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ABSTRACT

The paoer solves the HMMS disaggregation

model using numerical methods. The first oroDOsed

soproach is to turn the original problem into en

unconstrained minimization and apoly lattice-

Fibonacci search. Then the model's solution is

considered as a root-finding problem and two

approaches are compared: Bolzano's method, and a

modified lattice-Fibonacci technique proposed in

the paper. These search algorithms proved

extremely efficient in yielding solution estima-

tes with errors of the order of tenths of a per-

cent and less in a small number of iterations.
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1. INTRODUCTION

The issue of making aggregate decisions /I/ in caoacity

olanning nroblems is a direct consequence of the uncertain environraeni

in which oroduction takes piece and of our limited ability in

gathering and processing very large amounts of detailed data.

Moreover, a manager's approach to the capacity planning question

is by its nature aggregate in the first place, in order to give

him a broad view of where he stands. Then, naturally, the issue of

disaggregating the information generated by the aggregate analysis

stage is the next question, which is in no way simpler than the

first one /2/.

The book of Holt, Modigliani, Muth and Simon /3/ is a

self-contained work that addresses both decision processes pointed

out above. By using a quadratic inventory cost function together

with the overtime, idle time, hiring, layoff, and other related

cost functions (all quadratic), the authors obtain linear decision

rules for making optimal aggregate decisions for each period.

The aggregation is an extreme one of all product types into a

single category requiring, of course, the use of appropriate com-

patible units that allow the transformation to be made. The linear

decision rules specify the aggregate oroduction and work force for

each period. Then, using the aggregate decision as a constraint on

the other more detailed and numerous decisions that concern the

production of individual items, rules are obtained to yield the

optimal decisions under the constraint.

There are 4 disMggregation models presented in the
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HMMS book:

1- determining oroduction quantities by minimizing

inventory holding costs and set-up costs subject to

the aggregate inventory constraint (/3/,ch. 10);

2- determining buffer stocks by trading off inventory

costs for stock-out costs under the aggregate con-

straint end disregarding the batch characteristic of

the production (/3/, ch.ll);

3- planning order points given fixed lot sizes, by

minimizing inventory holding costs and inventory

depletion costs under aggregate constraint (/3/, ch.l2);

4- determining lot sizes and safety stocks by minimizing

setup costs, inventory holding and depletion costs,

under aggregate constraint (/3/, ch.l3).

Models 2, 3, and 4 above require the estimation of the

cost of being out of stock by one unit in order to comoute the

inventory depletion costs. From the managerial ooint of view this is

a difficult task, hard to implement because the intangibles invol-

ved in stock-outs can not always be cast in precise mathematical

forms. This is why the approach of computing safety stocks and order

points based on service level considerarions /4/ch.6, /5/ seems

to be more practical and, possibly, with more managerial apoeal.

This paper proposes to analyze model 1 above, from the

computational viewpoint, to find an efficient way to solve it

using numerical methods, and then compare the results with the

solution given by the authors.





where:

- 4 -

2. HMMS MODEL FOR COMPUTING LOT SIZES

UNDER AGGREGATE CONSTRAINT

2.1. The model

s.t.

n_ Q^

(1)

i a denotes item i, i=l,2,...,n;

n
Fi = setuD coat for a lot

;

Si « forecasted sales rate in units oer period of time;

Q, = lot size in units of product;

Cji = cost of holding one unit of inventory one period

of time;

n, = factor for converting units of the i'th oroduct to

the corresponding number of common units;

I^ = aggregate inventory in the common unit.

Since the purpose of the paper is to study the solution

to the model, it was left in the form oreeented by the authors.

It is clear that if we also consider the problem of safety stocks

the constraint in (1) should be expressed in terms of aggregate

production P:

S u^Qi = P (2)

rather than Iq. This is because aggregate cycle stock cannot be

computed unless we know t)ie aggregate safety stock, which in turn
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can be computed (under service level considerations) only after

Qj 8 are known. Fortunately the method of solving (1) remains

unchanged if (2) becomes the constraint.

By using the Lagrangian multiolier method in (1) we

tranaforme the constrained minimization into an unconstrained one,

min T -^ r
^Fi^i ^ CjiQi n u.Q,

min L =>_^ ( Q
» —2— ' "*"^^^Q~ ^^ "5—

^

The first-order conditions for a minimum are ~^ =

yielding:
2CpiSi

^li ""i

Replacing Qj into the constraint in (1) leads to an

equation whose only unknown is A :

I 2C„.S.'
Iq (4)

Since n is usually large, equation (4) is imoossible to

be solved exactly for A

.

2.2. Authors' solution

We are interested here in the general case of (3), when

no special simplifying assumotions are made such as : constant

sales composition, identical holding costs.

The first solution orooosed by the authors is a gra-

phical method . By drawing a smooth eye-fitted curve through a few

plotted Dointa, one can obtain the grapij of the relation between

Iq and A for any fixed set of salesrates S,,S2f...,S , Given a

certain aggregate inventory I^ ,the value of ^ can be found from

the graph. This riiethod is rather inaccurate and can lead to very

large errors in the estimated ^ for small values of 1° as
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the curve goes aaymntotically to 0,

Fig.l

Another general solution is by linear approximation

/Vp.193 .

* 1,0 1^ "iQi^=^o.AO(I*.^l2.^g^Si) (5a)

where:

-we choose ^°, S? as an expansion point,

vO tO-compute Q^, I^ (for given A . S^) from equations (3),

(4) respectively,

-I^ is the constraining aggregate inventory, and S. the

forecasted dem'and,

-and
A° = 2

u^Qf n
-1

Lra 4CpiS9
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In general, the aoproximation of equation (5a) could

be improved by considering the differential change in square root

of the salee rates rather than in sales rates. In thie case

;^° -^ A° ( i: -

i ^i

(5b)

A better estimate however is obtained if solution A of

(5a) or (5b) is further refined by a logarithmic approximation ;

.2.

A' « A^(l-em
An

($)

where ^„ « mixv-—-m Uj

If, for instance A° = 0, then Fig. 2 shows how the line-

arly approximated A and the logarithmically approximated A are

displayed:
1^

A = true A for given Iq

InW eq. (4)

jOg. approx.
eq.(6)

.Linear approx,
eq. (5a)

Fig.

2

It is obvious that both solutions by linear and logarith-

mic approximation are sensitive to the choice of the starting
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Doint ( A°, S?). The authors warn about this /5/P.194: "A conveni-

ent point of expansion is that characterized by the average sales

rates and ^°=0. . . . However, this is not always an appropriate

point of expansion". No solution is offered as to how to choose J(

when A'^sQ is not appropriate. Thus, although the final formulas

(5a), (5b), (6) are simple, the choice of A° may require itera-

tive extensive analysis in order to obtain a fairly good estimate

of A*.

It is apparent that a more accurate and efficient method

is required for the solution of (4). The granh of Iq(A) is shown

in Fig.l. Given a certain aggregate inventory Iq the problem is

that of finding the root of an equation. However, it is easy to

transform this root-finding problem into a maximization/minimization

which has the advantage that some of the many optimum seeking

methods available in the literature could be applyed to obtain

the solution A .

Let :

I* (7)

(8)

It is obvious that a solution to (4) is obtained when

VJ/(A)=0, which is equivalent to minimizing f ( A ) . Fig. 3 shows the

relationship among Iq(A)
, ^ (A) , and f(A)

.

Thusour problem is now one of unconstrained optimization

(minimization)

,





iM'i:=^^' a)

b)

c)

Fig.

5
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3. METHODS FUR UNCONSTRAINED OPTIMIZATION

- A REVIEW -

3.1. Several variables problems

The literature oresents a large set of optimum seeking

methods for multivariate problems /lO/, /ll/, /6/, /7/.

Fletcher in /6/ groups these methods in 3 broad catego-

ries, according to their basic principle : gradient methods,

direct senrch,and sums of squares. The problem to be considered

is that of finding a local minimum (or if the function is uni-

modal the global minimum) of a function f(x) where x is a vector

of n variables x=(x, jXp, . . . ,x ) . Let g(x) be the gradient of f

with i-th element 9f/3x^, and G the matrix of second derivatives

with i, j entry ^^f/dx^Xy

a) Gradient methods

- steepest descents in which the direction of search

is s=-g. In practice the method improves f(x) rapidly on the first

few iterations and then gives rise to oscillatory progress and

becomes unsatisfactory.

- Newton' e method (or Taylor series method) assumes

that the function may be approximated locally by its Taylor series

up to the quadratic terms. Hence, the properties of quadratic

functions are used directly to generate a direction of search

8=-0~ g. The convergence is rapid if f(x) is adequately represented

by the first two terms of its Taylor series. However, the method

has various disadvantages :

- it requires the matrix of second

derivatives to be provided and calculated at each iteration,

- it requires the solution of a set
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of linear equationsto determine each direction of search .

Let's note that when G is locally singular the iteration

breaks down; also if s turns out to be orthogonal to g no further

progress is made.

- method of conjugate directions allows us to avoid

calculating G; the cost we have to pay for this is that a larger

number of iterations will be required. Since G~ is no longer

required the iteration cannot break down because of the singularity

of 0; also, the method ensures that the directions of search are

downhill. If the vectors s,,82i«».»s have the property

s'^GSj « (i^4) ; s'^Qsj / (i=j)

with regard to a positive definite matrix G, then they are said to be

conjugate. There are two ways in which a method can be made to

generate conjugate directions: the parallel subspace method and

the projection method.

All these methods find the minimum of a quadratic func-

tion in a given number of searches. For nonquadratic functions

the methods can be applied iteratively. However, for nonquadratic

functions a superior method has been developed by Davidon, called

the variable metric method for minimization , in which a positive

definite approximation H to G" is updated at each iteration,

and is used to generate directions of search s=-Hg.

b) Direct Search Methods (/6/p.7, /7/p.26)

This set of methods is applied to functions whose deri-

vatives are not available.

- alternating variable method - each variable is

chosen in turn, all the others are kept constant and the extremum

is obtained by one of the single variable search methods.





- 12 -

The method is very slow, highly oscillatory and usually fails to

converge.

- Roaenbroclc'e modification (or pattern search as

called in /8/p.B-347) is one of the most robust methods available

for ontimization when the derivatives are not available. This

procedure has been obtained by imoosing two modifications to the

alternating variable method :

1) the first is to avoid the single variable

ootimization for each direction in turn. Instead a step of ore-

determined length is taken in each direction and these step lengths

are modified after each calculation;

2) the second modification is to recognize

that the alternating variable method takes a large number of very

small steps and then to try to avoid this by realigning the axes.

The axes are reoriented so that the first axis is along the most

successful overall direction, the second axis along the next most

successful direction and so on. The change of axes is performed

by the well known Gram-Schmidt orthogonalization process.

- simplex method - the first step is to set ud a regular

"simplex" in an n-dimensional space, that is (n+1) points all

equidistant from each other. The function is evaluated at those

Doints and then the simplex set is altered systematically - dropping

some points and adding others - until the region of the minimum

is reached. Its precise location is found by interpolating a

quadratic function at suitably chosen ooints. However, if the

number of variables becomes large the method does not work so well.

It is interesting to point out the result obtained by

Taubert /8/ in applying three search procedures, from the ones
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enumerated above, for deriving decision rules for the aggregate

scheduling problem. A 20 dimension response surface was searched

for the minimum using: the method of conjugate direction, Davidon's

variable metric method search, and the method of pattern search.

/8/ reports that the pattern search exhibited the fastest conver-

gence, while conjugate direction search was the slowest;

Davidon's method yielded an average performance.

c) Sums of Squares - here the special case is considered

in which f(x) is the sum of squares of m nonlinear functions

g(x) . The problem can be solved by minimizing f(x) with one of the

methods shown above. While this is usually the safest line, often

much more rapid convergence can be obtained by taking into

account the special nature of f.

When m=n the problem of minimizing f(x) is equivalent

to that of solving a system of nonlinear equations g(x)=0.

This is an interesting fact because, given a system of nonlinear

equations gAjO'^O, i«l,2, . . ,m,to solve it is equivalent to

minimizing

f(x) * ^ [Si^i)]^

If no exact solution for minimizing f(x) is available, the

response surface f(x) may be searched for its minimum and at

least an approximate solution to the system of nonlinear equations

can be found.

The above preseatntion gives a general, although not

exhaustive by any means, view of the methods of searching for the

minimum/maximum of functi :)ns of several variables. As a matter

of fact, there are almost as many methods as there are researcliers
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in the field.

It is generally felt that dimensionality is probably

the limiting factor in all these techniques. However, good nrof:ress

has been made so far. For instance, /9/ch.7 reports a successt\il

search conducted for finding theminimum of all4-dimensional

resDonse surface. The cost was moderate (about 12 minutes on

IBM 360/91) and the authors state: "we assume that we have not

yet reached dimensionality limits so that the number of decision

variables available is probably somewhat greater".

For the case of functions of one variable many of the

above techniques can be applied.However, there is a soecial class

of search methods developed for single variable problems, which

are simpler than the previous one, and for particular cases

(ouch as unimodal functions) probably more efficient.

3.2. Single variable problems

This section is meant to give an indication of the main

methods used, with emohasis on the techniques that might be

considered for solving the HMMS model.

3.2.1. Bracketing /7/

It is most important as a first step in a optimization

to get a rough idee of where to look for an extremum; an useful

idea is to find two values that bracket the extremum. Suppose the

minimum of a function f(x) is sought and it is known that the

minimum is located in the region x^a. Choose an increment £ and

evaluate f at points x,=a, X2=x,+j^, x,=X2'«'2^, x.=x-+4£, Xc=x.-»-8i,

..., that is doubling the increment at each stage.
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Fig. 4

The evaluation is stopned if either the minimum is bra-

cketed (Fig, 4) or if Xj >X, where X is a suitable large constant

chosen at the start of the calculation. The minimum is bracketed

if at some stage f(x^)< f(Xj^_^) and f(x^)< f (x^^-j^) ; the bracket

is (Xi_n »Xj^^]^) . Of course, if we cannot decide the search direction

at the start^both directions leaving x=a must be tried.

Tf the first derivative is available then if f'(x.)<0
J

and f*(x. ^)>0 the bracket for the minimum is (x.,x.^,).

If the value of f(x) decreases until X is reached it

is usually assumed that the function is unbounded; if on the other

hand the value of X is reached and the function is still

increasing then f(a) is usually taken as the minimum value.

It was found that the method works well.

3.?. 2. Polynomial approximation /?/

Once a bracket has been obtained for the extremum it is

then required to obtain the extremum to any soecified accuracy. One

simple way of doing this is to use the information obtained by the

bracketing procedure directly and approximate this information by

a polynomial.
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Suppose for instance that after a bracketing procedure

developed as explained in 3.2.1, we stopped with f(x^)< f(x^^-^)

,

f(x^ , ). For simplicity let z,=x^_^, 22=x^, Z3=x^^^. A quadratic

approximation for f can be written

p
f(x) = ax -f bx •• c

Using the known information the result can be summarized

in the matrix equation
* 2

Znf(Zl)

-
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The minimum of the aDoroximating cubic is x ,
given by

f*(x)=0. The gradients f^, f^j,, fi are compared and two new points

are chosen to give gradients of opposite sign. The same procedure

can than be repeated until sufficient accuracy is obtained.

This method works extremely well for most functions.

However, some difficulty may arise if the function has a sharp

peak.

3.2.3. Bolzano's root-finding method /ll/ evaluates

the function each time in the center of the remaining interval

and eliminates half of the interval (whether the left half or the

right half is eliminated depends on the evaluation outcome).

After N evaluations of this sort, the ratio of initial L to final

L« interval is

^ = 2^ (9)

Thus the number of observations needed to achieve a given reduction

is evidently

N = 3.321ogY^ (10)

This method is a contender for solving 4'(A)=0

defined by equation (7) and shown in Fig. 3.

Bolzano search /ll/requires the evaluation of both the

function and its first derivative. Each time a point is placed

in the center of the remaining interval. Let for instance the
X,+Xp

bracketing interval be (x,,Xp) and place point x-=—=^—

.

Evaluate f^^f (x^^)
, f2=f(x2), t^=f{x^), f{=f(x^), f^=f (x^) , f^=f(x^l

We had initially f4<0, fA>0 (since we are minimizing). The remai-

ning interval is (x^,x-) if f4>0, and (x-jXg) if f4<0. Stop when

the interval is small enough or when no further significant decreasa

in tha objective functior is achieved.
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3.2.4. Direct search /lO/, /7/.

This class of methods is concerned with ODtimizing when the

derivative is not known or is comnliceted/ inconvenient to be used.

The idea is that once a bracket has been obtained the aim is to

progressively reduce the length of the bracket until it is less

than a nrescribed limit, or until no significant improvement in

the response function can be achieved.

Dichotomoua search /lO/ is similar to Bolzano search

but it does not require the evaluation of the first derivative.

Instead, two points rather then one are placed at a distance £^ ,

symmetric to the center of the remaining interval,

Lo

U/2

tti«

& Wa ^

Fig.

5

The evaluation of the function f(x) at each point is called an

experiment . In Fig. 5, after point x™, x. have been determined we

compute f,=f(x,) and f>=f(x.). Suppose f . < f,; then we know that

the minimum of f(x) lies somewhere in (x,,Xp), hence L, is the

remaining interval after the first set of experiments.

After N experiments (N mu.;t be even of course) we can locate the

minimum within an interva . of length:
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h = '^o[^ * ^ 1 - 772 >^] (11)

The interval S should be as small as possible; it is

bounded from below by the requirement that two outcomes be

distinguishable. It is important to point out that although the

resolution is negligible compared to the original interval of

uncertainity L , it is often a large fraction of the final interval

Lj, if the search is at all efficient.

Golden section and Fibonacci search /7/ are more

powerful than the dichotomous search technique.

SuDoose (a, .ap) brackets a required minimum of the

function f(x). The points a,, a> are symmetrically placed in this

interval, so that

a, ~ ^T ®i ( 1 ~^1^®2

a^ = ( 1 - oC^)^-^ "^ ^1®2

and this division is illustrated in Fig. 6.

i<oC<i (12)

Suppose now that f(^^)<f(a,); in this case (a,,ap)

brackets the minimum.

Let's take now .he remaining reduced interval (a,,ap)

and divide it again. Sine ^ the number of functions evaluations
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must be reduced to a minimum it would be very convenient to use

the remaining point & , in a further symmetrical division of the

reduced interval.

<<z(^z'^i)

<^2^*2-*3)

Fig. 7

Indeed, piece a new point ae symmetrical to a. in the interval

(a^.ag) Fig. 7.

Sc = ( 1 - aCo ^^-K
* oC^a2=2"5 ' " *^2 '°!5

"4 ~ °^2®3 -^ ( 1 - 0C2 )a
(13)

Since a. is the seme in (12) and in (13) it follows that

( 1 - cC^ )a^ + ^i®2 ~ ^2^3 ( 1 - 0^2 ^®?

which yields

^2 =

1«2

1 - eCi

(14)

The method can be continued in precisely the same way

successive symmetric divisions being performed until the length

of the interval is less tlian the required tolerance. The sequence

of fraction^ oC-,, oCpf" satisfy the recurrence relation

N-^:
'N

(15)

The basic choic is how to satisfy (15) in the most con-

venient manner.





-21 -

The j^olden section sets oC = oC, = orp=of„ = , . , and solving

(15) gives

oC = 0.6180335 (16)

The Fibonacci search technique uses the Fibonacci

numbers and works with a prespecified number N of interval divisions

(i.e. experiments). Fibonacci numbers satisfy :

Fq = F^ = 1, Fj^ = F^_^ + Fjj.2. N^ 2 (17)

Some of these numbers are given in the table of Fig.

8

for later use.

N
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A slightly modified version of Fibonacci search, where

the last experiment consists of placing two points at a very

small distance £ from each other rather than only one in the

middle of the interval, is developed in /lO/p.24.

It can be shown that, if one starts with a bracketing

interval of length L and the number N of experiments is suffici-

ently large, the ratio of the reduced intervalsobtained after

(N-1) experiments with golden section and Fibonacci search respec-

tively is :

golden section length , , ^^^c*

Fibonacci length -i-.-l/uo

Thus for large N the Fibonacci search gives a 17% better

result than the golden section. Both methods are superior to the

dichotomous search because at every step the ooint remaining in

the reduced interval is used in a further symmetrical division;

this feature If^ads to a better use of the information available

after each experiment.

Indeed, after N experiments the initial interval L is
o

reduced down to:

^N '^l*^2---^N-l^o

For the golden section

Lh =

(1.618)^"^

and with Fibonacci search

If these results are compared with the result of the

dichotomous search (equation 11) it's obvious that the golden

section and Fibonacci search oerform much more efficiently.

For an unimodal function it can be oroven that both
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golden section and Fibonacci search technique always work.

Lattice search by Fibonacci technique /lO/

Wilde /lO/ raises the point that it may sometimes be

advantageous to convert an ordinary continuous search into a lattice

search artificially. Indeed, the result of a continuous Fibonacci

search willbe an interval that contains the optimum. When one is

expected to make a decision based on the results of a search it

is a bit frustrating to be confronted with an interval of uncer-

tain ty. A oreciee ooint would be oreferable, since a specific

decision is called for. One could, of course, choose a ooint at

random in the final interval of uncertainity, but most people

would prefer a point where a measurement had already been made.

Thus, to avoid these difficulties, the original problem can be

converted into a lattice problem by placing a number of points in

the bracketing interval so that the final answer will be a

enecific point on which a firm decision can be based.

Suppose it has been decided that a number N of exneri-

mente will be performed to search by Fibonacci a bracketing

interval. Partition the interval into F« units using F«-l points,

not necessarilly equidistant. These points form a lattice. Let's

associate the lattice points with the integers 1 through Fjr-1.

Thus, we are dealing here with an original interval of length F^,

units. According to relation (19) and Fig. 6 the first two exoeri-

ments should be placed at a distance of ^-iFm^Fm-, so that the

first two experiments will coincide with points of the lattice,

namely ooint number F« ^ and point number Fjt-F«t_-j=Fm 2*

Since the length of the interval remaining is also a
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Fibonacci number, we see that the third experiment will also fall

on one of the lattice points. This procedure may be continued

until N-1 experiments have been used up and the length of the

interval of uncertainity is dawn to oC^cCg. . . fl^jij_2^N~^2"^ units.

The sequence is stopped and the unique point left inside the two

unit long interval is compared to the end points and the best will be

the estimate of the optimum, on which then all decisions will be based

Let us emphasise again that, in order for this tec^hni-

que \Q woric properlvi the JLnilial bracltgting interval must be

partitioned bv a number of points equal to a Fibonacci number leas

4. SOLUTION TO HMMS MODEL BY LATTICi;; SEARCH

WITH FIBONACCI TECHNIQUE

From all the search methods reviewed in section "5

Kibonacci technique gurantees the largest interval reduction in A

given number of steps. Moreover it does not require the use of

derivatives, a fact that is advantageous in our case because the

repeated evaluation of the derivative of (8) would require

additional computing effort given the fact that it is computatio-

nally more complicated than the original function.

Thus, the task of this section is the search for the

minimum of function (8) whose graph and equation will be repeated

here for convenience (Fig. 8).

We will use the same example as the one given by the

authors in /Vp.l96 in order to be able to compare performance.

Assume that the estimates of the setup costs and the costs of

holding inventory for each product are reviewed and revised
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annually. Forecasts are also made of the average monthly sales

rate, S' , for each oroduct for the coming year. The aggregate

inventory levels are planned with view to both labor

requirements and costs associated with inventory. The aggregate

inventory will therefore be measured in labor hours by multiolying

the units of each product by the conversion factor u^, which has

the dimension labor hours per item. The relevant data are summa-

rized in the table of Fig. 9.

minimize f(^)

f(A) =

>». ^

Fig. 8
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\0.aporoximation was chosen ^ =0 and the averages sales rates for

each item. The table in Pig. 10 shows alternative estimates of ^

and the error in Iq compared to the imposed aggregate level Iq

(Iq is computed using the estimate of A ).
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to y^CA ) at ^=0 and the horizontal axis is always larger than

y* , Let's call this upper bound ^ . The reason behind the fact

that we used ^(^ ) rather than the searched response function

f ( A ) to derive bounds will become clear in section 5. Anyhow,

the brackets developed with *^ ( ^ ) are perfectly valid for f(^ ),

given the equivalence shown in Fig. 3.

^li- ^i
" Q

(7)

Fig. 11

A lower bound can be obtained using the bracketing

technique described in 3.2,1. Use i~-^ and go out from -^

with a double increment 2^ (see Fig. 11). Evaluate U'C A^-2^) and

repeat the procedure (if necessary) with 4^, 8^ etc. until^^i^)

becomes negative. Then stop with the lower bound Ap,

4.1.2. The case I*>Iq(0)

In this case < ^*< X^, The interval (0, Ti^) is a

possible choice for bracketing ^ . However, for the porpose of

computing an upper bound on the error of estimation (see section 6),

this interval is unsuitable. An uoper bound better than ^^ is

required. Two subcases can be distinguished here :

a) A corresponi ing to the intersection between the
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tangent to j(.A) at J\=0 and the horizontal axis is smaller than

/(_ (Fig. 12). In this situation the intersection is labeled A ,

and a convenient bracketing interval is (0, ^,,)

Fig. 12

b) A corresponding to the intersection between the

tangent tp U/(^) at A =0 and the horizontal axis is larger than

>^ (Fig. 15).

Fig. 13

Then, a good bracketing procedure is a binary search /12/p.82,

The algorithm is the following :

Let k=l, X=o
'

Step 1 - Evaluate U^i :X ) et

^m" ^k-1

If (Pi ^^) ^O go to step II.
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If ^( ^^)=0 BtoD with 5^*= >^.

If a/( \)>0 stop with ;^^= ^ and \= \_i

Step 2 - Let lc=k+l. Go to step I,

In Fig, 13 the algorithm terminated after two evaluations,

yielding ( A,, ^ ) as the bracketing interval.

Let's note that the binary search is actually the

bracketing technique of section 3.2.1. applyed in reversed order;

this was Doesible because we started out with a finite interval

(0, AJ.

4.2. Estimating ^

Once the bracketing interval has been obtained,

Fibonacci search technique will be applyed to an artifficially

constructed lattice. Namely we decide first to perform N

Fibonacci exoeriments; consequently F„, points will partition

the initial interval into F„ units, and the technique is apolyed

to this lattice. The issue of how to choose N will be addressed

in section 6.

4.3. Numerical examples

Example 1

Consider the example solved by the authors for an

aggregate inventory of Iq=800. All relevant data are given in the

table of Fig. 9

In our perticulnr case we have:

iU( 1 >i
- 1 i MOOOO" ^ 5 lAouOO ^ 1/600000 ann

The tangent to ^( J^ ) at A =0 is:
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0/- 348 = 1573.86 ^

Applying the bracketing procedure shown in 4.1.1. one

obtaines:

:X^ = -.22 ; }i^ « -.66

hence the inteval within which to search for ^^ is (-.66, -.22)^

the response function whose minimum we are searching for, is :

f(^) ^\f{^ )|

and it was pictured in Fig, 8.

Choose, for instance, to perform N=5 Fibonacci experi-

ments. Consequently, the interval (-.66, -.22) will be partitioned

into Fjj=8 units using Fj^_-,=7 points equally spaced. However, there

is no special requirement that the points be equidistant; con-

sequently, if we have any suspicion that A might lie in a

certain subinterval of the bracketing interval we might want to

distribute the nointe closer in that subinterval and further

apart in the rest.

The increment of the lattice is h = -^4^ =.055."W

h^.OSS
\

7 I I ff /
—

i

^ ^ ^^ ®—I ^ 9 ^ ^ -^ • ^

-.6C -.«W -yS" -.9y -H -'iW -.5 J -.275* -.2^

Fig. 14

First and second Fibonacci experiments

Place two point; at a distance oC^Fj* = F« -, units

from the ends of the interval; Fjj_, = 5, so the two points are

point no. 5 (^=-.385) and point no. 3 (^=-.495).

f(-.495) = 2.0324, f(-.385) = 42.7343
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Third experiment

The remaining interval i8(-.66,-.385) ; olace in the

interval a point symmetric to (-.495). This point will be A =-.55.

f(-.55) = 21.53805

Fourth experiment

The remaining interval is (-.55, -.385) and the point

chosen iAa-,44

f(-.44) =» 19.27695

Fifth experiment

The remaining interval is (-.55, -.44) and it contains

only one point ^=-.495. This is the best point in the lattice, so

it is chosen as our estimate of A .

A* = -.495

Fig. 14 shows the five Fibonacci experiments indicating

the sequence in which they have been chosen.

Example 2

Consider the same data except for the aggregate inventory

level which shou]J be now I*=1500.

il/r :A ^ - 1 \ /40000 . 5 yMOOOO ^ \/ 600000 , ^^.

The tangent to ^(^ ) at ^=0 is:

0^ + 352 = 1573.86 A

The vertical asymotote for ^( A ) is ^ =0.2.

The intersection of the above tangent with the horizontal axis

^-0 falls beyond ^^^=0.2 at ^ = .22, hence this point is infeasible

and can't be used as an upper bracket (see Fig. 13). Apply then the

binary search described in 4.1.2.b,





k = 1 ,

32

>o = °

^( \) = -110.1339 <

V^i
k = 2

^2 = -^1 * = .15

^( ^2) = 202.5537 >

Hence, the bracketing interval is ( -^^ , ^o^'^^ &* ^u^~

=(.10, .15).

Let's choose to perform N=5 experiments. The corresoonding

Partitioning of the interval is shown in Fig. 15. After the search

the best estimate turns out to be A =.125. The Roman numerals

in Pig, 15 show the sequence in which the experiments have been

placed.

h-.0062^

4 ^ I ^ iV -#- 4^

,iO .i96i^ 'Wr >Hf75- J2T Jms Ji7f J^iff ./5"

Fig. 15

In example 1 the estimated ^ =-.495 yields an aggregate

inventory 1^=798, i.e. an error of 0.25% as comoared with the

imposed Iq=800. In example 2 our estimate ^ =.125 leads to

Iq=1509, i.e. an error of 0.6% relative to the constraining

i;=i5oo.

The point which we would like to emphasize here is not





- 33 -

primarily the accuracy itself obtained above; this accuracy is

more or less important if we look at it in connection with the

accuracy of the input data (setup and holding costs, demand

forecasts, conversion factors). The imoortantooint is rather the

small computational effort required to obtain this accuracy, and

the fact that it can be easily improved by increasing the number

of exneriments (points) by just a few. Indeed, an initial interval

of uncertainity can be reduced to less than one per cent of its

original length after only eleven sequential experiments.

"5. AN ALGORITHM FOR FINDING THE ROOT UF AN £QUATIUM

BY LATTICE SEARCH WITH FIBONACCI NUMBERS

Fibonacci search technique is meant for finding the

minimum/maximum of a function of a single variable (unimodality

is desirable to ensure a successful search) This is why, although

our original problem was to find the root of a complicated equa-

tion (7), we transformed it to obtain a peaked function f(^)

(see Fig. 3) on which the search has been performed.

In this section the original problem will be addressed.

Wo propose a general purpose lattice - Fibonacci type algorithm

for searching for the root of an equation within some previously

determined bracketing interval. This method will be used to search

the HMMS model and it will be clear that it requires a smaller

number of function evaluations; the number of evaluations deoends

on where in the bracketin/^ interval is the root located.

In Fig, 16 , (A,B) is a bracketing interval for A ;

y is at the same time the root of U^(^)=0 and the minimum of

f(^). Suppose C,D are th* first two lattice - Fibonacci experi-
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mente placed in (A,B); then, according to the technique in section

4, the remaining interval will be (C,B) as f(D)^f(C).

Fig. 16

However, if we look at ^( ^) instead of f ( ^ ) the

remaining interval would be (C,D) ae Q'(C) 'I'(D) < 0. Hence the idea

of modifying the criterion of selecting the remaining interval.

while keeping the rule of placing experiments according to the

lattice - Fibonacci search method. We realize that the root A

could fall not only in the interval (C,D), but also in (A,C) or

(D,B), as shown in Fig, 17, so after an experimental step the

remaining interval could be either (A,C), (C,D) or (D,B).

In order to further apply lattice - Fibonacci technique on

the remaining interval it must contain a number of lattice points

equal to a Fibonacci numb(>r less 1. Let's investigate (A,C),

(C,D), (D,B) from this point of view.
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Fig. 17

PROPOSITION Let the open interval (A,B) contain F^^-l points,

where F„ is a Fibonacci number. Suppose the first

two experiments C<D have been placed in (A,B)

according to the lattice - Fibonacci search

technique. Then, each open interval (A,C), (D,B)

will contain F -1 points, and the open interval (C,D),

F^-1 points, where F„, F^ are Fibonacci numbers.

Proof Points A, B, C, D, are displayed like in

Fig 16. Let N^„ denote the number of points contained

in some open interval (iftS),

According to 3.2.4. ooint D is the Fjj_,-th Doint

from A, and C is the F« -.-th point from B. Thas

\d = ^N-1 - 1 ^CB = %-l ' ^ •

Consequently :
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NaC = \b - ^cb
- 1 = (F^ - 1) - (Fjj.;^ - 1) - 1 =

Similarly :

NCD = \d - ^AC
-

1 = (^N-l - ^^ - ^V2 - 1) - 1 =

and clearly Nj^q « N.^ .

COROLLARY - Let ^i^ ) be a continuous function of ^ with a root

contained in some bracketing open interval (A, 3).

Assume (A,B) contains F^-1 ooints, where F is a

Fibonacci number, and that the first two experiments

C<D have been placed in (A,B) according to the lattice

- Fibonacci search technique.

If the next (reduced) bracketing interval is chosen

such that ^f{ir)^iS)^0, y, cr€{A,B,C.D]

then Nj-^ is equal to a Fibonacci number less 1.

Proof - The proof follows directly from the above

proposition coupled with figures 16, 17.

Of course, from all possible intervals (0 |0 )

constructed such that ^^ ( J^) ^(cT ) ^0,

}^fO£, ?A,B,C,DS we will choose the one with the minimum Ny«jr for

the purpose of efficiency.

Summary : In solving the HMMS model we will search for the unique

root of ^(^)\ a lattice will be constructed inside the initial

bracketing interval using a number of points equal to a Fibonacci
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number less one. At each step two experiments are olaced accor-

ding the method described in 3.2.4., and the remaining interval

will be chosen as specified by the corollary above. The procedure

will be then repeated with the remaining bracketing interval.

Example

For the purpose of comparison the examnle already solved

in 4.3. will be tackled by the modified algorithm. Consider the

data in the table of Fig. 9, and an aggregate inventory of I*=1500.

The bracketing interval is ( .10, .15) ( see 4.3); we have

already chosen N=5, so there will be Fjj-1=7 points in (.10,. 15).

I jr I
A CD fi

-U—^.

—

'
. \ % % '' ''

' U
.to 'WA^S" •'««" **^''^ '^^ ''^'^^ ''3^^ ./Vi^r ,/y ^

Fig. 18

First and second Fibonacci exoerimenta are placed at

Fjj_i units from both ends. So, C*. 11875, D=. 13125

'I^C. 11875) = -25.5509

^(.13125) = 47.7335

Evidently, since ^^fC) 0^(0)^0 the remaining interval

is (C,D).

Third Fibonacci experiment - interval (C,D) only contains

one point, so

^^(.125) = 8.94<|y(C)|,a'(D) .

Hence ^ =.125, and with the modified method 3 function

evaluations were needed iistead of 4 in section 4.3. The modified

technique is faster in reducing the interval of uncertainity

especially i^t the very beginning. This is easily seen if we compare
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the remaining intervals obtained with the two methods applied

to the lattice shown in Fig. 18:

Lattice-Fibonacci

Exoeriment

performed

^ = .13125

^=.11875

^ = .125

Remaining

interval

(.10,. 13125)

(.11875,. 13125)

Solution

Modified technique

Experiment Remaining

performed interval

^ = .13125

> = . 11875

/\ = .1125 (.1125,. 13125) / -^ = .125

(.11875,. 13125)

Solution

The speed of convergence of the oropoeed technique

is influenced by the position or the root in the bracketing

interval: the fastest reduction in the uncertainity interval is

obtained when the root lies in the central oart of the bracketing

interval. The results of two examoles worked out on a lattice

divided into 89 intervals (units) are shown below. In the first

example it was assumed that the root is located in the central

Dart, while in the second the root was located at the left extreme.

Example with root centrally located

Lattice
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Example with root at the extreme left end

Lattice-Fibonacci

Exoeriment
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that a smaller number of reduced intervals must be kept track of,

which reduces computer time.

Thus, we will resort to the modified lattice-Fibonacci

technique in the computer program for solving the HMMS model,

using as a response function 'rC^ )=0.

6. CHQQSINQ THE NUMBER OF POINTS IN THE

BRACKETING INTERVAL

There are two requirements to be met, and which place

bounds on the number of points dividing the initial bracketing

interval:

a)- the requirement that two adjacent function

evaluations be distinguishable ; this places an

upper bound on the number of points in the interval,

b)- the accuracy of the result which is better if the

number of points is larger; this requirement sets

the lower bound on the number of points .

Let (A,B) be the initial bracketing interval and N.^

the number of Doints partitioning the open interval (A,B).

Then /lO/p.37:

where

"ab « ^n - 1

N = the integer part of 4.785 log ^ - 0.328

£,- the minimum spacing for which two

outcomes are distinguishable

F^ = Fibonacci number

However, given the available modern computing capability it is

probably unlikely for thi.-, upoer bound to be constraining in the
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case of a production problem like the HMMS model. In such cases

we expect the cost of the computational effort to place an upper

bound on the number of points. Thus, we willtend to select the

smallest number of points allowed by the accuracy requirement.

One way to approach this problem is the following: given

the Inttice increment h and the fact that our estimate of }i

is one of the lattice points, we know that we can not be off

the true root by more than h. The change in the aggregate inventory

corresponding to a variation of h in A can be approximated by

^-le- h, for h small. As we are interested in the proportional

change in aggregate inventory, we will use :

1 ^^QEj-f-^h (22)

where Ey is the proportional error in aggregate inventory.

Clearly, setting an unper bound on the error E^ is

equivalent to limitting h from above and N.^ from below. But

Ey is a function of ^ and obviously Ej( ^ ) can not be computed

before A is found. How should E^ be computed in order to deter-

mine the minimum number of points needed ?

«1 V2CpiSi
372diQ _ t^ * (Cji -;\ui)

^Mc,i-.:^u,)^^^

1 -Lq d;\
,ji^ V^CpiSi

Analyzing expression (23) we find that Ej( A ) increases

Ti
monotonically from to e>o

, for -oo<.y\^ min . Consequently,
an • ^^

givenAinterval (^pi^y) bracketing ^ , where ^ - , ^ are
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the lower, and upper ends of the interval, respectively,

Ej(^^)>Ej( ;\*) . (24)

Hence, the error computed at ^ is an upper bound on

the error in the aggregate inventory corresponding to the

estimated ^ .

L
If L- is the initial bracketing interval then h=~

80 taking (22) and (24) into account we can find the lower

bound on F^jt

where all elements of the right hand side are computed at .^ = ^ ,

and Ej( A ) is specified by the user of the model.

Example

Consider the data shown in the table of Fig. 9 and an

aggregate inventory level of I-. = 1500. In section 4.3 the

bracketing interval for ^ was found to be (.10,. 15). In how

many units should we partition this interval ?

Assume, for instance, that we want to limit the error

in aggregate inventory to 5%, i.e. 0.05. Consequently we set

Ej( >^) = Ej(.15) = 0.05 .

Iq(.15) = 1702.5

^( =.15) = 10556.3

\ = -05

Applying (25) we obtain

Fjj^ 6.083

Since Fj^ must be a Fibonacci number we look it uo
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in the table of Fig. 8 and find Fj, = 8 corresponding to 5 Fibonacci

exoeriments. The number of points in the bracketing interval will

be Fj^-1 = 7.

7. SOLUTION BY BOLZANO'S ROOT FINDING SEARCH METHOD

As shown in 3.2.3.
i
after N evaluations of the response

function, the initial bracketing interval L can be reduced to

LV2 with Bolzano's method. If we have dealt with a continuous
o
*% N . . . ...
^, after comparing 2 with Fibonacci numbers in Fig. 8 it would

have been quite obvious that Bolzano's method achieves a greater

interval reduction in a given number of iterations N. However,

for reasons shown on page 23, we preferred to turn our problem

into a discrete version, in which case it is not immediately clear

which method perfonns bettpr.

The general approach with Bolzano's technique is similar

to what we did so far:

- set the maximum acceptable relative error in

aggregate inventory^

- determine the number of intervals in which the initial

bracketing interval must be oartitioned; the number of intervals

should be equal to a power of two, so the oroblem is that of

finding the smallest k in:

- apply Bolzano search on the lattice just constructed.

A computer program has been set up to experiment with

the two methods: the modified algorithm, and Bolzano's

search. The following computer report shows the result of an
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example run with the data in the table of Fig. 9, for an imoosed

aggregate inventory of 800.

WHAT IS THE NUMBER OF ITEMS?
13

WHAT IS THE AGGREGATE INVENTORY?

WHAT IS HIGHEST ACCEPTABLE ERRO". - PERCENTAGE ?

13

MODIFIED LATTICE-FIBONACCI SEARC?J ALGORITHM

NUMBER OF ITEMS = 3

IMPOSED AGGREGATE INVENTORY = 800
MAXIMUM ADMISSIBLE ERROR = 3 %

LENGTH OF INITIAL BRACKETING INTERVAL = .4A1869
ACTUAL NUMBER OF ITERATION? = 4

ITERATIONS REQUIRED BY PURE FIBONACCI SEARCH = 6

ESTIMATED LAGRANGE MULTIPLIER = -.ii9P.85A

RESULTING AGGREGATE INVENTORY = 798.762
ACTUAL ERROR IN AGGREGATE INVENTORY = -.15477 %

PRODUCTION PLAN
ITEM 1 163 UNITS
ITEM 2 107 UNITS
ITEM 3 448 UtJITS

LATTICE SEARCH BY 30LZArJ0 METHOD

NUMBER OF ITERATION? = 4

ESTIMATED LAGRANGE :'ULTIPLIER = -.497103
RESULTING AGGREGATE INVENTORY = 797.189
ACTUAL ERROR IN AGC IGATE INVENTORY = -.35 13 64 %

PRODUCTION PLAN
ITEM 1 1 63 U[ ITS
ITEM 2 107 UflTS
ITEM 3 . 447 U^ ITS
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It's clear that both the modified technique and Bolzano

method had the same oerformance, while outDerforming the oure

Fibonacci search.

The explanation for the equal performance is the following;

the lower limit on the number of partitioning intervals was a num-

ber less than 13. Consequently, by formula (25) a number of 13 di-

visions has been considered for the modified algorithm, while by

formula (26) a number 2 =16 divisions were constructed for Bolzano's

search. Thus, although Bolzano technique is in general the fastest,

the discrete nature of our oroblem lead to some loss of efficien-

cy. However, for larger intervals, or for a lower desired error,

Bolzano's method performs better than the modified lattice-Fibo-

nacci algorithm (see attached computer reports).

Conclusion - For inventory levels Iq smaller but relatively close

to Iq (A=0), and for I* larger than Iq (A=0) the initial bra-

cketing interval is expected to be small, and there is no signi-

ficant performance difference between the modified lattice-Fibo-

nacci search and Bolzano's technique. Both perform extremely

efficiently. For I^ considerably smaller than I^ (A=o) Bolzano's

method oerforms better and is to be preferred.

8. A COMPUTER PROGRAM FOR THE MODIFIED LATTICE-FIBONACCI

SEARCH TECHNIQUE AND FOR BOLZANO'S METHOD

A computer program has been written in BASIC to oerform

the search for the Lagrange multiplier in the HMMS disaggregation

model. The program has three major parts:

- the code for finding the bracketing interval,

- the code for oerforming the search with the modified

lattice-Fibonacci technique,
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- the code for Bolzano's method,

and 5 subroutines for:

- the evaluation of aggregate inventory function for a

given multiplier value,

- computing the derivative of the response function,

- finding the asymptote of the response function,

- computing a Fibonacci number for the initial partitio-

ning of the bracketing interval,

- computing Fibonacci numbers for a given number of

experiments.

The user supplies all relevant cost data, the number of

items, the constraining aggregate inventory and the upper bound

on the error in inventory. The general logic of the orogram

follows the development provided in the paper, and is illustrated

in the attached flowchart.

The program was meant to serve the ouroose of the

comparative study; consequently, the reports provide the necessary

information to assess efficiency.

Some examples have beef! worked out and tho reports are

shown below. A general flowchart as well as the entire nrogram

listing ere attached.
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WHAT IS THE NUMBER OF ITEMS?
!3

WHAT 15 THE AGGilEGATE INVENTORY?

W}1AT 15 HIGHEST ACCEPTABLE ERROR - PERCENTAGE ?

\P.

MODIFIED LATTICEtFIDONACCI SEARCH ALGORITHM

NUMBER OF ITEMS = 3

IMPOSED AGGREGATE INVENTORY = 800
MAXIMUM ADMISSIBLE ERROR = 2 %

LENGTH OF INITIAL BRACKETING irOTERVAL = .^J41869
ACTUAL NUMBER OF ITERATIONS = 5

ITERATIONS REQUIRED 3Y o!JRE FIBONACCI SEARCH = 7

ESTIMATED LAGRANGE MULTIPLIER = -.49^^73
RF.SULTING AGGREGATE INVENTORY = 798.161
ACTUAL ERROR IN AGGREGATE INVENTORY = -.2298!?8 %

PRODUCTION PLAN
ITEM 1 163 UNITS
ITEM 2 107 UNITS
ITEM 3 ^^8 UNITS

LATTICE SEARCH BY BOLZANO METHOD

NUMBER OF ITERATIONS = 4

ESTIMATED LAGRANGE MULTIPLIER = -.497103
RESULTING AGGREGATE INVENTORY = 797.189
ACTUAL ERROR IN AGGREGATE INVENTORY = -.35136A

PRODUCTION PLAN
ITEM 1 163 UNITS
ITEM 2 107 UNITS
ITEM 3 447 UNITS
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WAT IS THE NUMBER OF ITEMS?
!3

W^AT IS THE AGGREGATE INVENTORY?

WHAT IS HIGHEST ACCEPTABLE ERROR - PERCENTAGE ?

!3

MODIFIED LATTICE-FIBONACCI SEARCH ALGORITHM

NI'MBER OF ITEM<^ = 3

IM^C-ED AGGREGA'^E IN^'ENTOR" = ^nci

MAXIMUM ADMISSI3LE ERROR = 3 %

LENGTH OF INITIAL BRACKETING INTER\'AL = Rn./(736
ACTUAL NUM'lER OF ITERATIONS = 1 '^ ,

ITERATION^- REQUIRED 3Y PURE F,130NACCI SEARCH = 13

ESTIMATED LAGRANGE MULTIPLIER = -18.1975
RESULTING AGGREGATE INVENTORY = 199. -963

ACTUAL ERROR IN AGGREGATE INVENTORY = -1.834 1 lE-HR

PRODUCTION PLAN
ITEM 1 45 UNITS
ITEM 2 20 UNITS
ITEM 3 125 UNITS

LATTICE SEARCH BY BOLZANO METHOD

rJUMBER OFMTERATIONS = 9

ESTIMATED LAGRANGE MULTIPLIER = -18.1966
RESULTING AGGREGATE INVENTORY = 199.968
ACTUAL ERROR IN AGGREGATE INVENTORY = - 1 . 6 1 ? 85E-'?!2 %

PRODUCTION PLAN
ITEM 1 4 5 UNITS
ITEM -5 20 UNITS
ITEM 3 125 UNITS
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APPENDIX I

Subroutine 3:
find asymptote

^„ = min
'11

Subroutine 2;

comoute
din

Subroutine 1;
compute Iq( A

)

Input number of
items, aggregate
inventory, and
bound on the error

Bracket the inter-
val containing the
Lagrange multiolier

Partition the
bracketing inter-
val

Perform search
for multiplier

Print report from
lattice-Fibonacci
search

Perform Bolzano
search for multipl.

Print report from
Bolzano search

Subroutine 4*.

compute Fibonacci
number for
initial parti-
tioning

Subroutine 5:

compute Fibonacci
number for
given number
of experiments

Flow chart ahowing the general features of the

cQiroarative search program
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APPENDIX II : Comouter orogram for the modified lattice-Fibonacci

search and for Bolzano's root finding technique

:10

20
30
40
50
f.Pi

70
80
90

in0
1:1

±20
l-:0

140
:1.50

160
170
180
±90
200
210
220
220
240
250
260
270
280
290
j:00

310
320
330
340
3!r.0

360
370
380
390
480
4J0
420
4~:0

440
450
4i:.H

470
480
490
300
310
320
330

PRINI WHfiT 15 THE NUMBER OF ITEMS?-
INPUT I

FOR K>=i TO I

READ c<K>.. h<::k:>.. U':;K>.. S<hO
NEXT K
PRINI 'WHRT IS THE RQGREGRTE INVENTORV?'
INPUT R
LET W2--^l

LET X^0
GOSUB 1430
IF RG-=R THEN 1230
GOSUB 1490
REM + FIND INTERSECTION OF TRNGENT RND HORIZONTAL RXIS
LET K-^<R-R0>.-'D
REM * FIND BRRCKETING INTERVRL *

IF X<0 THEN 340
GOSUB 1330
IF K::=-M THEN 230
LET E:1^0
LET E2=X
GOTO 600
REI'1 + BINRRV SERRCH FOR FINDING BRRCKETING INTERVRL +

LET E1^0
LET E2=^El+'::M-Ei::'/2

LET X=E2
GOSUB 1430
LET V^R0-R
IF V-G THEN 1230
IF V<:0 THEN 310
GOTO 430
LET E1--^E2

GOTO 240
RFM * BINRRV SERRCH ENDS HERE +

LET E2=X
LET K>1
LET L-^2-K*E2
LET X"-=,X+L

GOSUB 1430
LET V^R0-R
IF V-^0 THEN 1270
IF VCO THEN 440
LET K^K+1
GOTO 360
LET E1=X
REM ++ PRRTITION BRRCKETIflG INTERVRL -::E1. E2> **
PRINT 'WHRT IS HIGHEST RCC EPTRBLE ERROR - PERCENTRGE ?

INPUT B
LET X^E2
GOSUB 1430
GOSUB 1490
LET T^^D* '' E2-E1 : / < RG + B/lOO
LET E3-^E1
LET E4-E2
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540
"550

56
570
590
5f-'0

600
610
6?0
670
6'10

6i:-0

€7 id

690
6l-'0

700
710
720
7~'0

740
750
760
770
780
790
900
8-1

820
870
840
8r'0
8^-0

870
880
890
900
910
920
930
940
950
960
970

990
1000
10J
1020
1070
1040
1050
1060

810

GOSUB 2260
LET L-E2-E1
GOSI.IB 1660
LET N0-=N

LET W=^0

Fi-EM +++ MODIFIED LRTTICE-FIBONRCCI
LET Xi^-El
LET X--^X1

GOSUB 1430
LET V1-FI0-R
LET X2^-^E?

LET Jv^X2
GOSUB 1430
LET V2-R0-R
IF F-2 THEN ."10

IF F>2 THEN 830
GOTO 1130
LET X3~<Xi+X2:>/2
LET X=.X3

GOSUB 1430
LET W^W+1
V3~R0-R
IF V3=0 THEN 1290
LET F-^1

IF V3::0 THEN
LET E2==X3
GOTO 600
LET E1=X3
GOTO 600
LET .T--^N-1

GOSUB 1780
LET X3=X1+G+
LET y.^K2
GOSUB 1430
LET N-^W+1
LET V3=R0-R
IF V3^0 THEN 129f

LET X4^^:-^;2-G+

LET :v^X4

GOSUB 1430
LET N--^W+1

LFT V4=R0-R
IF V4=^0 THEN 1310
IF V4<0 THEN SS<d

GOTO 1010
IF V3<0 THEN 1070
GOTO lHi9iZ-i

LET E2-X4
LET N=N-2
LET T-N
GOSUB 1780
LET F-G
GOTO 600

^.ERRCH RLGORITHM ++•*

E2-Ei:>.'F

E2-Ei:>.'F
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LET E1^X3
GOTO J.028
LFT Ei-X4
LET E2=^X3
LET r^=N-3
GOTO 1030
REM ++THE INTERVRL IS 1 UNIT LONG RND CONTRINS NO POINT++
REM * INTERVfll. END WITH THE SMRLLEST ERROR IN +

REM + HGGREGflTE INVENTORV IS MULTIRLIER ESTIMATE +•

LET Vl^RBS-iiVl;-

IF V1<:V2 THEN 1210
REM + 3ERRCH IS COMPLETE.; X0 IS MULTIPLIER ESTIMRTE +

LET ?
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IF PvK> :M then 1620
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IF W2-^l THEN 2150
PRINT 'NUMBER OF ITERATIONS -=

: Wi
PRINT
PRINT •ESTIMFITED LFlQRRNQE MULTIPLIER = :X

PRINT 'RESULTING RQGREGFlTE INVENTORY -^ •-
: 09

PRINT -FlCTUfiL ERROR IN RGGREGFlTE INVENTORY = '; P ;:•••;
•-

PRINT
PRINT 'PRODUCTION PLRN'
FOR K-^1 TO I

PR TNT 'ITEM '
: K . Q •' K > :

- UN I TS ••

NEXT K
GOTO 21'30
RFM +* PRRTITION BRRCKETING INTERVRL FOR BOLZRNO SERRCH *+
LFT K>1
LET V^-=2-K

IF V>=^T THEN 2310
LET K^K+l
GOTO 2276
RETURN
REM +* BOLZRNO SERRCH ++•

IF W2^2 THEN 2639
LET wi-=e
LET Vl-^V/2
LET X^=^E3+V1+<E4-E3;>/V
GOSUB 1420
LET W1=W1+1
LFT V-^RO-R
LFT XO=-X
IF V-^-e THEN 13:20
ir V<0 THEN 2450
LFT E4-=X
GOTO 2460
LET E3:=X

IF V1--1 THEN 2490
LET V-V-Vi
GOTO 2350
LET v=E3:

GOSUB 1420
LET V1-^R0-R
LFT Yl^RBS'::Vi::'

LET X=E4
GOSUB 1420
LFT V2=^R0-R
IF VK-V2 THEN 2590
LET X0-^E4
GriTO 2600
LET X0--==E3

LFT N2=^2

GOTO 1320
RFM +•+•• END OF BOLZRNO SERF CH *+
EfJD








