CORRELATIONS IN INCLUSIVE EXPERIMENTS

Luca CANESCHI

1. INTRODUCTION

The continuing interest of experimentalists and
theorists in inclusive reactions has recently focused on two (or
more) particle distributions. Actually, single particle inclusive
distributions (ID) offer only a rough picture of what is going on,
whereas it is likely that at the level of two particle distributions
some insight into the details of the production processes can be
gained. For instance, physically very different models like the
multiperipheral model 1 (MPM) and the diffractive excitation

model 2) (DEM) lead both to expect a limiting distribution 3)

for
single particle spectra: the MPM actually predicts the stronger
property of scaling E , with the consequent logarithmic behaviour
of <n>, but also the DEM can acéomﬁodate thig-éfronger feature.
However, the two models differ sﬁarplyAat the level of two par-
ticles ID: the MPM predicts a regular behaviour at x1::x25:O,
whence a ﬂnz s behaviour of <rfz> , Wwhereas in the DEM one

1
expects a singular behaviour and <n2>v=s2 4).

Another reason for the focusing of interest on several
particles ID was the presumption that little new could be learned
from single particle spectra. Let us remember that some months

ago the small and intermediate angle ISR experiments > , that
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could cover values of x down to about 0.1, had given results

in good agreement with limiting distribution. Also, the only
experiment 6 on cosmic rays interactions with protons supported a
logarithmic behaviour of the charged multiplicity, with a coefficient

of fns quite compatible with the value of

j{(o,r_,_‘g) dzh_ of T2 50 g ;

it was, therefore, natural to conclude 7)

that scaling was valid,
and that the single particle I D at accelerator energies already
yielded the asymptotic value of f(x,pl ) in the whole x range.
In the MPM this conclusion was a priori rather surprising. In
fact, scaling in the MPM can be understood in terms of the
hypothesis of short range correlations that forms the basis of the
model: at fixed x the difference of rapidity between the
observed particle and the incoming one that has opposite longitu-
dinal momentum in the c.m. system grows like fns: when this
distance exceeds the assumed correlation length, no further s
dependence can be exhibited by f(x,p'L). On this basis one

expects that low values of x scale later: assuming a correlation

length equal to two, as it is fashionable, we expect that

2

?%. K %/;m’ + j&\ Li x~$ + |

(1)
should exceed four in order to obtain scaling at the 10% level,
but at x=0 +this happens only for s~ 3000 GeV2. Also, at
x=0 scaling takes place when the observed particle falls out-
side the correlation length with respect to both incoming
particles: hence, when the x=0 region reaches its limit, the
rapidity distribution should start exhibiting the famous plateau,
but no such plateau was seen at s~50 GeV2.

These argumentations have been vindicated by the

recent large angle ISR experiments 8), which have shown that the

yield of particles at 90° in the c.m.s. is about twice higher at
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ISR energies that it is at 50 GeVz, also, within the ISR energy
range there is a clear, if not conclusive, trend to increase. The
data are quite consistent with an s dependence of the form

A+B s_1/4, as suggested by the MPM 9), but the relative size

(and sign) of A and B (B/AA:—Z) is intriguing.

In conclusion we think that the emphasis goes back to
one-particle features, i.e., single particle ID and <n>. Ex-
perimentally we need to know whether the yield at 90° approaches
a limit or keeps increasing with s, and whether <n> 1is loga-
rithmic, theoretically it would be very interesting to see if the

above value of B/A is consistent with the MPM.

It is interesting to remark that the same large
angle ISR experiments 8 show the existence of the plateau in
rapidity predicted by a scaling theory. One might wonder whether
this is compatible with an indefinite increase of f(x,s) at
x=0, 1i.e., with a limiting function f(x) continuous but
singular at x=0. The answer is yes. In fact, since f(x,s) is
finite at fixed s by definition, we can choose a constant ¢
and define x(s) as the smallest value of x for which
f(x,s) +ci>f(x). Obviously x(s);éo for any s. There will be a
plateau in rapidity of length L(s) whenever L(s):zln s+ 4n x(s)

does not decrease to zero asymptotically.

2. KINEMATICAL CORRELATIONS

After this rather lengthy introduction let us come to
correlations. Since the basic definitions have been clearly stated
by Le Bellac in the previous talk, and since the following one by
Peccei covers most of the dynamical part of the subject, we will
concentrate on the necessary correlations forced by conservation
laws. We will start by examining momentum conservation in a
theory of identical bosons with no quantum numbers. It is by now
well known that the conservation of momentum imposes the following

integral constraint between neighbouring ID 1O):
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3. TRANSVERSE CORRELATIONS

Choosing for 'simplicity k=1, let us consider (2)

with }L =1 or 2, multipiy by Py OT P, and sum to obtain

2 () 43 ) (2)
B e (s [ (qp) ¢ (has)
&4
(5)
In a scaling theory the left-hand side approaches a finite limit
when 8—->m®m, and so does ?(2)(p,q,s)/. The integration over

| .
qu/Eq, however, can in principle produce an unwanted Ans
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behaviour of the right-hand side. It is instructive to examine
the mechanism that prevents this from happening in different
models Ecemember that (5) has to hold in any model that conserves

momentum!j .

In the MPM there is a local compensation between
transverse components of the momentum, i.e., if the kth

)th and (k+1)th

particle of the chain has px>0, the (k-1
have in average <px><0, and the perturbation caused by, say,

an abnormally large value of some pk is absorbed in a few steps
around the kth position. The mechanism that causes this effect

is the momentum transfer cut-off: ‘tk contains terms
% et (2 4 ‘ L_, )7-
(pei-po ) et (p -

and is minimum when the azimuthal angles between the kth particles

and the neighbours are around 1T .

This statement can be neatly translated in the Miiller
language: the twofold inclusive cross-section is related to an
analytic continuation of mass discontinuity of the forward 4-4
scattering amplitude. Assuming for this function a Regge expansion
in the relative energy qu: (p+q)2 of the two detected particles,
it is easy to see that contributions to the azimuthal correlations
come only from terms with Toller quantum number M#ZO. The terms
with M =0 have no dependence on qL Py é.nd integrate to zero
in (5) In the MPM the leading term of the Pomeron trajectory has;
M=0, therefore, contributions of the Pomeron to (5) can ceme only
from the non-leading term that behaves like 3_1. Bassetto and i
Toller 12) have estimated that this contributigg is important,  of
the order of one half of the left-hand side. The rest can come from
lower lying trajectories with intercept o L and with M#ZO or
from cuts. In the former case the correlations are short range:
they behave like (qu)“{a with 3 =1 -4 gy i.e., like -PAan
wnere Am\ =4n qu is the difference in rapidity between the two

detected particles.

199



In the latter case the azimuthal correlations die much slower:

a behaviour of the form (A'f\)-p is expected. Remark that Eq. (5)
keeps giving troubles (of the fns 1-p form) if p<1. There-
fore, if cuts which behave like, say 1/4ns are preseut, their
contribution to ?(2) should again be independent of (qJ_-p¢ ).
The experimental observation of azimuthal correlations and of
their dependence on 15’\ has been proposed as a sensitive way

to study the nature of the Pomeron 13). The presence of slowly
decreasing terms of the type (é>n\f'p would reveal the presence

and the nature of cuts.

In conclusion the reason why in the MPM the right-
hand side of (5) does not grow like 4ns 1is that the integration
over qu/EL’ i.e., over the rapidity of the second detected
particle V\q’ does not run over the whole range, of length 4ns,
but is confined to an energy independent range around the rapidity
of the particle of momentum p. Let us now turn our attention
to the uncorrelated jet model 14) (UJM) that we take for our purpose
in the simplest form, i.e., one in which the square of the amplitude

for producing n particles is given by
A (ep]= s4(P-z )
‘ 2m P l—

It is obvious that a completely different structure is present in
this model: the longitudinal and transverse models decouple in

(6) (if we change variable for to rapidity). Therefore, the

p
azimuthal correlations (necessariﬁy present in the model because
of momentum conservation) are expected to be independent of the
relative rapidity of the two detected particles. However, it

is also clear that a non-zero value of Py of one particle
influences the transverse distribution of the other particles in
a way that is proportional to 1/n, since each particle will
have to supply an average value of transverse momentum equal to
-P /n. Therefore, azimuthal correlations are expected to behave

in inclusive reactions like l/ﬁ, i.e., like 1/fins .
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These expected features can be easily checked:

defining a function 14)

I } S (2 . ’(';Jz B’ ~
o 20 (§ 8 A

(7

the inclusive distributions are given by

(
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and so on.

The leading behaviour for PO—>G) of (7) is of

14)
! - Po b PR
(pY)

A <
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the form

with g =1 to obtain (almost) constant cross-sections.

Hence,
o) G-1)) b “he () -
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Restricting ourselves for the moment to the region x~0, y~C

[}he potentially dangerous one for (SI], we compute the correlation

function

~(2e183) 7/ - i) ks
(—-l + e

@)

e (R%Q = 2

- J.l*qi
: e (P 1-) (PL+‘,1-L)7~

Aos

(10,
(1) given

by (8) in the x~0 region], the explicit 1/4ns in (10)
cancelling the 4ns obtained from the qu/Eq integration.

Insertion of (8) into (5) yields an identity [with

Therefore, the MPM and the UJM predict sharply
different behaviour of the azimuthal correlations. In the MPM
the correlations decrease fast (or not so fast, in the presence
of cut) with A'Yl but are s independent at fixed An\ (as
it must be, since any s dependence violates short range), in the
UJM, the correlation is independent of Zkln , but decreases

with s at fixed é&q .

What happens in the D.E.M.? In the approximalioun
that the transverse momentum of the two diffractively proiuced
"fireballs" is considerably smaller than the average trai:~ecrus
momen‘tum of the decay products, the fragments of each firehali:
should add to zero transverse momentum independently of each
other: therefore, no azimuthal correlations are expected between
a x>0 and a x<O0 particles. Correlatioﬁ;m;;e expected
amongst the decay products of the same fireball. Let us remember
that events with many particles populate smaller x regions,
therefore, if the x of particle 1 1is kept fixed, we expect
the transverse correlation to increase with y, the scaling

variable of particle 2. However, detailed predictions can only
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be made ovn the basis of a specific choice of the decay mechanism

of the fireball.

In conclusion the study of azimuthal correlations
offers a very interesting test of the various models. The results
of some preliminary (not inclusive) phenomenological investigation
are embarrassing for the MPM 15). We hope that good ,inclusive data

will be available soon.

4. LONGITUDINAL CORRELATIONS

Gorrelations between longitudinal momenta (or better,
energies) in inclusive reactions are especially interesting because
they determine the multiplicity qistributions. Consequently,
indirect information on correlétions can be obtained from
experiments in which no momenta are measured. However, in these
"indirect" measurements it can be hard to disentangle the kinema-
tical effects (i.e., correlations imposed by energy momentum
conservation only) from dyrnamics. We will devote ourselves

especially to this point.

Through this paragraph we will assume that inclusive
distributions are limiting 3) (if not scaling), and use scaling
variables to describe them. We will also implicitly perform

all the integrations and use the notation

Py

o X b ()

The /L =0 component of Eq. (3) becomes in these notations:

£ (&+r)
R P B R R £ I i )

and Eq. (4) reads

|
Y Ma-

r (&"') &
JO Gounx) dy 4 o )Tk ]) (o)
X, X
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Let us concentrate for the moment on k=2. A few

trivial observations to start.

1) An obvious region in the x,y plot in which we xknow f

is for ,x4~y|>1: here
¥ w vl
O I AL B

2) This region coes not saturate (11) unless V(1)(x) =1. In
this case it is easy to show that the trivial set of ¢ y
i.e., the ones constructed with 6 functions [E.g.,

?Q(X,y) =-0(|x+yl-1)] satisfies (11).

3) If ? (1)(x) is an increasing function of x, the region
|X4-y|>]_ oversaturates (11), and kinematics Zforces an
average positive value of ? (2) in the remaining region.
In the more familiar case in which ? 1)(x) decreases
? (2 (x,y) is in average negative also in the non-trivial

region.

4) Combining longitudinal momentum and energy conservaticn, it
is easy to see that ?(2 (x,y) is in average vanishing for

x .y<O0.

5) All these features are exhibited by the UJM, in which

from (8) and (g), ¥ (1)522(1—|X|), and

4 (-]x) Cr-1v1) EL; Ixeyi> i
\9(’”): — - b oy ’f xy >0, [xo)<l
0O Jt xj <D

(13)

Of course, the sum rule (11) is satiscied.
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Indirect information on the correlations can be

obtained by studying the departures from the Poisson distribu-

1
tioa 6)’17). In fact, for instance

' 2
A—Z = L m(w-i)D - (M>2: f) (X”) # é_.!
. x 'j (14a)
: 3) -
A = <'“(‘“")?“'7‘>—<M>5'" 34"‘3 AZ: J‘ f (xl 3, Z) .\__X —‘-*—_J- _.u&;
3 X 3 2 (12p)

and so on.

Let us remark now that from (11) and (12)

@,
]:2: SV (xy) ox %1 - =2 (15a)

1

~ : G) \ d dz . “
ST 3 T

RTC . (15b)
For moderate values of s, such that X is larger than a

suitable constant in the whole x integration, the behavioar

of ZS n is determined by the behaviour of In. As s increases
the region xicxo of ? (k)(xi) is more and more emphasized in the

integral, and dynamical features take over 18).

Remember now that in the short range correlations
hypothesis, i.e., if the correlation functions vanish when the

produced particles are not within a fixed range of rapidity with

respect to each other

(18)
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This is obvious since in the n fold integration over rapidities
that define zﬁ;ﬁ' only the over-all rapidity (the rapidity of the
"centre-of -mass" of the particles) can span the whole 4ns

range 19). However, we see that longitudinal kinematical corre-
lations are short range with respect to the incoming particles

e (2)
e_'ﬁ\a_ x| - Ma-My| ] Therefore, in a model with kinematical

correlations only (like the UJM) all Z& . ét:éibn‘ For

[}.g., the non-trivial part of is in rapidity

instance, from (13)

A_z-e -3 5 %‘![.‘i‘%xj + Ii %’("x)("&)] = 8- %"Iz

In a model with short range correlations, if‘the functions

fig)-eoly (9707 b smt)

alg) s 2 @) %

exist, (here ‘QH:=<11> =a, In s+rb1), the generating functioni

5(3',s)= 2§ ams) O‘:t(s)

20)

takes the form (very suggestive of multiperipheralism)

Slye- fa s*

The fact that kinematical correlations do not affect oA (g} is
very natural. Since they are end effects, they should all be
contained in f(g) (in multiperipheral language the position of

the pole d\(g) is determined by the dynsmics, not the kinematics).
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Keeping in mind all this, let us try to interpret the experimental
data on /N s A3 and A4 as collected by BiaXas and
Zalewski, Ref. 21). Before we get started we must cope with

the fact that most produced particles are W , and that only
charged multiplicities are usually observed. Therefore, we

have a choice to study the deviations A\ Kk from the Poisson
distribution in the number of charged particles n, or in the
number of particles of a given charge, say, negative, n_. The
choice is crucial in view of the non-homogeneity of A Kk in n.
Several models 22 suggest that the latter is a more sensible
choice, since charge conservation in a sense nails the production
of a charged particle to the production of its antiparticle.

Also phenomenologically the A turn out to be smaller in terms

k
of n_. Figures 1, 2, 3 show £52, 153 and £§4 computed from
the n_ distribution as a function of <n_>, which, in turn, is
a monotonic function of s. It is obvious that the data at
accelerator emergies are compatible with kinematical correlations
only. They show the expected alternate sign pattern, and also the
order of magnitude is the expected one, if we insert a factor
(3)_n in the kinematical correlations due to the presence of

three charges. The high energy points are obtained from the

Echo Lake results, hence they should be considered with caution.
However, also preliminary data from Serpukhov (and some consi-
derations further on in this paragraph) indicate a change of sign
of the I\ Kk at s=100 GeVz, showing the existence of a dynamical
effect that, as expected, takes over at large s. Let us now

try to interpret this "dynamical"™ high energy part of A We

remark first that the data are compatible with anything, fh
particular with the VAN k<<ak fn s bound expected in a short range
model. We also remark that such a behaviour is hard to disprove
experimentally if no upper bound on the value of & is established.
Therefore, it would again be nice to have a quantitative estimate

of the size of the expected in the MPM. At least the pattern
followed by the ay

The data hint that a

a
k
is, however, the one expected in the MPM.

2:>O and that the a, have altermating signs.

The first fact is expected in the MPM since the two particle lon-

gitudinal correlation is produced by the (positive) non-leading
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term of an out of the mass shell total cross-section. Also, the

alternating sign pattern is expected. Let us remember that the a,

are given by

&
o, = & &l 3))
£ =1
+ d.% 3=
In the MPM A\ (g) is defined implicitly as the position of the
leading zero of the Fredholm determinant 17), i.e., by an
equation of the type u(d)=1/g. The function u has the
form (e.g., in the multi-Regge model 23))
o
X
(J‘) = J £ o x
M A <X
-— om
(18)
and the ay S0 defined alternate in sign 24).

5. ASSOCIATED MULTIPLICITIES

Since the knowledge of

x, X
L3
gives only a rough insight in the structure of the correlation

ap. [ Moy Al

functions gﬁk it is tempting to look for some more detailed
information that still depends on few variables. An obvious

possibility is to consider the functions

. &
A&(x‘s)s J P (x, Xp o ag) Lig Lo dxg

™ =
2 Xﬂ
i.e., the deviations from the Poisson distribution in the
5
associated multiplicities 2)). This type of measurement is very

suitable for bubble chamber analysis, in which the number of
prongs always provides a convenient label, and in which to
consider orthodox inclusive distribution obviously means to

throw away too much information. By separating the inclusive
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single particle distribution in contributions from events with a
given multiplicity:

1]

-€(X)= 2 {%::),U,S)

we can construct a generating function for the associated multi-
plicities:

o)

Mixsg )= 2 97 Fo, (ns)

Since energy is conserved independently for each multiplicity, we

must have that

JM()\‘%’S) dx = S(‘a,s)

(19)

By definition the associated multiplicity ﬁ(x,s) is given by:
m(x,s) = T°l_ Aon H(";S,S)) -
0‘3 3='

therefore, it follows that

_gAz(X,S) dx = J dx _{50)(,{) [n?(x';)_ T«(s)] -

=-2 + j dx %[H(x,i,s)— S(g,S)L’ = -2

in accordance with (12).
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In general M CX, ‘i, S_) is given by
; - (q-D"
MGg o= q 3G a0

: 4" Mk g3
Hence A, (X0 = 377 mi)_

(19) is sufficient to enforce (12)

i,_l and the constraint
" this is not too surprising,
since (12) and (19) both stem from energy conservation. Some

experimental data 26) on Ak(x) are shown in Figs. 4, 5, 6. Again,

in order to try to separate kinematical effects remark that in
the UM

Alrs)y= = (mY) = = (0w)s)
where M2 is the missing nass., Since n(s)=28ns+c,

Az(x,s):AZn(1rlX[)(1-|Xl)a that obviously satisfies (12).
An indication on the shape of Ak()"“\‘ for K>2

we get

can be
ebtalned by keeping only the leading terw (in

UdM fer S(g,s) ana M(x,,g;.::), TaC,,

ns) in the

suming

) 2
=

Stg.s)= fug) s

/ 23"_
; M()\, 3l§),2~3 f(j) k(j\ml)ﬁ 5‘

(21)

We obtain from (20) and (21)

k-l

Aﬁ(x,s)/ é'\'l(x) i ( 2 X“(HA‘).X

It is easy to check that the sun rulez (12) are calisfied by this
set of A\ - Lt 1s obvious since (20) and (21 comply with the

requirement (19).
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A glance at Fig. 4 and 5 shows that again the bulk of the data

are casily interpreted in terms of kirematical correlation.

Ther is, however, an important cffecl in the =x~0 region (by
def'liiition, the dynamical cne) to which we will devote our attention
in a memert. Before leaving thne subject of kinematical corre-
lations, let us remark that the knowledge of Zx (x s) which

in our assurptions (20) and (?1) is independent of the choice of
f(g), is, on the contrary sufficient to determine f(g) through

the relation
‘ ERNT A () o -4)
g(j): LAp ? 3@_ § b *) 7(-". + < b’(fi ‘

Ir. our approximation to the UJM 27) we obtain

AN(ED . ’“d b Mg =fa)-|rC
i A %2:253 3

Also, we ze: that Z\l{(x,s) do not depend on s in the model
that we are coansidering. It is easy to show that this 1s the
case also in a model ixn which the covrrelations are short range
and scaling. Going back to the data shown in Fig. 6, in which
data orn lﬂxz(x,s) at different s are compared, we see that
thie x£>0.1 region is consistently dominated by roughly energy
independent kinematical effects, but tne x~0 region changes
substantially. One more indicaticon that scaling has nct yet set
in at accelerator en=srgles (or that long range correlation exists

after all).

The poszisive value of Zﬁ Z(X.S) around x=0 for
high s, 1is certainly a dynamical cffect, since kinemstical
effects vanish at x =0 and are negative elsewhere. This positive
value is in agreement with a valuec a22>0 in [S,j(s), as
suizested by the cosmic ray points. We see that [Se(x,s) offers
a more detailed in"ormation than O 2(3). Prom data on /A Z(X’S)

al accelerator energy it is possivtle to Wint a positive dynamical
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Ins term in Z& 2(5), whereas O 2(5) is still
compatible with a purely kinematical interpretation in the same

energy range.

6. CHARGE AND ISOSPIN

Up to now we have considered for sinplicity a
world of identical bosons: in the actual world a summation over
all possible kinds of detected particles has to be added to the

2 .
integral constraint that follows from momentum conservation 8).

In the actual world éf particles with quantum
numbers, more sum rules for ID of the type considered until now
can be derived as a consequence of the existence of additively
conserved quantum numbers. Let us focus our attention on the
charge (keeping in mind that similar considerations apply to
strangeness, baryon number, etc.). In a reaction A+B-C+X,

charge conservation imposes that

. i dl «} 3
G0 me - 2 0§ T
(22)

To understand the meaning of (17) let us consider a simplified

world in which only pions exist. Then, in any event

M M Pt % (23)

hence (22) is an identity.

Sum rules of the type (22) can be derived for higher

order 1D, for instance

3 (¢ 3. @)
- Qc EP L‘;r = % Qa .g igj fca(?’j's)
d P CI (24)
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whence

3. 3 @)
s T (B8 G
ol ‘1 P
(25)
or also
| _ & ols ()
_(QA*'QB) = LZ'-; 0 § 3 -s-::, ()Ci(ﬁals)
(26)

Insertion of (23) into (25) or (26) leads to trivial identities.

From (24) also relations of the form (4) can be

obtained

. o3 3 @)
S9 Jglu By 20, J & %" Poalrts)

What is interesting about (22) is again the way in which the
potential logarithmic behaviour of Iqu/Eq is overcome. The
discussion and the results are strictly parallel to the transverse
momentum correlations analysis of Chapter 3, and so are the
conclusions. In a short range correlation model like the MPM

there 1s no divergence on the right-hand side because

A .
g( (x) - E A

and

) _ :
{U ) - € d«o
< | d’p

(¢ being the antiparticle of c: in our example c=1r', &= T ),

approach each other at small x, in such a way that
N u P
- - n
b6 ) - L) s x
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Sc ) 4 (4} ) - ) - P
o(x) = fc“) tz (x) = X

with p expected to be 1 - dfiﬁ‘%' Here dl% is the intercept
of the leading Regge trajectory with non-vanishing isospin. On
the contrary in long range models like the DEM on the UJM

éc(x) is not expected to depend on X, but the leading term .
should cancel at all x between fc(x) and fE(X) and

8 (x) should have an explicit 1/4ns behaviour. MNodel testing

in this sense is possible and strongly suggested 4).

For the moment we havwe exploited only charge
conservation. To exploit the full isospin conservalion seems

harder: the only obvious thing to do is to use the facl that I

is limited in the A +B state to perform a rotation in I space
and conclude that also between, say, TT+ and WS the same type
of cancellation between the fns terms in (22) has to occur, i.e.,
sL}%}(<11+>-<110>)::constant, where the constant depends on tnz

2
value of I of the initial state. Hence, also
) I
r(” ‘,.()

S, f_ ) - F () 2 X

+ 0o &

-
[

in a MPM (as it is obvious, since the Pomeron in lrajectory has
not only I,=0 but also I=0) or d 0 nas an explicit

-1
(mls ) behaviour at fixed x in the long rangc models.

More detailed prediction can be obtained only in the
framework of specific models. Let us remember that explicitly
s channel isospin conserving models can be built in the MPM by
considering definite t channel isospin exchanges in the production
amplitudes. This program has to be carried out in collaboration

with Schwimmer 22 . Let us list some of the results here.

1) Cancellations of the £#ns term in <n >-<n> is
independent of the model, and we conclude that it is a consequence

of s channel isospin conservation only.

214



2) In "sensible" models a Poisson distribution in n_ (hence
not in nC::n+-yn_) can be recovered in some limits. This is
in agreement with phenomenology. On this basis it is more sensible
to consider, as we did in Chapter 4, correlations between negative

particles than between charged particles.

3) The asymptotic behaviour of topological cross-sections

o~
6‘(‘“:,5) = Z G-(M‘, Mo, S)
Mo
can be very different from the behaviour of G‘(nc,no,s), and is

model dependent 4).

4) 1In the kinematical approximations in which the various models
were considered in Ref. 22) identical particles would follow

Poisson distributions. Nevertheless, A :(nc(nc-1))- <nc>2

turns out to be non-vanishing, and of theccanonical short range
form. a.fns+b, in the models under consideration. The
simplest non-trivial model in this sense is the A model, in
which dominance of alternate: I1I=0 and I=1 -exchange along the
multiperipheral chain is assumed. In this model the generating

function
SOy, 90 2 50 g Tl me <)

takes the canonical form

fl) s

A (ju,jc)

with,

. b ¢y )R
A5 3c) = 30 (g5 242)

The coefficient of fns 1in AC is

G = L(_z, X(J,,ag)} = _:2_-> e
;(a',_, 5l‘;J~:‘ e

Remark between that A 5 as defined in Chapter 4 is given by

A/: (’R_(m\_'. - ‘L:_IA -—'—'(1\-> - -t s
< )> 7 Z & 2 5 215



Hence a positive value of a, can be detailed only by the
addition of explicit short range interaction terms. The cal-
culation in the other models (I and R) considered in Ref. 22) is

less straightforward and has not yet been performed.

7. HIGHER ORDERS, LONGER RANGES, ETC.

The big advantage of inclusiveness is that it
provides tests of production models without having to deal with
the enormous complexity of multiparticle production kinematics.
However, if a more and more detailed insight is required, we have
to increase the number of particles inclusively detected, going back
to the same kind of difficulties that we tried to avoid. From
this point of view quantities like the distribution in missing
momentum 29), i.e., in the over-all momentum of the neutral
particles, are interesting, since they offer one dimensional
measurable quantity that depends for its properties (e.g.,
scaling) on the properties of inclusive distributions of all
orders, and also deals with charged and neutral particles on

equal footing.

Let us come now to the tests of short range
correlations; even the most convinced multiperipheralist cannot
expect long range correlations to be absent. On one side, as
we have seen diffractive processes are not compatible with short
range. Furthermore, absorptive corrections to multiperipheralism,
a first necessary step towards the enforcing of unitarity,
introduce in general long range correlation. In a recent in-

vestigation of the problem 30)

(again in collaboration with
Schwimmer) we have examined what features of multiperipheralism
are most likely to be changed by absorptive corrections, and they
turn out to be, as expected, the cancellation of the leading
Znssk term in <nk>-<n>k, and the geometrical interpretation
of multiparticle production as a random walk of fixed step in
impact parameter space. On the contrary, other features like

logarithmic multiplicity and scaling, that in the MPM are obvious
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consequences of short range, seem to be able to survive this

kind of corrections.

I am indebted to Antonio Bassetto for several

helpful conversations on the subject of the present talk.
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