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ABSTRACT

Astronauts tested on a linear sled have subjectively reported greater translation postflight
than preflight. To develop a test to quantify these findings, experiments were performed
to test the ability of subjects to visually track a hidden target while translating. The
magnitudes and directions of the eye movement data were used to obtain a threshold level
of linear acceleration that humans can detect on earth, to measure differences in
perception to directional stimuli, to measure the dependence of eye movement responses
on trial duration, and finally to quantify changes following adaptation to a linear motion
visual adaptation paradigm.

Two hidden target pursuit experiments were performed: fixed displacement and fixed
duration. Each test was run in two subject orientations: upright with acceleration along
the inter-aural direction (y-axis) and supine with acceleration along the longitudinal
direction (z-axis). Subjects were instructed to visually track an imagined target fixed in
space while they were linearly accelerated in "damped position steps" of displacement
(single cycles of sine acceleration). Eye movements were recorded using scleral search
coils except for the y-axis fixed displacement test, for which electrooculography (EOG)
was used. The fixed displacement test (8.82 or 18.20 cm) utilized G-levels between
0.001 and 0.020 G and durations between 1.68 and 9.35 seconds. The fixed duration test
(1.0 or 2.5 seconds) used displacements between 5 and 40 cm with G-levels between
0.005 and 0.256 G. Five to eight subjects were tested in each experiment.

Threshold levels for perception of direction of linear translation, determined from eye
movement responses, depended on the individual but averaged to approximately 0.003 G
in the y-axis and 0.006 G in the z-axis.

Subjects exhibited a significant bias in the magnitude of their eye movements toward
headward translation in the z-axis, but did not consistently give similar subjective reports.
The asymmetry was in the direction opposite the vertical optokinetic nystagmus (OKN),
optokinetic afternystagmus (OKAN), and angular vestibulo-ocular reflex (AVOR) eye
movement asymmetries previously shown. In the y-axis, no clear significant directional
bias was apparent in the eye movements or subjective responses.

In the fixed displacement experiment, subjects' eye movement and subjective response
gains were significantly larger during the 8.82 cm trials than the 18.20 cm trials in both
sled orientations. Although a significant correlation existed between eye movements and



head displacement in the y-axis fixed duration experiment, subjects overcompensated for
small displacements and undercompensated for larger displacements in both subject
orientations, which supports the similar result from the fixed displacement test.

Eye movement and subjective responses were larger for 2.5 second trials than 1.0 second
trials during y-axis translation. This indicates a dependence of eye movements and
perception of translation upon trial duration. The same result was not significant in the z-
axis.

No significant differences emerged between the pre- and post-linear adaptation
experiments. Fatigue may have masked some of the adaptation, but more likely, other
factors inhibited the adaptation process. Since this experiment was the first attempt to
alter visual responses to linear stimulation, the important experimental conditions to
needed produce adaptation had not been defined. Therefore, the lack of significant
adaptation observed using the current paradigm does not show that linear adaptation is
not possible, rather it provides a basis for future research.

These results indicate that the voluntary saccadic eye movements evoked by the hidden
target pursuit task can be used to quantify subjective translation. Extension of the hidden
target pursuit experiment to quantify changes due to adaptation to micro-gravity may
provide further understanding of the effects of spaceflight on sensory neural processing,
as well as the role of gravity in perception of body movement.

Thesis Supervisor: Daniel M. Merfeld
Research Scientist and Lecturer
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1. INTRODUCTION

The human body receives redundant information from several sensory mechanisms

including the visual, auditory, tactile, proprioceptive, and vestibular systems. The

interaction of the sensory cues from these mechanisms contributes to a person's control of

balance and posture, spatial orientation, gaze stabilization, and motion perception. This

experiment is primarily concerned with the perception of linear motion as measured by

the otolith organs, which are the portion of the vestibular system stimulated by gravity

and linear acceleration. On earth, gravity pulls on the otoliths, causing the brain to

constantly appraise the position of the head and body with respect to gravity. This

contributes to a person's ability to decide whether she is tilting to the left or to the right.

The visual system also provides such cues from a person's environment that interact with

and complement the other sensory systems, providing a comprehensive "view" of the

surrounding environment and the position of the human body in it. This sensory

interaction is evident in the eye movements that compensate for motions of the body in an

attempt to stabilize the visual environment on the retina (Baloh et al, 1988; Buizza et al,

1979; Israel et al, 1989; Oman, 1982). Without such sensory interactions, a person

walking down the street would perceive her visual surroundings as bouncing up and

down.

A problem arises when the various sensory inputs conflict with each other, as occurs in

microgravity. The visual system sends normal signals to the brain, while the vestibular

system, which is accustomed to sensing gravity in one-G, sends a signal that does not

complement the visual signal. The brain does not know which sensory input to believe or

respond to, the visual stimuli or the vestibular stimuli, and for a time will try to follow

both. This conflict of sensory inputs has been proposed to contribute to the onset of

space motion sickness, and thus has instigated a myriad of interesting questions for
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research in sensory processing in microgravity. (Oman, 1982) After several days of

spaceflight, the human body shows signs of adaptation produced by some reorganization

of the central nervous system's processing of sensory information. As it will be used

throughout this thesis, an clear definition of adaptation is necessary. Robert Welch

appropriately describes adaptation as "a semipermanent change of perception or

perceptual-motor coordination that serves to reduce or eliminate a registered discrepancy

between or within sensory modalities or the errors in behavior induced by this

discrepancy." (Welch, 1978) In microgravity, a discrepancy exists between the sensory

information from the visual and vestibular systems, and the central nervous system

reorganizes to interpret this discrepancy, leading to changes in a person's control of

balance and posture, spatial orientation, gaze stabilization, and motion perception.

The focus of the current study is to further develop our understanding of the processing of

linear acceleration stimuli as it contributes to the perception of linear translation. Many

astronauts on return to earth subjectively report translation greater than reported during

preflight base-line data collections. One crew member even reported translation

postflight larger than that allowed by the test apparatus. The present experiments were

designed to develop a test to study these reports quantitatively, in the hope that it will be

used as a preflight/postflight test for future shuttle missions.

"For the most part, everyday perception is fully developed, very accurate, and served by a

redundancy of cues. Consequently, in order to increase our understanding of this

capacity it has become a common strategy to interfere with its operation." (Welch, 1978)

To interfere with the normal operation of motion perception, a one-G linear adaptation

experiment is used to test whether humans are capable of short term adaptation due to a

sensory conflict between the visual and otolith portion of the vestibular system. The

sensory conflict is produced by changing the "normal" relationship between head



movement and movement of the visual scenery. To date, no experiments have been

performed testing short term, nor long term adaptation, using linear acceleration.

Numerous studies with humans and animals have been performed using rotational

stimulation and altered visual stimulation to produce a sensory conflict between the

visual and vestibular systems. (Baker, et al., 1986; Demer, et al., 1989; Gonshor and

Melvill Jones, 1976; Harrison, et al., 1986; Lisberger, 1988; Miles and Eighmy, 1990;

Shelhamer, et al., 1992; Snyder and King, 1988) Likewise, several spaceflight

experiments have shown changes in response after long term adaptation to microgravity

in both humans and animals. (Arrott, et al., 1986; Cohen, et al., 1992; Correia, et al.,

1992; Kozlovskaya, et al., 1984; Oman, 1982; Oman, et al., 1988; Young, 1982; Young,

et al., 1966; Young, et al., 1986) In microgravity, there is no gravity force stimulating the

otolithic membranes to indicate bodily orientation as in the one-G environment of earth,

but the visual system is functioning normally. Although there is some evidence to the

contrary, the semicircular canals are generally unaffected by weightlessness, as it is the

otoliths that sense the gravitational force. This means that at least some of the adaptation

that occurs in spaceflight occurs in the pathways leading from the otolith organs. The

adaptation portion of this experiment, therefore, is an attempt to repeat the type of

adaptation protocols used for the short term angular adaptation studies, but using linear

stimulation to develop a deeper understanding of the adaptation that occurs during

spaceflight.

1.1. Motivation

The experiments described in the following pages were performed to develop a test to

quantify a person's perception of linear translation using voluntary saccadic eye

movements. Once this goal is achieved, the magnitude and direction data can be used to

obtain a threshold level of linear acceleration that a human can detect on earth, to

measure differences in perception to directional stimuli, to measure the dependence of



perception following adaptation to spaceflight or other sensory conflicts established in

one-G.

1.2. Thesis Organization

Chapter two gives an introduction to the issues and problems in question, including a

discussion of the physiology of the end organs under study and the related research that

motivated this research. Chapter three gives a description of the test apparatus, the

experimental protocols, and the data analysis techniques used in the current experiments.

Chapter four provides a detailed description of the results of the experiments and some

discussion of their implications. Chapter five draws conclusions from the results where

possible and gives ideas for future exploration.

Since the experiments described in this thesis were performed in two different subject

orientations (Y-axis and Z-axis) that will be referred to throughout, the terminology used

to define the coordinate system (X, Y, and Z-axes) is summarized here. Y-axis motion of

the subject refers to inter-aural (rightward/leftward) acceleration, Z-axis motion refers to

rostro-caudal (headward/footward) acceleration, and X-axis motion of the subject refers

to occipito-nasal (front/back) acceleration. In the Y-axis experiments performed in this

thesis, subjects were seated with their head upright (erect), whereas the Z-axis

experiments were performed with the subject supine. All accelerations were performed

along the earth-horizontal axis.

As stated above, the purpose of these experiments was to develop a test to quantify a

person's perception of translation so that changes in that perception following spaceflight

can be detected. Therefore, several experiments were performed to establish that these

tests can quantify the perception of translation using voluntary saccadic eye movements.

Once the tests were developed, a subsequent experiment was performed "using" the tests

13



Once the tests were developed, a subsequent experiment was performed "using" the tests

to detect changes in perception following an earth based linear adaptation paradigm. To

maintain proper organization, where appropriate, chapters of this thesis will be divided

into two sections: Hidden Target Pursuit describing the initial experiments and Linear

Adaptation describing the adaptation experiment that applies the Hidden Target Pursuit

Tests.



2. BACKGROUND

2.1. Anatomy and Physiology

The human systems relevant to the perception of bodily motion are primarily the visual,

vestibular, and auditory systems, and to a limited extent, the proprioceptive and

somatosensory systems. In the experiments described in this thesis, which quantify

human perception of linear translation, significant steps were taken (discussed in

METHODS) to isolate the vestibular system, by minimizing if not eliminating

stimulation of the other systems. With no auditory or visual cues indicating motion, no

head rotation, and no differential movement of parts of the body, detection of linear

motion is primarily dependent upon the sensitivity of the otoliths to linear acceleration

stimuli and the sensitivity of the somatosensory system to pressure changes on the body

surface, which are minimal at low stimulus frequencies. Therefore, the primary end

organs described here will be those contained in the inner ear, or labyrinth, including the

semicircular canals and the otolith organs. (Figure 2.1.)

2.1.1. Semicircular Canals

Humans have three orthogonal semicircular canals (SCC) in each vestibule that are filled

with a viscous fluid called endolymph. When the head rotates in any direction, the inertia

of the endolymph in one or more of the semicircular ducts causes the fluid to remain

stationary while the ducts themselves rotate. This causes relative fluid flow in the ducts

in the direction opposite to the rotation of the head. The fluid bends the cupula, a

gelatinous mass obstructing the fluid flow in each canal. Hundreds of sensory hair cells

located beneath the cupula in the crista are stimulated by the cupula deformation. As a

result of the near orthogonality of the three canals, the system is capable of sensing and

transducing angular acceleration about every axis in space. The semicircular canals
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Figure 2.1. Schematic drawings of the human vestibular system. Orientation of the
utricular and saccular otoliths.



(SCC) respond to rotational acceleration stimuli with a damped exponential response,

meaning that their output more accurately indicates angular velocity than angular

acceleration for most frequencies of natural head movements. The time constant of the

cupula itself is not known, but the firing rates of the primary afferents (nerve cells)

carrying this information have an exponential decay response with a time constant of

approximately five to six seconds in squirrel monkeys. Therefore, during prolonged

rotation the sensation of rotation decays as the cupula returns to its normal position

(Benson, 1982; Wilson and Melvill Jones, 1979).

2.1.2. Otolith Organs

Although the semicircular canals are highly effective in sensing angular accelerations,

they are relatively insensitive to orientation of the head with respect to gravity (Young,

1982). Therefore, the sensing of linear acceleration and gravity is performed by two

other specialized organs, the utricular and the saccular otoliths. The otoliths are the

principal non-visual determinants of static orientation with respect to the vertical. They

act in conjunction with the vertical semicircular canals to signal changes in orientation

with respect to gravity and initiate corrective postural responses. Each otolith organ is

formed by a specialized region of the inside wall of the membranous labyrinth, and is

made up of several thousand mechanoreceptive hair cells, covered by a layer of calcite

crystals (otoconia). The utricular otolith is located on the floor of the utricular sac tilted

approximately 20' up from the horizontal, and the saccular otolith is located mainly in a

vertical plane. The arrangement of the otoliths is not symmetric with respect to the X-

and Z-axes, but is relatively symmetric along the Y-axis. Fernandez et al. (1972)

determined through the direction specificity of hair cell orientation and the separate

recordings of primary afferent neurons from saccular and utricular maculae of monkeys

that head erect horizontal and vertical movements with respect to gravity predominantly

stimulate the utricular and saccular end organs respectively. The saccular otolith is also



important for sensing motion when a person is accelerated while in the supine position

(head tilted 90' from head erect).

The stimulus for the otolith receptor cells is a displacement of the sensory hairs, or cilia,

caused by movements of the otoconial mass under the influence of the shear-directed

force of gravity or linear accelerations. The input to the otoliths is equal to the vector

sum of gravity (g) minus linear acceleration (a), as shown in Figure 2.2 below.

Therefore, the gravitoinertial force is rotated in the direction of motion through the arctan

of a/g and its magnitude is increased to (a2 + g2)1/2 during one-G horizontal linear motion

and during head tilt. Along a vertical track, the magnitude of force is changed to (g + a)

or (g - a) for downward or upward motions respectively. The otolith responses, and

therefore the eye movements driven by them, cannot distinguish between the inertial

force to due acceleration and the force of gravity. This ambiguity in the use of otolith

information for static orientation, i.e., distinguishing between linear acceleration and head

tilt with respect to gravity, is normally solved by interpreting the otolith signals based on

other sensory information (Young, 1982).
Acceleration, a

Inertial force 0.5 g
due to a

1.0 g
1.1 g gravity

Resultant
force

Figure 2.2. Representation of the vector sum of the gravity and linear acceleration
vectors which constitute the input to the otoliths.



At low frequencies a substantial phase lead exists in the perception of linear translation,

while as the frequency increases the phase lag between the stimulus velocity and the

perceived velocity also increases (Young, 1982). This low frequency phase lead and high

frequency phase lag are consistent with a transfer function relating the perception of

linear velocity to the actual horizontal linear velocity given by:

VPeeived _ 1.5(s + 0.076)
VA,i (s + 0.19)(s + 1.5)

The only direct measurements of otolith displacements during oscillation, taken by

deVries in the fish, indicate an extremely fast reacting system with dominant time

constants of the order of 0.005 seconds (Young, 1983). Direct recording of first order

afferent units from utricular and saccular maculae showed substantial sensitivity up to at

least 2.0 Hz (Young, 1982). From their experimental data, Mah et al. (1989) believe that

the perceptual bandwidth is greater than 3.0 Hz (the bandwidth of their study). For brief

periods of linear acceleration lasting less than five seconds, the effective time to detect

the acceleration decreases with increasing acceleration level. Changes in linear velocity

less than approximately 22 cm/s are likely to go undetected in the horizontal plane, as

will be discussed further in relation to the threshold tests performed by previous

experimenters.

2.1.3. Eye Movements

Nystagmus, alternating fast and slow eye movements, can be caused by rotation or linear

translation of the subject or movement of the subject's visual field. The compensatory

slow phases move the eyes in the same direction as the relative visual field movement,

while the fast phases, or saccades, reset the eyes in the opposite direction. During

rotation in the dark, the vestibular nystagmus and the sensation of rotation decay with a



similar long time constant as the vestibular nucleus (VN) firing rate, approximately 12

seconds (Henn, et al., 1980). If such a constant velocity rotation is maintained in the dark

for a minimum of approximately thirty seconds, the deceleration while stopping will

stimulate the SCCs much like an acceleration in the opposite direction. The response,

therefore, will be similar to the one when rotation began but in the opposite direction.

Optokinetic nystagmus (OKN) is the nystagmus produced when the peripheral visual

field rotates around the subject's head without vestibular stimulation. OKN has an initial

rapid rise in slow phase velocity (SPV) and then a slow rise to maximum velocity close to

the speed of the visual field (Henn, et al., 1980). The initial rapid rise is presumably due

to a direct optokinetic pathway from the visual parts of the brain to the oculomotor

nuclei. Thus, the visual information is combined with the vestibular information at a very

early stage in the brain. Interestingly, the slow OKN rise and vestibular nystagmus decay

time constants are approximately the same when the head is rotated with a velocity step

(Henn, et al., 1980). Therefore, the combined effect during rotation in the light is that the

vestibular nuclei units in question accurately reflect that the subject is continuously

rotating.

Linear VOR, an eye movement response evoked by linear motion, is poorly

characterized, and the results from experimental studies of the LVOR are weak and

variable. However, it is needed for stability during natural behavior which includes

frequencies of motion between 0.5 and 5.0 Hz. A slightly more robust response is seen at

stimuli greater than 1.0 Hz, a range that exceeds the operating limits of the visual

following mechanism (Paige and Tomko, 1991). Regarding the utility of having similar

otolith responses for two different types of head movements, Paige and Tomko (1991)

proposed that the otoliths are able to distinguish between linear acceleration and head tilt

by a central mechanism that segregates the LVOR into two frequency selective processes:



low frequency stimulation associated with head tilt and derived from a low pass filtered

otolith input, and high frequency stimulation associated with head translation and derived

from a high pass filtered otolith input. This hypothesis, however, implies that the central

processing of the otolith signals is different from that in canal driven angular VOR

(AVOR) pathways.

2.1.4. Pathways

Semicircular canal and otolith organ afference travel within the 8th cranial nerve to relay

neurons in the brain stem and cerebellum, where it combines with other sensory neural

inputs. Lisberger (1988) suggested the following overview of the Vestibulo-ocular

Reflex (VOR), which has been identified anatomically with the semicircular canals and is

believed to be true, but not identified, for the otoliths. (Figure 2.3) VOR pathways in the

brain stem and cerebellum transform the amplitude and dynamics of the input to provide

commands for motor output. Image motion (retinal slip) results if the transformations are

wrong. Retinal slip is the speed with which a pattern moves over the retina, which equals

the difference between pattern velocity and eye velocity in space. Image motion is fed

back for immediate visual guidance of eye movement and for motor learning to slowly

recalibrate the VOR pathways. The Vestibulo-ocular Reflex (VOR) helps stabilize visual

images on the retina by generating eye movements that counteract, or compensate for

head movements. These slow compensatory eye movements alternate with rapid reset

movements yielding a saw-tooth position profile called nystagmus. The following

diagram summarizes this process.

The vestibular nucleus (VN), located in the brain stem, is a dense area of nerve cells that

receives the primary afferents, processes the information and, along with other targets,

sends it to the oculomotor nuclei. The visual system also transmits important



Figure 2.3. Overview of vestibulo-ocular pathways from the semicircular canals.
(Lisberger, 1988)

information, sensed primarily in the peripheral visual field, to the vestibular nucleus

(VN). The oculomotor nuclei are also located in the brain stem and send the efferent

signals to the oculomotor muscles that move the eyes. The firing rates of these efferents

signals have an exponential decay response. The time constant of the decay in the

vestibular nucleus is longer than the time constant of the primary afferents traveling from

the semicircular canals -- approximately twelve seconds versus five seconds. Since the

neurons in the vestibular nucleus have a prolonged firing rate relative to the afferents, this

increase in time constant is sometimes referred to as "velocity storage."

The slow phase of linear nystagmus is produced primarily by direct stimulation of the

otolith maculae and is organized through a linear Vestibulo-ocular Reflex (VOR) similar

to that of the angular VOR pathways (Buizza, et al., 1981). The model of the linear VOR

shown in Figure 2.3 was derived from the classical models of the angular VOR by

changing only the dynamics of the input mechanical receptor. According to some

theoretical and experimental results reported in the literature (reviewed by Buizza, et al.

1981) the time constant of the leaky integrator (TI) in darkness is larger than 10 seconds

22



and the otolith dynamics can be described in a simplified form by a first order transfer

function with a time constant, To:

= -KoKETIS 2  = -KKEs

Y (1+sT,)(1+sT,) ( + sT.)

where KF (gain of the Medial Longitudinal Fasciculus pathway) = 0.2, T (time constant

of leaky integrator) = 1/KL - 10 seconds, TE = 0.2 seconds, To (time constant of otolith

periphery) = 0.25 seconds, and KoKE = 2 deg/m. These values are provided for

completeness and will not be discussed further. Further description of their origin and

their significance can be found in Buizza, et al. (1981).

S2 KO + 1 K O

Lateral + sT +sT Eye

Displacement Otolith Eyeball Rotation

System Dynamics
Dynamics KD

Neural Leaky Integrator

Figure 2.3. Model of Linear Vestibular-ocular Reflex (LVOR) from Buizza, et al.
(1981).

Some of the same neurons in the vestibular nucleus (VN) that respond to SCC stimulation

also respond to motion of the peripheral visual field in the opposite direction (Henn, et

al., 1980). For example, if head rotation to the right excites a neuron in the vestibular

nucleus (VN), then peripheral visual field rotation to the left will also excite that neuron.

These two processes are complementary, since in the light head rotation to the right

would produce a relative motion of the visual field to the left.



2.1.5. Eye Movement Asymmetries

Several experiments have been performed to study the dynamics of vertical nystagmus, in

particular, in both humans and animals (Baloh, et al., 1983; Matsuo and Cohen, 1984;

B6hmer and Baloh, 1991). The dynamics of horizontal and vertical slow eye movements

were studied during vestibular stimulation, pursuit tasks, optokinetic stimulation, and

visual-vestibular interaction while subjects were oriented either upright (head erect) or

with their head tilted 90' (right and left) and rotated in the yaw axis (Baloh, et al., 1983).

The following asymmetries in the dynamics of vertical eye movements were discovered:

1) the mean time constant of the post-rotatory nystagmus (PRN) with upward slow phases

was consistently longer than the mean time constant of the PRN with downward slow

phases; 2) vertical optokinetic afternystagmus (OKAN) --nystagmus in the opposite

direction of the OKN following cessation of the optokinetic stimuli-- only occurred when

the optokinetic stimulus moved upward; 3) upward pursuit was better than downward

pursuit; and 4) upward slow phases of vestibular nystagmus were poorly inhibited with

fixation while downward slow phases were normally inhibited (Baloh, et al., 1983).

Vertical optokinetic nystagmus (OKN) was found to be asymmetrical in the monkey

when induced with the animals lying on their sides in a 90' roll position (Matsuo and

Cohen, 1984). Downward OKN (slow phases up) increased proportionally with stimulus

velocity at close to unity gain to about 60*/s, while upward OKN (slow phases down)

increased to only about 40*/s. In addition, upward and downward optokinetic

afternystagmus (OKAN) were asymmetrical. Upward OKAN was weak or absent, while

downward OKAN was stronger, implying that the stored activity related to the slow

phase velocity contributes little to the production of upward OKN. Furthermore, there

was no slow rise to steady state in the slow phase velocity during upward OKN, rather it

rose to its peak velocity at the onset of the stimulus. The lack of stored information may



be responsible for the differences in regularity, gain, and frequency between the upward

and downward OKN. During vertical vestibular nystagmus, the velocity of the monkeys'

initial upward and downward slow phases was approximately symmetric, but the vertical

VOR was asymmetric. The downward nystagmus had a higher frequency and lasted

longer than the upward nystagmus. The time constant of the upward nystagmus was

approximately 8 seconds, while that of the downward nystagmus was approximately 15

seconds (similar to horizontal). As with the optokinetic nystagmus, the stored activity

related to the slow phase velocity makes a smaller contribution to upward than downward

or horizontal nystagmus (Baloh, et al., 1983).

More recent experiments have studied vertical optokinetic nystagmus (OKN) and

optokinetic afternystagmus (OKAN) while subjects were oriented in both the head erect

and the lateral side position to evaluate the up-down asymmetry of these responses

(Bahmer and Baloh, 1991). Contrary to many of the previous experiments, no consistent

up-down asymmetry was found in the vertical OKN, but the OKAN was asymmetric (up

slow phase velocity > down slow phase velocity). Thus, asymmetries in human vertical

optokinetic nystagmus are inconsistent, with a tendency toward higher gain with slow

phase up than slow phase down. Regarding OKAN, the data suggest that vertical OKAN

in humans can be described as the discharge of two oppositely directed storage

mechanisms: one with a shorter time constant in the direction of the prior OKN, and the

other with a longer time constant in the reverse direction. An upward optokinetic

stimulus results in greater velocity storage in the first system than in the second so that

the OKAN is in the direction of the optokinetic stimulus, while downward optokinetic

stimuli activate the second system more than the first, resulting in reversed OKAN

(B6hmer and Baloh, 1991).



2.2. Threshold Experiments

Otolith function is more difficult to assess than semicircular canal function because

stimulation of the maculae does not elicit well defined and easily recorded nystagmus.

One approach for studying otolith processing is through perceptual techniques such as the

threshold for detection. The linear motion detection system has an effective detection

threshold of approximately 0.005 G, although it can be described as a signal-in-noise

detection process (Mah, et al., 1989). The signal must be great enough to produce a

noticeable difference above the biological noise in the system. Experimental artifacts

(noise) such as acoustic noise, distraction, fatigue, number of stimulus cycles, and the test

procedure can significantly affect the determination of threshold. Gundry (1976)

demonstrated that perceptual thresholds were raised by approximately forty percent in

roll vection when subjects were distracted by a task such as mental arithmetic or vehicle

steering.

Four general types of otolith stimuli have been used to study thresholds: 1) controlled

translation oscillations relative to a given axis of the head, 2) 'sustained' (duration limited

by 32 foot track) linear acceleration relative to some axis of the head on an earth-

horizontal or vertical linear track, 3) sustained linear acceleration relative to some axis of

the head produced by a centrifuge, 4) sustained gravitational force relative to some axis

of the head produced by a tilt device (Guedry, 1974). Although often used, oscillatory

motion is not the optimal procedure for determining threshold because only the threshold

of motion detection can be accurately determined, not the threshold for direction

detection. 'Sustained' linear acceleration provides the least contaminated procedure for

measuring thresholds for linear acceleration because it contains no rotary stimuli.

However, a constant stimulus value can be maintained for only short durations as the

velocity of the signal becomes too large. Since the threshold experiments in the current



study are performed on a linear accelerator, stimulus modes 1) and 2) from above are

most relevant and will be reviewed here.

Table 2.1, copied from Benson, et al. (1986), summarizes the data from previous

experiments on thresholds for detection of linear motion in the horizontal plane acting in

the X, Y and Z-axes of the head. The thresholds are stated as the maximal acceleration of

the stimuli producing the response and range from 0.018 m/s 2 (0.002 G) on a parallel

swing in the X-axis to 0.154 m/s 2 (0.0157 G) during single cycles of sine acceleration in

the Z-axis.

Table 2.1. Summary of data on threshold for detection of low frequency linear
motion stimuli in the horizontal plane acting in the X, Y, and Z axes of the head.
(Benson, et al., 1986)

Threshold (m/s 2)
Stimulus freq. X Y Z N Source

(Hz)
Parallel Swing 0.4 0.018 0.019 0.021 ? Walsh (1961)

0.4 - 0.038 0.053 6 Walsh (1961)
0.29 0.045 0.035 0.053 12 Greven et al. (1974)

Continuous 0.3 0.025 0.032 0.070 6 Benson et al. (1984)
Oscillation
Step Acceleration - 0.059 - 0.098 3 Meiry (1965)
Single Acceleration 0.3 0.063 0.057 0.154 24 Benson et al. (1986)
Sinusoid

Walsh (1961) performed an experiment to isolate the primary receptors involved in the

detection of linear acceleration (reviewed by Gundry, 1978). Subjects without otolith

function had thresholds of detection of linear oscillation between 0.016 and 0.023 G,

which are significantly higher than for subjects with full otolith function. As a

comparison, subjects without somatic sensation (with high spinal cord injuries) were

studied and found to have thresholds between 0.0035 and 0.008 G, which are very similar

to the normal population. These results suggest that the otoliths are the primary receptors



involved in detection of linear acceleration at the test frequency, 0.4 Hz. It is unknown

whether at higher frequencies the somatic sensation has more of an influence.

Using a 32 foot long horizontal track, Meiry (1965) imposed different magnitude

accelerations to determine how long accelerations must be sustained to yield 75% correct

detection judgments. Thresholds of 10 cm/sec2 for acceleration along the Z-axis and 6

cm/sec2 for Y-axis acceleration were determined using latency times. Theoretically,

response latency is the time required for a given magnitude stimulus to produce threshold

deflections of the otoliths. He inferred that the difference in threshold is due to the angle

of imposed acceleration relative to the average utricular shear plane (Meiry, 1965).

A similar experiment using vertical accelerations ranging from 0.005 to 0.06 G was

performed to test for thresholds of detection of acceleration along the subject's z-axis with

the head erect (Melvill Jones and Young, 1978). Subjects were instructed to indicate

their direction of acceleration, and the latency of the subjects' response was measured.

To avoid any jerk at the start of the acceleration, the accelerations were presented at a

random time interval after the cabin was moving at 0.61 m/s. Detection of the stimulus

was determined by attainment of a given velocity (21.6 ±2.65 cm/sec) rather than the

magnitude of the acceleration. Thus, if detection is attributable to the otoliths, then the

neural processes must act as integrating accelerometers, similar to the semicircular

canals, for short-duration stimuli (Melvill Jones and Young, 1978).

The time-to-detect varied inversely with the size of the step of acceleration, allowing a

velocity constant to be calculated for each subject using the following relation:

V=AxTTD

where A = acceleration and TTD = time-to-detect. Re-analysis of previous data with

inter-aural (Y-axis) acceleration with the head erect and supine elicited the same



relationship, with velocity constants equal to 22.6 ±1.28 cm/sec and 32.4 ±1.96 cm/sec,

respectively. As mentioned in the discussion of anatomy and physiology of the vestibular

system, Fernandez et al. (1972) determined that with the head erect, horizontal and

vertical movements predominantly stimulate the utricular and saccular end organs

respectively. The striking similarities between the different experimental data indicate

that the thresholds of predominantly utricular (horizontal acceleration) stimulation and

saccular (vertical acceleration) stimulation with the head erect were similar. With the

head supine, the saccular threshold is approximately 1.5 times greater. Fernandez and

Goldberg (1976) also discovered that saccular-dependent vestibular primary afferents

responding to +Z (upwards re head) and -Z force vectors have similar steady state

discharges when the head is erect, but the same population has significantly different

values when supine. Melvill Jones and Young interpreted this finding in support of their

own conclusions regarding the lower sensitivity when the body's Z-axis was horizontal.

If the differential firing rate between +Z and -Z constitutes the meaningful signal, a

change of that signal caused by an acceleration would constitute a smaller portion of the

static differential signal with the Z-axis horizontal than vertical. According to Weber's

Principle, the threshold would be associated with a larger stimulus when the Z-axis was

horizontal (Melvill Jones and Young, 1978).

The design of the experiment discussed above using earth vertical accelerations along the

subjects' z-axis permitted investigation of effects due to practice, up-going versus down-

going accelerations, and increasing versus decreasing levels of vibration. Although

actual data comparing these effects is not presented in their paper, it is important to note

that an absence of any asymmetry was reported between upward and downward trials

during Z-axis accelerations when the head was erect. Likewise, neither practice nor the

direction of the vibration level produced statistically significant effects either (Melvill

Jones and Young, 1978).



There is some question whether the axis of the imposed linear motion affects the

threshold for detection. During linear experiments performed in the vertical axis with

respect to the earth, the resultant acceleration vector is only a change in magnitude

(acceleration + gravity), whereas in the horizontal axis the stimulus produces a change in

the magnitude and direction of the resultant vector. Contrarily, Guedry (1974) argued

that the magnitude of the imposed acceleration, rather than the magnitude of the resultant,

is relevant to determination of the threshold, implying that for both horizontal and

vertical accelerations the threshold can be described by the magnitude of linear

acceleration applied to the subject. If this argument were true, any bias due to the

gravitational force would be rejected. In comparing the axis of motion with respect to the

subject, not with respect to the earth, Z-axis thresholds and response latencies have been

reported to be slightly higher than for the X- or Y-axes. (Gundry, 1978)

Another threshold experiment was performed on a linear accelerator in the X-axis using a

cosine acceleration wave (Mah, et al., 1989). The subjects were instructed to signal when

they perceived the acceleration. A 21 second delay between each trial was used for the

subject to report her confidence level and for the experimenters to give feedback for

motivational purposes. The stimulus frequencies ranged from 0.2 to 3.0 Hz. A two

interval forced choice method was used to determine each subject's threshold. The results

indicate that the perceptual process is dominated by an integrative mechanism at

frequencies greater than 0.5 Hz, and potentially at lower frequencies. When comparing

the thresholds at different stimulus frequencies, a higher sensitivity (lower threshold) was

observed at 1.0 Hz. Otherwise, thresholds were similar across frequency levels. This

indicates that the thresholds do not exhibit a large sensitivity to the rate of change of

acceleration (jerk).



Comparing thresholds of different subject orientations, subjects tend to have a higher

threshold in the Z-axis (supine) than in the X- or Y-axes (upright) (Benson, 1984). The

higher Z-axis thresholds may exist because in everyday life the acceleration of gravity

acts in the plane of the saccular otoliths and the dominant head accelerations that

accompany locomotion activities are in the Z-axis. The CNS, therefore, may employ a

lower 'gain' in relaying saccular information than afference from the utricular maculae.

Neurophysiological evidence supports a higher Z-axis threshold, since the sensitivity of

neurons signaling the X- and Y-axes acceleration is approximately 30% greater than

those responding to Z-axis acceleration (Benson, 1984).

2.3. Target Pursuit

Several experimenters have studied the human's perception of linear acceleration. The

experiments most directly related to the present research were performed by Israel and

Berthoz (1989). Due to their relevance to the current experiments, they will be discussed

first and the experiments prior to them will be discussed subsequently.

Subjects were linearly accelerated using "damped position steps" and "sine wave"

trajectories while being instructed to fixate on the location of a memorized or imaginary

target (Israel and Berthoz, 1989). During sinusoidal and step-like motion, a combination

of smooth compensatory eye movements and compensatory saccades allowed the

subjects to track the memorized target. The mean "vestibular-saccadic" (VS) gain during

sinusoidal motion, which was defined as the ratio of overall eye movement peak-peak

versus head displacement, was 1.52 +/- 0.80, showing an overestimation of head

displacement. During step-like head displacements in darkness, similar to the current

study, the Linear VOR mean gain values, defined as the ratio of slow phase cumulated

peak-to-peak amplitude versus head displacement amplitude, were very small. Subjects,

therefore, depended primarily on saccades to track the target. However, they were still



able to stabilize their gaze with a mean VS gain of 1.01 +/- 0.70. The evidence supports

that an approximate estimation of head displacement can be derived from the linear

acceleration measured by the otoliths. However, since the gain of the linear VOR is by

itself extremely small regardless of the memorized or imagined target distance from the

head, the information for the estimation is also fed into the saccadic system. Therefore,

as proposed previously by Buizza et al. (1979), adequate control of eye movements

during linear acceleration is the result of a cooperation of the linear VOR together with

other oculomotor subsystems.

A similar step-like experiment was performed to test for a person's ability to memorize

her estimation of displacement after a variable delay time (Israel and Berthoz, 1989).

Rather than tracking the target during the sled motion, the subject was instructed to make

a saccade back to the target once the sled had stopped. The varying time delay (between

5 and 50 seconds) between the end of the sled motion and the instant the subject was to

make the saccade had no significant effect on the subjects' performance. In addition, no

significant difference was found between the two step-like paradigms in the subjects'

ability to calculate the target position.

The two experiments discussed above were preceded by several experiments that

examined the otolithic contribution to eye movements using a similar paradigm but with

acoustic targets (Buizza, et al., 1979). Relative motion between the target and subject

was produced by either oscillating a target in front of a stationary subject or by

sinusoidally oscillating the subject with the target fixed in space. Subjects were asked to

track the acoustic target during the relative target movement. Tracking of an imagined or

acoustic target in the absence of other sensory inputs was accomplished mainly by

saccades. If the relative motion of the target took place during subject acceleration in the

frontal plane, the subject would track the target using smooth eye movements. Whether



this effect is due to better performances of a central reconstruction of target velocity in

the presence of otolithic information or to an increase of LVOR gain produced by the

presence of a real or imaginary target is still an open question.

According to the perceptual feedback hypothesis (Yasui, 1973; Young, 1977), smooth

pursuit (SP) eye movements are produced whenever the CNS has enough sensory

information for a velocity reference signal to be reconstructed centrally. The observation

that subjects did not use smooth eye movements to track the oscillating acoustic target

while they were stationary implies that the acoustic information is not enough for such a

central reconstruction of the velocity reference signal. When additional information is

present smooth pursuit eye movements can be produced.

The characteristics of eye movements elicited by the presentation of acoustic targets were

also examined during both ramps and sinusoidal relative displacements (Zambarbieri, et

al., 1981). In these studies, the subjects were seated in a fixed position while the target

moved. The reaction time of the saccadic responses evoked by target presentation was

defined as the total time required for acquiring the target position information, making a

decision, programming, and executing a response. In comparing visual to acoustic

targets, acoustic targets required a longer latency before the first saccade. This may be

due to more time needed for determining the target position and making a decision.

There was also a decrease in the acoustic latency with larger target eccentricity, which

was attributed to greater uncertainty with the smaller signal.

2.4. Adatation

Throughout normal development the Vestibulo-ocular Reflex (VOR) is an ever-changing

system -- one that continually changes its characteristics to maintain stable retinal images

as circumstances require. Miles and Eighmy (1980) use the word 'plastic' to describe the



system -- meaning it is a system that is modifiable and has the ability to retain the

modified state without reinforcement (like head immobilization or blind folding).

Several different experiments have investigated the neural changes that occur following a

period of some stimuli combination producing a conflict of signals in the brain. These

conflicting stimuli force the brain to reinterpret the signals and alter its response to

stabilize the image on the retina. The 'adaptation' stimuli range from short- or long-term

ground-based sensory conflicts developed for experimental purposes to zero-G

experiments where the sensory conflict is a consequence of being in space.

2.4.1. One-G Adaptation to Angular Acceleration

Short-term adaptive changes in the human Vestibulo-ocular Reflex arc have been

examined using a horizontal sinusoidal rotational stimulus of 1/6 Hz and 60*/s angular

velocity amplitude (Gonshor and Melvill Jones, 1976). Each subject underwent eleven

two minute runs of the stimulus in the dark on three consecutive days, with a 3-minute

rest period between runs. During eight of the two minute daily runs the subject attempted

a reversed visual tracking task by means of mirrors. VOR was measured during the first,

sixth, and eleventh trials conducted in the dark. VOR gain was reduced significantly (P<

0.001) and can be attributed solely to the 14 minutes of reversed visual tracking

attempted during the 50 minute daily experiment. In addition, the pre-test control gain

was lower on day 3 than on day 1, indicating a small cumulative effect from beginning to

end of the three day experiment. The following conclusion was made: the reversed

visual tracking task induced VOR attenuation due solely to the antagonistic visual

stimulus. The attenuation represented an adaptive change in the VOR induced by retinal

image slip. A control experiment showed that the repeated vestibular stimulus would not

itself induce a significant response decline, therefore, isolating the effects due to the

discrepancy between vestibular and visual sensory inputs from those due to potential

habituative attenuation.



The following mechanisms were proposed as plausible causes of the adaptive changes in

the VOR: 1) Unsuccessful optokinetic tracking would lead to relative image slip on the

retina. Afferent retinal discharge would cause VOR modification in an attempt to null

that discharge resulting in an attenuation of VOR gain. 2) Since the optokinetic stimulus

induces an overt oculomotor drive, an efferent copy of this drive (opposite to the

vestibular one) might be responsible for changing the VOR. 3) Mismatch between

extraocular muscle afferent discharge and the concurrent vestibulo-ocular drive could

cause the VOR modification (Gonshor and Melvill Jones, 1976).

Plastic changes in VOR of humans have also been studied after long-term optical reversal

of vision during free head movements using head mounted dove prism goggles (Gonshor

and Melvill Jones, 1976). VOR was measured using a sinusoidal rotational stimulus in

the dark identical to the short-term adaptation experiment discussed above. All four of

the subjects tested showed substantial reduction of VOR gain during the first two days of

vision reversal and continued to decrease until reaching a plateau of 25 percent of the

normal in five to seven days. In the second week of vision reversal, large changes of

phase developed in the VOR, lagging as much as 130'. Subsequently, the phase

stabilized at this value while the gain climbed to about 50 percent of its normal control

value. After return to normal vision, recovery of VOR gain began almost immediately

but took several days to reach completion. Thus, free head movement with vision-

reversal prisms produced a similar effect as the strictly sinusoidal movements employed

in the earlier experiments. The daily level of VOR attenuation remained intact each

night, whereas during the short term experiment subjects returned to approximately

normal vision after each daily experiment. Since the alteration of reflex function only

occurred in the presence of a mismatched visual stimulus and always in a manner to



correct that mismatch, these changes were truly adaptive to the requirements of retinal

image stabilization during head movement (Gonshor and Melvill Jones, 1975).

A neurological mechanism that may be responsible for the changes observed in the gain

and phase is shown in Figure 2.4 (Gonshor and Melvill Jones, 1975). Primary vestibular

afferents from the canals (B) innervate the vestibular nuclei through direct projections

that are excitatory to second order vestibular neurons. Primary vestibular afferents also

innervate the vestibular cerebellum which through Purkinje cell projections (C) inhibit

the vestibular neurons projecting to the oculomotor nuclei (D). When B>C, i.e., when the

excitatory function of the primary vestibular afferents exceeds the inhibitory function,

there would be a normal response in D. As the effectiveness in C increases, the VOR

gain would progressively decline until B=C and overall gain would become zero. When

C>B, i.e., the vestibular neurons are inhibited more than excited, the net effect would be

reversal of the signal in D, relative to the afferent input generated by the rotational

stimulation of the canal. Since this explanation would not account for the complex phase

changes observed, a simple 'lead' term with a single time constant of about I second was

introduced to channel C. The change in phase and the interdependence of gain and phase

would then be accounted for. This mechanism explains how the visual tracking system

might be capable of modifying the VOR (Gonshor and Melvill Jones, 1975).

Humans can also adjust their VOR gain dependent on a situational context (Shelhamer, et

al., 1992). Subjects were sinusoidally rotated (0.2 Hz and 30'/s) for two hours on a

rotating chair inside an OKN drum that either counterrotated or moved with the chair at

ten minute intervals. By altering the viewing angle during the different drum

configurations, the subjects were able to store a lower VOR gain (6 percent lower) while

looking 20' down and a higher gain (8 percent higher) while looking 20' up. VOR was

tested using step displacements before and after the adaptation paradigm. The results
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Figure 2.4. Schematic diagram of a neural network capable of producing the
complex changes of gain and phase observed in experiments performed by Gonshor
and Melvill Jones (1975). A = primary afferent input, B = synaptic input to
vestibular neurons (VN) via brainstem pathway, C = synaptic input to vestibular
neurons (VN) via brainstem cerebellar pathway, D = projection from VN to
oculomotor neurons (OMN), Pj = Purkinje cells in the vestibulo cerebellum (VCb).
Dashed pathway indicates the visual influence on Pj in VCb. The figure and the
notation described above was extracted from Gonshor and Melvill Jones (1975) to
help illustrate the proposed mechanism.

showed that humans can learn to store two VOR gains simultaneously and depending on

the context can switch from one to another.

Spectacles to miniaturize and magnify the visual inputs have been used to elicit motor

learning in rhesus monkeys (Lisberger, 1988). After several days of passive head turns in

darkness with the x2 spectacles, VOR gains reached as high as 1.8. Similarly with 0.25

spectacles the gain of the VOR decreased as low as 0.3. In agreement with the Gonshor

and Melvill Jones data (1976), motor learning did not occur during either head turns in

the dark or during image motion when the head is stationary, indicating that the site of

modification must also be a site of convergence for visual and vestibular inputs that guide

learning. Lisberger suggested that there are modified and unmodified parallel VOR



pathways. The unmodified pathways have the shortest latency and are driven by phasic

afferents, while the modified pathways have a longer latency and are driven by tonic

afferents. This would suggest that the tonic response would be more likely to be

modified during motor learning than the phasic response. The following model (Figure

2.5) was proposed for learning simple motor skills, including alteration of the VOR

(Lisberger, 1988).

Cortex ensory and Motor Feedback

Error Correction
(closed loop + slow)

Sensory Deep Cerebellar
Inputs Accuracy Pathway Nuclei

(open loop + fast)
Site of Motor Learning

Shortest Latency Pathway Motor Output
(open loop + ultrafast)

Figure 2.5. Lisberger's (1988) model for motor learning.

Additional experiments testing long-term adaptive changes in primate VOR have been

performed using several different types of optical devices during active head turns,

including: telescopic spectacles (magnification 2.0 and 0.5), fixed field spectacles that

fix the field of view with respect to head, and dove prism spectacles providing left/right

reversal (Miles and Eighmy, 1980). The first two optical devices required adaptive

changes in gain alone, which occurred exponentially up to 75 percent. No phase changes

were necessary for compensation. Recovery after removal of the spectacles also

proceeded exponentially but at a more rapid pace than the initial adaptation. The rate of

acquisition was similar from one animal to another and for repeated exposures. The data



supports previous conclusions that some retinal slip is necessary for adaptation to occur.

An important aspect of VOR is its open loop mode of operation, and the visual system

closes the loop. The animals' VOR was assessed by passively oscillating them about the

vertical axis at 0.1 - 1.0 Hz and ±5 to ±35. A caloric test was performed while the

animals were in the adapted state to see if the adapted VOR was only present during head

turns. The slow phase velocity during the caloric test, however, was consistently greater

than normal when the animal was in the high-gain state. The mean ratio of high-

gain/normal equaled 2.15 during the caloric and 2.03 during passive head turns. Contrary

to the telescopic optical devices, reversing prisms require a 180' phase change for perfect

compensation. Attenuated compensatory eye movements were observed, but little phase

change occurred with active head movements alone. Subsequently, forced oscillations of

0.2 Hz and ±30 for five to six hours for five weeks produced more attenuation of gain

and an increase in phase lag (Miles and Eighmy, 1980).

Eye velocity has been studied during the first two seconds of the vertical VOR elicited

from cats placed on their sides (90' roll position) and rotated about an earth vertical axis

(Snyder and King, 1988). To increase the VOR gain, each cat was oscillated for four to

seven hours at 0.20 Hz and ±15 '/sec amplitude while the illuminated surround

counterrotated. An identical protocol was used to decrease the VOR gain, except the

surround rotated in phase with head velocity. VOR was tested using velocity steps of 10,

20, 40 or 80 "/sec and sinusoids of ±15'/sec at 0.02, 0.05, 0.2, and 0.5 Hz. The effects of

adaptation were greatest at the adaptation frequency (0.20 Hz). For both high and low

gain adaptation, the percentage change in plateau velocity was approximately two times

the percentage change in peak velocity, supporting Lisberger's idea that the tonic

response is more likely to be modified during motor learning than the phasic response. In

addition, the VOR gain adaptation was symmetric and the VOR latency was unchanged

by adaptation (Synder and King, 1988).



2.4.2. Adaptation to Microgravity

Experimenters have hypothesized that weightlessness leads to an inhibition of otolith

derived spatial orientation information, and that the central nervous system eventually

may adapt to weightlessness, and thus, reinterpret otolith information (Arrott et al., 1986;

Oman, 1982). The resting discharge of the otoliths will be different from that on earth

and during head movements the otoliths will be stimulated in an atypical manner.

Although many of the results from microgravity experiments have been inconsistent, the

weight of evidence points to an elevation and increased variability of the threshold of

linear acceleration in the first few days following space-flight.

Thresholds for perception have been used to measure adaptation to microgravity (Benson,

1984). In flight, thresholds for detection of motion were raised by a factor of 1.5 - 4.3.

Fourteen hours after landing of Spacelab-1 (SL-1), the Red Crew still had significantly

raised thresholds in the X- and Y-axes. Thresholds returned to the preflight baseline

within twenty-four hours. The Blue Crew had significantly lowered thresholds on

postflight day one. Because of the variability of the results and the limited amount of

data it is difficult to draw conclusions. The increased threshold during flight could be

attributed to (1) the lowering of the 'gain' of the end organ by efferent control or (2)

modification (sensory rearrangement) within the central nervous system (Benson, 1984).

Following the D-1 flight, tests performed on a linear accelerator on the first and second

day yielded thresholds that were significantly raised (p<0.01) above the values obtained

preflight for all axes of acceleration (Benson, 1984). Although a change in the

excitability of the otoliths in microgravity cannot be excluded, it is more probable that

this decreased sensitivity is a manifestation of a central adaptive mechanism in which the

"weighting" of gravireceptor information is reduced. (Benson, 1982)



A battery of pre- and postflight experiments were performed on Spacelab Mission 1 (SL-

1) as well as in-flight experiments on the D-1 mission to investigate adaptation to

weightlessness and readaptation to one-G (Young, et al., 1986). The experiments were

based on the "sensory reinterpretation hypothesis," which includes the following

components: 1) utricular otolith afferent signals are reinterpreted as indicating head

translation rather than tilt, 2) sensitivity of reflex responses to footward acceleration is

reduced, and 3) increased weighting is given to visual and tactile cues in orientation

perception and posture control. The basic question that remains is how the sensory motor

system reorganizes to account for the environmentally imposed change in the sensory

information.

The input to the otoliths can be compared to the path followed by a pendulum (Young, et

al., 1986). On earth, a non-accelerating body is subject to gravity alone, and the

pendulum points toward the vertical. In orbital flight, a body not accelerating relative to

the spacecraft experiences linear acceleration, A, equal to gravity as the object free falls

around the earth, producing no specific force on the otoliths except during head

movements. In one G lower frequency components of the otolith signals have been

linked to the direction of the head relative to gravity, whereas higher frequency signals

reflect head tilt and linear acceleration. In space static head orientation does not

influence otolith organ afferent activity. Each head movement, therefore, produces a

specific force stimulus which can swing in direction, even without a head tilt. Young, et

al. hypothesized that the otolith signals are either inhibited, reducing their influence on

posture, eye movements and spatial orientation, and decreasing the ability to sense linear

acceleration, or are reinterpreted as the central nervous system learns that the afferent

signals now code only linear acceleration.



The experiments of specific relevance to this thesis were performed pre-and postflight on

a linear accelerator modeled after the MIT sled used in the current experiments. First,

using a joystick subjects seated in complete darkness were instructed to indicate their

direction of acceleration during a series of accelerations between 0.001 G and 0.08 G,

similar to the experiments performed by Young and Melvill Jones (1978) described

previously with the Threshold experiments. Each crew member's threshold level and a

mean time-to-detect were calculated from this data. As before, the time-to-detect varied

inversely with the size of the step of acceleration, allowing a velocity constant to be

calculated for each subject. No dramatic changes in threshold, time to detect, or velocity

constant were observed preflight to in-flight (D-1) nor preflight to postflight (D-1 and

SL-1). The primary change observed was an increase in variability postflight.

During the second test, the Closed Loop Otolith Assessment Test (CLOAT), subjects

were asked to null the motion of the sled using a joystick as they were accelerated with a

pseudo-random sled signal. Postflight six out of nine crew members in the y-axis and

two out of three crew members in the z-axis were "temporarily more capable of sensing

and reacting to linear acceleration more effectively than preflight" as long as they did not

have to stabilize their trunk with respect to gravity. (Young, et al., 1986) This indicates

that postflight subjects are able to control translation better, but cannot control tilt.

The gain of the horizontal angular VOR of two rhesus monkey was measured 15 and 18

hours following 14 days of spaceflight and found to be approximately the same as

preflight measurements (Cohen, et al., 1992). Latency, rising time constant, steady-state

eye velocity and phase modulation during off-vertical axis rotation (OVAR) were also

similar to preflight. Changes were observed in the amplitude of modulation of otolith

related components of nystagmus induced by OVAR and in the ability to discharge stored



activity by tilt dumping. This suggests that adaptation to microgravity caused alteration

in the way the central nervous system processes otolith input.

Controversial data exist as to whether the gain of yaw VOR is affected by altered states of

gravity (Cohen, et al., 1992). Until recently on Spacelab Life Sciences-1 (Oman and

Balkwill, 1992), data from NASA and ESA spaceflights did not show any change in

compensatory yaw eye movements evoked by voluntary head movements (Oman and

Young, 1988). However, Kozlovskaya, et al. (1984) did see an increase in gain of the

horizontal VOR during active head movements in monkeys and humans in-flight and

postflight.

As described above, a significant portion of data exist related to the adaptation of the

neural pathways governing both the angular and linear Vestibulo-ocular Reflex. No

preflight/postflight tests, however, have been able to quantify the human's perception of

linear translation as the experiments described in this thesis aim to do. In addition,

although several experimenters have attempted to alter the angular VOR pathways using

conflicting visual and vestibular stimuli in one G, no experimenters have attempted to

alter the LVOR pathways in the same manner. This thesis is an attempt to investigate

these unstudied issues.



3. METHODS

The following chapter is divided into three sections which describe the methodology used

to meet the objectives of this thesis as stated in Chapter 1, that is, to develop a test that

quantifies the human perception of linear translation using voluntary saccadic eye

movements. The three sections are experiment design and procedure, experimental

apparatus, and data analysis.

3.1. Experiment Design and Procedure

3.1.1. Hidden Target Pursuit

All of the experiments to be described here were performed on a linear accelerator (sled)

located in the Man-Vehicle Laboratory at the Massachusetts Institute of Technology.

Two different hidden target pursuit experiments were performed independently: 1) the

fixed displacement test, where the amplitude of the sled motion was fixed at either 8.82

or 18.20 cm, and 2) the fixed duration test, where the duration of the sled trial was fixed

at either 1.0 or 2.5 seconds. Each test was run in two different subject orientations:

upright with acceleration along the inter-aural direction (y-axis) and supine with

acceleration along the longitudinal direction (z-axis). Four basic hidden target pursuit

experiments were run and they will be referred to by the following names throughout this

thesis: y-axis fixed-displacement, y-axis fixed-duration, z-axis fixed-displacement, and

z-axis fixed-duration. In all four experiments, subjects were instructed to visually track

an imagined target fixed in space while they were linearly accelerated using a "damped

position step" displacement.



3.1.1.1. Fixed-Displacement Test

The protocols for the y-axis and z-axis tests are identical. However, since the target is 50

cm from the subject in the y-axis and 52 cm from the subject in the z-axis, the two

different axis require slightly different eye movements for perfect compensation. The

sled displacement was fixed at just two values (8.82 cm and 18.20 cm), which for perfect

compensation would require eye movements of 10 and 20 degrees respectively in the y-

axis and 9.6 and 19.3 degrees in the z-axis. Throughout both the y- and z-axis fixed

displacement experiments, these two different displacements will be referred to as the "10

degree" and "20 degree" cases.

In the y-axis, each subject was run through two separate (30 - 45 minute) sessions on two

different days within the same week to complete all of the required trials. In each session

the subject was tested with forty trials consisting of ten randomly varied peak

acceleration levels (1.35 milliG, 1.82 milliG, 2.46 milliG, 3.31 milliG, 4.47 milliG, 6.03

milliG, 8.14 milliG, 10.99 milliG, 14.82 milliG, 20.0 milliG), two directions (left and

right), and the two displacement amplitudes (8.82 cm and 18.20 cm). In two data

sessions, this protocol yielded a total of eighty trials for each subject with two trials for

each test condition.

The z-axis fixed-displacement test was similar to the y-axis test, and was first run using

electrooculography (EOG) to measure eye movements. However, because of the

asymmetry, increased signal noise level, and increased variability associated with vertical

EOG measurements, this data was rejected and the experiment was redone using search

coils. Identical motion profiles were used in the z-axis, except that the lowest two

acceleration levels (1.4 milliG and 1.8 milliG) were excluded to yield a single half-hour

session. Therefore, each subject was tested during only one session including thirty-two

unique trials, each repeated twice for a total of sixty-four trials. The two lowest



accelerations were chosen as the conditions to delete since the threshold for detection of

linear acceleration is higher than that in the y-axis (Benson, 1989). Therefore, the

conditions could be removed without eliminating the sub-threshold portion of the test

range.

3.1.1.2. Fixed-Duration Test

The fixed-duration tests, in both the y-axis and the z-axis, were performed to further

investigate the dependence of displacement estimation on trial duration and distance. The

experimental set-up was identical to the fixed-displacement tests. The protocol was

modified slightly to hold the duration of the trial, or the frequency of the sinusoidal

acceleration constant. Two different trial durations were tested: 1.0 sec and 2.5 sec (1.0

Hz and 0.4 Hz). The sled was moved eight different displacements ranging from 5 cm to

40 cm. Due to the relationship of the acceleration, displacement, and trial duration

(Equation 3.1), the acceleration was allowed to vary with the fixed trial durations and

distances. The sled displacements and trial durations were chosen so that all of the

accelerations were above the average subject's threshold of 5 milliG (Mah, et al., 1989).

This experiment, therefore, was not a threshold experiment as the fixed displacement test,

rather it was a means of further investigating the role of trial duration in the process of

displacement estimation.

3.1.1.3. Sled Motion Stimuli

The motion stimuli for all experiments were damped position steps (single cycles of sine

acceleration). The motion parameters are related by the following equation:

t2 = 2rd
A (3.1)



where t = duration of trial (seconds), A = peak acceleration (cm/s2 ), and d = sled

displacement (cm). Figure 3.1 shows a the acceleration, velocity, and position traces to

illustrate the sled motion.

aI

b /,,,

I

C ./

\ .

• i

Figure 3.1. Sled motion stimulus: (a) acceleration, (b) velocity, and (c) position.

Each trial proceeded as follows: 1) The subject was asked to fixate on the red light

emitting diode at eye level 50 cm (z-axis: 52 cm) from the subject's eye. For this protocol

it was important that the target be in the same position in front of the subject before and



after each trial. Therefore, the subject was made to believe that the target was fixed to the

earth even though it was actually fixed to the sled. 2) The Target Pursuit Shade run by a

DC motor dropped down between the subject and the target to hide the target from view.

3) One second later the sled motion began. The subject was asked to track the "earth-

fixed target" (LED) throughout the sled motion even though it was not visible. 4) When

the sled had stopped, the experimenter asked the subject to give a subjective response as

to which direction the sled moved (e.g., left/right) and how confident they were with their

answer using the following scale: 1 = very confident, 2 = somewhat confident, 3 = not

confident. 5) With the Target Pursuit Shade still in its lowered position, the sled was then

moved back to the center with a 5 milliG damped position step profile. 6) Once the sled

was back to the center, the shade was raised and the subject could see the target and

prepare for the next trial. Figure 3.2 graphically illustrates the sequence of events

described above for an individual trial.

3.1.2. Linear Adaptation Test

The linear adaptation experiment consisted of three pre- and post-adaptation protocols

that tested for changes caused by a thirty minute earth based stimulus combination

designed to produce a conflict between the visual and vestibular sensory inputs. The

three pre- and post-adaptation tests included a fixed displacement Hidden Target Pursuit

test, a linear VOR test, and an angular VOR test. Identical testing conditions were

performed pre- and post-adaptation. First, the subject was tested on the rotating chair for

angular VOR evoked by a sinusoidal stimulus. Next, the subject was moved onto the

linear sled and tested using the Hidden Target Pursuit protocol in the y-axis. The

optokinetic stimulus was then mounted onto the sled and several linear VOR trials were

performed. This identical sequence was performed post-adaptation in reverse order (i.e.,

1. LVOR, 2. Hidden Target Pursuit, 3. Rotating Chair)
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Figure 3.2. Graphical representation of the sequence of events during a trial in the Hidden Target Pursuit Experiment.



3.1.2.1. The Adaptation Protocol

This section describes the stimulus used during the thirty minute adaptation portion of the

experiment which was designed to produce a sensory conflict. The subject was seated in

the sled in the y-axis upright identical to the subject position during the pre- and post-

adaptation experiments. Two fluorescent lights shined toward the visual stimulus to

provide enough illumination for the subject to adequately see the moving black and

yellow stripes in the dark room. The sled computer linked the optokinetic stimulus and

sled so that the visual pattern moved twice the distance that the sled moved and in the

compensatory direction relative to the subject. This stimulus combination was designed

to evoke a visual response twice that normally experienced. The subject was given a

linear joystick with which she simultaneously controlled the sled and optokinetic

stimulus. Full deflection of the joystick produced ±10 Volts, which was sent to the sled

and optokinetic controllers. No computer generated signal was input to the system.

Therefore, the only signal the sled and optokinetic motors received was from the subject's

joystick deflections. The combination was valid except at very high frequency

maneuvers where the optokinetic stimulus lagged the sled movement slightly. Analyses

of the frequency spectrum of each subject's adaptation sessions indicate the range of

frequencies each subject injected. Subjects were asked to look straight ahead at the

center of the striped optokinetic stimulus and notice each stripe as it moved past their

eyes. This active protocol was chosen over a passive sinusoidal or pseudo-random

stimulus to keep the subject alert and allow the subject to experiment in her own manner.

Each subject experienced five, five-minute segments of the adaptation protocol. In

between each five-minute session a one to two minute break was taken where the subjects

were permitted to relax their eyes by shutting them, but the room remained dark and the

only visual stimulus was the stationary stripes in front of them. During these one minute

breaks the experimenter would question the subject on motion sickness symptoms and



other illusions. A scale from 1-20 was used to indicate motion sickness symptoms, where

1 was normal and 20 was vomiting. If a subject felt signs of extreme motion sickness, the

break was extended until the subject felt well enough to begin again to ensure that the

subject was able to concentrate on the stripes during the five minute adaptation segments.

Only one subject (MB) needed additional time between segments to quell her motion

sickness symptoms. Between the fourth and fifth adaptation segment MB took a four

minute break.

3.1.2.2. Hidden Target Pursuit Protocol

The Hidden Target Pursuit protocol used during pre- and post-adaptation was similar to

the Fixed-Displacement Test, where the subject was accelerated using damped-position

step profiles of equal length. The displacement amplitude was held constant at 18.20 cm,

which if perfectly compensated for would require eye movements of 20 degrees. Each

subject was tested on 32 trials (16 unique) of eight randomly varied peak acceleration

levels (2.46 milliG, 3.31 milliG, 4.47 milliG, 6.03 milliG, 8.14 milliG, 10.99 milliG,

14.82 milliG, 20.0 milliG) in two directions (left and right). Each trial was repeated to

increase the number of trials of each condition. The subjects' task during this portion of

the Linear Adaptation experiment was identical to the preliminary Hidden Target Pursuit

experiments, namely to visually track the earth fixed target even though it was not visible

during the sled motion.

3.1.2.3. Linear VOR Protocol

The linear VOR portion of the pre- and post-adaptation session included three trials

testing the gain of the slow phase velocity of the horizontal eye movements. During the

first trial the subject was seated in the sled in complete darkness. The sled stimulus

included eight cycles of a sinusoidal velocity stimulation with a frequency of 0.25 Hz and

acceleration of 0.4 G. The second trial consisted of only the optokinetic stimulus while



the sled remained stationary. The optokinetic stimulus moved in a sinusoidal profile with

a frequency of 0.25 Hz and the same peak linear velocity moved by the sled in trial #1 but

180' out of phase (i.e., in the compensatory direction). The third trial combined trial #1

and trial #2 to test the visual vestibular interaction (VVI).

During the first run in the dark, the subject was asked to keep her eyes open and to

imagine the optokinetic stimulus used in the other trials. This was an attempt to control

the vergence of the subjects' eyes during the trial. Mendoza (1993) tested this procedure

to control vergence and found that while imagining the striped pattern while in the dark

subjects verged their eyes similar to trials where the optokinetic stimulus was visible.

During the two trials using the optokinetic stimulus (OK alone and OK+Sled), the subject

was asked to look straight ahead and notice each stripe as it passed by. During all of the

linear VOR trials the subject was asked trivia questions to occupy the subject and

maintain mental alertness.

3.1.2.4. Angular VOR Protocol

Each subject was tested with a set of two identical trials on the rotating chair both pre-

and post-adaptation. The trials consisted of ten cycles of sinusoidal stimulation with a

peak velocity of 60 degrees per second and a frequency of 0.25 Hz. The subject was

seated in a dark room with a black cloth mask covering her eyes. The subject was asked

to look generally straight ahead and to try to keep her eyes from wandering in the

darkness. The subjects were asked trivia questions throughout the trials. Before and after

the two trials an eye movement calibration was performed by having the subject alternate

his gaze between three dots centered on the wall in front of him. Eye movements were

measured during this portion of the experiment using electrooculography (EOGs).



3.1.3. Subjects

The subjects in all of the experiments were student volunteers in, or indirectly associated

with, the Man-Vehicle Laboratory at MIT. All subjects were informed of the potential

risks involved in the experiment and gave written consent to be a subject (see Human Use

Statement in Appendix). Subjects volunteered for all tests and were not paid for their

time.

In the y-axis fixed-displacement test, eight subjects (six males and two females) ranging

between the ages of nineteen and forty-five years old were tested on the MIT Laboratory

Sled. These subjects are labeled with the following subject codes: BP, JM, KP, LF, LH,

SS, TL, and WT. Each of the subjects was tested during two identical sessions on two

different days of the same week, once in the morning and once in the afternoon.

The z-axis fixed-displacement test was originally run on eight subjects using

electrooculography. However, because of the variability and the lack of reliability of

vertical eye movement measurements with EOG the test was repeated using scleral search

coils. Because of the higher level of reliability using coils, only six subjects (3 males and

3 females) between the ages of twenty-two and thirty were run in the z-axis fixed-

displacement test and will be referred to throughout with the following subject codes:

CL, JM, KJ, KP, RZ, and TC. Using coils for eye measurement necessitated fewer

calibrations and down time required to adjust the EOG bias, thus more trials could be

included in each session. Therefore, each subject was run only once.

In the y-axis fixed duration test, five subjects (2 males and 3 females) between twenty-

one and fifty years old were each run once through the experimental protocol. The

subjects were given the following letter codes: GS, TC, JM, CL, and MB.



Six subjects (3 males and 3 females), between the ages of nineteen and fifty, were run in

the z-axis fixed duration test. Each subject was run once through the test session. The

subjects were labeled with the following subject codes: JR, AA, GS, MB, SS, and KP.

Four subjects (2 males and 2 females), between the ages of nineteen and thirty-five were

run in the linear adaptation experiment. The subjects will be referred to as: DM, MB,

CL, and KJ.

Table 3.1. Summary of Subject Participation.

Subject Y-axis Z-axis Y-axis
Fixed Fixixed xed Fixed Adapta-

Code Gender Displace- Duration Displace- Duration tion
ment ment

AA M
BP M T
CL F _4 _

DM M
GS F _ _ _ _

JM M _ _

JR M _

KJ M _ _ _ _

KP F
LF F __

LH M T
MB F _

RZ F IV
SS M I
TC M
TL M _ 4
WT M 4

Table 3.1 summarize the subject participation in the different experiments. As is evident

from the letter codes, several subjects were run in multiple experiments (CL, GS, JM, KP,

MB, SS, and TL). Thirteen of the seventeen subjects had been subjects in other

experiments on the linear accelerator prior to the first Hidden Target Pursuit experiment.

The experiments were performed in the order they appear in Table 4.1 (Y-axis fixed



displacement, Y-axis fixed duration, Z-axis fixed displacement, Z-axis fixed duration,

and Y-axis linear adaptation). The experiments were separated by at least one month

time for all subjects, except KP who was a subject in both Z-axis experiments within one

week.

3.2. Experimental Apparatus

3.2.1. Sled

The primary piece of equipment used in this experiment was the Massachusetts Institute

of Technology linear acceleration sled located in the Man-Vehicle Laboratory. The sled

consists of an aluminum cart supported on four meter long parallel rails by a set of four

circulating bearings in pillow blocks. Mounted on top of the cart is a chair in which the

subject is securely strapped with a five strap restraint system and with their head fixed in

a chair mounted helmet.

3.2.1.1. Driver

The sled is driven by an electric motor that is controlled by a dedicated 386 based PC.

The control program, written in C++ by Robert Grimes of Payload Systems Inc. and

maintained and modified by the author of this thesis, is a menu driven routine that allows

the user to create and output a series of velocity commands, called trajectories, to the

motor controller that drives the sled. The output from the sled computer is actually a

series of voltage commands sent at a rate of 100 commands per second. Currently, the

sled is capable of generating seven different types of trajectories that control the sled

motion: 1) constant velocity, 2) sinusoidal velocity, 3) sum of sines (pseudo-random), 4)

square acceleration (step), 5) modified square acceleration step (uses two different

accelerations), 6) velocity step, and 7) damped-position step (single cycle of sine

acceleration). Trajectories (4) through (7) were designed and implemented by the author

for use during the current experiments (7) and the experiments to be performed as



preflight/postflight tests on the SpaceLab Life Sciences-2 Shuttle mission and are

documented in Appendix F. Similar trajectories can also be generated for an auxiliary

output channel to control any sled accessory, or piece of equipment that needs to be

computer controlled (windowshade, lights, optokinetic stimulus, etc.).

The sled program links the sled and auxiliary trajectories together to create profiles.

Each profile, which can contain either a sled or an auxiliary trajectory or both, makes up

one trial in the experiment. The profiles can be grouped together in any sequence into a

protocol. The user can then pick individual trials (profiles) from the protocol by

selecting it with a mouse, or the user can run the series of profiles contained within the

protocol file. This increases the speed with which trials can be run, by allowing the

experimenter to set up an entire experimental session (protocol) before the subject enters

the sled. The system is capable of accelerations up to approximately 0.9 g, while the

minimum frequency of the stimulus (i.e., the maximum duration of one cycle) is limited

by the length of the track (4 meters) and the particular type of trajectory (described

above).

3.2.1.2. Helmet

In vestibular experiments, it is extremely important to limit head motion relative to the

sled motion stimuli. If the head is not properly fixed, the motion stimuli will be

contaminated by head motion relative to the sled, which could affect the eye movement

responses as well as a subject's perceptions of motion. Likewise, acoustic noise from the

sled motor and bearings could provide motion cues to the subject. Therefore, an effective

head fixation and noise cancellation system is imperative to isolate the biological systems

of interest, namely, the vestibular and visual systems, and to meet the goals of these

experiments. The primary design criteria were to rigidly fix the subject's head to the sled,

eliminate or mask all acoustic cues from the sled motion, provide open communication



between the subject and the experimenter, and maintain subject comfort for a minimum

of thirty minutes. Therefore, a head fixation system was developed for use during these

experiments and future sled experiments in the Man-Vehicle Laboratory which integrates

a new helmet, a communication system, a noise cancellation system, and a white noise

generator.

Before entering the sled, the subject puts on a David Clark flight helmet which consists of

a soft mesh and leather helmet that snaps into a hard plastic covering. A chin strap holds

the helmet in place on the subjects head. Two eight by three inch inflatable pads were fit

between the soft mesh and hard plastic portions of the helmet to reduce head movements.

A wood frame with a formed piece of dense Styrofoam inside is bolted to the back side of

the chair. Velcro covers the inside surface of the Styrofoam and mating velcro covers the

surface of the hard portion of the helmet. As the subject enters the sled, she fits the

helmet into the Velcro covered molded Styrofoam, thereby fixing her head to the sled.

To exit from the sled, the subject keeps the helmet on and simply pulls the helmet loose

from the Velcro covered Styrofoam frame. Once off the sled the subject can remove the

helmet.

3.2.1.2.1. Noise Cancellation

Bose, Inc. donated two active noise cancellation headsets to the Man-Vehicle Laboratory

for use on all sled experiments. The headset was attached inside the David Clark helmet

described above. In addition to the high quality active noise cancellation, wide band

noise was pumped through the headphones to further mask any noise generated by the

sled motor, cables or bearings. These precautions were taken to remove auditory cues

providing directional or magnitude information. The noise level was adjusted for each

subject to a comfortable level which minimized detection of any surrounding noise.

Despite the precautions, some very low frequency sound was detectable through the Bose



active nose cancellation and the additional noise mask during some sled trials.

Fortunately, at the low accelerations used in these experiments, the level of sound was

minimal, and did not give any indication of direction or magnitude of movement.

3.2.1.2.2. Communication

In conjunction with the two headsets, Bose, Inc. also donated a communication system

which allows two way communication between the subject and experimenter throughout

the test session. This facilitates communication of subjective responses from the test

subjects after each trial rather than waiting until the end of the experimental session. The

wide band noise used to mask the sled noise is mixed into the communication channels

such that the subject can hear the masking noise at all times, regardless of whether

someone is speaking.

3.2.1.3. Lighting

During all of the Hidden Target Pursuit experiments the lights in the room remained off

for the entire test session. The sled chair was enclosed with an opaque black cloth, minus

a 32 cm by 20 cm window which allowed the subject to view the target. Significant care

was taken to seal all light leaks to the room that might provide visual cues of movement

to the subject. While the sled was moving an opaque black window shade dropped down

in front of the window to block the target and any other light from the subject. To further

inhibit external light cues from reaching the subject, two small fluorescent lights were

placed inside the sled facing toward the subject, but outside the subject's normal field of

view. These fluorescent lights remained on throughout the experiment, including during

the calibrations to maintain a constant light level within the sled, to eliminate the chance

of dark adaptation, and to minimize EOG gain changes when EOG was used for eye

movement measurements. The subjects were asked to report if any light other than the



target or the fluorescent lights were visible. If such a report was made, the experimenter

stopped the current trial and further darkened the area surrounding the subject.

A few changes were made to the lighting arrangement during the linear VOR portion of

the adaptation experiment. During the first trial, the fluorescent lights inside of the sled

were extinguished and a black opaque shroud covered the entire sled to block all exterior

lights from the subject. During the optokinetic (OK) and the optokinetic+sled (OK+Sled)

trials, and the adaptation paradigm, the subject needed to be able to see the striped

optokinetic stimulus. The black cloth covering the front of the sled was removed so that

the optokinetic stimulus would fill the subject's full field of view. The side cloths

remained on the sled to block out extraneous lights from the subject's peripheral vision.

The fluorescent lights used in the Hidden Target Pursuit test were turned 180' to face

away from the subject towards the optokinetic stimulus to allow adequate illumination of

the optokinetic (OK) pattern. All other room lights remained off during the entire

experiment.

3.2.2. Visual Target

During the Hidden Target Pursuit Experiments a visual target made up of a dim red light

emitting diode (LED) mounted on a black wooden rod was centered in front of the sled

50 cm from the subject's eyes in the y-axis experiments and 52 cm from the subject's eyes

in the z-axis experiments. The position of the target could be adjusted to align with the

eyes of each subject in both axes. Since the sled does not have positional feedback

control, it was not possible to quickly position the sled directly in front of the target after

each trial. To compensate for this problem, the target was fixed to the frame of the sled

cart and, without the subject's knowledge, moved with the sled during each trial. All

subjects believed that the target was fixed to the earth at all times, and only one subject

reported any difficulty performing the task.



3.2.3. Target Pursuit Shade

To hide the target during the all movements of the sled a black opaque windowshade

(referred to as the Target Pursuit Shade or windowshade) was lowered between the

subject and the target. The shade was connected via cables and pulleys to a flywheel

attached to a DC motor. The power supply used to run the motor was connected to the

auxiliary output channel of the 386 PC so that the movement of the shade could be

controlled and synchronized with the sled motion. The shade used was a household

windowshade with the stopping mechanism removed. The spring was wound to a desired

stiffness to pull against the tension in the cables caused by the motor. This configuration

was used to keep the shade from swaying during sled motion. Figure 3.3. shows a

schematic of the general setup of the sled, target, and windowshade used for the Hidden

Target Pursuit experiments.

shade

target 

-- motor

F pulleys

Figure 3.3. Schematic drawing of Hidden Target Pursuit setup.



3.2.4. Optokinetic (OK) Stimulus

For the linear VOR trials and the adaptation paradigm, an 86 cm x 86 cm (177 cm

circumference) optokinetic (OK) stimulus was attached to the sled. The OK stimulus was

approximately 71 cm (28 in) in front of the subject's eyes and completely filled the

subject's field of view. The visual stimulus was striped with 36 alternating black and

yellow stripes, each approximately 4.9 cm wide. At this distance each stripe subtends

3.9" and the optokinetic stimulus itself subtends 50" by 50'.

3.2.5. Rotating Chair

The rotating chair located in the Man-Vehicle Laboratory at MIT was used for the

angular VOR trials pre- and post-adaptation. The chair consists of a modified 'dentist

chair' driven by a stepper motor. The chair is run from a menu driven program on a

dedicated 286 based PC. The subject is strapped into the chair by a standard lap belt, the

lights in the room are extinguished, and a black cloth mask is placed over the subjects

eyes to eliminate any visual cues cause by light leaks from the computers. Horizontal

and vertical EOG, and chair tachometer data were collected on an Macintosh Ilci (Apple

Computers, Inc., Cupertino, CA), using LabView 2 (National Instruments, Austin, TX)

data acquisition software. EOG signals were automatically adjusted to stay within ±10

volts.

3.2.6. Eye Movement Measurement Systems

3.2.6.1. Electrooculography

In the first Hidden Target Pursuit experiment, the y-axis fixed-displacement test,

horizontal and vertical eye movements were measured using an Electrooculography

(EOG) system that consists of one electrode placed just off the outer corner of each eye

on the subject's temples, one above and one below the left eye, and a ground electrode

placed in the center of the forehead. The EOG system utilizes the differences in polarity



between the cornea and retina of the eyes. The cornea of the human eye has a positive

polarity relative to the retina. When the eyes point straight ahead, the potential difference

measured differentially between the electrodes is zero. As the eyes move left or right the

differential measurement of the electrodes changes. The EOG electrodes were applied to

the subjects face 30 minutes prior to testing to help stabilize the electrodes and to ensure

better performance. A calibration of the EOG signal output was performed periodically

throughout the experiment (discussed below).

3.2.6.2. Scleral Search Coils

The scleral search coil (Skalar, Inc., the Netherlands) is an insulated copper wire

embedded in a silicone rubber ring worn on the surface of the sclera of the subject's eye.

The subject's head is restrained close to the center of four large Helmholtz coils which

produce a spatially constant magnetic flux in the test region. The magnetic field

generator and phase detection electronics were manufactured by C-N-C Engineering

(Seattle, WA). As the eye and search coil turn together, the magnetic flux through the

coil changes, which induces a measurable current. The search coils are more accurate

than electrooculography (EOG), especially for vertical eye position measurements, but

they add several constraints to the experiment as well. Most importantly, to prevent a

scleral abrasion, the search coils should not be worn for more than thirty minutes. This

limits the amount of time available for an experimental session. Fortunately, the

increased accuracy of the search coils necessitates fewer trials and fewer calibrations.

When preparing to use the search coil the following procedure was followed. The

impedance was measured to be between 19 and 21 Ohms. (If the coil wire is broken at

any point the impedance will measure in units of mega Ohms.) The coil system was

powered at least thirty minutes before use. Once the system warmed up, the coil to be

used in the experiment was taped to a calibration gimbal which was mounted within the



field coils. The coil output was set to zero when the coil was centered at zero degrees

horizontally and vertically. The coil was then calibrated for horizontal and vertical

rotations so that 10' of eye movement equaled approximately 350 A/D units. Once

calibrated, the gimbal was removed from within the coil frame, the eye coil was released

from the gimbal and was soaked for several hours in CibaVision@ AOSEPT®

disinfectant/neutralization solution. Prior to insertion into the subjects eye the annulus

was rinsed thoroughly in a stream of saline solution and the impedance across the leads

was again measured.

Once the subject was seated in the sled chair within the field coils, the subject's right eye

was anesthetized using a topical 0.5% solution of proparacaine HCI (Ophthetic@). The

search coil was inserted under the subject's eyelid so that the ring was aligned on the eye

and the coil lead exited the eye at the medial (nasal) corner of the eye. The lead was

taped to the subject's forehead, the helmet, and then to the sled frame to prevent it from

moving within the coil field causing signal noise or from interfering with the subject's

vision. Once in the subjects eye, the signal output was again set to zero as the subject

looked at the center dot of a calibration device directly in front of her. A calibration was

then performed with the coil in the subject's eye (described below). The subjects were

informed that additional anesthetic was available if the eye coil was uncomfortable at any

time during the test session.

Following a test session, the search coil was immediately removed from the subject's eye

and placed into the disinfectant solution. Each subject was given drops of sterile saline

once the coil was removed to soothe the eye and help return the scleral pH to normal.



3.2.6.3. Calibration

Every eighth trial and at the beginning and end of each experimental session a calibration

run was performed as a control for EOG comparisons. For all experiments using search

coils for eye measurements, a calibration was performed at the beginning and end of the

experimental session only. Because of the accuracy of the coils and the absence of signal

drift, it was not necessary to take calibrations every eight trials. The black Target Pursuit

Shade used to shield the target from the subject during actual trials in the Hidden Target

Pursuit experiments was also used for the calibration. The shade would drop down three

quarters of the way so that the five calibration dots were visible to the subject. The center

dot was located in the center of the field of view in front of the subject. The other four

dots were placed on the shade above, below, to the left and to the right of the center dot at

a distance that translates to a 10 degree eye movement. During a calibration trial the

subject is asked to look to the Center-Right-Center-Left-Center-Up-Center-Down-Center

as the eye movements are recorded. Once the calibration is over, the shade moves back

up to the starting position, enabling the subject to view the visual target (LED), and

prepare for the trial to begin. During actual trials, the shade would drop down far enough

that the calibration dots were hidden from the subject by the black shroud surrounding the

sled.

3.3. Data Analysis

Four channels of data were collected at 200 Hz for each experiment and recorded on a

Compaq 386 computer : sled velocity or sled position, windowshade motor output or

optokinetic stimulus velocity, and horizontal and vertical eye position (EOG or coils).

Eye position data was using LabTech Notebook for the first two experiments (y-axis

fixed displacement and fixed duration). The data was transferred to a Macintosh using

MacLink (DataViz, Trumbull, CT) and was then converted to MatLab (Mathworks, Inc.,

Needham, MA) format using a conversion program called Convert (Balkwill, 1992).
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A data collection routine written by Dr. W. Teiwes was used instead of LabTech

Notebook for subsequent experiments (z-axis fixed displacement and fixed duration and

linear adaptation). The switch to the new program was made because of the increase in

speed, the ability to view the data being recorded on the computer display, and the ability

to store the data directly in MatLab format rather than in binary format.

3.3.1. Hidden Target Pursuit

3.3.1.1. Eve Position Analysis

Horizontal and/or vertical eye movement calibration factors were calculated to convert

the A/D units to degrees of eye movements for each subject using a MatLab script called

Calibrate (Balkwill, 1992). This script calls other MatLab scripts called Three_Point

and PickRegions which allow the subject to manually pick three regions off of the plot

of the eye position data: positive deflection, negative deflection, and center. The mean

value across the specified interval was used as the number corresponding to a 10'

deflection of the eye, or any other amplitude specified by the user. The calibration factor,

in degrees per unit, was calculated as the ratio of the difference in angular displacements

specified by the user to the difference in digital units. This is a simple linear fit to the

data which has been shown to be valid for eye movements less than approximately 30

degrees. (Balkwill, 1992)

Using these calibration factors for each subject, the horizontal and/or vertical eye position

data was analyzed using a MatLab script called Target_Pursuit. Working on the same

philosophy as Calibrate, this script enables the user to manually pick points off of a plot

by calling a modified version of M. D. Balkwill's Three_Point script called Two_Point

which in turn calls a modified version of Pick_Regions. Pick_Regions allows the user to

zoom in on a particular part of the plot, for example on one trial as shown in Figure 3.4.



The user selects an area of approximately one second before the sled moves where the

eyes are fixating on the target, shown in Figure 3.4. Target_Pursuit averages the

amplitude of the points in that region. Next the user selects a flat region of the eye

position signal once the sled and eyes have stopped. TargetPursuit again averages the

amplitude of the points in that region and subtracts the pre-trial mean from it, yielding the

total amplitude and direction of the eye movement. The direction of the eye movement is

compared to the direction of the sled motion to determine whether the subject's eye

movement response was in the correct (compensatory) direction.
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Figure 3.4. Example of analysis of raw eye movement and sled position signals
during in the Hidden Target Pursuit Experiment.
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Figure 3.5. Relative eye movement corresponding to the displacement of the sled
with the target fixed in space. In this example, the subject undercompensated for
the z-axis (target distance 52 cm) sled displacement.

Since the subjects were asked to compensate for linear displacement while tracking the

target, eye movements were evaluated in centimeters. The eye displacements calculated

correspond to the projection of the line of sight of the subject on a line parallel to the

direction of displacement, running through the target position (50 or 52 cm). For

example, in the y-axis experiments an eye movement of 1 cm corresponds to an eye

rotation of Arctan(1/50) = 1.15' (Arctan(1/52)=l.10' in the z-axis).

In the example shown in the Figure 3.5, the eye movement undercompensated for the

relative target motion, i.e. the subject perceived less motion than actually occurred. The

eye movement in centimeters is calculated as follows:

Eye, = 52 x tan-1(,) (3.2)



For purposes of comparison between the different trial conditions, all eye movements

were normalized by the displacement of the sled. In the z-axis and adaptation Hidden

Target Pursuit experiments the normalized eye movement was found by dividing the eye

movement in centimeters by the sled displacement in centimeters for that particular trial

(Equation 3.3).

Gaini - Eyei (3.3)
Sledi

This was necessary to account for slight discrepancies between the commanded sled

displacement and the actual distance it moved. This normalization leads to a more

accurate depiction of the subject's response to the sled displacement. Section 3.3.1.3.

describes how the sled displacement is calculated. In the two y-axis Hidden Target

Pursuit experiments, since only the sled velocity signal was measured, it was not possible

to accurately calculate the actual sled displacement. Therefore, the eye movements were

normalized using the commanded sled displacement which is somewhat less accurate

compared to the normalization in the z-axis and adaptation experiments. However, the

variability in the sled position signal calculated in the z-axis and linear adaptation

experiments was less than ±10% of the commanded sled displacement. This variability is

significantly smaller than the variability of a subject's response from one trial to another,

which is closer to 30 or 40%.

3.3.1.2. Statistical Analysis

All eye movement magnitudes and directions were stored in spreadsheet format using

Systat 5.2., a statistical package used for all subsequent statistical analysis and summary

plots. For the fixed-displacement Hidden Target Pursuit experiments (both y- and z-

axes), plots were made of the mean and standard error of the normalized eye

displacements at each G-level, as shown in Figure 3.6 for subject BP. Threshold levels

for detection of linear acceleration were chosen from observation of the means and

standard errors at each G-level for each subject according to the following rule: An
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individual's threshold level is the lowest of two or more consecutive accelerations tested

whose mean normalized eye movement response is statistically greater than zero. Such a

complex definition of threshold is needed to account for the within subject variability

between acceleration levels that precludes defining the threshold as simply the lowest

acceleration significantly different from zero. In the example shown in Figure 3.6, the

threshold levels were calculated to be 1.8 milliG in the 10 degree rightward trials (solid

line in figure a), 3.3 milliG in the 10 degree leftward trials (dotted line in figure a), less

than 1.4 milliG in the 20 degree rightward trials (solid line in figure b), and 3.3 milliG in

the 20 degree leftward trials (dotted line in figure b).

Mathematical differences between the mean normalized eye movements of trials toward

the right (head) and trials toward the left (foot) were calculated using the following

formula:

Diff. = L Eye, SlEye (3.4)
SSled J L SledJ

These differences were plotted versus sled acceleration with error bars indicating the

standard error of the differences for each subject to graphically depict any consistent

asymmetry in subjects' responses as shown in Figure 3.7 for subject BP in the Y-axis

Fixed Displacement test. The standard error of the differences is calculated by applying

the Pythagorean theorem as follows:

SE.,L = SER + SEL (3.5)

where SE is the standard error of the mean of the normalized eye movements and is

calculated by:

1n 2

SEx = n-1 (x- ) Standard Deviation (3.6)
n 4
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A Chi Squared (X2) Test was performed to statistically test whether the difference

between the two conditions was significant. The null hypothesis was that the mean

response to the headward trials and footward trials was symmetric. The X2 statistic for

each subject is the sum of the squares of the quotients of the calculated difference and the

standard error of that difference for each acceleration level as follows:

S Diff
2 =c(R.L) (3.7)

SE

A similar X2 analysis was performed to test for a response difference to the 10 and 20

degree trials. When normalized to the sled displacements, the responses should be

similar under the null hypothesis. The difference between the mean normalized

responses to each displacement was calculated and plotted versus sled acceleration. The

X2 test was performed to test if the difference between the two conditions was significant.

The significance of the X2 for each subject is determined by looking up the value

calculated in equation 3.7 in a table of critical X2 values for the appropriate number of

degrees of freedom (Bernard and Rosner, 1990). Since the subjects are unable to

accurately or reliably determine their direction or magnitude of translation below

threshold, the below and above threshold measurements were analyzed separately.

(Responses below threshold are potentially from a different population than the responses

above threshold.) The somewhat arbitrary 'rule' described above for determining a

subject's threshold for detection of linear translation was chosen to be robust and

consistent, potentially at the expense of precision in the determination of the threshold

value. Therefore, we report a X2 test of all eight (z-axis) or ten (y-axis) acceleration

levels. Two additional X2 tests are also calculated for each subject, one above threshold



and one below threshold. The method of choosing the break point between the below-

and above-threshold X2 tests is also somewhat arbitrary because the threshold level might

be different for the two conditions in the comparison (i.e., headward versus footward).

For simplicity, the higher of the two threshold levels was chosen as the overall threshold.

Therefore, whereas the above-threshold X2 test includes only above threshold data, the

below-threshold test, including all acceleration levels below the higher of the two

thresholds, includes data that was above-threshold in one condition, but not the other.

That is, data from two potentially different population sets are grouped together in the

below-threshold X2 test. All three x2 values are tabulated for comparison.

The p-values associated with the X2 statistical test are two-tailed. Therefore, a

statistically significant X2 value is ambiguous, and its interpretation requires further

examination of the data. In fact, the deviations show trends not yet analyzed that

undermine the assumptions underlying the X2-test. It is common for the difference

between two conditions to be significant according to the X2 because the difference is

significantly greater than zero at a some accelerations and less than zero at others. In

such a case, no significant difference can be deduced.

For the fixed-duration Hidden Target Pursuit experiments (both y- and z-axes), raw eye

movement amplitudes were plotted versus sled displacement. The results were analyzed

via linear regression analysis similar to that of Israel and Berthoz (1989) to investigate

dependence of estimation of translation on trial duration. The data were split into four

general conditions each with sled displacement as the independent variable: 1.0 second

trials to the right (head), 1.0 second trials to the left (foot), 2.5 second trials to the right

(head), and 2.5 second trials toward the left (foot). Regression analysis was performed on

the regression line for the 1.0 second trials and the 2.5 second trials to test whether each

slope was significantly different from a slope of 1.0, 0.0 or significantly different from



one another. The results of this analysis are tabulated and discussed in the Results

chapter (Chapter 4).

In addition to the regression analysis, means and standard errors of the normalized eye

movements were calculated and plotted versus sled displacement to emulate the analysis

performed during the fixed displacement experiments where the normalized eye

movements were plotted versus sled acceleration. Mathematical differences between the

normalized eye movement data from the 1.0 second and 2.5 second trials were calculated

and plotted versus sled displacement with error bars indicating the standard error of their

differences. A X2 test was performed to test whether the 1.0 and 2.5 second trials were

significantly different, indicating a dependence of the eye movement response on trial

duration. Likewise, the mathematical differences between the Rightward (Headward) and

Leftward (Footward) normalized data were plotted to show whether a directional

asymmetry in response existed. A similar X2 was performed. A threshold level was not

determined in the analysis of either the y- or z-axis fixed duration experiments because,

based on the results from the Fixed Displacement test, the trials in these experiments are

above threshold for the majority of the subjects. Therefore, only one X2 test was

performed across all sled displacements for each subject.

3.3.1.3. Sled Profile Analysis

In the analysis of the y-axis fixed displacement and y-axis fixed duration experiments the

sled velocity signal was used to signify the start and end of each trial. The sled velocity

signal was chosen because of its high signal to noise ratio. The other sled signals, sled

position and acceleration, have higher noise levels. However, after analysis of the data

from the y-axis experiments, it became obvious that sled position should be recorded

because of small sled displacement errors that often occurred (error < 10%). More



accurate analysis is enabled by comparing the eye movement with the actual sled

displacement.

For subsequent experiments the sled position signal was amplified, filtered through a low

pass filter with a break frequency of 40 Hz and 20 dB gain, saved on the data collection

Compaq computer, and subsequently used to signify the beginning and end of each trial.

Further analysis was performed on the sled position signal to actually measure the sled

displacement rather than assuming the sled displacement was exactly that commanded.

The sled position signal was calibrated by manually moving the sled to previously

measured marks on the track 10 and 20 cm to either side of the center. A sled calibration

factor was calculated using the same MatLab script Calibrate as used to calculate the eye

movement calibration factors to convert the A/D units to centimeters. The calibration

factor in centimeters per unit was calculated as the ratio of the difference in linear

displacement specified by the user to the difference in digital units. The amplitudes of

the sled displacements were calculated using the same Target_Pursuit MatLab script that

was used to analyze the magnitude of the eye movements. TargetPursuit allows the

user to input the calibration factor and then for each trial pick a region of points before

the sled moved and then again after the sled stopped. The difference between the two

values equals the amplitude that the sled moved in centimeters.

As discussed above, the sled displacement was used to normalize the eye movement for

each sled trial. Since the sled position signal was not taken during the y-axis

experiments, the commanded sled position was used to normalize the eye movement

response for each trial. For example, in the y-axis fixed displacement test the magnitude

of the eye movement response was divided by either 8.82 cm or 18.20 cm for the 10 or

20' trials respectively. The responses in the fixed duration experiment were normalized



by dividing by the commanded displacement: 5, 10, 15, 20, 25, 30, 35, or 40 cm. This

may lead to some variability in the data. In the z-axis, where the position signal was

directly available, the difference between the commanded and measured sled position was

less than 10% (worst case was ± 4cm at the largest displacement) of the commanded sled

signal. Considering that the scatter of the eye movements at each sled displacement is

approximately ±15 cm, ±4 cm is relatively small.

Although the sled position signal was measured during the y-axis adaptation experiment,

a sled calibration was not performed. It was assumed that the calibration factors

calculated in the z-axis experiments would be the same for the y-axis. However, based

on the analysis of the measured sled displacements this assumption is not true for a

number of reasons. 1) The sled displacements calculated are on average 6 cm greater in

the adaptation experiment than in the z-axis fixed displacement test. 2) Response gains

of eye movement divided by the measured sled displacement average to less than 1.0 in

the adaptation experiment. In the previous y- and z-axis experiments most subjects had a

gain of 1.0 or greater. Taken by itself, the pre-adaptation Hidden Target Pursuit trials are

identical to those previous experiments and one would expect similar responses. These

analyses do not affect the comparative analysis between the subject's relative responses

pre-adaptation and post-adaptation, which was the prime focus of these experiments.

However, since a calibration was not actually performed, no discussion can be made

about the magnitude of the subjects' responses, for example, whether they over or under

compensated for the sled displacement.

3.3.1.4. Subjective Response Analysis

Subjective responses following every trial were recorded by the experimenter and stored

with the eye movement data. The directional responses were used to calculate

percentages of subjective correct responses that are tabulated in the Results section.



Inspection of these tables are used to further interpret the quantitative eye movement data

in determining each subject's threshold for detection of linear acceleration (fixed

displacement tests), directional asymmetries (primarily z-axis), and differences due to

trial duration (fixed duration tests). Subjective response thresholds were determined

similarly to the eye movement threshold calculations using the following rule: the

subjective response threshold is the lowest of two consecutive acceleration levels where

the subject chose the correct direction in at least 75% of the trials.

For all but the y-axis fixed-displacement test each subject was asked to give a subjective

estimate to how far she translated in addition to the directional response. Subjects were

given the option of responding in any unit of linear measurement they were comfortable

using. Subsequently, all subjective responses were converted to centimeters. Averages

were calculated at each G-level for each subject (similar to the eye movement data).

These plots were used to evaluate the correlation of subjective responses to the magnitude

of the corresponding eye movements as the subject tracks the target, as well as to

determine if any subjective asymmetries exist.

33.2. Linear and Angular VOR Experiments

Four channels were simultaneously sampled during the Linear VOR experiments on the

sled, each at 200 Hz: sled velocity, linear OK stimulus velocity, and horizontal and

vertical eye position. The time series were saved directly in MatLab format ready for

analysis. During the rotating chair trials, three channels were simultaneously sampled at

200 Hz each: chair velocity, and horizontal and vertical eye position. The LabView data

acquisition program used during the rotating chair trials saved these time series in three

binary files per trial. These binary files were converted to MatLab format using a

modified C program called Convert (Balkwill, 1992). Once in MatLab format the

horizontal eye position data from each experiment (linear and angular VOR) were



analyzed similarly using a number of MatLab scripts originally written by M. D. Balkwill

and then modified by J. Christie and J. C. Mendoza and several frequency analysis

scripts. Since the Angular and Linear VOR experiments were performed such that the

expected response was in the horizontal eye movements , the vertical eye position data

was not quantitatively analyzed and will not be discussed in this thesis. In addition, the

first four seconds of each trial were not analyzed due to vestibular-induced transients

caused by the sudden acceleration of the sled or chair motion which may produce

sinusoidal eye movements different from those after the stimulus has reached steady-

state.

The algorithm used to calculate the Slow Phase Velocity based on the eye position data is

called NysA v. 1.4 (y.atagmus Analysis). NysA is a set of MatLab scripts which were

implemented by several previous members of the MIT Man-Vehicle Laboratory

(Massoumnia, 1983; Merfeld, 1990; Balkwill, 1992). A user's manual and further

description of the NysA algorithm can be found in Balkwill (1992). The algorithm first

scales the horizontal and vertical eye position data, differentiates it twice using finite

impulse response (FIR) digital filters, and calculates eye velocity and eye acceleration

along each axis. The fast phase detection algorithm uses the magnitude of the two-

dimensional acceleration vector to locate and remove the majority of the saccades from

the velocity signal. By adding the acceleration vectors from each axis, it estimates the

absolute magnitude of the acceleration as a function of time. Fast phases are located

when the magnitude of the total acceleration exceeds two standard deviations from the

mean. Interpolations of the velocity are made based on the velocity at the beginning of

the saccade.

The automated fast phase removal algorithm correctly detects approximately 90-95% of

the saccades in the slow phase velocity signal. Manual editing is used to identify and



remove any remaining saccades from the slow phase velocity signal. It is performed

using a version of the original NysA edit spv which was revised by J. Christie and called

editspy dual. The procedure displays the eye position, velocity, and slow phase

velocity to the user. Fast phases that were missed by the automatic saccade removal

algorithm can be removed and any incorrect interpolations may be removed or modified.

The beginning and end points of the undetected saccades are selected by the operator.

The saccade is replaced by a first order interpolation between the two endpoints, as

opposed to the inferior zero-order interpolations made during the automatic desaccading

process. Although the first-order interpolations are superior, to minimize the operator

bias introduced during manual editing of the slow phase velocity, only obvious missed

saccades were edited from the signal unless gross over interpolations were made by the

automatic algorithm.

After calculating the slow phase velocity (SPV) of the eye movements a frequency

analysis is performed to determine if it has oscillations at the frequency of the stimulus or

its harmonics. Each cycle analyzed is fit with a combination of a sine and cosine at the

desired frequency which define the vector of the response. The method Least Squares is

used to perform the frequency analysis. Four frequencies, the stimulus frequency and its

first three higher harmonics (2nd, 3rd, and 4th), and a DC component are simultaneously

analyzed using a MatLab script calledfreqanalysis. A more thorough explanation of the

frequency analysis methods is located in Mendoza (1993). freq_analysis, written by J.

Christie and J. Mendoza generates polar plots of the sine and cosine amplitudes for

qualitative analysis. Each polar plot shows the eight cycles and the mean resultant

vector. The convention maintained throughout the analysis is that a phase difference of

180' indicates that the response was in the compensatory direction relative to the sled

(velocity 180' out of phase with respect to the sled) or optokinetic stimulus (velocity in-

phase with the OK stimulus velocity).



After calculation of the magnitude and phase information for each of the three test

conditions pre- and post-adaptation, statistical analysis is used to test whether the

responses are significantly different from zero and to compare the pre-adaptation

responses to the post-adaptation responses.

As the output of the frequency analysis has two components, the sine and cosine

representing the magnitude and phase information, a multivariate statistical method was

employed. This was done by extending the concept of the univariate confidence intervals

determined by a t-test to a multivariate confidence area determined by the Hotelling's T2

distribution. (Mendoza, 1993). The confidence region of the mean g of a p-dimensional

normal population is obtained from the following equation:

P n(X- ) (S)-'(X-) (n -)P F,,,_p(a) = 1-a (3.8)(n - p)

where n is the number of samples, p is the number of parameters, X is the mean of the

data, S is the covariance matrix of the given data, and F is the value of the F statistic for

the appropriate number of degrees of freedom. The points satisfying this equation define

an ellipse centered at the mean of the data, X. The ellipses were generated using the

MatLab scripts MultSbj and Conf Sbj (Mendoza, 1993). Figure 3.8 contains an

overview of the main elements in the data analysis pathway for the VOR experiments and

printouts of the primary analysis programs and scripts are located in the appendix.

3.3.3. Adaptation Frequency Analysis

During the adaptation paradigm the sled velocity channel was collected at a sampling rate

of 200 Hz. The MatLab script called Adaptation written by the author utilized the Fast-
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Fourier Transform (FFT) function in MatLab to attain a power spectral density function

of the sled velocity signal. Analysis of each subjects' adaptation paradigm may provide

some explanations for the type of adaptation or lack of adaptive responses in each of the

post-adaptation experiments.

In MatLab, the function FFT(X) is the discrete Fourier transform of vector X. If the

length of X is a power of two, a fast radix-2 fast-Fourier transform algorithm is used. If

the length of X is not a power of two, a slower non-power-of-two algorithm is employed.

Therefore, to decrease the processing time the first step in performing this analysis was to

reduce or enlarge the data set to be a length that is a power of two. MatLab allows the

user to do this by defining the number of points in the vector to be analyzed. FFT(X,N)

is the N-point FFT, padded with zeros if X has less than N points and truncated if it has

more. The majority of the files containing the sled velocity signal from the adaptation

paradigm are approximately 60020 points corresponding to the five minute session

sampled at 200 Hz. If the subject were to hit the safety break located at the end of the

track during the five minute session, a new file was started. Thus, a few trials exist with a

smaller number of points. The power of two closest to 60020 is 216 points = 65536. This

means the data was padded with approximately 5516 points. After taking the fast-Fourier

transform (FFT), the power spectral density provides a measurement of the energy at the

various frequencies. The power spectral density is found by multiplying the resultant of

the FFT by its complex conjugate. One can then plot the power spectral density function

versus frequency to view the primary frequencies of the sled velocity signal.



4. RESULTS

The following chapter is divided into two major sections: Hidden Target Pursuit and

Adaptation. Each section is further divided by the experiments performed. As significant

differences exist between subjects, averaging responses across subjects would be difficult

to interpret statistically. Therefore, one subject most representative of the subject pool in

each experiment will be analyzed in depth to lead the reader through the analysis process

and the results gathered from it. The results from the other subjects for each experiment

will be discussed, compared, and contrasted with the representative subject, and

associated summary plots and tables can be found in the appendices. In addition, at the

end of each sub-section, a summary plot is given averaging the eye movement responses

to the particular experiment conditions to provides an overall qualitative understanding of

the subjects' responses.

4.1. Hidden Target Pursuit

This section presents the results from the magnitudes and directions of the horizontal (y-

axis experiments) and vertical (z-axis experiments) eye movements during the fixed

displacement and fixed duration hidden target pursuit experiments. The y-axis

experiments were run primarily to replicate and further investigate previous experiments

run by Israel and Berthoz (1989) and Buizza, et al (1979). The results from those

previous studies will be compared to the current data in the Discussion section. Similar

target pursuit experiments have never before been performed along the z-axis. The

description of the results for each sled orientation (y-upright and z-supine) will follow the

outlines given in Table 4.1 for the fixed displacement and Table 4.2 for the fixed duration

experiments. They are provided here as a "road map" to aid the reader through the

subsections. In each experiment four conditions are compared: two directions of sled



displacement (right/left or up/down) and either two displacement amplitudes (fixed

displacement test) or two trial durations (fixed duration test).

Table 4.1 Organization of the discussion of the fixed displacement experimental
results.
1) Mean eye movement gains (eye displacement/sled displacement) are plotted versus

sled acceleration and discussed for each of the four conditions.
2) Threshold levels for perception of linear translation are calculated and discussed.
3) Differences between the test conditions are plotted versus sled acceleration.

4) X2 statistics are used to test for significant differences between the four conditions.
5) Discussion of directional asymmetry (for all accelerations, above threshold

accelerations, and below threshold accelerations)
6) Discussion of differences between 10 and 20 degree trials (for all accelerations, above

threshold accelerations, and below threshold accelerations)
7) Discussion of subjective correct response data.
8) Mean subjective response gains (subjective displacement/sled displacement) are

plotted versus sled acceleration and discussed for each of the four conditions. (z-axis
only)

9) X2 statistics are used on subjective responses to test for significant differences
between the four conditions. (z-axis only)

10) Discussion of subjective directional asymmetry. (z-axis only)
11) Discussion of subjective differences between 10 and 20 degree trials. (z-axis only)
12) Brief discussion of other subjects.
13) Plots and discussion of mean normalized eye movements (gain) for all subjects

averaged together.

Table 4.2. Organization of the discussion of the fixed duration experimental results.
1) Scatter plots of the eye movement data.
2) Linear regression analysis comparing the 1.0 and 2.5 second trials.
3) Mean eye movement gains (eye displacement/sled displacement) are plotted versus

sled displacement and discussed for each of the four conditions.
4) Differences between the test conditions are plotted versus sled displacement.

5) X2 statistics are used to test for significant differences between the four conditions.
6) Discussion of directional asymmetry.
7) Discussion of differences between trial durations.
8) Discussion of subjective correct response data.
9) Scatter plot comparing subjective estimates of translation to eye movements.
10) Mean subjective response gains (subjective response/sled displacement) are plotted

and discussed for each of the four conditions.
11) X2 statistics are used on the subjective responses to test for significant differences

between the four conditions.
12) Discussion of subjective directional asymmetry.
13) Discussion of subjective differences between the 1.0 and 2.5 second trials.
14) Brief discussion about other subjects.
15) Plots and discussion of mean normalized eye movements (gain) for all subjects

averaged together.



In all of the Hidden Target Pursuit experiments the eye movements evoked by the

damped position step sled profile while the subject visually tracked the hidden target

usually often a combination of compensatory smooth pursuit and compensatory saccades

(fast phases). Figure 4.1 shows a typical time series of the raw horizontal eye movement

data (upper trace) for a trial in the hidden target pursuit experiments. The eye began to

follow the hidden target shortly after the sled motion started and reached the maximum

amplitude just before the sled motion stopped. The particular time series shown is a trial

in the y-axis with a sled acceleration of 4.5 milliG and a commanded displacement of

18.20 cm, however it is also typical of trials in the z-axis. The bottom trace is the sled

position signal which was measured during the adaptation experiment and both z-axis

experiments, but not during the y-axis experiments where sled velocity was collected.
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Figure 4.1. Typical trial for the hidden target pursuit experiment. The eye
movement trace has been inverted for comparison. While tracking the imaginary
target the eyes move in the opposite direction from the sled.

0O



4.1.1. Y-Axis Experiments

Overall, during the Y-axis experiments subjects were able to track the target moderately

well. No consistent directional asymmetry was found in the eye movement responses.

The overall threshold level for detection of direction was approximately 3.0 milliG.

Inconclusive evidence shows that eye movements tend to depend on trial duration, with

larger eye movements occurring during longer trial durations. Normalized eye movement

and subjective response gains were larger during the 10 degree trials than the 20 degree

trials, indicating overcompensation of the smaller sled displacements. The following will

describe the details of the two hidden target pursuit experiments in the Y-axis.

4.1.1.1. Fixed Displacement Test

As stated in the Methods section, the relationship between mean eye movement

amplitudes and sled acceleration was analyzed through statistical methods and

observational strategies. Figure 4.2 shows four plots of the normalized (eye

displacement/sled displacement) means and standard errors for subject BP during the y-

axis fixed displacement target pursuit experiment. The four plots compare the mean eye

movement response at each acceleration level for the four different trial conditions. The

first two plots separate the data into (a) 10 degree and (b) 20 degree trials comparing the

subject's responses to sled displacements to the left and right. The third and fourth plots

in Figure 4.2 separate the (c) rightward trials from the (d) leftward trials to compare the

response to the 10 and 20 degree (8.82 and 18.20 cm) sled displacements. Similar plots

for the other seven subjects are included in Appendix A. The eye movement responses

have been normalized by dividing the amplitude of the eye movement in centimeters by

the commanded sled displacement in centimeters to produce a measure of overall gain

similar to Israel and Berthoz's 'Vestibular Saccadic' gain (1989). If the subject were to

perfectly compensate for the sled displacement, the normalized value would be 1.0. If the

subject were to over- or under-compensate for the sled movement, the normalized value
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would be greater or less than 1.0, respectively. As stated in the Methods section, eye

movements were measured using electrooculography (EOG) in the y-axis fixed

displacement experiment, which adds to the signal variation but should not have an effect

on the average response.

As expected, the variance of the mean responses at the lower G-levels (below threshold)

was higher than that of the higher G-levels for subject BP. A smaller mean (closer to

zero or negative) and higher variance indicate that the subject sometimes responded with

eye movements in the incorrect direction. Threshold levels for detection of linear

acceleration were chosen based on the 'rule' described in the METHODS section, namely

the lowest of two or more consecutive accelerations where the mean eye displacement is

significantly different from zero. Table 4.4 and Table 4.5 show the threshold level for

perception calculated for each subject in each of the four test conditions. One would

expect that at an acceleration level below a person's threshold the mean response of many

trials would average to approximately zero, confirming that the probability of 'guessing'

the correct direction is fifty percent. With only two data points at each acceleration level

in each condition, an average response of zero is rarely observed. However, the variances

are usually high.

Table 4.3. Summary of eye movement threshold levels for each subject during each
test condition.

Subject 10 degree trials 10 degree trials 20degree trials 20 degree trials
RIGHT LEFT RIGHT LEFT

BP 1.8 3.3 < 1.4 3.3
JM 1.8 6.0 < 1.4 6.0
KP 6.0 3.3 < 1.4 3.3
LF < 1.4 2.5 < 1.4 < 1.4
LH 3.3 3.3 < 1.4
SS 1.8 < 1.4 2.5 < 1.4
TL < 1.4 6.0 3.3 4.5
WT 1.8 1.8 < 1.4 < 1.4



Except at the two lowest acceleration levels (< 2.5 milliG) subject BP displayed no

left/right asymmetry in the 10 degree trials. An independent student t-test was performed

on the mean normalized eye movement responses at each acceleration to test for a

difference between displacements toward the subject's right and left. Subject BP showed

a significant left/right difference at only one acceleration level in the 10 degree cases (1.8

milliG). At 1.8 milliG, he responded in the wrong direction for both leftward trials and in

the correct direction for both rightward trials, meaning he moved his eyes left in all four

trials. In the 20 degree trials his mean response to rightward trials was larger than the left

at the lower accelerations, but the variability was so high that no statistical difference was

determined. Above threshold he showed no left/right asymmetry, and similar left/right

symmetries were observed in the other seven subjects. However, to confirm that no

asymmetry exists, a X2 test was performed on the differences between the rightward and

leftward trials across all acceleration levels. Comparing the 10 and 20 degree trials, it is

evident from the high gains in Figure 4.2 (c) and (d) that subject BP overcompensated for

the 10 degree trials in both directions, yet he accurately compensated for the 20 degree

trials variation at the low accelerations.

Figure 4.3 shows plots of the differences between subject BP's rightward and leftward

trials and 10 and 20 degree trials. These difference plots make any significant disparity

between the conditions under examination more visible. In Figure 4.3 (a) it is clear that

BP responded asymmetrically at the lowest two accelerations, favoring sled

displacements toward his right. At higher accelerations, however, the difference plot

varies insignificantly around zero, indicating no asymmetry. Table 4.4 and 4.5

summarize the results from the X2 tests performed on all acceleration levels

simultaneously, on accelerations above threshold, and on accelerations below threshold.

A distinction is made between sub- and super-threshold accelerations because they could

be interpreted as belonging to two different populations as discussed in the Methods



4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

----- .- ----

I I I I I I I I I I

1.4 1.8 2.5 33 4.5 6.0 8.1 11.0 14.8 20.0

Acceleration (milliG)

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

b

I I I I I I I I I

14 1.8 2.5 3.3 14.5 6.0 8.1 11.014.820.0

Acceleration (milliG)

1.4 1.8 2.5 3.3 4.5 6.0 8.1 11.0 14.8 20.0

Acceleration (mnllfG)

Figure 4.3. Y-Axis Fixed Displacement difference plots for subject BP. (a)
difference between rightward and leftward 10 degree trials, (b) difference between
rightward and leftward 20 degree trials, (c) difference between 10 and 20 degree
rightward trials, (d) difference between 10 and 20 degree leftward trials. Error bars
indicate standard error of the difference.

90

Acceleration (milliG)



Table 4.4. Y-axis Fixed Displacement test summary of X2 tests of right/left
asymmetry for all subjects. * = < 0.001, 4 = < 0.005, t = < 0.025, A = < 0.05.

Subj. Right - Left N X2: 10* Trend P N X2 :20* Trend P
Difference Test trials trials

BP All Accelerations 10 569.360 var. * 10 18.411 var. A
Above Threshold 7 5.461 7 13.515
Below Threshold 3 563.897 R>L 3 4.896

JM All Accelerations 4 516.580 R>L 8 54.785 R>L
Above Threshold 2 507.511 -5 6.061 R>L
Below Threshold 2 9.069 3 18.724 R>L

KP All Accelerations 5 21.216 R>L ' 10 78.825 R>L
Above Threshold 4 20.592 R>L * 7 37.474 var.
Below Threshold 1 0.624 3 41.351 R>L

LF All Accelerations 6 14.469 var. t 2 5.400
Above Threshold 3 13.163 var. 2 5.400
Below Threshold 3 1.306 0 0.0

LH All Accelerations 10 18.172 var. * 7 184.148 var.
Above Threshold 8 3.429 4 163.198 L>R *
Below Threshold 1 14.743 R>L * 3 20.95 R>L

SS All Accelerations 10 19.295 var. A 10 19.044 var. A
Above Threshold 9 18.041 var. A 8 14.403
Below Threshold 1 1.254 2 4.639

TL All Accelerations 10 14.782 10 59.833 L>R
Above Threshold 5 6.482 6 57.86 L>R *
Below Threshold 5 8.3 4 1.973

WT All Accelerations 10 39.648 var. * 10 155.576 var.
Above Threshold 7 39.485 var. * 155.576 var.
Below Threshold 1 0.163 10 0.0

-i) -.- -

section. The P-values associated with the X2 statistical test are two-tailed. Therefore, a

statistically significant X2 value is ambiguous, and its interpretation requires further

examination of the data to determine the direction of the trend (which condition is

greater) or even if a trend exists. It is common for the difference between two conditions

to be significant according to the X2 because the difference is significantly greater than

zero at some accelerations and less than zero at others. In such a case, no significant

trend can be deduced.



Table 4.5. Y-axis Fixed Displacement test
the 10 and 20 degree trial s. * = < 0.001, 4

summary of X2 tests of difference between
= < 0.005, t = < 0.025, A = < 0.05.

Subj. 10 - 20 Difference N j2: Right Trend P N X2 : Left Trend P
Test trials trials

BP All Accelerations 10 33.766 10>20 10 41.095 10>20
Above Threshold 9 33.759 10>20 * 7 37.828 10>20 e
Below Threshold 1 0.007 3 3.267

JM All Accelerations 6 138.592 10>20 * 6 14.154 var. A
Above Threshold 6 138.592 10>20 e 3 8.547 var.
Below Threshold 0 0.0 3 5.607

KP All Accelerations 10 11.392 10 33.846 10>20 *
Above Threshold 5 8.814 7 30.795 10>20 *
Below Threshold 5 2.578 3 3.051

LF All Accelerations 2 286.819 10>20 4 72.359 10>20
Above Threshold 2 286.819 10>20 4 72.359 10>20 *
Below Threshold 0 0.0 0

LH All Accelerations 6 171.503 10>20 * 6 27.158 10>20
Above Threshold 3 158.635 10>20 * 3 22.694 10>20
Below Threshold 3 12.868 10>20 A 3 4.464

SS All Accelerations 10 102.037 10>20 1 438.739 10>20
Above Threshold 8 92.843 10>20 * 10 438.739 10>20
Below Threshold 2 9.194 10>20 t 0 0.0

TL All Accelerations 10 68.544 10>20 * 10 39.362 var.
Above Threshold 7 57.234 10>20 * 5 38.915 10>20
Below Threshold 3 11.31 t 5 0.447

WT All Accelerations 10 192.812 10>20 * 10 65.195 10>20 *
Above Threshold 9 192.676 10>20 * 9 64.701 10>20
Below Threshold 1 0.136 1 0.494

The X2 analysis confirms BP's right/left asymmetry below threshold during the 10 degree

trials. His responses were symmetric at all other acceleration levels for both the 10 and

20 degree trials. The X2 value calculated across all accelerations was also significant

during the 10 degree trials because of the large sub-threshold X2 values. This exemplifies

the importance of separating the above and below threshold accelerations in the X2

analysis.



In Figure 4.3 (c) and (d) it is apparent that subject BP's normalized responses to the 10

degree trials was greater than that of the 20 degree trials. The X2 values shown in Table

4.5 confirm the difference is significant in both the rightward and leftward sled

accelerations. In both directions the difference is most significant above threshold.

Subjective correct response threshold data support the previous results, with a few

exceptions, following a rule similar to that used with the eye movement data. As defined

in the Methods section, the subjective response threshold is the lowest of two consecutive

acceleration levels where the subject chose the correct direction in at least 75% of the

trials. Table 4.6 summarizes the percent of correct responses for each subject at each

acceleration level. The asterisks indicate the threshold acceleration level based on the

above rule for each subject. Subject BP's subjective responses are an example of the

correlation between the subjective and quantitative data typical of most of the other

subjects. His threshold determined from eye movements was less than 1.4 milliG for the

trials to the right and between 2.5 and 3.3 for trials to the left (see Table 4.3), which

correspond to the subjective thresholds shown in Table 4.6.

The following is a brief description of the results from the other seven subjects. The

summary plots and tables similar to those that were presented for subject BP are included

in Appendix A.

Subject JM and KP responded similarly to BP, with small mean amplitudes and high

variance at low acceleration levels and larger mean amplitudes (overcompensation in

some cases) and smaller variances at higher accelerations. For these three subjects a clear

transition was visible on the plots indicating the threshold level.



Table 4.6. Summary of subjective percent correct responses for each subject at each
acceleration level.

ub. ond 1.4 1.8 2.5 3.3 4.5 6.0 8.1 11.0 14.8 20.0
BP Rit 100 100 100 100 100 75 100 100 1 1

Left 50 25 75* 100 100 100 1 1 1 1
JM Ri t 100*" 75 100 100 75 100 100 100 100 100

Let 75 5 75 1 1 1.. 10 1 1 1
KP Right 75 100 75 75 100 100 1 1 100

Left 25 75 5 1* 10 10 1M 100 10 10
LF Right 50 100* 100 1 00 00 100 100 1 100

Left 1* 1 1 1 1 1 1 1 1 1
LH Ri t 100 10 5 100 1 1 1 100 1 7

Let 0 7 75* 75 75 10 1 1
SS Right 100* 100 75 100 100 100 100 100 100 100

Left 75* 75 75 100 100 1 1 1 1 1
TL Rit 100 100 100 100 10000 0 100 100 100 100

Left 1* 1 1 100 1U1T 1T 1 1 1
WT Riht 75 100 100 100 100 10 1-00 1 1 75

Le7 1 75 1 50 100 1 1 1 10 1
-...- m ---- ...... i- -....36......i 0... - . .- ...i O .... .i ...' 0 -

Four of the eight subjects had asymmetric eye movements. Three subjects favored

rightward sled displacements during one or both of the sled displacements (BP, KP, JM).

As described above, BP showed a significant trend toward rightward eye movements

below threshold in the 10 degree cases. Otherwise, his responses were symmetric.

Subject KP's response in both the 10 and 20 degree trials was approximately symmetric,

but at the two lowest acceleration levels in the 20 degree trials she responded correctly

during both rightward displacement and incorrectly during leftward displacements,

producing a significant difference. JM's eye movement response was asymmetric in both

the 10 and 20 degree trials, with larger responses during rightward displacements. His

data is difficult to interpret because several acceleration levels have only one data point in

each direction due to experimental circumstances. In the 20 degree trials, 8 of the 10

acceleration levels can be used in the analysis, so the asymmetric result is more

believable.



One subject responded with an asymmetry favoring leftward trials (TL). Subject TL

showed no consistent right/left asymmetry in the 10 degree trials, but in the 20 degree

cases, his mean eye movements were slightly larger to the left than to the right across

most accelerations. This asymmetry is opposite from the subjects discussed above that

showed a rightward asymmetry in the same conditions.

Four of the eight subjects responded with either no significant directional asymmetry or

one that varies across accelerations (SS, WT, LF, LH). SS showed no right/left

asymmetry in the 10 degree cases. At the lowest accelerations in the 20 degree cases, he

responded as if all of the displacements were to his left, but the X2 value was not

significant. WT showed no consistent right/left asymmetry in either the 10 or 20 degree

cases. As with subject JM, interpretation of the differences in LFs responses was

difficult because of missing data points. Although not significant, it appears that in the

20 degree trials she used larger eye movements during trials to her right, but no

asymmetry was apparent in the 10 degree trials. Subject LH showed no consistent

right/left asymmetry in the 10 degree cases. At the lowest acceleration (1.4 milliG) in the

20 degree cases he responded with leftward eye movements, as if the sled was moving to

the right for all four trials. However, at the higher acceleration levels, the right/left

asymmetry reversed as his response to trials to the left was greater than in trials to the

right. The most unusual point was at the 20 milliG level where subject LH gave an

incorrect directional response in half of the 10 degree trials. In the subject debriefing, the

subject responded that the trials were "too quick to figure out which direction I was

moving."

Overall, subjects did not accurately discriminate between the two different sled

displacements. KP was one of very few subjects to accurately compensate for the 10 and



20 degree trials. The mean gain of her response (eye/sled displacement) for both

conditions was approximately 1.0, except at two mid-range sled accelerations where her

gain in the 10 degree trials was significantly larger than in the 20 degree trials.

The other seven subjects had consistent differences between the gain of their eye

movement responses during 10 and 20 degree trials. For subject JM, the same difficulty

with missing data points was encountered. However, he tended to overcompensate for

the 10 degree trials slightly more than the 20 degree trials. Subject LF responded similar

to BP, KP, and JM, but with much larger overcompensation (higher gain). Many of LFs

eye movements during the 10 degree trials were up to four times the sled displacement,

and approximately two times the 20 degree sled displacements (18.20 cm). LH also

significantly overcompensated for both sled displacements. At accelerations in the

middle of the range, he overcompensated by as much as four times the 10 degree sled

displacements, and by approximately twice the sled displacement during the 20 degree

cases. At the low and very high accelerations LH showed large variances and variable

mean amplitudes across acceleration levels. Subject WT also overestimated his

displacement by two to four times the distance moved, especially at the lower

acceleration levels. He consistently overcompensated for 10 degree trials more than the

20 degree trials. SS and TL also tended to overcompensate for the 10 degree trials,

especially at the lower accelerations. SS was more accurate during the 20 degree cases

(gain of 1.0), while TL undercompensated for the 20 degree trials to his right, and

overcompensated for leftward translations, which supports his asymmetry toward

leftward trials.

4.1.1.1.1. Summary of Y-axis Fixed Displacement Test

In summary, several subjects had slightly asymmetric responses at some accelerations,

but no consistent pattern existed across subjects. A significant difference exists between



the subjects' responses to the two different sled displacements. In the extreme the two

different sled displacements were treated approximately the same, leading to an overall

normalized gain for the 10 degree trials approximately twice that of the 20 degree trials.

Figure 4.4 shows the comparison of the normalized responses to the four test conditions

for all subjects. Quantitative conclusions may be inappropriate because of inter-subject

variability. However, it provides an overall qualitative understanding of the subjects'

responses to changes in acceleration, including a comparison between the 10 and 20

degree and the rightward and leftward trials.

The average normalized eye movement gain for all subjects was approximately 2.0 for

the 10 degree trials indicating an overcompensation of approximately two times the sled

displacement. The gain for the 20 degree trials was approximately 1.0 during the

leftward trials and slightly larger during trials to the right. Both plots (c) and (d) clearly

depict the differences in eye movement gains during the 10 and 20 degree trials. Because

the normalized eye movement responses to the two different displacements were quite

different, they were kept separate throughout the analysis.

In the Y-Axis experiments, subjects were not asked to verbally report their perceived

magnitude of translation. Therefore, it is unknown whether the observed

overcompensation accurately reflects a perception of larger displacement than actually

attained. However, following the test session during the subject's debriefing, many of the

subjects, including subject LF and LH, reported moving as far as two meters during some

trials (maximum displacement was 18.20 cm). Reports such as these prompted the

experimenter to ask for subjective reports of translation in subsequent experiments.
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Figure 4.4. Y-Axis Fixed Displacement eye movement data for all subjects. a) 10
degree trials comparing leftward and rightward trials, (b) 20 degree trials
comparing leftward to rightward trials, (c) rightward trials comparing 10 and 20
degree trials, (d) leftward trials comparing 10 and 20 degree trials. Error bars
signify standard error.



4.1.1.2. Fixed Duration Test

As many of the subjects reported that they perceived that they were moving farther during

trials of longer duration, another set of experiments was run to test the relationship

between eye movement responses and trial duration. As stated in the Methods, linear

regression of the data elicit how well a subject's eye movement response correspond to

the distance the sled traveled. These data allow us to test two different observations: 1)

whether a difference exists in the responses for two different trial durations and 2)

whether the subjects are able to accurately track the hidden target. Thresholds for

perception of acceleration were not considered in these experiments since the lowest

acceleration tested (5 milliG) was above the threshold level for most of the subjects as

shown in the Y-axis Fixed Displacement test. Since trial duration is proportional to the

inverse of the acceleration, the longer trials (2.5 seconds) have lower accelerations.

Incorrect responses were made more often during the 2.5 second trials where the

accelerations are closer to the threshold level for perception of acceleration. Therefore,

the incorrect responses were eliminated from the linear regression analysis so that the

negative values would not falsely skew the comparisons between the conditions being

tested (i.e., 1.0 second versus 2.5 second trials).

Scatter plots of eye movements are shown in Figure 4.5 for a representative subject

(subject MB) for comparison to those made by Israel and Berthoz (1989). Similar plots

are shown for the other four subjects in Appendix B. Linear regression lines are drawn

on the plots to indicate the slope of the data. A slope of 1.0 would indicate that the

subject accurately estimated the distance the sled moved by tracking the hidden target

with her eyes. Subject MB responded in the correct direction for all displacements tested,

as indicated by the lack of negative values on the plot in Figure 4.5.
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Figure 4.5. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject MB. (a) 1.0 second trials comparing leftward and
rightward trials, (b) 2.5 second trials comparing leftward to rightward trials, (c)
rightward trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing
1.0 and 2.5 second trials. Error bars signify standard error.
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Table 4.7 shows the "regression coefficients", or the "slopes" of the lines relating eye

displacement to sled displacement for the 1.0 second trials and the 2.5 second trials,

indicating how well each subject estimated the sled displacement. The following three

rows provide the p-values describing whether each regression coefficient is significantly

different from a slope of 0.0 (no dependence on distance), 1.0 (accurate compensation),

or the slope of the trial with the other duration.

Table 4.7. Summary of linear regression analysis for all subjects.

Subject Test 1.0 second 2.5 second
CL Regression Coeff. 0.231 0.584

P-Value Ho: B=--0.0 0.004 0.000
P-Value Ho: B=1.0 0.000 0.000
P-Value Ho: B1=B2 0.001

GS Regression Coeff. 0.302 0.389
P-Value Ho: B-0.0 0.026 0.111
P-Value HO: B=1.0 0.000 0.018
P-Value Ho: B1=B2 0.708

JM Regression Coeff. 0.554 0.300
P-Value Ho: B-0.0 0.000 0.050
P-Value Ho: B=1.0 0.000 0.000
P-Value Ho: BI=B2 0.093

MB Regression Coeff. 0.381 0.400
P-Value Ho: B=0.0 0.000 0.000
P-Value HO: B=1.0 0.000 0.000
P-Value Ho: BI=B2 0.830

TC Regression Coeff. 0.290 0.378
P-Value Ho: B-0.0 0.000 0.000
P-Value H0: B=1.0 0.000 0.000
P-Value Ho: B1=B 2 0.294

The slopes of the 1.0 and 2.5 second regression lines are very similar for subject MB, as

was typical for the majority of the subjects. Both are significantly greater than 0.0,

indicating a positive correlation between the eye displacement and sled displacement

(larger eye movements were made with larger sled displacements). However, the
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coefficients for both trial durations are also significantly less than 1.0, which indicates

inaccurate compensation. MB overcompensated for sled displacements less than 25 cm,

and undercompensated for larger sled displacements, resulting in a very flat regression

line. This result was true for all five subjects.

The method of linear regression shown above was chosen to allow direct comparison to

previous experiments performed by Israel and Berthoz (1989). The high amount of

scatter at each sled displacement indicates that MB was not consistent in her responses at

each displacement. For instance, at each sled displacement the scatter of subject MB's

responses was approximately 15 cm. Therefore, the fit of the regression line had large

errors associated with it, making statistical comparisons between regression lines less

powerful. A second analysis method was chosen to make more accurate comparisons

between the different conditions for each subject. Similar to the fixed displacement

experiment, mean eye movement amplitudes and standard errors were calculated for each

sled displacement. Figure 4.6 shows four plots of the normalized mean eye displacement

versus sled displacement comparing the different test conditions for subject MB: (a) 1.0

second trials comparing right and left, (b) 2.5 second trials comparing right and left, (c)

rightward trials comparing the 1.0 and 2.5 second trials, and finally the (d) leftward trials

comparing the 1.0 and 2.5 second trials.

The first thing to notice about the four plots in Figure 4.6 is the relatively small error bars

compared to the four plots shown in Figure 4.2 for the y-axis fixed displacement

experiment. The smaller error is primarily attributable to the use of scleral search coils

for eye movement measurements as opposed to EOG.
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Figure 4.6. Y-Axis Fixed Duration mean normalized eye movements for subject MB.
(a) 1.0 second trials comparing leftward and rightward trials, (b) 2.5 second trials
comparing leftward to rightward trials, (c) rightward trials comparing 1.0 and 2.5
second trials, (d) leftward trials comparing 1.0 and 2.5 second trials. Error bars
signify standard error.
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The most interesting result from Figure 4.6 is the downward trend of the normalized eye

movements. As the sled displacement increased, subject MB's normalized eye movement

response (gain) decreased. Thus, she overcompensated for the smaller sled displacements

and undercompensated for the larger displacements, as was also apparent by the slopes of

less than 1.0 in the regression plot of Figure 4.5.

Further simplification of the plots in Figure 4.6 and statistical analysis of the data was

performed similar to that of the Y-axis Fixed Displacement test to investigate any

significant differences between the four test conditions. The mathematical difference

between the responses for each test condition was calculated and then plotted versus sled

displacement as shown in Figure 4.7. MB exhibited slightly larger eye movements in

trials to the right than to the left in the 2.5 second trials and at one sled displacement in

the 1.0 second trials. Otherwise the plots appear to vary around a line at zero. Similar

observation of 4.7 (c) and (d) shows that MB responded with slightly greater eye

movements in the 2.5 second trials than in the 1.0 second trials to the right, but showed

no consistent difference dependent upon the duration in the trials to the left.

For statistical purposes a X2 test was performed on each difference curve to determine

whether the calculated difference between the two trial durations was significant. Table

4.8 summarizes the results from the X2 test for all subjects. The p-value gives the

probability that the difference between the two conditions was due to chance alone. The

last column describes from observation of the difference plots the direction of the trend if

one exists.

Subject MB displayed a significant right/left asymmetry in her eye movement response to

both the 1.0 and 2.5 second trials, favoring trials to the right. In regards to the

dependence of eye movements on trial duration, subject MB responded with larger eye
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Figure 4.7. Y-Axis Fixed Duration plots of the differences in the mean normalized
eye movements for the four conditions tested for subject MB. (a) 1.0 second trials
comparing leftward and rightward trials, (b) 2.5 second trials comparing leftward to
rightward trials, (c) rightward trials comparing 1.0 and 2.5 second trials, (d)
leftward trials comparing 1.0 and 2.5 second trials. Error bars signify standard
error of the difference.
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Table 4.8. Summary of X2 statistical analysis for all subjects in the Y-axis Fixed
Duration test. * = <0.001, 4 = <0.005, t = <0.025, A = <0.05, blank = not significant.

Subj. Difference Test N X2 P Sign. Trend

CL 1 s trials: Right - Left 8 13.258
2.5 s trials: Right - Left 8 30.183 * variable
Right trials: Is - 2.5s 8 53.833 * 2.5s > 1.0s(var.)
Left trials: is - 2.5s 8 135.169 . 2.5s > 1.0s

GS 1 s trials: Right - Left

2.5 s trials: Right - Left
Right trials: Is - 2.5s

Left trials: Is - 2.5s
JM 1 s trials: Right - Left 8 37.275 * Left > Right

2.5 s trials: Right- Left 8 17.283 A variable
Right trials: is - 2.5s 8 27.655 2.5s > 1.0s
Left trials: is - 2.5s 8 6.567

MB 1 s trials: Right - Left 8 44.513 * Right>Left
2.5 s trials: Right - Left 8 69.301 Right > Left
Right trials: Is - 2.5s 8 20.649 t 2.5s > 1.0s
Left trials: Is - 2.5s 8 20.279 t 1.0s > 2.5s(var.

TC 1 s trials: Right - Left 8 100.494 Left > Right
.5 s trials: Right- Left 8 216.037 Left > Right

Right trials: is - 2.5s 8 14.979
Left trials: is - 2.5s 8 75.365 * 2.5s > 1.0s

movements during the 2.5 second trials than the 1.0 second trials during rightward sled

motion , but the same result was not significant during motion to the left. This result is

not supported by the regression analysis shown previously in Table 4.7 for subject MB,

as the regression coefficients for the two trial durations were not significantly different

from one another.

Subjective correct response data could be used to determine if subjects responded

correctly more frequently to trials to the left or right or during 1.0 second or 2.5 second

trials. As shown in Table 4.9 however, MB answered in the correct direction for all trials.

Therefore, the left/right asymmetry shown in the X2 analysis above was due entirely to

differences in the magnitudes of her eye movements, not incorrect perceptual responses.
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Table 4.9. Percent of correct subjective responses for all subjects during the Y-axis
Fixed Duration test.

ub. ond 5 1 15 20 25 3 35 40
L Rit 75 7 100 75 100 100 50

Left 75 100 1 1 1 1 100 100
S Ri ght 100 100 100 100 100 100 100 100

Left 1 100 100 1 100 100 100 1
JM Ri t 100 100 75 100 100 100 100 1

Left 75 100 100 100 100 100 1 1- - - -...... i .. --1- ..-- .... 10-- . m -iN : -

MB Ri t 100 100 100 100 100 100 100 100
Left 100 1 100 100 100 00 1 1

TC Right 100 100 100 100 100 100 100 100
Left 100 100 100 1 00 00 1 1-00 --

Analysis of the subjective estimates of translation can also be used to more fully

understand the quantitative eye movement data. Figure 4.8 shows that subject MB

subjectively overcompensated for the larger sled displacements, effectively raising the

slope of the regression line close to 1.0 as we would expect during accurate

compensation. Although the slope of the regression line is closer to 1.0, the subjective

data contains a large amount of scatter at each sled displacement similar to the eye

movement data, indicating a large error associated with the fit of the regression line.

An analysis similar to that performed for the eye movement data was performed on the

subjective data to test whether the differences between the test conditions are significant.

Although the same procedure was employed, for brevity only the plots of the mean

normalized responses to the four conditions are given in Figure 4.9. The difference plots

have been excluded.

A X2 test was performed to test whether the differences between the plots shown are

statistically significant. The summary statistics from the X2 test are shown in Table 4.10.

In the 1.0 second trials the difference between MB's subjective responses during
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Figure 4.8. Comparison of subjective response and magnitude of eye movements for
subject MB. (a) 1.0 second rightward trials, (b) 1.0 second leftward trials,
(c) 2.5 second rightward trials, (d) 2.5 second leftward trials.
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Figure 4.9. Mean normalized subjective responses for subject MB. (a) difference
between rightward and leftward 1.0 second trials, (b) difference between rightward
and leftward 2.5 second trials, (c) difference between 1.0 and 2.5 second rightward
trials, and (d) difference between 1.0 and 2.5 second leftward trials. Error bars
indicate the standard error of the difference.
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rightward trials and leftward trials was somewhat variable with some bias toward the

leftward trials. Whereas in the 2.5 second trials, her subjective responses were slightly

biased toward the rightward displacements, but was not statistically significant (Table

4.8). These responses are not consistent with her eye movement responses, where she

demonstrated a significant bias towards rightward trials in both the 1.0 and 2.5 second

trials. In both the rightward and leftward trials MB gave a subjective report of moving

farther during the 2.5 second trials, but the bias was only significant in the rightward

trials. This agrees with the results from her eye movement responses.

Table 4.10. Summary of X2 statistical analysis for the subjective responses of all
subjects in the Y-axis Fixed Duration test. * = <0.001, 4 = <0.005, t = <0.025, A =
<0.05, blank = not significant.

Subj. Difference Test N 62 P Trend

CL 1 s trials: Right - Left 7 5.725
2.5 s trials: Right - Left 8 5.645
Right trials: is - 2.5s 7 36.549 * 2.5s > 1.0s
Left trials: is - 2.5s 8 26.523 o 2.5s > 1.0s

GS 1 s trials: Right-Left
2.5 s trials: Right - Left
Right trials: Is - 2.5s
Left trials: Is - 2.5s

JM 1 s trials: Right - Left 4 4.999
2.5 s trials: Right - Left 6 1.421
Right trials: is - 2.5s 5 4.002
Left trials: ls - 2.5s 7 4.421

MB 1 s trials: Right - Left 7 55.908 Left > Right
.5 s trials: Right- Left 7 12.548

Right trials: Is - 2.5s 7 49.513 * 2.5s > 1.0s
Left trials: is - 2.5s 6 12.953

TC 1 s trials: Right - Left 5 12.989
2.5 s trials: Right- Left 6 6.247
Right trials: s - 2.5s 5 13.000 t 2.5s > 1.0s
Left trials: s - 2.5s 6 4.058

The following is a brief description of the results from the other four subjects. The

summary plots and tables similar to those shown for subject MB are included in

Appendix B.
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Subject CL, JM, and TCs normalized mean eye movement response plots exhibit

downward trends as sled displacement increases, rather than a gain of 1.0, indicating that

they did not accurately discriminate between the different sled displacements. TCs eye

movement gain at the large sled displacements was only approximately 0.5. The low

gain indicates that he was underestimating his displacement at the larger displacements.

The downward trend in most of the other subjects was caused by overestimation of the

small displacements and correct compensation for the larger displacements.

Subject CL and JM each responded in the incorrect direction in a few of the 2.5 second

duration trials. No consistent directional asymmetry existed in their subjective correct

responses. CL also showed no consistent right/left asymmetric trend in her eye

movements nor in her subjective estimates of translation. JM responded with a bias in his

eye movements toward leftward translation in the 1.0 second trials, but was symmetric in

the 2.5 second trials. His subjective responses to the four test conditions (1.0 sec

rightward, 1.0 sec leftward, 2.5 sec rightward, 2.5 sec leftward) were not significantly

different from each other. TC responded with a bias in his eye movements towards trials

to the left at larger sled displacements, however his subjective responses were relatively

unbiased.

Comparing the 1.0 and 2.5 second trial durations, subject CL responded with larger eye

movements during the 2.5 second trials than during the 1.0 second trials. The slope of

her 2.5 second trials was also significantly greater than that of the 1.0 second trials,

indicating that she discriminated between the sled displacements better during the 2.5

second trials. Opposite of CL, the slope of JM's 1.0 second regression line was

significantly greater than that of the 2.5 second trials. The X2 test of his mean response,

however, revealed larger eye movements during the longer trials. Because of
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experimental circumstances, no repeat trials were performed for subject GS. Therefore, a

X2 analysis comparing the four different conditions was not possible. However, by not

separating the rightward and leftward trials, the regression coefficients of the 1.0 and 2.5

second trials are almost identical and neither was significantly different from 0.0,

indicating that her eye movements were not significantly correlated with changes in sled

displacement. TC responded with larger eye movements and larger subjective responses

during 2.5 second trials than 1.0 second trials.

4.1.1.2.1. Summary of Y-axis Fixed Duration Test

To summarize, Figure 4.10 shows the average normalized eye movement responses for

all subjects in the four y-axis fixed duration test conditions. Quantitative conclusions

may be inappropriate because of inter-subject variability. However, it provides an overall

qualitative understanding of the subjects' responses to changes in acceleration, including

a comparison between the 1.0 and 2.5 second and the rightward and leftward trials. The

downward trend of the normalized eye movement responses as sled displacement

increases indicates that subjects overcompensated for the smaller displacements (gain of

approximately 2.0) and correctly compensated for the larger sled displacements (gain of

approximately 1.0). This is also evident in the slopes of the regression lines for each

subject. Therefore, although a significant correlation exists between eye movements and

sled displacement, overall subjects did not accurately compensate for the different sled

displacements.

All five subjects responded with slightly larger mean eye movements during the 2.5

second trials. The difference was significant for each subject in either the leftward or

rightward trials, but not both. Four of the five subjects (all except JM) also had slightly

larger regression coefficients during the 2.5 second trials, although only in one subject
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Figure 4.10. Y-Axis Fixed Duration mean normalized eye movements for all
subjects. (a) 1.0 second trials comparing leftward and rightward trials, (b) 2.5
second trials comparing leftward to rightward trials, (c) rightward trials comparing
1.0 and 2.5 second trials, (d) leftward trials comparing 1.0 and 2.5 second trials.
Error bars signify standard error.

113



was the difference significant. Thus, each subject's eye movement response indicates

some dependence upon trial duration.

Although several of the subjects showed a directional asymmetry in their eye movements

and/or their subjective responses, no consistent trend seems to exist across subjects.

Since the results from the quantitative measurements (eye movements) were often

different from that of the subjective measurements, it does not appear that eye movements

accurately quantify the perception of translation.

4.1.2. Z-Axis Experiments

In the Z-axis, subjects had more difficulty accurately tracking the hidden target. Some

subjects showed greater variability in their eye movements in the z-axis experiments

compared to the subjects in the y-axis, as well as higher threshold levels for perception of

translation (average 0.006 G). The majority of the subjects tested in either z-axis test

responded with an asymmetry favoring trials moving towards their head, requiring

downward eye movements. The headward/footward eye movement asymmetry is larger

at small sled displacements and gradually decays as sled displacement increases,

however, it this is not consistently supported by the subjective estimates of translation.

As in the y-axis experiments, subjects consistently overcompensated for the 10 degree

trials and approximately compensated correctly for the 20 degree trials. These results are

discussed in detail below.

4.1.2.1. Fixed Displacement Test

Mean normalized eye movement responses are plotted versus acceleration in Figure 4.11

for subject KJ as representative of the subjects tested. The eye movement responses were

normalized by dividing by the distance the sled traveled during the particular trial, which
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Figure 4.11. Z-Axis Fixed Displacement normalized eye movement data for subject
KJ. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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was calculated from the measured sled position signal. This is more accurate than the y-

axis experiment analysis where the eye movements were normalized by the commanded

sled displacement (8.82 or 18.20 cm). This more accurate normalization was chosen after

the asymmetry was observed between the upward and downward eye movements to make

certain that it was not an artifact induced by an asymmetry in the motion stimulation.

The four plots in Figure 4.11 compare the mean eye movement response at each

acceleration level for the four different trial conditions. The first two plots separate the

data into (a) 10 degree trials and (b) 20 degree trials and compare the eye movement

responses to headward and footward sled displacements. The third and fourth plots

separate the (a) headward trials from the (b) footward trials and compare the responses to

the 10 and 20 degree trials. Similar plots for the other five subjects are included in

Appendix C.

At most acceleration levels, KJ's mean normalized eye movements were greater during

sled displacements toward his head. Independent t-tests were performed on the

difference between the upward and downward mean responses at each acceleration. The

asymmetry was not statistically significant at any individual acceleration level, but the

plots reveal an asymmetric trend across the range of accelerations. Subject KJ's

asymmetric response was most apparent at the lower and middle acceleration levels. At

the two or three highest accelerations his response was almost symmetric. During the 10

degree trials, the average gain of his eye movements when moving toward his head was

close to 2.0, while during the footward trials his gain was closer to zero and sometimes

negative (average = 0.78). In the 20 degree cases his mean gain for headward trials was

approximately 1.0, while his gain during the footward trials was slightly larger than 0.5,

again indicating that he undercompensated for sled motion toward his feet.
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KJ also showed a significant difference between his response to the 10 and 20 degree

trials. He significantly overcompensated for the 10 degree trials. His gain was

approximately twice that of the 20 degree trials, indicating that the two different sled

displacements yielded similar responses.

Thresholds were determined using the same criteria as was used in the y-axis fixed

displacement test ( i.e., the lowest of two consecutive acceleration levels that the mean

eye movement response is significantly different from zero). Table 4.8 gives the eye

movement threshold level for each subject in each of the four test conditions. One would

expect that below a person's threshold the mean response of many trials would average to

approximately zero, confirming that the probability of'guessing' the correct direction is

fifty percent. With only two data points at each acceleration in each condition the

variances are usually very high.

Table 4.11. Summary of eye movement threshold levels for each subject in each test
condition in the z-axis fixed displacement test.

Subject 10 degree trials 10 degree trials 20 degree trials 20 degree trials
HEADWARD FOOTWARD HEADWARD FOOTWARD

CL 6.0 6.0 11.0 6.0
JM 3.3 8.1 4.5 11.0
KJ 3.3 3.3 6.0 8.1
KP < 2.5 < 2.5 < 2.5 8.1
RZ 14.8 8.1 4.5 <2.5
TC 4.5 4.5 < 2.5 3.3

To statistically evaluate the differences in the eye movement responses to the four sled

conditions apparent in Figure 4.11 (10 degree up, 10 degree down, 20 degree up, and 20

degree down) a x2 analysis was performed across all acceleration levels. To illustrate the

process, the mathematical differences between subject KJ's headward and footward trials

and 10 and 20 degree trials are shown in Figure 4.12.
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Figure 4.12. Differences in the mean normalized eye movement responses for subject
KJ. (a) 10 degree trials comparing headward and footward trials, (b) 20 degree
trials comparing headward to footward trials, (c) headward trials comparing 10 and
20 degree trials, (d) footward trials comparing 10 and 20 degree trials. Error bars
signify standard error of the difference.
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The plots of the differences between the responses to the different test conditions make

any significant disparity between them more visible. In Figure 4.12 (a) and (b) it is clear

that at the lower and middle accelerations KJ responded asymmetrically, favoring sled

displacements toward his head. As the acceleration increased, however, the difference

curve tended toward zero, indicating little or no asymmetry. Likewise, a difference of 1.0

is evident between the 10 and 20 degree cases across most accelerations. Table 4.9

summarizes the results from the X2 tests performed on all acceleration levels

simultaneously, on accelerations above threshold, and on accelerations below threshold.

As in the y-axis experiment, a distinction is made between the responses above and below

the threshold acceleration because they could belong to two different populations.

However, since the threshold value is selected somewhat arbitrarily using the rule

described in the Methods section, a X2 of the full range of accelerations was also

performed. The X2 statistic only tests if the response is different from zero. Therefore, a

significant X2 value requires further review of the data to determine the direction of the

trend (which condition is greater) or even if a trend exists.

As confirmed by these statistical tests, subject KJ had a significant asymmetric trend in

his eye movement response across acceleration levels favoring headward sled

displacements. The X2 test also confirmed the significant difference between KJ's

normalized responses to the 10 and 20 degree trials across all acceleration levels. Since

KJ's threshold value was so low in the 10 degree trials, the differences between his

responses were significant in the above threshold X2 tests, but were not significant below

threshold, as that test included only one acceleration. In the 20 degree trials KJ showed

significantly greater eye movement responses to headward trials below threshold, as well

as across all acceleration levels.
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Table 4.9. Summary of X2 tests for (a) headward/footward asymmetry and (b)
differences between 10 and 20 degree trials for all subjects. * = <0.001, 1 = <0.005, t
= <0.025, A = <0.05, blank = not significant.

Subj. Up - Down N X2: 10. Trend P N X2: 20 Trend P
Difference Test trials trials

CL All Accelerations 8 190.749 U>D * 8 76.104 U>D
Above Threshold 5 122.560 U>D * 3 68.269 U>D
Below Threshold 3 68.189 U>D e 5 7.835

JM All Accelerations 8 90.341 U>D * 8 109.660 U>D
Above Threshold 4 71.470 U>D e 3 1.312
Below Threshold 4 18.872 U>D * 5 108.347 U>D

KJ All Accelerations 8 28.846 U>D * 8 22.329 U>D _

Above Threshold 7 28.019 U>D * 4 3.446
Below Threshold 1 0.827 4 18.883 U>D

KP All Accelerations 8 59.663 U>D * 8 4.508
Above Threshold 8 59.663 U>D * 4 1.600
Below Threshold 0 4 2.908

RZ All Accelerations 8 227.550 var. * 8 16.297 var. A
Above Threshold 2 0.382 6 11.282 U>D A
Below Threshold 6 227.168 var. * 2 5.015

TC All Accelerations 6 242.978 U>D * 8 10.477 U>D A
Above Threshold 6 242.978 U>D * 7 8.912
Below Threshold 0 0

(b)
Subj. 10' - 20" Difference N X2: Up Trend P N x2 : Down Trend P

Test trials trials
CL All Accelerations 8 138.357 10>20 8 332.624 10>20

Above Threshold 3 125.169 10>20 * 5 7.445
Below Threshold 5 13.188 10>20 t 3 325.180 10>20

JM All Accelerations 8 230.200 10>20 * 8 169.924 var.
Above Threshold 6 225.097 10>20 3 42.645 10>20
Below Threshold 2 5.103 5 127.279 var. *

KJ All Accelerations 8 515.538 10>20 * 8 10.079 10>20 -
Above Threshold 7 515.537 10>20 * 4 5.303
Below Threshold 1 0.001 4 4.776

KP All Accelerations 8 118.084 10>20 * 8 14.859
Above Threshold 8 118.084 10>20 o 4 6.920
Below Threshold 0 0.0 4 7.940

RZ All Accelerations 8 33.557 10>20 * 8 254.884 var. A
Above Threshold 2 10.826 var. t 4 13.420 10>20 A
Below Threshold 6 22.731 var. * 4 241.464 var. *

TC All Accelerations 7 309.693 10>20 * 7 47.346 10>20 A
Above Threshold 6 309.150 10>20 * 6 45.853 10>20 A
Below Threshold 1 0.543 1 1.494
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Subjective correct response threshold data provide further insight into the subjects

perceptions of translation. As defined in the Methods section, the subjective response

threshold is the lowest of two consecutive acceleration levels where the subject chose the

correct direction in at least 75% of the trials. Table 4.10 summarizes the percent correct

response for each subject at each acceleration level. The asterisks indicate the threshold

acceleration level based on the above rule for each subject. Subject KJ's subjective

response thresholds (Table 4.10) do not directly relate to the thresholds previously

determined from his eye movements (Table 4.8), since he responded in the correct

direction during most of the trials. The high variability in his eye movements, therefore,

caused his sub-threshold means to be insignificantly different from zero. It appears that

at the lowest acceleration level where he may have been 'guessing' which direction he

moved, he responded more frequently with downward eye movements, indicating he

perceived motion toward his head more frequently than toward his feet. However, across

all other acceleration levels the difference between the mean headward and footward

responses was solely due to the magnitude of the eye movements.

Table 4.10. Summary of percent correct subjective responses for each subject at
each acceleration level.

Subi. Sled 2.5 3.3 4.5 6.0 8.1 11.0 14.8 0 total
CL "Up 75 50 25 100* 75 100 100 100 78.125

Down 50 50 50 100* 100 100 1 . 5
JM Up 75* 75 100 100 100 1 00 1 1 .750

Down 0 0 50 50 75* 1 1 1 5.373
KJ U 75* 100 100 100 100 100 1 1 96.875

Down 50 100* 100 75 100 1 1 125
KP U 100* 100 100 100 100 10 10 1 100.00

Down 75* 100 75 75 1 1 1 1
RZ U 25 75 50 100* 75 75 100 100 75.000

Down 100* ----100 1 00 1 1 1 100.00
TC UU 75* 75 100 75 75 100 100 100 87.500

Down 75* 75 1 1 1 1 1 93.750
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An analysis similar to that performed for the eye movement data was performed on the

subjective estimates of translation to test whether differences in eye movements between

the four test conditions are perceptual. Although the same procedure was employed (as

described in the Methods chapter), for brevity only the plots of the mean subjective

responses are shown in Figure 4.13. The difference plots have been omitted. Figure 4.13

indicates that KJ subjectively overestimated his translation by as much as a factor of ten

in all test conditions, but showed larger subjective gains in the 10 degree trials than the 20

degree trials. Although his subjective responses are variable, they also appear to be

slightly biased toward footward displacements in figures (a) and (b).

A X2 test was performed to test the null hypothesis that the difference is significant. The

summary statistics from the X2 test are shown in Table 4.11. In the 10 degree trials the

difference between KJ's subjective responses during headward and footward trials was

somewhat variable with some bias toward the footward trials. In the 20 degree trials his

subjective responses varied insignificantly around zero. These responses are inconsistent

with his eye movement responses, where he demonstrated a significant bias towards

headward trials in both the 10 and 20 degree trials. In both the headward and footward

trials, KJ's normalized subjective report supported that he overcompensated for the 10

degree trials and undercompensated for the 20 degree trials, i.e., a significant difference

exists between the two normalized mean responses. This agrees with the results from his

eye movement responses.

The following is a brief description of the results from the other five subjects. The

summary plots and tables similar to those that were presented for subject KJ are included

in Appendix C.
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Figure 4.13. Mean normalized subjective responses for subject KJ. (a) headward
and footward 10 degree trials, (b) headward and footward 20 degree trials, (c) 10
and 20 degree headward trials, and (d) 10 and 20 degree footward trials. Error bars
indicate the standard error of the mean difference.
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Table 4.11. Summary of X2 test of the subjective responses for all subjects. (a) test of
up/down asymmetry and (b) test of difference between the 10 and 20 degree trial s.
= < 0.001, - = < 0.005, t = < 0.025, A = < 0.05.

(a)
Subj. Up - Down N X 2: 10" Trend P N Z2:20* Trend P

Difference Test trials trials

L All Accelerations 7 25.074 var. * 8 33.051 var.
Above Threshold 5 15.149 var. A 3 28.554 var.
Below Threshold 2 .925 D>U A 5 4.497

JM All Accelerations 8 105.392 var. * 8 161.222 U>D
Above Threshold 4 9.774 D>U A 3 1.29 D>U *
Below Threshold 4 5.618 U>D 9 . U>D 

KJ All Accelerations 8 45.966 D>U * 7 74. 4 var.
Above Threshold 7 45.965 D>U 3 9.404 D>U
Below Threshold 1 0.001 4 64.836 var.

KP All Accelerations 8 33.495 var. * 8 13.202
Above Threshold 8 33.495 var. * 4 11.781 var.
Below Threshold 0 0.0 4 1.421

RZ All Accelerations 7 27.798 var. * 6 5.447
Above Threshold 2 21.919 var. * 5 0.235
Below Threshold 5 5.879 1 5.212

TC All Accelerations 5 7.659 4 6.566
Above Threshold 5 7.659 3 1.354
Below Threshold 0 0.0 1 5.212

(b)
Subj. 10' - 20 Difference N X2: Up Trend P N X2: Trend P

Test trials Down
trials

CL All Accelerations 7 184.566 var. 8 3246.05 10>20
Above Threshold 3 164.813 1 >20 5 57.344 1 >20
Below Threshold 4 14.753 var. A 1 .71 10>

JM All Accelerations 8 27.149 10>20 8 36.980 10>20
Above Threshold 2.88 3 4.4
Below Threshold 2 4.269 5 32.576 var.

KJ All Accelerations 7 121.918 10>20 * 50 .432 10>20
Above Threshold 4 91.848 10>20 * 495.006 10>20
Below Threshold 3 30.07 10>20 4 1.4 1020 A

KP All Accelerations 8 497.183 1 0>20 * 8 90.852 10>20
Above Threshold 8 497.183 10>20 * 4 79.05 1 >
Below Threshold 0 0.0 11.802 10>20 A

RZ All Accelerations 6 3.718 8 1.960 1>2
Above Threshold 1 0.819 5 30. 10>20
Below Threshold 5 2.89 1.552

TC All Accelerations 3 33.936 var. * 6 8.819
Above Threshold 2 33.935 var. * 5 66
Below Threshold 1 0.001 1 5.753
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At low levels of acceleration five of the six subjects (all except RZ) exhibited smaller

mean eye movements during footward sled motion toward than during headward trials.

The subjective correct response data in Table 4.10 shows that half of the subjects

responded incorrectly more often during footward trials while others simply used smaller

eye movements during footward trials. Above threshold, subjects RZ, TC, JM, and CL

continued to undercompensate for footward sled displacements, while approximately

compensating correctly, or slightly overcompensating for sled motion toward their head.

Above and below threshold subject KP also significantly overcompensated for sled

displacements toward her head, however she compensated correctly for sled

displacements toward her feet.

If the eye movement response is related to the subjects' perception of translation, these

results would imply that the subjects may perceive that they moved farther when moving

toward their heads. The distinct headward/footward asymmetry that was evident in the

eye movement responses, however, is not obvious in the subjective responses. Only one

subject, JM, had a consistent bias in his subjective responses toward headward trials in

both the 10 and 20 degree cases, and he was the only subject with any significant bias in

the 20 degree trials. KP responded with a bias toward headward displacements in the 10

degree trials, but CL, RZ and KJ responded subjectively as moving farther during

footward trials. This is opposite the trends in their eye movements.

A statistically significant difference also exists between the eye movement responses to

the two different sled displacements in all six subjects. Like subject KJ, subjects

overestimated the 10 degree trials significantly more than the 20 degree trials. The

difference between the 10 and 20 degree trials was also evident in the subjective response

data, as subjects significantly overestimated their displacement during the 10 degree

trials. Because the normalized eye movement responses and the subjective responses to
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these two different displacements were different from each other, they were kept separate

throughout the analysis.

4.1.2.1.1. Summary of Z-axis Fixed Displacement Test

Although significant variation exists between subjects, Figure 4.14 compares the

normalized 10 and 20 degree trials and the normalized headward and footward trials for

all subjects combined. Quantitative conclusions from this plot may be inappropriate

because of the inter-subject variability. However, it provides an overall qualitative

understanding of the subjects' responses to changes in acceleration, including a summary

of the differences statistically shown above and shown previously for subject KJ . The

relatively constant eye movement gain across acceleration levels shown in Figure 4.14

indicates that changes in acceleration do not significantly change the amplitude of the eye

displacement.

The trends described for each individual subject are supported by the plots of all subjects

averaged together. The responses to headward trials are greater than those to footward

trials across all accelerations in both the 10 and 20 degree trials. As shown in figures (a)

and (b) the asymmetric eye movement response is most significant at the low

accelerations, but continues to exist at the high accelerations. Subject estimates of

translation do not consistently support the eye movement asymmetry. In fact, many

subjects' estimates of translation were greater during downward trials. Since the

subjective and eye movement responses do not coincide, it does not appear that the eye

movements accurately quantify the perception of translation.
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Figure 4.14. Z-Axis Fixed Displacement normalized eye movement data for all
subjects. (a) headward and footward 10 degree trials, (b) headward and footward
20 degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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The difference between the 10 and 20 degree trials is particularly evident in the headward

trials (c), but also exists in the footward trials (d). The difference between the two

displacements exists across all accelerations, and is primarily cause by

undercompensation of the 20 degree trials and slight overcompensation of the 10 degree

trials. Subjective estimates of translation support the differences between the two

displacement amplitudes across all subjects.

In the y-axis experiments, the fixed duration test was justified by subjective reports that

the responses depended on the duration of the trial. The subjects' eye movements in the

fixed displacement test did not coincide with their subjective reports, but in the fixed

duration test the 2.5 second trials were significantly greater than the 1.0 second trials for

half of the subjects. In the z-axis fixed displacement experiment discussed above, one

subject of six (KP) responded with eye movements that decreased with increasing

acceleration in both the 10 and 20 degree cases. The result indicates that she was

overestimating the displacement of the sled at low accelerations (large trial durations) and

correctly compensating for the sled displacement at larger accelerations (smaller trial

durations). Her response suggests that her perception of the distance traveled was

dependent upon the duration of the trial. Thus, to further investigate this potential effect,

and to complete the battery of Hidden Target Pursuit experiments, the fixed duration

experiment was performed in the z-axis.

4.1.2.2. Fixed Duration Test

As stated in the Methods, linear regression of the data determine how well a subject's eye

movement response correspond to the distance traveled by the sled. The subjects in the z-

axis fixed duration test were not able to track the hidden target very accurately. Post-hoc

tests determined whether significant differences existed between different linear

regression lines. Scatter plots of the eye movement responses are shown in Figure 4.15
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for subject MB for comparison to those made by Israel and Berthoz (1989). (Similar

plots are shown for the other four subjects in Appendix D.) Each point on the plot is the

response to one trial. Linear regression lines are drawn on the plot to indicate the slope of

the data for each trial duration in each sled direction. A slope of 1.0 would indicate that

the subject was able to discriminate between the different sled displacements by tracking

the hidden target with her eyes.

Thresholds for perception of acceleration were not considered in these experiments since

only the lowest acceleration tested (5 milliG) was near or below the threshold level for

most of the subjects, as shown in the Z-axis Fixed Displacement test (second lowest

acceleration was 10 milliG). Since trial duration is proportional to the inverse of the

acceleration, the trials with the longer duration (2.5 seconds) have lower accelerations.

Therefore, incorrect responses were made more often during the 2.5 second trials where

the accelerations were closer to the threshold level for perception. The incorrect

responses were eliminated from the linear regression analysis (results shown in Table

4.12) so that the negative values would not falsely skew the comparisons between the

conditions being tested (i.e., 1.0 versus 2.5 second trials).

Table 4.12 shows the regression coefficients (slopes) for the 1.0 second headward and

footward trials and the 2.5 second headward and footward trials, indicating how well the

subjects' eye movements compensated for translation during each condition. The

following four rows in the table provide the p-values describing whether the slope of each

line is significantly different from 0.0 (no dependence on distance), 1.0 (accurate

compensation), the slope of the trials in the same direction with the other duration, and

the slope of the trials with the same duration but opposite direction.
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Figure 4.15. Scatter plot of the Z-Axis Fixed Duration eye movement data
comparing 1.0 and 2.5 second trials for subject MB. (a) 1.0 second trials comparing
headward and footward trials, (b) 2.5 second trials comparing headward and
footward trials, (c) headward trials comparing 1.0 and 2.5 second trials, (d)
footward trials comparing 1.0 and 2.5 second trials. Error bars signify standard
error.
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Table 4.12. Z-axis Fixed Duration summary of linear regression analysis for all
subjects.

Sub' . Test 1.0sec Up 1.0sec Down 2.5sec Up 2.5sec Down
JR Regression Coeff. 0.174 0.087 0.307 0.584

P-Value H0 : B=0.0 0.351 0.187 0.064 0.000
P-Value Ho: B=1.0 0.000 0.000 0.000 0.000
P-Value Ho : B1=B 2 UP trials: .399 DOWN trials: 0.730
P-Value Ho: Bu=Bd 1.0 sec trials: 0.186 2.5 sec trials: 0.009

AA Regression Coeff. 0.179 0.247 0.178 0.324
P-Value Ho: B=0.0 0.125 0.009 0.414 0.002
P-Value Ho: B=1.0 0.000 0.000 0.002 0.000
P-Value Ho: BI=B2 UP trials: 0.998 DOWN trials: 0.371
P-Value Ho: Bu=Bd 1.0 sec trials: 0.414 2.5 sec trials: 0.102

GS Regression Coeff. 0.217 -0.085 0.064 0.558
P-Value H: B--0.0 0.052 0.834 0.717 0.002
P-Value Ho: B=1.0 0.000 0.023 0.000 0.008
P-Value Ho: Bl=B2 UP trials: 0.395 DOWN trials: 0.001
P-Value Ho: Bu=Bd 1.0 sec trials: 0.465 2.5 sec trials: 0.004

MB Regression Coeff. 0.166 0.038 0.272 0.249
P-Value Ho: B-0.0 0.214 0.541 0.049 0.002
P-Value Ho: B=1.0 0.000 0.000 0.000 0.000
P-Value Ho: Bl=B2 UP trials: 0.416 DOWN trials: 0.006
P-Value Ho: Bu=Bd 1.0 sec trials: 0.055 2.5 sec trials: 0.722

SS Regression Coeff. 0.317 0.519 -0.331 0.576
P-Value Ho: B--0.0 0.332 0.318 0.325 0.239
P-Value Ho: B=1.0 0.048 0.354 0.001 0.381
P-Value Ho: B1=B 2 UP trials: 0.066 DOWN trials: 0.904
P-Value Ho: Bu=Bd 1.0 sec trials: 0.693 2.5 sec trials: 0.073

KP Regression Coeff. 0.219 0.277 .37 0.739
P-Value Ho: B--O.0 0.041 0.002 0.294 0.018
P-Value Ho: B=1.0 0.000 0.000 0.092 0.361
P-Value Ho: B1=B 2 UP trials: 0.656 DOWN trials: 0.117
P-Value Ho: Bu=Bd 1.0 sec trials: 0.428 2.5 sec trials: 0.211

It is evident from the slopes of the regression lines for subject MB (between 0.038 and

0.272) that she was not able to accurately compensate for her translation with eye

movements over the range of sled displacements presented. She tended to overestimate

for the small displacements and underestimate for the larger displacements, producing a

large amount of scatter of the data and a very flat regression line. This agrees with the
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results from the fixed displacement experiments where the subjects' eye movements

during the 20 degree trials were not consistently twice the magnitude of the 10 degree

trials, as they should have been for perfect compensation. Not surprisingly, the slope of

MB's regression lines were significantly different from a slope of 1.0 in all four test

conditions. In the 1.0 second trials, the regression coefficients were not significantly

different from 0.0. A slightly greater correlation existed between her eye movements and

sled displacement in the 2.5 second trials, evidenced by a slope that is significantly

greater than zero. The difference between the slopes of the 1.0 and 2.5 second trials was

only significant in the downward trials, as shown in the second to last row of MB's

regression data in Table 4.12.

The last row of the regression table for MB shows that she demonstrated a significant

difference between headward and footward 1.0 second trials, and no asymmetry in the 2.5

second trials. The asymmetry supports the asymmetric results from the Z-axis fixed

displacement test. However, because of the large amount of scatter in the data around the

regression lines, regression analysis may not be the most accurate method to evaluate the

differences.

To confirm or refute the results from the regression analysis, a second analysis method,

similar to the X2 test used in the previous experiments was employed. The first step in

the analysis is to produce plots of the mean eye movement response at each sled

displacement. Figure 4.16 shows such plots for subject MB.

Similar to her response in the Y-axis Fixed Duration test, MB's normalized means have a

downward trend as sled displacement increases. The amplitude of her eye movements

did not change significantly with sled displacement, as was also apparent by the very flat

slope in the regression plot of Figure 4.15. Further simplification of the plots in Figure
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Figure 4.16. Z-axis fixed duration mean normalized eye movement responses versus
sled displacement for subject MB. (a) 1.0 sec trials comparing headward and
footward, (b) 2.5 sec trials comparing headward and footward, (c) headward trials
comparing 1.0 sec and 2.5 sec, and (d) footward trials comparing 1.0 and 2.5 sec.
Error bars indicate standard error.
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4.16 and statistical analysis of the data was performed to investigate any significant

differences between the four test conditions. The difference between each test condition

was calculated and then plotted versus sled displacement. (Figure 4.17). Subject MB had

consistently larger eye movements during sled displacements toward her head than

toward her feet in both the 1.0 and 2.5 second trials. The differences between her

responses to the headward and footward trials form a downward trend with sled

displacement in both the 1.0 and 2.5 second trials. The downward trend indicates that

MB was more biased toward headward displacements at the smaller sled displacements.

As the sled displacement increased, the differences between MB's responses to headward

and footward trials decreased until almost reaching zero (indicating no difference) during

40 cm displacements. Similar observation of Figure 4.17 (c) and (d) reveals that MB

responded with slightly greater eye movements in the 2.5 second headward trials than in

the 1.0 second headward trials, but showed no consistent difference dependent upon trial

duration in the downward trials.

For statistical purposes a X2 test was performed to determine whether the differences

shown are significant. If the calculated X2 value is significantly different from zero, then

one must review the data to determine the direction of the trend (which condition is

greater) or if a trend exists. Table 4.13 summarizes the results from the X2 test for all

subjects. The last column describes the direction of the significant trend, and is left blank

for cases where no trend exists.

The calculated X2 values confirm that subject MB consistently moved her eyes with

larger amplitudes during sled displacements toward her head (i.e., downward eye

movements). This trend was statistically significant for both the 1.0 and 2.5 second

conditions. In regards to the dependence of the estimation of translation upon trial
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Figure 4.17. Differences in mean normalized eye movement responses versus sled
displacement for subject MB. (a) 1.0 sec trials comparing headward and footward,
(b) 2.5 sec trials comparing headward and footward, (c) headward trials comparing
1.0 sec and 2.5 sec, and (d) footward trials comparing 1.0 and 2.5 sec. Error bars
indicate standard error of the difference.

135



Table 4.13. Z-axis Fixed
<0.025, A = <0.05, blank

Duration summary of X2 tests. * = <0.001, 4 = <0.005, t =
= no significant trend.

Subj. Difference Test N X2 P Condition

JR 1 s trials: Up - Down 8 291.894 * Up > Down
2.5 s trials: Up - Down 8 490.320 * Up > Down
Upward trials: is - 2.5s 8 9.02 1
Down trials: is - 2.5s 8 22.729 2.5s > 1.0s

AA 1 s trials: Up - Down 8 56.732 * Up > Down
2.5 s trials: Up - Down 8 5.530
Upward trials: ls -2.5s 8 15.375
Down trials: 1s - 2.5s 8 24.837 V 2.5s > 1.0s

GS 1 s trials: Up - Down 8 25.279 Up > Down

2.5 s trials: Up - Down 8 1049.98 * Up > Down
Upward trials: is - 2.5s 8 9.4
Down trials: is - 2.5s 8

MB 1 s trials: Up -Down 8 25.279 * Up > Down
2.5 s trials: Up - Down 8 396.946 Up > Down
Upward trials: 1s - 2.5s 8 15.435
Down trials: Is - 2.5s 8 60.469 variable

SS 1 s trials: Up - Down 8 83.517 Up > Down
2.5 s trials: Up - Down 8 1049.698 Up > Down
Upward trials: ls - 2.5s 8 90.424 0 variable
Down trials: Is - 2.5s 8 9.331

KP 1 s trials: Up- Down 8 55.467 Up > Down
2.5 s trials: Up - Down 8 91.616 0 Up > Down
Upward trials: Is - 2.5s 8 6.053
Down trials: Is - 2.5s 8 127.780 * variable

duration, subject MB responded similarly in both the 1.0 and 2.5 second trials. The 2

value calculated for the downward trials was significantly different from zero, but no

consistent trend was apparent.

Subjective correct response data could be used to determine if subjects responded

correctly more frequently to trials to the left or right or during 1.0 second or 2.5 second

trials. Table 4.14 summarizes the percentage of correct responses for each subject at each

sled displacement. Subject MB's correct responses were not asymmetric, therefore, the
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headward/footward asymmetry shown in the X2 table (Table 4.14) was due entirely to

differences in the magnitudes of her eye movements, not incorrect responses.

Table 4.14. Percent of correct subjective
Fixed Duration test.

responses for all subjects during the Z-axis

Subj. Cond. 5 10 15 20 25 30 35 40 total
JR U 75 75 100 100 100 100 50 1 87.500

Down 1 100 1 100 1 1 1 1 1.
AA U 75 100 100 100 100 100 75 100 93.750

Down 100 50 100 100 100 1 1 1 .7
GS Up 100 100 100 100 100 100 100 100 100.00

Down 100 100 100 100 100 100 1 100 10000
MB Up 7 5  100 100 100 100 100 75 100 93.750

Down 75 100 100 1 1 1 1 1 96.875
SS U 100 100 100 100 100 1 1 100 100.00

Down 100 75 75 100 100 100 1 100 93.750
KP U 75 100 75 100 75 100 100 100 .625

Down 50 100 100 100 1 1 1 93.75

Analysis of the subjective estimates of translation can also be used to interpret the

quantitative eye movement data shown above. Figure 4.18 shows that subject MB's

subjective responses more accurately distinguished between the different sled

displacements than her eye movements indicated, evidenced by the slope of the

regression line closer to 1.0. However, she greatly overestimated her translation at all

sled displacements during both the 1.0 second and 2.5 second trials.

An analysis similar to that performed for the eye movement data was performed on the

subjective data to test whether the differences which exist between the four test

conditions in the z-axis fixed duration test are statistically significant. To illustrate the

process, the mean subjective response gains of the four conditions are given in Figure

4.19. The difference plots, similar those shown for the eye movement analysis, have

been excluded. MB's normalized subjective estimates of translation show a downward
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Figure 4.18. Scatter plots comparing subjective response to eye movement data for
subject MB. (a) 1.0 second headward trials, (b) 1.0 second footward trials,
(c) 2.5 second headward trials, (d) 2.5 second footward trials.
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Figure 4.19. Mean normalized subjective responses for subject MB. (a) headward
and footward 1.0 second trials, (b) headward and footward 2.5 second trials, (c) 1.0
and 2.5 second headward trials, and (d) 1.0 and 2.5 second footward trials. Error
bars indicate the standard error of the difference.
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trend as sled displacement increases similar to the trend in the normalized eye movement

data. Overall, her subjective estimates are two to five times greater than the actual sled

displacement. From the figures, it appears that MB subjectively favored footward trials

and trials of longer duration.

A X2 test was performed to test whether the differences between the subjective responses

are significant. The summary statistics from the y2 test are shown in Table 4.15. In the

1.0 second trials, the differences between MB's subjective responses during headward and

footward trials were biased toward the footward trials. In the 2.5 second trials her

subjective responses were somewhat variable, but were also slightly biased toward the

footward displacements. These responses are opposite to her eye movement responses,

where she demonstrated a significant bias towards headward translations in both the 1.0

and 2.5 second trials. In the headward cases MB gave a subjective report of moving

farther during the 2.5 second trials, but her response during the footward trials varied

inconsistently around zero indicating no asymmetry. This agrees with the results from

her eye movement responses.

The following is a brief description of the results from the other five subjects. The

summary plots and tables similar to those shown for subject MB are included in

Appendix D.

Only three of the six subjects (JR, GS, MB) showed some significant difference between

the regression coefficients of the headward and footward trials. However, all five of the

subjects whose data was analyzable using the X2 test (not GS) showed a significant

asymmetric trend in their eye movements favoring headward trials. No consistent
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Table 4.15. Summary of X2 statistical analysis for all subjects for the subjective
responses in the Z-axis Fixed Duration test. * = <0.001, = <0.005, t = <0.025, A =
<0.05, blank = not significant.

Subj. Difference Test N X2 P Condition

JR 1 s trials: Up -Down 7 3.617
2.5 s trials: Up - Down 8 35.892 * Down > Up
Upward trials: is - 2.5s 8 8.064
Down trials: Is - 2.5s 7 38.786 * 2.5s > 1.0s

AA 1 s trials: Up - Down 7 8.766
2.5 s trials: Up - Down 7 10.450
Upward trials: 1s - 2.5s 6 6.070
Down trials: Is -2.5s 8 34.022 2.5s > 1.0s

S 1 s trials: Up - Down 8 70 Down
2.5 s trials: Up - Down 7 56 * >
Upward trials: is - 2.5s .2 2.5s>
Down trials: Is - 2.5s 7 15.

MB 1 s trials: Up -Down 8 22.519 -* Down > Up

2.5 s trials: Up -Down 8 31.075 * Down > Up

Upward trials: 1s - 2.5s 8 394.269 ° 2.5s > 1.0s
Down trials: Is - 2.5s 8 10.405

SS 1 s trials: Up - Down 7 70.855 Up > Down
2.5 s trials: Up - Down 7 456.474 Up > Down

Upward trials: Is - 2.5s 7 19.202 A 2.5s > 1.0s
Down trials: Is - 2.5s 7 15.91A 2.5s > 1.0s

KP 1 s trials: Up - Down 8 10.737
2.5 s trials: Up -Down 8 749.360 ° variable
Upward trials: is - 2.5s 8 29.763 * variable
Down trials: is - 2.5s 8 102.164 * 2.5s > 1.0s

difference existed between their subjective correct responses during headward and

footward trials, indicating that the difference was entirely due to the magnitude of their

eye movements. This consistent asymmetry in eye movements across subjects supports

the similar result in the z-axis fixed displacement test. Subjectively, however, only one

of the six subjects (SS) tested gave a consistent subjective response indicating larger

motion during headward displacements. Two subjects gave subjective responses

consistently biased in the opposite direction of what their eye movements indicated (JR

and MB). As in the Z-axis Fixed Displacement experiment, the subjective response data

does not consistently support the eye movement data.
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No consistent and significant difference was apparent between the regression analysis for

the 1.0 and 2.5 second trials across subjects. Many of the regression lines lie directly on

top of one another, and it is obvious that the scatter of the raw data points preclude any

consistent difference. Using the X2 test only two of the six subjects (JR and AA) had any

type of consistent trend, both with larger eye movements during the 2.5 second trials than

during 1.0 second trials. The other four subjects showed no consistent difference

between their eye movement responses to the 1.0 and 2.5 second trials. Based on the

subjective responses, however, all five subjects who were analyzed favored the 2.5

second trials.

4.1.2.2.1. Summary of Z-axis Fixed Duration Test

Figure 4.20 clearly displays the difference between the headward and footward trials for

all subject. The difference is most noticeable at the lower and middle sled displacements,

while as the sled displacement increases the difference gradually decays. However, the

asymmetry still exists at the largest displacement. Across subjects, it appears that the

difference is due to both overcompensation for the headward trials (gain between 1.0 and

2.0) and undercompensation for the downward trials (gain less than 1.0). The subjective

estimates of translation do not support the consistent eye movement asymmetry.

The downward trend overall indicates that on average subjects overcompensated for the

small displacements and correctly compensated for the larger displacements. The

downward trend is most obvious in the headward trials, but also exists during footward

displacements. The downward trend in the normalize eye movements supports the flat

regression lines calculated in the regression analysis of the eye movement data.
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Figure 4.20. Z-axis fixed duration mean normalized eye movement responses versus
sled displacement for all subjects. (a) 1.0 sec trials comparing headward and
footward, (b) 2.5 sec trials comparing headward and footward, (c) headward trials
comparing 1.0 sec and 2.5 sec, and (d) footward trials comparing 1.0 and 2.5 sec.
Error bars indicate standard error.
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No significant difference exists between the average responses to the 1.0 and 2.5 second

trials across subjects in the headward trials. However in the downward trials, the mean

eye movement response gains are slightly larger during the 2.5 second trials than the 1.0

second trials across nearly all sled displacements, indicating that the eye movement

responses may be dependent upon trial duration in the downward trials. Subjective

reports from four of the six subjects support this dependence upon trial duration in the

downward trials.

4.2. Linear Adaptation

From previous studies on rotational adaptation, one might expect to see some adaptation

after exposure to twenty-five minutes of the linear visual-vestibular adaptation paradigm

with the visual field moving twice the distance of the linear displacements. However,

very little if any adaptation was observed in any of the three test protocols for any of the

subjects. The following section summarizes these results.

4.2.1. Hidden Target Pursuit Experiment

This section presents the results of the magnitudes and directions of the horizontal eye

movements during a modified version of the fixed displacement experiment that was

performed before and after the linear adaptation paradigm. The ensuing report of the

results will follow a similar organization as during the fixed displacement test. Four

conditions are compared: two directions (right/left) and pre-/post-adaptation. As the

displacement was fixed at 18.20 cm (20 degrees), no comparison is made between sled

displacements.

Mean normalized eye movement responses are plotted versus acceleration in Figure 4.21

for subject CL as representative of the sample tested. The eye movement responses were

normalized by dividing by the distance the sled traveled during the particular trial which
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Figure 4.21. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for
subject CL. a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, (d)
pre- and post-adaptation leftward. Error bars signify standard error.
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was calculated from the sled position signal. The four plots in Figure 4.21 compare the

mean eye movement response at each acceleration level for the four different trial

conditions. The first two plots separate the (a) pre-adaptation trials from the (b) post-

adaptation trials and compare the responses to rightward and leftward sled movements.

The third and fourth plots separate the data into the (c) rightward and (d) leftward trials

and compare the eye movement responses pre-adaptation to those post-adaptation.

Similar plots for the other three subjects are included in Appendix E.

Threshold levels for detection of linear acceleration were chosen based on the 'rule'

described in the Methods section, namely, the lowest of two or more consecutive

accelerations where the mean eye displacement is significantly different from zero. Table

4.16 shows the threshold level for perception calculated for each subject pre-adaptation

and post-adaptation. One would expect that below a person's threshold the mean

response of many trials would average to approximately zero, confirming that the

probability of 'guessing' the correct direction is fifty percent. With only two data points

at each acceleration level in each condition, an average response of zero is rarely

observed, however the variances are usually high.

Table 4.16. Summary of eye movement thresholds for perception pre- and post-
adaptation for all subjects. Means and Standard Deviations include trials in both
directions at a particular G-level.

Subj. Pre-Adapt. (milliG) Post-Adapt. (milliG)
DM 4.5 4.5
CL 6.0 4.5
MB 4.5 6.0
KJ 4.5 < 2.5

An independent t-test was performed on the mean normalized eye movements at each

acceleration for each subject to test for a significant difference between the pre- and post-
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adaptation conditions. Not one acceleration level for any of the four subjects elicited a

significantly different response between the pre- and post-adaptation states. This

indicates that either no adaptation occurred or that any adaptation was masked by fatigue.

The data looked qualitatively similar to the hidden target pursuit experiments discussed

previously in this thesis. Post-adaptation many of the subjects' eye movements were

slightly more saccadic than pre-adaptation. This could be attributed to the subjects' high

level of fatigue, inhibiting how well they could smoothly track the target, and stimulating

the saccadic system to compensate.

The assumption of similarity between directions of sled displacement for this table is

based on previous left/right analysis and observation of the plots of the mean responses.

Additional analysis of potential right/left asymmetry was performed to confirm this

assumption and is discussed in the following paragraphs. A X2 test was performed across

acceleration levels for each subject to determine if any overall trend existed between any

of the four conditions that was not apparent in the figures. To illustrate the process the

difference between the pre- and post-adaptation responses and the rightward and leftward

responses were calculated and plotted in Figure 4.22 for subject CL.

The difference plots make any significant disparity between the test conditions more

visible. For example, in Figure 4.22 (b) it is clear that post-adaptation subject CL

responded asymmetrically, favoring sled displacements toward her right at the 6.0 and 8.1

milliG levels. At all other accelerations, however, the difference curve varies

insignificantly around zero, indicating no asymmetry. In Figure 4.22 (c) and (d) the

mathematical differences between CL's normalized eye movements pre-adaptation and

post-adaptation are shown. No consistent trend is apparent in either the rightward or

leftward trials for subject CL. Table 4.17 summarizes the results from the X2 tests

performed across all acceleration levels simultaneously. The p-values associated with the
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Figure 4.22. Differences in mean normalized eye movement responses versus sled
acceleration for subject CL. (a) rightward minus leftward pre-adaptation trials, (b)
rightward minus leftward post-adaptation trials, (c) pre-adaptation minus post-
adaptation rightward trials, and (d) pre-adaptation minus post-adaptation
rightward trials. Error bars indicate standard error of the difference.
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Table 4.17. Summary of X2 statistical analysis for the eye movement responses of all
subjects in the Pre-/Post-adaptation Hidden Target Pursuit experiment. = <0.001,
4 = <0.005, t = <0.025, A = <0.05, blank = not significant.

Subj. Difference Test N k2 P Condition

DM Pre-adapt: Right-Left 8 7.149
Post-adapt: Right-Left 8 9.515
Right: Pre - Post 8 5.985
Left: Pre - Post 8 7.469

CL Pre-adapt: Right-Left 8 20.044 t variable
Post-adapt: Right-Left 8 376.882 * Right > Left
Right: Pre - Post 8 9.193
Left: Pre - Post 8 284.469 variable

MB Pre-adapt: Right-Left 8 60.813 * variable
Post-adapt: Right-Left 8 8.939
Right: Pre - Post 8 10.009
Left: Pre - Post 8 108.226 a Pre > Post

KJ Pre-adapt: Ri t-Left 8 45.271 • Ri ht > Left
Post-ada t: Ri ht-Left
Ri ht: Pre - Post
Left: Pre - Post

X2 statistical test are two-tailed. Therefore, if the calculated X2 value indicates a

significant difference between the two conditions being tested then one must review the

data to determine the direction of the trend (which condition is greater) or even if a trend

exists.

As confirmed by these statistical tests and examination of the difference plots in Figure

4.22, subject CL displayed no significant asymmetric trend in her eye movement

response during the pre-adaptation trials. Post-adaptation, her asymmetric responses at

the two accelerations described above were large enough to make the X2 significant, but

the asymmetry was inconsistent at other G-levels. The lack of a consistent asymmetric

trend supports the results from the y-axis fixed displacement and fixed duration Hidden

Target Pursuit tests discussed previously. The three experiments together lead to the

conclusive result that, although some subjects show asymmetric responses in y-axis
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upright accelerations, there is no consistent trend across subjects. With a larger data set, a

more detailed investigation could be made of the subjects who did show some sort of

right/left asymmetry to determine if the asymmetries were by chance alone.

In regards to differences between pre- and post-adaptation, the X2 test statistically proved

that no significant difference existed between CL's normalized responses pre- and post-

adaptation. During leftward trials, the calculated X2 value was statistically significant.

However, Figure 4.22 (d) shows no significant trend in the difference across

accelerations.

Analysis of the subjective estimates of translation can also be used to more fully

understand the quantitative eye movement data. The subjective responses were analyzed

to determine if there were any perceptual differences between the four conditions that

were not evident in the eye movement data shown above. Figure 4.23 shows the mean

responses to the four test conditions for subject CL.

X2 tests identical to those performed above were performed on the subjective responses.

The results from the X2 tests are shown in Table 4.18 for all subjects. Although the

differences in CL's responses were variable from one acceleration to another, she showed

a slight asymmetry in her subjective responses to accelerations above 8.1 milliG, biased

towards sled movements to her right. The 2 test also revealed a significant difference

between her subjective responses pre-adaptation and post-adaptation. In both directions

of sled displacement she responded with larger subjective displacements pre-adaptation.

This indicates that the lack of adaptive eye movements was not simply due to fatigue of

the eyes. CL was the only subject to produce a significant difference in her subjective

responses between pre- and post-adaptation. The differences for the other three subjects

were variable from one acceleration to another with no consistent trend.
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Figure 4.23. Mean normalized subjective responses versus sled acceleration for
subject CL. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre-adaptation and post-adaptation rightward
trials, and (d) pre-adaptation and post-adaptation rightward trials. Error bars
indicate standard error.
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Table 4.18. Summary of x2 statistical analysis for the subjective responses of all
subjects in the Pre-/Post-adaptation Hidden Target Pursuit experiment. = <0.001,
4 = <0.005, t = <0.025, A = <0.05, blank = not significant.

Subj. Difference Test N 2 P Condition

DM Pre-adapt: Right-Left 8 6.896
Post-adapt: Right-Left 8 22.738 Right > Left
Right: Pre - Post 8 10.697
Left: Pre - Post 8 3.254

CL Pre-adapt: Right-Left 7* 20.948 t variable
Post-adapt: Right-Left 7* 28.184 * variable
Right: Pre - Post 8 26.317 * Pre > Post
Left: Pre - Post 26.902 * Pre > Post

MB Pre-adapt: Right-Left 8 2011.918 * Right > Left
Post-adapt: Right-Left 8 71.930 * variable
Right: Pre - Post 8 41.058 * variable
Left: Pre - Post 8 8.503

... . . . ~r • • wrn 1.4 1 ~c~, _ __ 1 _

KJ Pre-adat: Ri ht-Lett I 10./sz vanaole
Post-adapt: Right-Left
Right: Pre-Post

I Left: Pre - Post .. "

The following is a brief description of the results from the other three subjects. The

summary plots and tables similar to those that were presented for subject CL are included

in Appendix E.

Only MB demonstrated a significant difference between pre- and post-adaptation

responses. In the rightward trials she had slightly larger eye movements pre-adaptation.

This decrease in eye movements post-adaptation is probably due to fatigue, not to

adaptation, as the paradigm was designed to increase the gain of the eye movements post-

adaptation. DM's responses pre- and post-adaptation were insignificantly different from

each other. Unfortunately, three of the four 2 tests could not be performed for subject

KJ, as the set of repeat trials post-adaptation was lost. However, no significant difference

appears to exist between his pre- and post-adaptation responses. Subjectively, CL was

the only subject to report any significant difference between pre- and post-adaptation. In
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summary, no significant 2x adaptation was evident in any of the subjects tested. If

anything, the tendency was for the subjects' eye movements and subjective responses to

decrease post-adaptation. As stated before, one explanation for such a trend would be

fatigue.

With regards to directional asymmetries, KJ favored trials to the right during the pre-

adaptation trials, but not post-adaptation. As stated above, CL also responded with larger

eye movements during the rightward trials, but only post-adaptation. DM and MB

showed no significant asymmetric trend in their eye movements. Subjectively, however,

DM and MB each responded with a bias toward rightward trials in either the pre- or post-

adaptation conditions, but not both.

Figure 4.24 compares the normalized eye movement responses during the rightward and

leftward and the pre- and post-adaptation trials for all subjects combined. Quantitative

conclusions may be inappropriate because of inter-subject variability. However, it

provides an overall qualitative understanding of the subjects' responses to changes in

acceleration during the different test conditions. Qualitatively the figure demonstrates the

lack of difference between the pre- and post-adaptation responses and a small asymmetric

trend toward rightward sled movements.

4.2.2. Linear VOR experiment

Similar to the Hidden Target Pursuit experiment, very little adaptation, if any at all, was

evident in the VOR gain of the horizontal eye movements. Table 4.19 summarizes the

amplitude and standard deviation of the slow phase velocity (SPV) pre- and post-

adaptation for the three different trials. The p-values provided for the DC Values and the

First Harmonic indicate whether a significant response exists in these conditions. The

first harmonic of subject CL's slow phase velocity in each condition was significant,
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Figure 4.24. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for all
subjects. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, and
(d) pre- and post-adaptation leftward trials. Error bars indicate standard error.
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Table 4.19. Summary of Horizontal Linear VOR data for all subject.

DC Values First Harmonic

Subj Condition Ampl StDev Pr. Ampl. StDev Phase StDev Pr.

CL Pre-Adapt Dark -.292 .561 1.294 .549 -157.6 31.258 .001

OK alone .220 1.581 45.051 4.463 -4.8 1.466 .001

OK+Sled -1.125 1.323 .050 57.269 1.905 -166.4 1.433 .001

Post-Adapt Dark -.614 .414 .010 2.026 .547 134.0 16.877 .001

OK alone -1.479 1.775 .050 39.631 5.654 -3.7 2.617 .001

OK+Sled -1.336 .698 .001 60.952 2.102 166.2 .990 .001

KJ Pre-Adapt Dark -2.897 .864 .001 8.766 .792 128.68 7.046 .001

OK alone .429 .769 58.953 1.906 -3.39 1.860 .001

OK+Sled -.420 .657 64.253 1.275 164.50 1.337 .001

Post-Adapt Dark -.816 1.583 8.327 1.762 132.08 6.881 .001

OK alone .332 .781 57.623 .779 -2.60 1.063 .001

OK+Sled -.246 .780 62.786 1.612 164.24 1.079 .001

MB Pre-Adapt Dark -.668 .569 .050 3.570 .840 158.6 15.879 .001

OK alone -3.982 1.831 .001 39.591 9.291 -2.2 3.288 .001

OK alone -4.443 3.288 .010 40.591 7.089 -2.0 3.750 .001

OK+Sled .611 .668 .050 62.800 2.202 -105.7 .763 .001

Post-Adapt Dark .009 .573 5.951 1.202 -145.8 8.495 .001

OK alone -.463 2.473 40.197 4.444 -.5 2.444 .001

OK+Sled -.779 2.815 56.882 3.281 161.8 2.094 .001

DM Pre-Adapt Dark -1.137 .544 .001 3.780 1.015 -164.1 11.205 .001

OK alone .759 1.063 .100 57.646 2.297 -3.7 .768 .001

OK+Sled -.349 .776 64.060 .820 -164.9 .440 .001

Post-Adapt Dark .306 .619 2.798 .795 -136.8 12.982 .001

OK alone .106 1.017 54.777 1.684 -1.9 1.359 .001

OK alone .239 .645 56.908 2.204 -2.4 .592 .001

OK+Sled -.157 .599 62.244 .893 -15.4 .941 .001

indicating that either or both the vestibular or optokinetic stimuli elicited a significant

response at the amplitudes given in the table. Her responses at the second at harmonic

were only significant during the dark and OK+Sled trials pre-adaptation.
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The gain of subject CL's response increased slightly post-adaptation in the dark trial,

decreased slightly in the OK alone trial and increased slightly in the OK+Sled. However,

none of these differences were statistically significant. Figure 4.25 shows the confidence

areas around the resultant mean of subject CL's responses during each condition. As

stated in the Methods, the ellipse is used to define the 95 percent confidence area around

the mean. A confidence area is necessary (as opposed to a confidence interval for a

univariate case) because the responses consist of two components, the sine and cosine,

which define the relationship of the magnitude and phase. If a significant difference were

to exist, the ellipses would not overlap. Without any further analysis, it is obvious that no

significant difference exists between pre- and post-adaptation for any of the conditions.

Like CL, the other three subjects tested (DM, KJ, and MB) had a significant SPV at the

first harmonic. The amplitudes of their responses in the dark condition ranged from

1.294°/s (CL) to 8.766 °/s (KJ) pre-adaptation, and did not change significantly following

adaptation. Subject KJ and DM's SPVs were close to the visual stimulus velocity during

both the OK trial and larger than the stimulus velocity in the OK+Sled condition both

pre- and post-adaptation. Subject DM's SPV decreased slightly in all three trials after the

adaptation session, probably indicating an effect due to fatigue, while subject KJ's SPV

remained unchanged in the dark trial and decreased slightly in both the OK and the

OK+Sled trials. MB's SPV in the light were slightly lower than DM or KJ. Her

responses increased slightly in the dark, remained about the same in the OK trial, and

decreased in the OK+Sled trial. As stated above, none of the differences between pre-

and post-adaptation just described were statistically significant.

4.2.3. Angular VOR experiment

Since no change was observed during the linear VOR trials, a change post-adaptation in

the angular VOR experiments was not expected, and no significant adaptation was
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Figure 4.25. Plot of confidence areas for linear VOR comparison of pre-/post-
adaptation for subject CL. (a) dark run, (b) optokinetic stimulus alone, and (c)
optokinetic + sled. Ellipses represent confidence interval about the mean amplitude.

observed. Table 4.20 summarizes the amplitude and standard deviation of the subjects'

horizontal slow phase velocity (SPV) pre- and post-adaptation for the angular VOR trials.

At the first harmonic, CL's slow phase velocity was highly significant during all trials.

The rotating chair velocity was 60°/s, and her slow phase eye movements were between

25 and 45 '/s. The table makes obvious the downward trend of the amplitude of her eye

movement response with time (i.e., from pre-adapt to post-adapt). The decrease in
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Table 4.20. Summary of angular VOR adaptation data for all subjects.

DC Values First Harmonic

Subj Condition Ampl StDev Pr. Ampl. StDev Phase StDev Pr.

CL Pre-Adapt Dark #1 -3.156 4.131 0.05 45.242 7.786 -160.7 17.55 0.00

Dark #2 -1.610 4.950 42.505 5.932 -168.4 109.71 0.00

Post-Adapt Dark #1 -2.269 3.902 0.10 25.358 12.815 -158.3 105.11 0.00

Dark #2 -1.807 8.074 31.575 8.233 -152.4 104.60 0.00

KJ Pre-Adapt Dark #1 -1.397 9.721 71.946 29.748 -176.5 164.8 .001

Dark #2 1.500 6.784 60.478 11.602 -174.3 147.2 .001

Post-Adapt Dark #1 -6.074 8.987 .100 53.632 15.045 -169.7 109.1 .001

Dark #2 .155 8.375 54.718 8.695 -170.8 108.9 .001

MB Pre-Adapt Dark #1 2.633 4.803 36.147 7.992 -172.0 4.894 .001

Dark #2 7.152 4.811 .001 35.067 4.826 -169.3 4.898 .001

Post-Adapt Dark # 1 -2.009 7.949 31.810 6.977 -166.2 5.240 .001

Dark #2 -7.159 5.631 .010 34.486 11.283 -165.7 15.294 .001

DM Pre-Adapt Dark #1 .487 1.950 34.567 7.179 -176.1 148.5 .001

Dark #2 -.186 2.123 36.749 3.852 -175.2 2.8 .001

Dark #3 1.751 1.666 .050 36.565 1.868 -174.1 124.8 .001

Post-Adapt Dark #1 1.034 1.297 .050 43.825 2.930 -172.3 3.0 .001

Dark #2 -2.750 3.842 .050 36.110 7.085 -171.6 4.4 .001
- -1 -L--

amplitude is probably due to the high level of fatigue generated during the course of the

experiment.

Although significant care was taken to remove any chance of 'normal' visual-vestibular

interaction between the experiments following the adaptation paradigm, the angular VOR

experiment was the last set of trials performed post-adaptation. There is some reason to

believe that, even if there had been some adaptation, the subject might have returned to a

normally adapted state by the time of the final testing on the rotating chair. On average,

the post-adaptation rotating chair trials were 40 minutes after the end of the 30 minute

adaptation paradigm.
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Inspection of the first harmonic only indicates that the amplitude of subject CL's slow

phase velocity decreased post-adaptation (average: pre = 43.9 "/s, post = 28.5 '/s).

However, the decrease post-adaptation was not statistically significant. Figure 4.26

shows the confidence areas around the resultant mean of subject CL's responses. All four

of the ellipse confidence areas overlap to some degree. The first pre-adaptation and the

second post-adaptation trials were very close to statistical significance, indicating an

effect opposite in direction to the adaptation effect we were looking for.

As expected, the SPV of all four subjects in this experiment were much larger than in the

linear VOR experiment. Although KJ's SPV in the linear VOR experiment was high

(8.76 °/s) compared to the other subjects, he also had a very large SPV in the angular

VOR experiment (average 66.2 "/s pre-adaptation). Subject KJ's response decreased post-

adaptation (average = 54.2 "/s). The amplitude of DM's slow phase velocity increased

slightly, but not significantly, from pre- to post-adaptation (pre = 35.9 '/s, post = 39.5 '/s),

while subject MB's SPV decreased from pre- to post-adaptation (pre = 35.6 "/s, post =

33.1 '/s). As stated above, none of the differences just described were statistically

significant.

4.2.4. Adaptation Paradigm

Since no significant adaptation was evident in any of the three pre-/post-adaptation

experiments, it is important to examine the adaptation paradigm for potential problems.

From Snyder and King (1988) we know that adaptation works best at the frequency of the

stimulus and degrades the farther the test frequency is from that adaptation frequency.

One would expect that a pseudo-random stimulus used for adaptation would either adapt

a broad band of frequencies or not adapt any frequency very well. In this experiment, the
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Figure 4.26. Plot of confidence areas for angular VOR comparison of pre-/post-
adaptation for subject CL. Ellipses represent confidence interval about the mean
amplitude.

stimulus for the adaptation was actively input by the subject using a joystick. Therefore,

there was no single adaptation frequency, as if a passive sinusoidal stimulus was used.

Although all of the test frequencies were included in the primary range of the adaptation

stimulus input by the subjects (0.01 - 0.3 Hz), an adaptive response may have been

observed if only a single stimulus frequency been used.

Figure 4.27 shows the power spectral density function calculated for four segments of

subject CL's adaptation session. The segment shown in the top right hand corner was not

a full five minute session because she exceeded the safety limits of the track during her
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session. As stated in the Methods, in such a case a new five minute session is started

until at least five full, five minute sessions are completed. Example plots of the power

spectral density functions for the other three subjects are included in Appendix E.

It is evident from the figure below that subject CL reduced the range of her input

frequencies as time went on. In the first two plots her primary frequencies ranged from

0.01 to 0.3. In the third and fourth adaptation segments shown, her joystick input was

almost entirely less than 0.2 Hz. The stimulus frequencies for the VOR trials on the sled

were 0.25 Hz. Therefore, if adaptation is frequency specific, it is possible that CL was

not adapted at the appropriate frequencies.
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Figure 4.27. Power spectral density functions for four segments of subject CL's
adaptation paradigm.
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5. DISCUSSION

The experiments described in this thesis were performed to develop a test to help quantify

human perception of linear translation using voluntary saccadic eye movements. By

instructing subjects to visually track an imagined target fixed in space while they were

linearly accelerated using a "damped position step" displacement, insight into the

subjects' perception of translation was gained. The current study had three primary

objectives: (1) Replicate and further explore the y-axis eye movement experiments

performed by Israel and Berthoz (1989) by developing a new test that quantifies subject's

perception of translation. (2) Once defined, extend the experiments to z-axis

accelerations which until now have not been quantitatively investigated using this

paradigm. (3) Experiment with a visual linear adaptation paradigm to extend the well-

defined angular adaptation paradigms to a new, less defined modality, while utilizing the

Hidden Target Pursuit experiment to help quantify potential changes following

adaptation.

To meet these goals, two different hidden target pursuit experiments, the fixed

displacement test and the fixed duration test, were performed with the linear motion along

the subjects' y- and z-axes. In the fixed displacement test, subjects were exposed to eight

or ten different sled accelerations while the sled displacement was held constant at two

amplitudes (8.82 cm and 18.20 cm corresponding to the 10 and 20 degree trials) in both

directions. In the fixed duration test, eight sled displacements were tested while the

duration of the trials were held constant at either 1.0 second or 2.5 seconds. The

magnitude and direction of the eye movements during translation were used to obtain

thresholds of perception of linear acceleration that a human can detect on earth, to test the

accuracy that humans can estimate their displacement, to determine the dependence of

displacement estimation on trial duration, and to investigate directional asymmetries in

human perception.
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Eventually, the Hidden Target Pursuit experiment developed for this thesis will be used

to measure differences in eye movement responses following adaptation to spaceflight.

No preflight/postflight tests have attempted to quantify the human's perception of linear

translation as these experiments do. A one-G adaptation experiment using conflicting

visual and vestibular stimuli was performed to ascertain if adaptation might be

quantifiable using eye movements. The adaptation paradigm used, however, had never

before been attempted. Several previous experiments have altered the angular VOR

pathways, but until now no one had reported attempts to alter the linear VOR pathways

by using linear acceleration and linear visual stimulation as adaptation stimulation.

Three general engineering tasks were completed in preparation for the hidden target

pursuit experiments just described. (1) Design and implementation of the software code

to enable the sled to move in a "damped position step" motion (code included in

Appendix F). (2) Design and implementation of an integrated sled helmet,

communication, and noise cancellation system. The primary design criteria were to

rigidly fix the subject's head to the sled, provide open communication between the subject

and the experimenter, eliminate or mask all acoustic cues from the sled motion, and

maintain subject comfort for a minimum of thirty minutes. (3) Design of an automated

Target Pursuit Shade controlled by the sled computer to block the visual target from the

subject's view.

The following sections discuss the results and conclusions from the experiments

described, compare them with previous experiments, and discuss ideas for future

research.
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5.1. Hidden Target Pursuit

Eye movement thresholds varied from one subject to another, however, they averaged

approximately 0.003 G in the y-axis and 0.006 G in the z-axis. This is in agreement with

previous studies that showed perceptual thresholds for direction of linear motion are

slightly higher in the z-axis (0.154 m/s 2 = 0.016 G) than in the y-axis (0.057 m/s2 = 0.005

G) using a single cycle of sine acceleration as the stimulus. (Benson, 1986).

5.1.1. Y-axis Experiments

Although several subjects had slightly asymmetric eye movement responses at some

accelerations during the fixed displacement test, no consistent pattern existed across

subjects. (3 = rightward > leftward, 4 = symmetric, 1 = leftward> rightward). No

consistent right/left asymmetry existed in subjects' eye movements or in their subjective

responses in either of the y-axis experiments. A significant difference existed, however,

between the normalized eye movement responses to the two different amplitudes of sled

displacement (8.82 cm and 18.20 cm corresponding to the 10 and 20 degree trials). On

average, the majority of the subjects overcompensated for the 10 degree trials, resulting

in a gain of greater than 1.0, and approximately correctly compensated for the 20 degree

trials. In all eight subjects a significant difference existed between the normalized eye

movement responses to the two displacements. The average gain of the eye movements

during the 10 degree trials was approximately 2.0, while that of the 20 degree trials was

approximately 1.0 indicating that the subjects did not accurately discriminate between the

two sled displacements.

This inability is also evident in the large amount of scatter in the fixed duration

experiment. For most of the subjects, the scatter was as large as ±15 cm at any one sled

displacement while the stimulus itself ranged only from 5 cm to 40 cm. The slopes of the

regression lines fit to the data ranged between 0.231 and 0.584. If the subjects were to
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perfectly compensate for the sled displacement, on average the regression lines would

have a slope of 1.0. Since subjects were not able to accurately discriminate between the

different sled displacements, responding to each similarly, they produced a flatter

response overall than expected. Responses to the 2.5 second trials were larger than

responses to the 1.0 second trials in four of the five subjects tested in either the leftward

or rightward trials, but not both, as shown by the 2 test. This indicates that the subjects'

responses may be dependent upon the duration (or frequency) of the stimulus. This was

consistent with the subjective responses given by three of the four subjects following

each trial.

The fixed duration test is similar to the hidden target pursuit experiment performed by

Israel and Berthoz (1989) where the duration of the trials was fixed at 2.5 seconds. They

did not compare different trial durations, as they were primarily interested in whether

subjects could accurately track a hidden target and what types of eye movements were

used, smooth pursuit or saccades. Their results should be similar to the 2.5 second trials

in the current study, however the two data sets are significantly different from one

another. Most significantly, their subjects were able to compensate for the sled

displacement much more accurately. Figure 5.1 shows a summary plot of the regression

lines for each of the subjects in their study. The slopes of the regression lines are very

close to 1.0, meaning their subjects were able to accurately compensate different sled

displacements.

The large differences between the two data sets are surprising since the design of the

experiments was very similar. One obvious difference between the two experiments is in

the feedback given to the subjects after each trial. In Israel and Berthoz's experiment the

subject was shown a small white target while the sled was at rest, the room lights were

turned off and a curtain was lowered between the subject and the target, the sled would
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Figure 5.1. Summary plot of regression lines for all subjects from Israel and Berthoz
(1989)

move, 2-3 seconds after the sled stopped the room lights were turned on and curtain was

raised so the subject could see the target, and the sled would move back to the center.

The last two steps of their protocol are reversed in the current study. Showing the subject

the target before positioning the sled back in the center allowed the experimenters to

measure the subject's corrective saccade to the target, which is a more accurate method of

measuring eye movements during EOG recordings. However, letting the subject see the

target after each trial gives performance feedback as to her, thereby closing the loop of

the "control system". One could imagine that the subject was calibrating her perceptions

of target translation by seeing how well she was tracking the hidden target. In the current

experiment, the system remained open loop as the subject was not shown the target

position until the sled had returned to center.
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A second difference between the two experiments involves the lighting in the sled. Israel

and Berthoz turned on the room lights before and after each trial allowing the subject to

view the white target, while during the sled motion the subject was in complete darkness.

In the current experiment, the room lights were extinguished throughout the test session

to eliminate external visual cues, and two fluorescent lights inside the sled were

continuously shining toward the subject to maintain a constant light level. Therefore,

although all external visual motion cues were eliminated, the subject was able to see the

inside of the black cloth covering the sled. The visual targets used for tracking in the two

experiments were also different: a red LED located 50 cm (y-axis) or 52 cm (z-axis) in

front of the subject was used in the current experiments, and a "small white object"

located 63 cm away from the subject was used in the previous study. Likewise, the

experiments were performed on two different linear accelerators that most likely have

different characteristics of movement (vibration, noise, friction) that could cause

differences in perception and in eye movement responses.

5.1.2. Z-axis Experiments

Similar to the y-axis experiments, a significant difference existed between the normalized

responses to the 10 and 20 degree trials in the z-axis. The eye movement gains during the

10 degree trials were in many cases twice as large as the gains during the 20 degree trials.

This implies that the subjects were not accurately discriminating between the two sled

displacements. As in the y-axis, this finding is consistent with the fixed duration

experiment. The regression coefficients for the six subjects ranged between -0.331 to

0.739. (For perfect compensation the slopes of the lines should have been 1.0.) No

significant difference was found between the 1.0 second and 2.5 second cases, meaning

the subjects' responses were not dependent on the duration of the trial in either sled

orientation.
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While in the y-axis no consistent directional asymmetry was apparent, the same

experiments in the z-axis elicited a bias towards headward translation across nearly all

subjects. The difference was primarily evident in the magnitude of the subjects' eye

movements, downward eye movements being larger than upward. The asymmetric eye

movement trend was most noticeable at the lowest accelerations. At the largest

accelerations, where the subjects were probably more confident of their displacement, the

difference between the upward and downward responses was smaller, but in most cases,

still existent. Several subjects also answered correctly more frequently when the sled was

moving toward their heads. Subjective estimates of translation, however, did not

consistently support the directional asymmetry. The majority of the subjective responses

were symmetrical, and in some cases an asymmetry was found in the opposite direction

(Downward trials > Upward trials).

The consistency in the eye movement asymmetry across all subjects is undeniable. The

mechanism that causes this asymmetry in the z-axis (supine) experiments is not so clear.

The most obvious possibility to investigate is the effect of gravity. As bipeds evolving in

the one-G earth environment, humans spend the majority of their awake hours with

gravity acting as a shearing force on the saccular otoliths. One might hypothesize a

correction bias in the neural processes between the sacculus and the central nervous

system. Figure 5.2 gives a graphical depiction of the expected bias due to gravity.

Although the bias would occur in the neural pathways, for simplicity, the expected bias is

depicted as affecting the saccular end organ. In the upright position, the sacculus

experiences an effective upward acceleration due to the downward force of gravity. With

the subject stationary, the saccular otoliths would need to develop a neural bias acting

like a downward acceleration (upward force) to counteract the force of gravity so that the

subject does not perceive that she is accelerating upward while upright. If the sacculus

were not biased due to the upward acceleration due to gravity, then a larger footward
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(downward) acceleration would be necessary to produce the same response to an

headward (upward) acceleration. However, no directional asymmetry exists during z-axis

(vertical) accelerations when the head is upright (Young, et al., 1978). When the subject

is supine gravity no longer produces a shearing force on the saccular otoliths. However,

based on the above assumption, the saccular otoliths might still have a bias acting like a

footward acceleration. Therefore, a larger stimulus would be needed during headward

accelerations to produce the same sensation as during footward accelerations. In the

current experiment, headward accelerations produced larger eye movements than

downward accelerations, i.e., an asymmetry opposite to the proposed gravity explanation.

Therefore, the hypothesis of a gravity compensation bias does not explain the asymmetry

found in the data.
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Figure 5.2. Graphical depiction of the expected bias in the saccular otoliths due to
gravity.
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In previous studies, z-axis directional asymmetries have been identified in vertical

optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN), and angular VOR

(Baloh, et al., 1983; Matsuo and Cohen, 1984; BShmer and Baloh, 1991). In these

experiments, upward slow phase velocities, produced by an optokinetic stimulus moving

downward, were greater than downward slow phase velocities. This asymmetry favors

the direction opposite of that found in the current experiments. As the OKN, OKAN, and

angular VOR are reflexive eye movements evoked by the moving stimulus, and the

observed asymmetry is in the opposite direction, the possibility that the asymmetry found

in the current experiments is due to the same mechanism is extremely unlikely.

Another possible explanation for the asymmetric responses includes the effects of the

asymmetries in the visual system. Due to facial bone and muscle structure, large eye

movements are more limited upward than downward. This supports the direction of the

asymmetry observed in the data, so it could feasibly explain the difference. However, the

asymmetry in the eye movement data was frequently most apparent at the smaller sled

displacements during the fixed duration experiment, i.e., the difference between the eye

movement gains during headward and footward trials was larger at small displacements

and decayed to approximately zero at the larger displacements. In the fixed displacement

experiment, the asymmetry was equally apparent in both the 10 and 20 degree cases, if

not more so in the 10 degree cases. Based on the anatomy and physiology of the eyes and

the structures surrounding them, no limitations should be observed for small eye

movements and the limitations should increase for larger eye movements. Therefore, this

explanation is not consistent with the data.

A final potential explanation of the asymmetry in the eye movement data is that the sled

stimulus was asymmetric. Careful analysis of the sled position signal elicited a slight
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positional asymmetry, with slightly (less than 10%) larger sled movements toward the

subjects' head than toward the feet, i.e., in the same direction as the asymmetry found in

the eye movement responses. This difference in position was accounted for in the z-axis

experiments by normalizing each eye displacement by the actual sled displacement for

each particular trial. As the figures in the text and in the appendices show, the asymmetry

was still clearly evident (Figures 4.11 and 4.16 and Appendices C and D). One could

suggest that the accelerations in the two directions must be different to yield different

displacements. However, the data indicates that subjects are insensitive to small changes

in acceleration, as shown by the relatively constant gain of the eye movements across

acceleration in all of the fixed displacement experiments. In addition, the exact same sled

profiles (trials) were run during both the z- and the y-axis experiments. One would

expect, especially since subjects are more sensitive to accelerations in the y-axis (e.g.,

lower threshold), that if any motion asymmetry was significant, the responses should

have been asymmetric in the y-axis experiments as well as in the z-axis. Such a

consistent asymmetry was not observed in the y-axis experiments.

The preceding discussion provides several potential explanations for the z-axis

asymmetry. However, each interpretation is refutable with the counter arguments

presented. Subsequent experiments should be performed to further investigate this

asymmetry to isolate the mechanism(s) involved.

5.2. Linear Adaptation

As was shown in the Results chapter (Chapter 4), no significant differences emerged

between the pre- and post-adaptation experiments. Fatigue may have masked some of the

adaptation, but one might expect to at least see some differences immediately following

the adaptation paradigm. More likely, other factors inhibited the adaptation process from

occurring. This experiment was the first linear adaptation scheme performed to alter the

171



response of the neural pathways to the brain, and the lack of a significant result does not

show that linear adaptation is not possible. The adaptation paradigm employed may not

have been appropriate to produce any changes. Many questions emerge from this

experiment that need to be further investigated by subsequent experiments, including: Is

twenty-five minutes a long enough time to induce linear adaptation? Is active input by

the subject the appropriate means of attaining adaptation? Or would passive sinusoidal

(single frequency) or pseudo-random oscillations be more appropriate?

The frequencies at which the subjects adapted themselves may not be adaptable.

Possibly, since the amplitude of linear VOR horizontal eye movements is small compared

to angular VOR responses, the neural pathways may simply be more complicated and

require a longer adaptation period to exhibit any changes. Finally, although there is

significant physiological and anatomical data showing that some of the neural pathways

from the vestibular system are modifiable, no one has established that the pathways

leading specifically from the otoliths to the vestibular nucleus adapt.

5.3. Recommendation for Further Study

The results gathered from the experiments in this thesis suggest several ideas that

necessitate further experimentation. Most importantly, a larger data set is needed to

confirm the results and allow for a deeper understanding of the mechanisms at work.

With so many variables under investigation, (i.e., trial duration, sled acceleration, sled

displacement, and direction of sled displacement) it is difficult to get a significant number

of repeat trials for each condition. Therefore, replication of the current studies would be

useful to confirm the conclusions drawn.

Additional analysis of the eye movement data gathered in these experiment may also be

useful in understanding the mechanisms causing the different responses to the various
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trial conditions. For example, further analysis should be performed on the differences

between the eye movement responses to headward and footward displacements. As

stated in the Results and in the previous discussion, the difference between these two

conditions decreases as sled displacement increases, i.e., the asymmetry is more

significant at smaller sled displacements. A more quantitative analysis of this difference

should be performed to better define that asymmetry.

In addition, different linear adaptation paradigms should be experimented with to elicit a

neural adaptation in the linear VOR pathways to the brain. Adaptation using passive

linear oscillations, either sinusoidal or pseudo-random stimulation, should be used to gain

more control over the stimulation frequencies. However, steps must be taken to keep the

subject alert if an active paradigm is not used. In addition, since significant adaptation

has been observed in angular VOR following adaptation paradigms using rotational

visual and vestibular stimulation, it would be interesting to test whether the neural

adaptation of the angular VOR pathways would manifest itself in the linear pre-/post-

adaptation tests performed in this thesis (Hidden Target Pursuit and linear VOR).

Lastly, these results indicate that the voluntary saccadic eye movements evoked by the

hidden target pursuit task can be used to quantify sensations of translation. Extension of

the hidden target pursuit experiment to quantify changes due to adaptation to micro-

gravity may provide further understanding of the effects of spaceflight on signal

processing, as well as the role of gravity in perception of body movement.

Currently, the Hidden Target Pursuit test is manifested as a preflight/postflight test on the

SpaceLab Life Sciences-2 (SLS-2) Shuttle mission to complement the existing battery of

biomedical experiments designed to quantify changes in humans following adaptation to

microgravity. The experiment will be similar to the fixed displacement test described

173



above, with the displacement fixed at 12.06 cm, which would evoke 15 degree eye

movements during perfect compensation. Because of limited experimental time, and the

need for repeat trials, three accelerations (0.010, 0.015, and 0.020 G) will be tested in

each direction and will be repeated four times for a total of twenty-four trials. The

experiment will be performed in both the y- and z-axes.
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APPENDIX A: Y-AXIS FIXED DISPLACEMENT RESULTS

This appendix contains the data plots from the Y-axis fixed displacement test. An
identical figure was provided in Chapter 4 (Results) for the representative subject BP
(Figure 4.2). In this appendix, one figure (A.1.) is shown for each of the eight subjects
summarizing the mean normalized eye movements (Eye/Commanded Sled Displacement)
in the four different trial conditions. (a) 10 degree leftward and rightward trials, (b) 20
degree leftward to rightward trials, (c) rightward 10 and 20 degree trials, (d) leftward 10
and 20 degree trials. Error bars signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject KP. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject JM. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject KP. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject LF. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject LH. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject SS. a) 10
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rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject TL. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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Figure A.1. Y-Axis Fixed Displacement eye movement data for subject WT. a) 10
degree leftward and rightward trials, (b) 20 degree leftward to rightward trials, (c)
rightward 10 and 20 degree trials, (d) leftward 10 and 20 degree trials. Error bars
signify standard error.
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APPENDIX B: Y-AXIS FIXED DURATION RESULTS

This appendix contains the data plots from the Y-axis fixed duration test. These plots
were provided in Chapter 4 (Results) for the representative subject MB (Figures 4.5, 4.6,
and 4.9). In this appendix, three figures (containing four plots each) are shown for each
of the five subjects: (B.1.) Scatter plots of raw eye movement data versus commanded
sled displacement, (B.2.) Mean normalized eye movements (Eye/Commanded Sled
Displacement), and (B.3.) Mean normalized subjective estimate of translation
(Subjective/Commanded Sled Displacement. In each figure, the four different trial
conditions are compared. (a) 1.0 second leftward and rightward trials, (b) 2.5 second
leftward to rightward trials, (c) rightward 1.0 and 2.5 second trials, (d) leftward 1.0 and
2.5 second trials. Error bars signify standard error.
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Figure B.1. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject CL. (a) 1.0 second trials comparing leftward and rightward
trials, (b) 2.5 second trials comparing leftward to rightward trials, (c) rightward
trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing 1.0 and 2.5
second trials. Error bars signify standard error.
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Figure B.1. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject GS. (a) 1.0 second trials comparing leftward and rightward
trials, (b) 2.5 second trials comparing leftward to rightward trials, (c) rightward
trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing 1.0 and 2.5
second trials. Error bars signify standard error.
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Figure B.1. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject JM. (a) 1.0 second trials comparing leftward and rightward
trials, (b) 2.5 second trials comparing leftward to rightward trials, (c) rightward
trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing 1.0 and 2.5
second trials. Error bars signify standard error.
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Figure B.1. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject MB. (a) 1.0 second trials comparing leftward and
rightward trials, (b) 2.5 second trials comparing leftward to rightward trials, (c)
rightward trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing
1.0 and 2.5 second trials. Error bars signify standard error.
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Figure B.1. Y-Axis Fixed Duration eye movement data comparing 1.0 sec trials and
2.5 sec trials for subject TC. (a) 1.0 second trials comparing leftward and rightward
trials, (b) 2.5 second trials comparing leftward to rightward trials, (c) rightward
trials comparing 1.0 and 2.5 second trials, (d) leftward trials comparing 1.0 and 2.5
second trials. Error bars signify standard error.
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Figure A.2.2.. Y-Axis Fixed Duration mean normalized eye movements for subject
CL. (a) 1.0 second trials comparing leftward and rightward trials, (b) 2.5 second
trials comparing leftward to rightward trials, (c) rightward trials comparing 1.0 and
2.5 second trials, (d) leftward trials comparing 1.0 and 2.5 second trials. Error bars
signify standard error.
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trials comparing leftward to rightward trials, (c) rightward trials comparing 1.0 and
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signify standard error.
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Figure A.2.2.. Y-Axis Fixed Duration mean normalized eye movements for subject
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signify standard error.
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signify standard error.
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Figure B.3. Mean normalized subjective responses for subject CL. (a) difference
between rightward and leftward 1.0 second trials, (b) difference between rightward
and leftward 2.5 second trials, (c) difference between 1.0 and 2.5 second rightward
trials, and (d) difference between 1.0 and 2.5 second leftward trials. Error bars
indicate the standard error of the difference.
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Figure B.3. Mean normalized subjective responses for subject JM. (a) difference
between rightward and leftward 1.0 second trials, (b) difference between rightward
and leftward 2.5 second trials, (c) difference between 1.0 and 2.5 second rightward
trials, and (d) difference between 1.0 and 2.5 second leftward trials. Error bars
indicate the standard error of the difference.
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Figure B.3. Mean normalized subjective responses for subject MB. (a) difference
between rightward and leftward 1.0 second trials, (b) difference between rightward
and leftward 2.5 second trials, (c) difference between 1.0 and 2.5 second rightward
trials, and (d) difference between 1.0 and 2.5 second leftward trials. Error bars
indicate the standard error of the difference.
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Figure B.3. Mean normalized subjective responses for subject TC. (a) difference
between rightward and leftward 1.0 second trials, (b) difference between rightward
and leftward 2.5 second trials, (c) difference between 1.0 and 2.5 second rightward
trials, and (d) difference between 1.0 and 2.5 second leftward trials. Error bars
indicate the standard error of the difference.
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APPENDIX C: Z-AXIS FIXED DISPLACEMENT RESULTS

This appendix contains the data plots from the Z-axis fixed displacement test. Identical
figures were provided in Chapter 4 (Results) for the representative subject KJ (Figures
4.11 and 4.13). In this appendix, two figures (containing four plots each) are shown for
each of the six subjects summarizing the (C. 1.) mean normalized eye movements
(Eye/Sled Displacement) and the (C.2.) mean normalized subjective responses
(Subjective/Sled Displacement) in the four different trial conditions. (a) 10 degree
headward and footward trials, (b) 20 degree headward and footward trials, (c) headward
10 and 20 degree trials, (d) footward 10 and 20 degree trials. Error bars signify standard
error.
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Figure C.1. Z-Axis Fixed Displacement normalized eye movement data for subject
CL. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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Figure C.1. Z-Axis Fixed Displacement normalized eye movement data for subject
JM. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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Figure 4.11. Z-Axis Fixed Displacement normalized eye movement data for subject
KJ. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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Figure C.1. Z-Axis Fixed Displacement normalized eye movement data for subject
KP. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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Figure C.1. Z-Axis Fixed Displacement normalized eye movement data for subject
RZ. (a) headward and footward 10 degree trials, (b) headward and footward 20
degree trials, (c) 10 and 20 degree headward trials, (d) 10 and 20 degree footward
trials. Error bars signify standard error.
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Figure C.2. Mean normalized subjective responses for subject CL. (a) headward
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APPENDIX D: Z-AXIS FIXED DURATION RESULTS

This appendix contains the data plots from the Z-axis fixed duration test. These plots
were provided in Chapter 4 (Results) for the representative subject MB (Figures 4.15,
4.16, and 4.18). In this appendix, three figures (containing four plots each) are shown for
each of the six subjects: (D.1.) Scatter plots of raw eye movement data versus
commanded sled displacement, (D.2.) Mean normalized eye movements (Eye/Sled
Displacement), and (D.3.) Mean normalized subjective estimate of translation
(Subjective/Sled Displacement. In each figure, the four different trial conditions are
compared. (a) 1.0 second headward and footward trials, (b) 2.5 second headward to
footward trials, (c) headward 1.0 and 2.5 second trials, (d) footward 1.0 and 2.5 second
trials. Error bars signify standard error.
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Figure D.1. Scatter plot of the Z-Axis Fixed Duration eye movement data comparing
1.0 and 2.5 second trials for subject AA. (a) 1.0 second trials comparing headward
and footward trials, (b) 2.5 second trials comparing headward and footward trials,
(c) headward trials comparing 1.0 and 2.5 second trials, (d) footward trials
comparing 1.0 and 2.5 second trials. Error bars signify standard error.
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1.0 and 2.5 second trials for subject KP. (a) 1.0 second trials comparing headward
and footward trials, (b) 2.5 second trials comparing headward and footward trials,
(c) headward trials comparing 1.0 and 2.5 second trials, (d) footward trials
comparing 1.0 and 2.5 second trials. Error bars signify standard error.

221

50.0

-10.0

-20.0

-30.0 -
0.0

40.0

30.0

C

Ui

0 0

O O
O

o 25 sec
S1.0 sec

I I I I

0.0

-10.0

-20.0

-30.0
0.0



30.0

20.0

10.0

0.0

10.0 20.0 30.0 40.0 50.0

Sled Displacement (an)

10.0 20.0 30.0 40.0 50.0

Sled Displacement (cm)

aU a

O
to 8

0

0

o Foot
. Head

I I I I

20.0

10.0

-10.0
0.

10.0 20.0 30.0 40.0 50.0

Sled Displacement (cm)

10.0 20.0 30.0 40.0 50.0

Sled Displacement (cm)

Figure D.1. Scatter plot of the Z-Axis Fixed Duration eye movement data comparing
1.0 and 2.5 second trials for subject MB. (a) 1.0 second trials comparing headward
and footward trials, (b) 2.5 second trials comparing headward and footward trials,
(c) headward trials comparing 1.0 and 2.5 second trials, (d) footward trials
comparing 1.0 and 2.5 second trials. Error bars signify standard error.

222

-10.0 I
0.

* b

0 0

o Foot
O Head

I I I

0.0

-10.0 I
0.

30.0

20.0

-10.0 L
0.0

d

O

o 2.5sec
O 1.0 sec

I i I I
• I I I I

-U1 II

I I i I

0 0

0C



100.0

70.0

100.0

70.0

40.0

S 10.0

S -20.0UP

a

o "

O

F o Foot
. Head

1 I I 1

.0 10.0 20.0 30.0 40.0 50

Sled Displacement (an)

100.0

70.0

40.0

10.0

-20.0

-50.0

10.0 20.0 30.0 40.0 50.0

Sled Displacement (an)

0.0 10.0 20.0 30.0 40.0 50.0

Sled Displacement (cm)

-80.0 L
0.0 10.0 20.0 30.0 40.0 50.0

Sled Displacement (cm)

Figure D.1. Scatter plot of the Z-Axis Fixed Duration eye movement data comparing
1.0 and 2.5 second trials for subject SS. (a) 1.0 second trials comparing headward
and footward trials, (b) 2.5 second trials comparing headward and footward trials,
(c) headward trials comparing 1.0 and 2.5 second trials, (d) footward trials
comparing 1.0 and 2.5 second trials. Error bars signify standard error.

223

10.0

-20.0

-50.0

-80.0

-50.0

* b

00 0 0

o 0

o Foot
SHead

r\-80.0
0

100.0

70.0

10.0

-20.0

-50.0

-80.0
0.

0 c
0

S00

o 2.5sec
S1.0 sec

i i i

0

I

| I I



5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Sled Displacement (cm)

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Sled Displacement (cm)

1.0 F

0.0 F

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Sled Displacement (cm)

d

-- - 25sec
- 1.0 sec

IIII I I I I

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Sled Displacement (cmn)
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Figure D.3. Mean normalized subjective responses for subject MB. (a) headward
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APPENDIX E: LINEAR ADAPTATION RESULTS

This appendix contains the data plots from the linear adaptation test performed in the y-
axis. Identical figures were provided in Chapter 4 (Results) for the representative subject
CL (Figures 4.21, 4.23, 4.25, 4.26, 4.27).

E.1. and E.2. For the hidden target pursuit experiment, two figures (containing four plots
each) are shown for each of the four subjects summarizing the mean normalized eye
movements (Eye/Sled Displacement) and the mean normalized subjective responses
(Subjective/Sled Displacement) in the four different trial conditions. (a) Pre-adaptation
rightward and leftward trials, (b) Post-adaptation rightward and leftward trials, (c)
rightward pre- and post-adaptation trials, (d) leftward pre- and post-adaptation trials.
Error bars signify standard error.

E.3. For the linear VOR experiment, one figure is shown for each of the four subjects
showing the confidence areas for comparison of the pre-/post-adaptation trials in each of
three test conditions: dark, OK alone, and OK+Sled.

E.4. For the angular VOR experiment, one figure is shown for each of the four subjects
showing the confidence areas for comparison of the pre-/post-adaptation responses.

E.5. For the adaptation paradigm, one plot is shown for each of the four subjects showing
the power spectral density functions of the subjects' joystick input.
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Figure E.1. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for
subject CL. a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, (d)
pre- and post-adaptation leftward. Error bars signify standard error.
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Figure E.1. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for
subject DM. a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, (d)
pre- and post-adaptation leftward. Error bars signify standard error.
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Figure E.1. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for
subject KJ. a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, (d)
pre- and post-adaptation leftward. Error bars signify standard error.
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Figure E.1. Pre-/Post Adaptation Hidden Target Pursuit eye movement data for
subject MB. a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre- and post-adaptation rightward trials, (d)
pre- and post-adaptation leftward. Error bars signify standard error.
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Figure E.2. Mean normalized subjective responses versus sled acceleration for
subject CL. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre-adaptation and post-adaptation rightward
trials, and (d) pre-adaptation and post-adaptation rightward trials. Error bars
indicate standard error.
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Figure E.2. Mean normalized subjective responses versus sled acceleration for
subject DM. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre-adaptation and post-adaptation rightward
trials, and (d) pre-adaptation and post-adaptation rightward trials. Error bars
indicate standard error.
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Figure E.2. Mean normalized subjective responses versus sled acceleration for
subject KJ. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre-adaptation and post-adaptation rightward
trials, and (d) pre-adaptation and post-adaptation rightward trials. Error bars
indicate standard error.
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Figure E.2. Mean normalized subjective responses versus sled acceleration for
subject MB. (a) rightward and leftward pre-adaptation trials, (b) rightward and
leftward post-adaptation trials, (c) pre-adaptation and post-adaptation rightward
trials, and (d) pre-adaptation and post-adaptation rightward trials. Error bars
indicate standard error.
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Figure E.3. Plot of confidence areas for linear VOR comparison of pre-/post-
adaptation for subject CL. (a) dark run, (b) optokinetic stimulus alone, and (c)
optokinetic + sled. Ellipses represent confidence interval about the mean amplitude.
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Figure E.3. Plot of confidence areas for linear VOR comparison of pre-/post-
adaptation for subject DM. (a) dark run, (b) optokinetic stimulus alone, and (c)
optokinetic + sled. Ellipses represent confidence interval about the mean amplitude.
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optokinetic + sled. Ellipses represent confidence interval about the mean amplitude.
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APPENDIX F: DATA ANALYSIS SCRIPTS

This appendix contains the MatLab scripts used for the analysis of the Hidden Target
Pursuit data. The following gives a brief description of the function of each program.

Calibrate: Allows the user to obtain a calibration factor in degrees/unit. It assumes a
three point calibration in each direction, although the zero is optional. For each
axis (horizontal and vertical) the user must specify the angular deviations and
select the "flat" regions of the trace which correspond to fixations on the
calibration targets.

Calibrate sled: A modified version of Calibrate that allows for the user to obtain a
calibration factor in centimeters/unit for the sled position signal.

threepoint: Inputs the angular deviations from the user, and calls pick_regions so that
the fixation regions can be selected. For each deviation, the average value over all
of the regions is calculated. The calibration factor for each axis is calculated as
the angular difference between the positive and negative deviations (in degrees),
divided by the difference between the mean positive and negative deviations (in
A/D units). The calculated mean values are displayed to the user graphically, as
dotted lines for inspection.

pick regions: This is the main algorithm for the manual picking of calibration regions
and fixation regions during hidden target pursuit. A region is selected by picking
its beginning and end with the mouse. A selected region is highlighted by picking
within that region. A highlighted region is un-highlighted by picking again within
that region. A selected region is de-selected by highlighting it, and then pressing
the delete key. The user has complete control over pan and zoom features, as well
as selection and de-selection of regions. The plotting makes use of different
colors and line types, as available.

Target Pursuit: This is the main program for the eye movement and sled position
analysis. Based on the same concept as Calibrate, the user chooses points on the
plot where the sled is at rest and the subject is fixating on the visual target. A
second point is then chosen after the sled has stopped and the subject is fixating
on the imagined target. The magnitude of the eye movement in centimeters and
the magnitude of the sled displacement in centimeters is then calculated using the
calibration factors found in Calibrate and Calibratesled.

two-point: A modified version of three_point that is used for calculation of the
amplitudes of the eye movements and sled displacements during the Hidden
Target Pursuit experiment. Calls pick_regions so that the fixation regions can be
selected.

filespecs: Allows the user to specify the data_path and stat_path for the script to read
data from and save calculated results to. The # sign is a place-holder for a run
code to distinguish between different files; whereas, the remainder of the filename
is constant for all run codes.

filename: Returns the input file name, given the file spec and run code.

Adaptation: Calculates the power spectral density function of the sled signal during the
adaptation paradigm and plots it versus frequency.

257



258



% calibrate

% This script allows the user to obtain a calibration factor
% in degrees/unit. It assumes a three point calibration in
% each direction, although the zero is optional. For each axis,
% the user must specify the angular deviations and select the
% "flat" regions of the trace which correspond to fixations on
% the targets.

% written by D. Balkwill 11/27/90
% modified by K. Polutchko 6/92

file_specs
colour = 'y';
code = input('Enter Run Code: ','s');
data_file = file_name(Data_File, code);
eval(['load ',data_path,data_file]);

sample = 200;
pos = ADCData(:,2);
pos2 = ADCData(:,3);
clear ADCData
t = (([1:length(pos)] - 1)/sample)';

fprintf(\nCalibration #1...\n');
[scale 1,noise 1,offsetl] = three_point(t,pos,colour);
fprintf('nAxis#1 scale factor = %6.4f deg/unit\n',scalel);

fprintf('nCalibration #2...\n');
[scale2,noise2,offset2] = threepoint(t,pos2,colour);
fprintf('\nAxis#2 scale factor = %6.4f deg/unit\n',scale2);

eval(['save ',statpath,code,'.cal scalel offsetl scale2 offset2']);

clear nysa_path code A B sample dim t pos pos2 calfile
clear scalel noisel offsetl scale2 noise2 offset2
clear data_path stat_path data_file
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% **************************** * * * * * * *

% calibrate_sled

% This script allows the user to obtain a calibration factor
% in centimeters/unit. It assumes a three point calibration in
% each direction, although the zero is optional. For each axis,
% the user must specify the linear deviations and select the
% "flat" regions of the trace which correspond to when the sled
% is still.

% written by D. Balkwill 11/27/90
% modified by K. Polutchko 6/92
% ******************************************

file_specs
colour = 'y';
code = input('Enter Run Code: ','s');
data_file = file_name(Data_File, code);
eval(['load ',data_path,data_file]);

sample = 200;
pos = ADCData(:,1);
%pos2 = ADCData(:,3);
clear ADCData
t = (([1:length(pos)] - 1)/sample)';

fprintf(MnCalibration #1...n');
[scale l,noise 1l,offsetl] = three_pointsled(t,pos,colour);
fprintf('\nAxis#1 scale factor = %6.4f deg/unit\n',scalel);

fprintf('nCalibration #2...\n');
[scale2,noise2,offset2] = three_point_sled(t,pos,colour);
fprintf('\nAxis#2 scale factor = %6.4f deg/unit\n',scale2);

eval(['save ',stat_path,code,'.sled scalel scale2']);

clear nysa_path code A B sample dim t pos pos2 calfile
clear scale 1 noise 1l offsetl scale2 noise2 offset2
clear data_path stat_path data_file
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function [scale,noise,offset] = three_point(t,pos,colour)

**$*******************************************************************

% This script inputs the angular deviations from the user, and
% calls the 'pick_regions' script so that the fixation regions
% can be selected. For each deviation, the average value over
% all of the regions is calculated. The calibration factor for
% each axis is calculated as the angular difference between the
% positive and negative deviations (in degrees), divided by the
% difference between mean positive and negative deviations (in
% arbitrary units). The calculated mean values are displayed
% to the user graphically as dotted lines, for inspection.

% If a zero fixation point is specified, it is used to
% determine the offset value.

% The noise is estimated by taking the root-mean-square value of
% the fluctuations about all selected regions.

% D. Balkwill 11/27/90

posdeg = input('Specify eye movement in degrees, positive trace deflection: ');
if isempty(posdeg)

disp(' Default calibration target assumed to be 10 degrees.');
posdeg = 10;

end
negdeg = input('Eye displacement for negative trace deflection: ');
if isempty(neg_deg)

disp(' Default calibration assumed -10 degrees.');
negdeg = -10;

end
if (pos_deg == neg_deg)

disp('Calibration range cannot be zero, Symmetrical calibration assumed.');
neg_deg = -1 * pos_deg;

end

% select positive trace deflection regions
disp(");
disp('Use mouse to select flat-top regions of positive trace deflection.');
posregions = pick_regions(t,pos,colour);
[m,n] = size(pos_regions);
if (m == 0)

error('No positive trace deflection flat-top regions, Cannot calibrate.');
end
for i=1:m

xpos = [xpos ; pos(pos_regions(i,1):pos_regions(i,2))];
end
mpos = mean(xpos);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mpos,mpos],'r:');
else

plot([t(1),t(length(t))],[mpos,mpos],':');
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end
hold off

% select negative trace deflection regions
disp('Now select flat-top regions of negative trace deflection.');
neg_regions = pick,_regions(t,pos,colour);
[m,n] = size(neg_regions);
if (m == 0)

error('Cannot calibrate, no negative trace deflections selected.');
end
for i= 1:m

xneg = [xneg ; pos(neg_regions(i,l):neg_regions(i,2))];
end
mneg = mean(xneg);
hold on
if (colour = 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
else

plot([t(1),t(length(t))],[mneg,mneg],':');
end
hold off

% calculate scale factor in deg/unit
scale = (pos_deg - negdeg) ./ (mpos - mneg);

% select optional zero trace deflection regions
y=input('Is there a zero degree calibration target? (y,n) [default = n] ','s');
if isempty(y)

y='n';
end
xzero = [];
if y='y' I y=='Y'

disp('Select regions in which subject fixated on zero reference.');
zero_regions = pick_regions(t,pos,colour);
[m,n] = size(zeroregions);
if (m == 0)

offset = 0;
else

for i=1:m
xzero = [xzero ; pos(zeroregions(i,1):zero_regions(i,2))];

end
offset = mean(xzero);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[offset,offset],'r:');
else

plot([t( 1),t(length(t))] ,[offset,offset] ,':');
end
hold off

end
else

offset = 0;
end
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% display positive and negative mean values
hold on
if (colour = 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
plot([t(1),t(length(t))],[mpos,mpos],'r:');

else
plot([t(1),t(length(t))],[mneg,mneg],':');
plot([t(1),t(length(t))],[mpos,mpos],':');

end
hold off

% estimate noise, in rms degrees
xpos = xpos - mean(xpos);
xneg = xneg - mean(xneg);
if (isempty(xzero) = 0)

xzero = xzero - mean(xzero);
end
x = [xpos ; xneg ; xzero ];
noise = scale * sqrt(mean(x.*x))

clear pos_regions neg_regions zero_regions xpos xneg xzero x
clear i m n y neg_deg pos_deg
return;
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function regions = pick_regions(t,pos,colour)

% This is the main algorithm for the manual picking of
% calibration regions
% t = time coordinate, equally spaced at sampling period
% pos = eye position vector
% colour = flag for colour monitor

% A region is selected by picking its beginning and end with
% the mouse. A selected region is highlighted by picking within
% that region. A highlighted region is un-highlighted by
% picking again withing that region. A selected region is
% de-selected by highlighting it, and then pressing the delete
% key.

% The user has complete control over pan and zoom features, as
% well as selection and de-selection of regions. The plotting
% makes use of different colours and line types, as available.

% D. Balkwill 11/27/90

1= length(pos);
sample = round(1/(t(2) - t(1))); % assumes t is periodic

key = 0;
FINISHED = 27; % escape
PAN_LEFT = 28; % left arrow
PAN_RIGHT = 29; % right arrow
SCROLL_LEFT = 11; % page down
SCROLL_RIGHT = 12; % page up
DELETE_1 = 8; % backspace
DELETE_2 = 127; % delete
ZOOM_IN = 30; % up arrow
ZOOM_OUT = 31; % down arrow
FAST_ZOOM_IN = 46; % decimal
FAST_ZOOM_OUT = 48; % zero
COMPLETE_PLOT_1 = 97; % 'a' key
COMPLETE_PLOT_2 = 65; % 'A' key
% note: 1, 2, and 3 are reserved for mouse button(s)

num_pick = 0; % number of points picked
num_regions = 0; % number of regions picked
num_highs = 0; % number of regions highlighted
os = 1; % offset of start of current trace, in samples
w = 1 - 1; % width of trace, in samples
redraw = 1; % flag for plotting
mf = 1; % magnification factor

while (key ~= FINISHED)

if (redraw -= 1)
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df = floor(w/2000);
if (df < 1)

df = 1;
end
tr = t(os:df:os+w);
pr = pos(os:df:os+w);

% leave some blank space above and below trace for aesthetics
mx = max(pr);
if (mx < 0)

mx = mx * 0.9;
else

mx = mx * 1.1;
end
mn = min(pr);
if (mn < 0)

mn = mn * 1.1;
else

mn = mn * 0.9;
end

hold off
axis([tr(l) tr(length(tr)) mn mx]);
if (colour == 'y')

% plot eye position signal in black, solid
plot(tr,pr,'w')

% plot picked regions in blue, dash-dotted
hold on
for i=l:num_regions

t3 = (regions(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'b-.')
t4 = (regions(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'b-.')
plot([t3,t4],[mn,mx],'b-.')

end
% plot currently picked point in blue, dotted
if (num_pick == 1)

plot([tl,tl],[mn,mx],'b:')
end

% plot highlighted regions in green, solid
for i=l:num_highs

t3 = (highs(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'g')
t4 = (highs(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'g')
plot([t3,t4],[mn,mx],'g')

end

else

% plot eye position signal in solid
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plot(tr,pr,'-')

% plot picked regions in dash-dotted
hold on
for i=l:num_regions

t3 = (regions(i,l) - 1)/sample;
plot([t3,t3],[mn,mx],'-.')
t4 = (regions(i,2) - 1)/sample;
plot([t4,t4], [mn,mx],'-.')
plot([t3,t4] ,[mn,mx],'-.')

end
% plot currently picked point in dotted
if (num_pick = 1)

plot([t 1,tl],[mn,mx],':')
end

% plot highlighted regions in dashed
for i=1:num_highs

t3 = (highs(i,l) - 1)/sample;
plot([t3,t3],[mn,mx],'--')
t4 = (highs(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'--')
plot([t3,t4],[mn,mx],'--')

end
end

text(.7,.93,['magnification = ',int2str(round(mf)),' X'],'sc')
redraw =0;

end

[x,y,key] = ginput(l);

if (key=ZOOM_IN) % increase magnification factor

old=mf;
mf=min(old*2,max(old,floor(1/100)));
if mf=-old % maximum magnification of 100X

redraw--0;
else

redraw=l;
w=floor(l/mf);

end

elseif (key == FAST_ZOOM_IN) % fast two-point zoom

% first point of region to zoom into
[t3,y,key] = ginput(l);
if ((key ~= DELETE_1) & (key ~= DELETE_2))

% bounds check on first point of region
if (t3 < tr(l))

t3 = tr(1);
elseif (t3 > tr(length(tr)))
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t3 = tr(length(tr));
end
x3 = 1 + round(t3 * sample);
t3 = (x3 - 1)/sample;

% display first point
hold on
if (colour = 'y')

plot([t3,t3],[mn,mx],'r:');
else

plot([t3,t3],[mn,mx],':');
end
hold off
redraw = 1;

% second point of region to zoom into
[t4,y,key] = ginput(1);

% allow user to abort zoom via delete key
if ((key ~= DELETE_1) & (key ~= DELETE_2))

% bounds check on second point of region
if (t4 < tr(1))

t4 = tr(1);
elseif (t4 > tr(length(tr)))

t4 = tr(length(tr));
end
x4 = 1 + round(t4 * sample);
t4 = (x4 - 1)/sample;

% display second point
hold on
if (colour == 'y')

plot([t4,t4],[mn,mx],'r:');
else

plot([t4,t4],[mn,mx],':');
end
hold off

% swap order of points if needed
if (x4 < x3)

old = x4;
x4 = x3;
x3 = old;

end

% calculate new magnification parameters
if (x3 ~= x4)

os = x3;
w = x4 - x3;
mf = l/w;

end
end

end
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elseif (key==ZOOM_OUT) % decrease magnification

if (mf = 1) % already completely zoomed out
redraw = 0;

else
redraw=1;
old=mf;
mf=max(floor(old/2),1);
w=floor(l/mf);
if (w >= 1)

w=l- 1;
end
if ((os+w)>l)

os=floor(max(1,1-w));
end

end

elseif ((key == COMPLETE_PLOT_1) I (key == COMPLETE_PLOT_2) I (key ==
FAST_ZOOM_OUT)) % display entire plot

os = 1;
mf = 1;
w=l- 1;
redraw = 1;

elseif (key=PAN_RIGHT) % increase offset by quarter-screen

old=os;
os=floor(max(1,min(1-w,os+0.25*w)));
if old==os % already panned to end

redraw-0;
else

redraw=1;
end

elseif (key==PAN_LEFT) % decrease offset by quarter-screen

old=os;
os=floor(max(1,os-0.25*w));
if os==old % already panned to beginning

redraw=0;
else

redraw=l;
end

elseif (key==SCROLL_RIGHT) % jump display one screenful right

old=os;
os=floor(max(1 ,min(os+w,l-w)));
if os==old % already panned to end

redraw-0;
else

redraw=l;
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end

elseif (key==SCROLL_LEFT) % jump display one screenful left

old=os;
os=floor(max(1 ,os-w));
if old==os % already panned to beginning

redraw--0;
else

redraw=l;
end

elseif ((key=DELETE_1) I (key==DELETE_2))

if (num_pick > 0) % wipe out currently picked point
num_pick = 0;
redraw = 1;

elseif (num_highs > 0) % wipe out highlit regions
for i=l:num_highs

index = InList(highs(i,1),regions);
regions = DeleteRow(index,regions);

end
num_regions = num_regions - num_highs;
num_highs = 0;
clear highs
redraw = 1;

end

elseif (key=1) I (key==2) I (key==3) % up to three-button mouse input

if (num_pick -= 0) % this is the first picked point

% bounds check on picked point
if (x < tr(1))
x = tr(1);

elseif (x > tr(length(tr)))
x = tr(length(tr));

end

% convert time value to sample number
xl = 1 + round(x * sample);

% see if point is in a selected region
index1 = InList(xl,regions);
if (index 1 > 0)

index2 = InList(xl,highs);
if (index2 > 0) % de-highlight region

numhighs = num_highs - 1;
highs = DeleteRow(index2,highs);
redraw = 1;

else % highlight region for future deletion
xl = regions(indexl,1);
x2 = regions(index1,2);
tl = (xl - 1)/sample;
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t2 = (x2 - 1)/sample;
num_highs = num_highs + 1;
highs(num_highs,:) = [xl x2];
if (colour = 'y')

hold on
plot([tl,tl],[mn,mx],'g');
plot([t2,t2],[mn,mx],'g');
plot([tl,t2],[mn,mx],'g');

else
hold on
plot([tl,tl],[mn,mx],'-');
plot([t2,t2],[mn,mx],'-');
plot([tl,t2],[mn,mx],'-');

end
end

else % point is not already in a selected region
% display as first point of region being selected
tl = (xl - 1)/sample;
num_pick = 1;
hold on
if (colour == 'y')

plot([tl,tl],[mn,mx],'b:');
else

plot([tl,tl],[mn,mx],':');
end
hold off

end
elseif (num_pick == 1) % second picked point

% bounds check on picked point
if (x < tr(1))

x = tr(l);
elseif (x > tr(length(tr)))

x = tr(length(tr));
end

% convert time value to sample number
x2 = 1 + round(x * sample);
t2 = (x2 - 1)/sample;

if (x2 == xl) % cannot have interval of zero width
num_pick = 0;
redraw = 1;

else
hold on
if (colour == 'y')

plot([t2,t2],[mn,mx],'b:');
else

plot([t2,t2],[mn,mx],':');
end
if (x2 < xl) % order picked points

old = xl;
xl = x2;
x2 = old;
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old = tl;
tl = t2;
t2 = old;

end
num_pick = 0;
if (colour = 'y')

plot([tl,t2],[mn,mx],'b:');
else

plot([t2,t2],[mn,mx],':');
end

% add picked region to list
num_regions = numregions + 1;
regions(num_regions,:) = [xl x2];
hold off

end
end

end
end

clear i index indexl index2 tl t2 xl x2 x y mn mx mnv sample
clear highs num_highs num_regions old num_pick
clear key redraw os w mf 1 df pr tr
return;
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% targetpursuit

% This script allows the user to obtain the amplitude and direction
% of the horizontal & vertical eye movements, and the sled position
% signal.

% K. Polutchko 6/92

file_specs
hmagmatrix = [];
hdir matrix = [];
vmagmatrix = [];
vdir_matrix = [];
sled_matrix = [];
hmag_matrix(1,:) = 0;
hdir_matrix(l,:) = '0';
vmagmatrix(1,:) = 0;
vdir_matrix(1,:) = '0';
sled_matrix(1,:) = 0;

colour = 'y';
code = input('Enter Run Code: ','s');
%file_number = input('Enter the file number (1-2): ');
start_number = input('Enter the trial # at which you wish to start: ');
%if(file_number == 1)

g_level = [9; 5; 7; 8; 10; 9; 4; 7; 3; 4; 8; 5; 6; 10; 3; 6];
sled_profile = [-20; +20; -20; -20; +20; +20; -20; +20; -20; +20; 20; -20; +20; -20;

+20; -20];
%end

num_trials = 16;
cal_sled = input('Specify the sled calibration factor (deg/unit):');
cal_h = input('Specify the horizontal calibration factor (deg/unit): ');
cal_v = input('Specify the vertical calibration factor (deg/unit): ');
data_file = file_name(Data_File, code);
eval(['load ',data_path,data_file]);

sled_pos=ADCData(:,l);
pos = ADCData(:,3); %h_coil
pos2 = ADCData(:,2); %v_coil
clear ADCData

sled_pos = sled_pos*cal_sled;
pos2=pos2*cal_v;
pos=pos*cal_h;
sample = 200;
t = (([1:length(pos)] - 1)/sample)';

for i=start_number:num_trials
fprintf('\nAnalyzing trial number %2.0f n',i);
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[mag_degl ,direction 1,mag_deg2,direction2,mag_sled] =
two_point(t,pos,pos2,sled_pos,colour,sledprofile(i,:));

fprintf(1nMagnitude of eye movement for trial#%2.0f (HCOIL) = %6.4f deg. %The
direction of the eye movement was: ',i,mag_degl);
fprintf(directionl);

fprintf(nMagnitude of eye movement for trial#%2.0f (VCOIL) = %6.4f deg. %The
direction of the eye movement was: ',i,mag_deg2);
fprintf(direction2);

fprintf('nMagnitude of eye movement for trial#%2.0f (SLED) = %6.4f cm. ',i,magsled);

hmag_matrix(i,:) = magdegl;
hdir_matrix(i,:) = directionl;
vmag_matrix(i,:) = mag_deg2;
vdirmatrix(i,:) = direction2;
sled_matrix(i,:) = mag_sled;

end

eval(['save ',stat_path,code,'.stats g_level sled_profile hmag_matrix hdir_matrix
vmag_matrix vdir_matrix']);

eval(['save ',staLpath,code,'.sled sled_matrix']);

vmagmatrix
vdir_matrix
hmag-matrix
hdir_matrix
sled_matrix

clearspecs
clear code A B sample t pos pos2 pos3 sled_pos sledfile heogfile veogfile i j
clear mag_degl mag_deg2 magdeg3 directionl direction2 direction3 file_number
clear hmag_matrix hdirmatrix vmag_matrix vdir_matrix sledprofile duration
clear num_trials colour data_path statpath another start_number
clear cal_heog heogmatrix hedir_matrix

fprintf('Thank you for coming in today! ');
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function [mag_degl,directionl,mag_deg2,direction2,magsled] =
two_point(t,pos,pos2,sledpos,colour,sled_profile)

%two_point

%This script inputs the angular deviations from the user, and
% calls the 'pickregions2' script so that the fixation regions
% can be selected. For each deviation, the average value over
% all of the regions is calculated. The calculated mean values
%are displayed to the user graphically as dotted lines, for inspection.

% select flat region during target fixation
disp(");
disp('Use mouse to select flat region during target fixation.');
fix_regions = pick_regions2(t,pos,sled_pos,colour);
[m,n] = size(fix_regions);
if (m == 0)

error('No flat region found.');
end
for i= 1:m

xfix = [xfix; pos(fix_regions(i,1):fix_regions(i,2))];
xfix2 = [xfix2; pos2(fix_regions(i,1):fix_regions(i,2))];
xfix3 = [xfix3 ; sled_pos(fix_regions(i,1):fix_regions(i,2))];

end
mfix = mean(xfix)
mfix2 = mean(xfix2);
mfix3 = mean(xfix3);
%hold on
%if (colour == 'y')
% subplot(211)
% plot([t(1),t(length(t))],[mfix,mfix],'r:');
% subplot(212)
% plot([t(1),t(length(t))],[mfix,mfix],'r:');
%else
% subplot(211)
% plot([t(1),t(length(t))],[mfix,mfix],':');
% subplot(212)
% plot([t(1),t(length(t))],[mfix,mfix],':');
%end
%hold off

% select flat region after sled motion has stopped
disp('Now select flat region after sled motion has stopped.');
postregions = pickregions2(t,pos,sled_pos,colour);
[m,n] = size(postregions);
if (m = 0)

error('No flat region.');
end
for i=1:m

xpost = [xpost ; pos(post_regions(i,1):post_regions(i,2))];
xpost2 = [xpost2; pos2(postregions(i,1):post_regions(i,2))];
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xpost3 = [xpost3 ; sled_pos(postregions(i,1):post_regions(i,2))];
end
mpost = mean(xpost)
mpost2 = mean(xpost2);
mpost3 = mean(xpost3);
hold on
%if (colour == 'y')
% subplot(211)
% plot([t(1),t(length(t))],[mpost,mpost],'r');
% subplot(212)
% plot([t(1),t(length(t))],[mpost,mpost],'r:');
%else
% subplot(211)
% plot([t(1),t(length(t))],[mpost,mpost],':');
% subplot(212)
% plot([t(1),t(length(t))],[mpost,mpost],':');
%end
%hold off

% calculate magnitude of eye movement
magdegl = mpost - mfix;
magdeg2 = mpost2 - mfix2;
mag_sled = mpost3 - mfix3;

if(mag_sled <= 0.0)
sled_dir ='R';

else
sled_dir = 'L';

end

if(((mag_degl >= 0.0)&(sled_profile >= 0.0))I((mag_degl <= 0.0)&(sled_profile <=
0.0)))

direction1 = 'C';
else

direction1 = 'I';
end
if(magdeg2 >= 0.0)

direction2 = 'R';
else

direction2 ='L';
end

clear fix_regions post-regions xfix xpost xfix2 xpost2 xfix3 xpost3
clear mpost mpost2 mpost3
clear i m n y
return;
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%file_specs

%Written by David Balkwill 7/1/91
%Modified by Karla Polutchko 5/28/92

data_path = ['KP4:KAP_temp']; %check this
stat_path = ['KP4:sled stats:'];

Data_File = '#.MAT;

%Ensure that colon is last character in path name, for Mac convention
if (data_path(length(data_path)) ~= ':')

data_path = [data_path,':'];
end
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%file_name

%Written by David Balkwill 9/26/90
%modified by Karla Polutchko 5/28/92

%returns the input file name, given the file spec and run code

function in_file = file_name(file_spec,code)

infile = file_spec;
l=length(in_file);

i=l;
while(i<=l)

if(infile(i) == '#'
break;
end

i=i+l;
end

if(i==l)
in_file = [in_file(1:1-1),code];

elseif(i<l)
infile = [in-file(1 :i-1),code,infile(i+1:1)];

end

%make sure ther are no blank spaces in the file name
1= length(in-file);
i=l;
while(i<=l)

if(inf ile(i) ==' ')
in_file = [infile(1:i- 1),infile(i+1:1)];
1=1-1;

else
i = i+l;

end
end

clear i 1
return;
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%Adaptation

%This script was written to analyze the frequency
%components of the joystick signal of the subject during
%the linear adaptation paradigm

file_specs
code = input('Enter First Run Code: ','s');
data_file = file_name(Data_File, code);
eval(['load ',data_path,data_file]);

joy_stick = ADCData(:,2);
clear ADCData

1 = length(joy_stick);
if(1 >= 49152)

last = 65536;
finalfreq = 200;

else
last = 32768;

final_freq = 100;
end

Y=fft(joy_stick,last);
Pyy=Y.*conj(Y);
frequency = 200/last*(0:last-1);
title('Subject KJ: Adaptation Power Spectral Density')
subplot(221)
plot(frequency(1:finalfreq),Pyy( 1 :final_freq))
xlabel('Frequency (Hz)')
eval(['save ',stat_path,code,'.PSD Pyy frequency']);
clear joy_stick 1 Y frequency last finalfreq code Pyy

code = input('Enter Second Run Code: ','s');
data_file = file_name(Data_File, code);
eval(['load ',data_path,data_file]);

joy_stick=ADCData(:,2);
clear ADCData

1 = length(joy_stick);
if(1 >= 49152)

last = 65536;
finalfreq = 200;

else
last = 32768;

final_freq = 100;
end

Y=fft(joy_stick,last);
Pyy=Y.*conj(Y);
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frequency = 200/last*(0:last-1);
subplot(222)
plot(frequency(l:fminal_freq),Pyy(l:final_freq))
xlabel('Frequency (Hz)')

eval(['save ',stat_path,code,'.PSD Pyy frequency']);
clear joy_stick 1 Y frequency last final_freq Pyy

code = input('Enter Third Run Code: ','s');
data_file = filename(Data_File, code);
eval(['load ',data_path,data_file]);

joy_stick=ADCData(:,2);
clear ADCData

1= length(joy_stick);
if(1 >= 49152)

last = 65536;
final_freq = 200;

else
last = 32768;

final_freq = 100;
end

Y=fft(joy_stick,last);
Pyy=Y.*conj(Y);
frequency = 200/last*(0:last-1);
subplot(223)
plot(frequency( 1 :fminalfreq),Pyy(1:final_freq))
xlabel('Frequency (Hz)')

eval(['save ',statpath,code,'.PSD Pyy frequency']);
clear joy_stick 1 Y frequency last final_freq Pyy

code = input('Enter Fourth Run Code: ','s');
data_file = filename(Data_File, code);
eval(['load ',data_path,data_file]);

joy_stick=ADCData(:,2);
clear ADCData

1= length(joy_stick);
if(1 >= 49152)

last = 65536;
finmalfreq = 200;

else
last = 32768;

finalfreq = 100;
end

Y=fft(joy_stick,last);
Pyy=Y.*conj(Y);
frequency = 200/last*(0:last-1);
subplot(224)
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plot(frequency( 1 :finalfreq),Pyy(1 :final_freq))
xlabel('Frequency (Hz)')

eval(['save ',stat_path,code,'.PSD Pyy frequency']);
clear joy_stick 1 Y frequency last finalfreq Pyy
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APPENDIX G: SLED TRAJECTORY GENERATORS

This appendix contains the programs written in C++ which generate different sled
trajectories. The sled program was written by Mr. Bob Grimes of Payload Systems, Inc.
The following trajectory generators were developed and implemented by the author of
this thesis to expand the kinds of motion the sled was capable of. The list below gives the
name of the file that generates the trajectory (.CPP) and its associated header file (.HPP)
which defines the global variables, and gives a brief description of the trajectory form.

Squaretg (.CPP and .HPP): Generates a square acceleration wave (step of acceleration).
The user inputs the acceleration of the step (G) and the frequency of the signal
(1/time). The sled accelerates for one third of the trial duration, accelerates in the
opposite direction (decelerates) for two thirds of the trial duration, and then
accelerates again to bring the sled back to the center of the track.

Newsqrtg (.CPP and .HPP): Generates a step of acceleration similar to Squaretg, but uses
two different accelerations for the initial step and the step to return the sled back
to the center of the track. Since we are primarily interested in the response to the
first step of acceleration, the remainder of the trial can be at a higher acceleration
to return the subject to the center of the track more quickly. The user inputs the
acceleration of the signal, the duration of the signal, and the return acceleration.

Velstptg (.CPP and .HPP): Generates a step of velocity. The user inputs the magnitude
of the desired velocity, the duration of the signal, and the acceleration used to
ramp up to the desired velocity.

Steptg (.CPP and .HPP): Generates a damped-position step (single cycle of sine
acceleration). The user inputs the acceleration (G) and frequency (l/time) of the
sinusoid. This is the trajectory generator used for the Hidden Target Pursuit
experiments described in this thesis.

Similar trajectory generators were written by the author, but not included here, for the
auxiliary channel of the controller. This allows any other instrumentation that is
to be controlled by the sled computer to move in similar motion profiles as the
sled. The names of the C++ files for the auxiliary channel are Auxstptg (.CPP and
.HPP) and Auxsqrtg (.CPP and .HPP).
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// Title: Sled - Functions
// Author: Karla A. Polutchko
// Date: December, 1991
//$Revision: 1.0 $

// Contents

// Description

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

// $Log: C:/eyl/sled/vcs/squaretg.cpv $

// Rev 1.0 16 Nov 1991 19:17:40 rsg
// Bug fixes for bugs encountered during Zinc switch

// Rev 1.9.1.4 28 May
// Incremental updates.
/-

// Rev1.9.1.3 21May
//Incremental updates.

// Rev 1.9.1.2 15 May
//Incremental updates.
//

1991 14:29:30 rsg

199109:12:46 rsg

1991 18:07:00 rsg

// Rev 1.9.1.1 13 May 1991 16:03:38 rsg
// Debugged trajectory generators.
//
// Rev 1.9.1.0 08 May 1991 13:04:14 rsg
//Incremental updates.

// Rev 1.9 27Apr 1991
//Incremental updates.

// Rev 1.8 24Apr 1991
//Incremental updates.

// Rev 1.7 24 Apr 1991
// Incremental updates.
//
// Rev 1.6 22 Apr 1991
//Incremental updates.
//

13:00:28 rsg

13:33:24 rsg

08:15:30 rsg

08:38:00 rsg

// Rev 1.5 09 Apr 1991 14:56:04 rsg
// Deleted derivation of AbstractTG from UIW_WINDOW.
I-

// Rev 1.4 09 Apr 1991 10:23:52 rsg
// Documentation fixups.

// Rev 1.3 09 Apr 1991 09:34:04 rsg

// Documentation update.

// Rev 1.2 09 Apr 1991 08:51:24 rsg
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// Incremental update.

// Interface Dependencies -------------------------------------------------

#ifndef SQUARETG_HPP
#include "squaretg.hpp"
#endif

// End Interface Dependencies -----------------------------------------------

H Implementation Dependencies ----------------------------------------------

#ifndef MATH H
#include <math.h>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef STRING H
#include <string.h>
#endif

#ifndef DISPVARSHPP
#include "dispvars.hpp"
#endif

#ifndef SLEDCONVHPP
#include "sledconv.hpp"
#endif

#ifndef TRAJEDIT HPP
#include "trajedit.hpp"
#endif

// End Implementation Dependencies -------------------------------------------

class SquareEditForm : public TrajEditForm {
public:

SquareEditForm(SquareTG *traj,int rate,int flag);

static int validateAccel(void *item, int ccode);
static int validateFrequency(void *item, int ccode);
static int validateHalfCycles(void *item, int ccode);

private:
int doValidateAccel(void *item, int ccode);
int doValidateFrequency(void *item, int ccode);
int doValidateHalfCycles(void *item, int ccode);

SquareEditForm::SquareEditForm(SquareTG *traj,int rate,int flag) :

283



TrajEditForm(traj,rate,3,3,36,7,flag,0) {

int SquareEditForm::validateAccel(void *item,int ccode) {
UIW NUMBER *number = (UIW_NUMBER *)item;
return (((SquareEditForm *)number->parent)->doValidateAccel(item, ccode));
}

int SquareEditForm::doValidateAccel(void *item, int ccode) {
if (ccode = S_CURRENT)

return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
SquareEditForm *me = (SquareEditForm *)(((UIW_NUMBER *)item)->parent);
SquareTG *mine = (SquareTG *)me->myTraj;
float max;

if (mine->verifyAcceleration(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The absolute value must be greater than 0.0, but"
" less than %f' value,accelToG(max));

return (-1);
}

else
return 0;

int SquareEditForm::validateFrequency(void *item,int ccode) {
UIWNUMBER *number = (UIW_NUMBER *)item;
return (((SquareEditForm *)number->parent)->doValidateFrequency(item, ccode));
}

int SquareEditForm::doValidateFrequency(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
SquareEditForm *me = (SquareEditForm *)(((UIWNUMBER *)item)->parent);

SquareTG *mine = (SquareTG *)me->myTraj;
float min;

if (mine->verifyFrequency(min)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The value must be greater than O/of, but less than"

" /of', value, min,getMaximumFrequencyo);
return (-1);
}

else
return 0:

}
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int SquareEditForm: :validateHalfCycles(void *item,int ccode) {
UIW_NUMBER *number = (UIWNUMBER *)item;
return (((SquareEditForm *)number->parent)->doValidateHalfCycles(item, ccode));
}

int SquareEditForm::doValidateHalfCycles(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
int value = *(int *)field->DataGet();

if (value >= 0 && value < 100)
return 0;

else {
_errorSystem->ReportError(field->windowManager, 0,

"%d is not valid. The value must be at least 0, but less than 100",
value, 100);

return (-1);
}

SquareTG: :SquareTG() : AbstractTG() {
strcpy(myName," Square");
frequency = 1.0;
amplitude = 0.0;
acceleration = 0.1;
rampHalfCycles = 2;
validAxis = Sled;
}

SquareTG: :-SquareTG() {
}

int SquareTG: :readHeader(const char *filename) {
FILE *f;

// First, read the data of our ancestor(s).
if (AbstractTG:: readHeader(filename))

return 1;

// Open the file for reading. Note that an existing file is assumed.
f = fopen(filename."rb");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2, SEEK_SET);

// Read our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to read is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
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int size = sizeof(SquareTG)-sizeof(AbstractTG);
fread(ptr,size, 1,f);

// Close the file
fclose(f);
return 0;
}

void SquareTG: :writeHeader(const char *filename) {
FILE *f;

// First, write the data of our ancestor(s).
AbstractTG::writeHeader(filename);

// Open the file for writing. Note that an existing file is assumed.
f = fopen(filename,"rb+");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);

// Write our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to write is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(SquareTG)-sizeof(AbstractTG);
fwrite(ptr,size, 1,f);

// Close the file
fclose(f);

}

int SquareTG: :verifyFrequency(float &min) {
min = sqrt(fabs(gToAccel(acceleration)/(32*(getTrackLength-O. 1))));

if (frequency < min II frequency > getMaximumFrequency())
return 1; //Invalid.

else
return 0; //Okay

}

int SquareTG::verifyAcceleration(float &max) {
max = (getTrackLengtho-O. 1)*32*frequency*frequency;

if (max > getMaximumAccel())
max = getMaximumAccel();

if (fabs(acceleration) == 0.0 I fabs(acceleration) > accelToG(max))
return 1; //Invalid.

else
return 0;// Okay.

}
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int SquareTG::verifyParameters() {
int error = 0;

float temp;
error = verifyAcceleration(temp);
error += verifyFrequency(temp);

if (rampHalfCycles < 0)
error += 1;

// Calculate our derived parameters.
if (!error) {

amplitude = gToAccel(acceleration);

numberCommands[0] = (long)(0.5 + rampHalfCycles*commandRate/(2*frequency));
numberCommands[1] = (long)(commandRate/frequency + 0.5);
numberCommands[2] = numberCommands[0];
}

else {
amplitude = 0.0;
numberCommands[0] = numberCommands[1l] = numberCommands[2] = 0;

}
return error;
}

float SquareTG::generateCommand(int phase,long index) {
float velocity;

if ((1.0*index)/commandRate <= 1/(4*frequency))
velocity = (amplitude*index)/commandRate;

else if ((1.0*index)/commandRate <= 3/(4*frequency))
velocity = amplitude/(4*frequency) -

((1 .0*index)/commandRate -

(1.0/(4*frequency)))*amplitude:
else

velocity = (-amplitude/(4*frequency)) +
((1.0*index)/commandRate - (3/(4*frequency)))*amplitude;

switch (phase) {
case 0:

// Note that while rampHalfCycles may be zero, the following division
// will not be called, because numberCommands[0] will also be 0, and
// thus this function won't be called. The same applies in case 2.
velocity = (velocity*index)/numberCommands[phase];
if (rampHalfCycles & 1)

velocity = -velocity;
return velocity;

case 1:
return velocity;

case 2:
velocity -= (velocity*index)/numberCommands[phase];
return velocity;
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void SquareTG::getParameters(int rate,int modal) {
commandRate = rate;

// Create an edit form.
SquareEditForm *form = new SquareEditForm(this,rate,modal);

*form
+ new UIW BORDER
+ new UIWTITLE(myName)
+ new UIW SYSTEMBUTTON
+ new UIW_PROMPT(2, 1,"Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(22, 1, 1 0,&acceleration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF BORDER,
SquareEditForm: :validateAccel)

+ new UIW_PROMPT(2,2,"Frequency (Hz)",WOF_NO_FLAGS)
+ new UIW_NUMBER(18,2,10,&frequency,NULL,NMF_NOFLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAJWOF_BORDER,
SquareEditForm: :validateFrequency)

+ new UIW_PROMPT(2,3,"Ramp 1/2 cycles",WOF_NO_FLAGS)
+ new UIW_NUMBER(18,3,5,&rampHalfCycles,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOFBORDER,
SquareEditForm: :validateHalfCycles)

+ new UIW_BUTTON(16,4,4,"Ok",BTF_NO_FLAGS,WOF_BORDER,
SquareEditForm::generateFunction);

// Give it to the window manager.
*_windowManager + form;
}

void SquareTG::getHeaderDisplaySize(UI_REGION& size) {
AbstractTG: :getHeaderDisplaySize(size);
if (size.right < 72)

size.right = 72;
size.bottom += 3;

void SquareTG::displayHeader(UIW_WINDOW *window,int& left, int& top) {
AbstractTG: :displayHeader(window,left,top);
*window

+ new UIW_PROMPT(left,top+1,"Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+17,top+1, 10,&acceleration,NULL,NMF_NO_FLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+2,"Frequency (Hz)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+17,top+2, 10,&frequency,NULL,NMF_NO_FLAGS,

WOF_NON_SELECTABLEIWOFBORDER)
+ new UIW_PROMPT(left+29,top+1,"Amplitude (m/s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+45,top+1,10,&amplitude,NULL,NMF_NO_FLAGS,
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WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIWPROMPT(left+29,top+2,"Ramp 1/2 cycles",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+45,top+2,5,&rampHalfCycles,NULL,NMF_NOFLAGS,

WOF_NON_SELECTABLEIWOF_BORDER);

top += 3;
}

void SquareTG::dumpHeader(char *name,FILE *f) {
AbstractTG: :dumpHeader(name,f);
fprintf(f, "Acceleration: %0/6.3f g Frequency: %7.4f Hz\n",acceleration,

frequency);
fprintf(f,"Amplitude: %0/6.3f m/s Ramp 1/2 Cycles: /od\n\n",amplitude,

rampHalfCycles);
}
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H Title: Sled - Functions
// Author: Karla A. Polutchko
// Date: December, 1991
// $Revision: 1.0 $
I-
// Contents
//
II Description
/I
II Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

/I $Log: C:/eyl/sled/vcs/squaretg.hpv $
I-

II Rev 1.0 16 Nov 1991 19:17:44 rsg
/I Bug fixes for bugs encountered during Zinc switch
I

/I Rev 1.7.1.2 28 May 1991 14:30:00 rsg
// Incremental updates.
I-

// Rev 1.7.1.1 13 May 1991 16:03:54 rsg
// Debugged trajectory generators.
I

// Rev 1.7.1.0 08 May 1991 13:05:10 rsg
// Incremental updates.

/I Rev 1.7 24 Apr 1991 13:33:34 rsg
// Incremental updates.
I-

II Rev 1.6 24 Apr 199108:16:58 rsg
// Incremental updates.

// Rev 1.5 22 Apr 1991 08:39:28 rsg
// Incremental updates.
I-

II Rev 1.4 09 Apr 1991 14:56:58 rsg
// Deleted derivation of AbstractTG from UIWWINDOW.

II Rev 1.3 09 Apr 1991 10:28:54 rsg
// Documentation fixups.

/ Rev 1.2 09Apr 199109:31:36 rsg
// Documentation update.
/I
II Rev 1.1 09 Apr 199108:54:26 rsg
//Incremental update.

#ifndef SQUARETG_HPP
#define SQUARETG_HPP

I Interface Dependencies -------------------------------------------------

#ifndef UIWIN HPP
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#include <ui_win.hpp>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef ABSTRAJGHPP
#include "abstrajg.hpp"
#endif

// End Interface Dependencies ------------------------------------

// Implementation Dependencies -----------------------------------

// End Implementation Dependencies -----------------------------------

class SquareTG : public AbstractTG {
public:

SquareTGO;
-SquareTG();

AbstractTG *dupo { return new SquareTGO; }

int readHeader(const char *filename);
void writeHeader(const char *filename);

void dumpHeader(char *name,FLE *f);

float generateCommand(long index);
void generateTrajectory(const char *filename);

void getParameters(int rate,int modal);

void getHeaderDisplaySize(UI_REGION& size);
void displayHeader(UIW_WINDOW *window,int& left, int& top);

float generateCommand(int phase,long index);

int verifyAcceleration(float &max);
int verifyFrequency(float &min);
int verifyParameters();

int getWidtho;// { return 36; }
int getHeighto;// { return 8; }

float frequency;
float acceleration;
float amplitude;
int rampHalfCycles;

#endif
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// Title: Sled - Functions
// Author: Karla A. Polutchko
//Date: January 13, 1993
// $Revision: 1.0 $
I-

// Contents

// Description

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

SS$Log: C:/eyl/sled/vcs/newsqrtg.cpv $

H Rev 1.0 16 Nov 1991 19:17:40 rsg
// Bug fixes for bugs encountered during Zinc switch

// Rev 1.9.1.4 28 May
// Incremental updates.
II
// Rev 1.9.1.3 21 May
//Incremental updates.

H Rev 1.9.1.2 15 May
// Incremental updates.
H
// Rev 1.9.1.1

1991 14:29:30 rsg

199109:12:46 rsg

1991 18:07:00 rsg

13 May 1991 16:03:38 rsg
// Debugged trajectory generators.

H Rev 1.9.1.0 08 May 1991 13:04:14
// Incremental updates.
//
H Rev 1.9 27Apr 1991
// Incremental updates.
H

13:00:28 rsg

H Rev 1.8 24 Apr 1991 13:33:24
// Incremental updates.
//
// Rev 1.7 24 Apr 1991
// Incremental updates.

08:15:30 rsg

H Rev 1.6 22 Apr 1991 08:38:00
// Incremental updates.

// Rev 1.5 09 Apr 1991 14:56:04 rsg
// Deleted derivation of AbstractTG from UIWWINDOW.

// Rev 1.4 09 Apr 1991 10:23:52 rsg
// Documentation fixups.
//
// Rev 1.3 09 Apr 1991 09:34:04 rsg
// Documentation update.

// Rev 1.2 09 Apr 199108:51:24 rsg
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// Incremental update.

// Interface Dependencies -------------------------------------------------

#ifndef NEWSQRTG_HPP
#include "newsqrtg.hpp"
#endif

// End Interface Dependencies -----------------------------------------------

// Implementation Dependencies ----------------------------------------------

#ifndef MATH H
#include <math.h>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef STRING H
#include <string.h>
#endif

#ifndef DISPVARS HPP
#include "dispvars.hpp"
#endif

#ifndef SLEDCONV HPP
#include "sledconv.hpp"
#endif

#ifndef TRAJEDIT HPP
#include "trajedit.hpp"
#endif

// End Implementation Dependencies -------------------------------------------

class NewsqrEditForm : public TrajEditForm {
public:

NewsqrEditForm(NewsqrTG *traj,int rate,int flag);

static int validateAccel(void *item, int ccode);
static int validateAccel2(void *item, int ccode);
static int validateFrequency(void *item, int ccode);
static int validateSignalDuration(void *item, int ccode);
static int validateHalfCycles(void *item, int ccode);

private:
int doValidateAccel(void *item, int ccode);
int doValidateAccel2(void *item, int ccode);
int doValidateFrequency(void *item, int ccode);
int doValidateSignalDuration(void *item, int ccode);
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int doValidateHalfCycles(void *item, int ccode);

NewsqrEditForm::NewsqrEditForm(NewsqrTG *traj,int rate,int flag) :
TrajEditForm(traj,rate,3,3,40,9,flag,0) {

}

int NewsqrEditForm::validateAccel(void *item,int ccode) {
UIW NUMBER *number = (UIW_NUMBER *)item;
return (((NewsqrEditForm *)number->parent)->doValidateAccel(item, ccode));
}

int NewsqrEditForm::doValidateAccel(void *item, int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
NewsqrEditForm *me = (NewsqrEditForm *)(((UIW NUMBER *)item)->parent);

NewsqrTG *mine = (NewsqrTG *)me->myTraj;
float max;

if (mine->verifyAcceleration(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%O/f is not valid. The absolute value must be greater than 0.0, but"

" less than %f', value,accelToG(max));
return (-1);
}

else
return 0;

int NewsqrEditForm: :validateAccel2(void *item,int ccode) {
UIW NUMBER *number = (UIW_NUMBER *)item;
return (((NewsqrEditForm *)number->parent)->doValidateAccel2(item, ccode));
}

int NewsqrEditForm::doValidateAccel2(void *item, int ccode) {
if (ccode == S CURRENT)

return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
NewsqrEditForm *me = (NewsqrEditForm *)(((UIW_NUMBER *)item)->parent);
NewsqrTG *mine = (NewsqrTG *)me->myTraj;
float max;

if (mine->verifyAcceleration2(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The absolute value must be greater than 0.0, but"

" less than %f', value,accelToG(max));
return (-1);

}
else
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return 0;
}

int NewsqrEditForm: :validateFrequency(void *item,int ccode) {
UIW NUMBER *number = (UIW_NUMBER *)item;
return (((NewsqrEditForm *)number->parent)->doValidateFrequency(item, ccode));

}

int NewsqrEditForm::doValidateFrequency(void *item,int ccode) {

if (ccode =-- S_CURRENT)
return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
NewsqrEditForm *me = (NewsqrEditForm *)(((UIW_NUMBER *)item)->parent);

NewsqrTG *mine = (NewsqrTG *)me->myTraj;
float min;

if (mine->verifyFrequency(min)) {
_errorSystem->ReportError(field->windowManager, -1,

"%/f is not valid. The value must be greater than O/of, but less than"

" O/of", value,min,getMaximumFrequencyo);
return (-1);
}

else
return 0;

int NewsqrEditForm::validateSignalDuration(void *item,int ccode) {

UIW NUMBER *number = (UIW_NUMBER *)item;

return (((NewsqrEditForm *)number->parent)->doValidateSignalDuration(item, ccode));
}

int NewsqrEditForm::doValidateSignalDuration(void *item,int ccode) {

if (ccode = S_CURRENT)
return (0);

UIW NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
NewsqrEditForm *me = (NewsqrEditForm *)(((UIW_NUMBER *)item)->parent);

NewsqrTG *mine = (NewsqrTG *)me->myTraj;
float max2;

if (mine->verifySignalDuration(max2)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The value must be greater than /of, but less than"

" /f", value,0.0,max2);
return -1;

else
return 0;

I
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int NewsqrEditForm::validateHalfCycles(void *item,int ccode) {
UIW_NUMBER *number = (UIW_NUMBER *)item;
return (((NewsqrEditForm *)number->parent)->doValidateHalfCycles(item, ccode));
}

int NewsqrEditForm::doValidateHalfCycles(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW_NUMBER *field = (UIW_NUMBER *)item;
int value = *(int *)field->DataGet();

if (value >= 0 && value < 100)
return 0;

else {
errorSystem->ReportError(field->windowManager, 0,

"%O/d is not valid. The value must be at least 0, but less than 100",
value, 100);

return (-1);

NewsqrTG: :NewsqrTG() : AbstractTGO {
strcpy(myName,"New Square");
amplitude = 0.0;
acceleration = 0.010;
acceleration2 = .082;
signalDuration = 2.5;
rampHalfCycles = 0;
validAxis = Sled;

// Calculate the duration (frequency) of the whole trial
long k;
float totalDuration;

amplitude = gToAccel(acceleration);
if (amplitude > 0.0)

amplitude2 = gToAccel(acceleration2);
else

amplitude2 = -gToAccel(acceleration2);

tl = signalDuration;

// Calculate position when velocity is zero at end of 1/2 cycle...
posFinal = 0.0;
float command = 0.0;
long numComm = 0.0;

t2 = amplitude*tl/amplitude2;
numComm = (long)(commandRate*(tl + t2) + 0.5);
for (k = 0; k < numComm; k++) {

if ((1.0*k)/commandRate <= tl)
command = (amplitude*k)/commandRate;

else if ((1.0*k)/commandRate <= (tl + t2))
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command = amplitude*tl - ((1.0*k)/commandRate - tl)*amplitude2;

posFinal += command/commandRate;
}

t3 = sqrt(4.0*posFinal/amplitude2);
totalDuration = tl + t2 + t3;
frequency = 1.0/(totalDuration);

}

NewsqrTG: :-NewsqrTG() {
}

int NewsqrTG::readHeader(const char *filename) {
FILE *f;

// First, read the data of our ancestor(s).
if (AbstractTG: :readHeader(filename))

return 1;

// Open the file for reading. Note that an existing file is assumed.
f = fopen(filename,"rb");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);

// Read our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to read is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(NewsqrTG)-sizeof(AbstractTG);
fread(ptr,size, 1,f);

// Close the file
fclose(f);
return 0;
}

void NewsqrTG: :writeHeader(const char *filename) {
FILE *f;

// First, write the data of our ancestor(s).
AbstractTG: :writeHeader(filename);

// Open the file for writing. Note that an existing file is assumed.
f= fopen(filename,"rb+");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);
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// Write our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to write is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(NewsqrTG)-sizeof(AbstractTG);
fwrite(ptr, size, 1,f);

// Close the file
fclose(f);
}

int NewsqrTG::verifyFrequency(float &min) {
min = sqrt(fabs(gToAccel(acceleration)/(32*(getTrackLength0-O. 1))));

if (frequency < min II frequency > getMaximumFrequency())
return 1; //Invalid.

else
return 0;// Okay

}

int NewsqrTG::verifySignalDuration(float &max2) {
max2 = 1.0/sqrt(fabs(gToAccel(acceleration)/(32*(getTrackLength0-0. 1))));

if (signalDuration < 0.0 I signalDuration > max2)
return 1;// Invalid.

else
return 0;// Okay

}

int NewsqrTG: :verifyAcceleration(float &max) {
max = (getTrackLength()-0. 1)*32*frequency*frequency;

if (max > getMaximumAccel()
max = getMaximumAccel();

if (fabs(acceleration) == 0.0 II fabs(acceleration) > accelToG(max))
return 1; //Invalid.

else
return 0;// Okay.

}

int NewsqrTG::verifyAcceleration2(float &max) {
if (fabs(acceleration2) == 0.0 (I fabs(acceleration2) > accelToG(max))

return 1; //Invalid.
else

return 0;// Okay.
}

int NewsqrTG::verifyParameters( {
int error = 0;
long k;

float temp;
error = verifyAcceleration(temp);

error += verifyAcceleration2(temp);
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error += verifyFrequency(temp);
error += verifySignalDuration(temp);

if (rampHalfCycles < 0)
error += 1;

// Calculate our derived parameters.
if (!error) {

amplitude = gToAccel(acceleration);
if (amplitude > 0.0)

amplitude2 = gToAccel(acceleration2);
else

amplitude2 = -gToAccel(acceleration2);

tl = signalDuration;

// Calculate position when velocity is zero at end of 1/2 cycle...
posFinal = 0.0;
float command = 0.0;
long numComm = 0.0;

t2 = amplitude*tl/amplitude2:
numComm = (long)(commandRate*(tl + t2) + 0.5);
for (k = 0; k < numComm; k++) {

if ((1.0*k)/commandRate <= tl)
command = (amplitude*k)/commandRate;

else if ((1.0*k)/commandRate <= (tl + t2))
command = amplitude*tl - ((1.0*k)/commandRate - tl)*amplitude2;

posFinal += command/commandRate;
}

t3 = sqrt(4.0*posFinal/amplitude2);

numberCommands[0] = (long)(0.5 + rampHalfCycles*commandRate/(2*frequency));
numberCommands[1] = (long)((commandRate*(tl + t2 + t3)) + 0.5);
numberCommands[2] = numberCommands[0];

}
else {

amplitude = 0.0;
amplitude2 = 0.0;
numberCommands[0] = numberCommands[1] = numberCommands[2] = 0;
}

return error;
}

float NewsqrTG: :generateCommand(int phase,long index) {
float velocity = 0.0;

if ((1.0*index)/commandRate <= tl)
velocity = (amplitude*index)/commandRate;

else if ((1.0*index)/commandRate <= tl + t2 + t3/2.0)
velocity = amplitude*tl - ((1.0*index)/commandRate - tl)*amplitude2;
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else if ((1.0*index)/commandRate <= tl + t2 + t3)
velocity = -amplitude2*(t3/2.0) + ((1.0*index)/commandRate - (tl + t2 +

t3/2.0))*amplitude2;

return velocity;
}

void NewsqrTG::getParametersDisplaySize(UI_REGION& size) {
if (size.right < 45)

size.right = 45;
size.bottom += 5;
}

void NewsqrTG::getParameters(int rate,int modal) {
commandRate = rate;

// Create an edit form.
NewsqrEditForm *form = new NewsqrEditForm(this,rate,modal);

*form
+ new UIWBORDER
+ new UIW_TITLE(myName)
+ new UIWSYSTEMBUTTON
+ new UIW_PROMPT(2,1,"Signal Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(28, 1,10,&acceleration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF_BORDER,
NewsqrEditForm: :validateAccel)

+ new UIW_PROMPT(2,2,"Return Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(28,2,10,&acceleration2,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF_BORDER,
NewsqrEditForm: :validateAccel)

+ new UIW_PROMPT(2,3,"Signal Duration (s)",WOF_NO FLAGS)
+ new UIW_NUMBER(28,3,10,&signalDuration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF_BORDER,
NewsqrEditForm: :validateSignalDuration)

+ new UIW_PROMPT(2,4,"Ramp 1/2 cycles",WOF_NO_FLAGS)
+ new UIW_NUMBER(28,4, 10,&rampHalfCycles,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAWOF_BORDER,
NewsqrEditForm: :validateHalfCycles)

+ new UIW_BUTTON(18,5,4,"Ok",BTF_NO_FLAGS,WOF_BORDER,
NewsqrEditForm::generateFunction);

// Give it to the window manager.
*_windowManager + form;
}

void NewsqrTG:: getHeaderDisplaySize(UI_REGION& size) {
AbstractTG: :getHeaderDisplaySize(size);
if (size.right < 72)
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size.right = 72;
size.bottom += 5;
}

void NewsqrTG::displayHeader(UIW_WINDOW *window,int& left, int& top) {
AbstractTG::displayHeader(window,left,top);
*window

+ new UIW_PROMPT(left,top+ 1,"Signal Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+17,top+1,10,&acceleration,NULL,NMF_NOFLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left+29,top+1,"Return Acceleration (g)",WOF NO_FLAGS)
+ new UIW_NUMBER(left+45,top+ 1, 10,&acceleration2,NULL,NMF_NOFLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+2,"Signal Duration (s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+ 17,top+2, 10,&signalDuration,NULL,NMF_NOFLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left+29,top+2,"Signal Displacement (m)",WOF_NOFLAGS)
+ new UIW_NUMBER(left+45,top+2,10,&posFinal,NULL,NMF_NO_FLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+3,"Amplitude (m/s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+ 17,top+3, 10,&amplitude,NULL,NMF_NOFLAGS,

WOF_NON_SELECTABLEIWOF_BORDER);

top += 3;

void NewsqrTG::dumpHeader(char *name,FILE *f) {
AbstractTG::dumpHeader(name,f);
fprintf(f,"Acceleration: %/o6.3f g Signal Duration: %/6.3f s\n",acceleration,

signalDuration);
fprintf(f,"Amplitude: %0/6.3f m/s Ramp 1/2 Cycles: %/od\n\n",amplitude,

rampHalfCycles);
fprintf(f,"Signal Displacement: %/6.3f m",posFinal);

}
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// Title: Sled - Functions
// Author: Karla A. Polutchko
// Date: April, 1993
//$Revision: 1.0 $
/-

// Contents
/-

// Description
/-

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

// $Log: C:/eyl/sled/vcs/newsqrtg.hpv $

// Rev 1.0 16 Nov 1991 19:17:44 rsg
// Bug fixes for bugs encountered during Zinc switch
/-

// Rev 1.7.1.2 28 May 1991 14:30:00 rsg
// Incremental updates.
//
// Rev 1.7.1.1 13 May 1991 16:03:54 rsg
// Debugged trajectory generators.
//
// Rev 1.7.1.0 08 May 1991 13:05:10 rsg
//Incremental updates.

// Rev 1.7 24 Apr 1991 13:33:34 rsg
//Incremental updates.

// Rev 1.6 24Apr 199108:16:58 rsg
//Incremental updates.

// Rev 1.5 22 Apr 1991 08:39:28 rsg
//Incremental updates.
//
// Rev 1.4 09 Apr 1991 14:56:58 rsg
// Deleted derivation of AbstractTG from UIW WINDOW.

// Rev 1.3 09 Apr 1991 10:28:54 rsg
// Documentation fixups.

// Rev 1.2 09Apr 199109:31:36 rsg
// Documentation update.

// Rev 1.1 09 Apr 199108:54:26 rsg
//Incremental update.
#ifndef NEWSQRTGIH/PP //////////////////

#ifndef NEWSQRTG_HPP
#define NEWSQRTG_HPP

// Interface Dependencies -------------------------------------------------

#ifndef UI WINHPP
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#include <ui_win.hpp>
#endif

#ifndef _STDIO H
#include <stdio.h>
#endif

#ifndef ABSTRAJG HPP
#include "abstrajg.hpp"
#endif

// End Interface Dependencies ----------------------------------------------

// Implementation Dependencies -----------------------------------

// End Implementation Dependencies -----------------------------------

class NewsqrTG : public AbstractTG {
public:

NewsqrTG();
-NewsqrTG();

AbstractTG *dupo { return new NewsqrTG0; }

int readHeader(const char *filename);
void writeHeader(const char *filename);

void dumpHeader(char *name.FILE *f);

float generateCommand(long index);
void generateTrajectory(const char *filename);

void getParametersDisplaySize(UI_REGION& size);
void getParameters(int rate,int modal);

void getHeaderDisplaySize(UI_REGION& size);
void displayHeader(UIW_WINDOW *window,int& left, int& top);

float generateCommand(int phase,long index);

int verifyAcceleration(float &max);
int verifyAcceleration2(float &max);
int verifyFrequency(float &min);
int verifySignalDuration(float &max2);
int verifyParameters();

int getWidtho;// { return 36; }
int getHeighto;// { return 11; }

float frequency;
float signalDuration;
float t1;
float t2;
float t3;
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double acceleration;
double acceleration2;
float amplitude;
float amplitude2:
int rampHalfCycles;
float posFinal;

#endif
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// Title: Sled - Functions
// Author: Karla A. Polutchko
// Date: April, 1993
// $Revision: 1.0 $
/-

// Contents
/-

// Description
//
// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

// $Log: C:/eyl/sled/vcs/velstptg.cpv $

// Rev 1.0 16 Nov 1991 19:17:40 rsg
// Bug fixes for bugs encountered during Zinc switch
//
// Rev1.9.1.4 28 May
//Incremental updates.

// Rev1.9.1.3 21May
//Incremental updates.

// Rev 1.9.1.2 15 May
//Incremental updates.
/
// Rev 1.9.1.1

1991 14:29:30

1991 09:12:46

1991 18:07:00 rsg

13 May 1991 16:03:38 rsg
// Debugged trajectory generators.
I-

// Rev 1.9.1.0 08 May 1991 13:04:14
//Incremental updates.
//

// Rev 1.9 27Apr 1991
//Incremental updates.

// Rev 1.8 24 Apr 1991
//Incremental updates.
/-

// Rev 1.7 24Apr 1991
// Incremental updates.

// Rev 1.6 22 Apr 1991
// Incremental updates.
//

13:00:28 rsg

13:33:24 rsg

08:15:30 rsg

08:38:00 rsg

// Rev 1.5 09 Apr 1991 14:56:04 rsg
// Deleted derivation of AbstractTG from UIWWINDOW.
/-

// Rev 1.4 09 Apr 1991 10:23:52 rsg
// Documentation fixups.

// Rev 1.3 09 Apr 1991 09:34:04 rsg
// Documentation update.
H
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// Rev 1.2 09Apr 199108:51:24 rsg
//Incremental update.

H Interface Dependencies -------------------------------------------------

#ifndef VELSTPTG HPP
#include "velstptg.hpp"
#endif

// End Interface Dependencies -----------------------------------------------

// Implementation Dependencies ----------------------------------------------

#ifndef MATH H
#include <math.h>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef STRING H
#include <string.h>
#endif

#ifndef DISPVARSHPP
#include "dispvars.hpp"
#endif

#ifndef SLEDCONV HPP
#include "sledconv.hpp"
#endif

#ifndef TRAJEDITHPP
#include "trajedit.hpp"
#endif

// End Implementation Dependencies -------------------------------

class VelstpEditForm : public TrajEditForm {
public:

VelstpEditForm(VelstpTG *traj,int rate,int flag);

static int validateAccel(void *item, int ccode);
static int validatessVelocity(void *item, int ccode);
static int validateDuration(void *item, int ccode);

private:
int doValidateAccel(void *item, int ccode);
int doValidatessVelocity(void *item, int ccode);
int doValidateDuration(void *item, int ccode);
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VelstpEditForm::VelstpEditForm(VelstpTG *traj,int rate,int flag) :
TrajEditForm(traj,rate,3,3,40,7,flag,0) {

}

int VelstpEditForm::validateAccel(void *item,int ccode) {
UIWNUMBER *number = (UIW_NUMBER *)item;
return (((VelstpEditForm *)number->parent)->doValidateAccel(item, ccode));
}

int VelstpEditForm: :doValidateAccel(void *item, int ccode) {
if (ccode == S_CURRENT)

return (0);

UIWNUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
VelstpEditForm *me = (VelstpEditForm *)(((UIW_NUMBER *)item)->parent);
VelstpTG *mine = (VelstpTG *)me->myTraj;
float max;

if (mine->verifyAcceleration(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The absolute value must be greater than 0.0, but"
" less than /of', value,accelToG(max));

return (-1);
}

else
return 0;

int VelstpEditForm::validatessVelocity(void *item,int ccode) {
UIW_NUMBER *number = (UIW_NUMBER *)item;
return (((VelstpEditForm *)number->parent)->doValidatessVelocity(item, ccode));
}

int VelstpEditForm::doValidatessVelocity(void *item, int ccode) {

if (ccode == S_CURRENT)
return (0);

UIW_NUMBER *field = (UIW NUMBER *)item;
float value = *(float *)field->DataGet();
VelstpEditForm *me = (VelstpEditForm *)(((UIW_NUMBER *)item)->parent);
VelstpTG *mine = (VelstpTG *)me->myTraj;
float max;

if (mine->verifyssVelocity(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%/of is not valid. The absolute value must be greater than 0.0, but"
" less than %f', value,max);

return (-1);
}

else
return 0;

}
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int VelstpEditForm::validateDuration(void *item,int ccode) {
UIWNUMBER *number = (UIW_NUMBER *)item;
return (((VelstpEditForm *)number->parent)->doValidateDuration(item, ccode));
}

int VelstpEditForm::doValidateDuration(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW_NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
VelstpEditForm *me = (VelstpEditForm *)(((UIW_NUMBER *)item)->parent);
VelstpTG *mine = (VelstpTG *)me->myTraj;

if (mine->verifyDurationo) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The value must be greater than %f', value,0.0);
return -1;
}

else
return 0;

VelstpTG: :VelstpTG() : AbstractTGO {
strcpy(myName,"Velocity Step");
ssVelocity = 0.0;
acceleration = 0.010:
duration = 0.0;

rampHalfCycles = 0;
validAxis = Sled;
}

VelstpTG: :-VelstpTG() {
}

int VelstpTG::readHeader(const char *filename) {
FILE *f;

// First, read the data of our ancestor(s).
if (AbstractTG::readHeader(filename))

return 1;

// Open the file for reading. Note that an existing file is assumed.
f = fopen(filename,"rb");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);

// Read our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to read is the
// difference between our size and that of our ancestor.

308



char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(VelstpTG)-sizeof(AbstractTG);
fread(ptr,size, 1,f);

// Close the file
fclose(f);
return 0;

void VelstpTG: :writeHeader(const char *filename) {
FILE *f;

// First, write the data of our ancestor(s).
AbstractTG::writeHeader(filename);

// Open the file for writing. Note that an existing file is assumed.
f = fopen(filename,"rb+");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);

// Write our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to write is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(VelstpTG)-sizeof(AbstractTG);
fwrite(ptr,size, 1,f);
// Close the file
fclose(f);

int VelstpTG::verifyDuration() {

if (duration < 0.0)
return 1; //Invalid.

else
return 0;// Okay

}

int VelstpTG: :verifyssVelocity(float &max) {

max = sqrt((fabs(gToAccel(acceleration)))*(getTrackLengtho-0. 1));
if (ssVelocity > max II ssVelocity > getMaximumVelocity())
return 1;// Invalid.

else
return 0;// Okay

int VelstpTG: :verifyAcceleration(float &max) {
max = getMaximumAccel();
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if (fabs(acceleration) == 0.0 II fabs(acceleration) > accelToG(max))
return 1; //Invalid.

else
return 0;// Okay.

}

int VelstpTG::verifyParameters() {
int error = 0;

float temp;
error = verifyAcceleration(temp);

error += verifyssVelocity(temp);
error += verifyDuration();

if ((ssVelocity*duration + ssVelocity*ssVelocity/fabs(gToAccel(acceleration))) >
(getTrackLengtho-0. 1))

error += 1;
tramp = ssVelocity/fabs(gToAccel(acceleration));

if ((1/(4*tramp + 2*duration)) > getMaximumFrequency())
error += 1;

// Calculate our derived parameters.
if (!error) {

amplitude = gToAccel(acceleration);
index1 = (tramp + duration)*commandRate;
index2 = (3*tramp + 2*duration)*commandRate;

numberCommands[0] = 0.0;
numberCommands[ 1] = (long)((commandRate*(4*tramp + 2*duration)) + 0.5);
numberCommands[21 = numberCommands[0];

else {
amplitude = 0.0;
numberCommands[0] = numberCommands[1] = numberCommands[2] = 0;

}
return error;
}

float VelstpTG::generateCommand(int phase,long index) {
float velocity = 0.0;

if ((1.0*index)/commandRate <= tramp)
velocity = (amplitude*index)/commandRate;

else if ((1.0*index)/commandRate <= (tramp + duration))
velocity = amplitude/fabs(amplitude)*ssVelocity;

else if ((1.0*index)/commandRate <= (3*tramp + duration))
velocity = amplitude/(fabs(amplitude))*ssVelocity -amplitude*(index -

index 1)/commandRate;
else if ((1.0*index)/commandRate <= (3*tramp + 2*duration))

velocity = -amplitude/fabs(amplitude)*ssVelocity;
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else if ((1.O*index)/commandRate <= (4*tramp + 2*duration))
velocity = -amplitude/(fabs(amplitude))*ssVelocity + amplitude*(index - index2)/commandRate;

return velocity;
}

void VelstpTG: :getParametersDisplaySize(UIREGION& size) {
if (size.right < 45)

size.right = 45;
size.bottom += 5;
}

void VelstpTG: :getParameters(int rate,int modal) {
commandRate = rate;

// Create an edit form.
VelstpEditForm *form = new VelstpEditForm(this,rate,modal);

*form
+ new UIWBORDER
+ new UIW_TITLE(myName)
+ new UIW SYSTEM BUTTON
+ new UIW_PROMPT(2,1,"Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(30,1,8,&acceleration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF_BORDER,
VelstpEditForm: :validateAccel)

+ new UIW_PROMPT(2,2,"Steady State Velocity (m/s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(30,2,8,&ssVelocity,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOFBORDER,
VelstpEditForm: :validatessVelocity)

+ new UIW_PROMPT(2,3,"Steady State Duration (sec)",WOF_NO_FLAGS)
+ new UIWNUMBER(30.3,8,&duration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF_BORDER,
VelstpEditForm: :validateDuration)

+ new UIW BUTTON(18,4,4,"Ok",BTF_NO_FLAGS,WOF_BORDER,
VelstpEditForm::generateFunction);

// Give it to the window manager.
*_windowManager + form;
}

void VelstpTG::getHeaderDisplaySize(UI_REGION& size) {
AbstractTG: :getHeaderDisplaySize(size);
if (size.right < 72)

size.right = 72:
size.bottom += 5:
}

void VelstpTG::displayHeader(UIW_WINDOW *window,int& left, int& top) {
AbstractTG::displayHeader(window,left,top);
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*window
+ new UIW_PROMPT(left,top+1,"Acceleration (g)",WOF NO_FLAGS)
+ new UIW_NUMBER(left+25,top+ 1, 10,&acceleration,NULL,NMF_NO _FLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+2,"Steady State Velocity (m/s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+25,top+2,10,&ssVelocity,NULL,NMF_NO_F LAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+3,"Duration (s)",WOF_NO FLAGS)
+ new UIW_NUMBER(left+25,top+3, 10,&duration,NULL,NMF_NO_FL AGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left,top+4,"Ramp Duration (s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+25,top+4, 10,&tramp,NULL,NMF_NO_FLAG S,

WOF_NON_SELECTABLEIWOF_BORDER);

top += 3;

}

void VelstpTG::dumpHeader(char *name,FILE *f) {
AbstractTG: :dumpHeader(name,f);
fprintf(f,"Acceleration: %6.3f g Velocity: %7.4f Hz\n",acceleration,

ssVelocity);
fprintf(f,"Amplitude: %/o6.3f m/s Ramp 1/2 Cycles: %/od\n\n",amplitude,

rampHalfCycles);

}
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// Title: Sled - Functions
// Author: Karla A. Polutchko
// Date: April, 1993
// $Revision: 1.0 $
/-

// Contents
//
// Description

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

// $Log: C:/eyl/sled/vcs/velstptg.hpv $

// Rev 1.0 16 Nov 1991 19:17:44 rsg
// Bug fixes for bugs encountered during Zinc switch

// Rev 1.7.1.2 28 May 1991 14:30:00 rsg
//Incremental updates.

// Rev 1.7.1.1 13 May 1991 16:03:54 rsg
// Debugged trajectory generators.
//
// Rev 1.7.1.0 08 May 1991 13:05:10 rsg
//Incremental updates.
//
// Rev 1.7 24 Apr 1991 13:33:34 rsg
//Incremental updates.

// Rev 1.6 24 Apr 199108:16:58 rsg
//Incremental updates.
//
// Rev 1.5 22 Apr 1991 08:39:28 rsg
//Incremental updates.

// Rev 1.4 09 Apr 1991 14:56:58 rsg
// Deleted derivation of AbstractTG from UIW_WINDOW.

// Rev 1.3 09 Apr 1991 10:28:54 rsg
// Documentation fixups.
//
// Rev 1.2 09 Apr 199109:31:36 rsg
// Documentation update.

// Rev 1.1 09Apr 199108:54:26 rsg
//Incremental update.

#ifndef VELSTPTG HPP
#define VELSTPTGHPP

// Interface Dependencies ----------------------------------------------

#ifndef UI WIN HPP
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#include <ui_win.hpp>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef ABSTRAJG HPP
#include "abstrajg.hpp"
#endif

// End Interface Dependencies -----------------------------------------------

// Implementation Dependencies ----------------------------------------------

// End Implementation Dependencies -------------------------------------------

class VelstpTG : public AbstractTG {
public:

VelstpTG();
-VelstpTG();

AbstractTG *dup() { return new VelstpTGO; }

int readHeader(const char *filename);
void writeHeader(const char *filename);

void dumpHeader(char *name,FILE *f);

float generateCommand(long index);
void generateTrajectory(const char *filename);

void getParametersDisplaySize(UI_REGION& size);
void getParameters(int rate,int modal);

void getHeaderDisplaySize(UIREGION& size);
void displayHeader(UIW_WINDOW *window,int& left, int& top);

float generateCommand(int phase,long index);

int verifyAcceleration(float &max);
int verifyssVelocity(float &max);
int verifyDuration();
int verifyParameters();

int getWidtho;// { return 36: }
int getHeighto;// { return 11; )

float ssVelocity;
float duration;

float acceleration;
float amplitude;

float tramp;
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float rampHalfCycles;
long index 1;
long index2;

#endif
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// Title: Sled - Functions
// Author: Karla Polutchko
// Date: November, 1991
//$Revision: 1.0 $
/-

// Contents

// Description

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

H $Log: C:/eyl/sled/vcs/steptg.cpv $

H Rev 1.0 16 Nov 1991 19:17:50 rsg
// Bug fixes for bugs encountered during Zinc switch

// Interface Dependencies -------------------------------------

#ifndef STEPTGHPP
#include "steptg.hpp"
#endif

// End Interface Dependencies ----------------------------------------

H Implementation Dependencies ----------------------------------------

#ifndef MATH H
#include <math.h>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef STRING H
#include <string.h>
#endif

#ifndef DISPVARSHPP
#include "dispvars.hpp"
#endif

#ifndef SLEDCONVHPP
#include "sledconv.hpp"
#endif

#ifndef TRAJEDITHPP
#include "trajedit.hpp"
#endif

// End Implementation Dependencies ----------------------------------------
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class StepEditForm : public TrajEditForm {
public:

StepEditForm(StepTG *traj,int rate,int flag);

static int validateAccel(void *item, int ccode);
static int validateFrequency(void *item, int ccode);
static int validateHalfCycles(void *item, int ccode);

private:
int doValidateAccel(void *item, int ccode);
int doValidateFrequency(void *item, int ccode);
int doValidateHalfCycles(void *item, int ccode);
);

StepEditForm::StepEditForm(StepTG *traj,int rate,int flag) :
TrajEditForm(traj,rate,3,3,36,7,flag,0) {

}

int StepEditForm: :validateAccel(void *item,int ccode) {
UIW_NUMBER *number = (UIW_NUMBER *)item;
return (((StepEditForm *)number->parent)->doValidateAccel(item, ccode));
}

int StepEditForm::doValidateAccel(void *item, int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW_NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
StepEditForm *me = (StepEditForm *)(((UIW_NUMBER *)item)->parent);
StepTG *mine = (StepTG *)me->myTraj;
float max;

if (mine->verifyAcceleration(max)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The absolute value must be greater than 0.0, but"
" less than %f', value,accelToG(max));

return (-1);
}

else
return 0;

int StepEditForm::validateFrequency(void *item,int ccode) {
UIW_NUMBER *number = (UIW_NUMBER *)item;
return (((StepEditForm *)number->parent)->doValidateFrequency(item, ccode));
}

int StepEditForm::doValidateFrequency(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW_NUMBER *field = (UIW_NUMBER *)item;
float value = *(float *)field->DataGet();
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StepEditForm *me = (StepEditForm *)(((UIW_NUMBER *)item)->parent);
StepTG *mine = (StepTG *)me->myTraj;
float min;

if (mine->verifyFrequency(min)) {
_errorSystem->ReportError(field->windowManager, -1,

"%f is not valid. The value must be greater than /of, but less than"
" %f', value,min,getMaximumFrequencyO);

return (-1);
}

else
return 0;

}

int StepEditForm::validateHalfCycles(void *item,int ccode) {
UIW_NUMBER *number = (UIW_NUMBER *)item;
return (((StepEditForm *)number->parent)->doValidateHalfCycles(item, ccode));
}

int StepEditForm::doValidateHalfCycles(void *item,int ccode) {
if (ccode == S_CURRENT)

return (0);

UIW_NUMBER *field = (UIW NUMBER *)item;
int value = *(int *)field->DataGet();

if (value >= 0 && value < 100)
return 0:

else {
errorSystem->ReportError(field->windowManager, 0,

"%O/d is not valid. The value must be at least 0, but less than 100",
value, 100);

return (-1);

}

StepTG::StepTGO() : AbstractTGO {
strcpy(myName,"Damped Step");
frequency = 1.0;
amplitude = 0.0;
acceleration = 0.1;
rampHalfCycles = 0;
validAxis = Sled:

StepTG::-StepTG() {
}

int StepTG::readHeader(const char *filename) {
FILE *f;

// First, read the data of our ancestor(s).
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if (AbstractTG: :readHeader(filename))
return 1;

// Open the file for reading. Note that an existing file is assumed.
f = fopen(filename,"rb");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK_SET);

// Read our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to read is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(StepTG)-sizeof(AbstractTG);
fread(ptr,size, 1,f);

// Close the file
fclose(f);
return 0;
}

void StepTG: :writeHeader(const char *filename) {
FILE *f;

// First, write the data of our ancestor(s).
AbstractTG: :writeHeader(filename);

// Open the file for writing. Note that an existing file is assumed.
f = fopen(filename,"rb+");

// Seek past our ancestor(s) data. Note the true data size of the our
// ancestor(s) is two less that the size of our immediate ancestor.
fseek(f,sizeof(AbstractTG)-2,SEEK SET);

// Write our portion of the header. To do this, we must find our data,
// which is located after our ancestor. The size to write is the
// difference between our size and that of our ancestor.
char *ptr = (char *)this;
ptr += sizeof(AbstractTG);
int size = sizeof(StepTG)-sizeof(AbstractTG);
fwrite(ptr,size, 1,f);
// Close the file

fclose(f);

int StepTG: :verifyFrequency(float &min) {
min = sqrt(fabs(gToAccel(acceleration))/(4*PI*(getTrackLengtho-0. 1)) );

if (frequency < min II frequency > getMaximumFrequency())
return 1;// Invalid.

else
return 0O// Okay
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int StepTG: :verifyAcceleration(float &max) {
max = (getTrackLengtho-0. 1)*4*PI*frequency*frequency;

if (max > getMaximumAccel()
max = getMaximumAccel();

if (fabs(acceleration) == 0.0 I1 fabs(acceleration) > accelToG(max))
return 1;// Invalid.

else
return 0; // Okay.

}

int StepTG::verifyParameters() {
int error = 0;

float temp;
error = verifyAcceleration(temp);
error += verifyFrequency(temp);

if (rampHalfCycles < 0)
error += 1;

// Calculate our derived parameters.
if (!error) {

amplitude = gToAccel(acceleration)/(2*PI*frequency);

numberCommands[0] = (long)(0.5 +

rampHalfCycles*commandRate/(2*frequency));
numberCommands[l] = (long)(commandRate/frequency + 0.5);
numberCommands[2] = numberCommands[0];

else {
amplitude = 0.0;
numberCommands[0] = numberCommands[l] = numberCommands[2] = 0;

return error:
}

float StepTG::generateCommand(int phase,long index) {
// float velocity = amplitude*( 1-cos(index*2*PI*frequency/commandRate));
// switch (phase) {
// case 0:
// // Note that while rampHalfCycles may be zero, the following division
// // will not be called, because numberCommands[0] will also be 0, and
// //thus this function won't be called. The same applies in case 2.
// velocity = (velocity*index)/numberCommands[phase];
// if (rampHalfCycles & 1)
// velocity = -velocity;
// return velocity:
// case 1:
// return velocity;
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// case 2:
// velocity -= (velocity*index)/numberCommands[phasel];
// return velocity;
// }

if (phase != 1)
return 0.0;

else
return amplitude*(1-cos(index*2*PI/numberCommands[1]));

}

void StepTG: :getParameters(int rate,int modal) {
commandRate = rate;

// Create an edit form.
StepEditForm *form = new StepEditForm(this,rate, modal);

*form
+ new UIW BORDER
+ new UIWTITLE(myName)
+ new UIW SYSTEMBUTTON
+ new UIW_PROMPT(2,1,"Acceleration (g)",WOF_NO_FLAGS)
+ new UIW_NUMBER(22, 1, 10,&acceleration,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOFBORDER,
StepEditForm: :validateAccel)

+ new UIWPROMPT(2,2,"Frequency (Hz)",WOF_NO_FLAGS)
+ new UIW_NUMBER(18,2,10,&frequency,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NO_ALLOCATE_DATAIWOF _ BORDER,
StepEditForm: :validateFrequency)

+ new UIWPROMPT(2,3,"Ramp 1/2 cycles",WOF_NO_FLAGS)
+ new UIW_NUMBER(18,3,5,&rampHalfCycles,NULL,NMF_NO_FLAGS,

WOF_AUTO_CLEARIWOF_NOALLOCATE_DATAIWOF_BORDER,
StepEditForm: :validateHalfCycles)

+ new UIW_BUTTON(16,4,4,"Ok",BTF_NO_FLAGS,WOF_BORDER,
StepEditForm::generateFunction);

// Give it to the window manager.
*_windowManager + form;
}

void StepTG::getHeaderDisplaySize(UI REGION& size) {
AbstractTG:: getHeaderDisplaySize(size);
if (size.right < 72)

size.right = 72;
size.bottom += 3;

void StepTG::displayHeader(UIW_WINDOW *window,int& left, int& top) {
AbstractTG: :displayHeader(window,left,top);
*window

+ new UIW_PROMPT(left,top+ 1,"Acceleration (g)",WOF_NO_FLAGS)



+ new UIW_NUMBER(left+17,top+1,10,&acceleration,NULL,NMF_NO _FLAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW PROMPT(left,top+2,"Frequency (Hz)",WOF NO FLAGS)
+ new UIWNUMBER(left+17,top+2,10,&frequency,NULL,NMF_NO_F LAGS,

WOF_NON_SELECTABLE WOF_BORDER)
+ new UIW_PROMPT(left+29,top+1,"Amplitude (m/s)",WOF_NO_FLAGS)
+ new UIW_NUMBER(left+45,top+ 1,10,&amplitude,NULL,NMF_NO_F LAGS,

WOF_NON_SELECTABLEIWOF_BORDER)
+ new UIW_PROMPT(left+29,top+2,"Ramp 1/2 cycles",WOF_NO_FLAGS)
+ new UIWNUMBER(left+45,top+2,5,&rampHalfCycles,NULL,NMF_ NO_FLAGS,

WOF_NON_SELECTABLE WOF_BORDER);

top += 3;
}

void StepTG::dumpHeader(char *name,FILE *f) {
AbstractTG: :dumpHeader(name,f);
fprintf(f,"Acceleration: %/o6.3f g Frequency: %7.4f Hz\n",acceleration,

frequency);
fprintf(f,"Amplitude: 0/6.3f m/s Ramp 1/2 Cycles: /od\n\n",amplitude,

rampHalfCycles);
}

322



// Title: Sled - Functions
// Author: Karla Polutchko
// Date: November, 1991
// $Revision: 1.0 $
//
// Contents
//
// Description

// Copyright (C) 1991 Payload Systems Inc. All Rights Reserved

// $Log: C:/eyl/sled/vcs/steptg.hpv $
/-

// Rev 1.0 16 Nov 1991 19:17:54 rsg
// Bug fixes for bugs encountered during Zinc switch

// Rev 1.7.1.2 28 May 1991 14:30:00 rsg
// Incremental updates.

// Rev 1.7.1.1 13 May 1991 16:03:54 rsg
// Debugged trajectory generators.
//
// Rev 1.7.1.0 08 May 1991 13:05:10 rsg
//Incremental updates.

// Rev 1.7 24 Apr 1991 13:33:34 rsg
// Incremental updates.
//
// Rev 1.6 24Apr 199108:16:58 rsg
// Incremental updates.
//
// Rev 1.5 22 Apr 1991 08:39:28 rsg
//Incremental updates.

// Rev 1.4 09 Apr 1991 14:56:58 rsg
// Deleted derivation of AbstractTG from UIWWINDOW.

// Rev 1.3 09 Apr 1991 10:28:54 rsg
// Documentation fixups.
//
// Rev 1.2 09Apr 199109:31:36 rsg
// Documentation update.
//
// Rev 1.1 09Apr 199108:54:26 rsg
//Incremental update.

#ifndef STEPTGHPP
#define STEPTGHPP

// Interface Dependencies -------------------------------------------------

#ifndef UIWINHPP
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#include <ui_win.hpp>
#endif

#ifndef STDIO H
#include <stdio.h>
#endif

#ifndef ABSTRAJG HPP
#include "abstrajg.hpp"
#endif

// End Interface Dependencies ----------------------------------------

// Implementation Dependencies ----------------------------------------------

// End Implementation Dependencies -------------------------------------------

class StepTG : public AbstractTG {
public:

StepTG();
-StepTG();

AbstractTG *dupo { return new StepTGO; }

int readHeader(const char *filename);
void writeHeader(const char *filename);

void dumpHeader(char *name,FILE *f);

float generateCommand(long index);
void generateTrajectory(const char *filename);

void getParameters(int rate,int modal);

void getHeaderDisplaySize(UI_REGION& size);
void displayHeader(UIW_WINDOW *window,int& left, int& top);

float generateCommand(int phase,long index);

int verifyAcceleration(float &max);
int verifyFrequency(float &min);
int verifyParameters();

int getWidtho;// { return 36; }
int getHeighto;// { return 8; }

float frequency;
float acceleration;
float amplitude;
int rampHalfCycles;
};#eif

#endif
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APPENDIX H: HUMAN USE DOCUMENTATION

This appendix contains the informed consent statement that was signed by each subject
prior to any testing.
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INFORMED CONSENT STATEMENT

You have been asked to participate in an experiment aimed at better understanding the
workings of the inner ear and the eyes. Your participation is purely voluntary and you
are free to withdraw at any time. In the experiment, you will be seated and strapped into
a linear acceleration device (sled) either in the upright or supine position and asked to
look straight ahead. The sled may or may not move. You may be asked to look at a
moving display and you may be asked to indicate your perception of movement. At the
end of the experiment, you may be asked to discuss how you perceived various stages of
the experiment.

Please feel free to ask any questions you care to about the experiment. When the sled is
moving, you can stop it at any time by pushing the "panic button". If at any time, you
experience any discomfort or have any misgivings about continuing the
experiment, we ask that you tell us - we will stop the test at any time you like.

Your eye movements will be measured using soft contact lens search coils, the most
accurate method available today. The cornea of your eye will be anaesthetized using eye
drops. The anesthetic used is Proparacain. If you have any allergies to this anesthetic,
you should withdraw from participation in this experiment. The lens, in which a tiny
search coil is embedded, will be applied to your eye. This will be worn for no longer
than thirty minutes. Before application and after removal, your eyes will be examined by
an optometrist to rule out any possible corneal abrasion. There is a less than one percent
chance that the wearing of the soft contact lens may cause a slight corneal abrasion. If
this does occur, a prophylactic antibiotic and covering will be applied overnight. Finally,
we may also video your eye movements, using a small video camera with a low level
light source.

"In the unlikely event of injury resulting from participation in this research, I understand
that medical treatment will be available from the MIT Medical Department, including
first aid, emergency treatment and follow-up care as needed, and that my insurance
carrier may be billed for the cost of such treatment. However, no compensation can be
provided for medical care apart from the foregoing. I further understand that making
such medical treatment available, or providing it, does not imply that such injury is the
investigator's fault. I also understand that by my participation in this study I am not
waiving any of my legal rights (for more information, call the Institute's Insurance and
Legal Affairs Office at 253-2822). I understand that I may also contact the Chairman of
the Committee on the Use of Humans as Experimental Subjects, Dr. H. Walter Jones
(MIT E23-389, 253-6787), "

I have been informed as to the procedures and purpose of this experiment and agree to
participate.

Signed:

Date:

Witness:
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