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We discuss new results in the physics of charged-particle acceleration by shock waves propagating at an arbi-
trary angle to the magnetic field. For the usually discussed case of a parallel shock acceleration by a supernova
blast wave up to the knee in the cosmic-ray spectrum requires very special assumptions such as a strong in-
crease in the magnetic field, perhaps due to excitation from the streaming cosmic rays. We show that no such
special circumstances are required when one considers acceleration at nearly perpendicular shocks.

1. Introduction

Diffusive acceleration of charged particles at collisionless shocks, at which particles are accelerated by the
converging flows and plasma compressions, naturally explains the observed universal power law of cosmic
rays up to the knee in the spectrum at about 10

���
eV (see, e.g., the reviews by Drury [1], Blandford and

Eichler [2]; and Jones & Ellison [3]). The acute angle between the shock-normal direction and the incident
magnetic fields (

�����
) plays an important role in determining the resulting accelerated-particle spectrum. It was

shown by Jokipii [4, 5] that the acceleration rate depends strongly on
�����

and is the highest when the shock
is perpendicular (

���	��

�����
). Thus, given a particular time interval over which to accelerate particles, those

with highest energy will originate from the perpendicular shock.

An important issue in diffusive shock acceleration at nearly perpendicular shocks has been the well-known
injection threshold problem. The problem arises because, until recently, it was assumed that particles move
essentially along the lines of force which are convecting through the shock. Therefore, it was thought that there
was no means by which low-energy particles could encounter the shock several times, which is required for
efficient particle acceleration.

Here we show that there is actually no such injection problem and, in fact, the injection does not depend
strongly on the shock-normal angle. This can be understood in terms of the increased cross-field transport
arising from so-called field-line random walk due to the large-scale (order of a parsec) turbulent interstellar
magnetic field.

2. Analytical Considerations

The main assumption in diffusive shock acceleration is that the pitch-angle distribution is nearly isotropic. By
requiring the diffusive streaming anisotropy to be small, one can readily derive an expression for the ”injection
velocity,” ��� ��� (c.f. [6]). The most general expression is given by:

� � ��� 
���� � ����� �"!#%$'&)( ! �*�	� ��+ �	,.-/�"0213!4$'&5( ! �*�	�7698 $�! �*���: �"0;$'&5( ! ����� � �	, 6<8 $ ! �*�	�>= ! ? ��@ ! (1)

where
�A0

, and
�	,

, are the components of the diffusion tensor perpendicular and parallel to the mean magnetic
field, respectively, and the antisymmetric component of the diffusion tensor is

� # 
CB�D<EGF��
.

For the case in which the correlation scale of the turbulent magnetic field is much larger than the gyroradius of
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Figure 1. (A) The injection velocity derived from the diffusive streaming anisotropy for the case of field-line random walk
(solid line) normalized to that at a parallel shock. The dashed curve assumes the scatter-free approximation. See text for
details. The right panel (B) is the acceleration rate, normalized to that at a parallel shock, as a function of H�IKJ .
the particles of interest, it has been shown from numerical simulations that

�40 F �L,
is independent of energy [6].

Thus, taking M 
 �A0 F �L,�N � and O 
 +3� F*� 1'P	, DQE , where
P	,

is the parallel mean-free path and
D�E

is the Larmor
radius, (1) can be rewritten as:

� � ��� 
 � � ���'R , ����� +�� F O 1�!4$�&)( ! � ��� � $'&5( ! � ��� 698 $�! � ���: M $'&5( ! � ��� � 6<8 $ ! � ���>= ! ? (2)

where � � ���'R , 
S�T� � is the injection velocity for a parallel shock.

Shown in left panel of Figure 1 (A) is the solution to (2) for O 
 � �G� and M 
S�>U ��V . The dashed curve is
$�W 6X� ���

,
which is the scatter-free approximation which is clearly invalid for the case of a turbulent magnetic field. Note
that at low-energies, the injection velocity at a perpendicular shock approaches

�T� � , which is the same as that
obtained for a parallel shock [7].

Thus, we can conclude that enhanced motion normal to mean field by field-line random walk significantly
decreases the injection velocity threshold for acceleration. Thus, the theory predicts that there should not be an
injection problem at nearly perpendicular shocks.

The acceleration rate, YGZ9[�[ , in diffusive shock acceleration is given by

Y Z<[�[ 
 �
\ Z9[�[^] �_!��L, 698 $ ! �*�	� � �"0`$'&)( ! �*�	� (3)

Thus, taking Y Z9[�[ R , , and to be the acceleration rate at a parallel shock (
�G���a
b�

), and M 
 �A0 F �L, (as before),
we obtain

Y�Z9[�[Y Z9[�[ R , 

�6<8 $ ! � �	� � M $'&5( ! � ��� (4)

Equation (4) is plotted as a function of
� �	�

for the case of M 
��>U ��V . in the right panel of Figure 1 (B). Clearly
the acceleration rate is a maximum at perpendicular shocks. Therefore, we conclude that perpendicular shocks
are both efficient and rapid accelerators of charged particles are most important in producing high-energy
cosmic rays in a wide variety of astrophysical plasmas.
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Figure 2. Downstream energy spectra for test-particle numerical simulations. (A) Steady-state spectra obtained from
simulations using different values of the shock-normal angle. (B) Time-dependent spectra for two different shock-normal
angles and weaker turbulence. These figures are from Giacalone [8].

3. Numerical Calculations

3.1 Test-Particle Simulations

We now consider non-diffusive test-particle numerical simulations to better address the physics of acceleration
at low energies. This work has recently appeared in the Astrophysical Journal ([8]). In these calculations, the
trajectories of an ensemble of test particles are integrated by numerically solving the Lorentz force on each
particle using pre-specified electric and magnetic fields. The mean magnetic field makes an angle

�T�	�
with

respect to the shock-normal direction. Superimposed on this is a fluctuating component that is determined
from a pre-specified power spectrum that resembles the usual Kolmorov spectrum. The correlation scale of
the turbulent magnetic field is taken to be 2000

� � F�c � , where
� � is the upstream flow speed and

c � is the ion
cyclotron frequency. Both components satisfy Maxwell’s equations. Test particles (protons) are released with
an energy of 3 times the plasma-ram energy in the local fluid frame just behind the shock front. Each particle’s
trajectory is integrated until it escapes downstream by convection (based on a probability of return criterion),
or reaches an arbitrary high-energy cutoff (taken to be

V;d � � �
times the plasma-ram energy).

Figure 2 is from Giacalone [8]. The left panel (A) shows the stead-state energy spectra downstream of the shock
for 7 numerical simulations in which the only varying parameter is

� ���
. Note that the spectra for the cases of�*���e
S����f ��g �*f'�����

all lie on top of one another indicating that there is no dependence on this parameter at all
for quasi-parallel shocks. The right panel (B) is for the case of a time-dependent acceleration process. Here,
weaker turbulence was used and two different shock-normal angles are considered (as indicated).

The results shown in Figure 2 indicate the injection energy, and therefore, the acceleration efficiency does not
have a strong dependence on the shock-normal angle. However, as shown in the right panel of Figure 2, for
any given time interval to accelerate the particles, perpendicular shocks produce the highest-energy particles.
This is because, as we discussed above, the acceleration rate is strongly dependent on the shock normal angle,
provided

� 0 Nh�	,
. This is discussed further in Giacalone [8].
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3.2 Self-Consistent Hybrid Simulations

Recently, Giacalone [10] performed massive-scale two-dimensional hybrid simulations of perpendicular shocks
propagating into a turbulent upstream magnetic field. It was shown that a fraction of thermal particles encoun-
tering the shock are accelerated to high energies. The physics of this process is similar to that which we have
already described above. However, the source of the high-energy particles comes directly from the thermal
population, which had not been seen in previous self-consistent plasma simulations. It has been long known
that a fraction of thermal ions are specularly reflected by the shock and begin to gyrate within the shock ramp
before becoming thermalized downstream. For the case in which the shock moves into an upstream region
containing large-scale magnetic fluctuations, some of these ions can move upstream along these lines of force
before returning to the shock. These ions can gain considerable energy because they can achieve multiple
interactions with the shock.

The efficiency for the acceleration in these large-scale hybrid simulations is difficult to estimate because the
spatial domain is still rather limited by computation resources. However, it was estimated that the efficiency is
probably comparable to that obtained for a parallel shock, or about 10-20% [11].

4. Summary

We have addressed the physics of charged-particle acceleration by shocks. We have shown that the perpen-
dicular shocks are as efficient as parallel shocks in accelerating particles to high energies using reasonable
parameters. For these same parameters, perpendicular shocks are much more rapid accelerators. Thus, we
conclude that perpendicular shocks are important sites of acceleration and can produce high-energy cosmic
rays in a wide variety of astrophysical plasmas.
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