
REAL-TIME TRAJECTORY OPTIMIZATION
USING A CONSTRAINED GENETIC ALGORITHM

by

Paul G. van Deventer

B.Ing Universiteit van Stellenbosch (1990)

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the

Degree of

Master of Science
in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology
June 1993

(Massachusetts Institute of Technology 1993
All rights reserved

Signature of Author:

DepQrtment of Aeronautics and Astronautics
April 13, 1993

Certified by:

Professor Wallace E. Vander Velde
Thesis Supervisor

Department of /*ronautics and Astronautics

Accepted by: * "

Professor Harold Y. Wachman
Chairman, Department Graduate Committee

Aero
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

[JUN 08 1993
LIBRARIES

REAL-TIME TRAJECTORY OPTIMIZATION
USING A CONSTRAINED GENETIC ALGORITHM

by

Paul G. van Deventer

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics at the

Massachusetts Institute of Technology

Abstract
The efficiency of the optimization algorithm used in a mission planning system

must be interpreted in terms of the real-time nature of the system. Continuity of
commands requires that a solution be available before the aircraft reaches the next
waypoint. Furthermore, the flight control commands and the flight path are respec-
tively constrained by the aircraft dynamics and trajectory objectives. It is therefore
essential to have an algorithmic structure that will rapidly produce a solution within
these constraints and also allow for further improvement if time permits. This the-
sis investigates genetic algorithms as an alternative optimization procedure in the
flight trajectory planner to enhance the real-time algorithmic efficiency. The effect
of the control variables on the performance of the genetic algorithm is investigated.
A comparison is also done between the real-time performance of the optimal genetic
algorithm and the Broyden-Fletcher-Goldfarb-Shannon minimization routines used
previously.

Thesis leader: Prof. Wallace E. Vander Velde

Title: Professor of Aeronautics and Astronautics

Massachusetts Institute of Technology

, 1

Acknowledgments

I would like to express my gratitude to Prof. Vander Velde for the opportunity

to work on this project. It was a pleasure to work under his guidance.

Many thanks to Mauritz for his valuable help with MATLAB, but mostly for his

support and friendship.

To my friends; Kyle, James, Matt and Eric, thanks for making life at MIT

enjoyable.

I am also indebted to my family, especially my grandparents, for their moral and

financial support.

Lastly a special thanks to Cobus and Daan for showing me the meaning of true

friendship.

Contents

Abstract

Acknowledgments

Glossary

1 Introduction

2 Problem Formulation

2.1 Mission Planning System

2.2 Flight Control System and Vehicle Dynamics

2.3 Threat Function and Trajectory Risk

13

S. . 13

. . . 17

.. . 21

3 The Genetic Algorithm 23

3.1 Introduction 23

3.2 Basic Genetic Algorithm 25

3.3 Mathematical Foundation of Genetic Algorithm 27

3.3.1 Schemata- An Introduction 27

3.3.2 The Fundamental Theorem 30

3.4 The Parallel Genetic Algorithm 32

4 Flight Trajectory Planning using Genetic Algorithms

4.1 Flight Control Commands Modeling . .

4.1.1 Chebyshev Polynomials

4.1.2 Filtered Piecewise Constant

4.1.3 Gray Code vs. Binary Code

4.1.4 Initialization of Population

4.2 Reproduction

4.2.1 Fitness Function

4.2.2 Selection

4.3 Constrained Optimization

4.3.1 Flight Control Commands

4.3.2 Search Space

4.4 Crossover, Mutation and Population Size .

5 Results

6 Conclusions

6.1 Sum m ary .

6.2 Recommendations

. 33

. 49

-_- _-

-- -

List of Figures

2.1 Structure of the MPS 15

2.2 Two-waypoint trajectory extension and concatenation 16

2.3 Aircraft body axis system and inertial axis system 19

2.4 Bound on roll angle 21

3.1 The effectiveness of different search algorithms over different problem

types. 25

3.2 The basic genetic algorithm cycle. 27

3.3 The crossover operator 28

3.4 The mutation operator 29

4.1 Coding of the Chebyshev coefficients as a genotype (chromosome

length I = 4) 35

4.2 Modeling the flight control commands using Chebyshev polynomials. 37

4.3 Coding of filtered piecewise constant command as a genotype (chro-

mosome length I = 4). 38

4.4 Modeling the flight control commands using filtered piecewise con-

stant values .. 39

4.5 Typical member of initial population obtained using the random fil-

tered piecewise constant method . 41

4.6 Typical member of initial population obtained using the Chebyshev

polynomial and sampling method. 42

4.7 Linear fitness scaling without adjustment for negative fitness values

(Cmult = 2) 45

4.8- Linear mapping of roll angle between CDmin and Dcmx. 47

4.9 The two point crossover operator 50

4.10 Average off-line performance of the genetic algorithm as a function

of crossover probability. 52

4.11 Average off-line performance of the genetic algorithm as a function

of mutation probability. 53

4.12 Average off-line performance of the genetic algorithm as a function

of population size 54

4.13 Average off-line performance of the genetic algorithm as a function

of total number of trajectory evaluations. 55

5.1 Result of genetic algorithm optimization of test segment 1. 58

5.2 Result of genetic algorithm optimization of test segment 2. 59

5.3 Result of genetic algorithm optimization of test segment 3. 60

5.4 Result of genetic algorithm optimization of test segment 4. 61

5.5 Flight control commands for different values of maximum normal ac-

celeration. 62

5.6 Flight trajectories for different values of maximum normal acceleration. 63

5.7 Evolution of the best constrained solutions available to the FCS for

test segm ent 1 64

Evolution of the best constrained solutions available to the FCS for

test segment 3 65

List of Tables

3.1 Comparison of natural and artificial genetic algorithm terminology. . 26

4.1 Comparison between Gray coded and binary coded integers 40

4.2 Off-line performance of the genetic algorithm shown as the average

maximum fitness of 240 experiments using 4 different problems. . . . 51

Glossary

anc

an

e

V

Vnom

a

XE, YE, ZE

XA, YA, ZA

, vy, z

a, ao, az

Znom

ran

9

normal acceleration command

normal acceleration

roll angle command

roll angle

pitch angle

yaw angle

aircraft velocity vector

nominal aircraft velocity

angle of attack

sideslip angle

earth reference frame axes

aircraft reference frame axes

aircraft position in earth reference frame

aircraft velocity in earth reference frame

aircraft acceleration in earth reference frame

nominal aircraft altitude

time constant of normal acceleration channel of FCS

time constant of roll angle channel of FCS

acceleration due to gravity

T(x,y) threat function

Ji trajectory risk

Jceil constant

'i threat intensity

s distance along trajectory

t time

ti initial time of segment

tf final time of segment

k bit position

I string length

n population size

H schema

m(H, t) number of instances of a schema

o(H) schema order

b(H) schema length

A population

Ai string

Ti Chebyshev polynomial

A normalized time

c vector of Chebyshev coefficients

ci Chebyshev coefficient

Fi raw string fitness

Fi* scaled string fitness

Cmit fitness scaling multiplier

Ei expected value of a genotype

Pc probability of crossover

Pm probability of mutation

Ps probability of crossover survival

At time interval

w, sampling frequency

Chapter 1

Introduction

As the sophistication and performance of modern flight vehicles increases, so does

the demand to lighten pilot workload by autonomous control systems. It is possible

that artificial intelligence and modern control methods will soon regulate all the

flight operations and allow pilots to concentrate all their efforts on mission related

tasks.

This research has its foundation in a mission planning system (MPS) which is

under development at the Charles Stark Draper Laboratory. The purpose of the

MPS is to alleviate the workload of the pilot by generating flight control commands

which integrate to an optimal flight path, subject to certain objectives. These objec-

tives are modeled by a database which includes geographic waypoints, natural and

man-made threats, and constraints imposed on both the flight control commands

and the flight path.

Because of the dynamic nature of most of these objective variables it is necessary

for the database to be time-variant. This requires the flight control commands

to be generated in real-time. In the research done by Walker [9] a method was

presented by which the flight control commands were optimized using a gradient-

based, constrained, nonlinear optimization technique.

Although the optimization did converge it was a computational-intensive proce-

dure. Another disadvantage was that the best set of control commands at an arbi-

trary time during the optimization, such as the time when the solution is needed in

real-time operation, were not necessarily within the specified constraints. This was

a result of the iterative method used to enforce the constraints.

The purpose of this research is to investigate how a genetic algorithm can be

implemented in the MPS as a search procedure to achieve better performance and

make it more realizable. Genetic algorithms are search procedures which are mod-

eled after natural selection. The underlying premise of these algorithms is that the

optimal solution to a search problem can be evolved from a population of potential

solutions. Genetic algorithms are well suited to the control commands optimization

problem because of the following:

* Genetic algorithms do not rely on derivatives or gradients. It is therefore

a highly robust search procedure which is well suited to the discontinuous

search space of the control commands optimization problem. Because it is not

necessary to calculate derivatives, it also leads to less computations.

* The constraints on the control commands and associated trajectories can be

enforced such that the best set of control commands available at any arbitrary

time during the optimization are within bounds.

* Genetic algorithms are highly parallelizable. This allows the computation time

of the optimization to be greatly reduced while still achieving the same level

of convergence.

This thesis addresses the implementation of a genetic algorithm in the MPS to

achieve robust performance characteristics and computational efficiency. Different

methods of modeling the flight control commands and different variants of the ge-

netic algorithm operators are investigated. A statistical analysis of the stochastic

genetic algorithm control parameters is also done to realize optimal performance.

Chapter 2

Problem Formulation

2.1 Mission Planning System

The MPS is a three-part flight vehicle mission planning system which formulates

optimal strategies in order to accomplish specific mission-imposed goals using a de-

tailed database of objective and threat information which is continuously updated.

At the highest level of the MPS is the goalpoint planner (GP). It's function is to

generate a sequence of intermediate goals and geographic locations along with asso-

ciated time and energy constraints to accomplish given mission objectives. At the

next level of the MPS is the high-level trajectory planner (HLTP). Using knowledge

of operational facilities, weather systems, and major threat concentrations, which

can be man-made or natural, the HLTP identifies a maximum survivability flight

path such that the intermediate goals and associated time and energy constraints

are met while avoiding major threat concentrations. The flight path is character-

ized by waypoints of a nominal separation determined by the vehicle operating mode

characteristics, such as speed, altitude, and turning radius. Associated with each

set of waypoints are:

* A time constraint which is consistent with the high-level constraints on time

and energy generated by the GP.

* A set of nonzero capture radii. The values of the capture radii are measures

of how close the final trajectory should pass to the respective waypoints.

* A detailed database of low-level threats to be used in the next level of the

MPS.

The lower level of the MPS consists of the command planner (CP). The pur-

pose of the CP is to generate flight control commands such that the trajectory will

minimize the risk associated with the low-level threat database while satisfying the

waypoint restrictions listed above. Since the nonlinear dynamics of the flight vehicle

and its control system are embedded in the evaluation of the risk function (given in

Equation 2.22) it provides a platform on which the flight vehicle limitations are rec-

ognized from the outset at the expense of having to optimize complex, constrained,

nonlinear equations. A diagram of the MPS structure is given in Figure 2.1.

Because both the mission objectives and threat information available to the

HLTP are time-varying, the solution must be updated as rapidly as possible. Each

time an update becomes available a new solution is generated and replaces the old

one. It is assumed that the environment does not change appreciably in the time

it takes the vehicle to cover the distance between two waypoints. It will therefore

be sufficient to compute a new solution each time the vehicle passes a waypoint.

A look-ahead of two waypoints is assumed. The commands segment will normally

be executed to its point closest to the first waypoint, at which it will be discarded

for the new commands segment which spans the next two waypoints. Continuity is

ensured by using the projected flight variables of the flight vehicle at its closest point

to the first waypoint as initial conditions for the solution of the next two-waypoint

commands segment. This method of concatenation of the flight control input com-

mands has the disadvantage of limiting the time available to converge to a suitable

solution, but the resulting trajectories are smoother and without unnecessarily sharp

turns. The process is illustrated in Figure 2.2.

This approach allows the period it takes the flight vehicle to reach the first

waypoint to vary according to the needs of the risk optimization process. As a

result the trajectory can avoid threats at the expense of violating short-term time

constraints. Although low-level time constraints are not enforced, it is possible to

compensate for any errors by updating the HLTP database, forming a feedback loop

which will ensure that mission-imposed constraints on time and energy are met.

GOALP(
PLANN

)INT
INT

1ER

Intermediate Goals

i --,------------

HIGH-LEVEL
TRAJECTORY PLANNER

Coarse Waypoints

Control Commands

FLIGHT
VEHICLE

Figure 2.1: Structure of the MPS

COMMAND
PLANNER

r

!f

dl - d3 : capture radii of waypoints
: concatenated flight path
: trajectory segments
: threats

Figure 2.2: Two-waypoint trajectory extension and concatenation

0

2.2 Flight Control System and Vehicle Dynamics

As stated in Section 2.1 the dynamic behavior of the flight vehicle is an integral part

of the command planner. It is necessary therefore to choose a specific application

for the purpose of the research. To maintain continuity with the work of Walker [9],

the flight environment was chosen based on the characteristics of a military aircraft

operating at low level in a Terrain Following/Terrain Avoidance TF/TA mode. The

following assumptions were made:

* nominal speed : Vnom = 250m/s

* nominal altitude : znom = 200m

* maximum normal acceleration : ancmax = 4g

With the aircraft characteristics defined as above, the minimum turning radius

is approximately 1500 m. The nominal separation between the waypoints supplied

by the HLTP is then taken to be 5000 m. When operating in this flight envelope it

is normal practice to maintain a constant power setting which would be chosen to

meet the time constraints set by the HLTP. Thrust is therefore not considered as

an active control, and the flight control inputs are taken to be normal acceleration

anc and roll angle Ic.

The Flight Control System (FCS) is modeled as a first order lag between each

of the command variables and the corresponding physical quantities as follows:

an ant (2.1)1 + S an

= c (2.2)
1 ± s-

where ra, and re are the time constants associated with the normal acceleration

and roll angle control channels of the FCS.

An important consideration in modeling the FCS is the ability of the aircraft to

follow the optimal trajectory. To this end a more complex model of the FCS will

be preferable. With gradient based optimization methods an increase in complexity

adversely affected the convergence of the solution. Although genetic algorithms

are not dependent on gradients, a simplified model is still preferred because of the

increase in computations involved in evaluating the response of a more complex

model of the aircraft. El Dirani [4] justified the use of the Equations 2.1-2.2 by

showing that the errors resulting from these simple models were of the same order

as those due to air turbulence and could therefore be ignored in the presence of

velocity and position feedback.

The aircraft body axis system (aircraft reference frame) and the inertial axis

system (earth reference frame) are shown in Figure 2.3. For the purpose of this

research the sideslip angle i and angle of attack a are neglected so that the velocity

vector V of the aircraft coincides with the XA-axis in the aircraft body axis system.

The ZE-axis of the inertial axis system points vertically downward, while the XE-

and YE-axes lie in the horizontal plane. The acceleration of the aircraft in the

inertial axis system referred to the normal acceleration in the aircraft body axis

system is given by the following Euler transformation:

a[cos 4 sin O cos I + sin ~ sin 1
ay = an cos D sin 0 sin W - sin 4 cos I (2.3)

az cos 4 cos 0

Substituting Equations 2.1-2.2 in Equation 2.3 leads to the following state equations

for the aircraft and its control system:

i = v, (2.4)

= Vy (2.5)

i = vz (2.6)

v = an(cos (sin O cos I + sin 4Dsin T) (2.7)

y, = an(cos q sin O sin I - sin 4 cos 9) (2.8)

vz, = an(cos 4 cos 0) + g (2.9)
1

an = (ant - an) (2.10)
ran
1

= - 4) (2.11)

where:

S= tan- () (2.12)

0 = sin - (z (2.13)

SV

XE

YE

ZE

Figure 2.3: Aircraft body axis system and inertial axis system

In the previous research both the normal acceleration and the roll angle were

optimized as variable inputs to the FCS. The associated flight paths were functions of

horizontal position x, y and altitude z, where any deviations from a reference altitude

were penalized in the cost function of the optimization algorithm. The resulting

optimal trajectories deviated from the reference altitude by 50-100 m which is not

desirable for the TF/TA flight environment specified where zref = 200 m. Level flight

at a nominal altitude without deviation can be obtained by reducing the trajectory

dimensionality as follows:

Z(O) = Znom (2.14)

VZ = 0 (2.15)

z = 0 (2.16)

Substituting for vz and ivz in Equations 2.13 and 2.9 the normal acceleration becomes

a function of the roll angle:
-gan - (2.17)cos 4

This simplification therefore has the added advantage that it reduces the search

space of flight control commands. The disadvantage is that it places constraints on

the roll angle. These constraints are the following:

* the normal acceleration is a nonlinear function of the roll angle with an infinite

value at P = 900,

* the bound on the normal acceleration.

The bound on the normal acceleration is the more strict of the two constraints on

the roll angle. For a maximum normal acceleration of 4g the roll angle is constrained

to be 1-1 < 750 from Equation 2.17. This constraint is shown in Figure 2.4.

This simplification may not be preferable for other flight environments where it

may be necessary for the flightpath to be a function of altitude: it is used for the

purpose of comparing the performance of genetic algorithms to that of the gradient

based method used previously.

Inertial axis system -ZE

g (max

anmax

horizon

Figure 2.4: Bound on roll angle

2.3 Threat Function and Trajectory Risk

The threat function T(x, y) is a measure of the threat to which the aircraft is exposed

when its position is (x, y). The nature of the threat function is defined by the actual

threat that it represents. A radar installation can be shielded by a mountain and will

result in a threat that is a function of the distance as well as direction of the aircraft

from the threat. The threat data may also be available as tabulated numerical

values in the MPS. The following analytical form of the threat function is adopted

for convenience:

T(x,y) > 0 (2.18)

where (xi, yi) and Fi is the position and intensity of the ith threat respectively.

The risk J associated with an arbitrary trajectory C is defined as the integral of

the threat function with respect to distance along the trajectory:

J = T(x,y)ds (2.19)

The optimal trajectory has the property that it minimizes the associated risk subject

to the constraints defined in Section 2.2.

For a particular trajectory segment over the interval [ti, tf] the risk can be written

as:

J = T[x(t), y(t)] d t (2.20)

where:
1

ds d x 2 dy 2 2 (2.21)
dt [kdt) dt(22

In Section 2.2 it was assumed that the aircraft is flying at a nominal speed which is

constant. Equation 2.20 can thus be simplified to:

J = Vnom j T[x(t), y(t)] dt (2.22)

Some threat distributions may require the trajectory to reach the second (or

final) waypoint in less time than is allowed. Because the modeling of the control

commands is done over a fixed interval [ti, ti +A] there will be a segment of trajectory

that goes beyond the final waypoint. This segment is superfluous and is ignored by

defining the terminal time tf to be the time when the trajectory reaches its point

closest to the final waypoint.

The risk is used in the genetic algorithm to evaluate and compare the fitness of

different population members. Because the optimal trajectory has a minimum risk,

Equation 2.19 can not be used directly as a fitness function in the genetic algorithm

which is a maximization algorithm. The necessary modifications that are made to

the risk function to accommodate the maximization are discussed in Section 4.2.1.

Chapter 3

The Genetic Algorithm

3.1 Introduction

Genetic algorithms are random search algorithms based on the mechanics of nat-

ural selection and natural genetics. They combine survival of the fittest among

string structures with a structured, yet stochastic, information exchange to form a

search procedure that has been theoretically and empirically proven to provide ro-

bust search in complex spaces. To achieve this robustness, genetic algorithms differ

from normal optimization and search procedures in the following ways:

* genetic algorithms work with a coding of the parameter set and not the pa-

rameters themselves,

* genetic algorithms search from a population of points and not a single point,

* genetic algorithms use objective information and not derivatives or other aux-

iliary information,

* genetic algorithms use stochastic operators and not deterministic rules.

Genetic algorithms require that the natural parameter set be coded into a finite-

length string over a finite alphabet. By exploiting the underlying similarities of

the coding, genetic algorithms are largely unconstrained by the limitations (such as

continuity, existence of derivatives etc.) of more traditional optimization procedures.

The robustness of genetic algorithms is largely obtained from the existence of

a population of possible solutions. Instead of searching point to point, genetic

algorithms work from a large database of points, which allows it to perform a number

of searches in parallel and thus reducing the possibility of converging on a local

optimum.

Most of the traditional search techniques are gradient based and as such require

derivatives to be able to climb peaks in the search space. Genetic algorithms only

make use of objective functions to determine the fitness of a particular solution. This

characteristic permits genetic algorithms to search effectively in more complex spaces

where the gradient based search would have broken down. Constraints can also

be incorporated as an integral part of the optimization procedure because genetic

algorithms are not limited by the discontinuities in the search space.

It is important to note that although the transition rules of genetic algorithms

are stochastic, a distinction exists between the randomized operators of genetic

algorithms and other methods that constitute random search. Genetic algorithms

use random choice to guide a directed search. A comparison of the effectiveness of

robust genetic algorithm search and other search methods over different problem

types is shown in Figure 3.1.

Because genetic algorithms are rooted in both natural genetics and computer

science, the genetic algorithm terminology is a mixture of artificial and biological

terms. A short summary of the corresponding terms is given in Table 3.1. This

thesis uses both sets of terminology, giving preference to the phrase that is more

descriptive in the context that it is used.

Section 3.2 describes the basic cycle of a genetic algorithm and the different

genetic operators which are used in each iteration. The derivation of the funda-

mental theorem of genetic algorithms, which is the mathematical foundation of the

convergence properties of genetic algorithms is done in Section 3.3.

W \specialized method

random walk

0
combinatorial unimodal multimodal

PROBLEM TYPE

Figure 3.1: The effectiveness of different search algorithms over different problem

types.

3.2 Basic Genetic Algorithm

The mechanics of genetic algorithms are very simple and consist of nothing more

than copying strings and swapping partial strings. Each string is a coding of the

parameter set of a possible solution in the defined search space. The initial popula-

tion of strings is chosen at random in order to have the maximum genetic diversity.

From this parent population successive generations have to be evolved that improve

over time. This is achieved by using the following three basic operators:

* reproduction

* crossover

* mutation

Natural Artificial

chromosome substring

gene feature or character

allele feature value

locus string position

genotype string

phenotype parameter set, decoded structure

epistasis nonlinearity

Table 3.1: Comparison of natural and artificial genetic algorithm terminology.

Reproduction is a process in which individual genotypes are copied to a mating

pool according to their objective function values. The objective function value (or

fitness) of a genotype is a measure of the characteristic or collection of characteristics

that has to be maximized. The larger the fitness of a particular genotype, the

larger the probability that it will be selected to reproduce in the mating pool.

Genotypes with a very large fitness relative to the average fitness may be selected

more than once. Selection of genotypes is done until the mating pool has n members

(or parents). The mating pool of high-fitness genotypes serves as a transitional

population for further genetic operator actions to create the next generation. A

detailed description of the different phases of reproduction is given in Section 4.2.

Crossover is the artificial manifestation of the natural swapping of genetic code.

A pair of strings is selected at random from the mating pool to act as parent strings.

These parent strings then interchange characters between positions k + 1 and I

inclusively, where I is the string length and k is chosen at random such that 1 < k < 1.

The resulting two offspring strings are part of a new generation. Figure 3.3 shows

the crossover operator acting on a pair of parent strings.

In applying reproduction and crossover it occasionally occurs that a useful piece

of genetic material (a piece of code at a specific locus) is lost. Genetic algorithms

guard against this irrecoverable loss by employing the mutation operator. Mutation

is the change of value of a random string position of each of the new offspring strings.

Although regarded by many as a background operator, recent research [8] suggests

that mutation has a much stronger role. Figure 3.4 shows two strings before and

GENERATION

1

2

n-1
n

T

reproductior

V

MATING POOL

1

2
1

n-1

n

crossovel

mutation

GENERATION T+1

1

2

r

n-1
n

Figure 3.2: The basic genetic algorithm cycle.

after mutation occurring with probability Pm.

The study of the biological example has given rise to other genetic operators and

productive schemes. However, reproduction, crossover and mutation have proven to

be computationally simple and effective in a number of optimization problems.

3.3 Mathematical Foundation of Genetic Algorithm

3.3.1 Schemata - An Introduction

Although genetic algorithms are based on natural genetics and therefore have an

intuitive appeal, it is necessary to provide a mathematical background to support its

mechanics. The effect of reproduction, crossover and mutation on the information

contained in a population is investigated in a more rigorous way using schemata

which exploit the underlying similarities between the strings of the population.

XXXX:XXXXXXXX XXXXO0000000

crossover

0000:00000000 0 0 XXXXXXXX

random cross site
(with probability pc)

Figure 3.3: The crossover operator

A schema is a similarity template describing subsets of strings with similarities

at specific loci. It can also be thought of as a hyper-plane in the search space. Using

the binary alphabet {0, 1}, define a new element * which functions as a wildcard.

Schemata are then created over the extended alphabet {0, 1, *} as a pattern matching

mechanism where * can be used to match either 1 or 0. A schema matches a

particular string if at every location 1 in the schema fits 1 in the string, 0 matches 0,
or * matches either. An example of schemata and sets of matching strings is shown

below.

schema 100* 1*0* 10 .

sets of 1000 1000 1000

matching 1001 1001 1001

strings 1100 1010

1101 1011

V V VVV V V V V V VV
AAAAAAAAAAAA XXAUXXXXXXXX

mutation

000000000000 OX0000 XO000

- random mutation sites
(with probability pm)

Figure 3.4: The mutation operator

For alphabets of cardinality k and string length I there are (k + 1)' schemata.

Because each string position can take its own value or the wildcard symbol, each

string is a match to k' schemata. A population of n strings from the binary alphabet

will therefore display between 21 and 21n schemata, depending on the diversity of
the members of the population. For a population of n members an estimated O(n 3)

schemata (or hyper planes) are processed. Thus, for each generation requiring n

fitness evaluations, n3 schemata are processed in parallel without memory other

than the population itself. This important feature of genetic algorithms is known

as implicit parallelism.

Two definitive properties which distinguish between schemata are the schema

order and schema defining length. The order o(H) of a schema H is the number of

specific bits (1's and O's) in the template. For example, if H is given by *1 * *10 +,

then o(H) = 3. The defining length 6(H) of a schema H is the distance between

~r ~) ~ ~r +r rr rr rr rr rr r-

the first and last specific bit positions. For the same H as above b(H) = 4. In the

case where o(H) = 1 the defining length is by definition b(H) = 0.

3.3.2 The Fundamental Theorem

Schemata provide the means to analyze the effects of the genetic operators on the

information contained in a population. The effect of reproduction on the expected

number of schemata is determined by treating each schema as a random variable with

mean estimated by the average fitness of its occurrences in the population. During

reproduction a string Ai is copied according to its fitness Fi, by being selected to

the mating pool with probability pi = Fi/E Fj. The expected number of copies of

the string Ai in the mating pool is then given by npi. The growth or decay of a

particular schema can be described in a similar manner. Define m(H,t) to be the

number of instances of a particular schema H contained in the population A(t) at

time step t. The expected occurrences of H in A(t+ 1) is then given by the equation:

m(H,t)f(H) (3.1)
m(H,t + 1) = n (31)

where f(H) is the average fitness of the strings representing schema H at time t.

Recognizing that the average fitness of the entire population Favg = Z Fj/n, Equa-

tion 3.1 can be reduced to:

m(H,t + 1) = (H, t) (3.2)
Favg

which is the reproductive schema growth equation. From this equation, the number

of above-average schemata in the population will grow and below-average schemata

will become less. If f(H) remains consistently above the average fitness of the

population, such that f(H) = (1 + b)Fvg, where b is a constant, then Equation 3.2

becomes:

m(H, t + 1) = (1 + b)m(H, t) (3.3)

which is the discrete equivalent of the exponential form. Note that this does not

account for the effect of crossover and mutation. Reproduction thus yields an ex-

ponentially increasing (decreasing) number of above- (below-) average schemata in

progressive populations.

Reproduction is a highly exploitive search of the search space. If reproduction

was the only genetic algorithm operator employed, successive populations would

consist only of increasing numbers of above average strings. Crossover allows for a

structured information exchange between strings, which creates new strings and thus

promotes exploration of the search space. Reproduction and crossover are opposing

forces in that reproduction tends to increase the number of above-average schemata

while crossover destroys schemata. If crossover between two strings occurs at random

with probability Pc, then the lower bound on the probability that a schema survives

crossover can be given by:

b(H)
P 2 1 - c 1 (3.4)

Combining reproduction and crossover, the expected occurrences of schema H in

the population A(t + 1) can be given by:

m(H, t + 1) m(H, t) F g [1 -p((3.5)

where the two operators are assumed to be independent. The significant terms

in Equation 3.5 are f(H) and 6(H). Effectively, schemata that have above-average

performance and short defining lengths will increase exponentially in successive pop-

ulations.

Mutation has the same tendency to destroy schemata as crossover and allows for

even more exploration of the search space. For a schema to survive mutation all the

specified bits (there are o(H) of them) have to survive mutation. The probability

that a schema survives mutation is then (1-pm)(H) where pm is the probability that

a bit will mutate. For small values of p, this expression can be approximated by

1 - o(H)pm. Combining reproduction, crossover and mutation the expected number

of copies that a particular schema H will have in the next generation is given by:

m(H, t + 1) m(H, t) () [1 (H) - o(H)pm (3.6)
Favg P-p - 1

where the cross-products have been ignored. Equation 3.6 proves that above-average

schemata of low order with short defining lengths increase exponentially in successive

populations. This result is known as the fundamental theorem of genetic algorithms.

3.4 The Parallel Genetic Algorithm

For genetic algorithms there exists an optimal trade-off between the amount of ge-

netic search that is done and the number of computations required. If the population

size is too small, then the genetic algorithm will have an inefficient search because

of an insufficient number of schemata in the population. Choosing the population

size too large results in an inordinate amount of time required to perform all the

evaluations. In the worst case the genetic algorithm can be reduced to random

search if the available time is exhausted before any genetic search is performed. To

increase the real-time genetic search efficiency the genetic algorithm can be modified

to evolve more than one population at the same time. Crossover and mutation can

also be implemented in parallel leads to a further reduction in computing time.

A well known parallel implementation of the genetic algorithm is the classic

parallel genetic algorithm (PGA). A PGA consists of a group of identical nodal

genetic algorithms (NGA's). Each NGA maintains a small population which is a

portion of the large population and functions in the same way as a normal sequential

genetic algorithm. The difference between a sequential genetic algorithm and a NGA

is that the NGA communicates with its neighboring NGA once during every cycle.

The communication consists of sending the best individual in the local population to

each neighboring population, and receiving the best individual of each neighboring

population. The PGA can thus be thought of as a sequential genetic algorithm with

a very large population.

The desirable property of the PGA is that an increase in population size by the

addition of another NGA increases the execution time of the PGA only slightly.

The increase in time is due to increased communication overhead among the larger

set of NGA's. Initial studies [6] have indicated that a PGA is a viable means of

increasing the population size of a genetic algorithm and allowing more efficient real-

time genetic search. The theoretical investigation of the PGA is still continuing.

Chapter 4

Flight Trajectory Planning

using Genetic Algorithms

4.1 Flight Control Commands Modeling

In Chapter 3 the genetic operators were described using the binary alphabet for

the chromosome codings. This choice of coding can be justified by the principal of

minimum alphabets, which is defined by Goldberg [5]:

The user should select the smallest alphabet that permits a

natural expression of the problem.

Seen mathematically, the binary alphabet offers the maximum number of schemata

per bit of information of any coding. In addition, Goldberg also defines the principal

of meaningful building blocks:

The user should select a coding so that short, low-order

schemata are relevant to the underlying problem and relatively

unrelated to schemata over other fixed positions.

The choice of low-order schemata with short defining length is justified by the fun-

damental theorem of genetic algorithms which is proved in Section 3.3. These two

principals are used as guidelines in choosing a method for modeling the flight control

commands. The modeling is done in two steps:

1. map the continuous command inputs to discrete parameters which uniquely

define the commands, and

2. code the discrete parameters into finite-length binary strings, as required by

the principal of minimum alphabets.

This research evaluates two mapping methods; the Chebyshev polynomial modeling

which was used in the previous research, and a filtered piecewise constant modeling

method. Both standard binary coding and Gray codes are evaluated as coding

procedures.

4.1.1 Chebyshev Polynomials

Walker [9] structured the command functions using a weighted sum of five Cheby-

shev polynomials which are orthogonal on the interval [ti,tf], where ti and tf are

the initial and final times of a particular trajectory as defined in Section 2.3. The

Chebyshev polynomials are given by:

To(A) = 1 (4.1)

Ti(A) = A (4.2)

Ti+I(A) = 2AT,(A) - T,_1(A) for i > 1 (4.3)

The basis of orthogonality is shifted to the trajectory interval [ti, t1] by the following

change of variable:
t - t,

A(t) = 2 - 1 (4.4)
tf - t,

The roll angle command is then given by:

=c(t) = c + c2T(t) + c 3T 2(t) + c4T3 (t) + c 5 T4 (t) (4.5)

Continuity of the commands between segments requires the boundary condition

4c(ti) = (o where 10 is the value of the previous trajectory at its point closest to

the first waypoint as defined in Section 2.1. From Equations 4.1-4.5 for t = ti:

Oc(ti) = C1 - C2 + C3 - C4 + C5 (4.6)

The boundary condition therefore eliminates one degree of freedom so that the

parameter set defining the roll angle command is given by:

c = [c2 C3 C4 C5 T (4.7)

For the purpose of using genetic algorithms, the elements of the parameter set

c are viewed as chromosomes. A genotype is formed by appending the substrings

representing the chromosomes to form one structure. The genotype is then the

coding of a specific point in the search space (a flight trajectory in this case). The

coding procedure for the genotype is shown in Figure 4.1.

Chebyshev coefficients c2 c3 c4 c5

numerical values 14 8 3 7

genotype 1110 1000 0011 0111

Figure 4.1: Coding of the Chebyshev coefficients as a genotype (chromosome

length I = 4).

This method of coding the genotype has the advantage that each continuous

command input can be coded into a relatively short string which means less com-

puting time. There are however distinct disadvantages to this method. The value

of each Chebyshev coefficient contributes to the shape of the command over the

whole interval [ti,tf]. This would not be a problem if the objective function was

a linear function of the command inputs. However, the command inputs are inte-

grated through the nonlinear dynamics of the aircraft to find the trajectory which

determines the objective fitness. Perturbations in the value of a Chebyshev coef-

ficient thus result in large spatial changes in the associated trajectory. Because of

the boundary conditions imposed to ensure continuity, numerical perturbations in

one coefficient must also result in changes in the value of another coefficient which

compounds the effect described above. Although nonlinearities in the search space

do not present any difficulties to genetic algorithms, the behavior of the objective

function as a result of perturbations in the coefficient values described above breaks

down the notion of short, low-order, above-average building blocks.

Using a finite-dimensional model also imposes restrictions on the bandwidth of

the commands. This was particularly evident when the commands were constrained

and the problem required the commands to have a boundary value for a finite time.

Although the commands are constrained easily, it is not possible to maintain a

constant value. An example is shown in Figure 4.2 where the problem required

the commands to have boundary values for a finite time. A larger bandwidth can

be obtained by increasing the order of the Chebyshev polynomials used to model

the control commands. However, the gain in modeling flexibility is small compared

to the increased computational expense of introducing more complex Chebyshev

polynomials.

4.1.2 Filtered Piecewise Constant

This method uses numerical values at discrete points in time to model the input

commands. These sampled data points are held constant over an interval At and

then filtered to form a continuous input command over the interval [ti, t]. Continu-

ity of commands between waypoint segments is enforced by specifying the command

value for the first interval At.

For the purpose of using genetic algorithms, each sample point can be viewed as

a chromosome. As in the previous method, the chromosomes are coded into finite

length substrings and appended to form the genotype. This coding procedure is

shown in Figure 4.3.

Comparing Figures 4.1 and 4.3, it is clear that for the same chromosome length

the genotype formed by the filtered piecewise constant method is a longer string

structure than the genotype formed by the Chebyshev polynomial method. This

is the case even if larger chromosome lengths are used in the Chebyshev coefficient

codings because of the large number of samples in the filtered piecewise constant

method necessary to model the commands over the specified waypoint separation.

The filtered piecewise constant method thus requires more bit manipulations, which

results in less real-time algorithmic efficiency. However, significant advantages are

gained from using the filtered piecewise constant method. Because each chromosome

represents a constant command value over a discrete time interval, a change in

the bits of the substring will only result in a change of command value over the

associated time interval. The command values thus have no time dependency on

roll angle command

phimax
1.2 -

1.2

0.8

0 .6..

0 .4 7.........

0I
5 10 15 20

time (sec)

Cu

-.

2

..

3U!Cu

0j

0 5 10 15 20

time

25 30 35 40

Figure 4.2: Modeling the flight control commands using Chebyshev polynomials.

normal acceleration command

25 30 35 40

time interval ti+At t, + 2At ... t1 -At

command sample values 14 10 ... 8

genotype 1110 1110 ... 1000

Figure 4.3: Coding of filtered piecewise constant command as a genotype (chromo-

some length I = 4).

the chromosomes as before. This in effect reduces the magnitude of the nonlinearities

in the search space that exists between bit perturbations that were evident in the

previous method.

The filtered piecewise constant method also allows the existence of short, low-

order building blocks which are required for effective growth of above-average

schemata. This was clearly evident from the way that genotypes evolved in a par-

ticular solution over a number of cycles. It was found that all the strings present

in such a population had the same trend in bit patterns which was much more

pronounced than in the case of the Chebyshev polynomial modeling method.

The sample points, which represent command values, are independent of each

other, and the highest frequency component is thus only restricted by the sample

frequency. More importantly, it allows the commands to hold boundary values over

more than one time interval At. Figure 4.4 shows an example where it was necessary

for the aircraft to hold a tight turn. The boundary values imposed on the control

commands are also shown and small overshoots of these boundaries caused by the

filtering are clearly evident.

It is clear that the fundamental advantages gained by using the filtered piece-

wise constant modeling far outweighs the computational increase required. All the

subsequent experiments were done using the filtered piecewise constant modeling of

the control input commands.

4.1.3 Gray Code vs. Binary Code

The literature [5], [3] often refers to Gray coding as achieving better results than

standard binary coding. Both codings were therefore implemented to judge whether

Gray coded integers would cause a performance improvement in the trajectory plan-

roll angle command

time (sec)

normal acceleration command

0 5 10 15 20 25 30

time (sec)

Figure 4.4: Modeling the flight control commands using filtered piecewise constant

values.

ner. However, the convergence of the genetic algorithm was found to be significantly

poorer when Gray coded integers were used. This is a result of the Hamming dis-

tance of 1 between adjacent integers which is characteristic of Gray codes. A table of

3-bit Gray codes is shown in Table 4.1 where the difference of only 1 bit between ad-

jacent integers is clearly visible. This property makes Gray codes preferable in some

cases where bit mutations cause small perturbations and a more thorough search.

In the case of the trajectory planner however, the small perturbations caused by

the bit mutations are integrated through the aircraft dynamics and the effect on the

associated trajectory is negligible. Using Gray codes in the case of the trajectory

planner thus almost completely neutralizes the mutation operator.

integer binary code Gray code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Table 4.1: Comparison between Gray coded and binary coded integers.

4.1.4 Initialization of Population

The initial population used in genetic algorithm optimization is chosen at random

in order to achieve the maximum diversity of information. The least complicated

way of obtaining a random population is by creating a random binary population

of strings (genotypes) with bit probabilities p {l) = p {0} = 0.5. If the roll angle

commands are modeled using the filtered piecewise constant method, then we can

assume E {#} = 0. In fact, for sufficiently large strings, the roll angle commands

will be similar to sampled white noise and have a flat power spectral density over

the interval [0, w,/2]. This implies that the roll angle commands will have high

roll angle command

0 5 10 15 20 25 30 35 40

time (sec)

Figure 4.5: Typical member of initial population obtained using the random filtered

piecewise constant method.

frequency components. Because of the relation between the roll angle and normal
acceleration commands given in Equation 2.17, the high frequencies will also be
visible in the normal acceleration commands. Although the aircraft dynamics will

low pass filter the control commands to obtain trajectories that might even seem
like good solutions, the high frequencies are both undesirable and unrealistic. Fur-
thermore, it will lead to an initial population which is not random in the trajectory
search space. This method was implemented and led to very bad performance as

predicted. Not only did the random filtered piecewise constant initial population
lack the crucial diversity of information required, but the genetic algorithm found it

difficult to eliminate the high frequency components in the control commands. The

high frequency components are clearly visible in Figure 4.5 which shows a typical
member of the initial population of roll angle commands.

To obtain better performance, a priori knowledge of the dynamics of the aircraft
is used to obtain an initial population that represents desirable control commands
is used to obtain an initial population that represents desirable control commands

roll angle command

-I "

0 5 10 15 20 25 30 35 40

time (sec)

Figure 4.6: Typical member of initial population obtained using the Chebyshev

polynomial and sampling method.

which integrate to a diversity of trajectories in the search space. This is achieved

by making use of the Chebyshev polynomial mapping and sampling of the resulting

initial population. The initial binary population is decoded into a parameter set

of random Chebyshev coefficients. These random coefficients represent an initial

population of roll angle commands that do not have any of the statistical charac-

teristics described above and depict a more desirable low frequency behavior. The

filtered piecewise constant modeling of the initial population is then obtained by

sampling the roll angle commands and coding the samples. Figure 4.6 shows a

typical roll angle command of the initial population obtained in this manner. The

Chebyshev polynomial and sampling initialization method gave far better results

than the random filtered piecewise constant method, and was implemented in the

flight trajectory planner.

4.2 Reproduction

The action of the reproduction operator described in Section 3.2 can be divided into

two steps:

1. evaluate and allocate a fitness value for each individual of the generation (fit-

ness allocation), and

2. create a mating pool consistent with the expected value associated with each

individual (selection).

Both these steps have been studied extensively [1], [2] and their effect on the per-

formance of genetic algorithms is well known.

4.2.1 Fitness Function

For the control commands optimization problem, the flight trajectories are evaluated

according to the risk associated with each trajectory where the risk is defined by

Equation 2.22. Because genetic algorithms do a maximization of a nonnegative

fitness function, it is necessary to map the natural objective function (risk Ji) to a

dual fitness function form. The following risk-to-fitness transformation is used:

F Jceil - Ji when Ji < Jceil,F =(4.8)1 0 otherwise

where Jceil is a constant.

At the start of a genetic algorithm optimization it is common to have a popula-

tion with a few extraordinary members. Because the selection method is based upon

the relative fitness of individuals, these highly-fit members will dominate the con-

secutive populations and lead to premature convergence which is undesirable. The

opposite happens after a few cycles have passed, where most of the members have . ,

reached a high fitness and the relative fitness values are about the same for both

average and more optimal members. Instead of a survival-of-the-fittest improvement

in subsequent populations, this results in a random walk among the mediocre indi-

viduals. Using linear fitness scaling enhances the competition between individuals

at the beginning and end of a genetic algorithm optimization. The scaled fitness

value is defined as follows;

F* = aFi + b (4.9)

The constants a and b are chosen so that the average of the scaled fitness values

equals the average of the raw fitness values. This ensures that the expected value of

an average member remains the same after scaling. The second degree of freedom

is used to choose the expected number of offspring that the fittest member will

contribute to the subsequent generation (or number of occurrences in the mating

pool). This is done by choosing

Fmax = CmultFavg (4.10)

where Cmult is the expected number of offspring of the fittest member of the pop-

ulation. The scaling procedure is shown in Figure 4.7 for Cmult = 2. From the

figure it can be seen that if there is an occurrence of a member with a relative low

raw fitness, then the linear scaling may force the scaled fitness to become negative.

To satisfy the nonnegative requirement on fitness values, the value of Cmut is then

adjusted so that Fin = 0.

The two problems described above are magnified in the control commands op-

timization problem because the trajectory risk is a quadratic function of distance.

In the first few cycles of a genetic algorithm run where the population consists of

highly diverse members, the raw fitness of each will differ to a great degree and the

highly-fit members will dominate the other members. To ensure nonnegative raw

fitness values (at least for the larger percentage of the population) Jeil must be

chosen quite large. After a few cycles, when the members are comparable, the large

value of Jceil will cause the relative raw fitness to be the same. Fitness scaling is

thus of extreme importance for the control commands optimization problem.

4.2.2 Selection

The selection phase of reproduction determines the actual number of offspring each

individual will receive based on its relative performance (fitness). The selection

phase is composed of two parts:

2Fag- ---

F'avg ---------------------
I

FaI

I I-e

Favg Fmax

Fmin --------

Raw Fitness

Figure 4.7: Linear fitness scaling without adjustment for negative fitness values

(Cmut = 2).

1. determination of the individual's expected value, and

2. formation of a mating pool based on the expected values (sampling).

The expected value of an individual is defined as Ei = Fi/Favg and is an indication of

the number of times that the individual should be reproduced in the next generation.

If a member has an expected value of 2.5, then it must be copied in the mating pool

an average of 21 times.

The sampling algorithms used to convert expected values to integer number

of realizations in the mating pool is evaluated according to three measures; bias,

spread, and efficiency.

bias: Bias is defined to be the absolute difference between the expected value and

the actual sampling probability of an individual. The optimal zero bias is

achieved when each individual's sampling probability equals its expected value.

spread: The spread is defined as the range of actual realizations that an individual

can achieve in a mating pool. Whereas the bias indicates the accuracy, the

spread reveals the consistency of the sampling algorithm.

efficiency: The efficiency of the sampling algorithm is determined by its effect on

the computational complexity of the genetic algorithm.

All the sampling algorithms that are currently available fail to provide zero bias and

minimum spread. There thus exists a trade-off between these measures. The remain-

der stochastic without replacement (RSSwoR) is the most commonly used sampling

algorithm because of its efficiency and minimal spread. However, Baker [1] proved

that RSSwoR exhibits severe bias which gets progressively worse as more individ-

uals are selected to the mating pool. Remainder stochastic independent sampling

(RSIS) is another sampling theorem which also has minimum spread and optimal

efficiency. These sampling algorithms are implemented as follows:

1. Each individual contributes to the mating pool a number of offspring according

to the integer value of its expected value. For example, an individual with

expected value 2.4 will contribute 2 samples (offspring). The integer value

is then subtracted from the expected value, which results in a new expected

value that is a fraction. For the example, the new expected value will be 0.4.

This is done for all individuals of the generation until only fractional expected

values remain. The integer phase of RSSwoR and RSIS is exactly the same.

2. RSIS then independently uses each fractional expected value as a probability

of further selection. This is accomplished by traversing the population and

stochastically determining whether each individual should be selected. Bias

occurs if a second traversal of the population is necessary to fully populate

the mating pool. However, most of the samples are typically obtained in the

zero bias first traversal, which leads to small overall bias. RSSwoR makes

use of the error-prone spinning wheel method which sets the expected value

of the individual to zero once it has been selected in the fractional phase.

This prevents individuals from having multiple selections during the fractional

phase and biases the sampling towards smaller fractions.

Empirical evidence by Baker also proved that RSIS exhibits an order of magnitude

less bias than RSSwoR. RSIS can furthermore be partially implemented in parallel,

which is desirable for future research to enhance the real-time performance of the

trajectory planner. Because of its superior performance and its parallel implemen-

tation property, RSIS is used as the sampling algorithm in the trajectory planner.

4.3 Constrained Optimization

4.3.1 Flight Control Commands

In Section 2.2 a simplification was introduced which reduced the control command

set to one input command, the roll angle command. The simplification caused the

roll angle command to be constrained to IcjI 4cmax, by the maximum normal

acceleration. The constraint can easily be implemented in the filtered piecewise

constant modeling method by making use of a linear mapping procedure. The

mapping is done by choosing the smallest binary integer as 4cmin and the largest

binary integer as Dcmax. The intermediate values are obtained by linearly mapping

the remaining binary integers as shown in Figure 4.8. Using longer strings will thus

result in a higher resolution.

linear mapping between

command value (Cmi "-- Cmax

4-bit binary integer 0000 ... 1111

Figure 4.8: Linear mapping of roll angle between 4cmin and DCmax.

Because of the filtering of the piecewise constant values the roll angle command

can not be guaranteed to be within constraints. Figure 4.4 is a good example of

where the filtering allows the roll angle command to overshoot the boundary values.

These overshoots are much larger in the normal acceleration command because of the

nonlinear relation with the roll angle command. The normal acceleration is therefore

obtained as piecewise constant values before the filtering is done independently

on each of the commands. For the purpose of this research the roll angle and

normal acceleration commands are assumed to be constrained satisfactorily. It is

presumed that when the trajectory planner is implemented a more effective filter

will be designed that will prevent overshoot of the boundary values.

4.3.2 Search Space

Each waypoint has an associated nonzero capture radius which is an indication of

how close to the waypoint the flight trajectory must pass. This constraint would

seem to pose no problem, as trajectories which pass outside of these capture radii

can be assigned a zero fitness and will not be selected to the mating pool. However,

trajectories which pass very close outside the capture radii usually contain valuable

genetic information that will be lost if this method is employed. To preserve the

genetic information in the population, a penalty method is used which degrades

the fitness in relation to the degree of constraint violation. The penalty function

transforms the constrained problem to an unconstrained problem by associating

a penalty with all constraint violations which is included in the objective function

(fitness) evaluation. The degree of constraint violation for the ith waypoint is defined

to be:

hi = (4.11)
ri

where di - closest distance between trajectory and ith waypoint

ri - capture radius of ith waypoint

The penalty function is included in the objective function defined in Equation 4.8

as follows:

F Jceil - Ji + a P(hi) when Ji + P(hi) < Jceil, (4.12)
Fi -= (4.12)

0 otherwise

where P - penalty function

Q - penalty coefficient

A number of alternatives exist for the penalty function P. The most commonly used

penalty function is the square of the degree of constraint violation hi. The nature

of the trajectory planner problem forces the use of a modified penalty function.

A trajectory which passes within the circle that is specified by the capture radius

around a waypoint is within bounds and should not be penalized. This property

of the trajectory planner problem is realized by defining the penalty function P as

follows:

P(h) - h' when hi > 1,
P(h,)= '(4.13)

0 otherwise

It was found that choosing the penalty coefficient Q too large results in poor

performance of the genetic algorithm. This is similar to choosing the fitness of

trajectories that are not within bounds to be zero, which is undesirable as mentioned

above. For smaller values of Q, it often happens that a trajectory which is just

outside the capture circle of a waypoint has a larger fitness value than a trajectory

which is within bounds but passes close to a threat. To compensate for this each

member of the genetic population is assigned a boolean flag which is set to indicate

whether the associated trajectory is within bounds. The optimal solution at any

time is therefore the population member that is within bounds and with the highest

fitness. This optimal solution is kept in memory and updated each time that a

solution within constraints and with a higher fitness is generated. This ensures

that there are flight control commands available to the FCS for the next trajectory

segment at any time after the first legitimate solution has been generated.

4.4 Crossover, Mutation and Population Size

The genetic algorithm was implemented in the MPS using a simple two point

crossover scheme. Two point crossover is similar to basic crossover, except that

two crossover points are chosen. The two crossover points kl and k 2 are integers

chosen at random such that 1 < ki < k2 < I where 1 is the genotype string length.

The parent strings then swap the substrings between k1 + 1 and k2 inclusively. The

two point crossover operator is shown in Figure 4.9. It desirable to keep the number

of crossover points small, as multiple crossover with too many crossover points tends

to a random shuffle of substrings between parent strings which destroys schemata.

More complex crossover schemes have been developed, such as adaptive crossover,

checkerboard crossover and knowledge-augmented crossover. However, these meth-

ods require additional overhead which leads to degraded real-time performance. The

basic mutation operator was implemented as described in Section 3.2.

An analysis was done on the off-line performance of the flight trajectory planner

XXXX:XXXXXx:XX XXXXOOOOOOXX

crossover

0000:000000:00 OOOO XXXXXX OO

...--- random cross sites
(with probability pc)

Figure 4.9: The two point crossover operator

to find the numerical values of the control variables that optimize the real-time

convergence of the genetic algorithm. The off-line performance is measured using

only the best legitimate member of each generation. This is in accord with the flight

control commands optimization problem where only the optimal solution available

to the FCS at any time is of importance. The control variables that were used in

the analysis are mutation probability, crossover probability and the population size.

Due to the massive amount of computations involved it was not possible to do

an extensive analysis. A CRAY super-computer was used with a sample size of

240 experiments. A total of 4 different problems was used to obtain a degree of

diversity in the search space. The optimizations were run for 80 generations which

was enough to allow for convergence to a suitable trajectory solution. The analysis

showed a definite pattern in the off-line performance of the genetic algorithm as

a function of the three parameters analyzed. The numerical results are shown in

Table 4.2.

As expected, smaller crossover probabilities cause a decline in genetic algorithm

performance. The small crossover probabilities lead to less information exchange

between high-fit members which breaks down the core of the genetic algorithm

theory, the evolution process. The off-line performance as a function of crossover

Table 4.2: Off-line performance of the genetic algorithm shown as the average max-

imum fitness of 240 experiments using 4 different problems.

probability is shown in Figure 4.10.

The mutation probability analysis reveals a boundary value where the perfor-

mance is at a peak. Larger values of probability lead to a sharp decline in perfor-

mance which is a result of the collapse of the optimization procedure as it becomes

a random walk through the search space. The off-line performance as a function of

mutation probability is shown in Figure 4.11.

The trade-off that exists between the speed and extent of convergence as a

function of the population size is clearly visible in Figures 4.12 and 4.13. The results

show that the relation of faster convergence to smaller population size breaks down

once a certain boundary value is crossed. Both 60 and 100 member populations

converge slower than the 80 member population.

pop. generations

Pm Pc size 20 40 60 80

0.001 0.85 80 8.3094 8.3515 8.3696 8.3803

0.002 0.85 80 7.9456 8.1247 8.3015 8.3902

0.005 0.85 80 8.3605 8.3712 8.3774 8.3870

0.010 0.85 80 8.3110 8.3592 8.3763 8.4034

0.020 0.85 80 8.3592 8.3854 8.4049 8.4076

0.050 0.85 80 8.3221 8.3568 8.3617 8.3644

0.005 0.25 80 8.2188 8.2476 8.2672 8.2743

0.005 0.40 80 8.3004 8.3385 8.3581 8.3665

0.005 0.55 80 8.1940 8.3476 8.3671 8.3783

0.005 0.70 80 8.1617 8.3669 8.3822 8.4018

0.005 1.00 80 8.3292 8.3712 8.3908 8.3992

0.005 0.85 40 8.2642 8.3287 8.3451 8.3643

0.005 0.85 60 8.1990 8.3502 8.3773 8.3955

0.005 0.85 100 8.1834 8.3414 8.3863 8.4065

0.005 0.85 150 8.2519 8.2819 8.3789 8.3968

LL ,v , 134-

133.5

8 133

a 132.5

. 132

131.5 -

0.4 0.6 0.8 1 0.2

crossover probability

0.4 0.6 0.8 1
crossover probability

134.5

134

133.5

L 133

" 132.5

132'-
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

crossover probability crossover probability

Figure 4.10: Average off-line performance of the genetic algorithm as a function of

crossover probability.

130 L
0.2

1 2 6 ' i . i i.i i i
10-3 10-2

mutation probability

132.5' i ' ' ' " "' ' '
10-3 10-2

mutation probability

10-1

mutation probability

134.6

2 134.4

S134.2

I 134

10-1
133.8'-

10-3 10-2

mutation probability
. I

Figure 4.11: Average off-line performance of the genetic algorithm as a function of

mutation probability.

10-1

10-1

129'
0 50 100

population size

150

population size

134

S133.8

2 133.6

0 50 100

population size

134.6 After 80 generations

134.4

0 134.2

4 134

150
133.81

50 100

population size

Figure 4.12: Average off-line performance of the genetic algorithm as a function of

population size.

150

150

1

135

134

133

132

131

130

129

128

127
0

60 ..

. -......

" '-Popuaio"n size is ub for.

....... ... : " "" ". •".........................

" i !Populaion size is s4wn for
" .diffeet expefimnti"

2Ar 4VU 6000

Evaluations

8000 10000 12000

Figure 4.13: Average off-line performance of the genetic algorithm as a function of
total number of trajectory evaluations.

Although the analysis did not bring to light any unexpected results, it gave a
good indication of the behavior of the flight trajectory planner due to numerical

changes in the different control variables. From the results of the analysis, the
genetic algorithm control variables for optimal real-time performance of the flight
trajectory planner were chosen as:

* crossover probability : Pc = 0.70

* mutation probability : Pm = 0.02

* population size: n = 80

Chapter 5

Results

A genetic algorithm was implemented as the optimization procedure in the flight

trajectory planner as described in Chapter 4. A variety of waypoint and threat dis-

tributions was chosen to represent a set of diverse realistic scenarios. The Broyden-

Fletcher-Goldfarb-Shannon (BFGS) minimization routines used in the previous re-

search converged to a constrained optimal trajectory after approximately 6000 eval-

uations. For the purpose of comparing the performance of the genetic algorithm

to that of the BFGS routines, the genetic algorithm cycle was run for 75 genera-

tions which constitute 6000 trajectory evaluations for a population size of 80 mem-

bers. The resulting flight trajectories and flight control commands are shown in

Figures 5.1-5.4. The normal acceleration values are shown as negative. This results

from the convention which has the positive ZE-axis pointed downward.

Because of the simplification introduced in Section 2.2 the altitude of the aircraft

in all of these cases is constant at the initial value (the flight environment was chosen

for an altitude of 200m). It is important to note that the flight control commands

are pushed to their limits in all the test segments. Figures 5.5 and 5.6 compares

the flight trajectories and control commands for varying levels of constraint on the

maximum normal acceleration. This is an indication that the flight trajectories are

avoiding the threats to the full extent that the aircraft dynamics allow. In other

words, the flight trajectory planner is operating correctly.

Figures 5.7 and 5.8 show how the best constrained solution evolves with passing

generations. For the 4 test segments used, the first constrained solution was available

after an average of 2 genetic algorithm cycles (160 evaluations). If it was necessary,

the FCS could therefore have access to flight control commands which would not be

optimal in the sense of avoiding threats, but it would be within bounds, so that the

aircraft would reach both waypoints without leaving its constrained dynamic range.

The optimization routines and command integrations were all programmed in

MATLAB. Using a 486 IBM compatible personal computer running at a clockspeed

of 33Mhz, each genetic algorithm cycle took approximately 24 seconds. On average,

a constrained solution was therefore available after 48 seconds. To run for 2000

evaluations took about 9 minutes, whereas it will take the aircraft just more than 20

seconds to cover the distance to the first waypoint. Because of the binary nature of

genetic algorithms it is possible to implement the population of strings as physical

bits in the computer using a low-level programming language. This will result

in significant improvement in the computing time required for convergence of the

algorithm. With the technological advancement in computer hardware it thus is

possible that the MPS will soon be able to converge to a realistic solution in the

required time without considering the potential for parallel processing to speed up

the execution time.

1

0.5

0

C

Roll Angle Command

...

i:

-.

0 5 10 15 20 25 30 35 4
time (sec)

Normal Acceleration Command

-10

-20

-30

-40

-50
0 5 10 15 20

time(sec)
25 30 35

Flight Trajectory

0 1000 2000 3000 4000 5000 6000

x direction (m)

Figure 5.1: Result of genetic algorithm optimization of test segment 1.

i i

-V.

. .

-..... %..~.....

.....

Roll Angle Command
S..L.

...i

.............-.

.. L..........":... ... ::

. i i ,,,.i i i i,

0 5 10 15 20

time (sec)

25 30 35 40

time(sec)

Flight Trajectory

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

x direction (m)

Figure 5.2: Result of genetic algorithm optimization of test segment 2.

1

0.5

0

-0.5

_!-1

time (sec)

time(sec)

Flight Trajectory

6000

x direction (m)

Figure 5.3: Result of genetic algorithm optimization of test segment 3.

60

8000

Roll Angle Command

-2 t .L
0 5 10 15 20 25 30 35

time (sec)

time(sec)

Flight Trajectory

8000

x direction (m)

Figure 5.4: Result of genetic algorithm optimization of test segment 4.

S 00.

-0.5
0 5 10 15 20 25 30 35 40

time (sec)

Normal Acceleration Command
S0

gmax 3S10

-30 --.. . ..
0 5 10 15 20 25 30 35 40

time(sec)

Roll Ane Command1.5

...... i i

-0.5 -------
0 5 10 15 20 25 30 35 40

time (ec)

Noral Acceleration Command

-40-

-60 i . i I i i ,
0 5 10 15 20 25 30 35 40

time(sec)

Figure 5.5: Flight control commands for different values of maximum normal accel-

eration.

6000
Flight Trajectory

x direction (m)

Flight Trajectory

-10001 i i i I
0 1000 2000 3000 4000 5000 6000

x direction (m)

Figure 5.6: Flight trajectories for different values of maximum normal acceleration.

. I

2 4 6

x direction (km)

2 4 6
x direction (kmn)

0 2 4

x direction (kmn)

0 2 4

x direction (kn)

after generation 32
I I

..

i i i

) 2 4 6

x direction (kin)

after generation 49

) 2 4 6

x direction (kn)

Figure 5.7: Evolution of the best constrained solutions available to the FCS for test

segment 1.

2 4

x direction (kn)

0 2 4

x direction (kmn)

2 4

x direction (kn)

2 4

x direction (kn)

0 2 4

x direction (kn)

after generation 56

4

2 -

0i
0 2 4

x direction (kin)

Figure 5.8: Evolution of the best constrained solutions available to the FCS for test

segment 3.

Chapter 6

Conclusions

6.1 Summary

A mission planning system has been developed that directly optimizes the con-

trol commands for a high performance military vehicle's flight control system so

that the resulting flight trajectory minimizes the defined measure of associated risk.

However, the required computation time using Broyden-Fletcher-Goldfarb-Shannon

(BFGS) minimization routines is enormous. The efficiency of the optimization al-

gorithm used in the flight trajectory planner must be interpreted in the context of

the real-time nature of the system. The trajectory planning is done in two-waypoint

segments. To ensure continuity, the trajectory is followed only to the first waypoint

after which a new trajectory segment is used. The system is therefore required

to converge to a solution before the first waypoint is reached. Fuithermore, the

dynamics of the aircraft and certain trajectory objectives such as capture radii of

waypoints place constraints on both the flight control commands and the resulting

flight path. It is therefore essential to have an algorithmic structure that will rapidly

produce a solution within these constraints and also allow for further improvement

if time permits.

This thesis implemented a genetic algorithm as the optimization procedure in

the flight trajectory planner. It proved that in the real-time context of the trajectory

planning, the genetic algorithm optimization is preferable to the BFGS minimiza-

tion method used previously. The advantage of genetic algorithm optimization is

that a solution satisfying the given constraints is available in the population af-

ter an average of only 200 evaluations (trajectory integrations) while still allowing

for further improvement. The BFGS minimization could not assure a legally con-

strained trajectory solution until the very last iteration, which was an average of

6000 evaluations. Using genetic algorithm optimization does not guarantee an opti-

mum trajectory solution at any time. However, the analysis showed that trajectory

solutions which are very close to the optimum are available after approximately 2000

evaluations. Seen in the real-time context, it is clear that the genetic algorithm has

superior performance.

Previous flight trajectory optimizations using the BFGS minimization routines

were done on a 20MHz 386 personal computer and a constrained minimization took

about 3 hours. Using a 33MHz 486 personal computer, the genetic algorithm took

approximately 28 minutes for the same amount of trajectory evaluations as required

on average by the BFGS routines. Both routines were coded using MATLAB. It

should be kept in mind that Section 2.2 simplified the problem formulation used

in the previous work, which reduced the subsequent search space. The increase in

computation efficiency can therefore be ascribed to both better hardware technology

and a smaller search space. It is possible to decrease the computation time radically

by utilizing the binary nature of the genetic algorithm, as well as its ability to be

implemented in parallel. Taking these properties of genetic algorithms into account,

it is very probable that the flight trajectory planner can be implemented in a real-

time system with current technology.

These positive results were realized only after giving careful attention to the

method of coding the control commands histories as binary structures and to the

method of generating the initial population. Optimum values were also found for

the population size, and probabilities of crossover and mutation. Much time was

also spent finding numerical values for the constants in the objective function, Equa-

tion 4.12, that lead to realistic solutions. The implementation of the genetic algo-

rithm is therefore not as simple a procedure as it would seem at first glance.

6.2 Recommendations

The results shown in figures 5.1-5.4 have very good flight trajectories. This must be

expected as the flight trajectory is the measure of the relative fitness of a member

in the genetic population which determines its ability to reproduce. However, the

control commands shown in these figures are not very smooth, and it is clear that

the same flight trajectories can be obtained by much smoother control commands.

This can be achieved in two ways; adjusting the time constant of the low pass filter

or by penalizing the objective function for high activity in the control commands.

The first method would be preferable, as it can be included in the modifications that

have to be done to the low pass filter to eliminate the small overshoots. Furthermore,

experience has shown that minor modifications to the objective function can result

in very poor performance.

Some missions may have threats or waypoint objectives which are functions of

altitude. To include altitude variations, it is necessary to implement the original

problem formulation where the normal acceleration and roll angle commands are

optimized independently. This can be achieved by modifying the objective function

and appending the strings modeling each of the commands to form longer string

structures. The modification of the objective function may require some effort to

achieve good results as mentioned above.

The two properties of genetic algorithms which can greatly reduce the required

computing time are the ability of most of the genetic algorithm operators to be

implemented in parallel and the binary nature of the genetic individuals. By im-

plementing the genotypes as actual bits in a register using a low-level programming

language, it will be possible to realize the genetic algorithm operators as bit oper-

ators which will greatly reduce the computing time. As mentioned in Section 3.4

two advantages are gained by using a parallel genetic algorithm; the operators act

in parallel and therefore require less computing time, and it is possible to evolve

more than one population in parallel which results in a much more thorough walk

through the search space. The implementation of a parallel genetic algorithm is

therefore perhaps the most important area for further work towards achieving su-

perior real-time efficiency in the MPS.

References

[1] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In

John J.Grefenstette, editor, Proceedings of the Second International Conference

on Genetic Algorithms, pages 14-21, Lawrence Erlbaum Associates, 1987.

[2] Mark F. Bramlette. Initialization, mutation and selection methods in genetic al-

gorithms for function optimization. In Richard K. Belew and Lashon B. Booker,

editors, Proceedings of the Fourth International Conference on Genetic Algo-

rithms, pages 100-107, Morgan Kaufman, 1991.

[3] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[4] Toni El-Dirani. Fidelity of Flight Control Systems in a Real-Time Optimal Tra-

jectory Planner. Master's thesis, Massachusetts Institute of Technology, 1991.

[5] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Publishing Company, Inc, 1989.

[6] Chrisila B. Pettey, Micheal R. Leuze, and John J. Grefenstette. A parallel ge-

netic algorithm. In John J.Grefenstette, editor, Proceedings of the Second Inter-

national Conference on Genetic Algorithms, pages 155-161, Lawrence Erlbaum

Associates, 1987.

[7] Jon T. Richardson, Mark R. Palmer, Gunar Liepens, and Mike Hillard. Some

guidelines for genetic algorithms with penalty functions. In J. David Schaffer,

editor, Proceedings of the Third International Conference on Genetic Algorithms,

pages 191-195, Morgan Kaufman, 1989.

[8] J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das. A

study of control parameters affecting on-line performance of genetic algorithms

for function optimization. In J. David Schaffer, editor, Proceedings of the Third

International Conference on Genetic Algorithms, pages 51-60, Morgan Kauf-

man, 1989.

[9] William J. Walker. Flight Control Command Generation in a R,.- Time Mission

Planning System. Master's thesis, Massachusetts Institute of Technology, 1990.

