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Abstract

The evolution of localized three-dimensional disturbance in two- and three-dimensional
laminar boundary layers is examined. The linearized boundary layer equation is
solved using Fourier transforms in the direction parallel to the wall and the Cheby-
shev collocation technique in the wall-normal direction. A second-order accurate
Crank-Nicholson scheme is used to integrate the solution in time, and an LU decom-
position and back substitution method is used for matrix inversion.

Spectral analysis of the disturbance shows that substantial short-term growth can

be obtained even when the Tollmien-Schlichting waves are damped. This transient
growth can reach as much as two or three orders of magnitude, which can then lead to
non-linear interaction and breakdown to turbulent flow. This mechanism can bypass

the traditional instability mechanism involving the Tollmien-Schlichting waves.
The initial vertical velocity is set to the least-damped discrete mode and the initial

vertical vorticity is set to zero, which will give large transient energy growth. The
waves that give the largest transient growth are those with streamwise wave number
a 0. The maximum energy obtained is found to depend on the initial linear growth
of the vorticity energy component, the decay rate Ci, and the ratio of the vertical
velocity and vorticity energy of the least damped eigenfunction. Additional instability
in three-dimensional boundary layers can occur due to inflectional instability of the
crossflow profile. Thus, modes with low a become less stable and exhibit even larger
transient energy growth.

Thesis Supervisor: Kenneth S. Breuer
Title: Assistant Professor of Aeronautics and Astronautics
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Uo Velocity of the inviscid flow.

x Local direction tangent to Uo. 'Streamwise direction'

y Local direction normal to the wall. 'Vertical direction'

z Local direction parallel to the wall and normal to x

'Crossflow direction'.

Local sweep angle of the inviscid flow from the chord direction.

5* Displacement thickness.

6* = fo(1 - U(y))dy.

U(y) Mean streamwise velocity, non-dimensionalized by Uo to be equal to 1

outside the boundary layer.

V Mean vertical velocity, = 0.

W(y) Mean crossflow velocity, non-dimensionalized by Uo.

u Streamwise velocity perturbation.

v Vertical velocity perturbation.

w Crossflow velocity perturbation.

p Perturbation pressure non-dimensionalized by pUs.

t Time non-dimensionalized by S*/Uo.

Re Reynolds number based on displacement thickness.

Re. = (Uo*)/v



a Wavenumber for Fourier transform in the x-direction.

0 Wavenumber for Fourier transform in the z-direction.

k Wavenumber in the wave vector direction.

k2 = a 2 + 02

i(a, 0) Fourier transform of v for a set of a and 3.

fi(a, f) Fourier transform of u.

t(a, 3) Fourier transform of w.
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i7= z(fi - ai)

E Total kinetic energy of the perturbation for a set of a and /.

E = fo) 12 + ~(i 2 1+ v'12)dy

H Hartree parameter used for the Falkner-Skan-Cooke transformation.

H = 2m/(m + 1)

1 Mapping factor for the Chebyshev collocation method.
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Chapter 1

Introduction

1.1 Background

1.1.1 Transition in two-dimensional boundary layers

An important phenomenon in fluid dynamics is the transition of a laminar boundary

layer to a turbulent flow. Traditional approaches to the prediction of the transition

have been based on the study of the evolution of Tollmien-Schlichting (T-S) waves,

which are governed by the Orr-Sommerfeld equation. This equation can be solved

as an eigenvalue problem, with the eigenvalues determining whether the waves grow

or decay. For a two-dimensional boundary layer such as a Blasius flow, Squire's

theorem shows that any three-dimensional problem can be reduced to an equivalent

two-dimensional problem at a lower Reynolds number. Therefore, one can expect

the two-dimensional waves to become unstable before three-dimensional waves do,

and for this reason, most studies on instability have concentrated on the behavior of

two-dimensional waves. The instability of these waves is often known as streamwise

or viscous instability.

The T-S waves initially evolve linearly, and this is known as the primary instability.

As these waves amplify, they exhibit spanwise variations from interactions between

the waves and the mean flow . This is known as the secondary instability and take the

form of three-dimensional waves and streamwise vortices. These three-dimensional



formations breakdown in cascades, eventually becoming fully turbulent flows. (See

Klebanoff, Tidstrom, and Sargent [13], Craik [5], and Herbert [11].)

1.1.2 Transition in three-dimensional boundary layers

A three-dimensional boundary layer flow such as the flow over a swept wing exhibits

transition behaviors different from those of the two-dimensional boundary layers,

which are characterized by a crossflow component in addition to the main flow. The

crossflow instability was first observed by Gray [6] in 1952, who observed closely

spaced stationary streaks in the local flow direction behind the laminar region near

the leading edge. Experiments conducted using wings, cylinders, and flat plates

show that the streamwise vortices are amplified most in the region of high pressure

gradient; traveling waves of around 1 kHz being amplified more than stationary waves.

In addition, non-linear interactions between the waves and the distorted mean flow

can occur. However, these are not yet fully understood. (See Saric and Reed [18] for

a complete review of theories and experiments.)

The crossflow instability is due to the inflectional velocity profile of the crossflow.

Rayleigh's inflectional criterion shows that for inviscid flows, any flow with an in-

flection point is unstable. An inflectional velocity profile causes instability even in

viscous flows if the Reynolds number is large enough. The direction of the least stable

wave is generally in the crossflow direction.

A comprehensive article by Mack [15] presents problem formulation, results, and

physical mechanisms on stability in both two- and three-dimensional boundary lay-

ers. He has shown the relationship between the critical Reynolds number, the pres-

sure gradients, and the sweep angles for both the incompressible and compressible

three-dimensional boundary layers. When the crossflow component is small enough,

the critical Reynolds number where the flow becomes unstable is determined by the

streamwise (T-S) instability. The direction of the least stable wave is within a few

degrees of the streamwise direction. However, when the crossflow component is larger,

the critical Reynolds number is determined by the stability of the waves in the cross-

flow direction, which is where the least stable wave is found.



1.1.3 Transient growth and bypass transition

Even though traditional stability theory has corresponded well with experiments in

which waves are forced by a vibrating ribbon or heating element, it is not sufficient

to explain all phenomenon in the actual transition. The initial disturbances might

be three-dimensional in nature and can immediately lead to turbulent flow, often

bypassing the primary instability. These kinds of transitions are known as "bypass

transitions".

Traditional linear stability theory examines only the vertical velocity perturba-

tion, and the horizontal velocity perturbation is assumed to be secondary in nature.

However, Landahl [14] has shown that for an initial disturbance of three-dimensional

nature, any inviscid shear flow can exhibit at least a linear growth in kinetic energy.

An initial disturbance which has a vertical velocity component with spanwise vari-

ation will result in a displacement of fluids of different velocities. This "liftup" will

result in the formation of a shear layer, which may grow even if the vertical distur-

bance decays. Hultgren and Gustavsson [12] showed that for the viscous case, the

short-time growth of the horizontal velocity resulting from a disturbance infinitely

elongated in the streamwise direction is nearly linear, while the long-term behavior

shows decay resulting from viscosity.

Based on the work by Landahl, Breuer and Haritonidis [2] examined experimen-

tally and analytically the evolution of a three-dimensional impulsive disturbance in

a laminar boundary layer and the subsequent breakdown to turbulence. Their re-

sults initially showed nearly linear growth of the horizontal perturbation for both

the inviscid calculation and the experiment. A shear layer developed, which was ad-

vected downstream at the local velocity. It was tilted and stretched in the streamwise

direction, intensifying as the disturbance evolved, until finally being dissipated by

viscosity. However, the amplitude that the horizontal velocity attained in a short

time far exceeded the initial vertical velocity amplitude. This short-term growth was

referred to as the "transient part" by Breuer and Haritonidis. This thesis will refer

to it in the same way.

Henningson [10] and Gustavsson [9] have examined the energy growth for the



viscous plane Poiseuille flow. Henningson has examined the growth of the verti-

cal vorticity and its mechanism using eigenfunction expansion. He showed that the

transient growth was due to the inhomogeneous nature of the Squire equation. Fur-

thermore, the maximum growth of the vertical vorticity is O(Re) and is obtained

in time O(Re). Gustavsson examined the maximum energy amplification obtained

when the Orr-Sommerfeld modes were used as the initial vertical velocity and the

vertical vorticity was set to zero. He showed that the maximum is obtained when

the initial vertical velocity corresponding to the least damped Orr-Sommerfeld mode,

with its structure infinitely elongated in the streamwise direction, is used.

Butler and Farrell [3] examined same kinds of flows to obtain the optimal dis-

turbance which gives the maximum energy growth. They showed that this optimal

disturbance is also obtained for disturbance infinitely elongated in the streamwise

direction and that is a combination of linearly dependent eigenmodes.

The transient growth can be described as the liftup of vortex tubes and its sub-

sequent tilting and stretching. The mean flow has vortex tubes which are normal

to the mean flow direction. A vertical movement of the fluid will lift up a section

of this tube, changing its orientation. Thus, some of the vorticity component in the

crossflow direction will be translated to the vertical vorticity component, causing the

initial growth of vertical vorticity. The vortex tube will then be tilted and stretched as

it is advected downstream at the local mean velocity. If the vertical velocity decays,

the liftup effect will lessen in time. Therefore, the vortex tube will not receive more

energy, and will subsequently be dissipated by viscous effect. This transient growth

appear as streak-like regions of high and low speed streamwise velocity if it is viewed

in the xz-plane and as as inclined shear layer in the xy-plane.

This transient growth is strongly dependent on the initial condition, and is best

when the initial condition has strong spanwise features with small variation in the

streamwise direction. Results of research by Henningson, Gustavsson, and Butler and

Farrell show that the maximum vertical vorticity amplitude is obtained for modes with

a = 0 (streamwise vortices), with the initial vertical vorticity set to zero. Even when

the linear stability theory predicts decay, this growth can be of two or three orders



of magnitude, which can then lead to non-linear interactions and the breakdown of

the laminar flow before the traditional theory of the streamwise T-S waves predicts

transition.

The disturbances that result in large transient growth are streamwise vortices

which distort the mean flow, causing spanwise variation in the streamwise velocity.

Traditionally, formation of three-dimensional structures were assumed to be secondary

in nature, occurring due to non-linear interactions between the T-S waves after they

attain a certain amplitude. However, as noted by Breuer and Haritonidis [2] and by

Butler and Farrell [3], this transient growth has the same mechanism as the secondary

instability, but evolves rapidly and is a linear process. The similarity indicates that

this approach to transition study may be quite valid. It is quite possible that such

secondary instability can be analyzed using linear methods.

1.2 Present approach

In this project, the work by Breuer and Haritonidis [2] is extended to viscous dis-

turbances in both two- and three-dimensional boundary layers. This is motivated by

the fact that modern aircrafts employ a swept wing, which has different stability and

transition characteristics because of the existence of crossflow. The inflection of the

crossflow velocity profile will lead to crossflow instability, which is expected to affect

the behavior of the three-dimensional disturbances.

In addition to examining the physical evolution of the localized disturbance, the

evolution of each Fourier mode will be examined. The Fourier mode that gives the

largest energy growth will be obtained, as will the initial condition that gives the max-

imum transient growth and the amount of amplification. The effects of the Reynolds

number, the sweep angle, and the pressure gradient on the transient growth will also

be examined.



Chapter 2

Theory

2.1 Boundary layers on swept wings

A well-known example of the three-dimensional flow in aeronautical applications is

the boundary layer over a swept wing, in which the pressure gradient exists not only in

the direction tangent to the flow but also in the direction normal to the flow, bending

the flow toward the lower pressure region (figure 2-1). An important feature of this

kind of flow is the existence of a crossflow velocity, present due to the fact that the

low speed flow near the wall is affected more strongly by the pressure gradient and is

therefore more bent than the inviscid flow outside the boundary layer (figure 2-2).

The coordinate system is defined locally as shown in figure 2-1. The x-direction

is parallel to the wall and in the same direction as the local inviscid flow outside

the boundary layer. The y-direction is normal to the wall; the z-direction is normal

to both the x- and y-direction. The local sweep angle 4' is the angle between the

x-direction and the chord direction. The x-,y-, and z-direction will be referred to as

the 'streamwise', 'vertical', and 'crossflow' direction respectively. The velocities are

defined as follows: U and W represent the mean velocities in the x- and z-directions,

while the mean vertical velocity V is zero. u, v, and w represent the three perturbation

velocities in the x-,y-, and z-directions respectively. The displacement thickness, 6,

calculated from the streamwise velocity profile and the inviscid velocity, Uo, are used

for non- dimensionalization.
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Figure 2-1: Schematic of the inviscid streamline over an infinite swept wing.
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Figure 2-2: Schematic of the velocity components of a boundary layer over a swept

wing.



2.2 Equations for three-dimensional boundary lay-

ers

Some assumptions will be necessary to derive the equations of motion. First, the

boundary layer growth can be assumed to be small enough to be disregarded. We

can then assume that the mean velocity remains constant in the x- and z-directions

and that the mean vertical velocity is zero. Secondly, we assume that perturbation

velocities are small enough relative to the mean flow that quadratic terms of the

perturbation can be dropped.

The Navier-Stokes equations are linearized and transformed to Fourier space in

the x- and z-directions using the wavenumbers a and 3 . This leads to the Orr-

Sommerfeld equation and the Squire equations:

S02 1 02
[+ i(aU + 3W)]( -2 - k'2 ), - i(aU" + pW")i - y - k )  = 0, (2.1)

a 1 2

[ +i(au+ W) - ) = i(W - U'), (2.2)
Ot Re iy2

k2 = a 2 + p2, (2.3)

where b and i represent the transformed qualities of the vertical velocity v and the ver-

tical vorticity 77, while k represents the combined wavenumber. The Orr-Sommerfeld

and Squire equations require four and two boundary conditions respectively. The

wall is a solid boundary with no forcing of the vertical component. while continuity

requirement sets v' to zero at the wall, since both u and w are zero at all locations on

the wall. All perturbations are bounded and decay exponentially in the free stream

so that v and v' go to zero at infinity. The vorticity is also zero at the wall and decays

exponentially in the freestream to zero at infinity. More details of the derivation are

given in Appendix A.1.

If we replace the time derivatives with temporal eigenvalues, then both equations

can be solved as eigenvalue problems. The real part of the eigenvalue will give the

phase of the eigenmode, while the imaginary part will show the decay or growth rate.



The Orr-Sommerfeld equation is a homogeneous equation. Given initial and boundary

conditions, it can be solved without any knowledge of the horizontal velocity. On the

other hand, the Squire equation is inhomogeneous with a forcing term due to the

vertical velocity. The solution to this equation will have two components. One is

the homogeneous part which is independent of the forcing term, and the other is

the particular part which depends on the vertical velocity. It can be shown that the

homogeneous solution of the Squire equation always decays. However, the particular

part will have the same decay rate as the corresponding vertical velocity and may

grow or decay.

It can be seen that the aU + pW term and its second derivative in (2.1) can

be replaced by a corresponding aU2D to reduce the equation for a three-dimensional

boundary layer to a two-dimensional one. When W or a is small enough to be

disregarded, (2.2) can also be reduced to a two-dimensional equation, so that we

can expect the solutions of the equations to be nearly identical. However, when we

examine the case where W is larger and a is smaller, we can see that the corresponding

two-dimensional mean flow profile will have an inflectional point, which will make

waves with low a and high 3 less stable.

We can make some predictions as to how the velocity and the vorticity will evolve

given an initial vertical velocity that corresponds to a slowly decaying eigenfunction.

The vertical velocity will decay exponentially as predicted by the Orr-Sommerfeld

equation. The vertical vorticity on the other hand, may exhibit transient growth as

the vertical vorticity is forced by the right-hand side of the Squire equation. However,

as the vertical vorticity becomes larger, the homogeneous solution which is responsible

for the transient behavior will decay, leaving only the particular solution, which have

the same decay rate as the vertical velocity. Our interest however, is not in how the

vertical vorticity behaves after a long time, but rather how it will evolve initially and

how much energy it can gain.



5 5

4- 4

3 3

S2 2

1 \ 1 ,w"
\

0-1 2 -0.2 0.2 0.41lain flow -rossflow

Figure 2-3: The mean flow profile generated by the Falkner-Skan-Cooke transforma-
tion. ? = 450, H = 0.3. Note the inflectional velocity profile for the crossflow.

2.3 Falkner-Skan- Cooke boundary layers

In order to examine the stability of a flow over a swept wing, it is necessary to have

a set of mean flow profiles for a given sweep angle and pressure gradient. We have

followed the method given in Rosenhead [19] and Mack [15], which uses the Falkner-

Skan-Cooke transformation [4].

Cooke extended the familiar Falkner-Skan transformation for calculating the two-

dimensional velocity profile of flow over a wedge to an infinite wedge with sweep. The

two parameters used by Cooke are the Hartree parameter, H, which is 1/ir of the

wedge angle (as in the usual Falkner-Skan transformation), and the sweep angle, 4,
which is the sweep angle of the wedge to the free stream.

The flow over the wedge is divided into two components: one normal to and

the other tangent to the leading edge. The boundary layer equation for the normal

direction reduces to the familiar Falkner-Skan equation, while the equation for the flow

tangent to the leading edge is dependent on the velocity profile in both directions. The

resulting velocity profiles are combined to give the streamwise and crossflow velocity
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Figure 2-4: Effect of sweep angle on the critical Reynolds number for crossflow in-

stability of Falkner-Skan-Cooke boundary layers at H = 1.0 and H = -0.199. From

Mack [15]

profiles. The equations for transformation and some calculated velocity profiles are

given in the Appendix A.2.

Figure 2-3 shows the streamwise and the crossflow velocity profile for ?k = 450 and

H = 0.3. The effect of the sweep angle is to make the streamwise flow 'thinner' if

H > 0 or 'fatter' if H < 0. The crossflow velocity profiles, which have the same shape

regardless of 0, always has an inflection point. The crossflow is largest when H = 1,

which is the velocity profile along the stagnation line, or when H = -0.198837,

which corresponds to a separating flow. The effect of the sweep angle is to make this

crossflow profile larger or smaller, with the maximum crossflow velocity at 4k = 450.

Experiments have shown that the crossflow instability usually becomes apparent

in the accelerated flow region of the wing. Therefore, for most of the analysis, flows

with the Hartree parameter H between 0.0 and 0.5 have been examined. In addition,

the sweep angle of 450 is used since it gives the largest crossflow velocity and is likely

to exhibit the effect of both the streamwise and crossflow instability.

Figure 2-4 and figure 2-5 show the critical Reynolds number according to the linear

h 
=

1.0
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Figure 2-5: Effect of pressure gradient on critical Reynolds number. The solid line
indicates crossflow instability for Falkner-Skan-Cooke boundary layer with I = 450;
the dashed line indicates the two-dimensional Falkner-Skan boundary layer. From
Mack [15]

instability theory calculated by Mack [15] using these velocity profiles. Figure 2-

4 shows the relationship of the critical Reynolds number and the sweep angle for

Falkner-Skan-Cooke boundary layers. We can see that the lowest Reynolds number

is obtained when the sweep angle 0 is near 450, due to the fact that the crossflow

component has the largest amplitude when k = 450. The critical Reynolds number

for crossflow instability with a sweep angle of 7P = 00 and 7 = 900 is at infinity since

they have no crossflow component.

Figure 2-5 shows the critical Reynolds numbers for both the two-dimensional

instability and the crossflow instability for various values of the Hartree parameter.

While the critical Reynolds number increases with the Hartree parameter for the

two-dimensional Falkner-Skan boundary layer, the critical Reynolds number for the

Falkner-Skan-Cooke boundary layer at a sweep angle 450 decreases as the Hartree

parameter increases. This is especially important for a higher H, where the critical

Reynolds number for the swept wing is far smaller than that of the two-dimensional



boundary layer.

For three-dimensional boundary layers with a sweep angle of 450, the critical

Reynolds number for crossflow instability becomes lower than the critical Reynolds

number for streamwise instability at around H = 0.07. Therefore, we can expect the

crossflow instability to occur first for the Falkner-Skan-Cooke boundary layers with

H > 0.07.



Chapter 3

Numerical Scheme

3.1 Time integration

The implicit and second order accurate Crank-Nicholson scheme was used for the

time integration. The finite difference equations for the Orr-Sommerfeld (2.1) and

Squire (2.2) equations are

v2n+l _ 2 =

n+ l_ n = [-- (

where

int iAt At
[ (aU"+p") - (aUPW)V2 + V ]("+ +"),

A2 iAt

aU+W)- At V2](n+1 +)- -- (aW'-U')(n+l+ 1),2Re 2

V24  02 k)

V4f" = ( - 2k'2 -- + k)".
-9 Y ey

These equations were marched forward in time using the time step of At = 0.1,

yielding results that were acceptably accurate, matching analytic results to four or

five significant digits.

(3.1)

(3.2)

(3.3)

(3.4)



3.2 Chebyshev collocation method

In order to calculate the fourth-order derivatives in y accurately, Chebyshev polyno-

mials were used to approximate the functions 5 and . Chebyshev polynomials are

defined in ( between -1 and 1 as follows:

= 1,

= 22 - 1,

Tk+1( ) = 2Tk() - k_-1(()

(3.5)

(3.6)

(3.7)

(k > 1). (3.8)

These polynomials can also be written as

Tk( j) = cos {k arccos( 1 )} (j = 0, ..., N).

If we choose ( such that j = cos(jr/N) where N is the number of the polynomials,

the polynomials become

S jk7rTk( ) = cos((-t )
N

(j = 0, ... , N).

Therefore, the discrete values of f and i/ at (j = cos(jr/N) will be used for the

collocation. The value of f at (j can be represented in the following manner:

y = T I3 (3.11)

where TT is the transposed Chebyshev polynomial array for j and V" is the coefficient

array.

(3.9)

(3.10)



We can easily obtain the i-derivatives of the function by using the derivatives of

the polynomials. These derivatives of the polynomials are obtained by the equation,

2T(n)  1 T 1,+) 1 (,+1) (k > 1). (3.12)

k+1 k -1

3.3 Domain mapping

Since the actual domain of y is between 0 and oo, it is necessary to map this to (.

This was done using an algebraic mapping function:

1-y-= (3.13)

The mapping factor, 1, should be set so that the mapping concentrates the points

in the region with an interesting phenomenon. This scheme is very accurate for

describing a localized phenomenon in the boundary layer region but is inadequate for

describing a phenomenon that takes place outside the boundary layer or that has a

structure that extends from near the wall to outside the boundary layer. The solution

calculated for the discrete modes using 1 from 1 to 10 remained accurate and matched

quite well. However, in order to represent the phenomenon accurately and in detail,

1 has been set to 1 or 2 in most cases.

The y derivatives are also modified according to the mapping:

Of 220 ff 22 f (3.14)

9 +1

S , (3.15)
2

O2f 04 4 2 f 4k 3 Of
V + (3.16)

O4f 167k5 d(,03L4f 2Of 3 + Of Of
(Fo + 60a+ 97 +3 2 (3.17)

y 14 94 i93 -a)

For example, the second derivative of i at y3 can be obtained by using the coeffi-



cient array V":
02,& (4a,04T 44 3 T
Oay |, = -( 12 " j -T'T )", (3.18)

where T'f and T "T represent the first and the second derivatives of Chebyshev poly-

nomials at (j.

3.4 Matrix formulation

Using the Chebyshev polynomials, (3.1) and (3.2) can be written in matrix form

for the arrays Vi and f" which represent the coefficients for the complete vertical

velocity and vorticity perturbations at the time step n. After some matrix operation,

we obtain for G" :

(D+iRD-iS - PD)" +1 = (D-iRD+iS + PD2')", (3.19)

where R, S and P represent the diagonal matrices associated with the mean profile.

R = (aUj + #Wj)I, (3.20)
2

S = - j(a U' + SpW')I, (3.21)

P = AtI. (3.22)
2Re

D is the polynomial matrix associated with the Laplacian derivative in the normal

direction (3.3), D' is the polynomial matrix associated with the double Laplacian

derivative in the normal direction (3.4), and I is the identity matrix.

The equation (3.2) for the array in", which is the coefficients for the normal vor-

ticity , can also be written in the matrix form:

(I+iR - PD)ij "+ = (I-iR + PD) " - iQ( Vn+' + ,'"), (3.23)

where matrices R and P are as defined above and Q is another constant diagonal



matrix:
At

Q = (OU' - aW')I. (3.24)

This equation was also integrated at the same time as the Orr-Sommerfeld equation

using the current values for i" and in+l

We calculated the subsequent vertical disturbance velocity by applying the matri-

ces to the i array iteratively. LU decomposition and back substitution method was

used for matrix calculation. For fixed a, 3 and At, all of the matrices are constant

and need to be calculated only once at t = 0, which makes the LU method practical.

The matrices, after being decomposed once, were then repeatedly used in the back

substitution, saving redundant calculation. The calculation count is at least !N for

the initial decomposition and !N for subsequent back substitutions.

Values between 32 and 128 were used in the calculation. While increasing N

theoretically raises the accuracy, roundoff error of the computer imposes a practical

limit as shown by Breuer and Everson [1]. In general, 64 was used to balance between

speed and accuracy. In addition, the magnitude of some coefficients grew quite large.

This was especially true for some special cases, such as when a = 0.

3.5 Details

The computation was carried out on a DEC station 3100. For integrating a localized

disturbance with 32 points in the x- and z-direction, 64 Chebyshev polynomials, 1000

time steps, and at single precision, the CPU time required was approximately 6 hours.

Calculation using both single precision and double precision showed that double

precision was unnecessary in most cases. Therefore, most cases were calculated using

single precision. The cases that required double precision were those with longer pe-

riods of integration, those with small a, or those having 128 Chebyshev polynomials.

The vertical velocity and the vertical vorticity were transformed to Fourier space,

where each Fourier mode was calculated independently. The results were then trans-

formed to physical space using Fast Fourier Transforms.

In addition, the behavior of each Fourier mode were examined in detail. This was



done by examining the total perturbation energy and its components. The energy is

defined as follows:

E = ( + it + '2 )dy. (3.25)

This is equivalent to the following equation due to the relation given in the Ap-

pendix A.1.

E = j i~' + ( '+ T' )dy. (3.26)



Chapter 4

Modal Studies

4.1 Initial conditions

Any given initial condition can be represented as a combination of eigenfunctions.

Since the least damped mode will dominate the long-time solution, it is natural to

examine the temporal evolution of the energy using this eigenfunction as the initial

condition. These eigenfunctions are three-dimensional in nature, having horizontal as

well as vertical velocity components. In the following computations, both the vertical

velocity and the vertical vorticity need to be specified for initial conditions. The

temporal behavior of the vertical velocity can be easily estimated by its eigenvalues.

However, as we have seen in Section 2.2, the behavior of the vertical vorticity part

depends on both the vertical velocity and the initial vorticity. Previous works on

Poiseuille flow have shown that the maximum energy growth is obtained when the

initial vertical vorticity is set to zero, and we can expect similar results for boundary

layer flow.

For two- and three-dimensional boundary layer velocity profiles, the least damped

mode typically has a simple profile, as shown in figure 4-1. The solid and the dotted

lines represent the amplitude of the vertical velocity and the vertical vorticity for the

least damped mode, respectively. We can see that 77 has a larger maximum compared

to v. For waves with k less than 1, the ratio of vorticity energy and the velocity

energy will be even larger.
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Figure 4-1: Eigenfunction of a least damped mode. 0 = 450, H = 0.3, Re = 500, a =

0.2,/3 = 0.4. The 77 component has larger amplitude than v but is confined within the
boundary layer.

O

0.01

0.001'
0 0.1 02

tUo 6*Re
0.3 0.4

Figure 4-2: Temporal behavior of the total energy and its components with non-zero
initial vertical vorticity. 4 = 45 0, H = 0.3, Re = 500, a = 0.2,3 = 0.4. The vertical

velocity and vorticity decay exponentially at the same rate.
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Figure 4-3: Temporal evolution of the total energy and its components with zero initial
vertical vorticity. '0 = 450 , H = 0.3, Re = 500, a = 0.2, 3 = 0.4. The energy grows to

25 times the original energy, with most contribution from the vertical vorticity part.

Figure 4-2 shows the time evolution of the energy and its components when the

complete mode of the least damped eigenfunction is used as the initial disturbance.

Since this eigenfunction corresponds to the particular solution of the Squire equation,

the energy and its components will decay exponentially at the same rate, so that the

ratio of the energy amplitude of the vertical vorticity and the vertical velocity will

remain constant. This ratio can be calculated from the initial eigenfunction shown in

figure 4-1.

4.2 Evolution of rio = 0 mode

Instead of a complete mode, we can set 770 = 0, in which case we can expect transient

growth due to the forcing of the Squire equation. Figures 4-3 and 4-4 show the

temporal evolution of modes that decay and grow. Figure 4-3 shows the evolution of

the energy and its component when the same initial vertical velocity as in figure 4-

2 is used, but with the initial vertical vorticity set to zero. The vertical velocity
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Figure 4-4: Temporal evolution of the total energy and its components with zero initial
vertical vorticity, unstable mode. b = 450 ,H = 0.3, Re = 500, a = 0.1,,3 = 0.4. The

vorticity component grows exponentially at the same rate as the velocity.

energy decays exponentially while the vertical vorticity energy and the total energy

are growing. On a linear scale, it can be seen that the vorticity grows linearly in

time. As the homogeneous solution of the Squire equation drops out, it leaves only

the particular solution, which has the same decay rate as the velocity component.

In this case, the energy growth reached a maximum of about 25 times the initial

energy. The energy growth obtained can be nearly thousandfold or just one, where

the vorticity growth is so small that there is no discernible total energy growth.

The three-dimensional disturbance corresponding to a growing mode share some

characteristics with those that decay. Because the velocity component grows, the

vorticity part grows as well, so that there is never a 'maximum energy growth'.

Instead, the initial growth rate decreases until the exponential growth rate of the

vorticity component matches that of the velocity component. As in the case where

the velocity decays, this is due to the homogeneous part dropping out of the solution,

leaving only the particular solution associated with the vertical velocity.

The ratio of the energy component of the vorticity and velocity remains constant
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Figure 4-5: Vorticity and velocity energy evolution for various Reynolds numbers.
4 = 45', H = 0.3, a = 0.2,,3 = 0.25. The initial growth rate is smaller for lower Re.

in figure 4-2, which is about 50 times the energy of the vertical velocity. Examination

of the ratio for the same energy components in figure 4-3 where they are all uniformly

decaying, shows that this ratio is exactly the same. If we can obtain the eigenfunction

for velocity and vorticity of the least damped mode initially, the amplitude ratio of

energy components can be determined without going through the time integration.

4.3 Evolution of the energy and its components

In this section, we will examine the temporal evolution of the energy and its compo-

nents and find its dependence on various parameters. Figure 4-5 shows the evolution

of various modes for different Reynolds numbers. The long time exponential decay

rate appears proportional to O(Re-1). The initial vorticity energy growth rate is

proportional to O(Re), while the ratio of the vorticity energy to velocity energy is

similar for different Reynolds number. It should be noted that if we use the normal

time scale t instead of t/Re, we see that the initial growth rate is nearly independent

of the Reynolds number.
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Figure 4-6: Temporal evolution of the velocity and vorticity energy for various /.
H = 0.3, Re = 500, a = 0.2,6 = 0.4. The maximum depend only on the decay rate.

Examination of the energy growth for various values of H and b also shows that,

for given a, f, and Reynolds number, the only significant difference is the long-time

decay rate. The ratio of the vertical vorticity energy to the vertical velocity energy is

of the same order, being only slightly smaller for waves that decay at a slower rate.

The initial linear growth rate of the vertical vorticity energy is nearly identical as

well. This result is illustrated in figure 4-6, where the mode with k = 450 has the

largest growth. We can see that the initial linear growth remains nearly the same for

three angles. The difference in energy growth obtained is only due to the difference

in decay rates. Examination of energy evolution for flow with different H will give

similar results, where only the decay rate shows significant difference.

Following conclusions can be drawn from examination of the temporal evolution

of the energy for various flows. We find that the initial growth rate is apparently

dependent only on a, and P. Taylor expansion of the solution of the Squire equation

show that this is proportional to i(PU' - aW'). However, since the energy is an

integrated quantity, small variation in the mean flow profile does not vary the growth



rate of the vorticity energy greatly. Therefore, the initial growth rate of the vorticity

depends mostly on a and P, and weakly on H, ib, and the Reynolds number. Since

the U' component is larger than the W' component, the effect of / will greater, and

for most flows, the growth rate is O(3). The ratio of the vorticity energy to velocity

energy can be obtained from the eigenfunctions used as initial conditions. While

there is no empirical relation for this value, examination of various modes show that

it is strongly dependent on a and 0, and only weakly on H, ib, and the Reynolds

number. This ratio change from 0(1) to O(/32) as a increases from 0. It also seem to

be O(a-1). Unlike the previous two values, the decay rate of the energy is strongly

dependent on the mean flow profile. Linear stability theory shows that even small

variation in the mean flow profile can affect the stability of the flow. It is strongly

dependent on all five parameters, a, /, H, b, and Re. Due to the sensitivity of the

decay rate to the mean flow profile, no empirical relation can be given except those

previously given for the Reynolds number.

4.4 Maximum energy growth

The temporal evolution of various modes have been examined in the previous section.

In this section, the relationship of the maximum energy growth and a, 3, H, /, and

the Reynolds number will be examined. The values for a = 0 have not been been

calculated, since the eigenfunctions of the least damped mode for low value of a could

not be obtained accurately for most cases due to numerical difficulties.

Figure 4-7 shows the maximum E/Eo for the Blasius boundary layer for a range

of a and /. Each line represents the maximum growth obtained by a certain value of

a for various values of p. Since there is no crossflow, the result is symmetric about

/ = 0. We can see that as a decreases, the maximum growth becomes larger. For

low a of 0.1 to 0.3, the maximum energy growth is gained for waves of 3 = ±0.6 to

±0.7. For higher a, the maximum is obtained at / of more than 1 or less than -1.

Let us examine how a pair of Fourier modes with the same a, but with / of

opposite sign will behave when the mean flow has a Falkner-Skan-Cooke velocity
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Figure 4-7: Maximum E/Eo for three-dimensional disturbance in Blasius boundary
layer flow. Re = 500. Greater energy growth is obtained for lower a.
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Figure 4-8: Maximum E/Eo obtained for various a plotted against 3. k = 450, H =
0.2, Re = 500. Positive 3 gives larger growth; negative 3 gives smaller growth.



profile. We know from the linear stability theory for three-dimensional boundary

layers that a wave that goes in the same direction as the crossflow is more stable,

while those with the same a, but / of an opposite sign will be less stable. This result

is shown in figure 4-8, where the value of H = 0.2 is used so that none of the modes

are unstable. This figure shows the asymmetry due to the existence of a crossflow.

The combination of positive a and positive P, which is less stable than positive a

and negative 0, has a larger maximum energy growth. Largest energy growth is

obtained for a = 0.1 with the maximum obtained for / = 0.6 when / is positive

and at / < -1 when / is negative. In addition, since the forcing term of the Squire

equation becomes smaller as 3 approaches 0, the transient growth also becomes small

for smaller p. When / = 0, the forcing term has only the W' part, which is very

small compared to the U' part, resulting in a minor growth of the vertical vorticity so

that the energy growth does not exceed 1. However, for a boundary layer with larger

crossflow, this aW' component can become large enough so that the energy growth

can exceed 1 even when # = 0.

As the crossflow becomes larger due to the increase of H or b approaching 450,

the asymmetry will increase. The stable waves will become more stable and decay

faster, but the less stable waves will become even less stable and decay slower. We

know that the initial linear growth rate and the amplitude ratio of the vorticity energy

and velocity energy will remain similar so that the difference in the decay rate will

determine the maximum energy growth obtained. When the crossflow is large enough,

modes with low a will become unstable and exhibit growth. If the velocity profile

with H = 0.3 is used, where some modes with a = 0.1 and positive 3 are unstable,

the energy will grow to infinity.

It has been shown that for a = 0 mode in Poiseuille flow, the maximum vorticity

energy obtained is O(Re2 ), and the time that this is obtained is O(Re). Since the

modes for a = 0 were not obtained, this cannot be verified for boundary layer flow.

However, for a 5 0, as a is increased, the maximum energy growth obtained shifts

from O(Re2 ) to O(Re). Figure 4-9 shows the relationship between the maximum

energy obtainable for / and Re when a = 0.1. It can be seen that they are somewhat
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Figure 4-9: Maximum E/Eo obtained for various Re plotted against P. = 450, H =
0.1, a = 0.1. The maximum energy growth is slightly less than O(Re2 ).

less than O(Re2 ). As a is reduced, this relationship asymptotes toward O(Re). We

can also see that the maximum energy growth is obtained for / = 0.6 for different

values of Re.

The maximum E/Eo for various H are shown in figure 4-10 for , = 450 and

a = 0.1. The time evolution of the same mode for different H was discussed in the

previous section. For a given value of a and /, we can expect a similar initial growth

rate and ratio of the vorticity energy to the velocity energy. Here, we can see that in

addition to causing the growth to increase for positive / and to decrease for negative

3, it also shifts the 3 that gives the maximum growth. For positive /, this shifts from

0.6 to 0.4, and for negative /, it shifts to a more negative value of P3. This shift is

due to instability of the vertical velocity part due to the crossflow. For the Blasius

boundary layer, the least stable wave is at / = 0, but the largest energy growth is

obtained for 3 = 0.6 from the optimal combination of the energy ratio, initial growth

rate, and decay rate. However, as H increases, decay rate of waves at p = 0.4 become

lower because of crossflow instability, so that the combination of the energy ratio and
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Figure 4-10: Maximum E/Eo obtained
45 0, Re = 500, a = 0.1.

0.5

for various H plotted against P. 0 =

the initial growth rate will give these waves large energy growth. This causes the

shift in the , that gives the largest energy growth. If H is increased even more, these

waves will become unstable, showing infinite growth.

For negative H, the largest energy growth is obtained for negative /, but other-

wise, it remains identical to the cases where H > 0, showing similar increases of the

asymmetry as H decreases. However, the waves that become unstable first are those

near a = 0.3 and 3 = 0, due to the streamwise instability. Therefore, lower 3 will

exhibit larger energy growth than when H > 0.

Figure 4-11 shows the relationship of the maximum energy growth and the sweep

angle for a = 0.1. The results for 0 = 00 and I = 900 are symmetric, while the

results for other 4 are asymmetric, with largest asymmetry occurring for , = 450

We can also see that the p that gives the maximum energy growth shifts from 0.7

to 0.5 as 4k increases and then back to 0.7 again. For negative 3, the 3 that gives

the maximum growth shifts from -0.7 to a lower value, then comes back up to -0.7.

This shift in the 3 for the largest growth can also be attributed to the effect of the
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Figure 4-11: Maximum E/Eo obtained for various jb plotted against 3. H = 0.3, Re =

500, a = 0.1. For positive 3, the result rises from the lowest line up to the highest

line where , = 450 and then descends to the line of 4 = 900. For negative /, it is the

opposite.

crossflow instability on the decay rate.

We can conclude that the maximum energy growth where 0 and H are varied

depends only on the decay rate of the eigenfunction. Therefore, the linear stability

of the flow determines the decay rate and consequently the maximum energy growth

obtained when the initial growth rate and the amplitude ratio of the energy is similar.

4.5 Prediction of the maximum energy growth

It is possible to predict of the maximum energy growth from the analysis of the

temporal evolution using the conclusions drawn in Section 4.3. The necessary param-

eters are the exponential decay rate, the ratio of the vorticity energy to the velocity

energy, and the initial linear growth rate of the vorticity. The intersection of two

curves, where one represent the energy of the exponentially decaying vorticity of the

complete mode, and the other the initial linear growth of the vorticity, will give the
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Figure 4-12: Maximum E/Eo predicted for various a plotted against P. ¢ = 450, H =

0.2, Re = 500.

approximate maximum energy growth and time it is obtained.

The initial linear growth of the vorticity is proportional to i(U' - aW'), resulting

in the following equation:

= i(pU' - aW')'ot, (4.1)

while the vorticity energy is given by

E = - ~, (U' - aW')otj2 dy. (4.2)

This value has to match the energy of the exponentially decaying complete mode,

which is given by the following equation:

1
E7 = (J 1I0eCe' t 2 dy). (4.3)

The coefficients for this equation can be obtained by solving the Orr-Sommerfeld and

Squire equation as eigenvalue problems and obtaining the decay rate and the ratio of

the vorticity energy to the velocity energy.
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Figure 4-13: Correlation of values of maximum E/Eo obtained from prediction and

numerical integration for various / modes. a = 0.1, Re = 300 and 500, H = 0.1, 0.3,
and 0.5.

The time t when these two curves intersect is obtained by solving the equation us-

ing Newton's method. The result is entered into (4.2), giving the predicted maximum

energy. This prediction will give higher values for modes that have strong decay rate,

while for those modes with weak decay rates, the result will be more accurate. The

results are shown in figure 4-12 for the case of Re = 500, H = 0.2, and 0 = 450. If

the necessary adjustment for those modes with higher decay rate is made, the results

will match quite well with the results in figure 4-8.

In order to examine the correlation between the predicted values and numerically

integrated values, the matching is plotted in figure 4-13. The x-axis is the integrated

values, and the y-axis shows the predicted values. Prediction give values that are

about two or three times the actual values for smaller values of 0, and becoming

more varied for higher P. While the method of prediction is very crude, we can see

that it can give good estimate of the maximum energy that can be obtained for a

particular mode.



4.6 Continuous spectrum modes and arbitrary ini-

tial conditions

Studies of the eigenvalue spectrum for a bounded viscous flow such as the Poiseuille

flow have shown that they have only discrete spectrum of eigenmodes. However, Gus-

tavsson [8] has shown that in addition to the discrete modes, modes in the continuous

spectrum are also required for unbounded flows in order to describe an arbitrary dis-

turbance. Grosch and Salwen [7] have shown that this continuous spectrum has a

finite energy and that each mode is sinusoidal in form outside the boundary layer.

They have also shown that for a flat plate boundary layer, this continuous spectrum

forms a line at C, = 1.

The numerical simulation also captures the modes at C, = 1. However, these

modes are not exactly a physical phenomenon but a mode required by the finite

numerical approximation. Like the continuous spectrum, these modes are bounded

and do not decay as y increases. However, they are not truly sinusoidal and depend

strongly on the location of the Chebyshev collocation points in y. The nature and

behavior of this mode resembles that of the continuous spectrum, but care is needed

to interpret the results obtained.

Even though there is no discrete mode for the two-dimensional boundary layer

at a = 0 that can be used as an initial condition, it is possible to give an arbitrary

disturbance and observe its evolution. The initial vertical velocity was given by the

following equation while the initial vertical vorticity was set to zero:

v(y)== y2e . (4.4)

Figure 4-14 shows the time evolution of the total energy. Figure 4-15 shows the

vertical velocity profile for 3 = 0.25 at time tUo/6* = 0, 200, 400, and 600. The initial

velocity profile decays while a velocity profile centered around y = 46* dominates the

solution, which is outside the boundary layer. The phase speed, C,, which is nearly

equal to 1, also indicates that this component is composed of continuous spectrum
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0.3, Re = 500, a = 0.2,/ = 0.4. The vertical velocity profile extend outside the

boundary layer.

modes. We can assume that this mode is a combination of non-orthogonal continuous

spectrum modes. The process of energy growth for these initial conditions is similar

to that of discrete modes. We can see that even though they are arbitrarily given,

they give results greater than any of the results for discrete modes in a Blasius flow,

supporting the prediction that the mode with a c 0 will have the greatest energy

growth.

Figure 4-16 shows the profile of a least-damped 'continuous spectrum' mode for a

three-dimensional boundary layer. I resembles an actual continuous spectrum mode,

which is sinusoidal in the free stream. However, each peak or valley corresponds to

a Chebyshev collocation point. The corresponding vertical vorticity eigenfunction is

zero outside the boundary layer since the forcing term of the Squire equation goes to

zero as the mean shear goes to zero. The calculation of energy showed that despite the

fact that the vertical vorticity has larger maximum amplitude, the vertical velocity

has more energy because of its structure extending outside the boundary layer to

infinity.
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Figure 4-17: Energy evolution with continuous spectrum modes as initial conditions
for a = 0 modes. Re = 500, H = 0.3, , = 450, and g = 0.25-1.00

The temporal evolution of v using this mode as the initial condition, is given in

figure 4-17. Despite the fact that this is the least damped mode for a = 0, the

maximum energy growth obtained is only twice the initial energy for / = 0.25. This

small energy growth results from the fact the vertical velocity component having a

profile extending to infinity while the vorticity component profile is limited within the

boundary layer. Therefore, the ratio of the velocity energy and the vorticity energy

is small compared to the discrete modes. In addition, we can see that the modes

that were calculated were not a single mode, but was actually composed of multiple

modes. This can be seen in the beating phenomenon observed for modes with higher

p3. The same phenomenon was observed and analyzed by O'Sullivan and Breuer [16]

in their examination of the transient growth in pipe flow. This phenomenon is due

to multiple continuous spectrum modes decaying at nearly the same rate, but with

slightly different phase speed.

Unlike the two-dimensional boundary layer, where there is no discrete spectrum

when a = 0, a three-dimensional boundary layer with non-zero W does have discrete

I I
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Figure 4-18: Vorticity energy evolution for various Reynolds number. P = 450, H =
0.3, a = 0, 0 = 0.25. The maximum energy and tmax is O(Re).

modes. This allows examination of cases where a = 0. However, due to numerical

difficulties in the calculation, this mode was very difficult to calculate. Therefore,

an arbitrary initial condition was used initially, and marched forward in time until

all other modes decayed away. The final velocity profile was then used as the initial

condition for case of a = 0. This result is shown in figure 4-18. The results show that

the maximum energy amplitude is O(Re2 ) and the time that it is obtained is O(Re).

This result matches quite well with the results for Poiseuille flow by Henningson [10]

and Gustavsson [9]. Unfortunately, this mode cannot be proven to be the least-

damped discrete mode, and is presented here only for future analysis.



Chapter 5

Localized Disturbances

5.1 Details

The computational domain was a box with length of 2006* in the streamwise direction

and width of 506* in the crossflow direction. The numbers of the discrete points in

the x- and z-direction were both set to 32. A Falkner-Skan-Cooke boundary layer

with H = 0.5 and 0 = 450 which has a maximum crossflow velocity of -0.08Uo was

used as the mean flow, while the Reynolds number was set to 950.

Figure 5-1 shows the two pairs of counter-rotating vortices used as the initial

condition. This disturbance, first used by Russell and Landahl [20], is derived from

the following two-dimensional stream function:

S= 0, (5.1)

v - O (5.2)

w = (5.3)

where

V = e_.t e- _ 2 _ _ (5.4)

and ~ , and 2 are Cartesian coordinates scaled by the characteristic lengths 1,, Y,,



Figure 5-1: Schematic of the two pairs of counter-rotating vortices used as the initial
perturbation

and I:

= /(5.5)

= y/1 , (5.6)

/= z/l. (5.7)

The scale lengths were set to I, = 56*, 1, = 1.26*, and Iz = 66* so that comparisons

could be made with the results of Breuer and Haritonidis [2].

Due to the nature of the initial condition, the initial vertical vorticity is not zero.

However, it is sufficiently small so that we can still expect a large growth of the

vertical vorticity component. Also, this initial condition does not excite the a = 0

mode, which would give even larger transient growth.

5.2 Results

Figures 5-2, 5-3, 5-4, and 5-5 show the evolution of the localized disturbance. The

flow is from left to right, and the boundary layer thickness is approximately 36*.

The contour spacing for the vertical velocity perturbation is 0.125 of the maximum



initial vertical velocity perturbation, while the spacing for the horizontal velocity

perturbation is 1.25 of the maximum initial velocity perturbation. The solid lines

represent the contours for the positive values; the dotted lines represent the contours

for the negative.

If we examine the vertical velocity perturbation in figure 5-2, we can see that it is

quite similar to the results by Breuer and Haritonidis. They show that the structure of

the vertical velocity perturbation extends out of the boundary layer and is apparently

exponentially decaying in the free stream. The structure remains coherent, while the

perturbation amplitude is decaying slowly in time.

Figure 5-3 shows the vertical velocity perturbation in the y = 1 plane, with the

vertical perturbation decaying in time. However, unlike the Blasius boundary layer

case, the perturbation loses its symmetry due to the crossflow. This can be understood

from linear stability theory for three-dimensional boundary layers. The decay rate for

a wave with the same a and a positive , is smaller than its counterpart with negative

3. Therefore, the waves in the positive z-direction decay slower than in the negative

direction. This appears in figure 5-3 as streak-like regions of positive and negative

vertical velocity perturbation.

The horizontal velocity perturbation in figure 5-4 resembles the result for the

Blasius boundary layer as well. The inclined shear layer resulting from the mean

shear in the streamwise direction is formed, which is then stretched and intensified.

The effect of the crossflow is not obvious, since the mean streamwise velocity U

dominates the behavior of the solution in the streamwise direction.

However, the effect of the crossflow on the horizontal velocity perturbation is

evident in figure 5-5. The horizontal velocity contour loses its symmetry because the

perturbation is advected in the direction of the crossflow as well as in the streamwise

direction. Since the mean crossflow has its maximum near y/,* = 1, the perturbation

in that vicinity will be advected in the crossflow direction more than the fluid near

the wall or outside the boundary layer. As the slower moving fluid near the wall is

lifted up, its displacement in the negative z direction is less than that of the faster

fluid. The two regions of low speed flow remain separate for the Blasius boundary



layer but in this case combine and form an elongated region of low speed flow. Similar

phenomenon occurs for the high speed region as well.

These streamwise streaks were observed by Henningson for a Poiseuille flow when

he used a similar pair of counter-rotating vortices set at a 30-degree angle to the

mean flow. This kind of feature will cause the mean streamwise velocity profile to

have spanwise variation. The initial condition used by Henningson excited the a = 0

mode, which has the maximum transient energy growth. This streak-like feature is

an important part of the non-linear interactions in the breakdown of the laminar flow

and is also often observed in turbulent flows. In this case, even though no a = 0

mode was excited initially, streak-like formations appeared as well, which can lead

to nonlinear interactions. However, unlike the other cases, these formations will not

remain fixed in z, but will 'drift' in the crossflow direction.



5-

2.5 -

0-
20 100

X/5*

Figure 5-2: Contours of the vertical velocity perturbation in the (x, y) plane at z = 0.

The perturbation extends outside the boundary layer and decays slowly. Contour
spacing is 0.125 of the maximum initial vertical perturbation. The solid lines represent
the positive contours, and the dotted lines represent the negative contours.

-25 '
-20 100

x/6*

Figure 5-3: Contours of the vertical velocity perturbation in the (x, z) plane at y/* =

1. Contour spacing is 0.125 of the maximum initial vertical perturbation.

tUo/l* = 75

..'. ....: . .

50

25

i



y/6*2.5

0
20 0 20 40 60 80 100

x/6

Figure 5-4: Contours of the streamwise velocity perturbation in the (, y) plane at

z = 0. Formation of the inclined shear layer. Contour spacing is 1.25 of the maximum
initial vertical perturbation.

- 20
S0 100

Figure 5-5: Contours of the streamwise velocity perturbation in the (x,
y/,* = 1. Streaks of high and low speed region. Contour spacing is

maximum initial vertical perturbation.

z) plane at
1.25 of the

tUo/6* = 75

50

25

tUo/S* = 75

50

25

_ __

2g



Chapter 6

Concluding Remarks

Traditional study of the transition have assumed that only the long-term behavior of

unstable T-S waves are important in determining transition and that the transient

behavior can be disregarded. However, examination of the three-dimensional nature of

the evolution of a disturbance have shown that transient energy growth of two or three

orders of magnitude can occur even when linear theory predicts decay. This quick and

large energy growth can immediately lead to non-linear interactions and subsequent

breakdown to turbulent flow. In order to completely understand the mechanism of

transition, this phenomenon can not be disregarded, making it necessary to examine

both the transient and the long-term evolution of disturbances. In addition, unlike

the traditional stability theory where the streamwise T-S waves are most important,

we find that these waves actually has the least energy growth, while waves that creates

the most energy are those in the crossflow or the spanwise direction. This requires us

to examine the mechanism of transition from a totally different angle.

We have shown that substantial transient growth is possible in boundary layer

flows and that it has a mechanism identical to that of the Poiseuille flow. Like

the transient growth in channel flow, it is strongly dependent on initial conditions,

attaining the largest energy growth when the initial vertical vorticity is equal to zero.

In addition, largest energy growth is obtained when a is equal to or close to zero, and

is O(Re2 ).

However, unlike the Poiseuille flow which has discrete a = 0 modes, there is no



discrete a = 0 mode for the Blasius boundary layer, due to the fact that the flow

is unbounded in the free stream. Since a = 0 disturbance is composed entirely of

continuous spectrum modes, this flow can not be examined using discrete modes. In

addition, the numerical scheme is not suitable for examining the continuous spectrum

modes since there is only a finite number of collocation points in the free stream. Even

for three-dimensional flows, calculation of the a = 0 mode is difficult since the discrete

mode could not be obtained accurately. Therefore, direct comparison with results for

Poiseuille flow was not possible. However, a rough estimate based on an arbitrary

initial condition was given and showed good agreement with the expected results.

Examination of temporal evolution of various modes shows that the initial vorticity

growth is nearly linear until it reaches a maximum and then decays or grows at the

same rate as the velocity. The maximum energy growth depends mainly on three

parameters; the initial growth rate of the vorticity, the ratio of the vorticity and

velocity energy in the eigenfunction, and the exponential decay rate. It was possible

to make predictions of the energy growth using the eigenmodes and the eigenfunctions

of the least damped modes, which showed good agreement with calculated results.

The introduction of crossflow does not change the basic nature of the transient

growth. For flow with small crossflow, the effect of crossflow is to change the de-

cay rate of the flow and thus change the maximum energy growth obtained for a

particular wave. However, unlike the Blasius boundary layer where the least stable

wave and the wave that exhibit larger transient growth were completely separate,

for three-dimensional flow with larger crossflow, the least stable wave which is in the

crossflow direction is also the wave that causes the largest transient growth. This re-

sult in formation of streamwise streak-like regions of high- and low-speed flow, which

intensifies as the disturbance evolves downstream. This can lead to the distortion of

the mean flow, which is a feature commonly observed in transition on swept wings.

Examination of the transient energy growth can add greatly to understanding of

transition, especially those due to three-dimensional disturbances such as a localized

isolated imperfection on wing surface or surface roughness. In addition, we also see

that they have strong resemblance to the flow structure of the secondary instability,



which is characterized by spanwise variation of the mean flow due to streamwise

vortices. For two-dimensional flows, the streamwise vortices have been assumed to be

secondary in nature, generated by non-linear interactions between the mean flow and

various waves. However, we have shown that this streamwise streak-like phenomenon

can occur linearly as primary mechanism with substantial energy amplification. While

this thesis have concentrated on laminar flows, we can also compare and possibly

extend the results to turbulent flows, where streamwise streaks-like regions of high

and low velocity are observed.

The system of equations and the method for numerical integration presented

should be adaptable to variety of cases. Some possibilities include examining the

evolution of disturbance for different boundary conditions, mean flow profiles, and

initial conditions. The boundary conditions for the wall can be changed to simulate

suction, blowing, or different wall configurations, such as a wavy wall. The mean flow

profile can be modified for other kinds of three-dimensional flow such as boundary

layer on a rotating disk, or an arbitrary three-dimensional boundary layer flow. Since

the transient growth is strongly dependent on the initial condition, use of such initial

conditions such as the optimal perturbations obtained by Butler and Farrell [3] may

provide additional insights into transition.

While results similar to other kinds of flow have been obtained (notably Henning-

son [10] and Gustavsson [9]), they remain incomplete due to the fact that the a = 0

mode which is so important in the Poiseuille flow could not be examined exactly.

This requires a better understanding of the continuous spectrum modes, which was

not possible with the method used in this work. However, even the results for dis-

crete modes with non-zero a show that this transient growth can be an important

part of transition especially in three-dimensional boundary layers. While the under-

standing of the phenomenon of transition have come a long way from a century ago,

it is clear that there is still very much more to be understood. In order to further

understand this phenomenon, not only must we understand the behavior of the basic

two-dimensional waves, but we must also examine and understand the transient and

three-dimensional nature of disturbances in more details.



Appendix A

Details of Derivations

A.1 The Orr-Sommerfeld and the Squire

tions

The non-dimensional linearized viscous three-dimensional equations of motion are:

ut + Uu, + Uv + Wu,

vt + Uv, + Wv,

wt + Uw, + Wv + Wwz

1

1
= -pV + -Vv,Re

1
= - Re w,

(A.1)

(A.2)

(A.3)

while the continuity requirement gives:

(A.4)

After taking the Fourier transform of all four equations in the x- and z-direction, we

have:

[a + iaU + iP -
at

[- + iaU + iW -
at

1 d2( - k')]L + U'
Re Oy U

1 a2
e( - k 

Re y2

equa-

U, + vY + wZ = 0.

= -iaq,

Oy

(A.5)

(A.6)



S+ iaU + ipW - 0- _k 2 )] + W' = -i, (A.7)
5t Re ay2

iaf + ~, + ip1 = 0, (A.8)

where a tilde represents a transformed quality. a is the streamwise wave number, 3

the spanwise wave number and k2 = a 2 + 32. From these equations, the transformed

pressure is derived:

1 8 1 a2
S- 1[i(aU + 3W')Z - { + iaU + iOW - ( - k)}]. (A.9)

-

k2 )t 

Re 

9y2

After taking the y-derivative of (A.9) and substituting into (A.6), we obtain:

a a2  1 02 _ k2)2f = 01

[ + i(aU + pUW)]( - k')~ - i(aU" + #W")f - ( - k) = 0, (A.10)
a U -2 

Re ay2

which is the Orr-Sommerfeld equation.

However, we would also like to observe the behavior of the horizontal velocities as

well. These can be obtained as follows:

0 1 0 k2 )]
S+ i(aU + pW) - ( -k)]0t Re 5y2

aP l 02 i1 02
=( W U')i + i-[ + i(aU + pfW) - e (y - k 2 )]Y, (A.11)

k2 k2 2 y2

[ + i(aU +) W) - ( - k)](
5- RRe y

= (T2 ' W') + [ + i(aU + pW) - - k2)]i. (A.12)
C2 kC2 k2 Re 8y2

We can simplify these equations by rotating the horizontal axis and aligning them

with the wave vectors designated by a and P. It is obvious that one is proportional

to the vertical vorticity, i, and the other is proportional to v, from (A.8):

= i(Pui - ati), (A.13)

i, = -i(aii + Oz ). (A.14)



Applying this transformation to the equations, we obtain:

0 1 82
[ + i(a + pW) - R -1y2 k)] = i(aW' - 3U'), (A.15)
I t Re Oy2

which is the Squire equation.

The original velocity components can be obtained from i and i, as follows:

f= z - j), (A.16)

fV = -(a + (A.17)

A.2 Falkner-Skan-Cooke transformation

J. C. Cooke [4] extended the Falkner-Skan transformation to flows over an infinite

yawed wedge. The coordinate system is defined as follows: i-direction is parallel to

the wedge and normal to the leading edge; (-direction is also parallel to the wedge

surface and tangent to the leading edge. The flow over the wedge is divided into two

components, UC in the i-direction and We in the (-direction. Uc can be examined in

the same manner as the normal Falkner-Skan transformation, where the velocity of

the inviscid flow outside the boundary layer is given by;

U, = Uoo() m . (A.18)

Since there is no pressure gradient in the C-direction;

Wi = Wo0 , (A.19)

where Ui, W, and the local sweep angle between the direction of the inviscid flow

and the chord direction, 0, satisfies the following equation:

iW = tan ¢. (A.20)
Ui



Note that if Weo = 0, this reduces to the two-dimensional case.

We define the variable as follows:

(m + 1)U 1/2
2 = [ ] y, (A.21)
2V

Uc(7) = Uf'(77), (A.22)

W(77) = Wg(r). (A.23)

Using these variables and dropping the quadratic terms, the boundary-layer equations

reduce to the following differential equations. g drops out of the equation for the

flow in the i-direction, and the first equation becomes the familiar equation for the

Falkner-Skan transformation, while the second equation is dependent on both f and

g:

f" + ff" + H(1 - f 2 ) = 0, (A.24)

g" + fg' = 0, (A.25)

2m
H = (A.26)

m+1'

where H is the Hartree parameter, or 1/7r of the wedge angle. The boundary condi-

tions are:

f = f' = g = 0 when 7 = 0, (A.27)

f' -4 1, g --- 1 as 77 -- 00. (A.28)

These equations were solved using Newton-Raphson method with 200 points in the

y-direction.

We can use f' and g to construct the streamwise and crossflow velocity compo-

nents. The mean flow profile U(y) and W(y) is given by;

U(77) = f'(77) cos2  + g(7) sin 2 , (A.29)

W(71) = [-f'(rq) + g()] cos sin . (A.30)



It is obvious that W(77) have the same shape regardless of 0b, with maximum crossflow

velocity at 0 = 45". However, U(77) has a different shape depending upon b. For

4' = 00, u(77) = f'(77); for 4b = 900, u(77) = g(77).

The results were non-dimensionalized using 5* calculated from U(r) for use in

numerical calculation.
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Appendix B

Program Listings

The program listed is for calculating the evolution of a localized disturbance in three-

dimensional boundary layer, showing all necessary steps for the computation. The

program for examining individual Fourier modes was not given as it is very similar.

The subroutine given is common to all the programs, and is used for reading in the

boundary layer data and calculating the value at each Chebyshev collocation point.



program localizeddisturbance

c
c
c -- This program calculate the evolution of a localized

c -- disturbance. The Fourier modes are integrated independently.

c -- The Orr-Sommerfeld and the Squire equations are integrated

c -- using LU method. The velocity and vorticity functions are

c -- decomposed using Chebyshev polynomials.

c -- The initial condition is two pairs of counter rotating

c -- vortices, but this can be modified very easily.

c

c -- Original program by Prof. K.S. Breuer, modified for viscosity,

c -- three-dimensional boundary layers, and Chebyshev approximation.

c

implicit none

integer nyd

real el, ell, el12, e13, pi, re

parameter (nyd=64, pi=3.1415926535, re=950.0)

parameter (e115.0, el2= 1.2, e13=6.0)

real*8 yy(0:nyd), blO(0:nyd), bll(O:nyd), bl2(0:nyd)

real*8 cfO(0:nyd), cfl(0:nyd), cf2(0:nyd), ymax

real u(O:nyd), up(0:nyd), upp(0:nyd)

real tt(0:nyd, O:nyd, 0:4), r(0:nyd), s(0:nyd)

real q(0:nyd,0:nyd), d(0:nyd,0:nyd), dd(0:nyd, O:nyd)

integer indxi(0:nyd), indx2(0:nyd), indx3(0:nyd)

complex*8 pc(0:nyd,0:nyd), qc(0:nyd,0:nyd), rc(0:nyd,0:nyd)

complex*8 sc(0:nyd,0:nyd), basc(0:nyd,0:nyd)

complex*8 vorp(0:nyd), vnp(0:nyd), vp(0:nyd)

complex*8 vn(0:nyd), vor(0:nyd), ci, dummy

real alpha_min, beta_min, alpha, beta, ak

real elx, elz, al, bl, dy, d2, d4, y, y2

real dt, t, tmax, tstart, fac, step

integer i, j, k, ia, ib, id, iy, ny, na, nb, inread

real fpread

character*8 filein, fileout

logical restart, iver

ci = cmplx(0.0, 1.0)
c
c

C --

if (iver('Start from T=0O ? '))then

restart = .false.

5 ny = inread('Points in y direction [max 64] ')



if (ny .gt. nyd) goto 5
el = 1.0

c el = fpread('Mapping factor 1')
ymax = dble(el)
call setup(ny, yy, blO, bli, b12, cfO, cfl, cf2, ymax)
na = 32

c 15 na=inread('Number of alpha to calculate [max 64]')
c if (na .gt. 64) goto 15

elx = 200.0
c elx=fpread('Box length ')

alphamin=2.*pi/elx
nb = 16

c 25 nb=inread('Number of beta to calculate [max 64]')
c if (nb .gt. 64) goto 25

elz = 50.0
c elz=fpread('Box width ')

beta_min=2.*pi/elz
tstart = 0.0

else
restart=.true.
call stread('Name of restart file ',filein)
open(unit=2, file=filein, status='old', form='unformatted')
read(2) na, nb, elx, elz
read(2) dt, tstart, ny, el

ymax = dble(el)
call setup(ny, yy, blO, bli, b12, cfO, cfl, cf2, ymax)
write(6,*)'Starting time ',tstart
write(6,*)
call prtint('# of Alpha ',na)
call prtint('# of Beta ',nb)
write(6,*)'Box length ',elx

write(6,*)'Box width ',elz
alpha_min=2.*pi/elx
beta_min=2.*pi/elz

endif
c

c
dt=fpread('Time step ')
tmax=fpread('Max time to integrate to ')
write(6,*)
write(6,*)'Alpha min ',alphamin

write(6,*)' max ',na*alpha-min

write(6,*)'Beta min ',beta_min
write(6,*)' max ',nb*beta_min



35 call stread('Name of output file ',fileout)

if (fileout .eq. filein) goto 35

c

open(unit=l,filefileout,status='unknown' ,form='formatted')

rewind(1)
write(1,*) na, nb, ny, el
write(l,*) dt, tmax, elx, elz

write(6,*)

write(6,*)na, nb, alphamin, betamin, dt, tmax, ny

c

c -- Set up Chebyshev polynomials matrix T and its derivatives

c

do k = 0, ny

do j = 0, ny
tt(j,k,0) = cos(j*k*pi/ny)

enddo

enddo

c

do id = 1,4

do j = 0, ny
tt(j,0,id) = 0.0
tt(j,1,id) = tt(j,0,id-1)

tt(j,2,id) = 4. * tt(j,1,id-1)

do k = 3, ny
tt(j,k,id) = 2.*k*tt(j,k-1,id-1) + k*tt(j,k-2,id)/(k-2)

enddo

enddo

enddo
c

c -- Set up the base matrix for decomposition to coefficients
c

do k=0,ny
do j = O,ny

basc(j,k) = cmplx(tt(j,k,0), 0.0)
enddo

enddo

call c_ludcmp(basc, ny+1, nyd+1, indx3, dummy)

c

c -- Loop through the wave numbers...Main part

c

do ia=1,na

alphpha=phamin*ia
do ib=l,nb*2

beta=beta-min*(ib-nb)



ak = sqrt(alpha**2 + beta**2)

write(6,200) ia, ib, alpha, beta, ak

C

c -- Set the velocity profiles -- up is set up differently

c

do j = 0, ny
u(j) = alpha*sngl(blO(j))+beta*sngl(cfO(j))
up(j) = beta*sngl(bll(j))-alpha*sngl(cfl(j))
upp(j) = alpha*sngl(bl2(j))+beta*sngl(cf2(j))

enddo

C

c -- First get the initial velocity.

c

if (restart) then

do i = O,ny

read(2,*) fac, vn(i)
read(2,*) vp(i), vor(i)

enddo
else

c

c -- Generate initial velocity using two pairs of

c -- counter-rotating vortices. This portion can easily be

c -- replaced with any initial condition.

c
al = alpha*ell

bi = beta*el3

fac = -al*bl*exp((-al**2 - bl**2)/4.0)

do j = O,ny-1
y = sngl(yy(j))/el2

y2 = y*y

if (y2 .it. 50.0) then

vn(j) = fac * ci * bi * exp(-y2) * y**3

vor(j) = -fac*ci*al * exp(-y2) * y2*(3.0-2.0*y2)

else

vn(j) = cmplx(O.0, 0.0)

vor(j) = cmplx(O.0, 0.0)
endif

enddo

vn(ny) = cmplx(0.0,0.0)
vor(ny)= cmplx(0.0,0.0)

call c_lubksb(basc, ny+1, nyd+1, indx3, vn)

call clubksb(basc, ny+1, nyd+1, indx3, vor)

endif

c
c -- Assemble the solver matrix



do k = 0, ny
do j = 1, ny-i

fac = (cos(j*pi/ny)+l)/2
d2 = 4*fac**3 * (fac*tt(j,k,2) + tt(j,k,l)) /el/el
d(j,k) = d2 - ak**2 * tt(j,k,0)

d4 = (16*fac**5) * (((fac*tt(j,k,4)+6*tt(j,k,3))*
& fac+9*tt(j,k,2))*fac+3*tt(j,k,i)) / el**4

dd(j,k) = d4 - 2 * ak**2 * d2 + ak**4 * tt(j,k,0)

enddo
enddo

do j = 1,ny-1

r(j) = dt*u(j)/2.0

s(j) = dt*upp(j)/2.0
enddo

do k = 0, ny

do j=i, ny-i
q(j,k) = r(j)*d(j,k) - s(j)*tt(j,k,O)

enddo
enddo

c

c -- Viscosity factor. For inviscid case, set this to 0

c fac = 0.0
fac = dt / re / 2.0

c

c -- Assemble the left hand and right hand sides for vn (velocity)

c
do k 0= , ny

do j = 1, ny-1

pc(j,k) = cmplx(d(j,k) - fac*dd(j,k), q(j,k))

qc(j,k) = cmplx(d(j,k) + fac*dd(j,k), -q(j,k))
enddo

c

c -- Boundary conditions v = v' = 0 at y = 0, and y = infinity

c

pc(0,k) = cmplx(tt(0,k,0), 0.0)

pc(n,k) = cmplx(tt(0,k,1), 0.0)

pc(ny-1,k) = cmplx(tt(ny,k,0), 0.0)

pc(ny,k) = cmplx(tt(ny,k,i), 0.0)

qc(0,k) = cmplx(O.O, 0.0)

qc(l,k) = cmplx(0.0, 0.0)

qc(ny-i,k) = cmplx(0.0, 0.0)

qc(ny,k) = cmplx(0.0, 0.0)
enddo



c -- Assemble the matrices for solving vor (vorticity)
c

do k = O,ny
do j = 1,ny-1

rc(j,k)=cmplx(tt(j,k,0)-fac*d(j,k) ,r(j)*tt(j ,k,0))
sc(j,k)=cmplx(tt(j,k,O)+fac*d(j ,k),-r(j)*tt(j,k,0))

enddo
enddo

c

c -- Boundary conditions vor = 0 at y = 0 and y = infinity
c

do k = O,ny

rc(0,k) = cmplx(tt(O,k,O), 0.0)
rc(ny,k) = cmplx(tt(ny,k,O), 0.0)

sc(O,k) = cmplx(0.0, 0.0)
sc(ny,k) = cmplx(0.0, 0.0)

enddo
c

c -- Iterate in time.

c
t = tstart

c

c -- The initial LU decomposition for the 0-S and Squire

c -- equations matrices

c

call c_ludcmp(pc, ny+1, nyd+1,
call c_ludcmp(rc, ny+1, nyd+1,

do while(t .it. tmax)
t = t + dt

indxl, dummy)

indx2, dummy)

c -- Calculate coefficients vnp (velocity) with LUD matrix pc
c

do j = 0, ny
vnp(j) = cmplx(0.0,0.0)
do k = 0, ny

vnp(j) = vnp(j) + qc(j,k) * vn(k)

enddo
enddo

c

c -- LU back substitution of the O-S equation

c

call clubksb(pc, ny+1, nyd+1, indxl, vnp)

c
c -- Calculate coefficients vorp (vorticity) with LUD matrix rc
c



do j = 0,ny
vorp(j) = cmplx(0.0,0.0)
do k = O,ny

vorp(j) = vorp(j) + sc(j,k) * vor(k) +
& ci*dt*up(j)/2 * tt(j,k,O) * (vn(k)+vnp(k))

enddo

enddo
c

c -- LU back substitution of the Squire equation

c

call c_lubksb(rc, ny+1, nyd+1, indx2, vorp)
c

c -- Put in the new values

c
do j = O,ny

vn(j)=vnp(j)

vor(j)=vorp(j)
enddo

enddo
c

c -- end of time iteration

c

c -- Calculate the actual derivative of velocity v'

c

do j = O,ny
fac = -2.0*((cos(j*pi/ny)+1.0)/2.0)**2/el
vp(j) = 0.0

do k = O,ny

vp(j) = vp(j) + vn(k)*fac*tt(j,k,1)
enddo

enddo
call c_lubksb(basc, ny+I, nyd+1, indx3, vp)

c
c -- Write array to disk

c

do j = O,ny
write(l,*) j, vn(j)

write(i,*) vp(j), vor(j)
enddo

enddo

enddo

close(1)

close(2)

200 format('IA: ',i3,' IB: ',i3,' Alpha: ',f6.2,

73



& ' Beta: ',f6.2,' K: ',f6.2)

end



subroutine setup(n, ynew, blO, bli, b12, cfO,cfl,cf2,ybl)
C

c -- This subroutine read in the mean streamwise and crossflow
c -- velocity profile and give them back at Chebyshev collocation
c -- points.
c

double precision pi

integer nyd, nmax
parameter (nyd = 128,nmax=200,pi=3.141592653589793d0)

real*8 ynew(O:nyd), blO(O:nyd), bll(O:nyd), bl2(0:nyd)

real*8 cfO(O:nyd), cfl(O:nyd), cf2(0:nyd), ybl

real*8 qb(O:nmax), qc(O:nmax), qd(O:nmax)

real*8 qe(O:nmax), qf(O:nmax)

real*8 templ(O:nmax), temp2(0:nmax), temp3(0:nmax)

real*8 y(O:nmax), yy, bmin, bmax, umax, ymax

real*8 sxi, phi, el

real*8 dquintint

integer i, k, j, n, ny
character filein*20

c
if (n .gt. nyd) then

write(*,*) 'nyd too small in setup subroutine'
stop

endif

el = ybl
c -- read in the Blasius profile

open(unit=2, file='Info', status='old', form='formatted')
read(2,*)

read(2,*) filein
close(2)

c

c write(6,*) filein
open(unit=1,file=filein,status='old',form='formatted')
read(l,*) ny

c write(6,*) 'number of points ',ny
do i = 0, ny

read(1,*) y(i), templ(i), temp2(i), temp3(i)

enddo
c

c -- Normalize the profile

umax = O.OdO

ymax = O.OdO

do k = 0, ny
umax = max(umax, tempi(k))



ymax = max(ymax, y(k))
enddo

c

c -- Fit a quintic spline to the velocity profile

call dquinat(ny+l, y, tempi, qb, qc, qd, qe, qf)
c -- Interpolate to Chebyshev points

do k = 0, n-1
sxi = dcos(k*pi/n)

yy = min(ymax, el * (i - sxi) / (1 + sxi))
blO(k) = dquintint(yy, ny+i, y, tempi,

$ qb, qc, qd, qe, qf)/umax

ynew(k) = min(k*i.0d5, el * (1 - sxi) / (1 + sxi))

enddo

blO(n) = d_quintint(ymax, ny+1, y, tempi,
$ qb, qc, qd, qe, qf)/umax

ynew(n) = n*1.Oe5

c
c -- First derivative

call dquinat(ny+l, y, temp2, qb, qc, qd, qe, qf)
do k = 0, n-1

sxi = dcos(k*pi/n)

yy = min(ymax, el * (1 - sxi) / (1 + sxi))

bll(k) = dquintint(yy, ny+1, y, temp2,
$ qb, qc, qd, qe, qf)/umax
enddo

bll(n) = d_quintint(ymax, ny+1, y, temp2,

$ qb, qc, qd, qe, qf)/umax

c
c -- Second derivative

call d_quinat(ny+i, y, temp3, qb, qc, qd, qe, qf)
do k = 0, n-1

sxi = dcos(k*pi/n)

yy = min(ymax, el * (I - sxi) / (I + sxi))
b12(k) = d_quintint(yy, ny+1, y, temp3,

$ qb, qc, qd, qe, qf)/umax
enddo

bl2(n) = d_quintint(ymax, ny+1, y, temp3,
$ qb, qc, qd, qe, qf)/umax

c

c -- read in the crossflow profile

read(1,*)

do i=O0,ny

read(l,*) y(i), tempi(i), temp2(i), temp3(i)

enddo

close(i)



c -- Fit a quintic spline to the velocity profile
call dquinat(ny+1, y, tempi, qb, qc, qd, qe, qf)
do k = 0, n-i

sxi = dcos(k*pi/n)
yy = min(ymax, el * (I - sxi) / (1 + sxi))
cfO(k) = d_quintint(yy, ny+1, y, tempi,

$ qb, qc, qd, qe, qf)/umax
enddo

cfO(n) = d_quintint(ymax, ny+1, y, templ,

$ qb, qc, qd, qe, qf)/umax

c -- First derivative

call d_quinat(ny+1, y, temp2, qb, qc, qd, qe, qf)
do k = 0, n-1

sxi = dcos(k*pi/n)

yy = min(ymax, el * (1 - sxi) / (1 + sxi))

cfi(k) = d_quintint(yy, ny+1, y, temp2,
$ qb, qc, qd, qe, qf)/umax
enddo

cf1(n) = dquintint(ymax, ny+1, y, temp2,

$ qb, qc, qd, qe, qf)/umax

c -- Second derivative

call dquinat(ny+l, y, temp3, qb, qc, qd, qe, qf)

do k = 0, n-i
sxi = dcos(k*pi/n)

yy = min(ymax, el * (I - sxi) / (1 + sxi))
cf2(k) = dquintint(yy, ny+1, y, temp3,

$ qb, qc, qd, qe, qf)/umax
enddo

cf2(n) = d_quintint(ymax, ny+I, y, temp3,
$ qb, qc, qd, qe, qf)/umax

c
return

c
end
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