EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN - PS DIVISION

PS/RF/ Note 2001-004

PSB BEAM CONTROL - TECHNICAL GUIDE

A. Blas

Geneva, Switzerland 21 January 2001

Contents

Introduction	p2
History	p2
Cavities	p3
Beam control typical layout	p3
The actual Beam Control	p5
PSB low level location	рб
Beam Control architecture	p9
PSB synchro	p12
Phase matching at mixers level	p12
Cable lengths	p13
Key elements positioning	p15
RF working sets	p15
TG8's (timing source)	p18
GFAS	p20
Patch Panel Layout	p21

Introduction

This guide is intended to the rf specialists of the PS complex. It should provide key data and documents describing the PSB low-level equipment. Nevertheless it will not explain the "raison d'être" of the different parts.

History

Since its running-in period in 1972, the PSB machine was subject to many improvements. The most perceptible in 1983 consisted in the introduction of a second harmonic cavity on each ring. The peak accelerated intensity levelled off from that time at about $3.4 \ 10^{13}$ protons per pulse (ppp) with all four rings (1.1 10^{13} on ring 2). The introduction of a fast feedback on the cavities in 1985 consolidated the operation, but did not improve the record value.

During the first h=1 run in 1998, the operation was disturbed by the impedance of the vacuum flanges around the ring. The resonances of this flanges gave a total (integrated around the ring) longitudinal coupling impedance of 450 Ohms at 750 kHz [2] which is the rf frequency range at the beginning of the cycle. The return voltage generated by the beam current was coupling to different electronic devices which therefore had to be equipped with common mode rejection circuits. Some coupling between rings remained, implying adjustment of the radial position to avoid beating between cavities near the synchrotron frequency.

After some flanges have been short-circuited [2] during the 1998-99 shutdown the total impedance was lowered to about 200 Ohms (still higher than the maximum value for h=5 which was 130 Ohms). This allowed not considering the frequency beating from one ring to the other and also permitted to reach a new intensity record in September 99: $4.1 \ 10^{13}$ ppp accelerated with 1.2 10^{13} in ring 2. New RF decoupling flanges were introduced in the 1999-2000 machine shut-down to further reduce the impedance down to less than 20 Ohms (in the working frequency range).

The transition to h=1 permitted to get rid of the coupled bunch mode instabilities (non-existent with a single bunch) and its complex feedback system, as well as Hereward damping system tackling quadrupolar bunch-shape oscillations. This last effect, not formally studied, could well be explained by a criterion given in [3,4] that relates the loss of Landau damping to the beam current. The current threshold, described as proportional to V_{rf}/h , has been improved by a factor 3.3 when moving from h=5 to h=1.

The absence of the quadrupolar loop indirectly permitted an increase of the h=2 versus h=1 voltage ratio limited to 50 % in the ancient system where beam amplitude detection was misled by double peaked bunches.

All these improvements certainly contributed to the record intensity increase.

Another improvement came from the C04 (h=2) cavities. These were obtained from the conversion of the older C08's that were used as the main h=5 drive cavities. They have more voltage and power margin than the previous C16 cavities used at h=10 and thus run more reliably whenever the phase relationship between h=1 (C02) and h=2 (C04) is critical in terms of power demand from h=2.

In summary, the main advantages of the h=5 to h=1 conversion are:

- Increase of longitudinal acceptance (proportional to
$$\sqrt{\frac{V_{rf}}{r}}$$

- to $\sqrt{\frac{V_{rf}}{h}}$)
- No need of coupled bunch mode feedback system
- Less longitudinal space charge effect \Rightarrow no need for Hereward damping at present intensities

Cavities

Cavity	Frequency range	Maximum	Use (for protons)	Use (for ions)
		voltage		
C02	$0.6 \rightarrow 2 \text{ MHz}$	8 kV	Acceleration on h=1	Acceleration h=4 up to
				1.8 MHz (Frev=450 kHz)
C04	$1.2 \rightarrow 3.9 \text{ MHz}$	8 kV	Bunch flattening	Acceleration on h=4 from
			Bunch splitting (h=1 \rightarrow 2)	1.8 MHz (Frev=450 kHz)
			at 1.4 GeV	up to 3.86 MHz
			Acceleration on h=2	(Frev=965 kHz)
C16	$5 \rightarrow 16 \text{ MHz}$	6 kV	Controlled longitudinal	None
			blow-up (h=9) near 1.4GeV	

The PSB is composed of four superimposed rings, each having three cavities described in table 1.

Table 1: PSB cavities

Beam control typical layout

The present beam control was installed in 1998 within the framework of the harmonic change from h=5 to h=1 and/or 2. Its structure is based on one digital frequency synthesiser per cavity, each digital frequency word being directly derived from the main magnetic field measurement (B to f conversion). The present architecture is represented in Figure 1.

Figure 1 : PS Booster Beam Control basic layout for the acceleration of proton beams

Figure 1 shows that the measured value of the dipolar field ("B-train") is used for generating the frequency words feeding all three cavities.

The revolution frequency (F_{rev}) is obtained from a look-up table (typically a Read Only Memory) and multiplied by the harmonic number aimed for C02 (h=1 for LHC beams). The resulting frequency is summed with the loop (phase and synchronisation) error signals, so as to obtain the actual C02 rf value sent to the cavities via a digital synthesiser.

The same principle applies for C04 and C16 cavities. Moreover, depending on the user, C04 is operated in single or dual harmonic mode. In the former case C04 is working on its own at h=2 (for some proton beams) and in the latter case it is tracking the C02 (h=1) cavity so as to obtain particular bunch shapes to improve for example the bunching factor.

C16 is used as a "controlled blow-up" cavity and so is not used in any loop. Its frequency word is modulated by a function generator. The blow-up principle is similar to the one used in the PS or SPS [1] and consists of a phase modulation (at 3 f_s typ.) of a high harmonic signal (h=9).

It can be noted that when all loops are opened the frequencies are rigidly transmitted to the different cavities that are therefore naturally frequency locked.

This beam control structure has been foreseen for the current operations: h=1 acceleration, dual harmonic (h=1 and 2) acceleration, h=2 acceleration, bunch splitting (h=1 \rightarrow h=2), h=1 with blow-up and finally h=4 (lead ions) acceleration with main drive take-over from C02 to C04.

The main advantages of the digital structure are:

- The look-up-table on the left-hand side of figure 1 sets the RF frequency so as to keep the beam on orbit for any magnetic field. This feature makes it possible to accelerate a beam with all loops open (albeit with some losses and instabilities). In the previous (analogue) version, only the radial loop could establish the required frequency to keep the beam centred but the position detectors were quite hard to run at low intensity beams (e.g. lead ions).
- All cavities are naturally locked in frequency even with loops open; this avoids the presence of an integrating type of corrector in the different phase loops (simplified correctors and more stability margins).
- In the old system, the loss of beam led to saturation of the different loops and erratic behaviour of the frequency and voltage programs necessitating security interlocks, quite heavy to handle, to protect the power equipment. In the new system the loops just need to act on a small frequency range and do not provoke cavity trips.

The actual beam control

Figure 1 was showing a typical architecture. The actual layout for both protons and lead ions beams is described in figures 2 and 3.

On the left end of figures 2 and 3, the main dipolar field is feeding a conversion table (field to revolution frequency). The field is sent in the form of two pulse trains (TBU0.1 and TBD0.1); each pulse representing a 0.1 Gauss increase (Up) or decrease (Down).

The "B Rate Multiplier" is then filtering the pulse train so as to keep only a Q/m (normalised charge over mass) fraction. For protons Q/m = 1.

The look-up table (Digital frequency Program) is converting the B train into a 23 bit frequency word representing the revolution frequency. For the Booster revolution, the weight of the MSB is 1.25 MHz. This value was chosen so as to obtain the best resolution for a maximum revolution frequency of $c/2\pi R = 1.91$ MHz.

The revolution frequency word needs to be multiplied by the harmonic number "h" used for the C02 cavity (one for the protons, four for the lead ions). This multiplication used to be undertaken by a special unit (Digital Arithmetic Unit), but as the possible h values are power of two, the bits of the parallel word are simply shifted on the multi-wire cable. On the DDS (Direct Digital Synthesiser) the MSB is equal to 10 MHz, so as to perform the h=1 multiplication one has to make a three bit shift towards the LSB. (1.25 MHz/10 MHz = 2^{-3})

After multiplication the revolution word becomes a C02-rf word that is serialised in a "Serial Link", multiplexed to the different rings and put back to parallel in another "serial Link" unit.

The rf word is then fed into a summing point (Digital Loop Processor) that will add the error signal from the phase, synchro and radial loop and also different possible offsets. The modified rf word is sent into the DDS of C02.

The same architecture is then applied to C04 and C16. C04 can act as a main h = 2 cavity (when C02 is not used) or as bunch-shaping cavity (protons) when used in conjunction with C02. In this mode (the dual harmonic mode) C04 is phase locked with either C02 or the first harmonic of the Beam signal. The first reference is used in the absence of bunched beam and the later when beam is present because it is the only stable position.

PSB low level location

Figure 4 shows the implementation of the PSB rf low-level racks in Building 361. Figure 5 shows the global layout in a pair of racks used for one ring. Figure 6 shows the detailed content of the two racks used for every single ring.

Figure 2 : PSB low-level rack implementation.

45	000.11		45	45						
44	220 V		44	44		220 V		44		
43			43	43				43		
42			42	42				42		
41		_	41	41	_		P	41		
40	Beam control for F	Protons	40	40	Beamα	ntrd for Protons		40		
39			39	39			Ž	39		
38			38	38			=	38		
37	VENTILATION		37	37	١	/ENTILATION		37		
36	PASSE-CABLES		36	36	P	ASSE-CABLES		36		
35		V	35	35				35		
34	DECIMAL DISPLA		34	34		OSCILLOSCOF	ΡE	34		
33			33	33				33		
32	TSU		32	32				32		
31	TIMING PATCH PAI	NEL	31	31	MONITC	RING PATCH PANEL		31		
30			30	30				30		
29		Synchro	29	29	_			29		
28	Beam control for Protons	TOT DOT N	28	28	Bean	n control for I ons		28		
27			27	27				27		
26			26	26				26		
25	VENTILATION		25	25	١	/ENTILATION		25		
24	PASSE-CABLES		24	24	P	ASSE-CABLES		24		
23			23	23				23		
22			22	22				22		
21	Beam control for F	Protons	21	21				21		
20			20	20				20		
19			19	19				19		
18	VENTILATION		18	18	V	ENTILATION		18		
17	PASSE-CABLES		17	17	P	ASSE-CABLES		17		
16			16	16				16		
15			15	15	Co	mman tobath		15		
14			14	14	В	eemcontrds		14		
13	PASSE-CABLES		13	13				13		
12			12	12				12		
11			11	11		VENTILATION		11		
10			10	10	F	PASSE-CABLES		10		
9	DATOU		9	9				9		
8	8 PATCH							8		
7	7 PANEL							7		
6	6							6		
5	5							5		
4	4				D	riun-urs NWFR SLIPPI V		4		
3			3	3				3		
2	220 V	\bigcirc	2	2		220 V		2		
1	ZZU V	\cup	1	1		220 V		1		

Figure 3 : Global layout of a pair of racks used for one PSB ring

45	220.1/								45	45						าา	<u>.</u>						45				
44					-	220) V						44	44					4	220	JV						44
43			1										43	43													43
42								Frev					42	42		<u>`</u>			c16						ER	R	42
41)FP		C02	<u>C0</u>	03	NK F		C07	CO	C04	41	41		<u></u>	C16	C16	ЩШ						JFFI	UTC D	41
40					Ъ	DS	0			ЪГР	DS	Õ	40	40		AU	Ъ	DS							1 BL	90	40
39			S					ЗER					39	39					ER.						10 N	۱d	39
30							30	30				V		-11 /		N			`		30 27						
31				۷ / ص									31	31													31
30				PF	133	E-0.	ADL	_E3					30	30	0 PASSE-CABLES						30						
30				DE	CIM	AL E	DISI	PLA	Y				33	30					(าร	CII	10	าร	ററ	D	-	33
23													22	23					C	55			55			-	22
33					-								33	33													33
31			TI	MIN	IG F		СН	PAI	NEL				31	31		N	ION	ITOI	RIN	G P	ATC	ЭН	PAN	JFI			31
30						<u> </u>					F	_	30	30	<u> </u>	S)	1						5		⊢	_	30
29		02		74		Š			<u> </u>	ا د		Ē	29	29	S.	-D			۲	32	2	2	CO			Ξ	29
28		Ō		0							С Ц	с Ц	28	28	0.7	eam	PLA		Ч	P C(SCO	CO	INK			L L	28
27		PL/		PLA				· ·	L	3		A L	27	27	<u>۲ (1</u>) ĝ			S	Ы	Ä	2	R. L			C K	27
26						2							26	26	Ы	RE(SE				26
25	5 VENTILATION						25	25				V	ENT	TIL/	ATIC)N					25						
24				PA	١SS	E-C	ABL	ES					24	24				PA	SSI	E-C	ABL	.ES					24
23			(2)	02))4)	04))4)		ER		23	23													23
22	<u>ر</u>		-C0	n-C		7-C(л-С	R R	7-C(:04)	ND		22	22													22
21	J A		10.7	oear		10.	Dear	FEF	(10	0)	Ē		21	21													21
20	Ы) /	C (I		\geq	C	BUF	\geq	RE	SEO		20	20	-												20
19				RE			RE				Ë		19	19													19
18				V	ENT	ILA	TIO	N					18	18													18
1/				PA	SSE	<u></u> C/	ABL	ES					1/	1/				PA	55t	<u></u> C	ABL	E2					1/
10													10	10	I I I I I I I I	-	04		붠			<u>۲</u>		Ц			10
10													13	10	BCI		C02		잂			R		ER			10
14				D٨	122	F-C	۸RI	F۹					14	14	Тf		ΤΨ		뜨			造		UFF UFF			14
12				17	155	L-01							12	12	SP2		SP2		B			Ξ		B			12
11													11	11						тп	ΔΤΙΟ						11
10													10	10				D		E_(^^R		\$				10
9													9	9					<u> </u>	<u>, 1</u>			<u> </u>				9
8	PATCH							8	8	1												8					
7	7 PANFI						7	7	1												7						
6	6						6	6	1												6						
5													5	5													5
4													4	4	1				Pl	CK	UPS	5					4
3					_								3	3				- P(JWE	-R	5UP	'PL	Y				3
2					,	<u>م</u> م				(2	2					~	ഹ	· · /			(2
1					4	220	V			(\mathcal{I}		1	1					2	20	V			(\mathcal{I}		1

Figure 4 : Detailed layout of a pair of racks used for one PSB ring

Beam Control architecture

Glossary

SYNC: Synchro loop filter PH SHIFT: Phase shifter SP2T: Single port-double through ATT: Attenuator DEMOD: Delta/sigma demodulator (used to extract the radial position) RADIAL LOOP: Radial loop filter PLA: Phase loop amplifier (or filter) REC: Receiver = mixer + phase discriminator BRM: B rate multiplier BTI: B train interface DFP: Digital Frequency program SL: Serial link SPLIT: Digital multiplexer DLP: Digital loop processor DDS: Direct digital synthesiser LO: Local oscillator DWS: Digital word shifter MIX: Mixer DIV BY 2: Frequency divider DAU: Digital arithmetic unit

Figure 5 : Actual PSB protons Beam Control

Figure 6 : Actual PSB ions beam control

PSB Synchro

Phase matching at mixers level

Cable lengths

Lengths in [ns]	C02 RING 1	C02 RING 2	C02 RING 3	C02 RING 4	C04 RING 1	C04 RING 2	C04 RING 3	C04 RING 4	C16 RING 1	C16 RING 2	C16 RING 3	C16 RING 4
	-	_	-	-	-		-	-	-	_	-	-
DDS -> SP2T	16	16	16	16	16	16	16	16				
SP2T -> Patch BOR	10	10	10	10	10	10	10	10				
DDS -> Patch BOR									16	16	16	16
Patch BOR ->	148	148	148	148	156	156	156	165	266	266	258	254
Patch BRF	140	140	140	140	100	100	100	100	200	200	200	204
Cable number	2708 499	2708 515	2708 542	2708 546	1088 31	1088 32	1088 33	1088 34	1157 47	1157 57	1157 67	1157 77
Patch BRF -> rf distrib.	51	51	51	51	32	32	32	32	36	36	36	36
rf distri -> AVC	4	4	4	4	4	4	4	4	4	4	4	4
AVC -> Ampli	10	10	10	10								
Ampli -> Patch	51	51	51	51								
AVC -> Filter					10	10	10	10	4	4	4	4
Filter -> Ampli					4	4	4	4	12	12	12	12
Ampli -> Filter					4	4	4	4	4	4	4	4
Filter -> Patch					32	32	32	32	24	24	24	24
Estimated delay in modules	30	30	30	30	40	40	40	40	30	30	30	30
Patch BRF -> Cavity	233	351	233	351	97	97	97	97	148	148	148	148
Cable number	2708 509	2708 525	2708 540	2708 556	1158 95	1159 01	1159 07	1158 63	1054 18	1054 20	1054 22	1054 24
Total DDS -> Cav	553	671	553	671	405	405	405	414	544	544	536	532
Cable to add to equilibrate drives	118	0	118	0	266	266	266	257	127	127	135	139
DDS -> Cav after compensation	671	671	671	671	671	671	671	671	671	671	671	671

Lengths in [ns]	C02 RING 1	C02 RING 2	C02 RING 3	C02 RING 4	C04 RING 1	C04 RING 2	C04 RING 3	C04 RING 4	C16 RING 1	C16 RING 2	C16 RING 3	C16 RING 4
Cav -> Pach BRF	233	351	233	351	97	97	97	97	148	148	148	148
Cable number	2708	2708	2708	2708	1158	1159	1159	1159	1054	1054	1054	1054
	505	521	550	552	30	02	00	03	10	12	14	10
Patch BRF -> 4 Way Split	52	52	52	52	32	32	32	32	32	32	32	32
4 WS ->Quad 2 Way Split	8	8	8	8	10	10	10	10	10	10	10	10
Quad 2 Way Split -> AVC	4	4	4	4	4	4	4	4	4	4	4	4
AVC -> Patch BRF	52	52	52	52	32	32	32	32	32	32	32	32
Estimated	30	20	20	20	30	30	20	20	20	20	20	30
delay in modules		30	50	50	50		50	30	50	50		50
Patch BRF -> Patch BOR	148	148	148	148	156	148	148	148	266	266	258	254
Cable number	2708 503	2708 519	2708 534	2708 550	2708 501	2708 517	2708 532	2708 548	1157 41	1157 51	1157 61	1157 71
Total Cav -> BOR patch	527	645	527	645	361	353	353	353	522	522	514	510
Cable to add to equilibrate return	118	0	118	0	284	292	292	292	123	123	131	135
0	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
cav -> BOR after compensation	645	645	645	645	645	645	645	645	645	645	645	645
Total DDS -> Cav -> BOR	1316	1316	1316	1316	1316	1316	1316	1316	1316	1316	1316	1316
Beam Pick-ups cable length [ns]	275	275	275	275	275	275	275	275	275	275	275	275
Cable to add to PU to	370	370	370	370	370	370	370	370	370	370	370	370
equilibrate												
Widelson (Di)	011	011	011	011	011	011	011	011	011	011	011	044
cable length	211	211	211	211	211	211	211	211	211	211	211	211

Element	Position in ring	Phase lag w.r.t. injection point (1L1)	Delay at 10.7 MHz to obtain the phase lag
C02 ring 1 and 3	10L1	225°	58 ns
C02 ring 2 and 4	7L1	157.5°	41 ns
C04	13L1	292.5°	76 ns
C16	5L1	112.5°	29 ns
Wide Band PU	8L1	180°	47 ns
Active X1 PU	5L1	112.5°	29 ns
Active X1 PU (spare)	14L4	330°	86 ns
Active X10 PU	8L1	180°	47 ns
Passive PU	1L5	18.75°	5 ns
Passive PU	11L2	255 ⁰	66 ns

Key elements positioning

RF working sets

RF GLOBAL CONTROL	Comments
BA.GSRLGAIN	Radial loop gain
BA.GSFOFFC16	Frequency offset C16
BA.GSPLGAIN	C02 Phase loop gain
BA.GSMFS	Synchrotron frequency times m program
	used by 'mode analyser'
BA.GSMFS20K	Synchrotron frequency times m + 20 kHz program
	used by 'mode analyser'
BA.GSSTABLEP	Stable Phase
	used by PLA C02 and 2 nd harmonic corrector
BA.BRATEMULT	Gives the Q/m value referenced to protons
BAX.R1RF	Resets the beam control at the beginning of the cycle
BAX.R2RF	Resets the beam control after the end of the cycle
BAX.SBCLI	Start Beam Control Low Intensity
BAX.SHC16LE	Start Harmonic number for C16 when used at Low energy
BAX.SHGAIN	Start High Gain, sets the pick-up amplifier gain to the high value (used
	for low intensities)
BAX.SBINJ	Start to send dummy B train INJection value to beam control, used by BTI unit
BAX.STBRF	Start to send measured B Train to beam control (when beam captured)
BAX.SH2SYNCC02	Start to SYNChronise H2 cavity (C04) with C02 signal (DDS or Gap)
BAX.E1DLPC02	Disables any correction on the C02 frequency program (C02 in open
	loop mode). For use in the first part of the cycle.
BAX.E2DLPC02	Disables any correction on the C02 frequency program (C02 in open
	loop mode). For use after BAX.E1DLPC02
BAX.E1DLPC04	Disables any correction on the C04 frequency program (C02 in open
	loop mode). For use in the first part of the cycle.
BAX.E2DLPC04	Disables any correction on the C04 frequency program (C02 in open
	loop mode). For use after BAX.E1DLPC04
BAX.E1DLPC16	Disables any correction on the C16 frequency program (C02 in open
	loop mode). For use in the first part of the cycle.

BAX.E2DLPC16	Disables any correction on the C16 frequency program (C02 in open
	loop mode). For use after BAX.E1DLPC04
BAX.SDLPC02	Start DLP of C02. Enables the action the different loops and frequency
	offsets on C02
BAX.SDLPC04	Start DLP of C04. Enables the action the different loops and frequency
	offsets on C04
BAX.SDLPC16	Start DLP of C16. Enables the action the different loops and frequency
	offsets on C16
BAX.E1PLC02	End Phase Loop C02
BAX.E2PLC02	End Phase Loop C02, to be used after BAX.E1PLC02
EPLC04	End Phase Loop C04
ESTEC02	End STEering input for C02; disables, at the PLA level, the radial loop,
	BAi.GSFOFFC02 and the output of the PLA for C04.
SSTEC02	Start STEering input for C02; enables, at the PLA level, the radial
	loop, BAi.GSFOFFC02 and the output of the PLA for C04.
ESTEC04	End STEering input for C04; disables, at the PLA level, the steering
	inputs (not used at the moment.
SSTEC04	Start STEering input for C04; enables, at the PLA level, the steering
	inputs (not used at the moment).
BAX.ERL	End Radial Loop
BAX.EDUALHARMC04	End DUAL HARMonic mode for C04. Disables the output of the SHC
	progressively (1ms rise time)
BAX.SDUALHARMC04	Start DUAL HARMonic mode for C04. Enables the output of the SHC
	progressively (1ms rise time)
BAX.EFBQUAD	End QUADripolar FeedBack (not used yet)
BAX.SFBQUAD	Start QUADripolar FeedBack (not used yet)
BAX.RFBTRANSV	Reset TRANSverse FeedBack
BAX.SFBTRANSV	Start TRANSverse FeedBack
BAX.SGSBC	Start GFAS Beam Control
BAX.SC04MAIN	Start C04 as the MAIN cavity (in mono mode operation). Switches the
	rf source on the synchro loop and on the Radial PU from C02 to C04.
BX.SCY-RF1	Start Cycle. Corresponds to the C0 timing
BIX.AMC-RF1	
BX.SIFT-RF1	Start Intermediate Flat Top (no such cycle used yet)
BX.SLFT-RF1	Start Last Flat Top
BX.EGS-RF2	End GFAS
BAX.RF1	Spare pulse
BAX.RF2	Spare pulse
BAX.RF3	Spare pulse

RF RING i	Comments
BIXi.SDIS-RF1	Start DIStributor (corresponds to the injection in the selected ring)
BAXi.SH2SYNCBEAM	Start SYNChronise H2 with respect to BEAM. Has to be set as soon as
	the beam starts to be bunched during capture
BAXi.SPLC02	Start Phase Loop C02 Has to be set as soon as the beam starts to be
	bunched during capture
BAXi.SPLC04	Start Phase Loop C04. Has to be set as soon as the beam starts to be
	bunched during capture with C04 in mono mode operation.
BAXi.SRL	Start Radial Loop. Should come when bucket area is bigger than bunch
	area to allow acceleration and bucket reduction.
BAi.GSVRFC02	RF Voltage program for C02
BAi.GSVRFC04	RF Voltage program for C04
BAi.GSVRFC16	RF Voltage program for C16
BAi.GSPOFFC02	Phase OFFset for C02 (critical when switching phase loop ON or OFF)
BAi.GSPOFFC04	Phase OFFset for C04 (critical when switching phase loop ON or OFF)
BAi.GSC04PHC02	PHase program of C04 with respect to C02
BAi.GSRPOS	Radial POSition offset
BAI.GSFOFFC02	Frequency OFFset for C02

RF Synchro	Comments
BAi.PSYNCOFFSET	SYNChro Phase OFFSET acts on a phase shifter and shifts the beam
	with respect to extraction reference
BA.EJREFFREQ	EJection REFerence FREQuency acts on a VME frequency synthesiser
	(Pentek) and gives the local $h = 2$ reference
BR.FREQRF	Measures the frequency of the rf sent to the extraction timing
	(EJTIMRF) and of the rf sent to the beam control (EJRFREF)
BAX.SSWEJRFH1	Start SWitch EJection RF H1. Feeds the local ejection reference with
	the h=1 signal.
BAX.SBEAT	Starts the BEATing process prior to enable synchronisation
BAX.SPEJSYNC	Start Phase EJection SYNChro.
BAX.SSWSYNCRFPS	Start SWitch SYNChro RF PS. Allows the PS signals to be the
	references for extraction.
BAX.SHGAIN	Start High GAIN. Allows the amplification of the pick-up signal for
	low intensity beams.

TG8's (Timing source)

GFAS

GFAS NAME	VME Slots	START	STOP	EV START	EV STOP	DSC
BA1.GSVRFC02	4 Top	BAX SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
B/(1.00V/11 002	4 100	C	B, W.R. (1) ZR			DRODDES
BA2.GSVRFC02	4 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA3.GSVRFC02	12 Top	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA4.GSVRFC02	12 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSVRFC04	5 Top	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA2 GSV/REC04	5 Bottom		BAY R1+2RF	BAY2 SDIS		DPSBRF2
BA2.00VIII 004	5 Bottom	C	BAX.R112R1			
BA3.GSVRFC04	13 Top	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA4.GSVRFC04	13 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSVRFC16	6 Тор	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA2.GSVRFC16	6 Bottom	C BAX.SGSB	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA3 GSVREC16	14 Top	C BAX SGSB	BAX R1+2RF	BAX3 SDIS		DPSBRF2
		C				
BA4.GSVRFC16	14 Bottom	C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSPOFFC02	7 Тор	BAX.SGSB C	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA2.GSPOFFC02	7 Bottom	BAX.SGSB	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA3.GSPOFFC02	15 Тор	BAX.SGSB	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA4.GSPOFFC02	15 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSPOFFC04	8 Тор	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA2.GSPOFFC04	8 Bottom	BAX.SGSB	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA3.GSPOFFC04	16 Top	BAX.SGSB	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA4.GSPOFFC04	16 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSC04PHC02	9 Тор	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA2.GSC04PHC02	9 Bottom	BAX.SGSB	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA3.GSC04PHC02	17 Тор	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA4.GSC04PHC02	17 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSRPOS	10 Top	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA1.GSRPOS	10 Bottom	BAX.SGSB	BAX.R1+2RF	BAX2.SDIS		DPSBRF2
BA1.GSRPOS	18 Тор	BAX.SGSB	BAX.R1+2RF	BAX3.SDIS		DPSBRF2
BA1.GSRPOS	18 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS		DPSBRF2
BA1.GSFOFFC02	11 Тор	BAX.SGSB	BAX.R1+2RF	BAX1.SDIS		DPSBRF2
BA1.GSFOFFC02	11 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX2.SDIS		DPSBRF2

BA1.GSFOFFC02	19 Тор	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS	DPSBR	F2
BA1.GSFOFFC02	19 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS	DPSBR	F2
BA.GSRLGAIN	20 Тор	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS	DPSBR	F2
BA.GSFOFFC16	20 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS	DPSBR	F2
BA.GSPLGAIN	21 Тор	BAX.SGSB C	BAX.R1+2RF	BAX3.SDIS	DPSBR	F2
BA.GSSTABLEP	21 Bottom	BAX.SGSB C	BAX.R1+2RF	BAX4.SDIS	DPSBR	F2
BA.GSMFS		BAX.SGSB C		BIX.AMC- MEAS	DPSBN	IEAS
BA.GSMFS20K		BAX.SGSB C		BIX.AMC- MEAS	DPSBN	IEAS

Patch panel layout

LOCATION	CABLE	FUNCTION	ORIGIN	DESTINATION	Comments
R714/P1/1	#115793	VRED C02 R4	BRF1/801		
R714/P1/2	#115792	VRFD C04 R4	BRF1/801		
R714/P1/3	#115774	VRFD C16 R4	BRF2/910		
R714/P1/4	#2708607	GRID PH CO2 R4	BRF1/801		
R714/P1/5	#2708608	GRID_PH_CO4_R4	BRF1/801		
R714/P1/6	#115772	GRID_PH_C16_R4	BRF2/910		
R714/P1/7	#2708545	Ik_C02_R4	BRF1/801		
R714/P1/8	#115794	lk_C04_R4	BRF1/801		
R714/P1/9	#115773	lk_C16_R4	BRF2/910		
R714/P1/10	#2708549	C02_RF_GAP_R4	BRF1/801		
R714/P1/11	#2708551	C04_RF_GAP_R4	BRF1/801		
R714/P1/12	#115778	C16_RF_GAP_R4	BRF2/910		
R714/P1/13	#2708550	C02_RF_GAP_AVC_R4	BRF1/801		0 ns added
R714/P1/14	#2708548	C04_RF_GAP_AVC_R4	BRF1/801		290 ns added
R714/P1/15	#115771	C16_RF_GAP_AVC_R4	BRF2/910	DD54/004	130 ns added
R/14/P1/16	#2708547	C02_VRF_R4		BRF1/801	
R/14/P1/17	#108840	C04_VRF_R4		BRF1/801	
R/14/P1/18	#115776	C16_VRF_R4		BRF2/910	O see a data d
R714/P1/19	#2708546	C02_RF_DRIVE_R4		BRF1/801	
R/14/P1/20	#108834	C04_RF_DRIVE_R4		BRF1/801	260 hs added
R/14/P1/21	#115///			DKF2/910	130 IIS added
R/14/P1/22			<u> </u>	D722/D4/4	
R714/P1/23				R722/P4/1	
R714/P1/25				R722/P4/2	
R714/P1/26		BA4 CO2PHBEAM NAOS		R722/P4/4	
R714/P1/20		BA4 CO4PHBEAM NAOS		R722/P4/5	
R714/P1/28	Lemo 00	BA4 CO4PHCO2 NAOS		R722/P4/6	
R714/P1/29	Lemo 00	BA4 BEAMPHSYREE NAO		R722/P4/7	
101101020	Lonio oo	S			
R714/P1/30	Lemo 00	BA4.RPOS NAOS		R722/P4/8	
R714/P1/31	Lemo 00	BA4.FBQUADERROR NAO		R722/P4/9	
		S			
R714/P1/32	Lemo 00	BA4.FREV_NAOS		R722/P4/10	
R714/P1/33	Lemo 00	BA4.CO2PHGRID_NAOS		R722/P4/11	
R714/P1/34	Lemo 00	BA4.CO4PHGRID_NAOS		R722/P4/12	
R714/P1/35	Lemo 00	BA4.C16PHGRID_NAOS		R722/P4/13	
R714/P1/36	Lemo 00	BA4.IKC02_NAOS		R722/P4/14	
R714/P1/37	Lemo 00	BA4.IKC04_NAOS		R722/P4/15	
R/14/P1/38	Lemo 00	BA4.IKC16_NAOS		R722/P4/16	
R/14/P1/39					
R/14/P1/40	1				
R714/P1/41	Lemo 00	BA4.GSVRFC02			
R/14/P1/42	Lemo 00		RTZ3/GFAS		
D714/F1/43	Lemo 00	BA4.GSPOFEC02	R723/GFA3		
D714/F1/44	Lemo 00	BA4.GSPOFFC02	R723/GFA3		
R714/P1/46		BA4.GSC04PHC02	1120/01 A0		
R714/P1/47	Lemo 00	BA4.GSFOFFC02			
R714/P1/48	Lemo 00	BA4.GSFOFFC16			
R714/P1/49					
R714/P1/50					
R714/P1/51					
R714/P1/52	1				
R714/P1/53					
R714/P1/54	Lemo 00	BAX.R1+2+INH_RF	R725 / PR		
R714/P1/55	Lemo 00	BAX.SBCLI	R725 / PR		
R714/P1/56	Lemo 00	BAX.SHC16LE	R725 / PR		
R714/P1/57	Lemo 00	BAX.SC04MAIN	R725 / PR		
R714/P1/58	Lemo 00	BAX.SHGAIN	R725 / PR		
R714/P1/59	Lemo 00		R725 / PR		
R714/P1/60	Lemo 00	BIX4.SDIS-RF1	R725 / PR		
R714/P1/61	Lemo 00	BAX.SH2SYNCC02	R725 / PR		
R714/P1/62	Lemo 00	BAX4.SH2SYNCBEAM	R725 / PR		
R714/P1/63	Lemo 00	BAX.E1+2DLPC02	R725 / PR		
R714/P1/64	Lemo 00	BAX.SDLPC02	R725 / PR		
R/14/P1/65	Lemo 00	BAX.E1+2DLPC04	R/25/PR		
R/14/P1/66	Lemo 00	BAX.SDLPC04	R/25/PR		

R714/P1/67	Lemo 00	BAX.E1+2PLC02	R725 / PR		
R714/P1/68	Lemo 00	BAX4.SPLC02	R725 / PR		
R714/P1/69	Lemo 00	BAX.EPLC04	R725 / PR		
R714/P1/70	Lemo 00	BAX4.SPLC04	R725 / PR		
R714/P1/71	Lemo 00	BAX.ESTEC02	R725 / PR		
R714/P1/72	Lemo 00	BAX.SSTEC02	R725 / PR		
R714/P1/73	Lemo 00	BAX.ESTEC04	R725 / PR		
R714/P1/74	Lemo 00	BAX.SSTEC04	R725 / PR		
R714/P1/75	Lemo 00	BAX.ERL	R725 / PR		
R714/P1/76	Lemo 00	BAX4.SRL	R725 / PR		
R714/P1/77	Lemo 00	BAX.E1+2DLPC16	R725 / PR		
R714/P1/78	Lemo 00	BAX.SDLPC16	R725 / PR		
R714/P1/79	Lemo 00	BAX.EDUALHARMC04	R725 / PR		
R714/P1/80	Lemo 00	BAX.SDUALHARMC04	R725 / PR		
R714/P1/81	Lemo 00	BAX.SBEAT	R725 / PR		
R714/P1/82	Lemo 00	BAX.SPEJSYNC	R725 / PR		
R714/P1/83	Lemo 00	BAX.EFBQUAD	R725 / PR		
R714/P1/84	Lemo 00	BAX.SFBQUAD	R725 / PR		
R714/P1/85	Lemo 00	BX.SLFT-RF1	R725 / PR		for monitoring
R714/P1/86	Lemo 00	BX.SIFT-RF1	R725 / PR		for monitoring
R714/P1/87	Lemo 00		R725 / PR		
R714/P1/88	Lemo 00	BEX.SEJ	R725 / PR		for monitoring
R714/P1/89	Lemo 00	BAX.RF1	R725 / PR		For test
R714/P1/90	Lemo 00	BAX RF2	R725 / PR		For test
R714/P1/91	Lemo 00	BAX RF3	R725 / PR		For test
R714/P1/92	Lonio oo	Broard o	10/20/110		
R714/P1/93					
R714/P1/94					
R714/P1/95					
R714/P1/96					
R714/P1/97	#104653	RAD POS 4 R4	BAT21/P1/37		in A (7) RAD, LOOP
R714/P1/98	#104669	RAD POS 6 R4	BAT31/P1/37		in B (8) RAD, LOOP
R714/P1/99	#104687	RAD POS 12 R4	BAT65/P1/37		in C (9) RAD, LOOP
R714/P1/100	#104703	RAD POS 14 R4	BCR533/P1/3		in D (10) RAD, LOOP
			7		(-)
R714/P1/101	#104652	PU SYGMA 4 R4	BAT21/P1/33		
R714/P1/102	#104670	PU SYGMA 6 R4	BAT31/P1/33		
R714/P1/103	#104686	PU SYGMA 12 R4	BAT65/P1/33		
R714/P1/104	#104655	LO_RF_R4		BAT21/P1/29	
R714/P1/105	#104671	LO_RF_R4		BAT31/P1/29	
R714/P1/106	#104689	LO_RF_R4		BAT65/P1/29	
R714/P1/107	#104705	LO_RF_R4		BCR533/P1/29	
R714/P1/108					
R714/P1/109	Lemo 00	REV RF R4		R709/P2/28	
R714/P1/110	Lemo 00	RF C02 R4		R709/P2/15	
R714/P1/111	Lemo 00	 RF C04 R4		R709/P2/19	
R714/P1/112	Lemo 00	RF C16 R4		R709/P2/23	
R714/P1/113					
R714/P1/114					
R714/P1/115					
R714/P1/116	Lemo 00	10 MHz	R 724		
R714/P1/117	Lemo 00	RF_REF_EJ	R723/P2/14		
R714/P1/118					
R714/P1/119					
R714/P1/120	Lemo 00	REV_RF_R4		BAT via R725	Transv. FB
R714/P1/121					

LOCATION	CABLE	FUNCTION	ORIGIN	DESTINATION	Comments
R716/P1/1	#115789	VRFD_C02_R3	BRF1/801		
R/16/P1/2	#115788	VRFD_C04_R3	BRF1/801		
R/16/P1/3	#115764	VRFD_C16_R3	BRF2/910		
R/16/P1/4	#2708605		BRF1/801		
R710/F1/5	#2700000		BDE2/010		
R716/P1/7	#113702		BRF1/801		
R716/P1/8	#115790	Ik C04 R3	BRF1/801		
R716/P1/9	#115763	lk C16 R3	BRF2/910		
R716/P1/10	#2708533	C02 RF GAP R3	BRF1/801		
R716/P1/11	#2708535	 C04_RF_GAP_R3	BRF1/801		
R716/P1/12	#115768	C16_RF_GAP_R3	BRF2/910		
R716/P1/13	#2708534	C02_RF_GAP_AVC_R3	BRF1/801		120 ns added
R716/P1/14	#2708532	C04_RF_GAP_AVC_R3	BRF1/801		290 ns added
R716/P1/15	#115761	C16_RF_GAP_AVC_R3	BRF2/910		130 ns added
R716/P1/16	#2708531	C02_VRF_R3		BRF1/801	
R716/P1/17	#108841	C04_VRF_R3		BRF1/801	
R/16/P1/18	#115766			BRF2/910	400
R/16/P1/19	#2708542	C02_RF_DRIVE_R3		BRF1/801	120 hs added
R7 10/P1/20	#100033			DRF 1/001	
R716/P1/22	#113/0/			DRF2/910	
R716/P1/23	Lemo 00	BA3 VREDC02 NAOS		R722/P3/1	
R716/P1/24	Lemo 00	BA3 VREDC04 NAOS		R722/P3/2	
R716/P1/25	Lemo 00	BA3.VRFDC16 NAOS		R722/P3/3	
R716/P1/26	Lemo 00	BA3.C02PHBEAM NAOS		R722/P3/4	
R716/P1/27	Lemo 00	BA3.C04PHBEAM_NAOS		R722/P3/5	
R716/P1/28	Lemo 00	BA3.C04PHC02_NAOS		R722/P3/6	
R716/P1/29	Lemo 00	BA3.BEAMPHSYREF_NAO		R722/P3/7	
		S			
R716/P1/30	Lemo 00	BA3.RPOS_NAOS		R722/P3/8	
R716/P1/31	Lemo 00	BA3.FBQUADERROR_NAO		R722/P3/9	
D746/D4/22				D700/D2/40	
R/16/P1/32	Lemo 00			R/22/P3/10	
R710/F1/33	Lemo 00	BA3.CO2PHGRID_NAOS		R722/F3/11 P722/P3/12	
R716/P1/35	Lemo 00	BA3 C16PHGRID NAOS		R722/P3/13	
R716/P1/36	Lemo 00	BA3.IKC02 NAOS		R722/P3/14	
R716/P1/37	Lemo 00	BA3.IKC04 NAOS		R722/P3/15	
R716/P1/38	Lemo 00	BA3.IKC16_NAOS		R722/P3/16	
R716/P1/39					
R716/P1/40					
R716/P1/41	Lemo 00	BA3.GSVRFC02			
R716/P1/42	Lemo 00	BA3.GSVRFC04	R723/GFAS		
R716/P1/43	Lemo 00	BA3.GSVRFC16	R723/GFAS		
R716/P1/44	Lemo 00	BA3.GSPOFFC02	R723/GFAS		
R/16/P1/45	Lemo 00	BA3.GSPOFFC04	R723/GFAS		
R716/D1/40					
R716/P1/4/		BA3 GSEOFEC16			
R716/P1/40	Lenio O0				
R716/P1/50					
R716/P1/51					
R716/P1/52					
R716/P1/53					
R716/P1/54	Lemo 00	BAX.R1+2+INH_RF	R725/PR		
R716/P1/55	Lemo 00	BAX.SBCLI	R725/PR		
R716/P1/56	Lemo 00	BAX.SHC16LE	R725/PR		
R716/P1/57	Lemo 00	BAX.SC04MAIN	R725/PR		
R716/P1/58	Lemo 00	BAX.SHGAIN	R725/PR		
R/16/P1/59	Lemo 00		R/25/PR		
R/16/P1/60			R725/PK		
R716/P1/01			R120/PK		
R716/P1/63			R725/PR		
R716/P1/64		BAX SDI PC02	R725/PR		
R716/P1/65	Lemo 00	BAX.E1+2DI PC04	R725/PR		
R716/P1/66	Lemo 00	BAX.SDLPC04	R725/PR	1	
				1	í

R716/P1/67	Lemo 00	BAX.E1+2PLC02	R725/PR		
R716/P1/68	Lemo 00	BAX4.SPLC02	R725/PR		
R716/P1/69	Lemo 00	BAX.EPLC04	R725/PR		
R716/P1/70	Lemo 00	BAX3.SPLC04	R725/PR		
R716/P1/71	Lemo 00	BAX.ESTEC02	R725/PR		
R716/P1/72	Lemo 00	BAX.SSTEC02	R725/PR		
R716/P1/73	Lemo 00	BAX.ESTEC04	R725/PR		
R716/P1/74	Lemo 00	BAX.SSTEC04	R725/PR		
R716/P1/75	Lemo 00	BAX.ERL	R725/PR		
R716/P1/76	Lemo 00	BAX3.SRL	R725/PR		
R716/P1/77	Lemo 00	BAX.E1+2DLPC16	R725/PR		
R716/P1/78	Lemo 00	BAX.SDLPC16	R725/PR		
R716/P1/79	Lemo 00	BAX.EDUALHARMC04	R725/PR		
R716/P1/80	Lemo 00	BAX.SDUALHARMC04	R725/PR		
R716/P1/81	Lemo 00	BAX.SBEAT	R725/PR		
R716/P1/82	Lemo 00	BAX.SPEJSYNC	R725/PR		
R716/P1/83	Lemo 00	BAX.EFBQUAD	R725/PR		
R716/P1/84	Lemo 00	BAX.SFBQUAD	R725/PR		
R716/P1/85	Lemo 00	BX.SLFT-RF1	R725/PR		for monitoring
R716/P1/86	Lemo 00	BX.SIFT-RF1	R725/PR		for monitoring
R716/P1/87	Lemo 00		R725/PR		J
R716/P1/88	Lemo 00	BEX.SEJ	R725/PR		for monitoring
R716/P1/89	Lemo 00	BAX.RF1	R725/PR		For test
R716/P1/90	Lemo 00	BAX.RF2	R725/PR		For test
R716/P1/91	Lemo 00	BAX.RF3	R725/PR		For test
R716/P1/92					
R716/P1/93					
R716/P1/94					
R716/P1/95					
R716/P1/96					
R716/P1/97	#104649	RAD POS 4 R3	BAT21/P1/37		in A (7) RAD. LOOP
R716/P1/98	#104665	RAD POS 6 R3	BAT31/P1/37		in B (8) RAD, LOOP
R716/P1/99	#104683	RAD POS 12 R3	BAT65/P1/37		in C (9) RAD, LOOP
R716/P1/100	#104699	RAD_POS_14_R3	BCR533/P1/3		in D (10) RAD. LOOP
			7		, , , , , , , , , , , , , , , , , , ,
R716/P1/101	#104648	PU SYGMA 4 R3	BAT21/P1/33		
R716/P1/102	#104666	PU_SYGMA_6_R3	BAT31/P1/33		
R716/P1/103	#104682	PU SYGMA 12 R3	BAT65/P1/33		
R716/P1/104	#104651	LO_RF_R3		BAT21/P1/29	
R716/P1/105	#104667	LO_RF_R3		BAT31/P1/29	
R716/P1/106	#104685	LO_RF_R3		BAT65/P1/29	
R716/P1/107	#104701	LO_RF_R3		BCR533/P1/29	
R716/P1/108					
R716/P1/109	Lemo 00	REV_RF_R3		R709/P2/28	
R716/P1/110	Lemo 00	RF_C02_R3		R709/P2/15	
R716/P1/111	Lemo 00	RF C04 R3		R709/P2/19	
R716/P1/112	Lemo 00	RF C16 R3		R709/P2/23	
R716/P1/113	1	C02_VPRD_R3			
R716/P1/114	1	C04_VPRD_R3			
R716/P1/115		C16_VPRD_R3			
R716/P1/116	Lemo 00	10 MHz			
R716/P1/117	Lemo 00	RF_REF_EJ	R723		
R716/P1/118	1				
R716/P1/119					
R716/P1/120	Lemo 00	REV_RF_R3		BAT via R725	Transv. FB
R716/P1/121	1				

LOCATION	CABLE	FUNCTION	ORIGIN	DESTINATION	Comments
R718/P1/1	#115785	VRFD_C02_R2	BRF1/801		
R/18/P1/2	#115787	VRFD_C04_R2	BRF1/801		
R/18/P1/3	#115754	VRFD_C16_R2	BRF2/910		
R/18/P1/4	#2708603		BRF1/801		
D719/D1/6	#2700004		BRE2/010		
R718/P1/7	#113732		BRF1/801		
R718/P1/8	#115786	Ik C04 R2	BRF1/801		
R718/P1/9	#115753	lk C16 R2	BRF2/910		
R718/P1/10	#2708518	C02 RF GAP R2	BRF1/801		
R718/P1/11	#2708520	 C04_RF_GAP_R2	BRF1/801		
R718/P1/12	#115758	C16_RF_GAP_R2	BRF2/910		
R718/P1/13	#2708519	C02_RF_GAP_AVC_R2	BRF1/801		0 ns added
R718/P1/14	#2708517	C04_RF_GAP_AVC_R2	BRF1/801		290 ns added
R718/P1/15	#115759	C16_RF_GAP_AVC_R2	BRF2/910		130 ns added
R718/P1/16	#2708516	C02_VRF_R2		BRF1/801	
R718/P1/17	#108842	C04_VRF_R2		BRF1/801	
R718/P1/18	#115756	C16_VRF_R2		BRF2/910	
R/18/P1/19	#2708515	CU2_RF_DRIVE_R2		BRF1/801	U NS added
R718/P1/20	#108832			BKF1/801	∠ou ns added
R718/P1/21	#113/3/			DRF2/910	
R718/P1/22				R722/P2/1	
R718/P1/24	Lemo 00	BA2 VREDC04 NAOS		R722/P2/2	
R718/P1/25	Lemo 00	BA2.VRFDC16 NAOS	<u> </u>	R722/P2/3	
R718/P1/26	Lemo 00	BA2.C02PHBEAM NAOS		R722/P2/4	
R718/P1/27	Lemo 00	BA2.C04PHBEAM NAOS		R722/P2/5	
R718/P1/28	Lemo 00	BA2.C04PHC02_NAOS		R722/P2/6	
R718/P1/29	Lemo 00	BA2.BEAMPHSYREF_NAO		R722/P2/7	
		S			
R718/P1/30	Lemo 00	BA2.RPOS_NAOS		R722/P2/8	
R718/P1/31	Lemo 00	BA2.FBQUADERROR_NAO		R722/P2/9	
D740/D4/00		S		D700/D0/40	
R/18/P1/32	Lemo 00	BA2.FREV_NAUS		R722/P2/10	
R/18/P1/33	Lemo 00	BA2.CO2PHGRID_NAOS		R722/P2/11	
R7 16/P1/34	Lemo 00			R/22/P2/12 P722/P2/12	
R710/F1/35	Lemo 00	BA2 KC02 NAOS		R722/F2/13 R722/P2/14	
R718/P1/37	Lemo 00	BA2.IKC04_NAOS		R722/P2/15	
R718/P1/38	Lemo 00	BA2.IKC16 NAOS		R722/P2/16	
R718/P1/39					
R718/P1/40					
R718/P1/41	Lemo 00	BA2.GSVRFC02			
R718/P1/42	Lemo 00	BA2.GSVRFC04	R723/GFAS		
R718/P1/43	Lemo 00	BA2.GSVRFC16	R723/GFAS		
R718/P1/44	Lemo 00	BA2.GSPOFFC02	R723/GFAS		
R718/P1/45	Lemo 00	BA2.GSPOFFC04	R723/GFAS		
R/18/P1/46	Lemo 00	BA2.GSC04PHC02			
R/18/P1/4/		BA2.GSFUFFCU2			
R/10/P1/48	Leino UU	DAZ.GOFUFFU10			
R718/D1/50					
R718/P1/51					
R718/P1/52					
R718/P1/53					
R718/P1/54	Lemo 00	BAX.R1+2+INH RF	R725 / PR		
R718/P1/55	Lemo 00	BAX.SBCLI	R725 / PR		
R718/P1/56	Lemo 00	BAX.SHC16LE	R725 / PR		
R718/P1/57	Lemo 00	BAX.SC04MAIN	R725 / PR		
R718/P1/58	Lemo 00	BAX.SHGAIN	R725 / PR		
R718/P1/59	Lemo 00		R725 / PR		
R718/P1/60	Lemo 00	BIX2.SDIS-RF1	R725 / PR		
R718/P1/61	Lemo 00	BAX.SH2SYNCC02	R725 / PR		
R/18/P1/62	Lemo 00	BAX2.SH2SYNCBEAM	R/25/PR		
R/18/P1/63			R/25/PR		
R/10/P1/04			R/20/PK		
D719/D1/00			R120/PK		
1\110/1-1/00		DAA.30LF 004	1X/20/ FR	1	

R718/P1/67	Lemo 00	BAX.E1+2PLC02	R725 / PR		
R718/P1/68	Lemo 00	BAX2.SPLC02	R725 / PR		
R718/P1/69	Lemo 00	BAX.EPLC04	R725 / PR		
R718/P1/70	Lemo 00	BAX2.SPLC04	R725 / PR		
R718/P1/71	Lemo 00	BAX.ESTEC02	R725 / PR		
R718/P1/72	Lemo 00	BAX.SSTEC02	R725 / PR		
R718/P1/73	Lemo 00	BAX.ESTEC04	R725 / PR		
R718/P1/74	Lemo 00	BAX.SSTEC04	R725 / PR		
R718/P1/75	Lemo 00	BAX.ERL	R725 / PR		
R718/P1/76	Lemo 00	BAX2.SRL	R725 / PR		
R718/P1/77	Lemo 00	BAX.E1+2DLPC16	R725 / PR		
R718/P1/78	Lemo 00	BAX.SDLPC16	R725 / PR		
R718/P1/79	Lemo 00	BAX.EDUALHARMC04	R725 / PR		
R718/P1/80	Lemo 00	BAX.SDUALHARMC04	R725 / PR		
R718/P1/81	Lemo 00	BAX.SBEAT	R725 / PR		
R718/P1/82	Lemo 00	BAX.SPEJSYNC	R725 / PR		
R718/P1/83	Lemo 00	BAX.EFBQUAD	R725 / PR		
R718/P1/84	Lemo 00	BAX.SFBQUAD	R725 / PR		
R718/P1/85	Lemo 00	BX.SLFT-RF1	R725 / PR		for monitoring
R718/P1/86	Lemo 00	BX.SIFT-RF1	R725 / PR		for monitoring
R718/P1/87	Lemo 00		R725 / PR		
R718/P1/88	Lemo 00	BEX.SEJ	R725 / PR		for monitoring
R718/P1/89	Lemo 00	BAX.RF1	R725 / PR		For test
R718/P1/90	Lemo 00	BAX.RF2	R725 / PR		For test
R718/P1/91	Lemo 00	BAX.RF3	R725 / PR		For test
R718/P1/92		-			
R718/P1/93					
R718/P1/94					
R718/P1/95					
R718/P1/96					
R718/P1/97	#104645	RAD_POS_4_R2	BAT21/P1/37		in A (7) RAD. LOOP
R718/P1/98	#104661	RAD_POS_6_R2	BAT31/P1/37		in B (8) RAD. LOOP
R718/P1/99	#104679	RAD_POS_12_R2	BAT65/P1/37		in C (9) RAD. LOOP
R718/P1/100	#104695	RAD_POS_14_R2	BCR533/P1/3		in D (10) RAD. LOOP
			7		
R718/P1/101	#104644	PU_SYGMA_4_R2	BAT21/P1/33		
R718/P1/102	#104662	PU_SYGMA_6_R2	BAT31/P1/33		
R718/P1/103	#104678	PU_SYGMA_12_R2	BAT65/P1/33		
R718/P1/104	#104647	LO_RF_R2		BAT21/P1/29	
R718/P1/105	#104663	LO_RF_R2		BAT31/P1/29	
R718/P1/106	#104681	LO_RF_R2		BAT65/P1/29	
R718/P1/107	#104697	LO_RF_R2		BCR533/P1/29	
R718/P1/108					
R718/P1/109	Lemo 00	REV_RF_R2		R709	
R718/P1/110	Lemo 00	RF_C02_R2		R709	
R718/P1/111	Lemo 00	RF_C04_R2		R709	
R718/P1/112	Lemo 00	RF_C16_R2		R709	
R718/P1/113		C02_VPRD_R2			
R718/P1/114		C04_VPRD_R2			
R718/P1/115		C16_VPRD_R2			
R718/P1/116	Lemo 00	10 MHz	R 724		
R718/P1/117	Lemo 00	RF_REF_EJ	R723		
R718/P1/118					
R718/P1/119					
R718/P1/120	Lemo 00	REV_RF_R2		BAT via R725	Transv. FB
R718/P1/121					

LOCATION	CABLE	FUNCTION	ORIGIN	DESTINATION	Comments
D700/D4/4			DDE1/004		
R/20/P1/1	#115781	VRFD_C02_R1	BRF1/801		
R720/P1/2	#115783		BRF1/801		
R720/P1/3	#115744		BRF2/910		
R720/F1/4	#2708602		BDE1/901		
R720/P1/6	#115742	GRID_PH_C16_R1	BRF2/910		
R720/P1/7	#113742	Ik C02 R1	BRF1/801		
R720/P1/8	#115782	Ik C04 R1	BRF1/801		
R720/P1/9	#115743	lk C16 R1	BRF2/910		
R720/P1/10	#2708502	C02 RF GAP R1	BRF1/801		
R720/P1/11	#2708504	 C04_RF_GAP_R1	BRF1/801		
R720/P1/12	#115748	C16_RF_GAP_R1	BRF2/910		
R720/P1/13	#2708503	C02_RF_GAP_AVC_R1	BRF1/801		120 ns added
R720/P1/14	#2708501	C04_RF_GAP_AVC_R1	BRF1/801		290 ns added
R720/P1/15	#115741	C16_RF_GAP_AVC_R1	BRF2/910		130 ns added
R720/P1/16	#2708500	C02_VRF_R1		BRF1/801	
R720/P1/17	#108843	C04_VRF_R1		BRF1/801	
R720/P1/18	#115746	C16_VRF_R1		BRF2/910	
R720/P1/19	#2708499	C02_RF_DRIVE_R1		BRF1/801	120 ns added
R/20/P1/20	#108831	C04_RF_DRIVE_R1		BRF1/801	260 ns added
R/20/P1/21	#115/4/			BRF2/910	130 ns added
R720/P1/22	Lome 00			P702/D4 /4	
R720/P1/23				R722/P1/1 R722/D1/2	
R720/P1/24		BA1 VREDC16 NAOS		R722/F1/2	
R720/P1/25		BA1.002PHBEAM NAOS		R722/P1/4	
R720/P1/27	Lemo 00	BA1 CO4PHBEAM NAOS		R722/P1/5	
R720/P1/28	Lemo 00	BA1 C04PHC02 NAOS		R722/P1/6	
R720/P1/29	Lemo 00	BA1.BEAMPHSYREE NAO		R722/P1/7	
	200 00	S			
R720/P1/30	Lemo 00	BA1.RPOS_NAOS		R722/P1/8	
R720/P1/31	Lemo 00	BA1.FBQUADERROR_NAO		R722/P1/9	
		S			
R720/P1/32	Lemo 00	BA1.FREV_NAOS		R722/P1/10	
R720/P1/33	Lemo 00	BA1.CO2PHGRID_NAOS		R722/P1/11	
R720/P1/34	Lemo 00	BA1.CO4PHGRID_NAOS		R722/P1/12	
R720/P1/35	Lemo 00	BA1.C16PHGRID_NAOS		R722/P1/13	
R/20/P1/36	Lemo 00	BA1.IKC02_NAOS		R/22/P1/14	
R/20/P1/37	Lemo 00	BA1.IKC04_NAOS		R722/P1/15	
R/20/P1/30	Lemo 00	BAT.IKC16_NAUS		R/22/P1/10	
P720/P1/40					
R720/P1/40	Lemo 00	BA1 GSVREC02			
R720/P1/42	Lemo 00	BA1 GSVRFC04	R723/GEAS		
R720/P1/43	Lemo 00	BA1.GSVRFC16	R723/GFAS		
R720/P1/44	Lemo 00	BA1.GSPOFFC02	R723/GFAS		
R720/P1/45	Lemo 00	BA1.GSPOFFC04	R723/GFAS		
R720/P1/46	Lemo 00	BA1.GSC04PHC02			
R720/P1/47	Lemo 00	BA1.GSFOFFC02			
R720/P1/48	Lemo 00	BA1.GSFOFFC16			
R720/P1/49					
R720/P1/50					
R720/P1/51					
R720/P1/52					
R720/P1/53			D-0		
R/20/P1/54			R725/PK		
R720/P1/55	Lemo 00		R/23/PR		
R720/P1/57			R725/PR		
R720/P1/58		BAX SHGAIN	R725/PR		
R720/P1/59	Lemo 00		R725/PR		
R720/P1/60	Lemo 00	BIX2.SDIS-RF1	R725/PR		
R720/P1/61	Lemo 00	BAX.SH2SYNCC02	R725/PR		
R720/P1/62	Lemo 00	BAX1.SH2SYNCBEAM	R725/PR		
R720/P1/63	Lemo 00	BAX.E1+2DLPC02	R725/PR		
R720/P1/64	Lemo 00	BAX.SDLPC02	R725/PR		
R720/P1/65	Lemo 00	BAX.E1+2DLPC04	R725/PR		
R720/P1/66	Lemo 00	BAX.SDLPC04	R725/PR7.8		

R720/P1/67	Lemo 00	BAX.E1+2PLC02	R725/PR		
R720/P1/68	Lemo 00	BAX1.SPLC02	R725/PR		
R720/P1/69	Lemo 00	BAX.EPLC04	R725/PR		
R720/P1/70	Lemo 00	BAX1.SPLC04	R725/PR		
R720/P1/71	Lemo 00	BAX.ESTEC02	R725/PR		
R720/P1/72	Lemo 00	BAX.SSTEC02	R725/PR		
R720/P1/73	Lemo 00	BAX.ESTEC04	R725/PR		
R720/P1/74	Lemo 00	BAX.SSTEC04	R725/PR		
R720/P1/75	Lemo 00	BAX.ERL	R725/PR		
R720/P1/76	Lemo 00	BAX2.SRL	R725/PR		
R720/P1/77	Lemo 00	BAX.E1+2DLPC16	R725/PR		
R720/P1/78	Lemo 00	BAX.SDLPC16	R725/PR		
R720/P1/79	Lemo 00	BAX.EDUALHARMC04	R725/PR		
R720/P1/80	Lemo 00	BAX.SDUALHARMC04	R725/PR		
R720/P1/81	Lemo 00	BAX.SBEAT	R725/PR		
R720/P1/82	Lemo 00	BAX.SPEJSYNC	R725/PR		
R720/P1/83	Lemo 00	BAX.EFBQUAD	R725/PR		
R720/P1/84	Lemo 00	BAX.SFBQUAD	R725/PR		
R720/P1/85	Lemo 00	BX SI FT-RF1	R725/PR		for monitoring
R720/P1/86	Lemo 00	BX.SIFT-RF1	R725/PR	1	for monitoring
R720/P1/87	Lemo 00		R725/PR		g
R720/P1/88	Lemo 00	BEX.SEJ	R725/PR		for monitoring
R720/P1/89	Lemo 00	BAX RF1	R725/PR		For test
R720/P1/90	Lemo 00	BAX.RF2	R725/PR		For test
R720/P1/91	Lemo 00	BAX RE3	R725/PR		For test
R720/P1/92	Lonio oo	Bround C			
R720/P1/93					
R720/P1/94					
R720/P1/95					
R720/P1/96					
R720/P1/97	#104641	RAD POS 4 R1	BAT21/P1/37		in A (7) RAD, LOOP
R720/P1/98	#104657	RAD POS 6 R1	BAT31/P1/37		in B (8) RAD, LOOP
R720/P1/99	#104675	RAD POS 12 R1	BAT65/P1/37		in C (9) RAD, LOOP
R720/P1/100	#104691	RAD POS 14 R1	BCR533/P1/3		in D (10) RAD, LOOP
			7		
R720/P1/101	#104640	PU SYGMA 4 R1	BAT21/P1/33		
R720/P1/102	#104658	PU SYGMA 6 R1	BAT31/P1/33		
R720/P1/103	#104674	PU SYGMA 12 R1	BAT65/P1/33		
R720/P1/104	#104643	LO RF R1		BAT21/P1/29	
R720/P1/105	#104659	LO RF R1		BAT31/P1/29	
R720/P1/106	#104677	LO RF R1		BAT65/P1/29	
R720/P1/107	#104693	LO RF R1		BCR533/P1/29	
R720/P1/108					
R720/P1/109	Lemo 00	REV_RF_R1		R709/P2/28	
R720/P1/110	Lemo 00	RF C02 R1		R709/P2/15	
R720/P1/111	Lemo 00	RF C04 R1		R709/P2/19	
R720/P1/112	Lemo 00	RF C16 R1		R709/P2/23	
R720/P1/113		C02 VPRD R1			
R720/P1/114	1	C04_VPRD_R1			
R720/P1/115		C16_VPRD_R1			
R720/P1/116	Lemo 00	10MHz	R724		
R720/P1/117	Lemo 00	RF_REF_EJ	R723		
R720/P1/118	1			[
R720/P1/119					
R720/P1/120		REV_RF_R1		BAT	Transv. FB
R720/P1/121					

References

- [1] Study of Controlled Longitudinal Blow-up in the SPS using the 800 MHz RF System, T. Bohl, T. Linnecar, E. Shaposhnicova, W. Sinclair, U. Wehrle, SL-MD Note 221
- [2] PSB Vacuum Flanges Impedance Measurement, CERN/PS 2000-025 (AE), A. Blas, C. Carli, M. Chanel, C. Lacroix
- [3] **Bunches with Local Elliptic Energy Distributions**, IEEE transactions on nuclear science, Vol. NS-26, No.3, June 1979, A. Hofmann, F. Pedersen.
- [4] Theory and Performance of the Longitudinal Active Damping System for the CERN PS Booster, CERN/PS/BR/77-8, February 1977, F. Pedersen, F. Sacherer.