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Abstract – Gas turbine blade cooling system design is a multidisciplinary, iterative and often tedious task involving
complex relationships among multiple design objectives. Typical blade design requires a broad range of expertise in the
materials, structural, heat transfer, and cost optimization disciplines. The multiple objectives involved are often con-
flicting and must be solved simultaneously with equal importance. The traditional approaches researchers scalarize
the multiple objectives into a single objective using a weight vector, thus transforming the original multiple objective
problem into a single objective problem. This research addresses the shortcomings of existing traditional approaches of
the optimization of blade cooling configuration design.
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1 Introduction

Electricity is expected to remain the fastest growing form of
worldwide end-use energy through 2030, as it has been for sev-
eral decades. Gas turbines have been considered energy work-
horses and are at the heart of almost all of the world’s electricity
generating systems. Gas turbines are also used extensively for
aircraft propulsion and other industrial applications. A gas tur-
bine, also called a combustion turbine, is a type of combustion
engine with a complex operating mechanism, and is known to
operate in harsh environments that include extremely high tem-
perature and pressure levels. The design of the modern gas tur-
bine requires interdisciplinary knowledge of aerodynamics,
thermodynamics, heat transfer, mechanical systems, material
science and manufacturing technology. In addition, a designer
of turbine engines must balance the conflicting requirements
of heat transfer against those of aerodynamics, materials, stress,
manufacturability and costs. In general they are subjected to
significant thermo-mechanical stresses that affect the durability
and reliability of its components and, in turn, the turbine itself.
Achieving high reliability and thermal efficiency of gas turbines
is of continuing concern and motivates engineers and research-
ers to study and improve turbine efficiency and turbine reliabil-
ity. Increased thermal efficiency and power output require that
turbines operate at high inlet temperatures. However, the
increase in operating temperature requires high level of cooling

system design, specifically blade internal cooling system
design.

In this paper a new evolutionary numerical simulation
approach for multiobjective design optimization is proposed
and studied. To overcome the drawback of subjectively select-
ing weights to transform the multiple objective design problems
into a single objective problem. A two design performance
objectives and a set of design decision variables that influence
the performance objectives are studied. This proposed approach
automatically generates the most appropriate blade cooling
channel design specifications that simultaneously optimize the
two design objectives.

1.1 The working principle of gas turbines

The simplest and most common gas turbine is an in-line
axial flow turbine, as shown in Figure 1. A gas turbine operates
by guiding incoming air into the compressor, which in turn,
compresses and delivers highly-pressurized air into the combus-
tor section of the engine. This is the mainstream air flow. The
combustor burns the injected fuel using the compressed air
delivered from the compressor. The mainstream air flow
(referred to as hot gas) is a combustion mix of air, fuel and
unburned hydrocarbons, and it can reach temperatures as high
as 1700 �C and can produce high pressure variations [1, 2].
The hot gas enters a series of turbine stages, where a stage is
composed of a set of vanes and a set of blades. The hot gas
expands towards atmospheric (or ambient) pressure in each*e-mail: raju@ucf.edu
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stage, and this gas expansion runs the turbine to generate output
shaft power. This shaft power is used to drive the compressor,
and it is also used to power the generator. In case of aircraft gas
turbine the shaft power runs propeller to generate thrust and
exhaust is diverted to nozzle to generate secondary thrust
required to propel aircraft.

1.2 The gas turbine cooling system

The turbine engine parameter of greatest influence on core
power and thermal efficiency is the turbine inlet temperature
(TIT). To meet the demand requirements of power plants, such
as increased thermal efficiency and increased power output, the
owners of the gas turbines operate them at high inlet tempera-
tures. During the last 30 years, the turbine inlet temperature for
gas turbines has steadily increased (1200 �C–1700 �C) in order
to improve thermal efficiency of the turbine. On the other hand,
the allowable material temperature for the gas turbine hot gas

path components has increased on a much slower rate. The his-
toric increase in TIT, as shown in Figure 2, is a result of an
attempt by gas turbine manufacturers to simultaneously
increase the thermal efficiency and the specific core power
per unit mass of air flow. The ideal Brayton Cycle curve, which
is the performance theoretically obtainable with ideal compo-
nents throughout the gas turbine engine, indicates a steady
increase in specific core power until the Hydrocarbon Stoichi-
ometric Limit is reached, which is the maximum temperature
limit attained by burning fuel 100%. All existing gas turbine
engine systems fall below this ideal curve. However, they fol-
low the same general trend as this curve, from the very first
gas turbine engines designed by Von Ohain (1939) and Whittle
(1937) to more recent developments. Over this time span, there
has been a several-fold increase in efficiency. However, there
have also been very large increases in turbine inlet temperature.

One of the critical turbine components of hot gas path in
gas turbine is the set of first-stage blades mounted on the rotor
in the turbine section, as shown in Figure 1 and in Section 4 of
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Figure 1. Cutaway view of typical industrial gas turbine engine (obtained from Britannica Encyclopedia, 1999).

Figure 2. Historical trend of improving the core performance by increasing turbine rotor inlet temperature (Koff 1991; Reprinted with
permission of the AIAA)
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Figure 3. Turbine blades, in general, are subjected to high cen-
trifugal forces due to their rotary motion and are vulnerable to
high instances of failure compared to other turbine components
in the hot gas path. Increasing the TIT is the primary contributor
to creating the harsh operating environment for these critical
components. In addition, as the TIT increases, the heat trans-
ferred to the turbine blade material also increases the probability
of blade failure due to thermal stresses, load on the blades and
ceramic thermal barrier coating that protects the blades.

In an effort to achieve the high levels of blade durability, the
effective cooling of gas turbine components has received
increasing attention in recent years. This has caused the rapid
development of various methods to protect the gas turbine com-
ponents. One such method is to cool these components using
the highly-pressurized, compressed air of the mainstream flow
that is diverted prior to the combustor section of the engine
[3–5]. In essence, the turbine components in the hot gas path
are cooled by a fraction of the compressed air (i.e., a secondary
air flow) that is extracted by a cooling supply system from the
compressor section of the engine (indicated by the dotted
arrows in Figure 4). This secondary air flow of relatively cold
and compressed air is called coolant, or cooling air. It is

important to note that this extraction can reduce the thermal
efficiency and power output of the turbine engine.

Figure 5 shows cooling techniques commonly used for first-
stage turbine blades with three major internal cooling zones –
the leading edge (Zone 1), pressure and suction surfaces (Zone
2), and the blade tip region (Zone 3). The leading edge is cooled
by both jet impingement and film cooling. The middle portion
of the blade is cooled by serpentine rib-roughened internal cool-
ing passages. The rib-roughened internal cooling passages
cause turbulence in the coolant as the coolant passes over and
around the ribs (or turbulators). The turbulent air removes a
fraction of the heat conducted in Zone 2 from the blade (see
Figure 5). The cooling air exits through the cooling holes in
Zones 1, 2 and 3 forming a thin, cool, insulating blanket along
the external surface of the turbine blade. The cooling effective-
ness (/) of these turbine blade cooling techniques depends on
two parameters – the mass flow rate ( _m) and the flow velocity
(u) of the coolant. These two parameters greatly depend on the
rib configuration in the serpentine internal cooling passages.

The mass flow rate _m of the coolant is usually measured as
a percentage of the mainstream flow. Figure 6 shows that cool-
ing effectiveness increases rapidly with a small percentage of
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Figure 3. Sectional view of an industrial power plant gas turbine (Courtesy of Siemens).
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Figure 4. Schematic drawing of a gas turbine cooling supply system.
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coolant, but then the growth of the cooling effectiveness slows.
To increase further cooling, a large amount of cooling air and/or
different cooling techniques must be used. Since the cooling air
is extracted from the compressor section of the engine, it repre-
sents a direct loss of engine efficiency due to a reduced amount
of mainstream flow [2]. Figure 6 also shows that improvement
in blade design can significantly increase the cooling effective-
ness of the coolant at the same percentage of coolant flow.
Despite the recent developments in internal cooling system
technology, it is difficult to cool the blades significantly beyond
an average cooling effectiveness of 0.50 (as shown in Figure 6).
Thus, there is a need to explore further cooling passage config-
urations that directly impact a blade’s cooling effectiveness.

This research investigation focuses on optimizing the
design configuration of the internal cooling passage of a turbine
blade in order to enhance the cooling so that the desired cooling
effectiveness is achieved. In general, the relationship among
most of the critical components and internal subsystems in
gas turbines are complicated, and the performance objectives
of the turbine engine sometimes conflict. For example, the effi-
ciency of gas turbines increases as TIT increases. However,
operating at high temperatures decreases the life of the gas tur-
bine engine and increases its operating costs. These conflicting
objectives necessitate turbine blade design decisions that must
consider trade-offs between the objectives. The optimization
of the design configuration of the blade internal cooling passage

ZONE 1

ZONE 3

ZONE 2

ZONE 1: Leading Edge
ZONE 2: Suction and Pressure side
ZONE 3: Blade Tip

Figure 5. The schematic of a modern gas turbine blade with common cooling techniques [4].

Figure 6. Cooling effectiveness of different blade cooling design vs. cooling air flow (Moustapha et al. [2]).
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gives rise to a multiobjective design optimization problem,
where the two conflicting objectives are to: (1) maximize the
cooling effectiveness, represented by the surrogate term heat
transfer coefficient (h), to increase the blade life and reliability
of the engine, and (2) minimize the pressure drop (Dp) in the
cooling passage. The minimization of the pressure drop is
important in that, enough pressure must be retained in the cool-
ing passage for satisfactory ejection of the coolant flow. If there
is insufficient pressure in the cooling air flow, the exit velocity
of the coolant will be lower than that of the mainstream flow,
and it will disturb the mainstream air flow. This disturbance
is called mixing loss and can contribute to the loss of engine
efficiency. Thus, minimization of pressure drop inside the cool-
ing passage is an important objective for designers to consider.

2 Previous related literature

Over the last 50 years, there is a wide array of existing
research concerning gas turbine blade cooling techniques.
Researchers use analytical, computational and experimental
methods to improve cooling techniques for gas turbine. Recent
monographs focusing entirely on the gas turbine heat transfer
and associated cooling technology is provided by Han et al.
[3, 4] and Goldstein [6]. The use of multiobjective optimization
in heat transfer problems is a relatively new area of focus and
has been the point of interest only in recent years. In particular,
the last few years have seen a sharp increase of heat transfer
related optimization using evolutionary algorithms (EAs).
Gosselin et al. [7] review multiobjective optimization using
genetic algorithms, the more popular representative of the fam-
ily of EAs, in heat transfer problems.

One of the well-known methods to improve the heat trans-
fer (i.e., enhance material cooling) in a flow passage is to
roughen the surfaces with turbulators (called ribs) in the blade’s
internal cooling passages so that the surface area increases and
enhances cooling. Gas turbine researchers study different
design configurations of ribs in blade internal cooling passages
to enhance the cooling process [8]. However, the use of rib tur-
bulators poses other risks such as a decrease in coolant air flow
pressure and a decrease in the velocity of coolant flow. Thus, a
design optimization process capable of addressing multiple
design objectives simultaneously can be a suitable tool in such
conditions. The application of multiobjective design optimiza-
tion to internal cooling passages not only helps enhance the
blade cooling, but it can eventually be used in other areas such
as heat exchanger/heat sink design, where cooling passages
need to be optimized.

The optimization of cooling passage is extensively studied
by Kim and Kim [9], who consider the optimization of internal
cooling passages with straight rectangular ribs [10], V-shaped
ribs [11] and the angle of the ribs [13]. They identify the values
of geometric design variables with the objective function
defined as a linear function of heat transfer coefficient and fric-
tion drag coefficient (pressure drop). They suggest that using a
numerical approach presents a reliable way of designing opti-
mized heat transfer surfaces. It is important to note that the
two objectives considered in their study are heat transfer coef-
ficient and pressure drop. However, these two objectives are

combined to form a composite function using a vector of
weights. The selection of the weights is based on designer’s
experience, which could lead to errors in optimization if the fac-
tors are not carefully selected.

In summary, due to the complex nature of the flow and heat
transfer phenomena involved in cooling passage design, only
few attempts have been made in applying multiobjective opti-
mization techniques to the design of turbine blade cooling pas-
sages. The limited studies consider two objective functions and
convert the two objectives to a single composite objective func-
tion. However, no existing research simultaneously considers
two objectives independently to optimize the design. The pres-
ent work investigates a multiobjective design optimization
method integrating evolutionary algorithms and numerical sim-
ulation to find a set of Pareto optima for the rib design in the
internal cooling passage of the blade.

3 Proposed multiobjective design optimization
framework

The overall goal of this research is to investigate and pro-
pose an approach that optimizes the gas turbine blade internal
cooling channel design to enhance turbulent convective heat
transfer while considering multiple design objectives simulta-
neously. The specific objectives of this research are to: (1)
design a multiobjective procedure for the heat transfer optimiza-
tion problem; (2) integrate a commercially-available simulation
package used to build computational fluid dynamics (CFD)
models for the analysis of the flow field and associated heat
transfer of different design configurations of gas turbine blade
cooling channels; and (3) automate the design optimization
framework. Further the specific tasks aim of this research is
to automate the process of finding the rib design for the cooling
passage of a gas turbine blade that simultaneously maximizes
the cooling effectiveness (i.e., the heat transfer coefficient h)
increasing the blade life and reliability of the engine, and min-
imizes the pressure drop Dp increasing the engine efficiency.
Due to symmetric nature of cooling passage and also to mini-
mize the computational effort, only a periodic segment of cool-
ing passage is selected in this study. Furthermore, this segment
is simplified to a two-dimensional geometry with ribs on the
bottom and top walls, as shown in Figure 7. It is the position
and the shape of these ribs along the two walls that are to be
optimized. The shape of the ribs depends on critical design vari-
ables. The radii (R1 and R2) of ribs 1 and 2 (in the periodic seg-
ment), and fillet radii (R3, R4, R5 and R6) between ribs and wall
surface are considered as critical design variables that influence
the values of objectives. Ribs induce separation and reattach-
ment of flow to enhance the heat transfer by creating turbulent
mixing. The heat transfer is greater at the reattachment loca-
tions, but it is low at the locations where flow separation takes
place due to ribs. The flow separation and reattachment phe-
nomenon is influenced by radii of the ribs.

The increase in radii R1 and R2 increases size of the ribs,
surface area and turbulent mixing inside the cooling channel
to enhance the heat transfer from blade to cooling air flow.
However, an increase in rib size increases the drop in air flow
pressure. Fillet radii decreases pressure drop and at the same
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Figure 7. Selection of 2D periodic segment of the gas turbine blade cooling passage and design variables.
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time increases heat transfer rate by creating smooth surface con-
tact between ribs and blade wall (refer to Figure 7 for an
enlarged view of cooling channel ribs and fillets). Therefore,
variations in these specifications can change the heat transfer
coefficient h, and the pressure drop Dp.

The proposed optimization conceptual framework for gas
turbine blade internal cooling passage design optimization is
illustrated in Figure 8. In general, the framework is comprised
mainly of an optimizer component and an evaluation compo-
nent. The optimizer component iteratively generates multiple
candidate rib configuration designs. Evaluation of the candidate
designs are performed using numerical simulation, and the sim-
ulation can be viewed as a black box with: (1) an input interface
that accepts and translates new design specifications and (2) an
output interface that communicates objective function values to
the optimizer component. The simulation component in this
research uses computational fluid dynamics (CFD) numerical
simulation. Based on the candidate design evaluation results,
the optimizer utilizes these results to generate the next set of
candidate designs through the perturbation of the evaluated
designs. This cycle continues until the termination criteria are
met. The next sections provide more details of the main design
optimization procedure components therein.

3.1 Solution evaluation component

For the specific design problem under study, the solution
evaluation component or simulator evaluates the objective func-
tion values, heat transfer coefficient h and pressure drop Dp for

a set of candidate design variable values generated by opti-
mizer. In the present study, the radii (R1 and R2) of ribs 1
and 2, and fillet radii (R3, R4, R5 and R6) between ribs and wall
surface are considered as critical design variables (refer to
Figure 7). To obtain the objective function values for a given
rib configuration, the coolant flow and heat transfer problem
is solved for the periodic segment by numerical simulation.
To solve the turbulent flow and heat transfer problem and to
obtain the values for the objective functions, four main steps
are performed: (1) generate computational model of 2D peri-
odic segment of cooling channel using design variable values,
(2) generate the mesh, (3) enforce the initial and boundary con-
ditions for the geometric model and (4) solve flow and heat
transfer governing equations. Figure 9 shows a pictorial view
of process involved while solving a computational model for
objective functions.

3.2 Optimizer component

Evolutionary Algorithms (EAs) are appropriate choice for
solving multiobjective optimization problems. The dramatic
increase in computational power and at the same time decrease
in computational cost showing upward trend of using EAs to
solve multiobjective optimization problems [12]. EAs are pop-
ulation-based optimization algorithms capable of finding multi-
ple solutions in its final population that optimizes each objective
simultaneously. Briefly, an EA-based optimization process
starts with a randomly-generated initial population of size N
individual solutions. The representation of the individual

Set of Input Data :{ Periodic Segment 
Dimensions, Boundary Conditions, Objective 
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Optimizing Procedure Control Values} 
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Figure 8. Overview of the proposed framework for mechanical component multiobjective design optimization.
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solution is given by binary strings, where each string is the bin-
ary representation of design variable values. Each set of binary
strings in the population of individuals is evaluated using the
simulator to find the corresponding fitness value (i.e., objective
function value). A new population of individuals is created
using three genetic operators: reproduction, crossover and
mutation. The new population of individuals is then passed to
the Simulation component for evaluation. This procedure con-
tinues to cycle until a termination criterion is met (in this study,
a maximum number of iterations, called generations). The elitist

Non-Dominated Sorting Genetic Algorithm II (NSGA II) pro-
posed by Deb et al. [14], is currently one of the most popular
EAs used to solve complex and real-world multiobjective opti-
mization problems. Some of the salient features of NSGA II are
its fast elitist sorting method that involves a combined pool of
both the parent and child populations and provides diverse pop-
ulation using an autonomous crowding distance method. NSGA
II introduces elitism by comparing the current population of
candidate solutions with the previously found best nondominat-
ed solutions. In NSGA II, the selection procedure uses two

(a)  Initial model (b)  Meshed  model 

Inlet flow (Air) 
Velocity u 
Temperature (Ti)

Constant Temperature (Tw) 

Constant Temperature (Tw) 

Convective Heat Flux
Pressure (P)

Rib 1 

Rib 2 

(c)  Model after with boundary and initial conditions 

(d)  A solved model of temperature distribution

Figure 9. Pictorial overview of the steps involved in solving computational model for objective function values.

8 N.R. Nagaiah and C.D. Geiger: Int. J. Simul. Multisci. Des. Optim. 2014, 5, A22



processes: (1) Nondominated ranking and (2) crowding dis-
tance assignment. Figure 10 shows process flowchart for
NSGA II for better understanding of the crowding distance
and nondomination rank assignment process. A more detailed
description about evolutionary algorithms and NSGA II can
be found in Deb et al. [14, 15].

3.2.1 Reproduction (or selection) operator

The primary objective of the reproduction operator is to
copy the better performing candidate solutions and discard
the poor performing solutions in the population, while main-
taining the population size. This is achieved by performing
the following tasks:

d Identify the better performing solutions in a population
based on their fitness values.

d Make multiple copies of the better performing solutions
to create the mating pool.

d Discard poor performing solutions from the population so
that the copies of the better performing solutions can be
placed in the population.

3.2.2 The crossover operator

A crossover operator, also referred to as the recombination
operator, is applied next to the candidate solutions of the mating
pool. The crossover operator exchanges information between
selected solution pairs (called parent solutions) with a probabil-
ity of occurrence c. The simulated binary crossover (referred to
in the literature as SBX) operator introduced by Deb and
Agarwal [16] is performed in this algorithm.

3.2.3 The mutation operator

The crossover operator is primarily responsible for the
intensification of the search and the mutation operator allows
for diversification of the search to prevent the search process
from becoming trapped at a local optimum. After crossover,
the newly-generated solutions undergo a mutation operation,
where operator changes a 1 to 0, and vice versa, with a mutation
probability of occurrence m. The polynomial mutation operator
introduced by Deb and Goyal [17] is employed by NSGA II in
which the probability distribution is polynomial.

Start 

Initialize population 
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Front = 1

Is 
population
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Selection/ 
Reproduction 

Crossover

Mutation

Gen < 
Genmax

Stop 

Identify 
Nondominated

individuals
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Front = Front + 1

No

Yes 
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Figure 10. A flowchart of the working logic of NSGA II.
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4 Optimization and results

In this research, the four steps of solution evaluation are
performed using numerical Multiphysics modeling and simula-
tion software COMSOL. In addition, the Non-dominated Sort-
ing Genetic Algorithm II (NSGA II) proposed by Deb et al.
[14] is used as the optimizer component. However, the impetus
and success of this research investigation is not necessarily
predicated upon using these specific approaches.

4.1 Design variables and input parameters

Recall that six design variables R1 and R2 (radii of Ribs 1
and 2, respectively) and fillet radii R3, R4, R5, and R6 are con-
sidered in this research investigation. Thus, results show only
2D rib shapes based on the radii of the ribs and fillet radii of
the ribs in the cooling channel. Various parameters and vari-
ables are used in both the COMSOL numerical simulation
and NSGA II. The parameters and range of initial values of
the variables are now summarized. In COMSOL, the computa-
tional domain is selected and defined (Figure 11). The value
ranges of the design variables R1 through R6 are given in
Table 1. These ranges are approximated based on experimental
results by Han et al. [3]. Next, Flow Physics is used to reflect
the realistic conditions of internal cooling passage flow to cor-
rectly simulate the characteristics of the fluid flow. Here, com-
pressed air (coolant) with non-isothermal and turbulent flow
physics is used. Table 2 shows the material properties (density,
dynamic viscosity) of air at atmospheric temperature and pres-
sure, and these properties are imposed through the Graphical
User Interface (GUI) of COMSOL. For simplicity the inlet
boundary conditions are assumed to be constant boundary con-
ditions. This study did not considered the effect on the inlet
boundary conditions due to the change in ribs configuration
at each simulation.

Table 3 summarizes initial boundary conditions used to
solve objective functions in the COMSOL simulation environ-
ment. The cooling channel Inlet Flow (Condition 1) is subjected

to a temperature (T) and velocity (u) to create necessary turbu-
lence in the flow. Conditions 2 and 3 are wall boundaries, where
fluid velocity is zero, and it is maintained at constant tempera-
ture, larger than that of the coolant. At the Outlet Flow Condi-
tion 4 indicating fluid departure, typically a relative pressure
and convective heat flux is imposed. The boundary conditions
are used as initial conditions to solve the governing equations
iteratively to predict approximate fluid flow and heat transfer
properties inside the cooling passage.

A pilot study has been conducted to determine the effect of
evolutionary algorithms control parameters on different prob-
lems. Table 4 lists suggested MOEA control parameters used
in this research investigation. The population size, N, is the
number of candidate design solutions at each generation. A
small population size can limit the capability of exploration
of the search space and inhibits the purpose of crossover oper-
ations. Conversely, use of large population size can be compu-
tationally-expensive. For this study, a population size of N = 50
is used. The maximum number of generations, Genmax, denotes

Rib1 

Rib2 

R1

R5 R6

R4
R3

R2

Inlet Flow 
(Condition 1)

Outlet Flow 
(Condition 4)

Top Wall (Condition 2) 

Bottom Wall (Condition 3) 

CO2

Figure 11. Cooling channel with design variables R1, R2, R3, R4, R5, and R6.

Table 1. Design variables and value ranges (meters).

Parameters Radius of rib 1 (R1) Radius of rib 2 (R2) Fillet radius (R3) Fillet radius (R4) Fillet radius (R5) Fillet radius (R6)

Lower bound 0.001 0.001 0.00001 0.00001 0.00001 0.00001
Upper bound 0.0055 0.0055 0.00004 0.00004 0.00004 0.00004

Table 2. Initial subdomain conditions used for the COMSOL
numerical simulation.

Fluid Properties

Coolant air Density (q) = 1.204 kg/m3

Dynamic viscosity l = 1.983 · 10�5 kg/m s

Table 3. Initial boundary conditions used for the CFD simulation.

Boundary Initial/boundary condition

Inlet flow (Condition 1) Temperature (T) = 293 K
Velocity (u) = 10 m/s;

Reynolds number (Re) = 20,000
Wall (Conditions 2 and 3) Temperature = 393 K

Thermal wall function
Outlet flow (Condition 4) Convective heat flux

Pressure (p) = 0
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the number of generations (i.e., iterations) when to terminate the
MOEA and to report the best set of design solutions so far.
From the pilot study it is observed that convergence of solutions
to optimal front at Genmax = 100 generations. In EAs, the cre-
ation of new solution is carried out by crossover operator. The
crossover probability, c, defines how often crossover is per-
formed. A low crossover probability decreases the speed of
convergence due to lower exploration rate. On the other hand,
a high probability may contribute to premature convergence. In
general, the recommended range of c is between 0.60 and 0.95.
Likewise, the mutation probability, m, denotes how often parts
of an individual solution undergoes random perturbations. It
introduces diversity into the population and should be a small
value to avoid the algorithm from becoming a random search.
In general, the recommended range of m is between 0 and
0.20. From the pilot study c = 0.90 (or, 90%) and m = 0.10
(or, 10%) shown better convergence rate.

4.2 Discussion of the results

The heat transfer coefficient h is computed and summed
along the top and bottom walls of periodic segment of the cool-
ing passage using the boundary integration method. Pressure
drop Dp is obtained by computing the difference between inlet
and outlet air flow pressures using the boundary integration
method. The optimization framework is executed for population
size N = 50 and maximum generations Genmax = 100
generations.

4.2.1 Single objective functions optimization

The goal in single objective optimization is to converge to
the (global) optimum. Single-objective problems either mini-
mize or maximize the objective function value depending upon
the problem type attempting to reach single optimum value. In
cooling channel design optimization, the heat transfer coeffi-
cient (h) is selected as an objective function because of its
importance in blade cooling. The objective here is to maximize
the value of h varying design variable values. The results of
optimization of h for 2, 4 and 6 design variables are presented
below.

Figure 12a shows graphical representation of single-
objective optimization results for two design variables. The y-
axis represents objective function, heat transfer coefficient (h),
which needs to be maximized, whereas the x-axis represents
number of generations (Genmax). The objective function (h)
value at each generation is average of 50 objective function val-
ues (Pop) in that generation and it is compared with highest

value of h in the same generation (Figure 12a). It is observed
that the convergence of objective function h to global optimal
value is linear and rapidly converge within the first few gener-
ations (five generations). In other words, the convergence rate
slows and remains almost constant after 5th generation. To save
computational time, one could stop the optimization process
just after the 5th generation and report results. The best value
of h found in this case is 15.4253 W/m2 K (over an average
of 50 design specifications in the population). Similarly, the ini-
tial h value is 13.3949 W/m2 K (over an average of 50 design
specifications in the population). As a result, a 15.15% increase
in heat transfer coefficient or cooling effectiveness (directly pro-
portional to HTC) is achieved.

Next from Figure 12b, it is evident that the convergence rate
in the case of four design variables is slow and appears to take
more generations than the two design variable problem. The
average global optimal value of h found in this case is
16.2793 W/m2 K (over an average of 50 design specifications
in the population). Similarly, the average initial h value is
13.7239 W/m2 K (over an average of 50 design specifications
in the population). A 18.62% increase in the heat transfer coef-
ficient is achieved. By introducing the fillet radii as design vari-
ables, the four design variable problem resulted in 5.53% more
cooling effectiveness than two design variable problem.

Similarly from Figure 12c, again it is evident that the con-
vergence rate in case of six design variables further slows down
compared to both the four and two design variable problem.
The average global optimal value of h found in this case is
17.8476 W/m2 K (over an average of 50 design specifications
in the population). Similarly, the average initial h value is
13.9687 W/m2 K (over an average of 50 design specifications
in the population). An average a 27.75% increase in heat trans-
fer coefficient is achieved. By introducing the additional fillet
radii as design variables, the six design variable problem results
in 15.70% more cooling effectiveness than the two design var-
iable problem and 9.63% more cooling effectiveness than the
four design variable problem.

4.2.2 Multiple (two) objective optimization

In the single-objective optimization problem, it is seen that
the solution converges to one solution. Therefore, one can eas-
ily chose the final design specifications to use without ambigu-
ity. But, when more than one objective functions are considered
simultaneously for optimization and a Pareto-based optimiza-
tion approach as proposed in this research, there exists a num-
ber of trade-off, or compromise, solutions. Without any further
information, no solution from the set of compromise solutions
can be said to be better than any other in the set. Thus, in mul-
tiobjective optimization, an effort must be made in finding the
set of trade-off optimal solutions by considering all objectives
to be equally important. Thus, it can be conjectured that there
are two goals in a multiobjective optimization. First, set of solu-
tions that is as close to the Pareto-optimal front as possible must
be identified. Second, the set of solutions must be as diverse as
possible. After a set of such trade-off solutions are found, a user
can then use higher-level preference information to make a
choice. The above such trade-off solutions are obtained a mul-
tiobjective optimization involves two search spaces instead of

Table 4. NSGA-II input control parameters.

MOEA parameters Parameter values

Population size (N) 50
Maximum generations

(Genmax)
100

Reproduction/selection Tournament selection (Rank & crowding
distance)

Crossover probability c = 0.90 (or, 90%)
Mutation probability m = 0.10 (or, 10%)
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one. In single-objective optimization, there is only one search
space – the decision variable space. However, in multiobjective
optimization, there exists an associated space called objective,
or criteria, space. Section below presents results of cooling
channel design considering two objectives – heat transfer coef-
ficient (h) and coolant pressure drop (Dp).

Figure 13 shows Pareto optimal frontier for two objectives
with two, four, and six design variables in Figures 13a, 13b, and
13c, respectively. For example, Figure 13a shows the initial
solution (Genmax = 0 generation) and the efficient frontier after
100 generations (Genmax = 100). The x-axis represents pressure
drop Dp, which is to be minimized. The y-axis represents heat
transfer coefficient h, which is to be maximized. Note that the
heat transfer coefficient objective function value is multiplied
by �1 to convert it to an objective for minimization by the
duality principle. After 100 generations, the solutions converge
to the true Pareto optimal front with diverse set of solutions.
The Pareto optimal front for the two objectives four design vari-
ables (Figure 13b) and two objectives six design variables
(Figure 13c) suggest that the solutions are not converging to
a smooth and uniform Pareto frontier as shown in the two-

variable case. This is because the solution space of the problem
increases exponentially with the increase in the number of deci-
sion variables. Therefore, more search iterations (i.e., genera-
tions) with an efficient search strategy (i.e., fine-tuning the
search control parameters such as crossover c and mutation
m) is required to explore more promising regions.

The interpretation of the turbine blade cooling passage
designs along the Pareto front can be seen in Figure 14, which
is the set of Pareto optima at N = 50 and Genmax = 100.
Figure 14 highlights three of the 50 design solutions along
the Pareto frontier. Each of the three highlighted design solu-
tions is shown with its corresponding temperature distribution
color plot image of the periodic segment of the blade internal
cooling passage. At the entrance (the left side boundary) of each
plot, an inlet temperature of the coolant is applied. The top and
bottom wall surfaces are maintained at a constant temperature.
From the color plot, it can be concluded that the temperature of
the incoming cool air (dark blue) increases because it is picking
up heat from the surfaces (i.e., top and bottom) because of the
turbulence caused by the ribs while flowing through the cooling
passage. In Figure 14, it can be seen that tradeoff Solution 1

a)   Single objective and two design variables b)  Single objective and four design variables 

c)   Single objective and six design variables 

Initial value =-13.96 W/m2K

Initial value =-13.72 W/m2KInitial value =-13.39 W/m2K

Figure 12. Convergence behavior of single objective to the (global) optimum.

12 N.R. Nagaiah and C.D. Geiger: Int. J. Simul. Multisci. Des. Optim. 2014, 5, A22



(Design 1) has smaller rib radii seen in the temperature distribu-
tion color plot image. The values of the radii R1 and R2 design
variables are given in the inside table (for illustration purpose
two main design variables rib radii R1 and R2 selected here).
Solution 1 has minimal pressure drop (Dp = 0.1485 N/m2)
and a low heat transfer coefficient (h = 11.09 W/m2 K). The
temperature distribution color plot image for tradeoff Solution
3 (Design 3) shows larger ribs with a high pressure drop
(Dp = 0.5783 N/m2) and a high heat transfer coefficient
(h = 15.42 W/m2 K). The tradeoff Solution 2 (Design 2) shows
a combination of large and small ribs with moderate pressure
drop (Dp = 0.295 N/m2) and heat transfer coefficient
(h = 13.82 W/m2 K).

5 Summary and future work

The main objective of this research is to propose a multiob-
jective design optimization for mechanical component design,
specifically gas turbine blade internal cooling passages. The
proposed optimization framework is built by integrating multi-
objective evolutionary algorithms and computational fluid
dynamics numerical simulation. In this study, the MOEA
NSGA-II and the multiphysics numerical simulation software
COMSOL is used. The results from the proposed multiobjec-
tive design optimization show the promise of the proposed
approach to be used for the automated optimization of the rib
designs inside a 2D cooling channel of a gas turbine blade.

(a) Two objective and two design variables (left) Initial solutions Genmax= 0, (right) Pareto optimal frontier after Gen
max

= 100

(b) Two objective and four design variables (left) Initial solutions Genmax= 0, (right) Pareto optimal frontier after Genmax= 100

(c) Two objective and six design variables (left) Initial solutions Genmax= 0, (right) Pareto optimal frontier after Genmax= 100

Figure 13. Pareto optimal frontier for two objectives at the initial generation and at Genmax = 100 generations.
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Even further, this research shows the promise of the proposed
simulation multiobjective optimization approach to any
mechanical component design optimization process.

The proposed approach is demonstrated for a 2D geometry
with up to six design variables and two objectives considered.
The next steps of this research effort include an enhancement
on the work described in this paper. First, a third, relevant
and very practical objective will be considered – the minimiza-
tion of the material consumption in cooling passage design and
blade manufacturing. Material consumption is a surrogate for
material cost. Second, additional design variables that allow
for more complex rib design geometries will be introduced.
Finally, an intelligent approach to cluster Pareto optimal solu-
tions can aid a decision-maker in reducing the design options
thereby reducing the time to identify the best design option that
satisfies the designer preferences.
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Design 1 Design 2 Design 3

R1 0.001 0.001218 0.005493 

R2 0.001 0.00437 0.0055 

Δp 0.1485 0.2955 0.5783 

h –11.09 –13.82 –15.42 

Design 1 

Design 2 

Design 3 

Design 2

Design 3

Design 1

Figure 14. Specifications of gas turbine blade internal cooling channel ribs for three selected design solutions after 100 generations.
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