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Abstract – Welded structures are widely used in many engineering load carrying structures such as columns, towers
for wind turbine or water tanks, offshore and submarine structures, girders, stiffened doors, etc. welding is a costly
fabrication process and proper sequence and welding process effect the cost of a huge structure. Keeping this in view
two different problems from the literature for the cost optimization of welded structures are considered in this paper.
The optimization procedure is carried out using artificial bee colony (ABC) optimization technique. Classical ABC is
modified to increase the convergence rate of the original algorithm. Comparison of both the variants is experimented on
many bench mark examples from the literature and also on two cost optimization problems of welded structures. The
results of the considered techniques are compared with the previously published results. The considered techniques
have given much better results in comparison to the previously tried approaches and also modified ABC has shown
superiority over classical ABC.
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1 Introduction

Stiffeners are required to improve the load carrying capacity
of structures. Stiffeners help to achieve lightweight and robust
design of the structure. For this purpose they have wide use
in structural engineering domain. Specially, stiffened plates
are used in critical and sensitive structures such as in aircrafts,
ship hulls and box girders in which safety and a perfect design
is crucial. Buckling is the one of the most complex phenome-
non that is inevitable for heavily axially loaded stiffened plate
structures. The wide area of application of such structures is
an aircraft industry where light, stiff and highly resistant struc-
tures are required. It is possible to manufacture aircraft elements
as thin panels reinforced by stiffeners. The proper stiffeners
arrangement in a domain of the structure decides about the
effectiveness of the construction or about the effectiveness of
reinforcement. Optimal properties of structures can be searched
using optimization tools which are discussed in the later part of
this paper.

For steel structures a general total cost function KT can be
defined in the following form [19]

KT ¼ Km þ K f þ K t þ Ke; ð1Þ

where Km is the material cost of structural members, Kf is the
fabrication cost, Kt is the cost of transporting the fabricated
pieces to the construction field, and Ke is the erection cost.
Many studies are reported in literature for the cost optimiza-
tion of different structures.

Anderson and Chong [4] presented the minimum cost
design of homogeneous and hybrid stiffened steel plate girders
according to the AISC code [2]. Douty [13] described the min-
imum cost design of three different types of bolted and welded
connections used in steel frames based on the AISC specifica-
tions [1] The cost function is presented in terms of the connec-
tion variables, such as the diameter of the bolts, flange plate
width and thickness, shear plate length and thickness, and the
leg size of the fillet weld for connecting the shear plate to the
column flange and for the flange plate moment connection.
Lorenz [25] discussed the minimum cost design of composite
beams based on the AISC load and resistance factor design
(LRFD) code [3]. Farkas [15] presents closed-form solutions
for optimum cost values of the cross-sectional variables for sim-
ply supported welded box girders subjected to a uniformly dis-
tributed load and constraints on bending stress, local flange and
web buckling, shear fatigue for longitudinal fillet welds, and
deflection. Farkas and Jarmai [16] presented the minimum cost
design of laterally loaded welded cellular steel plates using*e-mail: vimal.savsani@gmail.com
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three different approaches: the backtracking method, the hill-
climbing method, and feasible sequential quadratic program-
ming. Bhatti [7] presented the minimum cost design of simply
supported composite I-shaped steel beams with concrete slabs
subjected to a uniformly distributed load, and strength, deflec-
tion, and vibration constraints using the Lagrange multiplier
approach. Farkas [18] derived a differential equation for the
radial shell deformation using the bending theory of cylindrical
shells. The solution of this equation gives an approximate for-
mula for the maximum radial deformation. Comparing this for-
mula with the limiting deformation given by ECCS allows
calculating the required shell thickness. Another thickness can
be obtained using ECCS buckling formulae. Using an interpo-
lation, a thickness can be calculated, which fulfills the con-
straints. Jarmai et al. [21] demonstrated the optimal design of
a cylindrical orthogonally stiffened shell member of an offshore
fixed platform truss, loaded by axial compression and external
pressure. Ring stiffeners of welded box section and stringers of
halved rolled I-section were used. The design variables consid-
ered in the optimization were the shell thickness as well as the
dimensions and numbers of stiffeners. The design constraints
relate to the shell, panel ring and panel stringer buckling, as
well as manufacturing limitations. The cost function includes
the cost of material, forming of plate elements into cylindrical
shape, welding and painting. In the optimization a number of
relatively new mathematical optimization methods such as
leap-frog – LFOPC, Dynamic-Q, ETOPC, and Particle swarm
optimization – PSO were used. Jarmai [20] presented the single
and multiobjective optimization of a welded stringer-stiffened
cylindrical steel shell. A column fixed at the bottom and free
on the top was constructed of stringer-stiffened cylindrical shell
and loaded by axial compression as well as by horizontal force
acting on the top. Halved rolled I-section stringers were welded
outside of the shell by longitudinal fillet welds. Design Vari-
ables taken were the shell thickness as well as dimension and
number of stringers. Three different objective functions were
considered viz. material cost, forming cost to form the shell ele-
ments into the cylindrical shape, assembly and welding, and
painting cost. The original PSO algorithm was modified to han-
dle multiobjective optimization techniques and to find discrete
values of design variables. Luis et al. [26] presented the optimi-
zation of a uniaxially compressed stiffened plate subjected to
static and fatigue loading. The design variables were the thick-
ness of the base plate, the number and dimension of stiffeners
of the orthogonally stiffened plate. Cost optimization was car-
ried out considering material, assembly, welding and painting
costs. Farkas and Jarmai [14] presented the cost minimization
of a cantilever stub column of square box cross section with
orthogonally stiffened side plates. Design variables include
the thickness and width of the side plates as well as the dimen-
sions and numbers of stiffeners. PSO was implemented for the
cost optimization. Marcin et al. [27] presented the optimal con-
figuration of stiffening ribs in the steel welded I-beams and col-
umns. The configuration with diagonal ribs is proved better
than traditional ones. Farkas et al. [17] used refined version
of the original Snyman-Fatti (SF) global continuous optimiza-
tion algorithm to the optimal design of welded square stiffened
plates. Square plates of square symmetry subjected to uniformly
distributed normal static loads, supported at four corners, and

stiffened by a square symmetrical orthogonal grid of ribs was
investigated. Halved rolled I-section stiffeners are used welded
to the base plate by double fillet welds. The cost function
includes material, welding as well as painting costs, and is for-
mulated according to the fabrication sequence. Design variables
include base plate thickness as well as the dimensions of the
edge and internal stiffeners. Constraints on stress in the base
plate and in stiffeners, as well as on deflection of edge stiffeners
and of internal stiffeners were considered. PSO algorithm was
applied to confirm the results given by the SF algorithm.

It has been observed from the review of research work on
design optimization of welded structures that the recently used
advanced optimization technique is PSO. PSO requires many
controlling parameters such as inertia weight, maximum veloc-
ity, and learning factors which influence the performance of the
algorithm. Therefore the efforts are continuing to use more dif-
ferent optimization algorithms, which are more powerful,
robust and able to provide accurate solution. This paper is
intended to apply one such optimization algorithms known as
artificial bee colony (ABC) [22] optimization technique. In
the present work, an effort is made to verify if any improvement
in the solution is possible by employing ABC optimization
technique to two different cost optimization problems for
welded structures reported in the literature. Moreover ABC
optimization technique is the most recently developed tech-
nique. It is not so far tried for the complex optimization prob-
lems for structural design. The next section gives a brief
description of ABC optimization techniques.

2 Artificial bee colony (ABC) techniques

Artificial bee colony (ABC) Algorithm is an optimization
algorithm based on the intelligent foraging behaviour of honey
bee swarm. The colony of artificial bees consists of three groups
of bees: employed bees, onlookers and scouts [5, 22].

The colony of the artificial bees is divided into two groups,
first half of the colony consists of the employed artificial bees
and the second half includes the onlooker bees. Scout bees
are the employed bee whose food source has been abandoned.
In ABC algorithm, the position of a food source represents a
possible solution to the optimization problem (value of design
variables) and the nectar amount of a food source corresponds
to the quality of the associated solution (value of objective func-
tion). At the first step, the ABC generates a randomly distrib-
uted initial population Pinitial of N solutions, where N denotes
the size of population. Each solution xi is an S-dimensional vec-
tor where S is the number of optimization parameters (design
variables). After initialization, the population of the solutions
is subjected to repeated cycles, C = 1, 2, . . ., G, of the search
processes of the employed bees, the onlooker bees and scout
bees. An employed bee which is equal to N/2 produces a mod-
ification on the solution in her memory depending on the local
information. If the objective function value (fitness) of the new
solution is higher than that of the previous one, the bee mem-
orizes the new position and forgets the old one. Otherwise
she keeps the position of the previous one in her memory. After
all employed bees complete the search process; they share the
nectar information of the food sources and their position
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information with the onlooker bees on the dance area. An onloo-
ker bee evaluates the fitness information taken from all employed
bees and chooses a food source with a probability related to its
fitness value. An onlooker bee also produces a new solution
and it memorizes the new position if its fitness value is better than
the previous position. An artificial onlooker bee chooses a food
source depending on the probability value associated with that
food source, pi, calculated by the following expression

pi ¼
F iPNb

n¼1
F n

; ð2Þ

where Fi is the fitness value of the solution i which is propor-
tional to the nectar amount of the food source in the position i
and Nb is the number of food sources which is equal to the
number of employed bees. In order to produce a candidate
food position from the old one in memory, the ABC uses
the following expression (3):

vij ¼ xij þ Rij xij � xkj

� �
; ð3Þ

where k 2 {1, 2, . . ., N} and j 2 {1, 2, . . ., D} are randomly
chosen indexes. Although k is determined randomly, it has to
be different from i. Rij is a random number between (�1, 1). It
controls the production of neighbour food sources around xij
and represents the comparison of two solutions. As can be
seen from (3), as the difference between the parameters of
the xij and xkj decreases, the perturbation on the position xij
gets decrease, too. Thus, as the search approaches to the opti-
mum solution in the search space, the step length is adap-
tively reduced.

If the position of the food source cannot be improved for
some predetermined number of cycles than that food source
is abandoned. The abandoned food source is replaced with a
new food source by the scouts. In ABC, this is simulated by
producing a position randomly and replacing it with the aban-
doned one. The value of predetermined number of cycles is
an important control parameter of the ABC algorithm, which
is called ‘‘limit’’ for abandonment. The value of limit is gener-
ally taken as Number of employed bees*S [23, 24].

Assume that the abandoned source is xi and j 2 {1, 2, . . .,
D}, then the scout discovers a new food source to be replaced
with xi. This operation can be defined as in (4)

xj
i ¼ xj

min þ rand 0; 1ð Þ xj
max � xj

min

� �
: ð4Þ

It is clear from the above explanation that there are three
control parameters used in the ABC: The number of food
sources which is equal to the number of employed or onlooker
bees (N), the value of limit, the maximum cycle number (G).

As suggested by Karaboga [22] Rij is uniformly distributed
random number between –1 and 1. In this paper ABC is mod-
ified by using normally distributed random number with mean
0 and variance 1 instead of uniformly distributed random num-
ber between –1 and 1. The distributions of both the random
numbers generated using MATLAB with 1e7 random points
are shown in Figures 1 and 2 respectively.

Another modification is made in equation (3) by replacing
(xij � xik) by (xbestj � xij). Here xbestj is the best solution from
the population. The reason is that in the earlier formula the

solution tries to move towards any random solution (xik). There
is no guarantee for the xik to be better than xij. So solution can
move towards worst solution also, which may require more
computational time to reach the optimum solution. By replacing
xik with xbestj, the solution will always move towards the best
solution in each iteration, which will lead to global optimum
solution in less computational effort. Moreover effort is made
to increase the convergence rate of the original ABC algorithm.
Many experiments were conducted to change equation (3) so
that algorithm converges to optimum solution in less number
of generations. In this paper original ABC will be referred as
ABC_1 and modified ABC as ABC_2. Experiments shows that
by using ABC_2 solutions improves by approximately 87%
and by using ABC_1 solutions improves by 39% in successive
first five generations which indicates the fast convergence rate
of modified ABC. Convergence rate for the benchmark Sphere

function (f Xð Þ ¼
Pn
i¼1

x2i ; x 2 �100 100½ �; i ¼ 20Þ for five

different runs for both the variants of ABC is shown in
Figures 3 and 4. From Figures 3 and 4 also it can be noted that
modified ABC have better convergence than classical ABC.

The algorithm discussed above takes real number in the
aspect of representation solution and updates themselves with

Figure 1. Normal distribution of 1e7 random numbers with mean 0
and variance 1.

Figure 2. Uniformly distributed random number between –1 and 1
for 1e7 random points.
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certain rules based on the behavior of algorithm. In this algo-
rithm, process looks only for the best solution and tends to con-
verge to the best solution. In the implementation process,
solutions are randomly generated at the beginning and usually
violate the system constraints resulting in infeasible solutions.
Therefore, the handling of system constraints, particularly non-
linear equation constraints, and the measurement and evaluation
of infeasible solutions is very important. To cope with con-
strained problems with evolutionary computation, various
approaches such as rejection of infeasible individuals, repair
of infeasible individuals, replacement of individuals by their
repaired versions, and penalty function methods can be
adopted. Among them, the penalty function method is particu-
larly promising as evidenced by recent developments [12] and
the same is adapted in the present work. Penalty function
changes the constrained optimization problem into uncon-
strained optimization problem. For example consider an optimi-
zation problem as

Minimize : f Xð Þ; Subjected to : gi Xð Þ � 0: ð5Þ

This problem is converted in unconstrained form as

Minimize : f Xð Þ; if gi Xð Þ � 0; else; ð6Þ

Minimize : f Xð Þ þ R
Xn

i¼1
gi Xð Þ; ð7Þ

where R is very large number and n is number of constraints.
The next section presents examples to demonstrate and val-

idate the considered optimization techniques for the cost opti-
mization of welded structures.

3. Examples

To check the performance of ABC some classical bench-
mark problems from Karaboga and Basturk [24] were experi-
mented. In experiments, Schaffer function has two parameters
(�100 � X � 100), while Sphere (�100 � X � 100),
Griewank (�600 � X � 600), Rastrigin (�5.12 � X � 5.12)
and Rosenbrock (�50 � X � 50) functions have 20 parame-
ters each. Moreover some engineering benchmark problems
were also taken for the investigation. They include pressure
vessel problem [32] consisting of four design variable and four
constraints, Spring weight minimization problem [6]) consisting
of three design variable and four constraints, and speed reducer
problem [28] consisting of 7 design variables and 11 con-
straints. As this paper focuses on the optimization of welded
structures two special problems of welded structure optimiza-
tion is taken from the literature and is given in detail as follows.
More detailed information can be obtained from the mentioned
reference. Experiments were conducted for different population
size and number of generations. In this paper N50G200
indicates population size of 50 with number of generation of
200. Results were obtained for 50 different runs.

3.1 Example – 1 welded beam

The objective is to design a welded beam for minimum
cost. There are four design variables as shown in Figure 5:
h (x1), l (x2), t (x3) and b (x4). Design is subjected to the con-
straints on shear stress (s), bending stress in the beam (r), buck-
ling load on the bar (Pc), end deflection of the beam (d), and
side constraints.

The problem can be stated as follows:

Minimize : f xð Þ
¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ: ð8Þ

Subject to:

g1ðxÞ ¼ sðxÞ � smax � 0; ð9Þ

Figure 5. Welded beam design (Example 1).
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Figure 4. Variation of solution for the sphere function for modified
ABC for five different runs.

Figure 3. Variation of solution for the sphere function for classical
ABC for five different runs.
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g2ðxÞ ¼ rðxÞ � rmax � 0; ð10Þ

g3ðxÞ ¼ x1 � x4 � 0; ð11Þ

g4ðxÞ ¼ 0:10471x21 þ 0:04811x3x4ð14:0þ x2Þ � 5:0

� 0; ð12Þ

g5ðxÞ ¼ 0:125� x1 � 0; ð13Þ

g6ðxÞ ¼ dðxÞ � dmax � 0; ð14Þ

g7ðxÞ ¼ P � P cðxÞ � 0; ð15Þ

where

s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ 2s0s00

x2
2R
þ ðs00 Þ2

r
; ð16Þ

s0 ¼ Pffiffiffi
2
p

x1x2
; ð17Þ

s
00 ¼ MR

J
; ð18Þ

M ¼ P Lþ x2
2

� �
; ð19Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2r
; ð20Þ

J ¼ 2
ffiffiffi
2
p

x1x2
x22
12
þ x1 þ x3

2

� �2� �	 

; ð21Þ

r xð Þ ¼ 6PL
x4x23

; ð22Þ

d xð Þ ¼ 4PL3

Ex33x4
; ð23Þ

P cðxÞ ¼
4:013E

ffiffiffiffiffiffi
x2
3

x6
4

36

q
L2 1� x3

2L

ffiffiffiffi
E
4G

q� �
P ¼ 6000lb; L ¼ 14in;E ¼ 30e6psi;G ¼ 12e6psi;

smax ¼ 13600psi; rmax ¼ 30000psi; dmax ¼ 0:25in

0:1 � x1 � 2:0; 0:1 � x2 � 10:0; 0:1 � x3 � 10:0; 0:1

� x4 � 2:0 ð24Þ

3.2 Example-2 orthogonally stiffened cylindrical

shell

Objective is to optimize cost of a cylindrical shell member
that is orthogonally stiffened by using ring stiffeners of box
cross section and stringers of halved I-section Figures 6 and 7.

Figure 6. Orthogonally stiffened cylindrical shell with stringer and ring stiffener acted by compression and external pressure [21].

Figure 7. Halved rolled I – section as a stringer [21].
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The cost function includes material cost, manufacturing cost
and painting cost.

Cost function is given by [21]

K ¼ KM þ
X

i

KFi þ KP ; ð25Þ

where KM is the material cost, KF is the fabrication cost and
KP is the painting cost.

The manufacturing cost is derived from the manufacturing
sequence which is explained as follows:

(KF0) Cylindrical shapes are formed from plate elements of
3 m length (Ls).

KF 0 ¼ 5kF hel: ð26Þ

(KF1) 3 m shell segments are welded from two curved plate
elements with two butt welds using gas metal arc welding.

KF 1 ¼ 5kF ðh
ffiffiffiffiffiffiffiffiffiffiffi
2qV 1

p
þ 1:3ð Þ 0:1520X10�3t1:9358

� �
2Lsð Þ: ð27Þ

(KF2) 15 m un-stiffened shell is welded from five shell seg-
ments with four circumferential butt welds using gas metal arc
welding.

KF 2 ¼ kF ðh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
25qV 1

p
þ 1:3ð Þ 0:1520X10�3t1:9358

� �
8Rpð Þ: ð28Þ

(KF3) nr ring stiffeners are welded from three plate elements
with two fillet welds each using shielded metal arc welding.

KF 3 ¼ nrkF 3
ffiffiffiffiffiffiffiffiffiffiffi
3qV R

p
þ 1:3X0:3394X10�3a2

wr4p R� hrð Þ
h i

:

ð29Þ

(KF4) nr ring stiffeners are welded into the whole shell with
2 nr circulferential fillet welds using shielded metal arc welding.

KF 4 ¼ kF 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr þ 1ð Þq 5V 1 þ nrV Rð Þ

ph
þ1:3X0:3394X10�3a2

wrnr4pR
i
: ð30Þ

(KF5) ns stringers are welded into the shell with 2 ns fillet
welds using shielded metal arc welding.

KF 5 ¼ kF 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr þ ns þ 1ð Þq 5V 1 þ nrV R þ nsAsLð Þ

ph
þ1:3X0:3394X10�3a2

wsns2L
i
: ð31Þ

The material cost is given by

KM ¼ kM15qV 1 þ kM1qnrV R þ KM2qnsAsL; ð32Þ

where V1 is the volume of the shell segment and VR is the vol-
ume of ring stiffener.

The painting cost is given by

KP ¼ kP

h
2RpLþ 2Rp L� nrhrð Þ þ 2nrphr R� hrð Þ

þ4pRhr R� hr

2

� �
þ nsL h1 þ 2bð Þ

i
: ð33Þ

Shell buckling constraint g1(X ) associated with the design
is given by [11]

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a � rarp þ r2
p

q
� fy1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k4

s

q
; ð34Þ

where re is the equivalent stress according to Det Norske Ve-
ritas rules. And ra ¼ NF=2Rpte; te ¼ t þ Ass; s ¼ 2Rp=ns;
rp ¼ pFR=tð1þ aÞ; a ¼ AR=Le0t; Le0 ¼ minðLr; LerÞ ¼
1:56

ffiffiffiffiffi
Rt
p

; Lr ¼ L
nr
� 1; k2

s ¼
fy1
re

ra
rEas
þ rp

rEps

� �
; rEas ¼

Cas
p2E

12 1�c2ð Þ
t
s

� �2
; Cas ¼ Was

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qasnas

Was

� �2r
; Was ¼ 4;

Zas ¼ s2

Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

; nas ¼ 0:702Zas; qas ¼ 0:5 1þ R
150t

� ��0:5
;

rEps ¼ Cps
p2E
10:92

t
s

� �2
; Cps ¼ Wps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qpsnps

Wps

� �2r
; qps ¼ 0:;

nps ¼ 1:04 s
Lr

ffiffiffiffiffiffi
Zps

p
; Zps ¼ Zas; Wps ¼ 1þ s

Lr

� �2	 
2
.

Stringer buckling constraint g2(X) is given by

re �
fy1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k4

p

q ; ð35Þ

where, k2
p ¼

fy1
re

ra
rEap
þ rp

rEpp

� �
; rEap ¼ Cap

p2E
10:92

t
Lr

� �2
; Cap ¼

Wap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qapnap

Wap

� �2r
; qap ¼ 0:5; nap ¼ 0:702Zap; Zap ¼

L2r
Rt
0:9539; Wap ¼ 1þcs

1þAs
set

; cs ¼ 10:92
Isef
st3
; sE ¼ 1:9t

ffiffiffi
E
fy

q
;

ZG ¼
h1
2 tw

h1
4 þ

t
2ð Þþbtf h1þtþtf

2

� �
setþbtfþ

h1 tw
2

; if sE � s; se ¼ sE, else

sE � s; se ¼ s; I sef ¼ setz2G þ h1
2

� �3 tw
12
þ h1tw

2
h1
4
þ t

2
� zG

� �2þ
btf

h1þtþtf
2
� zG

� �2
; As ¼ btf þ h1tw

2
, rEpp ¼ Cpp

p2E
10:92

t
Lr

� �2
,

Cpp ¼ Wpp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qppnpp

Wpp

� �2r
; npp ¼ 1:04

ffiffiffiffiffiffiffi
Zpp

p
, Zpp ¼ Zap,

qpp ¼ 0:6;Wpp ¼ 2 1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ cs
pð Þ.

Panel ring buckling constraints g3(X) and g4(X) are given by

ARreq � AR and IRreq � IR

where, 1
dr
¼ 42e; e ¼

ffiffiffiffiffi
235
fy

q
; fy ¼ 355; dr ¼ 1=34;

Ar ¼ 3hrtr ¼ 3drh
2
r ; ARreq ¼ 2

Z2 þ 0:06
� �

Lrt; Z ¼ L2r
Rt
0:9539;

Le ¼ min Lr; 2� 1:56
ffiffiffiffiffi
Rt
p� �
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Let hrþ t
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þ

2drh
2
r

hr
2
� yE
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2
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2
� yE
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stð ÞR40
500ELR

; R0 ¼ R� hr � yEð Þ; Ip ¼
pFRR

2
0Lr

3E

2þ 3EyEd0

R2
0

fy
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� �
	 


; d0 ¼ 0:005R.

Manufacturing constraint g5(X) is given by

2 R� hr
2

� �
p

ns
� b � 300;mm: ð36Þ
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Example 1 is solved by many researchers using different
optimization techniques, including Ragsdell and Phillips [30]
using geometric programming, Deb [10] using Genetic Algo-
rithm, Coello [9] using GA based coevolution model, Coello
and Montes [8] using flexibility based tournament selection
scheme, Ray and Liew [31] using society and civilization algo-
rithm and Qie and Ling [29] using effective co-evolutionary
particle swarm optimization.

Jarmai et al. [21] solved Example 2 using PSO technique
for the cost optimization considering the above design vari-
ables, objective functions, and the constraints. Value of cogni-
tive learning coefficient and social learning coefficient was
taken as 2 and 1.4 respectively. Population size was varied from
1 to 500 and maximum allowable function evaluations were
100000 with no improvement termination criterion as 10 itera-
tions. The same problem was also solved using three different

Table 1. Comparison of two different variants of ABC for different benchmark problems.

ABC_1 ABC_2

Benchmark problems Function evaluations Best Mean SD Best Mean SD

Sphere 10000 0.000088 0.00037112 1.95E-04 0 0.0000636 1.13E-04
Rastrigin 10000 12.144862 26.75682439 9.65E+00 0 1.21746087 4.25E+00
Rosenbrock 200000 17.093176 51.52220345 9.34E+01 0.201002 12.22409523 7.05E+00
Griewank 20000 0.001143 0.010804619 9.20E-03 0.000373 0.03364881 5.19E-02
Schaffer 10000 0 0.0085749 3.03E-03 0 0.00609025 4.69E-03
Pressure vessel 10000 6059.714335 6059.71437 1.53E-04 6059.714335 6061.566119 4.53E+00
Spring 5000 0.012676 0.012681389 2.17E-06 0.012667 0.0126805 4.94E-06
Gear box 5000 2996.351945 2996.360606 6.56E-03 2996.348657 2996.349589 7.86E-04

Table 3. Comparison of different variants of ABC algorithm for Example 2 (Orthogonally stiffened cylindrical shell) with different function
evaluations for the best solutions obtained in 100 runs.

ABC_1 ABC_2

Best Mean SD Best Mean SD

1000 55146.36 56941.54 907.9698 54530.05 56518.38 963.8605
2000 54668.13 55832.04 702.165 54468.28 55730.39 732.8504
4000 54395.24 55025.25 488.9624 54370.12 55076.65 745.5146
2500 54821.67 56497.6 695.8313 54445.53 55616.16 845.8954
5000 54657.63 55523.57 476.3063 54372.41 54980.24 690.8988
10000 54429.48 54738.18 237.6145 54369.73 54686.88 593.0451

Table 4. Comparison of different variants of ABC algorithm for
Example 1 (welded beam) with different function evaluations for the
success rate obtained in 100 runs.

ABC_1 ABC_2

1000 0 0
2000 0 0.19
4000 0 0.2
2500 0 0.08
5000 0 0.27
10000 0 0.61

Table 2. Comparison of different variants of ABC algorithm for Example 1 (welded beam) with different function evaluations for the best
solutions obtained in 100 runs.

ABC_1 ABC_2

FE Best Mean SD Best Mean SD

1000 2.118958 2.666595 0.314317 1.749212 2.222916 0.455776
2000 1.814226 2.392055 0.259713 1.725834 2.114724 0.480265
4000 1.790327 2.099398 0.194092 1.72486 2.029395 0.368859
2500 1.993107 2.453174 0.231802 1.728703 1.94462 0.249578
5000 1.892304 2.188238 0.162927 1.724973 1.881657 0.191329
10000 1.802669 1.999135 0.105969 1.724855 1.77547 0.104087

Table 5. Comparison of different variants of ABC algorithm for
Example 2 (Orthogonally stiffened cylindrical shell)) with different
function evaluations for the success rate obtained in 100 runs.

ABC_1 ABC_2

1000 0 0.07
2000 0.06 0.35
4000 0.59 0.78
2500 0.01 0.3
5000 0.09 0.73
10000 0.76 0.87
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local optimization techniques viz. LFOPC, Dynamic – Q and
ETOPC. The drawback of local optimization techniques is that
it does not guarantee global optimum and also result changes
with the change in starting point and thus they are time consum-
ing with respect to global optimization techniques.

ABC algorithm used for the analysis was coded in MAT-
LAB and all experiments were done on 1.4 GHz Intel Core 2
Duo Laptop machine. The performance of all the algorithms
is compared for both the examples. To obtain the most suitable
parameters a large number of experiments were conducted. For
ABC the value of limit is set to N · S where N is the number of
employed or onlooker bees and S is the dimension of design
variable. One hundred trial runs were performed for each vari-

ant of ABC algorithm for each example. The performances of
the different variants were compared based on different criteria.
The first criterion for the comparison is the best solution
obtained in one run. The algorithms are compared for the best
value, mean value and the standard deviation for one hundred
runs for the best solutions. In this comparison best value gives
the global optima, and mean value serves the purpose for the
average performance to search optimum result. Standard devia-
tion gives the deviation of best result from the mean result for
all the runs. The second criterion for the comparison is the suc-
cess rate, which indicates the percentage success the technique
has achieved in finding the global solution. Results of all the
benchmark problems are shown in the Table 1.

Table 6. Comparison of results obtained by different researchers using different optimization techniques for Example 1 (welded beam).

Ragsdell & Phillips Deb Coello Coello & Montes Ray & Liew Qie & Ling Our approach
[30] [10] [9] [8] [31] [29] 2009

x1 0.2455 0.2489 0.2088 0.205986 0.244438 0.202369 0.20573
x2 6.196 6.173 3.4205 3.471328 6.237967 3.544214 3.470488
x3 8.273 8.1789 8.9975 9.020224 8.288576 9.04821 9.03662
x4 0.2455 0.2533 0.21 0.20648 0.244566 0.205723 0.20573
g1(x) �5743.826 �5758.603 �0.337812 �0.074092 �5760.1104 �12.83979 �0.0134
g2(x) �4.715097 �255.5769 �353.9026 �0.266227 �3.245428 �1.247467 �0.073
g3(x) 0 �0.0044 �0.0012 �0.000495 �0.000128 �0.001498 0
g4(x) �3.020289 �2.982866 �3.411865 �3.430043 �3.020055 �3.429347 �3.433
g5(x) �0.1205 �0.1239 �0.0838 �0.080986 �0.119438 �0.079381 �0.0807
g6(x) �0.234208 �0.23416 �0.235649 �0.235514 �0.234237 �0.235536 �0.2355
g7(x) �3604.275 �4465.27 �363.2323 �58.66644 �13.079305 �11.68135 �0.0329
f(x) 2.385937 2.433116 1.748309 1.728226 2.38119 1.728024 1.724855

Table 7. Top ten optimum solution obtained for example 1 using ABC.

x1 x2 x3 x4 f(X ) Max. constraint violation

1 0.20573 3.470488 9.03662 0.20573 1.72486 –
2 0.20573 3.470484 9.036627 0.20573 1.72486 –
3 0.205725 3.470603 9.036626 0.20573 1.72486 –
4 0.205732 3.470446 9.036702 0.205731 1.72487 –
5 0.205723 3.470624 9.036645 0.205733 1.72489 –
6 0.205728 3.470573 9.036595 0.205734 1.72489 –
7 0.20572 3.470761 9.036576 0.205733 1.72489 –
8 0.205714 3.470808 9.036791 0.205734 1.72493 –
9 0.205712 3.471132 9.03687 0.20573 1.72496 –
10 0.205694 3.471154 9.037005 0.205733 1.72498

Table 8. Top ten optimum solutions obtained for example 2 using ABC.

x1 x2 x3 x4 x5 f(X ) Max. constraint violation

1 13.8275 26.8855 8.3799 260.3097 223.9656 54444.50 –
2 13.767484 27.09977 8.75685 256.76358 214.443837 54377.00 (1)0.007
3 13.76841 26.8238 8.20406 262.09579 229.150404 54390.00 (1)0.003
4 13.755645 26.74911 8.05732 263.61189 233.347565 54393.00 (1)0.003
5 13.807123 27.08457 8.75527 256.77486 214.325228 54395.00 (1)0.003
6 13.807085 27.12217 8.80445 256.35323 213.007088 54397.00 (1)0.003
7 13.808004 26.97285 8.53223 258.85308 220.023952 54403.00 (1)0.002
8 13.812803 27.00257 8.59691 258.23552 218.318487 54405.00 (1)0.002
9 13.783138 27.238 8.81498 255.98918 212.613805 54429.00 (5)0.005
10 13.825026 26.92995 8.46453 259.48998 221.711473 54430.00 (1)0.0007
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It can be seen from the Table 1 that modified ABC is better
than classical ABC in finding the best solution for both con-
straint and unconstraint benchmark problems. For Griewank
and pressure vessel problem classical ABC has shown better
result than modified ABC for the mean of the beat solutions.
These results do not indicate that classical ABC is inferior to
modified ABC, but main intension of comparison is that mod-
ified ABC can find better solution with less population size and
number of generations which indicates better convergence rate
of the modified ABC. If population size and number of gener-
ation is increased than both the variants converge to the same
solution.

All the variants were experimented by taking different pop-
ulation size and different number of generations to study its
effect on best solution, average solution, success rate and pro-
cessing time for the considered two examples of welded
structures.

Tables 2 and 3 show the best solutions for both the exam-
ples It is observed from the result that ABC_2 has shown better
results than other two variants for best, mean solutions and stan-
dard deviations. All the variants have given improvement in the
result with the increase in population size and number of gen-
erations. Moreover ABC_2 require less function evaluation to
reach optimum solution than ABC_1. For example 2 also sim-
ilar kinds of results are observed. Moreover ABC_2 has given
the optimum solution using less than 10 000 function evalua-
tions, which is better than the results of PSO implemented by
Jarmai (2006), which requires between 26 184 and 100 000
function evaluations considering a population size of 500.
Results show the better performance of ABC over PSO in terms
of solution as well as in terms of function evaluations

Tables 4 and 5 show the success rate for both the examples.
Here success is calculated if the results are within the tolerance
of 1% of its global optima. It is observed that here also ABC_2
has better success rate with less population size and number of
generations. With the increase in population size and number of
generations success rate increases for all the variants. There is
tremendous difference in the success rates of ABC_2 and
ABC_1. It is clear from the above discussion than ABC_2 is
a promising variant of ABC which serves all the requirement
of a design engineer such as success rate and convergence of
the solutions.

Example 1 has already been solved by many researchers
and results from all the researchers are given in Table 6. It
can be seen from the Table 5 that the best feasible solution
found by ABC is better with respect to value of objective func-
tion than the best solutions found by other researchers using dif-
ferent optimization techniques. Results obtained by ABC are
feasible because all the constraints are having negative values
and thus satisfied.

More top ten solutions for both the examples are given in
Tables 7 and 8 obtained by using ABC to help other researchers
to check other optimization algorithms.

4 Conclusions

In the present work, cost optimization of welded structures
has been presented. For orthogonally stiffened cylindrical shells

cost function consist of material cost, manufacturing cost and
painting cost. Shell buckling, stringer buckling, panel ring
buckling and manufacturing limitations are considered as con-
straints. Classical ABC is modifies and it is applied on many
constrained and unconstrained optimization benchmark prob-
lems and also to the optimization of welded structures. It is
shown that ABC is capable of solving complicated cost optimi-
zation problems for welded structures. In terms of quality of
solution, the results have shown that modified ABC has pro-
duced better results than classical ABC. It is also shown that
ABC has given better results than other optimization
techniques.
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