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Abstract

BPS and non-BPS orbits for extremal black-holes in N = 2 Maxwell-
Einstein supergravity theories (MESGT) in five dimensions were classified
long ago by the present authors for the case of symmetric scalar manifolds.
Motivated by these results and some recent work on non-supersymmetric
attractors we show that attractor equations in N=2 MESGTs in d = 5
do indeed possess the distinct families of solutions with finite Bekenstein-
Hawking entropy. The new non-BPS solutions have non-vanishing central
charge and matter charge which is invariant under the maximal compact
subgroup K̃ of the stabilizer H̃ of the non-BPS orbit. Our analysis covers
all symmetric space theories G/H such that G is a symmetry of the action.
These theories are in one-to-one correspondence with (Euclidean) Jordan
algebras of degree three. In the particular case of N = 2 MESGT with
scalar manifold SU∗(6)/USp(6) a duality of the two solutions with regard
to N = 2 and N = 6 supergravity is also considered.
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1 Introduction

Extremal black hole solutions of supergravity theories exhibit an attractor
mechanism” [1] in their evolution towards the horizon, in which the scalar
fields move from their ( arbitrary) asymptotic value φ∞ toward a critical
value

r → rH ⇒ φ(r) → φc(q)

which is determined by the critical points of the black hole potential function
[2, 3] V (φ, q) such that φc(q) is a solution of

∂iV ≡ ∂

∂φi
V = 0

The Bekenstein-Hawking area entropy S is then given by

S ∼ V |∂iV =0 (1 - 1)

in d = 4 and
S ∼ V 3/4 |∂iV =0 (1 - 2)

in d = 5.
For the case of scalar fields described by symmetric spaces of the corre-

sponding geometry of vector multiplets, the value of the entropy is actually
related to some invariants ( cubic in d = 5 and quartic in d = 4) of the repre-
sentation R of the charge vector of the black hole (B-H) charges [13, 12, 4, 8].
For fixed non-vanishing values of these invariants, the charge vectors describe
a (dimR − 1) dimensional orbits whose nature is strictly related to the su-
persymmetry properties of the critical point. It was pointed out in [4] that
different orbits of charge vectors correspond to different BPS and non-BPS
configurations. Such non-BPS configurations have been recently found in
d = 4 in some particular cases [14, 16, 15, 18, 17, 3, 19, 20], and this has
prompted further study in this direction. For example, in a recent work
[8] it was shown that the N = 8 attractors have in d = 4 two solutions, of
”maximal” symmetry, the 1/8 BPS attractor with SU(2)×SU(6) symmetry
and the non-BPS attractor with USp(8) symmetry. These symmetry groups
are the maximal compact subgroups of the stabilizers E6(2) and E6(6) of the
two orbits 3

E7(7)

E6(2)

3We use the standard mathematical notation for labelling non-compact real forms of Lie
groups. The bracket in the subscript is the difference between the number of non-compact
generators and compact generators.
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and
E7(7)

E6(6)

found in [4]. They correspond to a positive and a negative value of the
quartic invariant I4 in the 56 dimensional representation of the charge vector
of the N = 8 theory. The analysis of the four dimensional N = 2 MESGTs
and their BPS and non-BPS orbits and attractors is treated in [5].

In this paper we will study the five dimensional supergravity theories.
For the N = 8 theory there is only one orbit with non-vanishing entropy
which is [4]

E6(6)

F4(4)

The attractor nature of this orbit was derived in [10] where a solution of the
attractor equation was shown to have USp(6)×USp(2) symmetry which is
the maximal compact subgroup of F4(4)

4. This corresponds to a 1/8 BPS
attractor of the N = 8 theory in d = 5. Contrary to the four dimensional
case no other solution exists for the attractor equation, in accordance with
the analysis of [4]. However, in [4], it was shown that there exist two classes
of orbits for the N = 2 MESGTs with symmetric scalar manifolds in d = 5.
These orbits correspond to extremal BPS and non-BPS attractors in d =
5. In this paper we find the explicit solutions to the attractor equations
corresponding to these orbits.

In section 2 we shall first review the real special geometry of N = 2
MESGTs as first formulated by Günaydin, Sierra and Townsend (GST). In
section 3 we reproduce the classification of the orbits with non-vanishing
entropy using the theory of Jordan algebras. The section 4 contains our
main results on the solutions of the attractor equations corresponding to
the orbits classified in [4]. In section 5 we discuss the scalar mass spectrum
of the solutions. In section 6 we consider the attractor equations for self-dual
strings in d = 6 and in section 7 a concluding summary is given.

2 Geometry and symmetries of N = 2 Maxwell-

Einstein supergravity theories in five dimensions

In this section we will review symmetry groups of N = 2 MESGT’s in five
and four dimensions whose scalar manifolds are symmetric spaces. The

4We should note that the orbits of maximal supergravities in D dimensions were also
studied in [11]
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MESGT’s describe the coupling of an arbitrary number n of (Abelian) vec-
tor multiplets to N = 2 supergravity and five dimensional MESGT’s were
constructed in [6]. The bosonic part of the Lagrangian can be written as [6]

e−1Lbosonic = −1

2
R − 1

4

◦
aIJF I

µνF Jµν − 1

2
gxy(∂µϕx)(∂µϕy)

+
e−1

6
√

6
CIJKεµνρσλF I

µνF J
ρσAK

λ , (2 - 1)

where e and R denote the fünfbein determinant and the scalar curvature
in d = 5, respectively. F I

µν are the field strengths of the Abelian vector

fields AI
µ, (I = 0, 1, 2 · · · , n) with A0

µ denoting the “bare” graviphoton. The

metric, gxy, of the scalar manifold M and the “metric”
◦
aIJ of the kinetic

energy term of the vector fields both depend on the scalar fields ϕx ( x, y, .. =
1, 2, .., n). The n-dimensional scalar manifold can be identified with the
V = 1 hypersurface of an n + 1 dimensional ambient space with coordinates
hI and the metric

aIJ(h) := −1

3

∂

∂hI

∂

∂hJ
lnV(h) . (2 - 2)

where
V(h) := CIJK hIhJhK . (2 - 3)

where (I = 0, 1, . . . , n). We shall denote the flat indices on the scalar mani-
fold with lower case Latin indices a, b, .. = 1, 2, .., n.

The metric gxy of the scalar manifold is simply the pull-back of (2 - 2)
to M

gxy = hI
xhJ

y
◦
aIJ (2 - 4)

where

hI
x = −

√

3

2

∂

∂φx
hI (2 - 5)

and
◦
aIJ is the ambient metric evaluated at the hypersurface:

◦
aIJ (ϕ) = aIJ |V=1 . (2 - 6)

Supersymmetry implies further the algebraic constraints

◦
aIJ = hIhJ + ha

Ih
a
J

hIhI = 1

hI
ahI = ha

Ih
I = 0 (2 - 7)

hI
ah

J
b
◦
aIJ = hI

ahIb = δab
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as well as the differential constraints

hI,x = βhIx

hI
,x = −βhI

x

hIx;y = β(gxyhI + Txyzh
z
I) (2 - 8)

hI
x;y = −β(gxyh

I + Txyzh
Iz)

where β =
√

2
3 .

The Riemann curvature of the scalar manifold has the simple form

Kxyzu =
4

3

(

gx[ugz]y + Tx[u
wTz]yw

)

(2 - 9)

where Txyz is the symmetric tensor

Txyz = hI
xhJ

y hK
z CIJK (2 - 10)

The full symmetry group of N = 2 MESGT in d = 5 is simply G × SU(2)R
where SU(2)R denotes the local R-symmetry group of the N = 2 supersym-
metry algebra and G denotes the symmetry group of the tensor CIJK . Now
the covariant constancy of Txyz implies the covariant constancy of Kxyzu:

Txyz;w = 0 ⇒ Kxyzu;w = 0 (2 - 11)

Hence the scalar manifolds M5 with covariantly constant T tensor are locally
symmetric spaces. If M5 is a homogeneous space the covariant constancy
of Txyz is equivalent to the following identity:

CIJKCJ(MNCPQ)K = δI
(MCNPQ) (2 - 12)

where the indices are raised by
◦
aIJ . For proof of this equivalence an expres-

sion for constants CIJK in terms of scalar field dependent quantities was
used

CIJK =
5

2
hIhKhK − 3

2

◦
a(IJhK) + Txyzh

x
I hy

Jhz
K (2 - 13)

as well as algebraic constraints hIh
I = 1 and hI

xhI = 0 that follow from
supersymmetry [6]. Using this ”adjoint identity” , GST [6] proved that the
cubic forms defined by CIJK of N = 2 MESGTs with symmetric target
spaces M5 ( with n ≥ 2 ) and covariantly constant T tensors are in one-to-
one correspondence with the norm forms of Euclidean (formally real) Jordan

4



algebras J of degree 3. The corresponding symmetric spaces are of the form

M =
Str0 (J)

Aut (J)
(2 - 14)

where Str0 (J) is the invariance group of the norm (reduced structure group)
and Aut (J) is the automorphism group of the Jordan algebra J respectively.

Following Schafers [21], GST [6] listed the allowed cubic forms, which
we reproduce below:

1. J = R and V(x) = x3. This case corresponds to pure d = 5 supergrav-
ity.

2. J = R ⊕ Γ, where Γ is a simple Jordan algebra with identity, which
we denote as e2, and quadratic norm Q (x), for x ∈ Γ, such that
Q (e2) = 1. The norm is given as V (x) = aQ (x), with x = (a,x) ∈ J .
This includes two special cases

(a) Γ = R and Q = b2, with V = ab2. This is applicable to n = 1.

(b) Γ = R ⊕ R and Q = bc, and V = abc and is applicable to n = 2.

For these special cases the norm is completely factorized, so that M is
flat. For n > 2, V is still factorized into a linear and quadratic parts.
The positive definiteness of the kinetic energy terms requires that Q
has Lorentzian signature (+,−,−, . . . ,−). The invariance group of the
norm is

Str0 (J) = SO(n − 1, 1) × SO (1, 1) (2 - 15)

where the SO (1, 1) factor arises from the invariance of V under the
dilatation (a,x) →

(

e−2λa, eλx
)

for λ ∈ R, and that SO (n − 1) is
Aut (J). Hence

M =
SO(n − 1, 1)

SO (n − 1)
× SO(1, 1) (2 - 16)

This infinite family is referred to as the generic Jordan family of MES-
GTs.

3. Simple Euclidean Jordan algebras J = JA
3 generated by 3×3 Hermitian

matrices over the four division algebras A = R, C, H, O. An element
x ∈ JA

3 can be written as

x =





α1 a3 ā2

ā3 α2 a1

a2 ā1 α3



 (2 - 17)
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where αk ∈ R and ak ∈ A with ¯ indicating the conjugation in the
underlying division algebra. The cubic norm V is given by

V (x) = α1α2α3 − α1 |a1|2 − α2 |a2|2 − α3 |a3|2 + a1a2a3 + (a1a2a3)
(2 - 18)

The corresponding spaces M are irreducible of dimension 3 (1 + dim A)−
1, which we list below:

M(JR
3 ) =

SL (3, R)

SO (3)

M(JC
3 ) =

SL (3, C)

SU (3)

M(JH
3 ) =

SU∗ (6)

USp (6)

M(JO

3 ) =
E6(−26)

F4
(2 - 19)

The ”magical” supergravity theories described by simple Jordan algebras
JA

3 (A = R, C, H or O) can be truncated to theories belonging to the generic
Jordan family. This is achieved by restricting the elements of JA

3





α1 a3 a2

a3 α2 a1

a2 a1 α3



 (2 - 20)

to their subalgebra J = R ⊕ JA
2 by setting a1 = a2 = 0. Their symmetry

groups are as follows:

J = R ⊕ JR
2 : SO(1, 1) × SO(2, 1) ⊂ SL (3, R)

J = R ⊕ JC
2 : SO(1, 1) × SO(3, 1) ⊂ SL (3, C)

J = R ⊕ JH
2 : SO(1, 1) × SO(5, 1) ⊂ SU∗ (6)

J = R ⊕ JO

2 : SO(1, 1) × SO(9, 1) ⊂ E6(−26)

(2 - 21)

3 Orbits of U-duality groups and Jordan algebras

Jordan algebras are commutative and non-associative algebras with a sym-
metric Jordan product ◦

X ◦ Y = Y ◦ X (3 - 1)

that satisfies the Jordan identity [22, 23]

X ◦ (Y ◦ X2) = (X ◦ Y ) ◦ X2 (3 - 2)
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Automorphism group of a Jordan algebra J is formed by linear transforma-
tions A that preserve the products in J :

X ◦ Y = Z ⇒ (AX) ◦ (AY ) = (AZ) (3 - 3)

The structure group Str(J) of J is formed by linear transformations S that
preserve the norm form V up to an overall scale factor λ :

Str(J) : X → S(X) ⇒ V(S(X)) = λV(X) (3 - 4)

and the reduced structure group Str0(J) of J is the subgroup of Str(J)
that leaves the norm form invariant, i.e. those transformations S for which
λ = 1.

The Lie algebra aut(J) of the automorphism group Aut(J) is generated
by derivations D that satisfy the Leibniz rule:

D(X ◦ Y ) = (DX) ◦ Y + X ◦ (DY )

It is easy to verify that by exponentiating derivations one obtains automor-
phisms:

eD(X ◦ Y ) = (eDX) ◦ (eDY )

Hence it is customary to refer to aut(J) as the derivation algebra Der(J) of
J . Every derivation D of J can be written in the form [23]

DX,Y ≡ [LX , LY ] ,X, Y ∈ J (3 - 5)

where LX denotes multiplication by X i.e.

DX,Y Z = X ◦ (Y ◦ Z) − Y ◦ (X ◦ Z)

Structure algebra str(J) of J is generated by derivations and multiplication
by elements of J :

str(J) = Der(J) ⊕ LJ

whose commutation relations are very simple

[LX , LY ] = DX,Y (3 - 6)

[DX,Y , LZ ] = L(DX,Y Z)

[DX,Y ,DZ,W ] = D(DX,Y W ),Z + DW,(DX,Y Z)

Multiplication by the identity element of J commutes will all the elements of
str(J) and acts like a central charge. The reduced structure algebra str0(J)

7



is generated by derivations and multiplications by traceless elements of J .
The automorphism group Aut(J) leaves the identity element e of J invariant
or equivalently derivations annihilate the identity element

De = 0

As mentioned in the previous section, there exist four simple (Euclidean)
Jordan algebras of degree three JA

3 of 3×3 Hermitian matrices over the four
division algebras A = R, C, H and O. We shall denote a general element X
of JA

3 as

X =





α1 x3 x̄2

x̄3 α2 x1

x2 x̄1 α3



 ≡
3

∑

i=1

αiEi + (x3)12 + (x2)31 + (x1)23 (3 - 7)

where Ei ( i = 1, 2, 3) are the 3 irreducible idempotents of JA
3 and xi ∈ A

and the bar denotes conjugation in A. It is well-known that an element X
of the algebra JA

3 can be diagonalized by the action of the automorphism
group. For the exceptional Jordan algebra JO

3 this was shown explicitly in
[24]. Thus

Aut(JA
3 ) : X ⇒ (λ1E1 + λ2E2 + λ3E3) (3 - 8)

where λi are the eigenvalues of X. Norm of X

V(X) = α1α2α3 − α1|x1|2 − α2|x2|2 − α3|x3|2 + 2Re(x1x2x3)

is simply the ”determinant” and , hence, is equal to λ1λ2λ3.
Invariance group of the identity element 1 is the automorphism group

Aut(J). The subgroup of the automorphism group that leaves an irreducible
idempotent invariant is generated by derivations that annihilate that idem-
potent. For , say, the irreducible idempotent E3 the corresponding deriva-
tions are:

D(x3)12,(y3)12 (3 - 9)

D(x3)12,(E1−E2)

We list , in Table 1, simple Jordan algebras of degree three and invariance
groups K of their irreducible idempotents that are subgroups of Aut(J) .

The subgroup K of the automorphism group that leaves the idempotent
E3 invariant leaves also the element

b = (−E1 − E2 + E3)

8



J K ⊂ Aut(J)

JR
3 SO(2) ⊂ SO(3)

JC
3 SU(2) × U(1) ⊂ SU(3)

JH
3 USp(4) × USp(2) ⊂ USp(6)

JO

3 SO(9) ⊂ F4

Table 1: Above we list the subgroups K of the automorphism groups of
simple Euclidean Jordan algebras of degree three that leave an irreducible
idempotent invariant.

J H̃ ⊂ Str0(J)

JR
3 SO(2, 1)) ⊂ SL(3, R)

JC
3 SU(2, 1) ⊂ SL(3, C)

JH
3 USp(4, 2) ⊂ SU∗(6)

JO

3 F4(−20) ⊂ E6(−26)

R ⊕ Γn SO(n − 2, 1) ⊂ SO(n − 1, 1) × SO(1, 1)

Table 2: Above we list the subgroups H̃ of the reduced structure groups
of Euclidean Jordan algebras of degree three that leave the element b =
−E1 − E2 + E3 invariant.

with unit norm invariant. The little group of b , defined as the subgroup of
Str0(J) that leaves it invariant, is generated by the above derivations plus
the multiplications by the traceless elements (x2)31 and (x1)23

L(x2)31+(x1)23 = L(x2)31 + L(x1)23

which are non-compact generators. The little groups H̃ of b for different
Jordan algebras of degree 3 are listed in Table 2.

As for the generic Jordan family J = R ⊕ Γn , where Γn is a Jordan
algebra of degree two whose quadratic norm has Lorentzian signature, we
shall denote their elements in the form:

X = (α;β0, ~β)

where
(β01 + ~β · ~σ) ∈ Γn

The cubic norm of X is simply

V = α(β2
0 − ~β · ~β) (3 - 10)

9



The three irreducible idempotents are

E1 = (1, 0,~0)

E2 = (0;
1

2
,
1

2
, 0, ..., 0)

E3 = (0;
1

2
,−1

2
, 0, .., 0) (3 - 11)

with the identity element 1 given by

1 = E1 + E2 + E3 = (1 : 1,~0)

Automorphism group of J = R⊕Γn is SO(n− 1) and its reduced structure
group is SO(n − 1, 1) × SO(1, 1) . The identity element 1 is manifestly
invariant under the automorphism group and the little group of the element
b = −E1 − E2 + E3 = (−1; 0,−1, 0, .., 0) is SO(n − 2, 1) 5.

Let us now show that an element of JA
3 with positive norm V(X) = κ3

(κ > 0) can be brought to the form





κ 0 0
0 κ 0
0 0 κ



 (3 - 12)

by the action of its reduced structure group if all its eigenvalues are positive,
or to the form





−κ 0 0
0 −κ 0
0 0 κ



 (3 - 13)

if two of its eigenvalues are negative. The global action of the reduced
structure group Str0(J) is generated by automorphisms and by quadratic
action UA by elements A whose norm squared is one. The quadratic operator
UA acts on J via:

UAX = {AXA} ≡ 2(A ◦ X) ◦ A − A2 ◦ X (3 - 14)

and satisfies the property

V(UAX) = [V(A)]2V(X) (3 - 15)

Thus if V(A) = ±1 then
V(UAX) = V(X)

5Note that the invariance group of the idempotent E1 is SO(n − 1, 1) , while the
invariance group of the idempotents E2 and E3 is SO(n-2).
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J Aut(J)⊂ Str0(J)

JR
3 SO(3)) ⊂ SL(3, R)

JC
3 SU(3) ⊂ SL(3, C)

JH
3 USp(6) ⊂ SU∗(6)

JO

3 F4(−52) ⊂ E6(−26)

R ⊕ Γn SO(n − 1) ⊂ SO(n − 1, 1) × SO(1, 1)

Table 3: Above we list the subgroups Aut(J) of the reduced structure
groups Str0(J) of Euclidean Jordan algebras of degree three that leave the
identity element invariant.

Using the automorphism group one can bring an element X to the diagonal
form :

Aut(J) : X ⇒ (λ1E1 + λ2E2 + λ3E3) (3 - 16)

The quadratic action by UA that preserves the diagonal form must involve
A which is also diagonal

A = A1E1 + A2E2 + A3E3

such that (A1A2A3)
2 = 1. Then

UA(λ1E1 + λ2E2 + λ3E3) ⇒ λ1A
2
1E1 + λ2A

2
2E2 + λ3A

2
3E3 (3 - 17)

This shows that one can rescale the eigenvalues by a positive number such
that the norm is preserved. Hence an element with all positive eigenvalues
can be brought to a positive multiple of the identity κ1 where κ3 = λ1λ2λ3.
Consequently, the orbit of a timelike (positive norm) element X with all
positive eigenvalues is

Str0(J)

Aut(J)
(3 - 18)

The automorphism groups of Jordan algebras of degree three and their re-
duced structure groups are reproduced in Table 3.

Similarly a timelike element with two negative eigenvalues and one pos-
itive can be brought to the form ( modulo the permutation of the diagonal
entries)

(−κE1 − κE2 + κE3)

where κ3 = λ1λ2λ3 and the corresponding orbit is

Str0(J)/H̃

11



where H̃ is a non-compact real form of Aut(J) listed in table 2.
Extension to the generic Jordan family is straightforward and one needs

only to use the standard knowledge of the orbits of the Lorentz group in
various dimensions. We should also note that orbits with negative norm
are isomorphic to the above orbits , depending on whether all or one of the
eigenvalues are negative.

4 Attractor equations for N = 2 MESGTs and

their solutions in d = 5

We shall now consider the attractor mechanism in the framework of 5d ,
N = 2 MESGTs in an extremal B-H background described by a (n + 1)
dimensional charge vector

qI =

∫

S3

HI =

∫

S3

◦
aIJ ∗F J (I = 0, 1, ...n)

The corresponding B-H potential , described in [2, 3], is elegantly written
in the framework of GST real special geometry as follows:

V (φ, q) = qI
◦
a

IJ
qJ (4 - 1)

where
◦
a

IJ
is the inverse of the metric

◦
aIJ of the kinetic energy term of

the vector fields. The metric
◦
aIJ is related to the metric gxy of the scalar

manifold via
◦
aIJ = hIhJ +

3

2
hI,xhJ,yg

xy (4 - 2)

◦
a

IJ
= hIhJ +

3

2
hI

,xhJ
,yg

xy

or conversely

gxy =
3

2
hI,xhJ,y

◦
a

IJ
(4 - 3)

Introducing the quantity
Z = qIh

I

we can write the potential as

V (q, φ) = Z2 +
3

2
gxy∂xZ∂yZ (4 - 4)

where
∂xZ = qIh

I
,x

12



We should also note the identities

Txyz = (3/2)
3
2 hI

,xhJ
,yh

K
,z CIJK (4 - 5)

and

hI
,x;y =

2

3
(gxyh

I −
√

3

2
Txyzg

zwhI
,w) (4 - 6)

The critical points of the potential are given by the solutions of the
equation

∂xV = 2(2Z∂xZ −
√

3/2Txyzg
yy′

gzz′∂y′Z∂z′Z) = 0 (4 - 7)

For BPS critical points we have

∂xZ = 0 (4 - 8)

and for non-BPS critical points

2Z∂xZ =

√

3

2
Txyz∂

yZ∂zZ (4 - 9)

where
∂xZ ≡ gxx′

∂x′Z

The equation 4 - 9 can be inverted using the relation

qI = hIZ − 3

2
hI,x∂

xZ (4 - 10)

which follows from equation 4 - 2. For ∂xZ = 0 this gives

qI = hIZ (4 - 11)

and for ∂xZ 6= 0 we get

qI = hIZ − (3/2)3/2 1

2Z
hI,xT

xyz∂yZ∂zZ (4 - 12)

Let us first remark that the attractor solution of the BPS orbit with
non-vanishing entropy given by [8, 7]

∂xZ = 0

is invariant under the stability group Aut(J) of the orbit

Str0(J)/Aut(J)
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J H̃ K̃

R ⊕ Γ SO(n − 2, 1) SO(n − 2)
JR

3 SL(2,R) SO(2)
JC

3 SU(2, 1) SU(2) × U(1)
JH

3 USp(4, 2) USp(4) × USp(2)

JO

3 F4(−20) SO(9)

Table 4: Above we list the stability groups H̃ of the non-BPS orbits of the
N = 2 MESGT’s with non-vanishing entropy in d = 5. The first column
lists the Jordan algebras of degree 3 that define these theories. The third
column lists the maximal compact subgroups K̃ of H̃.

listed in column 1 of table 1 of [4] ( see table 3 above). If we now consider
the second class of orbits G/H̃ with non-vanishing entropy listed in column
2 of table 1 of [4] , we can solve the attractor equation by considering ∂xZ
invariant under the maximal compact subgroup K of H̃. The list of the
stability groups H̃ and their maximal compact subgroups K̃ is given in
Table 4.

For the MESGTs defined by Jordan algebras of degree 3, the tensor CIJK

is an invariant tensor. Similarly the tensor Tabc is an invariant tensor of the
maximal compact subgroup H. Going to flat indices the attractor equation
becomes:

2Z∂aZ =
√

3/2Tabc∂
bZ∂cZ (4 - 13)

The BPS solution is ∂aZ = 0 , which then gives

VBPS = Z2 (4 - 14)

, using equation 4 - 4. If ∂aZ 6= 0 , by squaring equation 4 - 13 we get

4Z2∂aZ∂aZ =
3

2
TabcTab′c′∂bZ∂cZ∂′

bZ∂′
cZ (4 - 15)

Then using the identity

Ta(bcT
a
b′c′) =

1

2
g(bcgb′c′)

valid only for the MESGTs defined by Jordan algebras of degree three we
get

∂aZ∂aZ =
16

3
Z2 (4 - 16)
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Hence at the non-BPS attractor point the potential becomes

V = Z2 +
3

2
∂aZ∂aZ = 9Z2 (4 - 17)

which agrees with the formula

V = (d − 2)2Z2 (4 - 18)

valid for d = 4, 5 dimensions [8, 5].
Let us consider the example of the exceptional supergravity defined by

the exceptional Jordan algebra JO

3 whose U-duality group is E6(−26) . The
two extremal orbits are classified by two different stabilizers , which are the
compact F4(−52) and the noncompact F4(−20) with the maximal compact
subgroup SO(9). For the non-BPS orbit we have the decompositions

E6(−26) ⊃ F4(−20) ⊃ SO(9)

27 → 26 + 1

26 = 16 + 9 + 1 (4 - 19)

Furthermore,

Tabc ⇒ (2̄6)3 = (1̄61̄69̄) + (1̄61̄61̄) + (9̄9̄1̄) + (1̄1̄1̄) (4 - 20)

It is easy to see that the solution

∂aZ = (∂16Z = ∂9Z = 0, ∂1Z 6= 0) (4 - 21)

is a solution of equation 4 - 13 provided Z and ∂1Z satisfy the following
algebraic equation

Z =
1

2

√

3

2
T111∂1Z (4 - 22)

where we are using flat coordinates. The entropy then becomes renormalized
as in d = 4 [9]

S4/3 = V |∂aV =0 = Z2(1 +
4

T 2
111

) (4 - 23)

with the attractor point T 2
111 = 1

2 for symmetric spaces defined by Jordan
algebras.

The scalar manifold SU∗(6)
USp(6) of the MESGT defined by JH

3 is the same as
the scalar manifold of N = 6 supergravity theory , whose attractor equation
was studied in [10]. Interestingly, the 1/6 BPS solution of N = 6 supergrav-
ity in d = 5 correspond precisely to the orbit whose stabilizer is USp(4, 2)
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with maximal compact subgroup USp(4) × USp(2). Indeed it was shown
there that the 6 × 6 symplectic traceless matrix ZAB which represent the
the N = 2 charges in the parent N = 6 theory lead to the following vacuum
solution

ZAB =





e1ǫ 0 0
0 e2ǫ 0
0 0 e3ǫ



 (4 - 24)

,where e1 +e2 +e3 = 0 and ǫ is the 2×2 symplectic matrix. At the attractor
point we have

e2 = e3

i.e e1 = −2e2 at that point. The symplectic traceless matrix ZAB , which
generically has a USp(2)3 symmetry , has an enhancement to USp(2) ×
USp(4) symmetry at the attractor point. This is the non-BPS orbit of the
N = 2 subtheory , which is instead 1/6 BPS in the N = 6 theory. At the
critical point the singlet X of the N = 6 supergravity takes the value

e1 =
8

3
X

and the entropy 6

V =
1

2
ZABZAB +

4

3
X2 (4 - 25)

becomes

V = e2
1 + e2

2 + (e1 + e2)
2 +

4

3
X2 = 12X2 (4 - 26)

Therefore at the attractor point

VNBPS(X) = 12X2
NBPS (4 - 27)

while at the BPS attractor point

VBPS =
4

3
X2

BPS (4 - 28)

It is easy to check this result with the cubic invariant as given in [10]

I3 = −1

6
Tr(ZC)3 − 1

6
Tr(ZC)2X +

8

27
X3 (4 - 29)

6To compare with the formula of 5d N = 2 geometry one should take into account the
normalization of the terms in 4 - 4 compared to 4 - 25.
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where C is the USp(6) invariant symplectic metric. At the BPS attractor
point Z = 0

I3 =
8

27
X3 (4 - 30)

with the entropy

S4/3 = V |BPS = 3|I3|2/3 =
4

3
X2

BPS (4 - 31)

and at the non-BPS point

−I3 =
216

27
X3 = 8X3

NBPS (4 - 32)

with the entropy
S4/3 = 3|I|2/3 = 12X2

NBPS

The N = 2 derivation of the above result is through formula 4 - 17 of the
real special geometry of Gunaydin, Sierra and Townsend.

5 Scalar masses at the attractor points

One can give general results on the quadratic fluctuations of the B-H poten-
tial V around its BPS and non-BPS critical points. The general form of V
is given in equation 4 - 4 . By further differentiating equation 4 - 7 we get
a general expression for the Hessian of the potential:

1

4
Dx∂yV =

2

3
gxyZ

2 + ∂xZ∂yZ − 2

√

2

3
Txyzg

zw∂wZZ (5 - 1)

+TxpqTyzsg
pzgqq′gss′∂q′Z∂s′Z

=
2

3
(gxzZ −

√

3

2
Txzp∂

pZ)(gyzZ −
√

3

2
Tyzq∂

qZ) + ∂xZ∂yZ

From the above equation we obtain the Hessian at the BPS critical point
∂xZ = 0

∂x∂yV =
8

3
gxyZ

2 (5 - 2)

which is the same result as in d = 4 [3]. Note that equation 5 - 2 implies that
the scalar fluctuations have positive square mass which shows the attractor
nature of the BPS critical points [3, 14]-[20]. At the non-BPS critical point
we can split the index x = (p, 1) where 1 is the singlet direction along the
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subgroup K of the stabilizer of the orbit. The using flat coordinates the
attractor condition 4 - 7 becomes

∂1Z =
4√
3
Z

∂pZ = 0 (5 - 3)

(T111 =
1√
2
)

which when inserted in 5 - 1 gives

1

4
∂p∂qV =

2

3
(I − T )2pqZ

2 =
2

27
(I − T )2pqVNBPS (5 - 4)

where (I − T )pq = δpq − Tpq and Tpq = 2
√

2Tpq1. For the singlet mode ,
T111 = 1√

2
and then

1

4
V11 = (

2

3
+

16

3
)Z2 = 6Z2 =

2

3
VNBPS (5 - 5)

We can further split the indices (p, q) into (i, j), (α, β) where (i, α) refer
to the two representations with non-vanishing T-tensor given by

Tαβ1, Tij1, Tαβi (5 - 6)

From the identities

T 1
(αβT 1

γδ) + T i
(αβT i

γδ) =
1

2
δ(αβδγδ) (5 - 7)

T 1
(ijT

1
lm) =

1

2
δ(ijδlm) (5 - 8)

We have T 1
ij = 1√

2
δij and thus

1

4
∂i∂jV =

2

27
VNBPSδij (5 - 9)

From 5 - 7 we also have 7

T 1
αβ = λδαβ (5 - 10)

7Here we used the identity γµ(ijγ
µ

kl) = δ(ijδkl) which follows from the fact that SO(9)

Clifford algebra is isomorphic to JO

2 , and which can also be proven using more traditional
methods [29].
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with

0 < λ <
1√
2

(5 - 11)

If λ = 1
2
√

2
so that Tαβ = δαβ we have

∂α∂βV = 0 (5 - 12)

For the JH
3 model this would agree with the splitting of the 14 scalars into

(5+1) massive vector multiplets and 2 massless hypermultiplets according to
the N = 6 interpretation of its moduli space. Equation 5 - 4 implies that for
the non-BPS critical points the scalar square-mass matrix is semi-positive
definite. For the massless fluctuations, attractor nature of the solution de-
pends on third or higher derivatives [16]-[20]. We leave this problem to a
future investigation.

6 Attractors in six dimensions

The analysis of the previous section can be extended to six dimensions which
is the maximal dimension where theories with 8 supercharges exist. These
are the (1,0) theories describing the coupling of nT tensor multiplets to
supergravity [26, 27]. In this case, as discussed in [28], the string tension
plays the role of central charge and it depends on the tensor multiplet scalars
through the coset representative XI of the

SO(1, nT )

SO(nT )

σ model [26, 27]

Z = XΛqΛ

XΛηΛΣXΣ = 1 (6 - 1)

where ηΛΣ is the (1, nT ) Lorentzian metric (Λ,Σ = 0, 1, .., n). The matter
charges are XΛI (I = 1, ..., nT ) with the property

XΛXΣ − XIΛXIΣ = ηΛΣ (6 - 2)

XΛXΣ + XIΛXIΣ = NΛΣ = 2XΛXΣ − ηΛΣ

and NΛΣ is the metric of the kinetic energy of the self-dual tensor fields. As
shown in [25] if one defines a black string potential energy as

V = qΛNΛΣqΣ = qΛNΛΣqΣ = Z2 + Z2
I (6 - 3)
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where ZI = XIΛqΛ and the inverse formula , analogue of 4-10, holds

qΛ = XΛZ − XΛ
I ZI

it is easy to show that the attractor condition ∂IV = 0 implies [25]

ZZI = 0 (6 - 4)

with the solution Z 6= 0 , ZI = 0 which is the BPS case and the other ,
ZI 6= 0, Z = 0 , is the non-BPS case and corresponds to ”tensionless” strings.
However, in both cases the string energy is non-vanishing and, moreover, the
two cases correspond to time-like and space-like configurations of the charges
since

qΛηΛΣqΣ = Z2 − Z2
I (6 - 5)

is an invariant. Therefore , as expected, the two classes of orbits are

SO(1, nT )

SO(nT )
BPS (6 - 6)

SO(1, nT )

SO(1, nT − 1)
non − BPS (6 - 7)

7 Conclusions

In this paper we have examined the nature of attractor equations for 5D
extremal black holes based on the geometry N = 2 vector multiplet scalars
which are symmetric spaces G/H such that G is a symmetry of the MESGT
[6].

There are two generic classes of attractors, one BPS and one non-BPS,
described by two classes of charge orbits previously found by the same au-
thors. The value of the B-H potential at the non-BPS attractor point is

V |∂xV =0 = (3ZNBPS)2 = |I3|2/3

so that the Bekenstein-Hawking entropy is given, in terms of the central
charge, by

SNBPS = (3ZNBPS)3/2 =
√

|I3|
This is to be compared with the supersymmetric attractors where [8, 10,

7]

V |∂xV =0 = Z2 = I
2/3
3
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SBPS = (Z)
3/2
BPS =

√

I3

For non-symmetric spaces the analysis may change because the derivation
of equation V = 9Z2 will no longer be valid. It would be interesting to
consider the case of Calabi-Yau compactifications [30] in which case the
CIJK coefficients are related to the C-Y intersection numbers. From the
general validity of the equations 4-50-4.53, in the one modulus case, the
renormalized formula

S4/3 = V |∂V =0 = Z2(1 +
4

T 2
111

)

will still hold in analogy with a similar situation in d = 4 [9].
We have also analyzed the black self-dual string potential in the case of

d = 6 (1, 0) theories. In that case, due to the nature of the tensor moduli
space, there are just two orbits with non-vanishing entropy, a time-like one
corresponding to BPS attractors and a space-like one corresponding to non-
BPS attractors which are tensionless strings ( zero central charge). The
d = 4 situation is much richer and will be considered elsewhere [5].
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