires independent

information about the driving terms, namely, the spatial and temporal derivatives, as well

as the diffusive and catalytic wall losses. In a stationary plasma (e.g. a discharge tube),

only the latter would be significant; in an MPD flow, at least the convective derivative

would also be required, and they must be generated in the course of a broader numerical

calculation of the flow.

Appendix B contains details about the levels used in the various models used in this

work. The levels used are not necessarily the actual electronically excited states, but lumped

levels.
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Figure 3.15: Argon atom, multi-level model: Overall recombination coefficient (mnks units).

The curve using the Drawin cross-sections does not include forbidden transitions. The

Bacri/Gomes curve does. The experimental data is from Kafrouni.

3.5.1 Overall Rate Coefficients

Argon Atom

Figure 3.15 contains plots of the argon atom overall recombination coefficient (overall mi-

croreversibility applies in this case in calculating the ionization rate coefficient) vs Te via

three methods: the Hinnov-Hirschberg model (for reference), and two multi-level argon

(atom only) rate models.

The Hinnov-Hirschberg results are several orders of magnitude above the argon model

at higher temperatures. The H-H model was derived for hydrogenic atoms at electron

temperatures below 3000 K, so that it is not a good choice for a wide temperature range,

although it has been used here at the SPPL and elsewhere. The argon atom results using

the Drawin cross-section model have been curve-fitted to arrive at an overall recombination

coefficient (useful up to Te = 50000K):

(In( - 3.95)2 
(.9

Sea = 8.25 x 10- 4 3 exp 1000 (3.39)
0.6144 s

This compares favorably with the results reported by Owano, et al. [52], who used



Table 3.3: Collisional rate coefficients for three-body recombination in argon: comparison

of the results of this work and those of Owano. The units of Sea are m 6 /s.

a spectroscopic analysis of the recombination rate in a flowing argon plasma to adjust a

theoretical result. They found the overall three-body electron-ion recombination coefficient

to be

Scwano = 3.3 X 10- 4 4 (135300 ) (47800) m (3.40)
ca + 2 exp Te (3.40)

The overall recombination is made up of the contributions from the ground state and

each of the excited states. In the non-radiative effect case, this is

Sca = Xk Sck
k

In figure 3.16, the ratio XkSck/ S a is plotted vs k for 4 temperatures. This ratio is the

percentage of the overall recombination due to a particular level, k. Note that at the lower

temperature (5000 K), the ground state contribution is very low, and that the major con-

tribution comes from the higher excited states. As the temperature increases, the ground

state's relative contribution increases, and at 40000 K, more than half of the overall re-

combination coefficient is due to the ground state. To accentuate the fact that the levels

close to the continuum are the main contributors at low temperatures, figure 3.17 shows the

Te = 5000 K case vs Ek. Gonzales [25] calculated the same ratio for the individual vibra-

tional states for 02 - Ar dissociation collisions. In that case, the biggest contribution over

the temperature range of 4000 - 12000 K came from the vibrational levels whose energies

were about half the dissociation energy.

Figure 3.18 is a plot of the overall collisional recombination coefficients calculated in this

work using the Drawin cross-sections as compared with both experimental and calculated

values. The experimental results are from the work of Kafrouni [34], and the compilation of

Te(K)

Sea 10000 20000 40000

this work 6.84 x 10- 4 1 3.63 x 10-42 9.22 x 10- 4 3

Owano 6.10 x 10- 41 3.15 x 10-42 5.87 x 10 - 4 3
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Figure 3.18: Argon atom, multilevel results compared to the experimental results published

by both Kafrouni and Lennon, the results of a 65-level argon CR model by Vlcek, the

Hinnov-Hirschberg theoretical formula, and Braun and Kunc's three-level CR model.

Lennon, et al. [43]. There is a great deal of scatter in the measured rate coefficients which

makes it difficult to judge the accuracy of the numerical results The Hinnov-Hirschberg

theoretical formula [29] for the species independent recombination coefficient, applicable

at electron temperatures below roughly 3000 K, is also shown, for reference. Published

results from a three-level argon model from Braun and Kunc [11] and a 65-state CR argon

model from Vlcek and Ferdinand [73] are also shown. There is a great deal of scatter,

but the results from this thesis agree reasonably well (within an order of magnitude) with

the experiments of Kafrouni and the calculations of Vlcek at the lower temperatures, and

appears to follow the trend of the Lennon data at higher temperatures, although Lennon's

results seem to be low by an order of magnitude.

Argon Ion

A 33-level second ionization model for argon was also developed, and the overall three-body

recombination coefficient (from the second argon ion down to the ground state of the first

argon ion) calculated. Note that the gap between the highest excited state used and the
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Figure 3.19: Argon ion, multi-level model: Overall recombination coefficient (mks units),

using the Drawin cross-sections. Preliminary comparison to the recommended rates of

Lennon, based on experiments, et al. seems reasonable.

ion is 2.77 eV. This is a weakness at low Te, as the low temperature behavior depends on

the missing upper levels, but at lower temperatures, second ions should not be of much

significance.

( (In( ) 1.3485) m
6

Sc = 7.17 x 10-40 exp (n(T m (3.41)
0.9293 s

Figure 3.19 is a plot of the overall recombination coefficient for the argon ion, Sci, and

the ionization coefficient for the ground state of the ion alone, Se1. The full model result,

Si, matches well with S,1 at temperatures above 25000 K, which indicates that none of

the excited states of the argon ion contribute significantly to the overall production of

second ions at Te > 25000 K. Also plotted are experimental results from the compilation

of Lennon, et al. [43], which show good agreement with the calculations.



Hydrogen Atom

A 20-level model was used to calculate the overall rate coefficients for the hydrogen atom.

Figure 3.20 contains plots of the hydrogen overall recombination coefficient. In this case,

the Drawin curve has been curvefit by the following formula (good up to Te = 60000K):

(3.42)Sa= 6.985 x 10- 4 2 exp ((ln( To) - 4.0883)2\ m 6

0.8179 s

log10 o Sa

5000. 10000. 15000. 20000. 25000. 30000. 35000. 40000. 45000. 50000.

Te (K)

Figure 3.20: Hydrogen atom, multi-level model: Overall recombination coefficient (mks

units). The curve using the Drawin cross-sections does not include forbidden transitions.

The curve which uses the Vriens and Smeets (1980) rate model does.

3.6 Summary

In this chapter, the standard Collisional-Radiative (CR) volumetric production rate equa-

tions have been recast into a more convenient form which highlights each excited level's

relative degree of nonequilibrium. If the excited levels can be assumed to be in dynamic

equilibrium (the QSSS assumption) - and they have been shown to be so under the condi-

tions of interest here - then the overall ionization and recombination rate coefficients may

be calculated. If there are no radiative effects, then the coefficients are dependent on Te

only, and overall microreversibility applies. A comparison of the relative contribution of



each level to the overall recombination rate showed that, at high temperatures, the ground

state contributes the most, while at temperatures below about 15000 K, the upper levels

dominate.

The overall recombination coefficients for the argon atom and first ion, and the hydrogen

atom have been calculated using multi-level models, with no radiative effects. The atomic

rate models will be used in Chapter 4 in the analysis of ionizational ignition in MPDTs.



Chapter 4

The Initiation of Ionization In

MPD Thrusters

As stated in the introduction, there have been several experimental observations that there is

a mm-scale ionization region at the inlet of self-field magnetoplasmadynamic devices. Other

experiments have noted a "dissociation lag" with molecular propellants, which indicates that

there is a species-dependent ignition criterion.

Steady-state initiation of ionization over a finite length at the inlet of an MPD thruster,

defined here as "ignition", may in general include the effects of metastable states, multi-

step ionization, radiation and back-diffusion of energetic particles in addition to the more

familiar fluid dynamic and magnetic field behaviors. The purpose of this work will be to

characterize the possible effects of each of the processes, and judge their scales, within the

context of a numerical simulation of the inlet flow. Radiation has been dropped here due

to the short absorption length scale (or small radiative escape factors), and because Burton

and Tiliakos [14] noted that radiation only played a role at ionization fractions lower than

those found in this study. The multi-step and metastable effects are included in the rate

model as indicated in Chapter 3. Ambipolar back-diffusion is assumed here to be the main

mechanism responsible for ignition.

Three models will be considered. First, a simple constant speed and temperature model

will be used to present the general findings. Next, the electron temperature is allowed to

vary in a constant speed model. Finally, the effects of acceleration on ignition are considered

in a constant temperature model, although an overall energy balance will be found to be



Electron Thermal

Injection Species Conductivity Acceleration

atomic argon 00 no

atomic argon Ke no

atomic argon oo yes

Table 4.1: Ignition Cases

x

Anode (+)

uniform

Inlet flow plasma

= back diffusion as E -- 00Cathode

Cathode

Figure 4.1: 1-D Thruster Inlet Region

necessary to make the problem self-consistent. These cases are listed in table 4.1. (infinite

electron thermal conductivity implies constant Te)

Injection of atomic argon into the thruster channel will be considered, through a porous

backplate to ensure 1-D bulk flow.- Figure 4.1 shows the general configuration of the inlet

region. Since the hypothesis of this work is that back-diffusion of electron-ion pairs sustains

ignition, the characteristic scale length of the ionization region is expected to be the back

diffusion length, ID < L, defined below.

4.1 The Constant Speed Isothermal Case in Argon

In this section, the simplest case of 1-D injection (for example, this is injection through

a porous backplate) is assumed. In addition, constant temperature and constant speed

are assumed. While these assumptions are somewhat restrictive, the model does yield

interesting results which have some bearing on more realistic models.

It is assumed that the ions reach the inlet wall moving upstream at the Bohm velocity,
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and enter a sheath, which will not be modeled here. This is the key assumption in this

analysis, as it makes the ionization region a "pre-sheath". It will also be assumed that,

far downstream (on the diffusion length-scale) that there is a uniform plasma, which is

approached asymptotically. These two assumptions set the boundary conditions for the

problem.

In this case, the bulk speed, u is constant, and the overall continuity equation is

(ne + na)u = nu = G = Am (4.1)

where n, is the total number density of of nuclei, (ng is the total number density of heavy

(ion and atom) particles; for constant speed, ng is also constant), na is the number density

of atoms, ne is the number density of electrons and u is the bulk speed. The mass flow rate

is rn, the channel area is A, and the nucleus mass is mi. The ionization fraction is defined

as a - ne/ng. Since this is a quasi-neutral plasma, and only singly ionized species are

assumed to exist, ne = ni, where ni is the number density of the ions. The ion continuity

equation is

dneu _ dneV Dane
d - d - + it (4.2)
dx dz h2

where neVi is given generally by equation 2.22. In equation 4.2, the transverse ambipolar

diffusion, -, is included (with an assumed parabolic distribution of n, in the transverse

direction so that h is actually of the actual channel height, H 0.02m.) in order to

allow a balance to be struck far downstream of the ionization layer. For the nonaccelerating

case, axial ion-slip is characterized by Fick's Law, equation 2.21:

da ne __ (4.3)
dx Ca Ca

The ion continuity equation (with ne = ni) is then:

dne d2ne Dane
udn = Da 2 +e - (4.4)

The ionization fraction varies from some small value at the wall to its asymptotic value

(on the order of unity) as - oo. It is therefore convenient to use a as the indepen-

dent variable. Dividing 4.4 by equation 4.3 leaves the following form of the ion continuity

equation:
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dr Dang 22 Da (4.5)
da = G Sacng(1 - a)- Scna - h(4.5)

nondimensionalizing equation 4.5, with - = P/G, results in

dy Aia[(1 - a) - aA 2 - A 3] (4.6)= 1- (4.6)
da 1

where the factors A1 , A2 , and A3 are

CaSacg
n  

CaSac lD

- G2 2  lio(47)

Scangn, ng - q (4.8)
Sac S(1, Te) a2q

Ca _IDlion (49)
Sac(ngh)2  h2

The parameter A1 is a Damkohler number, the ratio of the diffusion time scale to the

ionization time scale [23], or of the length scales, if the same characteristic speed applies

(as it does here: the characteristic axial speed). Frozen flow is represented by a Damkohler

coefficient of zero, and equilibrium flow is approached when the Damkohler coefficient is

infinite. Note that in equation 4.6, the transverse diffusion term appears amongst the terms

multiplied by A1 so that A1 -+ oo forces the balance (1- a - a 2 A 2 - A 3 ) = 0 rather than the

equilibrium balance: (1 - a - a 2 A2 ) = 0. However, large Damkohler numbers are caused

by large temperatures and/or low speeds, and since Sac varies faster with Te than Ca, and

low speed is high density for fixed G = n 9u, large A1 implies small A3.

As will be shown, A1 should be of roughly 0(1) or greater for ignition in a finite distance.

The diffusion length is thus a good choice for the characteristic length of the ionizing region.

The parameter A2 was found first in section 3.1 to be the single parameter which deter-

mines the equilibrium ionization fraction. The last parameter, A3 represents the transverse

diffusion loss term, and A1A3 = 12D/h 2, the square of the ratio of the axial to transverse

length scales.

As discussed above, at the inlet wall, it is assumed that the ions approach the wall at the

Bohm velocity (in the negative streamwise direction). This is: ne ui = n(u + Vj) = -nfB,

or, using Fick's law, equation 2.21, for the slip (nev~ = r):
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I' = ne(u + vB)

In the nondimensional variables, this is

7 = a1 + (4.11)

which sets a at the inlet wall, and indeed fixes the location of the inlet wall relative to the

uniform plasma downstream. Recall the constraint that the sum of the ion and neutral

slip fluxes is zero which was imposed in the derivation of the ion slip flux in section 2.2.1.

This then fixes the neutral slip at the inlet wall, which includes the injected neutrals and

neutrals newly formed by recombination at the inlet wall of ions with electrons.

The second boundary condition comes from the requirement that the derivative be

smooth as the downstream uniform plasma is approached so that the numerator of the

fraction in equation 4.6 is zero at the ( = 0c, y - 0 singularity, or

1 - a - a2 A2 - A3 = 0 (4.12)

which sets a,. Physically, this means that the balance, ite = De, is approached smoothly

as --, , and the asymptotically approached ionization fraction is

S= 4A2( - A3) - 1] (4.13)

As reference, for the equilibrium balance (collisional ionization equals collisional recombi-

nation), the ionization fraction is similar:

aeq =2[ 1+4A - 1] (4.14)

When A2(1 - A3) is small (recombination not significant), in equation 4.13, then ao,

(1 - A3 ), which is a transverse-ambipolar-diffusion driven balance (collisional ionization

balanced by transverse diffusion). This occurs generally at low ng. If A3 <K 1, then a, =

aeq

Now, using the information at the downstream boundary, equation 4.6 may be rewritten

as
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d= 1 + A([(a - ) + A2( - a',)] (4.15)
da 7

The results above may be recast in order to emphasize that there are families of tra-

jectories which are functions of a modified Damkohler coefficient. Rescaling both 7 and a

by aoo will mean that all of the trajectories will have the same endpoint. Defining the new

variables, a a/aoo, g -7/ao, and the parameters A1 = Al a., and A2 = A2 a,, then

equation 4.15 becomes

dg + Ala((a- 1) + 1 2 (a 2 - 1)) (4.16)

da g

Singularities occur when g = 0, and correspond physically to: a = 0 (which will actually

occur outside the channel, before the physical inlet, as we will see) and a = 1 (which is the

asymptotically approached uniform plasma boundary). Near to the a = 0, g = 0 singularity

(which should not lie inside the actual channel), define kg = , so that g kga, and

equation 4.16 becomes, for small a:

-A 1 (1+ A2 )
kg 1+ kg

or, solving for kg,

( )o =-k -- A 1 (1 + ± 2 ) (4.17)

If 1 (1 + A2 ) is smaller than 1, there will be two such real slopes, and the trajectories

approach the a = g = 0 point along the smaller of them. In that case, the wall condition

(rewriting equation 4.10 in nondimensional form), which is now

g = a (1

can be differentiated to become

1dg VB 
(4.18)

da U

The condition that, starting from the a = g = 0 singularity, the two trajectories defined by

the slopes from equations 4.17 and 4.18 match near the singularity is then only met at the

origin itself. In this case, the ion density approaches zero exponentially on the upstream

side, and an infinite ionization length is implied. (Note that u << VB in this case).
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Figure 4.2: g vs a for A1 = 3.5 A2 = 0.14286, VB/U = 5.

On the other hand, when A1 (1 + A2 ) > -, the singularity becomes a spiral point, and the

trajectory arriving from the downstream singularity crosses the wall condition (eq. 4.18) at

finite a and g, which corresponds to a finite ionization layer thickness (from dx = -da ).

This is illustrated in the following figures, which show the calculated trajectory super-

imposed onto the g-a phase plane with isoclines shown (the isoclines are the slopes, from

equation 4.16). In figure 4.2, ;i(1 + A2 ) > -, the g = a = 0 singularity is a spiraling

singularity, and the wall condition is satisfied at finite g (the inlet location is where the tra-

jectory ends moving towards low a). In figure 4.3, however, A1 (1 + A2 ) < -, the g =a = 0

singularity is approached directly, and the wall condition is only satisfied at a = g = 0.

The condition for successful ignition is then

1 -

S< A1(1 + A2 )

which is

1
S< A, (aoo + A2 a0)

or, using equation 4.12,

1
< A1 (1 - A 3 ) (4.19)
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Now, using equations 4.7 and 4.9, the condition for "ignition in a finite distance" is that

the speed be below a "blowoff value", defined as:

u < 2 CaSac Ubo (4.20)
1 + (Gh) 2

Physically, the blowoff speed is the fastest injection speed for which the back-diffusion

can transport ions and electrons to the inlet wall, and meet the wall condition that the ions

reach the wall at the Bohm velocity. When the flow speed is above the blowoff speed, ions

and electrons may diffuse back from the uniform downstream plasma, but can not reach

the inlet. In this case, no ions can actually make it to the wall so that the wall condition is

met by a zero ion flux to the wall at zero ionization fraction. If the flow speed were -VB,

then there would be no need for the pre-sheath which accelerates the ions towards the wall,

since all ions reach the wall at the Bohm velocity.

Equation 4.20 makes use of the assumption of a downstream ionization-diffusion balance

only when Gh > 2Ca is not satisfied. By the same token, it leaves the sensitive ionization

rate function Sac unspecified, and then indicates that the flow velocity in the ionization

region (presumably before significant magnetic acceleration) should be below a temperature-

dependent limit. This maximum speed is independent of the flow rate, G, only for Gh >

2Ca. The maximum speed as indicated by equation 4.20 is plotted in figure 4.4, for 0 =

0.3333 and varying G, with constant h = m.

Note that the ubo in equation 4.20 indicates that extinction results whenever the injected

neutrals convect many diffusion lengths before they ionize. Since ng = G/u, if the speed is

picked to be some value below the maximum (extinction value), u = eubo, and

u

Ubo

where 0 < e < 1, then the parameters (A1 , A2, A3 ) are as shown in table 4.2. (Note that

the ignition condition, equation 4.19, is automatically satisfied both when GH > 2Ca and

in the diffusion driven case, when GH < 2 Ca, so long as e < 1.)

The ionization fraction at oo calculated using equation 4.13 can now be considered a

function of G, temperature, and E, if h is fixed. Figure 4.5 is a plot of a,, vs Te with E = 0.5

and Te = 2TH. The diffusion effects are strongest at lower G and higher temperatures. For

Gh < 2 Ca, diffusion effects are strong, and at temperatures high enough to make A2 small,
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Figure 4.4: Ubo (m/s) vs T, for argon gas, at various values of G. (Te = 2Tg) Speeds below

each curve represent ignition, above is extinction. At high G, ubo is no longer a function of

G.
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Table 4.2: The parameters of the constant speed and temperature model with atomic

injection, as functions of E.

the ionization fraction at oo is a, -= 1 - E2 , which is the case seen in figure 4.5, where a,

approaches 1 - e = 0.75 as Gh - 0. Note that a typical Gh for a plasma accelerator is

4.6 x 10 22 m-1 - 1 and 2Ca = 5.405 x 1019 /Tm- 1 s- 1 for Te = 2 Tg in argon.

The ignition condition (equation 4.20) can be rewritten in two ways:

Gh < 2Ca ao

u < 2VaooCaSac = Ubo (4.21)

Where Ubo is again the "blowoff" speed. As seen in figure 4.4, for small G, Ubo is reduced,

as indicated here (since ac0 < 1, and, in fact approaches 1 - E2 .) If the diffusion-driven

limit (low Gh) is approached, then using the definitions of G and h, and ri = miGA is the

mass flow rate,

-< miCa 48 " (4.22)
w 1- o

where w is the depth (along B). For typical values of * and of mi and Ca = Dang,

satisfaction of equation 4.22 requires aoo to be fairly close to unity. Heimerdinger [27]

noted in his experiments that, with a wide inlet, and low field, there was no ignition. This

corresponds to low ao0. Reducing H, which increased the electric field, E, solved the

problem.

In order to be able to tie a and g to the axial length variable, , the nondimensional

form of equation 4.3,
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Figure 4.5: a, vs T, for various values of G. (E = 0.5, Te = 2Tg) When Gh <K 2Ca, then

a 00 < aeq and ao0 approaches the value (1 - 2 ). (c = 0.5 in this case.) The high-G curves

are basically the Saha equilibrium results for different total nuclei number density n,.

is divided through by ao and inverted to obtain the equation for (a):

d =1 
(4.23)

da g

This differential equation is integrated, with (o = 0 along with equation 4.16. (recall that

X = /ID)

Equation 4.16 is solved for g(a), subject to the boundary conditions that the wall condi-

tion (equation 4.11) be met, and that the second g = 0 singularity be approached smoothly:

g = 0 at a = 1. The COLSYS relaxation package [3] is used which solves for the g(a)

trajectory, (a), and the unknown a, simultaneously as a function of the parameters. The

details of the approach used for this problem are outlined in section A.2.2.

Figure 4.6 is a plot of calculated g vs a trajectories for various values of A1, and shows

two things. First, increasing Al increases the value of a at the inlet: a, = ao/ao. Second,

increasing A;il results in larger go, and larger g in general, which, by equation 4.23, indicates

lesser . These two observations are coupled by the inlet wall boundary condition. Shown in

figure 4.7 are the corresponding a vs = z/ID trajectories for the same A1 . The decreasing

width of the ionizing front with increasing A1 can be seen in this graph, along with the
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a

Figure 4.6: g vs a for A2 - 0.2, VB/U = 5.

ionization delay or lag which occurs when A1 is small.

Some typical results of this model (using the original nondimensional variables) are

presented graphically for a realistic G (G = ngu = 7.5 x 10 24 -2s-1.) Figure 4.8 shows

a typical ignition trajectory for Te = 20000K, E = 0.5. Plotted is the 7(a) trajectory on a

background of local isoclines (a). The trajectory ends at low a when the wall condition is

met. Note that the isoclines show that trajectories even slightly off of the actual one will

diverge moving in the direction of increasing ionization fraction, while trajectories moving

in the direction of decreasing ionization fraction tend to converge onto the actual one.

Figure 4.9 shows three a vs x trajectories for the same conditions and varying constant

average speed. The speeds chosen correspond to the typical range found numerically by

Niewood [51] and in various experiments at Princeton's Electric Propulsion Laboratory [22]

and recently reported by [59]. The range of inlet speeds is roughly 100 to 500 m/s. Note

that lower speeds result in shorter ionizing regions, and higher values of ao,.

There must be an axial electric field, to counter the tendency of electrons to move

upstream under their own pressure gradient. The field can be calculated through the use

of the electron momentum equation (Ohm's Law), which is, for zero axial current: [14]
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Figure 4.7: a vs ( for A2 = 0.2, vB/u = 5.
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Figure 4.8: 7 vs a phase-plane diagram for Te = 20000K, E = 0.5, Te = 2TH, G =

7.5 x 1024m-2s - 1. aoo = 0.9948, no = 0.01050, ubo = 500m/s.
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Figure 4.9: a vs x plots for Te = 20000K, E = 0.25,0.5,0.75, Te = 2TH, G = 7.5 x

10 24 m-2s-1.

dPe
e n e E

dx

The electron pressure is Pe = nekBTe, so that, for constant electron temperature,

kBTe d In n
e dx

For a constant speed, constant temperature case [49], and using = - f Edx, the potential

difference between the plasma at oo and the backplate wall is

kBTe i (aoo
e a.

which indicates that the wall is at a negative potential, as required by the boundary con-

dition that the wall be ion-attracting. This is the potential drop due to the ambipolar

diffusion which is present even in the absence of current flow [49].

Figure 4.10 shows the variation of this potential difference with both temperature and

e = u/Ubo . These results are similar to those found by Burton and Tiliakos [14], who

noted that the axial potential difference was roughly the ionization potential for argon

(15.8 V). At lower E (lower speed), the potential is seen to be substantially less, though
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Figure 4.10: q vs E " for Te = 11600K, Te = 20000K, and Te = 30000K, G =

7.5 x 10 2 4m-2s-1.

always greater than the gap between the first excited state and the continuum, which is

just over 4 V for the argon atom. This may be due to the fact that, as shown in Chapter 3,

at higher temperatures, much of the net ionization rate is due to the transition between the

ground state, the first excited level and the continuum; i.e., a three level model is roughly

appropriate at these temperatures.

These results satisfy the goal of explaining mm-scale ionizing regions in channels, but

are subject to the very stiff assumption of constant speed. The next section will investigate

the effect of temperature variation effects in the ionizing region, and then the influence of

self-field MPDT acceleration will be analyzed.

4.2 Atomic Injection with Varying Te

In this section Te is allowed to vary (finite thermal conductivity) to investigate the effects

on the ignition criterion. The electron energy equation, including axial heat conduction,

Ohmic heating, and energy loss due to the endothermic ionization process, and neglecting

both pressure work and transverse heat conduction, is
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3 dnguaT d dTe
-kB d d K + - Eache (4.24)
2 dz dx d o)

where Te is the electron temperature, and E and j are the electric field and current density,

respectively. This energy equation is modified by the assumption that j a E, and defining

the heat flux as

dTe
q KedT (4.25)

dx

so that the resulting energy equation is

3 daTe dq
-Gk - + 'E 2 - Eache
2 dx dx

or

dq 3 daTe
dq = -GkB - EE 2 + Eache (4.26)
dz 2 dx

which has a form very similar to the ion continuity equation (less the convective term), with

a source and a sink which balance at infinity. Thus, the solution for q may be expected to

be similar to that found for the ion slip flux, r.

The recombination rate term will be dropped from now on in the analysis since its

influence on the ignition criteria was found to be weak, coming only through the determi-

nation of ao,. The downstream boundary conditions for this model will be simplified in

this case. The new nondimensional forms of equations 4.3, 4.6 (modified for non-constant

temperature), 4.25, and 4.26 are then, respectively:

dad 7 (4.27)

dy
= 7 - aA[S(1 - a) - A 3] (4.28)

dd - Q 
(4.29)

dQ
= Le (aQ + "7- - Tll + OacaAl[S(1 - a)]) (4.30)d(
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where the length is nondimensionalized as = X/ID, where ID = Ca/G is the back-diffusion

length, the nondimensional slip is y = F/G, and the electrical conductivity is & = a/aef.

The nondimensional parameters are the Damkohler coefficient for ionization A1 = ID/lac,

A2 , and A3 as in the constant Te case, evaluated at the reference temperature:

Ca Sac
A= =Ca

2 = nSac(hng) 2

plus the nondimensional forms for the ohmic heating and ionization potential energy terms:

CarefE 2  Eac

3 kBTrefG2 ac kTref

The nondimensional ionization coefficient is S(r) = Sac /S 1, and Sref is evaluated at Tref,

the electron temperature at ( = oo:

Sac Sea S(s,1,Te)

Sef - Sref S(s, 1,Tref)

All of the temperature-dependent quantities in these parameters are evaluated at Te =

Tref = Teoo.

The Lewis number is the ratio of the diffusion length scale to the thermal conductivity

length scale, and is discussed in section 2.3.2. It is

3 kBngDa ID
Le -

2 Ke lcond

and is typically 0(10-2) for the conditions of interest here. When Le -* 0, then the electron

temperature varies on a scale much longer than the ambipolar diffusion scale, although, as

the results show, there may be an axial boundary layer close to the inlet. For Le = 0(1),

the temperature varies on a scale similar to lD, and for large Le, the temperature length

scale is the critical small scale.

This is another asymptotic problem, where ( - oo at the downstream boundary. Choos-

ing a as a more convenient independent variable again, the equations for constant speed,
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finite thermal conductivity, and atomic injection (equations 4.28, 4.29, and 4.30, respec-

tively), all divided by equation 4.27 are the new equations of motion:

dy Ala[S(1 - a) - A3 ] (4.31)
da 7

d- Qd-= - (4.32)
da 7

dQ -= e &II + OacaA S(1 - a) + aQ (4.33)dQ Le Q+ (4.33)

da 7

The boundary conditions are again the wall condition, repeated from equation 4.11,

which serves to set the ionization fraction at the inlet:

7= a (1 +

In addition, all singularities must be resolvable if they are physically reasonable, so that

all of the derivatives most be smooth at the asymptotic limit: oo -- 0. One such condition

will be the same as equation 4.12, except without the collisional recombination term,

1 - a,, - A3 = 0 (4.34)

Note that S = - 1 at = oo, since that is where the reference values are taken. In

addition, Qo, = 0, and the numerator of the fraction in the electron energy equation must

go to zero at oo:

II - oacaooA[1 - ac, - a A2 ] = 0 (4.35)

The combination of equations 4.34 and 4.35 is usually used to solve for ao, and Teo =

T,ef as a function of (ng, h, T,, E). In this case, the specified values are (G, Tef, u, h) (u is

arbitrary since no momentum balance is used), so that (a,, E) = f(ng(u, G), h, Tg, Tref),

and

EacCaaoo
II = OaclA3aoo E =

refh
2
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Finally, it is assumed that the electrons do not heat the inlet wall, so that the initial

electron heat flux is zero: Qo = 0. This condition fixes the inlet electron temperature given

all of the other parameters.

Local analysis near a = 7 = 0 results in a similar ignition criterion as in the constant

Te case, except it is evaluated at the inlet temperature:

u < 2 CaSac() Ubo (4.36)
1+(Gh)2

This problem was solved by space-marching from a = a,oo to the wall and iterating to

satisfy the inlet conditions. A variable-step Runge-Kutta routine was used. Local analysis

near the asymptotic boundary condition was used to determine the values of the derivatives

there. Defining Aa = a - aoo, then, near to the asymptotic boundary, the variables may

be expressed as

7 m.yAa r y 1+ m Aa Q mQAa

where my, m,, and mQ are the local slopes near a ao for -, 7, and Q, respectively.

Substituting these into equations 4.31, 4.32, and 4.33 yields

(d,) m - Aao[-1 + Sim(1 - ao)]

da E d m

d7 m mQ

dQ am, -m Le OnAao[-+ 9..m,] -Sm mQ

da ) m-y

where 9, = d i and = evaluated at a = aO. These three equations are solved

simultaneously for the slopes near a aoo, and an initial step is taken from aoo to aoo+Aa

using a small negative Aa. A Runge-Kutta space marching routine is then used to integrate

from aoo+Aa in the negative a direction (towards the inlet wall).

Table 4.3 outlines the most significant parameters of three cases presented here from

the varying temperature model. Note that for these cases, a lower flow rate of G = 7.5 x

1023 m s_1 was used since the combination of downstream boundary conditions tended
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Case Teo (K) Te, (K) u (m/s) Ai Le II E (V/m) Oac

T1 23482 20000 409.30 0.375 .056 0.857 217 9.14

T2 29060 25000 835.42 0.472 .036 0.862 195 7.32

T3 42499 40000 2499.0 0.970 .018 1.067 172 4.57

Table 4.3: Cases for the varying electron temperature runs displayed here.

to drive the number density down, and thus would resulted in extremely high speeds, for

fixed G = ung.

Figure 4.11 shows the calculated profiles for the trajectory corresponding to case T1

shown in table 4.3. The relative size of the the terms in the nondimensional electron energy

equation (in the form given by equation 4.30) is shown in figure 4.12. The heating term

is (Lell) and the ionization loss term is -(Le OacA,, Sa(1 - a)). As can be seen, the

combination of low Te and ne at the inlet keeps the ionizational loss term low, so that

the ohmic heating term dominates until the ionization process begins. Combined with the

boundary condition that there is no electron heat conduction into the wall, this raises the

temperature at the inlet, with the only heat conduction in the downstream direction.

Figures 4.13 and 4.14 are the corresponding plots for case T2. The Ohmic heating

term still dominates near to the inlet, but not as much as in case T1 since both the inlet

ionization fraction and temperature is higher. Keep in mind that the nondimensional length

scale is = X/lD, where ID = - is the axial diffusion scale, which decreases with increasing

temperature. A higher temperature case - T3 - is depicted in figures 4.15 and 4.16. In this

case, the ionization loss term quickly rises to match the Ohmic heating term, so very little

heating occurs.

Note that these plots show that, as the electron temperature increases, the ion slip term,

7 = -neV/G, increases in magnitude (and therefore the ionization length scale is shorter)

and the heat flux term, Q = q/q,.ef decreases in magnitude (so that there is less temperature

variation). As found in the constant speed and temperature model, increasing A also tends

to increase the inlet ionization fraction.

These results show that, if the temperature variation has any effect on the initiation

of ionization, it is a positive one. Since the blowoff speed is a function of Te, and the

temperature rises near the inlet wall, ignition is more likely. Therefore, at the level of detail
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Figure 4.11: Constant speed ignition with atomic injection

T1: a/ao, 7, 7, and Q.
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Figure 4.12: Constant speed ignition with atomic injection and varying temperature, case

T1. Comparison of the terms in the electron energy equation.
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Figure 4.13: Constant speed ignition with atomic injection and varying temperature, case

T2: ac/aoo, 7, 7, and Q.
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Figure 4.14: Constant speed ignition with atomic injection and varying temperature, case

T1. Comparison of the terms in the electron energy equation.
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Figure 4.15: Constant speed ignition with atomic injection and

T3: a/ao, 7, Y, and Q.
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Figure 4.16: Constant speed ignition with atomic injection and varying temperature, case

T1. Comparison of the terms in the electron energy equation.



of this analysis, temperature variation is a positive effect. However, it should be kept in

mind that the energy balance at infinity assumed here, while reasonable, is not tied to

any thruster parameters except the electrode gap (recall that the electric field is a derived

quantity), so that other effects which may set lower temperatures are not included. Some

discussion of such effects can be found at the end of the section on ignition in accelerating

flows.

4.3 Ignition in Accelerating Flows: Non-local Energy Bal-

ance

We now drop the assumption of constant speed, but maintain the constant electron tem-

perature assumption, following from the results of the previous section. This allows for

analysis of the interaction between the behavior of the magnetic field and the ionization

process. The problem is treated here as two inner-outer problems. First, there is a an inner

region with both acceleration and magnetic diffusion which reaches from the wall out to a

"back-emnf dominated" boundary condition, and then an ideal outer region which is solved

analytically into the channel and to the throat.

The ionization zone is found to be entirely embedded in the magnetic diffusion (inner)

layer, and consists of an inner ambipolar diffusion layer, near the wall, and an intermediate

layer, where ambipolar diffusion plays no significant role, although magnetic diffusion still

plays a role. The first subsection following describes the model, and the second presents

results.

A schematic of the regions to be considered is shown in figure 4.17. The labels refer to

the following regions: w is the wall, from w to 1 is the inner ionization layer, from 1 to 2 is

the inner magnetic region (here and for the rest of the channel an outer ionization layer),

from 2 to 3 is the outer magnetic layer, and from 3 to 4 (the exit) is the exit magnetic layer.

The electron temperature is taken as a constant (Ke -+ oo). Its value is an important

parameter for ignition and will be determined in a consistent manner by an overall energy

balance in the inlet region.
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Figure 4.17: Regions in an MPD Channel

4.3.1 Formulation

We start with G = '4 = constant in the ionization zone. The integrated total momentum
miAt

equation, including pressure and magnetic (Lorenz) forces and neglecting friction, is

B 2

ming 2 + p +  z =F (4.37)

where p is the pressure, B is the magnetic field, mi is the ion mass, and F is a constant of

the flow. The magnetic field is governed by the following equation

dBdB -oLj = -Poa[E - uB]
dx

The differential form of the momentum equation (4.37) will also be used:

du d B2

dx dx 21tl

where the pressure for a two temperature, electrically neutral plasma is

(4.38)

(4.39)

(4.40)p = min9 VB(a + (1 - a)O)
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Here, because of the acceleration, the alternative version for the ion slip flux is used, so

that, from equation 2.22, we can define the flux, r = -neVi, from

da r U2  1 du
d- C- (1 - a)( 1) (4.41)
dx aO - Ov- u dx

This equation, along with the following three, constitute the equations of motion for the

quasi-one-dimensional isothermal flow problem. Starting with equation 4.39, and using

equations 4.40, 4.41, the momentum equation becomes [63]

(1-)r +B (E - uB)
du = - CU ± %Go(E - uB) (4.42)

dx 1 - a(1 - 0) -

Equation 4.2 may be rewritten as:

dr da Ca na( a) (4.43)
dx G + Sac (1-a) (4.43)

and the final equation is the magnetic field equation, equation 4.38.

Nondimensionalizing these equations will allow us to analyze them parametrically. Defin-

ing reference values u,rf = 2,, and l,ef = Am - --- ,f'1 then the new variables are

= , , b = , E E/(uef Bo) and = . The resulting nondimensional
U G' Bo Am

equations of motion are:

di 0(1-0' + 20b
ED f (4.44)

- 1 - a(1 - 9) - 62

da f 2 1 df

S + (1 - a)(- - 1) d(4.45)
d EDO 0p U d

d- da ( A(1- a) (4.46)

dt d( u2

db E - fb
d- b (4.47)

d 1+( - 1)q

where for convenience we define

f + - 1)q db

n addition to the parameters defined -previouslyb

In addition to the parameters defined previously,
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The first far downstream ( - oo) boundary condition will be that E = iib, which

implies an infinite length and hence an infinite magnetic Reynolds number. This motivates

us to choose the magnetic field itself as the independent variable. Dividing the three other

equations of motion (4.44, 4.45, 4.46) by equation 4.47, we arrive at the following set of

equations:

dfi f,3(1 - ) -- - 20b
-D U(4.48)

db 1 - a(1 - 0) - (4.

da f + a) -a) - 1 (4.49)
db EDO - - ii db

dy da ( A(1 - a)) (4.50)_ d fa Ew- (
db db u

2

The second downstream (oo) boundary condition is the same balance between transverse

ambipolar diffusion and ionization used in the constant speed case, which is now:

a Cu_ - 00 (4.51)
SacG 2 h2  A

Additional boundary conditions are the conditions at the injector wall, and the internal

boundary conditions at the sonic passage point. The injector wall condition (4.10) still

holds, except in the nondimensional form it is now

o7 = o (1+ (4.52)fLo
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where the speed at the inlet wall, io, is now a result of the calculation, rather than a freely

chosen value, as was the case in the constant speed problem.

If subsonic injection is assumed, then smooth passage through a "sonic point" [46] is

required in the steady state. The sonic point is characterized as a singularity that occurs

when the denominator of ! (equation 4.48) is zero at some b = b,. In order to be physically

possible, the numerator must be zero at the same b,. This poses a difficulty in the full set

of equations, since trajectories diverge rapidly near this singularity.

Therefore an "outer" set of equations is used "far" from the wall (on the ambipolar

diffusion scale), but still within the acceleration layer - and the sonic point is found to be

embedded in this intermediate layer. Since ED < 1, diffusion is dropped (- d 0) and the

combination 7/ED is eliminated from equations 4.48 and 4.49, arriving at the nondiffusive

layer equations:

du _/(1O-)i { -)-EW 2b N
= (4.53)

db 1 - + a(C )) D

where N and D are shorthand for the numerator and denominator, and

da -fa ( - Ea) (4.54)
db i

The ion slip flux may be obtained from post-processing as:

0 da -2 1 dE

S - - - (I - a) - 1 (4.55)

The variables at sonic point (where the denominator of equation 4.53 is zero) may all

be found explicitly by setting both the numerator and denominator of equation 4.53 equal

to zero,

N=3 (-0f, A(1 - a) _ -

D = ( - )+ a(1 - 0

and using the integrated momentum equation (eqn. 4.37), evaluating the constant, F once

E and boo are chosen:
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F 2 (0 + a,(1 - 0)) 2 3 (0 + a,(1 - ))
= boo+ + = b +iu,

miGuref f0 Us

These last three equations may then be solved for b,, a,, and u,. The derivatives at the

sonic point are evaluated as follows. L'Hopital's Rule is applied to equation 4.53:

db I

These non-diffusive equations are used to march back toward the wall (using a Runge-

Kutta variable-step routine) from the sonic point (and also from the sonic point out to oc

for the magnetic diffusive layer) until the slip 7 becomes positive, and then patched with

the diffusive solution, equations 4.48 to 4.50, are to get to the wall itself. The diffusive set

is required to meet the boundary condition on the slip.

At this point, we have solved the problem from the wall (b = 1) to the end of the

magnetic diffusion layer (where E = ziib,). This process yields a family of b,(E) for each

E, each of which satisfies the boundary conditions. Thus, there is one remaining degree of

freedom. The problem is closed via an idealized channel downstream (the "outer" magnetic

problem), where the flow is assumed to be constant temperature, frozen (at a = a,), and

"back-emf dominated" (E - fib <K E). The magnetic field is then a function of the area of

the channel, and we look for the throat. [46] In this outer region, (switching to dimensional

variables), € = EH is a constant, so that the speed and density (ming = rn/(uA)) are

B rn
U B H mring

and the pressure, from equation 4.40 is

B rh 2P = V + aoo(1 - 0))

so that the momentum equation, becomes

U 1 B2
d + dp + d = 0 (4.56)

2 m 2n,2

Using the expressions for u, ming, and p above, and the nondimensional variables and

parameters already defined, plus the nondimensional potential,
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EefHt

then equation 4.56 may be recast and integrated to obtain the following expression:

Ho 1 2P( + ao(1 - 0))1n(-b) 4(bo - b)=b + + (4.57)
H b2 22

We then find the throat, given boo and E, by evaluating this expression for decreasing

b until Ho/H is minimized. In practice, the contraction ratio, Ho/Ht is taken as a given,

and equation 4.57 gives another relationship between E and boo.

This closes the problem for a given set of the parameters, at a fixed value of the electron

temperature. The numerical integrations are solved using a Runge-Kutta space-marching

scheme, starting at the sonic point (non-diffusive equations), and marching out both towards

boo and bo. The diffusive (equations 4.48, 4.49, and 4.50) and non-diffusive (equations 4.53

and 4.54) solutions are patched just after the outer, non-diffusive set value for y is small

and positive (> 0.001), and then the diffusive inner set is integrated to the wall. Note that

7 is positive and of order unity near to the wall (ions lagging the bulk flow, as required by

the inlet boundary condition), but becomes small and negative (ions leading) downstream

of the diffusion layer. and that the patch is made near to the crossover.

4.3.2 Results with Te as a Parameter

Following are results from the inner-outer approach to the accelerating ignition problem as

described above. The plots vs ( have been truncated so as to show the ionization layer more

clearly. A "standard" set of parameters is defined in this work corresponding to roughly

Te 20000K, H = 0.02m, G 7.5 x 1024 m- 2 /s: A = 2, ED = 0.005, E, = 0.1, = 0.05,

0 = 0.10, and q = 0.001. Since the ionization rate coefficient varies the most dramatically

with temperature of the parameters, as can be seen in figure 4.18, A will be varied while the

other parameters are fixed. For reference, figure 4.19 shows the behavior of both ED and q

vs electron temperature, and figure 4.20 shows the variation of E,.

A summary of the results from several runs using the "standard" parameters is listed in

table 4.4. Note that increasing contraction ratio (-) decreases boo, which means that less

current is drawn in the ionizing region. Table 4.5 shows the (E, boo) pairs calculated for
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Figure 4.18: The parameter A vs. Te.
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Figure 4.19: The parameters ED and q vs. Te.
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Figure 4.20: The parameter E, vs. Te.

varying values of the parameter A, keeping the other "standard" parameters fixed, and con-

traction ratio of 1 (constant area). Lower A means lower electron temperature, and results

in lower power drawn which is 2E,(1 - boo) in the accelerating zone, and correspondingly

smaller u, = E / boo.

Figure 4.21 shows the trajectory on the -,a phase plane for the standard set of pa-

rameters, and a contraction ratio of one (E, = 0.6019, boo = 0.6583). The diffusive and

non-diffusive solutions are patched at - = 0.0036, a = 0.5592, and the sonic point is at

b = 0.9854, as = 0.9029. The isoclines are for the diffusive inner set at b - 1, using equation

4.37 to solve for u(a) and are evaluated as

dc7 d

Note that, although the inner equations diverge as -* 0 (as can be seen from the isoclines),

the outer set passes through smoothly, and the two sets patch quite well at a small positive

7, as can also be seen from the isoclines.

Figure 4.22 shows the ionization fraction, a, vs the nondimensional length, ( = z/Am,

for the "standard" parameters, except that A (basically the ratio of the acceleration to the

ionization lengths) is varied as discussed above. Note that for small A, the ionizing scale
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Et, boof H J
0.6019 0.65828 1.000 0.6019

0.5500 0.80658 1.078 0.5929

0.5000 0.86227 1.157 0.5784

0.4500 0.90275 1.243 0.5595

0.4000 0.93459 1.341 0.5364

0.3500 0.95983 1.453 0.5087

0.3000 0.97913 1.586 0.4758

0.2500 0.99181 1.748 0.4370

Table 4.4: Summary of results from the "standard" case.

A E_ = ___

4.00 0.6136 0.67116

2.00 0.6019 0.65828

0.50 0.5560 0.65633

0.30 0.5280 0.64731

0.20 0.4978 0.63030

Table 4.5: Summary of results, standard case, except varying A, constant area (H o /Ht = 1).
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Figure 4.21: - vs a, with inner-set isoclines, for the "standard conditions".

approaches that of the magnetic scale ( 1). At higher A, the ionizing scale is decidedly

smaller than the magnetic scale, approaching ( m ED. As found with the constant speed

case, again higher A yields a higher a,.

Using equation 4.40 in the integrated momentum equation (equation 4.37), and with

constant G = ngu in the ionization zone, and using the nondimensional variables and

parameters defined above,

/P(a + (1 -a)) F (4.58)
SmiGure (4.58)

For small ("subsonic") speeds, i2 < P(a + (1 - a)O), the acceleration comes mostly from

the pressure gradient (which is strongly dependent on the gradient of a in this model), so

that

P(a + (1 - a)O) F
miGur(4.59)

u m Guref

which depends strongly on the ionization process, and hence on the value of A. For large i

("supersonic"), the acceleration comes chiefly from the changing magnetic field:

F
, + b2  M (4.60)

miGuref
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Figure 4.22: Ionization fraction a vs for the "standard" parameters, except for varying A.

which does not depend very strongly on A so long as the entire ionization region is Coulomb

dominated. Figure 4.23 shows the speed vs for the same conditions as in figure 4.22, and,

as discussed above, the differences in the accelerations near to the inlet are attributable to

the variation in A.

Note also on figure 4.23 that ii, (the asymptotic value of the speed) increases with A.

Since boo has been found to not vary as much as ii, this means that the electric field will

increase with A as well. This agrees with the findings of Lawless and Subramaniam [42],

who state that the back-EMF in a one dimensional self-field MPDT channel increases with

the ionization rate at the sonic point. Figure 4.24 shows this in a plot of the calculated 4

vs the ratio - for various A. The ideal values are taken from Martinez [46].Ht

An ignition criterion similar to the one for constant speed and temperature is again a

constraint on the Damkohler coefficient for ionization, A1 ~EDA, and 4EDA > u.

The speed at the inlet wall, o,, can be estimated from equation 4.59, where F is evaluated

at the oc end of the magnetic diffusion layer:

F p
= uoo +-+ boo

miGu,.ef U 0

so that, from equation 4.59, the inlet speed can be estimated as
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Figure 4.23: Plasma speed i vs ( for the "standard" parameters, except for varying A.

oo

02 +b2  + o (aoo + (1 -ac)O)

For large ia+ie± (or large iioo, if/3 is fixed), then

U 0

which is likely to be small enough to meet the rough ignition criterion (unless the temper-

ature is very low), 4EDA > ii, which is

E 2 2 
A

B 0> 4CaSac

Although E/BO = uoo drops as the contraction ratio increases, the inlet speed changes

little, and in fact drops with increasing contraction ratio. Therefore this can be only con-

sidered as a rough explanation, that the ionizing scale is smaller than the magnetic diffusion

or acceleration scale when Thus this model is not yet in line with Heimerdinger's experimen-

tal findings [27], which indicated that there is an ignition-driven limit on the contraction

ratio. In order to obtain a more clear ignition criterion, an energy balance is necessary, as

outlined in the next section.
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Figure 4.24: 0 vs A

4.3.3 Overall Energy Balance

Figure 4.24 shows the overall results of the accelerating model; however, the electron temper-

ature, and therefore the parameters of the problem (namely A for this figure) are functions

of the contraction ratio. This means that, for fixed channel throat dimensions and flow

rate, there may be only one A for each contraction ratio. This is caused by the energy

balance in the ionization zone. Adding an energy balance to this model therefore makes it

self-consistent and will indicate a more definite ignition criterion.

Assuming infinite thermal conductivity, which implies a constant electron temperature,

and is consistent with the constant temperature assumption made previously, the integrated

energy equation, as reported by Lawless and Subramanian [41] is

u2 EB
m,G h - + - =C

which is valid for the constant area region assumed for the ionization-acceleration zone. C

is a constant of the flow, and the enthalpy, h, is defined as

h * 5 kBTeT eV
2 mi m /

for frozen heavy species temperature. T,. The energy balance, for constant temperature,

and using the nondimensional variables and parameters, is now:

S- ,) - ) + 2 (i - )

where

I " 11-



eVi
S2

m~Uref

and 6 = 0.59 for the argon atom, and the Uref defined here. This depends on conditions, of

course. In fact, 6 -- 1 is a rough onset criteria; i.e., the flow kinetic energy approaches the

ionization potential energy of the atom.

If ao, > ao, and ioo > ii,o, which has been generally found in the results of the acceler-

ating ignition model, then

2
2E(1 - boo) ( aoo 50(1- ±+

Since, from the far-downstream condition,

-2E, U
oo Uoo

and ioo = E/boo

( PE 2 5  1 E2

2E(1 - boo) =1-2(1 - 0)+ 6 +2
Ab21 (2k-u-J 2 b2

or, rearranging,

1 E2 EE R2 5
2E(1 - boo) - = Ab ( ) + 6

Which is now a function of the temperature-dependent parameters, and the (E, boo)

solution pair. This condition sets the electron temperature, and an iterative process has to

be carried out in order to satisfy it. It indicates that there must be enough energy left over

after the acceleration to overcome the frozen losses due to the ionization.

Note that 2E(1 - boo) - - decreases with increasing contraction ratio, Ho/IHt, as

shown by table 4.6. Physically, this means that more of the available energy is converted

into accelerating the fluid. However, this leaves less energy available for the ionization

process.

Table 4.7 lists a set of self consistent results obtained by iteration. They show that

increasing the contraction ratio does indeed lower A, corresponding to a lower electron tem-

perature. Note that varying the contraction ratio from 1 to 1.08 results in an approximately

10 percent decrease in the electron temperature.
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E b, -1 2E(1- b) ' 1
Ht I b2

0.4746 0.6272 1.00 0.0676

0.4630 0.6892 1.02 0.0621

0.4100 0.7940 1.13 0.0356

0.3500 0.8620 1.27 0.0147

Table 4.6: Results using A = 0.15, E, = 0.3, / = 0.02.

A E b. H, Te(K)

0.199 0.4862 0.62844 1.000 20440

0.150 0.4630 0.68922 1.020 19450

0.125 0.4420 0.71907 1.044 18910

0.100 0.4112 0.74651 1.080 18220

Table 4.7: Self-consistent results, for E, = 0.3, / = 0.02.

As seen earlier, decreasing A leads to longer ionizing regions. This then is the key to an

ignition criterion for the accelerating ignition which is consistent with the assumptions made

for the model. Increasing the contraction ratio decreases the uniform electron temperature,

thereby decreasing A, and increasing the ionization region's width. If the contraction ratio

is increased continuously, at some point the ionizing region will grow to be of the same

scale or larger than the acceleration scale. After this point, increasing the contraction ratio

will result in extinction, that is, the ionizing front will exit from the thruster, or it may be

considered to have been "blown out" of the channel by convection.

Figure 4.25 shows the ionization fraction profiles for the low and high temperatures in

table 4.7.

4.4 Summary

These models show that the assumption that back-diffusion of electrons to the inlet wall can

explain ignition is valid, and also explain why ignition may fail under some conditions. This

explanation is purely based on convective and diffusive transport and volumetric production

by inelastic collisions, and does not require any significant non-consistent assumptions, other
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Figure 4.25: Energy consistent ionization fraction a vs corresponding to the high and low

temperature cases from table 4.7

than that the electrons are Maxwellian (other distributions would effect the calculation of

the rate coefficients).

For atomic injection, the general ignition criteria is based on the ionization Damkohler

number, and is that the flow speed must be lower than the blowoff speed characterized by

the ambipolar diffusion coefficient (multiplied by the overall density) and the electron-atom

ionization rate coefficient at the inlet:

Uo < Ubo - 2 CaSac(0)

which is a function of the electron temperature. In the accelerating case, both the inlet

velocity and the electron temperature are determined consistently.
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Chapter 5

Discussion

5.1 Summary

In this section, the findings and contributions of this thesis will be summarized and dis-

cussed. The summary will be broken up into the two topics of nonequilibrium ionization

modeling and inlet ignition.

5.1.1 Nonequilibrium Ionization Rate Modeling

A great deal of research has been published on the topic of nonequilibrium ionization, and

on the modeling of nonequilibrium ionization rates. The study of multi-level finite-rate

ionization in this thesis extends this work by reformulating the standard model in a way

that both isolates and highlights the effects of individual levels, which allows for calculation

of overall effects in a straightforward manner. The assumptions that allow this reformulation

are checked throughout to ensure that they are applicable to the conditions typically found

in MPDTs. The ability to calculate two-step (ground state and ion) overall rate coefficients

- both with and without radiative effects - which include the effects of the more realistic

multi-level (excited levels) structure of the atom or ion is a valuable tool for calculating,

diagnosing, and/or understanding the state of the plasma in an MPDT.

The nonequilibrium ionization models developed in this thesis utilize a reformulation of

the standard collisional-radiative rate equations to calculate the population distribution of

the excited states of an atom and/or ion. Once the excited state population distribution is

known, the overall ionization and recombination rate coefficients may be calculated. These
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may be used in channel flow models of magnetoplasmadynamic thrusters. While the most

relevant result of this study to this thesis is the calculation of the overall rate coefficients,

the population distribution of the excited states is studied using a simple model for a variety

of conditions.

A realistic ionization model for both hydrogen and argon atoms and the argon first

ion (and the structure to extend to additional atoms and ions) is developed which allows

us to go back and look at the details of the excited state population densities - a critical

need for considering line radiation, or spectroscopic diagnostics (emission). These models

are based on the the atom or ion as a ground state, its excited states, and the continuum,

or next higher ion. Rate equations which include collisional and radiative (in parametric

form) transitions amongst these states are written in a standard collisional-radiative (CR)

form. The standard form is rewritten using the relative degree of nonequilibrium of each

level rather than the level population as the variable. This modified CR model is more

convenient for the analysis that follows.

Analysis using the full multi-level argon atom modified CR model indicates that the

excited states will relax much faster than does the ground state, which is tied to the me-

chanical flow time scales (which may be convective and/or diffusive). This is shown in this

work to be so both in the bulk channel flow of an MPDT and in the inlet regions of an

accelerator where axial diffusion may be significant. This leads to the quasi-steady-state-

solution (QSSS) approach. Starting with this assumption, the excited state population

distribution may be characterized by two coefficients for each excited level, one of which

is mostly determined by collisional effects, and one mostly determined by radiative effects.

Each excited level's population is then given as a function of these two coefficients and the

ground state degree of nonequilibrium.

It was shown that the overall rate coefficients for both the atom and ion may be calcu-

lated as functions of Te alone, if the plasma is not radiatively affected, and as functions of

the electron temperature and density and the radiative escape factors when it is. Simple

3-level (ground, excited state, continuum) argon and hydrogen atomic models were then

used to analyze the radiative effects on both the population of the excited state and the

overall recombination rate coefficient. Using the QSSS assumption, the effect of radiative

decay is to raise the recombination rate coefficient, both by direct radiative recombination,

and through radiative influence on the excited state populations. Overall microreversibility
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is found to be valid only when radiative processes are negligible; this occurs when the escape

factors are small, the temperatures are very high, and/or the electron density is high. Note

that overall microreversibility also fails when the quasi-steady-state approximation cannot

be used.

Two distinct regimes were identified in the calculation of the overall collisional rate

coefficients (neglecting radiation). At temperatures below roughly Te = 20000 K, the most

significant contribution to the overall recombination rate coefficient came from the excited

levels, while above the Te = 20000 K, the most significant contribution came from the

ground state. In fact, the three-level model results matched well with the multi-level results

at high electron temperatures. This means that the rigor of the full multi-level model is not

necessary at high temperatures if the goal is to calculate overall rates since the net rate of

production of ions from each of the excited levels is much less than the net rate from the

ground and first excited levels.

The overall collisional rate coefficients for the argon atom and the hydrogen atom pre-

sented here were developed primarily for use in the analysis of the ignition problem in this

thesis. They are also applicable as volumetric source terms in continuity equations in other

computational models of plasma accelerators. In these cases, the recombination rate coeffi-

cients calculated in Chapter 3 from the multi-level model with no radiative effects is used,

and overall microreversibility applies in calculating the overall ionization rate coefficient.

Niewood [51] has used the argon atom ionization model of this work in a detailed computa-

tional study of MPDTs. Miller [48] used the hydrogen ionization model in a computational

study of arcjet thrusters, including multifluid nonequilibrium effects. In both cases, ac-

curate calculation of the ionization fraction, far out of equilibrium under some thruster

conditions, is necessary for those transport properties sensitive to ionization fraction, and

for determining the frozen losses due to the endothermic ionizing reaction.

These uses, plus the use of the ionization models in the ignition analysis of this thesis are

indications that the overall rate coefficient model developed is compatible with a variety of

numerical flow applications, and is practical, since the two-step form includes the effects of

the excited levels without requiring any new, and most likely stiff, continuity equations to be

added. Another advantage is that the effects of production of the second ion of argon could

now be added to a model such as Niewood's [51] by using the model presented here, since

argon second ions have been observed in MPDT experiments [36]. Although radiation effects
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were not included in the overall coefficient model here, they could be added parametrically

if a consistent method for determining the radiative escape factors is used.

5.1.2 Inlet Ignition

The formulation and solution of the problem of ionizational ignition in this thesis represents

the first published attempt to explain the sustained initiation of ionization in a self-field

MPDT in a consistent and physically reasonable manner. The analysis uses the ionization

rate model developed earlier in this thesis and considers subsonic injection into a flowing

channel, with both local and non-local (gradient-driven) magnetoplasmadynamic effects.

The models are all one dimensional, which limits the conclusions to be drawn. In the context

of other work on this topic, which may treat the ionization front as a jump condition [12]

[39], explain ignition in a spatially non-consistent manner [18], or use an unrealistic one-

dimensional model of a self-field MPDT inlet [14], this level of analysis is justified as a

reasonable proof that diffusion-driven ignition is possible, and as giving practical ignition

criteria.

The hypothesis of the ignition analysis is that diffusion of electron-ion pairs back to the

inlet wall provides enough electrons to initiate ionization. This is based on diffusion flames

and diffusion-reaction models in general, where reactants mix primarily by diffusion. It is

assumed that the injected propellant is essentially at zero ionization fraction, so the back-

diffused electrons are the only ones available for initiating the ionization process. When

back-diffusion is not sufficient for supplying the electrons to the wall, which occurs at higher

injection speeds, then the ionization front is stretched and displaced downstream, or "blown

off" of the inlet wall. At the inlet wall, the boundary condition that the ions enter a sheath

(not modeled here) at the Bohm velocity is imposed, which makes the ionizing region a

"pre-sheath".

In the simplest case considered, that of constant speed and temperature, ignition was

characterized solely by a blowoff speed criterion. That is, if the speed is below the blowoff

speed, then the back-diffusion of electron-ion pairs supplies enough electrons at the inlet

wall to meet the inlet condition and result in a large enough ionization rate to sustain

the front at the inlet wall (the inlet wall condition is met at ionization fractions generally

greater than a 1 0.001). If the flow speed is above the blowoff speed, the ionization front
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was blown downstream (actually, stretched out, since the boundary condition used here was

that some level of ionization occurs in the asymptotic limit), and the inlet wall condition is

met at virtually zero ion density, since the back-diffusion cannot supply enough electrons

near the inlet. The blowoff speed depends on both the overall ionization rate coefficient and

the product of the ambipolar diffusivity and the overall density (note that the ambipolar

diffusion coefficient is proportional to one over the overall density, so the blowoff speed is

independent of the density), and so depends on the propellant choice. As expected, a large

ionization rate coefficient is an advantage, but now high diffusivity is also a premium in

choosing a propellant.

When temperature variation was accounted for in the constant speed model, there was

a quantitative change in the ignition criterion, in that the inlet temperature is used in

the evaluation of the blowoff speed, but no qualitative difference. In fact, since the inlet

temperature was always higher than the downstream temperature, the addition of tem-

perature variation to the model actually made ignition more likely, for equal downstream

temperatures and injection speeds.

The final atomic injection case considered here was the constant temperature, atomic

injection, accelerating model. This model was more difficult to solve due to the internal

singularity (the sonic passage), and was broken up into two sets of coupled inner-outer

problems, with the entire ionization region embedded in the magnetic inner layer. An overall

energy balance, still assuming constant temperature, was needed to both make the problem

self-consistent and to pin down an ignition criterion. This criterion is that, for a given set of

physical constraints on the thruster, increasing the contraction ratio will eventually quench

the ionization process by lowering the inlet temperature, the inlet ionization fraction.

Overall, the results indicate that back-diffusion of electrons and ion to the inlet wall

against the bulk flow can explain the mm-scale ionization regions that have been observed

in the past in MPDT experiments. Also, the "blow-off" criterion identifies the conditions

under which ignition will fail. Since this criterion depends on the product of the ambipolar

diffusion coefficient and the ionization rate coefficient (in atoms), propellants with small

ionization potentials and/or masses will ignite most effectively.
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5.2 Recommendations for Additional Work

One of the conclusions of this research, in fact, most research, is that there are many

questions yet to be answered. Following, therefore are my recommendations for possible

future research in each of the main topics of this thesis: nonequilibrium ionization modeling

and inlet ignition.

5.2.1 Nonequilibrium Ionization Rate Modeling

As additional experimental interpretation is made and new analytical and computational

techniques are used, the cross-section and rate models for individual transitions amongst

the states are steadily improving. In particular, experimental verification of collisional

cross-sections for state to state transitions between higher excited states is necessary to

reduce the great uncertainties which come from applying models developed for lower state

transitions. The more accurate recent cross-section and/or rate coefficients may be applied

to the models of this thesis to increase the confidence in the results.

A more self-consistent approach would include the possibility of non-Maxwellian elec-

trons in the plasma. This may result in higher rate coefficients (Sac), as found by Chouieri,

et al. [18], due to a superthermal tail in the elecron distribution. This additional level

of realism would require that a very consistent and accurate accounting of the processes

occurring in an MPDT be made in order to have confidence in the electron distribution

obtained.

One way to extend the model developed in this thesis would be to apply the model

to additional species of interest to MPDT and electric space propulsion in general. Some

species which have been used in experiments and may be of interest are nitrogen and

oxygen molecules, and lithium, helium, xenon and neon atoms. More complex molecules

which have been used as propellants in electric propulsion devices, such as ammonia, wa-

ter, and hydrazine, may also be modeled, but may require additional analytic tools. The

extension of the ionization model to additional molecular species brings up the question of

whether a similar methodology could be applied to the dissociation process as well. The

goal would be to utilize the QSSS assumption to develop simple overall (two-step) disso-

ciation/recombination models which still retain the influences of the vibrationally excited

levels.
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5.2.2 Inlet Ignition

In this thesis, ignition has been analyzed with one atomic species. Ignition with a wide

variety of propellants, both atomic and molecular could be analyzed using the same simple

models used in this thesis. In fact, the normalizations used allow the parameters to be

easily varied to represent different species of interest.

The molecular injection problem should also be addressed. The main difference between

this case and the atomic one is that now atoms are made available for ionization at the inlet

only through the dissociation process, and since the dissociation rate coefficient is lower

than the ionization rate coefficient for hydrogen, dissociation is the limiting process. Since

electrons are present at the inlet only because of back-diffusion, the role of axial ambipolar

diffusion is still significant.

Radiative effects were not included in the ignition model due to the short absorption

length scales. However, as Burton and Tiliakos [14], Liberman and Velikovich [44], and

much of the ionizing shock research done in the past has shown, radiation may have an effect

on ionization at very low ionization fractions. Therefore some methodology for including

radiative effects accurately in the ignition process when a is very low may be of great

interest. As found in Chapter 4, this would occur as the Damkohler number approaches

the critical value, or when the hypothesis that ignition is caused by back-diffusion begins

to break down.

Though it seems improbable in a realistic MPD thruster, both from computational and

experimental findings, supersonic injection has not been addressed in this work, and it

remains to be seen whether it is possible. What physical processes influence ignition in this

case? This may be similar to ionizing shock work, where several different processes act.

For example, radiation may have an effect far ahead of the shock, while collisions will have

their effect nearest to the shock itself.

A full 1-D model of ignition would be of an accelerating propellant, with full energy

equations for electrons and heavy particles, and for both atomic and molecular propellant

injection. Second, and perhaps third ions of argon may also be included, since they have

been observed by their spectroscopic signature in experiments. The ignition model(s) should

also be coupled with a more realistic MPDT model. The caveat here is that the ionizing zone

in a successful ignition may much smaller than the other scales of interest in the thruster,
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so that an axial boundary layer representing the initial ionizing region may be patched onto

the "outer" flow, similar to what was done in the accelerating model used here.

Consideration of more realistic 2 or 3 dimensional cases is necessary in order to truly

understand how inlet the ionization works. This means tackling the problem of either slit

or jet injection, along with the complications which may occur; for example, azimuthal

electrical currents may be caused as the current avoids the low-conductivity injection jets.

Finally, the ignition models must be verified experimentally. In order to correspond to

the 1-D assumption, a long channel with a small interelectrode gap should be used, similar to

the recent work of Tahara, et al. [66]. Spectroscopic diagnostics would allow for nonintrusive

measurements and the excited state population distribution may be estimated from the flow

models, as shown in Appendix D. To test the models, mass flow rate, contraction ratio, may

be varied and the resulting changes in the ionizing region width compared to the changes

predicted by the analysis presented in this thesis.
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Appendix A

Methods Used for Solving Flow

Problems

The flow problems that are of interest to this thesis are mostly of the diffusion-reaction

type. The problems are formulated such that at one or both ends of the range of the one-

dimensional independent variable there is a singularity, and the downstream conditions are

always approached asymptotically. In the accelerating flow case, there is also an internal

resolvable singularity - the sonic point.

A.1 Using A Runge-Kutta Method to solve BVPs

One of the simplest ways to solve the 1-D steady flow problems addressed in this thesis is to

employ a Runge-Kutta space marching scheme. Runge-Kutta methods are fairly standard

multi-step time marching schemes, and are found extensively in the literature [56] [19]. In

this case, a variable step size routine is used throughout. The boundary value problems

of this work are then solved by a shooting method, if so required. For example, in the

constant speed, constant temperature model of Chapter 4, any trajectory that connects the

uniform downstream plasma to the inlet wall condition on the ion flux entering the sheath

is a good solution. However, for the varying temperature case, another wall condition must

be met simultaneously: that there is no electron heat conduction to the wall, and since

this model was solved by the Runge-Kutta method, an iterative shooting process was used

to find satisfactory solutions. That is, the integration starts at some point at which at

147



least one guess is required to calculate all quantities, and then a check is made to see if

the integration meets all of the boundary conditions. The guess is then refined until the

conditions are met.

For the constant speed problems, the integrations start at "infinity" (the asympotically

approached uniform downstream plasma) and end at the wall, where the presheath wall

condition is checked as a figure of merit. In problems where there is acceleration, there

is an internal singularity (sonic passage) which must be resolved, and two integrations are

initiated at this internal singularity: one directed towards the wall, and one out to "infinity",

as described in the accelerating ignition formulation in Chapter 4.

A.2 Using the COLSYS Relaxation Subroutine to Solve BVPs

The COLSYS package [3, 2, 6] was designed to solve boundary-value problems (BVPs) for

ODES in one dimension, and has been used to solve many problems. (The package, in an

updated form known as COLNEW, is available through NETLIB) The package solves a

"mixed-order system of ODE's, subject to separated, multipoint boundary conditions" [3].

For the ignition prblem that the relaxation scheme was used for, the problem is a two-point

boundary value problem (the downstream and inlet conditions).

A.2.1 Solving Problems with Unknown Bounds on the Independent Vari-

able

For some of the cases considered in this work, solutions will be sought in which one of the

endpoints for the independent variable is not known apriori. For example, in the constant

speed ignition cases, the ionization fraction is used as the independent variable, and the

ionization fraction at the inlet is unknown.

A method found in Numerical Recipes [56] was used to solve for this unknown boundary

along with the dependent variables. Assuming that the independent variable is x, and the

final value is known (xf), then a new equation may be added, using the unknown initial

value, x0 :

6 = Xf - Xo (A.1)

Note that 6 is a constant, so that, equivalently, a new differential equation has been added:
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de
= 0 (A.2)

dx

Now the independent variable can be changed to t, defined as:

x = xf - tb

The derivatives are rewritten using the new independent variable, t, with

dz(i) _dz(i)
dt- f(i =- d

Schematically, if the initial set of N differential equations to be solved over the domain,

Xo <X < Xf (Xo unknown apriori, and there must be N + 1 boundary conditions), is

z(1)
d

= f(, z(1), ... , z(N)) (A.3)

z(N)

then the final set of N + 1 differential equations, to be solved using the COLSYS package

over the domain 0 < t < 1, is

z(1)

d
= -6 s f'(X, z(1),..., z(N), 6) (A.4)

dt z(N)

where f' is the same as f with the addition of equation A.2, and 6 = xf - xo.

The user inputs to the COLSYS routine are, first, the set of derivatives, f(i), plus

the partial derivatives of each derivative w.r.t. each variable, denoted by = df(i, j).

The boundary condition information is input in the form of g(z(i), t) = 0, and the partial

derivative of g(z(i), t) with repect to z(j) is dg(j). Finally, an initial guess for the solution

is input as z(i)(t), and the derivatives dmval(j) d(i)(t)dt

A.2.2 Example: The Constant Speed and Temperature Atomic Ignition

Model

As an example of the method described above, it will be applied to the constant speed and

temperature atomic injection ignition model from section 4.1.
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Equation 4.16 is repeated below for convenience:

dg A1 a((a- 1) + 2 (a -1))

da a
(A.5)

In this case, the extra unknown is the value of a at the inlet: a,. The stretch variable

(see equation A.1) is chosen to be 6 = 1 - a,, so that the variables

z(2) = g z(3) = 1 - ao

so that a = 1 - z(3)t

where t is a new variable introduced:

f(1) = -z(3)/z(2)

f(3) = 0

O < t < 1. The derivatives w.r.t. t are ~ f (i):

f(2)= -z(3)(1+ Aa((a- 1) + 12(a 2 - 1))) (A.6)
f(2) = -z(3)(1 + ) (A.6)

z(2)

(A.7)

and the partial derivatives of each derivative w.r.t. each variable are denoted by -7 =

df(i,j):

df(1, 1) 0

df(2, 1)= 0

df(3, 1) = 0

df(1, 2) = z(3)/z(2)2

df(2, 2) = z(3) a((a-1)+;2(a2-1))
z(2)

df(2, 3) = -1 - ((-2b-3b2
;12 (9

2
-4b

3
-4b))

df(3, 2) z(2)

df(3,2) = 0

df(1, 3) = -1/z(2)

df(3,3) = 0

where b = z(3)t

The boundary conditions are, at t = 0 (the downstream asymptotic limit), 7 -+ 0, so

that:

g = z(2) dg(2) = 1

while at t = 1 (the inlet), the boundary conditions are that the wall condition on the

backflowing ions holds (see equation 4.11):
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g = z(2) - (1 - z(3))(1 + VB/U)

dg(2) = 1 dg(3) = (1 + yB/u)

and that, also at t = 1 (the inlet), the axial coordinate is zero:

g = z(1) dg(l) = 1

In this case, the initial guess chosen was

z(1) = 1 - t z(2) = 0.25 - 0.249(1 - t) z(3) = 0.95

dmval(l) = 1 dmval(2) = 0.249 dmval(3) = 0

The inputs described above define the problem. Convergence was never a problem

except at very high speeds where the wall boundary condition was met at g = a = 0, when

more iterations were required. This method was used for the constant speed, constant

temperature models with either atomic or molecular injection. The results from the atomic

case, the approach outlined in this section, are given in Chapter 4.

A.2.3 Solving Problems With Internal (resolvable) Singularities using a

Relaxation Method

Consider in general the problem of numerically solving a steady-state flow problem which

includes a sonic passage (and therefore a resolvable singularity: the d" derivative at the

sonic point). The 1-D, one fluid model of Martinez discussed above will be used as an

illustrative example. The purpose of including this model here is to illustrate the use of

a two-region approach to solve a steady-state problem with an internal singularity and to

give the reader a reference for the types of variations expected in a magnet oplasmadynamic

thruster. This approach would be helpful in simplifying the solution of the accelerating

ignition model developed in Chapter 4, and make it a more practical analytic tool.

The set of differential equations for a 1-d self-field MPDT constant-area channel flow

can be written as the set [50] [46]
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d N(, -, b) (A8)
dx D( , , b)

dbd= f(~, , b) (A.9)
dz

where the denominator of the first derivative must pass through zero, D(x, u, b) = 0, some-

where in the solution domain. If this is a physically reasonable problem, then the numerator

must also equal zero at this same point (smooth sonic passage), in order for a finite deriva-

tive to exist at the singularity. The boundary conditions are that b = 1 at = 0 and b = 0

at = 1.

This problem, as stated, must have two eigenvalues which are free, and are used to

find the correct solution, subject to the boundary conditions [46]. These eigenvalues of

the problem are necessary to fulfill the internal conditions that both the numerator and

denominator reach zero at the same time. In this case, the eigenvalues may be the electric

field and the sonic passage location. (alternatively, they could be an initial Mach number

and the electric field)

The technique adopted here to solve such problems follows comments on solving BVP

with internal singularities in the work of London and Flannery [45], and in Numerical Recipes

(Press, Flannery, etal [56]) and the suggestion of Chanty [15]. The first step is to break

the problem up into two domains, before and after the singularity. The internal singularity

becomes a boundary condition for both domains, along with matching requirements. Also,

since the location of the singularity is, in general, unknown, the location is another variable

in the problem.

Thus the set of equations to solve could be written as the set of two differential equations

d i N(x, t, b, E,&) (A.10)
d D(x, i, b, E, s)

db
d= f ((x, i, b, E, s) (A.11)

dx

plus the two new differential equations for the unknown constants, , and E:

d(1
S0 (A.12)
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-
(A.13)

subject to the original boundary conditions, plus the following boundary conditions, at the

unknown sonic position, x,:

N((, i, b) = 0

D( , i, b) 0

The physical domain is broken up into two subdomains, one from the inlet to the

sonic point (the "upstream domain"), and the second from the sonic point to the exit

(the "downstream domain"). A new nondimensional independent variable, t, is introduced,

0 < t < 1, so that both subdomains may be solved simultaneously. Therefore, in the

upstream subdomain, the axial position is ( = _,t, so that t = 0 is the inlet, and t = 1 is

the sonic point. In the downstream domain, ( = 1 - ( - ,)t, so that t = 0 is the exit, and

t = 1 is again the sonic point.

Separate sets of differential equations A.10 - A.13 are set up for each subdomain, and

the domains are solved as coupled boundary value problems.

A.3 The 1-D One-Fluid MPD Channel Flow of Martinez

As an introduction to both self-field MPD thruster behavior and the solution method

adopted here for problems with either or both boundary singularities or internal resolv-

able singularities, the simple one-fluid, 1-D model of Martinez [46] is used. Defining the

following reference values:

B2 A* m
Uref = Eef = uref Bo Pref

21o 7hk A*Uref

The nondimensional variables of Martinez [46] are:

u E P
U e = E f P --

Uref ref Pref
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pA* h Bz
p= h2 b=

Urefrn ref Bo

A

Bo L

Using these variables, then the nondimensional overall continuity, momentum, and mag-

netic field equations are

puiia = 1 (A.14)

di d
pi + ( + b2 ) = 0 (A.15)

d( d(

db
= -Rm(E - ab) (A.16)

and the integrated energy equation is:

-2

h + + 2Eb = hto + 2E (A.17)
2

where the total inlet enthalpy is:

hto = ho0 + O (A.18)
2

(Martinez used a total inlet enthalpy corresponding to a total temperature of 400K, in the

nondimensional variables, this is hto = 0.003267 [46]) These equations can be combined to

obtain two differential equations for the magnetic field, which is simply equation A.16 and

for the speed:

di -2Rm(E - tb)(E - -ib) N(i, b)2 (A.19)
d -p(M2 1) D(ii, b)

where the Mach number is:

-2
M 2 =

the nondimensional pressure is
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2 ui2
p= -P(hto + 2E - - - 2Eb)

5 2

and the nondimensional sonic speed, c, = 7p/p is

-2 2 2
cs = -(hto + 2E - - 2Eb)

3 2

These equations are subject to the single parameter, Rm, the magnetic Reynolds number.

Space-marching these equations forward from a subsonic inlet is be complicated by a smooth

sonic passage condition [46]:

5
- ,b = E
2

when M = 1. (the subscript "s" refers to the sonic point) Combining these equations results

in the following expression for the sonic speed as a function of E:

1- 2E,us- -(hto + 2E)u, + -E
2 5

and the three real roots (provided that (hto + 2E)3 /216 - E 4 /25 > 0) can be found from

(i = 1, 2, 3) are:

ho+2E cos (0+(i-1)2r)
6 3

where the argument 0 is

0 arccos /5
S((hto + 2E)/6)3/2

One of the roots is negative (i = 1), and can be discarded.

From equation A.19, at the sonic point

du N 0

d D 0

where the superscript ' denotes a derivative with respect to and will refer to the derivative

evaluated at the sonic point in this analysis. From L'Hopital's rule, the derivative can be

found from

u Nu' + Nbb'

Du' + Dbb'
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which has the solution

u' N - D b' 1 (A.20)
2Du

where the factor f is defined as

4Nbb'D
f= S(Nu - Dbb')2

and the set of partial derivatives required for Martinez' model are:

DU = 4u

Db = 2E

N, = 3RmEub

Nb = 3RmEu2

and

2u 2  4u

Eb 5b 2

Plugging these results into the L'Hopital's rule format, the derivative of the speed vari-

able is, using E = 2.5ub,, 3 4u
U' = RmEb 1 1- U(A.21)

4 5 62

One of the two positive real roots of the sonic point equation (the lower value of the

two) yields 1- < 1, which is two positive slopes. The other root yields 1 > 1, which

is a spiraling singularity. This behavior is evident in figure A.1. This is the trajectory

of a Rm = 4.928 solution superimposed on a map of isoclines on the u - b phase plane.

The physically significant sonic point is at (u, b) = (0.2465, 0.8925), and the solution passes

through smoothly. The two slopes calculated at this sonic point are shown as well. The

other singularity is at (u, b) = (0.588, 0.), and the isoclines clearly indicate the spiraling

singularity centered there.
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Figure A.I: u-b phase plane, R, = 4.928

combining these twez [46] solved this problem by a shooting method, starting reat tes inet and b can be

F= pu 2 -+- p + b 2

H = h + - -- h+ - + 2Eb

obtained:
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4 2 H - 2Vb
F = -u + 2 H V + b2 (A.22)

5 5 u

At low u, then the balance is basically

2 H - 2Vb
F - b2 ,

5 u

so that decreasing b at low speed (i.e., subsonic) increases u, via the pressure term. At high

speed (supersonic), the balance is

4
F -b 2 4-

5

which again is increasing u with decreasing b.

Both sets of boundary conditions are shown in table A.1. For the

C = 0, where t = 0, and, at the sonic point, = ,, where t = 1.

downstream variables = 1 is also t = 0 in the downstream case, and,

= ,, again t = 1.

t upstream condition downstream condition

0 b = 1 (inlet) b = 0 (exit)

1 (sonic point) M = I M = 1

1 (sonic point) 5-,b, = E -tb = E

Table A.1: Boundary conditions for both domains

upstream domain,

Similarly, for the

at the sonic point,

To close out the problem, two more conditions are necessary. They are that the length

of the channel is 1, and a continuous magnetic field slope across the sonic point:

s + U = 1

db db

The set of eight equations and eight boundary conditions may be solved simultaneously

now, using the COLSYSroutine described above.

Note that the sonic point boundary conditions ensure that all of the smoothness require-

ments are met between the two subdomains (where the jump in values at the sonic point

IIII= (Ud - uu) evaluated at t = 1)
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11 ii=o, Ilbl= 0, IIE|= 0, 1 '|= 0, Ib' = 0

Having discussed the solution method, the next section briefly presents the results for

this test case.

A.3.1 Numerical Results for Martinez' Model

Martinez presented results for Rm = 4.928 (a "low" Rm case. the channel is nearly choked

at the exit plane) and Rm = 47 (a "high" Rm case.), and the results from this work are

shown for these cases.

1.40
b

___u

1.20- ------ E

P

1.00-

0.80-
b,u,p,E

0.60-
--------------- -----------------------------------------------------

0.40 /

0.20-

0.00-
0.00 0.10 0.20 0.30 0.40 0~0 0.60 0.70 0.80 0.90 1.00

Figure A.2: b, u, E, p at Rm = 4.928. E = 0.54992 and = 0.0518. There are 40 intervals

in each subdomain.

A.3.2 Discussion of Solution Methods for Flow Problems

The constant speed ignition problem is solved as a case of a flow problem with unknown

bounds on the independent variable (usually the ionization fraction is chosen).

The solution method outlined above for flow problems involving an internal singularity

will be applied to the accelerating inlet ignition problem.
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Figure A.3: M, T (eV) at Rm = 4.928. At Rm below about 4.8, the exit is thermally choked

and there may be shocks in the channel.
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Figure A.4: b, u, E, p at Rm = 47.68. E = 0.4549 and L, = 0.00499. There are 160 intervals

in each sub domain.
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Figure A.5: M, T (eV) at Rm = 47.68
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Appendix B

Atomic and Ion Properties

B.1 Lumping Levels Together

In order to make reasonable collisional-radiative analysis possible and because close-lying

levels are likely to be very closely coupled via collisions, various energy levels are "lumped"

together. Lumping levels together appears to be the most practical compromise between

including details and keeping the model reasonable.

Levels are lumped together by multiplet. Such lumped levels are also suggested by

Katsonis [35] and Gomes [24]. Values associated with each level: the energy and oscillator

strength or transition probability, are averaged, weighted by the degeneracies of the "sub-

levels", and a new, large degeneracy - the sum of the degeneracies of the constituents - is

used. Thus, the lumped energy and transition probabilities are averaged as:

Average Value = gValue

The lumped degeneracies are:

9k = i

Where the sums in the two previous equations are over the range of energy levels included

in the lumped layer.

162



B.2 The Argon Atom (AI)

B.2.1 Lumped Energy Levels and Degeneracies

Table B.1 shows the lumped levels used for the atomic argon model. These are the same

levels used by Gomes [24].

B.2.2 Radiative Einstein Coefficients

Some of the Einstein coefficients for the lumped levels in the argon atomic model were

taken from Gomes [24]. Additional coefficients were found in Wiese [75]. These coefficients

(1/sec) for the atom are listed in table B.2 below:

B.3 The Argon Ion (AII)

The motivation for looking at the argon ion was to be able to calculate populations of ionic

excited states used for spectroscopic diagnostics of plasma accelerators. Kilfoyle used six

argon ion lines to determine temperature. The upper energies of these lines range from

19.68 to 22.7 eV, as shown below in table B.3. In order to resolve these levels with some

accuracy, levels up to roughly 2 eV above the highest upper level used were formulated.

B.3.1 Lumped Energy Levels and Degeneracies

The first 17 levels are from Gomes [24]. The fifteen additional levels were lumped together

from data in Wiese [75], and the additional associated radiative lines were added.

For the argon(II) model, the following lumped levels were used. The ground state and

first 16 levels were taken from [24], and are shown in table B.4, while the upper lumped

levels (k > 17) were compiled using data from [75]. It was assumed that the number density

of doubly-ionized argon(III) ions is small compared with the singly ionized argon(II). There

is still a significant gap between the uppermost excited state and the doubly ionized argon

ion.

The new levels are listed below in table B.5

The Einstein coefficients (1/sec) for the ion are listed in table B.6.
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Lumped Level Energy, Ek Degeneracy

State: k: (eV) cm - 1  gk

Ground 1 0.0 0 1

1st excited 2 11.648 93857 12

2nd excited 3 13.168 106079 36

3rd excited 4 14.082 113450 60

4th excited 5 14.132 113853 12

5th excited 6 14.566 117349 36

6th excited 7 14.839 119549 60

7th excited 8 14.899 120032 12

8th excited 9 14.962 120540 84

9th excited 10 15.083 121515 36

10th excited 11 15.200 122457 60

11th excited 12 15.238 122763 12

12th excited 13 15.269 123013 84

13th excited 14 15.335 123545 36

14th excited 15 15.393 124012 60

15th excited 16 15.419 124222 12

16th excited 17 15.437 124367 84

17th excited 18 15.474 124665 36

18th excited 19 15.510 124955 60

19th excited 20 15.526 125084 12

Continuum(Ion) 21 15.767 127025 6

Table B.1: Argon atom lumped levels used
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A(2,1)=

A(6,2)=

A(18,2)=

A(5,3)=

A(8,3)=

A(12,3)=

A(16,3)=

A(20,3)=

A(9,4)=

A(13,4)=

A(17,4)=

A(6,5)=

A(14,5)=

A(8,6)=

A(12,6)=

A(16,6)=

A(20,6)=

A(10,7)=

A(14,7)=

A(18,7)=

A(14,8)=

A(12,10)=

A(13,11)=

A(14,12)=

Table B.2: Argon atom radiative lines used
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2.50E8

2.3E6

4.738E5

2.014E7

6.10E6

2.73E6

1.450E6

9.097E5

3.51E7

5.016E7

2.87E7

4.08E6

1.874E5

4.54E6

1.564E6

8.069E5

5.195E5

1.0457E6

4.098E5

2.214E5

1.76E5

3.33E7

1.136E6

3.458E5

A(3,2)= 3.37E7

A(10,2)= 7.12E5

A(4,3)= 1.717E7

A(7,3)= 1.78E6

A(11,3)= 2.73E6

A(15,3)= 1.957E6

A(19,3)= 1.58E6

A(6,4)= 2.15E6

A(O1,4)= 6.32E5

A(14,4)= 3.024E5

A(18,4)= 1.643E5

A(10,5)= 4.018E5

A(7,6)= 2.145E6

A(11,6)= 1.73E5

A(15,6)= 2.07E5

A(19,6)= 1.766E5

A(9,7)= 5.03E5

A(13,7)= 1.077E7

A(17,7)= 7.715E6

A(10,8)= 9.60E5

A(18,8)= 7.97E4

A(16,10)= 5.486E5

A(17,11)= 1.738E5

A(18,12)= 7.808E4



Wavelength Upper Energy

(angstroms) g" f level (eV)

4082.39 6 0.0067 19.68

4481.81 6 0.149 21.50

4072.01 6 0.142 21.50

4079.60 6 0.043 21.50

4076.64 2 0.20 22.70

4076.94 4 0.12 22.70

Table B.3: Argon ion radiative lines used by Kilfoyle

B.4 The Hydrogen Atom (H)

B.4.1 Energy Levels and Degeneracies

The hydrogen levels were found in [75], and are listed in table B.7. Note that [49]

Ek = 13.6 1- -

and

gk = 2k 2

B.4.2 Radiative Einstein Coefficients

The radiative Einstein coefficients for the hydrogen atom are given in table B.8. The values

shown are 10- 8 times th actual rate coefficients in units of 1/sec.
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Lumped Level Energy, Ek Degeneracy

State: k: (eV) cm - 1  gk

Ground (Argon II ion) 1 0.0 0 6

1st excited 2 13.476 108568 2

2nd excited 3 16.420 132286 20

3rd excited 4 16.702 134558 12

4th excited 5 17.177 138385 6

5th excited 6 17.688 142502 28

6th excited 7 18.016 145144 6

7th excited 8 18.300 147432 12

8th excited 9 18.438 148544 10

9th excited 10 18.542 148657 14

10th excited 11 18.697 150630 10

11th excited 12 19.244 155037 12

12th excited 13 19.543 157446 20

13th excited 14 19.707 158767 10

14th excited 15 19.839 159831 6

15th excited 16 19.962 160822 4

16th excited 17 19.967 160862 2

17th excited 18 21.160 170473 14

Argon III ion 33 27.620 222518 12

Table B.4: Argon ion lumped levels from Gomes
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Lumped Energy Coalesced Energy Degeneracy

level, k Configuration Multiplets (eV) gk

18 3p 4 (1D)4p 4p 2F 21.16 14

19 3p 4 (1D)4p 4p 2P 21.40 12

20 3p 4 (1 D)4p 4p2 D 21.52 20

21 3p 4 (3P)5s 5s 4 P 22.594 12

22 3p 4 (3P)4d 4d4 D 22.817 20

23 3p 4 (3P)4d 4d4 F 23.04 28

24 3p 4 (3P)4d 4d4 P 23.172 12

25 3p 4 (3P)4d 4d2 F 23.23 14

26 3p 4 (3P)4d 4d2 p 23.63 6

27 3p 4 (3 P)4d 4d 2D 23.909 10

28 3p4(1D)5s 5s 2 D 24.312 10

29 3p 4 (1D)4p 4d2 G 24.651 14

30 3p 4 (1D)4d 4d 2 P 24.763 6

31 3p 4 (1D)4d 4d2 D 24.800 14

32 3p 4 (1D)4d 4d 2F 24.847 14

Table B.5: Additional argon ionic lumped levels
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Ai(2,1)=

Ai(12,3)=

Ai(15,3)=

Ai(13,4)=

Ai(16,4)=

Ai(13,5)=

Ai(16,5)=

Ai(14,7)=

Ai(13,8)=

Ai(20,9)=

Ai(18,11)=

Ai(22,12)=

Ai(21,13)=

Ai(24,13)=

Ai(22,14)=

Ai(25,14)=

Ai(24,15)=

Ai(27,15)=

Ai(24,16)=

Ai(28,18)=

Ai(29,18)=

Ai(31,18)=

2.08E8 Ai(4,1)=

4.4E7 Ai(13,3)=

7.0E5 Ai(16,3)=

1.14E8 Ai(14,4)=

9.348E7 Ai(17,4)=

3.39E6 Ai(14,5)=

1.1E6 Ai(17,5)=

2.56E5 Ai(15,7)=

1.56E7 Ai(18,9)=

1.0165E8 Ai(18,10)=

1.533E7 Ai(20,11)=

2.915E8 Ai(23,12)=

5.0E7 Ai(22,13)=

4.535E7 Ai(25,13)=

2.46E6 Ai(23,14)=

3.9E8 Ai(26,14)=

2.5E5 Ai(25,15)=

3.56E8 Ai(21,16)=

1.5E8 Ai(26,17)=

1.4E8 Ai(28,19)=

4.0E8 Ai(30,19)=

3.1E7 Ai(31,19)=

Ai(32,18)= 1.6E8

2.83E7

1.15E7

7.3E5

1.13E7

4.5E5

7.9E7

1.10E8

1.18E7

9.1E7

4.5E6

2.953E7

3.03E6

6.5E7

5.614E6

4.4E6

3.9E7

9.86E5

1.65E7

1.27E7

3.82E7

1.7E8

1.3E8

Ai(32,20)=

Ai(5,1)=

Ai(14,3)=

Ai(12,4)=

Ai(15,4)=

Ai(12,5)=

Ai(15,5)=

Ai(14,6)=

Ai(17,7)=

Ai(19,9)=

Ai(20,10)=

Ai(21,12)=

Ai(24,12)=

Ai(23,13)=

Ai(21,14)=

Ai(24,14)=

Ai(21,15)=

Ai(26,15)=

Ai(23,16)=

Ai(27,17)=

Ai(28,20)=

Ai(30,20)=

Ai(31,20)=

2.3E8

Table B.6: Argon ion radiative lines
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2.8E9

1.8E6

9.3E7

3.3E5

2.33E4

1.0E8

2.14E6

5.65E6

1.287E8

6.1E6

1.1E8

2.0E8

3.45E8

2.1E6

1.2E6

7.7E6

2.7E8

5.0E6

7.2E7

3.9E7

3.82E7

1.05E8



Lumped Level Energy, Ek Degeneracy

State: k: (eV) cm - 1  gk

Ground 1 0.0 0 2

1st excited 2 10.210 82256 8

2nd excited 3 12.101 97490 18

3rd excited 4 12.763 102824 32

4th excited 5 13.069 105289 50

5th excited 6 13.235 106626 72

6th excited 7 13.336 107440 98

7th excited 8 13.401 107964 128

8th excited 9 13.446 108326 162

9th excited 10 13.478 108584 200

10th excited 11 13.501 108769 242

11th excited 12 13.519 108914 288

12th excited 13 13.533 109027 338

13th excited 14 13.544 109116 392

14th excited 15 13.553 109188 450

15th excited 16 13.561 109253 512

16th excited 17 13.567 109301 578

17th excited 18 13.572 109341 648

18th excited 19 13.576 109374 722

Continuum(Ion) 20 13.600 109567 1

Table B.7: Hydrogen Atom levels
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A(2,1)= 4.6990

A(5,1)= 4.125E-2

A(8,1)= 3.869E-3

A(11,1)= 7.834E-4

A(14,1)= 2.341E-4

A(17,1)= 8.858E-4

A(3,2)= 0.4410

A(6,2)= 9.732E-3

A(9,2)= 1.216E-3

A(12,2)= 2.834E-4

A(15,2)= 9.210E-5

A(18,2)= 3.685E-5

A(5,3)= 2.201E-2

A(8,3)= 1.651E-3

A(11,3)= 3.156E-4

A(14,3)= 9.211E-5

A(17,3)= 3.444E-5

A(5,4)= 2.699E-2

A(8,4)= 1.424E-3

A(11,4)= 2.556E-4

A(7,5)= 3.253E-3

A(10,5)= 3.80E-4

A(7,6)= 4.561E-3

A(10,6)= 3.688E-4

A(3,1)= 0.5575

A(6,1)= 1.644E-2

A(9,1)= 2.143E-3

A(12,1)= 5.066E-4

A(15,1)= 1.657E-4

A(18,1)= 6.654E-5

A(4,2)= 8.419E-2

A(7,2)= 4.389E-3

A(10,2)= 7.122E-4

A(13,2)= 1.893E-4

A(16,2)= 6.658E-5

A(19,2)= 2.809E-5

A(6,3)= 7.783E-3

A(9,3)= 8.905E-4

A(12,3)= 2.021E-4

A(15,3)= 6.490E-5

A(18,3)= 2.580E-5

A(6,4)= 7.711E-3

A(9,4)= 7.459E-4

A(12,4)= 1.620E-4

A(8,5)= 1.388E-3

A(11,5)= 2.246E-4

A(8,6)= 1.561E-3

A(11,6)= 2.110E-4

A(4,1)= 0.1278

A(7,1)= 7.568E-3

A(10,1)= 1.263E-3

A(13,1)= 3.393E-4

A(16,I)= 1.200E-4

A(19,1)= 5.077E-5

A(5,2)= 2.530E-2

A(8,2)= 2.215E-3

A(11,2)= 4.397E-4

A(14,2)= 1.303E-4

A(17,2)= 4.910E-5

A(4,3)= 8.986E-2

A(7,3)= 3.358E-3

A(10,3)= 5.156E-4

A(13,3)= 1.343E-4

A(16,3)= 4.680E-5

A(19,3)= 1.964E-5

A(7,4)= 3.041E-3

A(10,4)= 4.235E-4

A(6,5)= 1.025E-2

A(9,5)= 6.908E-4

A(12,5)= 1.402E-4

A(9,6)= 7.065E-4

A(12,6)= 1.288E-4

Table B.8: Hydrogen Atom Einstein Coefficients x10 - 8 s - 1
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Appendix C

Calculating Cross Sections and

Level to Level Rate Coefficients

In the calculation of the collisional terms, the oscillator strengths for the transitions are

required. From [49, Chapter 2], the relationship between the emission transition probabil-

ities and absorption oscillator strengths (fkl) can be derived. The oscillator strength for

absorption is:

Alk g9 fomecC3

fkl = 2 2fAl- vkl gk 27re2

and the corresponding emission oscillator strength is:

flk 9k fklgl

Thus, only one of the two is necessary.

C.1 Collisional Rate Coefficients

The collisional rate coefficients for excitations and ionizations (both of which have units of

) are numerically integrated (see [49] for details) from:

S /00 k 87r

Sjk = fm(E)Q3i-- 2 EdE (C.1)
Ek e

Sk = fm(E)Q--(C.2EdE)
Eke Me
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Here f,(E) is the Maxwellian distribution for electrons, as a function of energy (E):

3

fm(E) e exp( ) (C.3)
m(E)- ( 2rkBT,) ex kBT,

and Qk-c and Qj-k (both functions of energy, E) are the ionization and excitation

cross-sections.

The deexcitation and recombination rates are then calculated by taking into account

that, in full equilibrium, each collisional process must be balanced by its opposite (microre-

versibility [49] [24] [24]). Thus,

Sk k, gk -Ek
S k( )= exp( )
Skj nj 9j kTe

and

Skc n2  2g 27rmkT 3 -Ek

Scnk h2  expkTe

Where the g's are the degeneracies, c refers to the ion (the continuum), and superscript

* refers to the Saha equilibrium value.

C.1.1 Rates via Integrated Drawin Cross-Sections

For the non-elastic excitation (optically allowed transitions) and ionization cross-sectional

areas, formulae of Drawin ( see [20] and [49, Ch. 2, Sec. 4]) are:

Qj--+k = 4xa( 1)2fjk/3 1g(u) (C.4)

E H

Qkc = 2.667ra 2( 1)2 k1g(u)  (C.5)
E kc

u is the nondimensional energy, E or E depending on the case. EH is the ionization

energy of hydrogen (13.6 eV), ao is the Bohr radius (5.292e - 11m), 31 is an adjustable

constant of order unity, k is the number of equivalent electrons in level k, fjk is the oscillator

strength, and the function g(u) is:

u-1
g(u) = ln(1.250 2u) (C.6)

Where /2 is of order unity.
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(The ionization cross-sections have been compared (for P1 = 2 = 1) with measurements

and, away from the threshold region, the differences are no more than a factor of two.

The excitation cross-sections have not been tested as thoroughly, but they appear to be

realistically within an order of magnitude of experimental findings [49].)

The numerical integrations are aided by a simplification of the integrals. Combining

equations C.1 and C.2 with equations C.4, C.5, and C.6,

EHu-i 87
Sjk = fm(E)(4ra ( c )2fikl)( 2 ln(1.253 2 )) 2 EdE (C.7)

Ek Ek m e

or

Sk= 3 2 fJk1 2 meH 2

Smk fk 2 fm 8,0 jk)( 2 ln(1.250 2u))udu (C.8)

3

fm (U, Omn) =(2 e 2 exp( U)

Similarly,

Skc = 8( 2 .6 6 )k1 E) e fm(U ke)( In(1.25/ 2 u))udu (C.9)

and both of these forms (equations C.8 and C.9) can be expressed as:

Sjk = 32 rafE Ic 2rkTe) jk (C.10)

Skc - 8(2.66)k 3 1 (raE 2 ( me )2 11
Sme 27rkB Te ke (C.11)

where the integrals Imn(Omn) are:

Imn fm(U, Omn)( 2 In(1.25P 2 u))udu (C.12)

These integrals are evaluated numerically, so that all of the rate coefficients can then be

calculated.
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Appendix D

Boltzmann Plots of Excited Level

Population Distributions from

Multi-Level Models

Boltzmann plots are graphs of In -k vs Ek(eV), and are the common method of displaying

excited level population results. Note that, in collisional equilibrium, the levels will be in

the Boltzmann distribution, and they lie on a straight line, of slope 1 on a Boltzmann

plot. In each of the following Boltzmann plots, the equilibrium solution (pinned down by

the calculated ground state density) is shown as the straight line with no symbols. Although

mks units have been used throughout this thesis, cgs units will be used for this appendix

since this is the standard in CR references to simplify comparisons. Note that the number

density conversion factor is 1 m - 3 = 10 - 6 cm - 3 .

D.1 Nonequilibrium Ionization in the Static Stationary Case

In this analysis, a stationary plasma (e.g. a discharge tube) is considered. Here, diffusion

may be significant; however, unlike an MPD thruster flow, convection contributions are

zero.

The total density balance, neglecting convection, is:

V - (nu ) = h, (D.1)
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V (nk=1Uk ) = ik=1 (D.2)

V (nk>1Uk>1) = k>1l (D.3)

These continuity equations can be solved along with the other equations of motion in

a numerical flow simulation. In the steady state, no flow case the balance is between the

terms on the right-hand side, and an algebraic solution for the number densities can be

found. Such a case is referred to as a static case.

The standard form of the Collisional-Radiative (CR) equations may be found in several

references, amongst which are Bates, Kingston and WcWhirter (1962) [7], Mitchner and

Kruger (1973)0 [49], and van der Sijde, van der Mullen and Schram (1984) [71].

The continuum rate equation is the sum of collisional ionization and losses from colli-

sional recombination and radiative recombination:

Le ne nkSkc - (eSck + Ack ck) (D.4)
k k

where Skc is the ionization rate coefficient for each level k to the continuum (c), Sck is

the collisional (three-body) recombination rate coefficient, and Ackl ck represents the net

radiative recombination rate through use of the radiative escape factor.

The rate equations for a level k are the sum of: excitation and dexcitation processes with

other levels, recombination from the continuum minus ionization, the gain from radiative

decays from higher levels minus the loss by radiative decay to lower levels, and radiative

recombination:

k = ne njSk - nk[j(neSkj + Ak jkj) + ne(Z(Skl) + Skc)]
j<k j<k l>k

+ n (neSlk + Alk lk)+ n (neSck + Ack ck) (D.5)
l>k

where the Sck, Skc and Ack/3 ck terms are as described above, Sjk, Ski (k > j) and Ski,

Slk (1 > k) are the collisional excitation and deexcitation rate coefficients from and to

level k from higher and lower levels, and Akj/lkj, Alkltk are losses due to radiative decay

from k down and gain from decays from above k, respectively. These equations are linear

in the level densities, nk. The upper states are assumed to be in dynamic balance (the

QSSS assumption considered in Chapter 3), there is no flow, although ambipolar diffusion

is allowed. In this case,
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d 2
ne Dane

V. (nt ) = Da 2

so that the equations to be solved for the ground state and excited state densities, for a

given electron number density are

Dane
h2 = Ae (D.6)

0 = k>l (D.7)

where h = H//12 for a volume of height H, as shown in section 2.2.2, where the ambipolar

diffusion coefficient was also shown to be

Da - Ca(Te, Tg) Ca(Te,Tg)

n, ne + ' nk

Note that the denominator of this last expression makes the problem nonlinear in the

number densities, and the problem is solved iteratively.

D.2 Hydrogen Model

We will but first, a brief discussion of some earlier models of hydrogen will be helpful in

putting these results into context.

Bates, McWhirter, and Kingston [7] [8] and Shaw, Mitchner, and Kruger [62] both

analyzed steady-state three-level models of the hydrogen atom in both optically thin and

optically thick cases. In both works, they calculated the population of the ground state, as

well as the overall ionization and recombination coefficients. The results of both research

teams agree with one another very well, and the general trends that were shown in Chapter 3

of this thesis were shown as well. That is, the recombination coefficient fell with decreasing

escape factor, and rose with decreasing electron number density. However, as was also

shown in Chapter 3 here, the upper levels play a significant roll at temperatures below ...

For the 19-level hydrogen model, some results for the stationary case are shown. The

cases that will be shown here are listed in table D.1. Figures D.1, D.2, D.3, D.4, and D.5

are Boltzmann plots corresponding to these cases. Note that the uppermost levels approach

their equilibrium values under virtually all of the cases, even when the ground state and

the lower excited levels are far out of equilibrium.
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Table D.I: Hydrogen atom, cases shown in Boltzmann plots.

Figure D.1: Hydrogen model, Boltzmann plots for cases H1, H2, H3, H4 from table.
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Case Te (K) ne (cm- 3 ) H (cm) I3ni

H1 8000 1014 4 0.00

H2 8000 1014 4 0.01

H3 8000 1014  4 0.10

H4 8000 1014 4 1.00

H5 8000 1013  4 0.00

H6 8000 1013 4 0.10

H7 20000 1014 4 0.00

H8 20000 1014  4 0.10

H9 20000 1013 4 0.00

H10 20000 1013  4 0.10

H11 20000 1013 2 0.00

H12 20000 1013 2 0.10



In (nk
\9k/

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Ek (eV)
14.0

Figure D.2: Hydrogen model, Boltzmann plots for cases H5 and H6 from table.

35.0

30.0

H8

25.0

In H7

20.0-

" equilibrium "-

(ne - 1014 cm
- 3 , 

Te = 20000 K)
15.0 -

10.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Ek (eV)

Figure D.3: Hydrogen model, Boltzmann plots for cases H7 and H8 from table.
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9kH

15.0

equilibrium
10.0 10.0 (ne = 10 cm 3

, Te = 20000 K)

5.0

0.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Ek (eV)

Figure D.4: Hydrogen model, Boltzmann plots for cases H9 and H10 from table.

In(k

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Ek (eV)
14.0

Figure D.5: Hydrogen model, Boltzmann plots for cases H11 and H12 from table.
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D.3 Argon Model: Generating Boltzmann Plots for Flow

Problems (Ignition)

As observed earlier, one of the advantages of using the QSSS assumption for the excited

states to arrive at overall rate coefficients is that the excited state population distribution

may be calculated a posteri. This provides a bridge between a computational model of an

MPDT channel flow and the interpretation of spectroscopic disgnostic measurements.

The ignition models of Chapter 4 all use the overall coefficients calculated in Chapter 3

for either the argon or hydrogen atom, so that the excited state population distribution may

be obtained in post-processing. The electron temperature, Te, is a known constant, and

ne and nl are known everywhere along the solution trajectory (with a as the independent

variable). Therefore 61 = (nl /n - 1) may be found. The degree of nonequilibrium of each

of the excited levels may be expressed as 6k = Xk61 for this case (no radiative effects). Then

the procedure outlined in section 3.3.1 applies, and all of the Xk values may be calculated.

Finally, the number density for each level may be found from the definition of the degree

of nonequilibrium:

nk= n4(6k + 1) = nk(Xk6 1 + 1)

This is shown in figures D.6 and D.7 for two cases of constant temperature, constant

speed injection of argon. In each figure, plots are included for close to the inlet wall

(the lowest a), a moderate ionization fraction (a = 0.50), and for near to the asymptotic

limit (the largest a). In these cases, the ground state is very overpopulated relative to its

equilibrium population, which is characteristic of a strongly ionizing plasma. Because of

this, even the uppermost excited levels only approach their equilibrium populations.

These results agree qualitatively with the findings of Takano and Akamatsu [67], who

used an argon atomic model with six actual excited states and 9 higher energy hydrogenic

excited states (quantum numbers 4 to 9) to analyze a shock-heated plasma. Their model

included atom-atom and electron-atom collisions, plus radiation, using calculated radiation

escape factors, but the extra processes did not have a great effect.
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gk

26

S'-- a = 0.99
22 at = 0.50

a = 0.011

14
0 2 4 6 8 Ek °V) 12 14 16 18 20

Figure D.6: Boltzmann plots at three different values of a for the constant speed, constant

electron temperature model of Chapter 4. Here, Te = 20000 K and u = 250m/s.

In k
9k

0 2 4 6 8 Ek V) 12
e ~~V

14 16 18 20

Figure D.7: Boltzmann plots at three different values of a for the constant speed, constant

electron temperature model of Chapter 4. Here, Te = 15000 K and u = 100m/s.

182



Bibliography

[1] Abramov. Investigation of Electron Temperature and Plasma Radiation in a Quasi-

Stationary High-Current Discharge Between Coaxial Electrodes. In Proceedings of the

8th Intl. Conf. on Phen. in Ionized Gases, 1968.

[2] U. Ascher, J. Christiansen, and R. D. Russell. Collocation software for boundary-value

odes. ACM Trans. Math Software, 7:209-222, 1981.

[3] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of Boundary

Value Problems for Ordinary Differential Equations. Prentice Hall, Englewood Cliffs,

NJ, 1988.

[4] J. Bacri and A. M. Gomes. Influence of atom-atom collisions on thermal equilibrium in

argon arc discharges at atmospheric pressure. J. Phys. D.: Appl. Phys., 11:2185-2197,

1978.

[5] J. Bacri, A. M. Gomes, and S. Benzaid. Etude des ecarts a l'ETL dans un arc d'argon

(P = 760 Torr). J. Phys. D.: Appl. Phys., 9:1743-1755, 1976.

[6] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary

value ode solver. SIAM J. Sci. Stat. Comp., 8:483-500, 1987.

[7] D. R. Bates, A. E. Kingston, and W. P. McWhirter. Recombination Between Electrons

and Atomic Ions - I. Optically Thin Plasmas. Royal Society of London Proceedings,

Ser. A, 267:297-312, May 1962.

[8] D. R. Bates, A. E. Kingston, and W. P. McWhirter. Recombination Between Electrons

and Atomic ions - II. Optically Thick Plasmas. Royal Society of London Proceedings,

Ser. A, 270:155-167, November 1962.

183



[9] Rodger J. Biasca. Chemical Kinetics of Scramjet Propulsion. Master's thesis, Dept.

of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,

Massachusetts, 1988.

[10] J. A. Bittencourt. Fundamentals of Plasma Physics. Permagon Press, New York, 1986.

[11] C. G. Braun and J. A. Kunc. Collisional-radiative coefficients from a three-level atomic

model in nonequilibrium argon plasmas. Physics of Fluids, 30(2):499 - 509, February

1987.

[12] K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, and V. V. Savel'ev.

Numerical modeling of plasma flow in high-current quasistationary plasma accelerators.

Soviet Journal of Plasma Physics, 16(2):79 - 85, February 1990.

[13] J. D. Buckmaster, editor. The Mathematics of Combustion. SIAM, Philadelphia, 1985.

[14] R. L. Burton and N. Tiliakos. Injected Propellant Ionization in MPD Thrusters. Tech-

nical report, 28th Joint Propulsion Conference, 1992. AIAA-92-3295.

[15] J. M. G. Chanty, March 1992. personal communication.

[16] Francis F. Chen. Introduction to Plasma Physics and Controlled Fusion, volume 1:

Plasma Physics. Plenum Press, New York, 2nd edition, 1984.

[17] E. Y. Choueiri. An Introduction to the Plasma Physics of the MPD Thruster, Nov.

1991. Notes for an invited lecture, MAE, Physics of Electric Propulsion, Princeton,

University.

[18] E. Y. Choueiri and H. Okuda. Anomalous Ionization in the MPD Thruster. Technical

report, 23rd International Electric Propulsion Conference, 1993. IEPC-93-067.

[19] J. M. A. Danby. Computing Applications to Differential Equations. Reston Publishing

Co., Reston, VA, 1985.

[20] H. W. Drawin. Zur formelmaBigen Darstellung der Ionisierungsquerschnitte gegenuber

ElektronenstoB. Zeitschrift fur Physik, 164:513-521, 1961.

[21] E. Fischer, Z. Rozkwitalski, and F. K. Kneubuhl. Self-Field MPD Thruster with Atomic

and Molecular Propellants. Appl. Phys. B, 38:41-49, 1985.

184



[22] Jahn R. G. and et al. Electric Propulsion Laboratory Progress Report. Technical

report, Department of Mechanical and Aerospace Engineering, Princeton University,

Princeton NJ, July 1987. MAE 1776.07.

[23] A. F. Ghoniem. Class notes for Fundamentals and Modeling in Combustion, Spring

1993, Massachusetts Institute of Technology.

[24] A. M. Gomes. Criteria for partial Ite in an argon thermal discharge at atmospheric

pressure; validity of the spectroscopically measured electronic temperature. J. Physics,

D: Applied Physics, 16:357-378, 1983.

[25] David A. Gonzales. Models for Vibration-Dissociation Coupling in High Temperature

Gases. PhD thesis, University of Texas at Austin, Austin, Texas, 1993.

[26] H. R. Griem. Spectral Line Broadening by Plasmas. Academic Press, New York, 1974.

[27] Daniel J. Heimerdinger. Fluid Mechanics in a Magnetoplasmadynamic Thruster. PhD

thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1988.

[28] P. G. Hill and C. R. Peterson. Mechanics and Thermodynamics of Propulsion. Addison-

Wesley, Reading, Mass., 1970.

[29] E. Hinnov and J. G. Hirschberg. Electron-Ion Recombination in Dense Plasmas. Phys-

ical Review, 125(3):795, 1962.

[30] T. Holstein. Imprisonment of Resonance Radiation in Gases. Physical Review,

72(12):1212-1233, 1947.

[31] T. Holstein. Imprisonment of Resonance Radiation in Gases. II. Physical Review,

83(6):1159-1168, 1951.

[32] R. G. Jahn. Physics of Electric Propulsion. McGraw Hill, New York, 1968.

[33] R. K. Janev, W. D. Langer, K. Evans Jr, and D. E. Post Jr. Elementary Processes in

Hydrogen-Helium Plasmas. Springer-Verlag, New York, 1987.

[34] H. Kafrouni. Study of Electron Cooling, Diffusion and Recombination in a Decaying

Argon Arc. Physica, 98 C:100, 1979.

185



[35] K. Katsonis and H. W. Drawin. Transition Probabilities for Argon(I). J. Quant.

Spectrosc. Radiat. Transfer, 23:1-55, 1980.

[36] Daniel B. Kilfoyle. Spectroscopic Analysis of a Magnetoplasmadynamic Arcjet. Mas-

ter's thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Tech-

nology, Cambridge, Massachusetts, 1988.

[37] D. Q. King. Magnetoplasmadynamic Channel Flow for Design of Coaxial MPD

Thrusters. PhD thesis, Dept. of Mechanical and Aerospace Engineering, Princeton

University, Princeton, New Jersey, 1981.

[38] K. Kuriki and H. Suzuki. Transitional Behavior of MPD Arcjet Operation. AIAA

Journal, October 1978.

[39] K. Kuriki and H. Suzuki. Quasisteady MPD Arcjet with Anode Gas Injection. In R. C.

Finke, editor, Electric Propulsion and its Applications to Space Missions. AIAA, 1981.

[40] M. R. LaPointe. Numerical Simulation of Self-Field MPD Thrusters. Technical report,

27th Joint Propulsion Conference, 1991. Paper AIAA-91-2341.

[41] J. L. Lawless and V. V. Subramaniam. A Theory of Onset in Magnetoplasmadynamic

Thrusters. Technical report, 18th International Electric Propulsion Conference, 1985.

Paper AIAA-85-2039.

[42] J. L. Lawless and V. V. Subramaniam. A Review of the Theory of Self-Field MPD

Thrusters. Technical report, 22nd International Electric Propulsion Conference, 1991.

Paper IEPC-91-019.

[43] M. A. Lennon, K. L. Bell, and etal. Recommended Data on the Electron Impact

Ionization of Atoms and Ions: Flourine to Nickel. J. Phys. Chem. Ref. Data., 17(3),

1988.

[44] M. A. Liberman and Velikovich. Physics of Shock Waves in Gases and Plasmas.

Springer-Verlag, New York, 1986.

[45] R. A. London and B. P. Flannery. Hydrodynamics of X-ray Induced Stellar Winds.

The Astrophysical Journal, 258:260-269, July 1 1982.

186



[46] M. Martinez-Sanchez. The Structure of Self-Field Accelerated Plasma Flows. Journal

of Propulsion and Power, 7(1):56-64, January-February 1991.

[47] J. R. Melcher. Continuum Electromechanics. The MIT Press, Cambridge, MA, 1981.

[48] S. A. Miller. Multifluid Nonequilibrium Simulation of Arcjet Thrusters. PhD thesis,

Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts, 1993.

[49] M. Mitchner and C.H. Kruger Jr. Partially Ionized Gases. John Wiley and Sons, New

York, 1973.

[50] Eliahu H. Niewood. Transient One Dimensional Numerical Simulation of Magneto-

plasmadynamic Thrusters. Master's thesis, Dept. of Aeronautics and Astronautics,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1989.

[51] Eliahu H. Niewood. An Ezplanation for anode Voltage Drops in an MPD Thruster. PhD

thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1993.

[52] T. G. Owano, C. H. Kruger, and R. A. Beddini. Electron-Ion Three-Body Recombi-

nation Coefficient of Argon. AIAA Journal, 31(1), January 1993.

[53] S-I Pai, editor. Radiation Gas Dynamics. Springer-Verlag, New York, 1963.

[54] S-I Pai, editor. Magnetogasdynamics and Plasma Dynamics. Springer-Verlag, New

York, 1966.

[55] E. Pfender. Electric Arcs and Arc Gas Heaters. In M. N. Hirsh and H. J. Oskam,

editors, Gaseous Electronics, Volume I: Electrical Discharges, chapter 5. Academic

Press, 9999.

[56] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes:

the art of scientific computing. Cambridge Univ. Press, New York, 1986.

[57] W. H. Press and S. A. Teukolsky. Integrating Stiff Ordinary Differential Equations.

Computers in Physics, May/June 1989.

187



[58] P. A. Ramachandran. A Numerical Solution Method for Boundary Value Problems

Containing an Undetermined Parameter. J. Computational Physics, 102:63-71, 1992.

[59] T. M. Randolph, W. F. von Jaskowsky, A. J. Kelly, and R. G. Jahn. Measurement of

Ionization Levels in the Interelectrode Region of an MPD Thruster. Technical report,

28th Joint Propulsion Conference, 1992. AIAA-92-3460.

[60] D. G. Samaras. Theory of Ion Flow Dynamics. Dover, New York, 1971.

[61] R. K. Seals, Jr. and H. A. Hassan. Analysis of MPD Arcs with Nonequilibrium Ion-

ization. AIAA Journal, 6(12):2273-2278, Dec. 1968.

[62] J. F. Shaw, M. Mitchner, and C. H. Kruger. Effects of Nonelastic Collisions in Partially

Ionized Gases, II: Numerical Solution and Results. Physics of Fluids, 13(2):339-345,

Feb. 1970.

[63] E. J. Sheppard and M. Martinez-Sanchez. Ionizational Ignition at the Inlet of an MPD

Thruster. Technical report, 22nd International Electric Propulsion Conference, 1991.

IEPC-91-020.

[64] P. C. Sleziona, M. Auweter-Kurtz, and H. O. Schrade. MPD Thruster Calculation Con-

sidering High Ionization Modes. Technical report, 22nd International Electric Propul-

sion Conference, 1991. IEPC-91-087.

[65] S. Suckewer. Excitation and Ionization of Atoms and Ions in a Non-Thermal Plasma,I.

Populations of Excited Levels. Journal of Physics, B3, 3:380 -389, 1970.

[66] H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa. Diagnostic

Experiment and Numerical Analysis of One-Dimensional MPD Flowfields. Technical

report, 23rd International Electric Propulsion Conference, 1993. IEPC-93-197.

[67] Y. Takano and T. Akamatsu. Simulations for Collisional and Radiative Mechanisms of

Shock-Heated Argon Plasma. In XVI Intl. Conf. on Phen. in Ionized Gases, 1983.

[68] K. Toki, M. Sumida, and K. Kuriki. Multi-Channel Two-Dimensional MPD Arcjet.

Technical report, 19th International Electric Propulsion Conference, 1987. IEPC-87-

1000.

188



[69] K. Uematsu, S. Morimoto, and K. Kuriki. MPD Thruster Performance with Various

Propellants. Journal of Sapcecraft, 22(4):412-416, July-August 1985.

[70] J. J. A. M. van der Mullen, B. van der Sijde, and D. C. Schram. An Analytical

Excitation Model for an Ionizing Plasma. Physics Letters, 96A(5):239-242, 1983.

[71] B. van der Sijde, J. J. A. M. van der Mullen, and D. C. Schram. Collisional Radiative

Models in Plasmas. Beitrage aus der Plasmaphysik, 24(5):447-473, 1984.

[72] M. Venugopalan, editor. Reactions Under Plasma Conditions. Wiley-Interscience, New

York, 1971.

[73] J. Vlcek and J. Ferdinand. Collisional-Radiative Recombination in Argon Plasmas. In

XVI Intl. Conf. on Phen. in Ionized Gases, 1983.

[74] L. Vriens and A. H. M. Smeets. Cross-section and rate formulas for electron-impact

ionization, excitation, deexcitation, and total depopulation of excited atoms. Physical

Review A, 22(3):940-951, Sept. 1980.

[75] W. L. Wiese and G. A. Martin. Wavelengths and Transition Probabilities for Atoms

and Atomic Ions, Part II, Transition Probabilities. National Bureau of Standards,

Washington, D.C., 1980.

[76] F. A. Williams. Combustion Theory. Addison-Wesley, Reading, MA, 1965.

189


