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Autophagy is a complex process that encompasses the enclosure of cytoplasmic debris
or dysfunctional organelles in membranous vesicles, the autophagosomes, for their
elimination in the lysosomes. Autophagy is increasingly recognized as a critical process
in macrophages, including microglia, as it finely regulates innate immune functions such as
inflammation. A gold-standard method to assess its induction is the analysis of the
autophagic flux using as a surrogate the expression of the microtubule-associated light
chain protein 3 conjugated to phosphatidylethanolamine (LC3-II) by Western blot, in the
presence of lysosomal inhibitors. Therefore, the current definition of autophagy flux
actually puts the focus on the degradation stage of autophagy. In contrast, the most
important autophagy controlling genes that have been identified in the last few years in fact
target early stages of autophagosome formation. From a biological standpoint is therefore
conceivable that autophagosome formation and degradation are independently regulated
and we argue that both stages need to be systematically analyzed. Here, we propose a
simple two-step model to understand changes in autophagosome formation and
degradation using data from conventional LC3-II Western blot, and test it using two
models of autophagy modulation in cultured microglia: rapamycin and the ULK1/2
inhibitor, MRT68921. Our two-step model will help to unravel the effect of genetic,
pharmacological, and environmental manipulations on both formation and degradation
of autophagosomes, contributing to dissect out the role of autophagy in physiology and
pathology in microglia as well as other cell types.
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INTRODUCTION

Autophagy is a complex phenomenon dedicated to eliminate
intracellular debris, from protein aggregates to dysfunctional
organelles, and is thus essential to maintain cell fitness (1, 2).
In the brain, initial studies focused on its major role in neuronal
survival (3, 4), but more recent evidence suggests that autophagy
also controls health and function of other brain cell types,
including microglia, the brain macrophages (1, 5). Autophagy
controls several processes in microglia, including metabolic
fitness (6), inflammation, phagocytosis of amyloid beta in
rodent models of Alzheimer’s disease (7), degradation of
extracellular beta-amyloid fibrils (8) and synuclein (9), myelin
phagocytosis in acute experimental encephalomyelitis (10), as
well as synaptic pruning and social behavior in mice (11).
Overall, autophagy is emerging as a major controller of
immune cell function, regulating innate and adaptive immune
responses (12).

Assessing autophagy is complicated and current guidelines
recommend using several complementary methods (13).
Nonetheless, the gold standard remains the analysis of the
autophagic flux using LC3 (microtubule-associated light chain
protein 3). During autophagy, cytosolic LC3 (LC3-I) is conjugated
to phosphatidylethanolamine and recruited to the nascent
phagophore membranes (LC3-II). The phagophore then
encloses cytosolic material or organelles forming a double-
membrane autophagosome, which is then redirected towards the
lysosome for its enzymatic degradation. The autophagic flux is
calculated as the differential amount of LC3-II in the presence/
absence of lysosomal inhibitors, such as bafilomycin or
chloroquine, among others. As lysosomal degradation is
inhibited autophagosomes accumulate and, therefore, the change
in LC3-II expression informs about the autophagosomes that
would have been degraded, ergo, it is a measure of
autophagosome degradation. However, LC3-II Western blot raw
data contains information about both autophagosome formation
and degradation (Figure 1A).

Importantly, formation and degradation are regulated by
concerted but independent mechanisms: most autophagic-
regulatory genes are involved in the early stages of autophagy,
as is the case of the ATG family encoding proteins that are
mainly involved in autophagosome formation and maturation
(1, 14). In contrast, autophagosome degradation largely depends
on lysosomal proteins and enzymes (Figure 1B). Therefore, both
early and late stages of autophagy should be systematically
analyzed to understand the autophagosome turnover in any
given condition.
Abbreviations: APh, Autophagosome; ATG, Autophagy-related protein; BAF,
Bafilomycin A1; BCA, Bicinchoninic Acid; DegR, Degradation ratio; DMEM,
Dulbecco’s Modified Eagle Medium; ECL, Enhanced Chemoluminescence;
EXP-, basal condition; EXP+, experimental condition; FBS, Fetal Bovine Serum;
FormR, Formation ratio; GM-CSF, Granulocyte-Macrophage Colony Stimulating
Factor; LC3-II, microtubule-associated light chain protein 3 conjugated to
phosphatidylethanolamine; mTORC1, Mechanistic Target of Rapamycin
Complex 1; NetR, Net ratio; PD, Parkinson’s disease; ss, steady-state; TBS-T,
Tris Buffered Saline containing 0.1% Tween 20; TFEB, transcription factor-EB;
ULK1/2, unc-51-like kinases 1/2.
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METHODS

Cell Culture
The murine microglial BV2 cell line and primary microglia were
used to test autophagy modulating compounds. BV2 microglia
were grown and maintained in Dulbecco’s Modified Eagle
Medium (DMEM) (Gibco) supplemented with Fetal Bovine
Serum 10% (FBS, Gibco) and a mixture of antibiotics/
antimycotic (1%) including, penicillin, streptomycin, and
amphotericin (all from Gibco). For experiments, 1x106 cells
adhered to uncoated plastic plates were used. Primary
microglia cultures were performed as previously described (15,
16). Postnatal day 0–1 (P0-P1) fms-EGFP mice pup brains were
extracted, and the meninges were peeled off. The olfactory bulb
and cerebellum were discarded, and the rest of the brain was then
mechanically homogenized by careful pipetting and
enzymatically digested with papain (20 U/ml, Sigma), and
deoxyribonuclease (DNAse; 150 U/µl, Invitrogen) for 15 min
at 37°C. The resulting cell suspension was then filtered through a
40 mm nylon cell strainer (Fisher) and transferred to a 50 ml
Falcon tube quenched by 5 ml of 20% FBS (Gibco) in HBSS.
Afterwards, the cell suspension was centrifuged at 200 g for
5 min, the pellet was resuspended in 1 ml DMEM (Gibco)
supplemented with 10% FBS and 1% Antibiotic/Antimycotic
(Gibco), and seeded in T75 Poly L-lysine-coated (15 ml/ml,
Sigma) culture flasks at a density of two brains per flask.
Medium was changed the day after and then every 3–4 days,
always enriched with Granulocyte Macrophage Colony
Stimulating Factor (5 ng/ml GM-CSF, Sigma). After confluence
(at 37°C, 5% CO2 for approximately 14 d), microglia cells were
harvested by shaking at 100–150 rpm, 37°C, 4 h. Isolated cells
were counted and plated at a density of 2x106 cells/well on poly-
l-lysine-coated plastic plates. BV2 and primary microglia were
allowed to settle for at least 24 h before experiments.

Drug Treatments
BV2 microglia were treated with rapamycin 100 nM (Fisher
Scientific) for 6 h in the presence and absence of bafilomycin 100
nM (SelleckChem) for autophagy induction. Primary microglia
were treated with the autophagy inhibitor MRT68921 1, 10, or 30
µM (Sigma) for 3 or 6 h with or without bafilomycin 100
nM (SelleckChem).

Protein Extraction and Western Blot
Microglia were directly lysed in plastic plates with RIPA buffer
containing protease inhibitor cocktail (100x) (ThermoFisher).
The cell suspension was then sonicated for 5s and centrifuged
(10,000 g, 10 min) to obtain solubilized protein in the
supernatant. Sample protein content was quantified in
tr ipl icates by BCA (Bicinchoninic Acid) assay kit
(ThermoFisher) at 590 nm using a microplate reader (Synergy
HT, BioTek). b-mercaptoethanol denatured proteins (15–20 ug)
were loaded onto 14% Tris-glycine polyacrylamide gels
(ThermoFisher) and run at 120V for 90min. Protein samples
were then blotted to nitrocellulose membranes (0.45 µm pore
size) (ThermoFisher) at 200 mA for 90 min or using the Trans-
Blot Turbo Mini Nitrocellulose Transfer Pack (Bio-Rad).
January 2021 | Volume 11 | Article 620602
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Transfer efficiency was verified by Ponceau S (Sigma) staining.
For immunoblotting, membranes were rinsed in Tris Buffered
Saline containing 0.1% Tween 20 (Sigma) (TBS-T) and then
blocked for 1 h in TBS-T containing 5% powder milk.
Membranes were afterwards incubated with rabbit primary
antibody to LC3 (1:3,000, NB100-2220, Novus Biologicals),
and mouse primary antibody to b-actin (1:5,000, Sigma), in
TBS-T containing 4% Bovine Serum Albumin (BSA) overnight
(4°C, shaker). Next day, membranes were rinsed and incubated
with Horseradish Peroxidase (HRP) conjugated anti-rabbit
(1:5,000) and anti-mouse (1:5,000) secondary antibodies (Cell
Signaling) for the rapamycin blot or with the fluorescent
StarBright Blue 700 anti-mouse (1:5,000) and StarBright Blue
700 anti-rabbit (1:5,000) secondary antibodies (Bio-Rad) for the
MRT68921 blots in TBS-T containing 5% powder milk. After
rinsing membranes, protein was visualized by Enhanced
ChemiLuminescence (ECL) using Supersignal West Femto
Maximum Sensitivity Substrate (ThermoFisher) for the
rapamycin blot or by immunofluorescence for the MRT68921
blots, in a ChemiDoc imaging system (BioRad). Band intensity
was quantified using the Gel Analyzer method of Fiji software.

Statistics
Statistical analysis was performed with SigmaPlot. Normality
and homoscedasticity were assessed prior to analysis. Raw LC3
data was initially analyzed by two-way ANOVA, but since an
interaction between treatment (rapamycin, MRT68921) and
Frontiers in Immunology | www.frontiersin.org 3
bafilomycin was found, the global effect of the treatment was
subsequently analyzed by one-way ANOVA. In addition, flux,
and formation and degradation rates were analyzed by one-tail
Student t-test (Figures 5A, B) or by one-way ANOVA followed
by a Holm-Sidak posthoc test (Figure 5C). Formation and
degradation rates were compared to one using a one-tail
Student t-test. Data is shown as mean ± SEM. Only tests with
p <0.05 are considered significantly different; tests with p <0.1 are
reported to have a tendency.
MODELING AUTOPHAGOSOME
FORMATION AND DEGRADATION

Here we propose a simple two-step model to analyze autophagy,
in which the net number of autophagosomes (i.e., the
autophagosome pool) at any given time is treated as a black
box to which there is an input (formation) and an output
(degradation) (Figure 2A). The formation phase encompasses
phagophore formation, cargo sequestration, and autophagosome
closure, and the degradation phase summarizes the lysosomal
fusion and the enzymatic degradation of the autophagosome
contents. Nonetheless, the precise definition of formation/
degradation in each experimental setup depends on the
physiological process blocked by the particular lysosomal
inhibitor used: fusion inhibitors, such as vinblastine, which
blocks transport of autophagosomes by microtubules; protease
A

B

FIGURE 1 | Estimation of autophagy flux variations using LC3 turnover assay. (A) Total protein homogenates obtained from microglia under control (EXP-) and
experimental conditions (EXP+) are analyzed by Western Blot to evaluate LC3 levels in the presence and absence of lysosomal inhibitors. When autophagy is
activated, LC3-I (soluble form) is lipidated to the phophatidylethanolamine of the nascent phagophore forming LC3-II (membrane-bound form). LC3-II accumulates
along the extension of the autophagic vacuoles as it closes and is used as an estimate of the number of autophagosomes. Upon fusion with lysosomes, LC3-II levels
decrease due to the degradation of the inner autophagosomal membrane simultaneously with the luminal cargo. In the presence of lysosomal inhibitors, no
degradation occurs and LC3-II levels are maintained. The subtraction of LC3-II quantities in the presence and absence of lysosomal inhibitors provides an estimate of
the autophagosomes that have been degraded during the experimental period of time. (B) Early stages of autophagy, which lead to the de novo formation of
autophagosomes, are mainly regulated by ATG proteins. The LC3 family of proteins (ATG8) participate in the formation of autophagosomes and progressively
disappear after lysosomal fusion and cargo degradation in autolysosomes. Late stages of autophagy depend on the functionality of lysosomal proteins and enzymes.
January 2021 | Volume 11 | Article 620602
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inhibitors, such as E64d and leupeptin; or proton pump
inhibitors, such as bafilomycin. This conceptual frame can be
easily modeled by a simple equation in which the size of the
autophagosome (APh) pool in a given time point depends on
the number of autophagosomes in the steady-state (ss) plus the
number of autophagosomes formed minus the autophagosomes
Frontiers in Immunology | www.frontiersin.org 4
degraded in a certain period of time:

APht = APHss + APh Formation − APh Degradation

The ratio between degradation and formation is the net
autophagic turnover, which is a measure of the relative velocity
of autophagosome formation versus degradation. A given
A

B

D E

C

FIGURE 2 | A two-step model of autophagy to analyze formation and degradation of autophagosomes. (A) The model represents the autophagosomes as a box
with an input (autophagosome formation, purple dots) and an output (autophagosome degradation, green dots) that determines the autophagosome net turnover.
A1–A3 represent different possible scenarios with no changes (A1), an increase (A2) and a decrease (A3) in the autophagosome net turnover. (B) Graph representing
the amount of LC3-II (au, arbitrary units) in two experimental conditions representing (EXP- and EXP+) in the presence or absence of the lysosomal inhibitor
bafilomycin (BAF- and BAF+), and the formulas used to calculate formation, degradation, and net turnover. The dotted red arrows mark the LC3-II raw data values
used to calculate the formation and degradation rates and ratios. (C) Simulated raw LC3-II data (au) (left) used to calculate the formation and degradation rates and
ratios (right) used in the graphs shown in (B, D, E). (D, E) Graphs representing the rate of change of formation, degradation and net turnover between the two
experimental conditions.
January 2021 | Volume 11 | Article 620602
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stimulus could act proportionally both on the formation and the
degradation, maintaining the size of the APh pool and resulting
in a constant net turnover ratio (Figure 2A1). However, under
some conditions, the regulation of the formation and
degradation of autophagosomes may be dissociated: an
increased degradation would decrease the size of the APh pool
and increase the net turnover (Figure 2A2); and an increased
formation would increase the size of the APh pool and decrease
the net turnover (Figure 2A3). Thus, we propose that to
understand the complexity of the biology underneath the
autophagosome turnover we need to analyze separately
formation, degradation, and the net autophagic turnover.

This analysis can be performed using the data available in
conventional LC3 assays by Western blot. In this type of analysis,
cells or tissue from two experimental conditions (EXP-: control
and EXP+: experimental stimulus) are incubated in the presence
or absence of lysosomal inhibitors such as bafilomycin (BAF- and
BAF+) for a certain period of time. Protein from these four
conditions is extracted and the expression of LC3-II is analyzed
by Western blot and, ideally, normalized to reference proteins
such as actin (13). In addition, the complementary normalization
of LC3-II to LC3-I may facilitate the understanding of the full
picture of the autophagy response (13).

In the basal condition (EXP-), the amount of LC3-II in the
absence of lysosomal inhibitors (BAF-) represents the APh pool
in the steady state, analogous to taking a snapshot of the
autophagic process (Figure 2B). The difference between the
amount of LC3-II in cells incubated with and without
lysosomal inhibitors (BAF+ – BAF-) in the basal condition
represents the autophagosomes that have disappeared (i.e., the
degradation phase), which is what is conventionally called
autophagic flux. To calculate the autophagosomes that have
formed, our model stems from the assumption that in the
basal condition autophagy is at an equilibrium because
formation and degradation occur at the same speed:

Basal condition :

APh Formation = APh Degradation

APhequilibrium = APhss

Thus, in the basal condition (EXP-) the autophagosomes that
have formed are identical to the autophagosomes that have
degraded, and thus are also represented by the amount of LC3-
II with and without lysosomal inhibitors (BAF+ – BAF-) (Figures
2B, C).

In the experimental condition (EXP+), the amount of LC3-II
in the absence of lysosomal inhibitors (BAF- in EXP+) represents
the size of the APh pool under the stimulus. Again, degradation
can be calculated as the difference in LC3-II with and without
lysosomal inhibitors [(BAF+ in EXP+) – (BAF- in EXP+)].
Formation can be calculated as the difference between the
amount of LC3-II in the presence of lysosomal inhibitors
minus the size of the initial APh pool in steady-state
conditions [(BAF+ in EXP+) - (BAF- in EXP-)] (Figures 2B,
C). This procedure allows us to calculate the formation and
degradation of autophagosomes in control and experimental
Frontiers in Immunology | www.frontiersin.org 5
conditions (Figure 2D). To then compare whether the
stimulus acts proportionally in both formation and
degradation, we can calculate the ratio between experimental
and basal conditions (EXP+/EXP-) for both formation and
degradation (Figure 2E). Finally, to compare the relative
magnitude of degradation compared to formation, we can
calculate the ratio between both as the net turnover ratio
(Figure 2E), which has a value of one in basal conditions,
because autophagosome formation and degradation occur at
the same rate (red dotted line in Figure 2E).
DISSECTING OUT AUTOPHAGOSOME
FORMATION AND DEGRADATION

This model allows us to discriminate and quantify different
potential biological scenarios that may affect autophagosome
formation, degradation, or both. For instance, a typical
autophagic stimulus would be expected to proportionally
increase autophagosome formation and degradation,
maintaining a balanced autophagy (Figure 3A1). Examples of
this scenario are treatment with the well-known autophagy
activator rapamycin, an inhibitor of the mTORC1 complex
(Mechanistic Target Of Rapamycin Complex 1) (17); or
activation of the transcription factor-EB (TFEB), which
coordinately regulates the biogenesis of autophagosomes and
lysosomes (18), maintaining the equilibrium between formation
and degradation.

To exemplify this scenario, we simulated raw LC3-II Western
blot data from a canonical autophagy stimulus (Figure 3A2), and
from here we calculated the classic autophagy flux, showing the
expected increase (Figure 3A3). We then applied our model to
the raw data and observed that the canonical autophagic
stimulus increased both formation and degradation (Figure
3A4). Importantly, both formation and degradation ratios were
similar and, as a result, the net autophagy ratio was constant
(Figure 3A5), implying a maintenance of the net autophagic
turnover but at a higher rate/velocity, that could be possibly
maintained in the long term.

In contrast, there are other biological scenarios that are not so
easily discriminated using the conventional calculation of the
autophagy flux (Figures 3B, C). Examples of these scenarios are
situations in which autophagosome formation is increased
(Figure 3B) or decreased (Figure 3C), without concomitantly
affecting degradation. For instance, overexpression of ATG
proteins or accumulation of intracellular debris would lead to
increased autophagosome formation. But if lysosomal efficiency
(i .e . , degradation) is not proportional ly increased,
autophagosomes will stall in the lysosomes without degrading
the autophagic cargo, leading to a decreased net turnover ratio
and increased autophagosome pool. This effect has been for
example observed in cells that overexpress Atg5 but whose
lysosomal function is compromised (19). In this case,
calculation of the autophagy flux would not reveal any changes
(Figures 3B1, C1), although the raw LC3-II data is evidently
different (Figures 3B2, C2). Our model would help to quantify
January 2021 | Volume 11 | Article 620602
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the specific effect on formation (Figures 3B3, C3), and the
alteration of the net autophagy ratio (Figures 3B4, C4),
revealing an unbalanced autophagy (Figures 3B5, C5), and a
potentially catastrophic situation for the cell that could not
possibly be maintained over time.

Other biological scenarios that cannot be discriminated using
conventional analysis of the autophagy flux are shown in Figures
4, 5. Some stimuli may selectively increase autophagosome
degradation without affecting their formation coordinately
(Figure 4A), or even reducing it (Figure 4B). For example,
enhanced lysosomal biogenesis or lysosomal enzymes efficiency
Frontiers in Immunology | www.frontiersin.org 6
might lead to increased autophagosome degradation, resulting in
an increased net turnover ratio and reduced autophagosome
pool size. This imbalance has been reported in mice genetically
deficient for the cathepsin inhibitor cystatin B, which exhibit
enhanced lysosomal proteolysis (20). Whereas in this case the
calculation of the autophagy flux would suggest an enhanced
autophagy, our model would reveal the imbalance between
formation and degradation, suggesting that in fact cellular
debris would not be removed any faster from the cytoplasm.

Another scenario in which our model may prove useful is one
where autophagosome degradation is reduced but formation is
A

B C

FIGURE 3 | Theoretical examples of variations in the formation of autophagosomes that lead to balanced or unbalanced autophagy. (A) Example of a balanced flux
with proportional increase in autophagosome formation and degradation. The model of balanced flux with equal formation (purple dots) and degradation (green dots)
(A1), the raw LC3-II/actin Western blot data (A2), the conventional autophagy flux (A3), the formation and degradation rates (A4), and the formation, degradation, and
net ratios (A5) are shown. The red dotted line represents the threshold of one to determine a significant change (over 1, basal conditions) in the formation,
degradation and net turnover ratios. (B, C) Show examples with similar conventional flux (B1, C1), which are in fact derived from dissimilar raw LC3-II/actin Western
blot data (B2, C2). In (B) Our model would reveal increased autophagosome formation rate and no changes in degradation rate (B3), leading to an increased
formation ratio and reduced net ratio (B4), and an unbalanced autophagy (B5). In contrast, in (C) our model would reveal decreased autophagosome formation rate
and no changes in degradation rate (C3), leading to an increased formation ratio and reduced net ratio (C4), and an unbalanced autophagy (C5).
January 2021 | Volume 11 | Article 620602
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maintained (Figure 5A) or even increased (Figure 5B). An
example of this scenario is a pathological condition where
dysfunctional organelles accumulate and the cell tries to
enclose them in autophagosomes but lysosomal functionality is
compromised, for instance because lysosomes are defective or
engaged in other degradation pathways such as phagocytosis or
endocytosis. This effect could be observed in Parkinson’s disease
(PD) dopaminergic neurons, which contain LC3-positive Lewy
bodies, and have stalled autophagosomes, and lysosomal
depletion (21). This complex effect cannot be fully understood
by simply analyzing the reduction in the autophagy flux but
would be instead clearly described by our two-step model.
TESTING THE MODEL IN VITRO

We have directly tested our model with experimental data using
two well-characterized autophagy modulators: the autophagy
inducer rapamycin, which inhibits mTORC1 (22); and the
autophagy inhibitor MRT68921, which blocks ULK1/2 (unc-
51-like kinases 1/2) (22, 23). Both mTORC1 and ULK1/2 are
early checkpoints of canonical autophagy: mTORC1 transduces
signals from energy and damage sensors and is inhibited under
stressful situations, releasing ULK1/2 (unc-51-like kinase 1/2) by
a series of phosphorylation and dephosphorylation events to
initiate the autophagy cascade (1, 14). As a cell model we used
Frontiers in Immunology | www.frontiersin.org 7
cultures of microglia (BV2 cells or primary cultures) and
analyzed the amount of LC3-II by Western blot as a
measurement of the size of the autophagosome pool.

In BV2 microglia rapamycin (6 h, 100 nM) showed the
expected response and a tendency to increased LC3-II flux
(Figure 6A). In addition, our model uncovered a parallel
increase in formation and degradation of autophagosomes,
resulting in a constant size of the APh pool and no changes in
the net autophagosome turnover. Thus, rapamycin allowed the
maintenance of the equilibrium between formation and
degradation (Figure 6A), indicating a sustained autophagy that
the cell can maintain over time.

On the other hand, MRT68921 (3 h, 30 mM) resulted in the
expected decrease in the LC3-II flux in primary microglia (Figure
6B). However, analysis with our model revealed that only
degradation was reduced whereas autophagosome formation
remained constant (Figure 6B). This data is in apparent
contradiction with the described role of MRT in blocking the
autophagy pre-initiation complex (22, 23). To address this
discrepancy, we used a second paradigm of MRT68921 with a
longer treatment and lower dosage (6 h, 1–10 mM; Figure 6C), and
observed that the upstream effect of inhibition of autophagosome
formation with MRT 10µM translated into a similar decrease in
degradation (Figure 6C). Therefore, our model proves useful to
discriminate the effect of experimental manipulations on the
formation and/or degradation of autophagosomes.
A B

FIGURE 4 | Theoretical examples of increased autophagosome degradation that lead to unbalanced autophagy. (A, B) show examples with similar conventional flux
(A1, B1), derived from apparently similar raw LC3-II/actin Western blot data (A2, B2). In (A) our model would reveal an increased autophagosome degradation rate
and no changes in the formation rate (A3), leading to an increased degradation ratio and net ratio (A4), and an unbalanced autophagy (A5). In contrast, in (B) our
model would reveal decreased autophagosome formation rate but increased degradation (B3), leading to decreased formation ratio, increased degradation ratio, and
a strong increase in the net ratio (C4), ultimately resulting in a highly unbalanced autophagy (B5).
January 2021 | Volume 11 | Article 620602
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FUTURE DIRECTIONS

Autophagy is a complexmulti-stepphenomenonand its assessment
is a complicated task that requires using complimentary methods,
as most current guidelines recommend (13, 24). Visualization of
double-membrane autophagosomes by transmission electron
microscopy, live imaging of LC3 acidification using ratiometric
analysis offluorophores, or analysis of substrate degradation should
corroborate the data obtained by analysis of LC3-II expression as a
proxy for autophagosome formation and degradation. It is also
important to note that autophagy is a time-dependent process and,
as such, its dynamics should be assessed over time (25). In addition,
LC3-II immunoblotting assays have several limitations, such as the
reference protein used to normalize LC3-II values, the timing and
concentration of the lysosomal inhibitor used, or the intrinsic
nonlinear detection of proteins by enhanced chemoluminescence
(ECL) (26). The most widely used method to asses autophagy is,
nonetheless, the analysis of the LC3-II flux in the presence of
lysosomal inhibitors. However, the complexities associated to
interpreting LC3-II flux have been thoroughly pointed out before,
in the quest for an optimal “autophagomometer” (26). One of the
key points is that autophagosomes formation and degradation are
spatially and temporally dissociated (27) and that therefore they
need to be assessed independently.

To address this issue, we here propose a simple conceptual
frame to help interpreting LC3-II flux experiments. Our two-step
Frontiers in Immunology | www.frontiersin.org 8
model conceives the steady-state levels of LC3-II as an indirect
measure of the pool of autophagosomes present when the snap-
shot is taken. Assuming that in the basal condition the cells or
tissue of interest are in some sort of equilibrium, the amount of
autophagosomes formed and degraded should be roughly the
same. Thus, the autophagosome pool can be treated as a black
box to which the input (formation) and output (degradation) are
identical, and can be estimated as the difference between LC3-II
levels in the presence and absence of lysosomal inhibitors. In the
experimental condition, degradation can be similarly calculated
as the difference between LC3-II levels in the presence and
absence of lysosomal inhibitors (i.e., the conventional LC3-II
flux). In addition, we propose that the formation of
autophagosomes in the experimental condition can be
estimated by subtracting the steady-state autophagosome pool
to the autophagosomes that have accumulated in the presence of
lysosomal inhibitors. This model allows us to dissect out the
effects of the experimental conditions to autophagosome
formation and degradation. In addition, it also allows us to
understand the net changes in the size of the autophagosomal
pool that are the result of maintaining (or not) the net turnover
ratio at equilibrium.

We have tested the two-step model using pharmacological
autophagy modulators such as the autophagy inducer rapamycin
and the autophagy inhibitor MRT68921 in microglia. As
expected, rapamycin enhanced autophagy flux increasing both
A B

FIGURE 5 | Theoretical examples of decreased autophagosome degradation that lead to unbalanced autophagy. (A, B) show examples with similar conventional
flux (A1, B1), derived from apparently similar raw LC3-II/actin Western blot data (A2, B2). In (A) our model would reveal a decreased autophagosome degradation
rate and no changes in the formation rate (A3), leading to a reduced degradation ratio and net ratio (A4), and an unbalanced autophagy (A5). In contrast, in (B) our
model would reveal increased autophagosome formation rate but decreased degradation (B3), leading to increased formation ratio, reduced degradation ratio, and a
strong reduction in the net ratio (C4), ultimately resulting in a highly unbalanced autophagy (B5).
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autophagosome formation and degradation at the concentration
(100 nM) and time point (6 h) tested. However, the autophagy
inhibitor MRT68921 exhibited concentration and time-
dependent differential effects. At a medium concentration (10
mM) and long time-point (6 h), MRT68921 decreased both
autophagosome formation and degradation, in line with the
inhibitory effects described over ULK1/2 kinase activity, while
no effect was observed at a lower concentration (1 mM).
Nevertheless, at high concentration (30 µM) and short time-
Frontiers in Immunology | www.frontiersin.org 9
point (3h), MRT68921 selectively decreased autophagosome
degradation while maintaining their formation. This was an
unexpected result since MRT68921 inhibits ULK1/2 kinase, a
protein mainly known for its role in autophagy initiation (28).
However, ULK1/2 kinase also regulates the recruitment of other
autophagy-related proteins for the productive formation of
autophagosomes (23, 29). Thus, inhibition of ULK1/2 kinase
activity at high concentrations and short time-points could
preferentially affect autophagosome degradation activity,
A

B

C

FIGURE 6 | Validation of the two-step model with autophagy modulating compounds. (A) Autophagy induction assessed after treatment with rapamycin (100 nM,
6 h) in the presence and absence of Bafilomycin (100 nM) in the BV2 microglia cell line. A representative blot, the raw data obtained, and the calculations of flux,
autophagosome formation and degradation, and net turnover ratios are shown. Data is presented as % over control (LC3-II/actin). (B, C) Autophagy inhibition
assessed after treatment with MRT68921 (30 mM, 3 h in (B); 1 and 10 mM, 6 h in (C) in the presence and absence of Bafilomycin (100 nM) in mouse primary
microglia. A representative blot, the raw data obtained, and the calculations of flux, autophagosome formation and degradation, and net turnover ratios are shown.
Data is presented as % over control (LC3-II/actin). Data represent mean ± SEM of 3 independent experiments. #represents p < 0.1, *represents p < 0.05 and
** represents p < 0.01 by one tailed Student t-test (A, B), or Holm-Sidak after a significant effect of the treatment was found with 1-way ANOVA (C).
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maintaining residual autophagy initiation activities, leading to
the formation of LC3-II positive stalled phagophores and LC3-II
accumulation after inhibitor treatment (23). Overall, using
pharmacological modulators of autophagy, we demonstrate
that our two-step model is able to accurately measure the
selective changes that may occur in autophagosome formation
and/or degradation in microglia after exposure of autophagy
modulating stimuli.

Nonetheless, our two-step model has several limitations that
should be considered. The most important one is the assumption
that autophagy (formation and degradation) are at equilibrium in
the basal condition. This equilibrium implies coordinated control
mechanisms that would be necessary to maintain autophagy in the
long term (30), but each cell type may have different regulation
mechanisms under different metabolic constraints (31), and would
depend on experimental conditions such as cell density. Another
important point is that autophagosome formation and degradation
are not independent phenomena, as assumed in our model. For
instance, it is obvious that if the lysosomal pool is not a limiting
factor, the degradation will directly depend on the formation. In
addition, feed-back mechanisms may link excessive lysosomal
degradation with a subsequent reduction in autophagosome
formation (32). In spite of these limitations, our model can
provide a more expanded insight into the complexity of the
autophagy process than simply analyzing the autophagic flux. In
summary,we here show that using theLC3 turnover assay, our two-
step model helps to systematically determine changes in
autophagosome formation vs degradation, the net turnover and
the sizeof the autophagosomepool to obtainamore comprehensive
understanding of autophagy.

Due to the universal nature of LC3 turnover assays, our two-step
model is useful to estimate changes in autophagosome formation
and degradation in virtually all mammalian cell types, including
microglia. As autophagy has emerged as a regulator of a plethora of
Frontiers in Immunology | www.frontiersin.org 10
microglial functions (1) related to regulation of metabolic status,
inflammation, and phagocytosis (6, 7, 10), our two-stepmodelmay
provide a simple framework to understand the basic dynamics of
microglial autophagy in health and disease.
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