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Introduction

ATLAS (A Toroidal LHC ApparatuS) [2] is a general purpose detector presently under
construction. It will operate on the proton–proton collider, the Large Hadron Collider
(LHC) [1], that will be installed in the LEP tunnel at CERN. LHC will provide a 14 TeV
center of mass energy collision at a luminosity up to L ' 1034 cm−2s−1, with a bunch
crossing frequency of 40 MHz.

ATLAS is a multi–purpose detector, with a large discovery potential for new physics
such as Higgs bosons and Supersymmetric particles (SUSY) [5]. In most of these channels
a crucial role in energy and position reconstruction of electrons and photons is played by
the electromagnetic calorimeter (EMC). This is the case for example in the decay channels
of the Standard Model (SM) Higgs boson H → γγ and H → e+e−e+e−.

The LHC experimental framework will impose severe constraints on the detectors
in term of spatial coverage, response speed, radiation tolerance, background rejection
capability, noise handing and time stability. The ATLAS EMC is a lead–liquid Argon
(LAr) sampling calorimeter with an accordion geometry: this particular structure
guarantees the full azimuthal coverage, while the LAr used as ionizing medium is
intrinsically radiation tolerant and has a sensitivity that does not degrade in time. The
system is provided with a fast readout that can cope with the LHC rate, and has been
optimized to minimize the noise contributions coming from both electronics and pile–up.
Each readout cell of the EMC can be calibrated with an embedded electronic system, that
will be complemented at the LHC with a physics–based procedure.

It has been shown [3] that a relevant contribution to the performances of the
EMC comes from the precision achievable by the calibration procedure and the signal
reconstruction technique. The work of this thesis has been devoted to the study,
development and optimization of the algorithms of energy reconstruction and calibration
of the EMC.

A deep study of the electrical characteristics of the detector and of the signals formation
and propagation is conduced: an electrical model of the detector is developed and analyzed
through simulations; a hardware model (mock–up) of a group of the EMC readout cells
has been built, allowing the direct collection and properties study of the signals emerging
from the EMC cells.

We study the existing multiple–sampled signal reconstruction strategy, namely the one
used for the energy reconstruction of the EMC barrel prototype module data of 2000 test–
beam. By comparing the results with the mock–up observations and the model simulations,
we show the need of an improvement in order to reach the needed performances in terms
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of energy resolution and response uniformity.
The optimal filtering (OF) technique is studied and implemented, taking into account

the differences between the ionization and calibration waveforms as emerging from the
mock–up analysis. A new calibration procedure that does not need any informations from
the ionization signals as collected from the physics events in the EMC is proposed; its
feasibility is investigated and discussed.

An energy weighting technique is proposed to improve the EMC resolution and
uniformity by recovering the energy lost by the developing electromagnetic shower in
the upstream material and because of longitudinal leakage.

The signal reconstruction and calibration procedures, together with the energy
weighting technique, are extensively applied to the EMC production modules test–beam
data of 2001 and 2002. Results, future improvements and the application to the full
ATLAS experimental framework are discussed.

Outline of the work

The LHC operating conditions and the ATLAS detector characteristics are reviewed in
Chapter 1. Therein a short summary of the ATLAS physics program is given. The physics
requirements on the EMC performances are discussed, mainly as driven by the Standard
Model Higgs boson search. The EMC characteristics and operating features are discussed
in Chapter 2.

In Chapter 3 we describe the results from the analysis of the ionization and calibration
signal formation and propagation through the EMC cells and readout chain. The multiple–
sampled signal reconstruction techniques are discussed in Chapter 4, together with the
connected electronics calibration strategies. The new calibration and signal reconstruction
procedure is developed and discussed in Chapter 5. The energy weighting technique is
exposed in Chapter 6. Results from extensive test–beam data analysis are presented and
discussed in Chapter 7.
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Chapter 1

The ATLAS detector at the LHC

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1] is presently under construction, and will start
operation in 2007. It will be installed at CERN (European Center for the Nuclear Research,
Geneva, Switzerland) in the existing 27 km tunnel formerly used for LEP (Large Electron–
Positron collider, Figure 1.1). LHC will provide 14 TeV center–of–mass energy proton–
proton (pp) collisions, at a luminosity up to 1034 cm−2s−1 with a bunch crossing frequency
of 40 MHz. LHC will be also capable to produce heavy ions (e.g. Pb–Pb) collisions.

Four large–scale experiments will operate at LHC. ATLAS and CMS are general–
purpose experiments, with a wide physics program; LHCb is devoted to the physics of B-
hadrons and to the study of the CP violation; ALICE is a dedicated heavy–ions experiment,
that will study the behavior of the nuclear matter at very high energies and densities.

The LHC physics program is broad and ambitious. The strong physics motivations that
support the building of such an unprecedented collider machine can be briefly summarized
as follows:

• Search for the Standard Model (SM) Higgs boson [13], that is predicted to be the
responsible of the origin of the particle masses through the mechanism of spontaneous
breaking of the electro–weak symmetry.

• Look for the physics beyond the SM, that for several reasons cannot be expected to
be the ultimate theory of particles interactions [14, 15, 16].

• Perform precision measurements of the properties of the known particles, in order
both to refine the present values and to search signals of new physics in unexpected
deviations from the SM predictions [17].

1.1.1 Proton–proton collisions characteristics

Two operation phases are foreseen for LHC: in the first years the accelerator will provide
a instantaneous luminosity of L ' 1033 cm−2s−1 (“low” luminosity phase); the nominal
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Figure 1.1: Layout of CERN LEP tunnel, including the future LHC infrastructures.

LHC parameter nominal value

beam energy 7 TeV
beam energy at injection 450 GeV
nominal luminosity 1034 cm−2cm−1

luminosity life time 10 hours
beam life time 22 hours
number of bunches 2835
proton (p) per bunch 1011

bunch spacing 25 ns (7.5 m)
p current intensity 0.54 A
beam total energy 334 MJ
energy loss per tour 6.7 keV

Table 1.1: Main LHC parameters
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luminosity L ' 1034 cm−2s−1 will be reached later (“high” luminosity phase). The nominal
pp luminosity and center–of–mass will allow searches for new particles up to masses of
∼ 5 TeV. Details on the LHC machine parameters can be found in Table 1.1 [1].

In one year (1 “year” run time ' 107 s) of running at high luminosity LHC will provide
an integrated luminosity of:

L =

∫

107s
Ldt ' 100 fb−1 (1.1)

The total inelastic pp cross–section at
√

s = 14 TeV is σtot
pp ∼ 80 mb. The LHC event rate

R at high luminosity is then expected to be:

R = σtot
pp ×L = 80mb × 1034 cm−2s−1 ' 109s−1 (1.2)

These events belong to two different classes:

• “minimum bias events”: they comes from long–range interactions of the incoming
protons, in which the momentum transfer is small (“soft” collisions). They
represent the majority of the pp collisions, their effective total cross section being
σtot

m.b. ∼ 70 mb. The study of these interactions is not foreseen in the LHC
experiments physics programs. The final state products of these interactions have
small transverse momentum relative to the beam line (〈pT 〉 ' 500 MeV): most of
them escape down the beam pipe. The produced particles with pT high enough
to enter the active region of the detectors give rise to the pile–up phenomenon
(Section 1.1.2).

• “hard scattering events”: they come from short–range interactions of the incoming
protons. In these cases the head–on collisions between the partons constituting the
protons are characterized by an high momentum transfer. Particles in the final state
are produced at high angles with respect to the beam line (high pT ), and massive
particles can be created. These are the physics events that will be recorded and
studied; they are “rare” with respect to the soft interactions [5].

1.1.2 LHC experimental challenges

The LHC experimental framework will be highly demanding. The LHC detectors have to
face severe constrains, most of them related to the machine bunch crossing frequency
(response speed), luminosity (pile–up, radiation level), and to the physics of the pp
collisions (background rejection capability).

Pile–up

The LHC protons are grouped in bunches of ∼ 1011, colliding at each interaction point
every 25 ns. According to the interaction rate at high luminosity (equation 1.2), on average
25 minimum bias events (soft interactions) will occur simultaneously every bunch crossing.
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These interactions will produce ∼ 700 charged particles in the detectors pseudorapidity1

region |η| < 2.5. Each time a high pT event is produced, ∼25 additional soft events will
overlap to the interesting one (pile–up).

The pile–up is one of the most difficult challenges for the LHC detectors design. In order
to minimize the pile–up impact on the physics events detection, the LHC sub-detector use
different techniques. In general, their response must be fast, in order to avoid to integrate
over more that one or two bunch crossings. This implies also a fast readout electronics.
In addition, a fine granularity would minimize the probability that the pile–up particles
cross the same region of the detector as the interesting object.

In case the sub–detectors response cannot be sped up to 25–50 ns, such in the case
of the ATLAS LAr EMC, different technique of signal shaping and reconstruction has
been developed, in order to be able to treat the pile–up events as a kind of noise that
superimposes to the interesting physics signal (see Chapter 2 and Appendix B).

Radiation levels

The high flux of particles coming from the pp collisions represents an unavoidable source
of radiation for the LHC detectors, that for this reason must be radiation resistant. The
radiation level to stand will be different according to the sub–detector position with respect
to the interaction point As an example, in the forward calorimeters the particles flux,
integrated over 10 years of operations, will amount up to 1017 neutrons cm−2 and up to
107 Gy of absorbed energy.

The ATLAS electromagnetic calorimeter, to which this work is dedicated, will receive
less than 1013 neutrons cm−2 and ∼200 Gy in 10 years at high luminosity in the worst
place of the electronics [3].

QCD background

Being LHC an hadronic collider, the rate of high pT events is dominated by QCD jets
production, that is a strong process and has a large cross section. On the other hand,
the most interesting physics processes are rare: indeed there is no hope to detect a rare
object (e.g. the SM Higgs boson) decay into jets. Because of this reason, the main LHC
physics searches will be conducted looking for rare decay channels [5]. The detectors
performances must be optimized both for the background rejection and for dealing with
such rare–channels detection.

1.2 The ATLAS Detector

ATLAS [2] (A Toroidal LHC ApparatuS, Figure 1.2) is one of the two LHC general–
purpose detector presently under construction. It is designed to be a typical collider
multi–purpose detector, with a large discovery potential for new physics such as Higgs
bosons and SuperSymmetric particles (SUSY) [5].

1The pseudorapidity is defined as η = − log(tan( θ
2
)), where θ is the polar angle referred to beam

direction at the detector interaction point.
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1.2 – The ATLAS Detector

Figure 1.2: Tridimensional cut–away of the full ATLAS detector.

Among the LHC general–purpose experiments, different design philosophies have been
adopted by the collaborations. The ATLAS detector uses a very large air–core toroid
for the muon spectrometer. The electromagnetic calorimetry is based on the lead–liquid
Argon sampling technology. The hadronic calorimetry uses an iron–scintillator detector in
the barrel, and again the liquid–Argon technology in the end–caps. Integrated in the barrel
electromagnetic cryostat, a superconducting coil solenoid provides a 2 T magnetic field for
the inner detector. The inner tracking system is based on semiconductor detectors in the
innermost part, and on straw tubes in the outer one. The philosophy that lyes underneath
the ATLAS sub–detectors design can be summarized as follows:

• very good electromagnetic calorimetry, for e and γ identification and measurement;
maximal ermeticity of the full calorimetry system for very accurate missing
transverse momentum pmiss

T measurements and jets identification;

• efficient tracking system at high luminosity, for high pT leptons measurements, and
full event reconstruction capability at low luminosity.

• high–precision muon spectrometer, with the capability to perform accurate measures
at the highest luminosity in stand–alone mode (i.e. without seeds from the inner
tracking system).
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Chapter 1 – The ATLAS detector at the LHC

1.2.1 Inner Detector

The Inner Detector (ID) system [6] covers the acceptance range |η| < 2.5, matching that
of the rest of the ATLAS sub–detectors for precision physics [5]. The ID, thanks to the
tracks bending provided by the solenoid magnet (Section 1.2.4), is responsible to measure
the momentum of the charged particles coming from the interaction point. Together with
the electromagnetic calorimeter, it provides the identification of electrons and photons. At
low luminosity it allows the secondary vertex reconstruction in case of decay of τ leptons
or b–flavored hadrons.

Forward SCT

Barrel SCT

TRT

Pixel Detectors

Figure 1.3: Tridimensional cut–away view of the ATLAS inner detector system.

The ATLAS ID tracking system (Figure 1.3) is composed of three different sub–
detectors layers:

• The Pixel Detector (PD) [7] is located in a range between 4 and 22 cm from the
beam line. It is based on the detection of the charge deposited by the crossing ionizing
particle in a finely segmented silicon detector. The PD is composed of 3 different
layers, located at increasing radii and designed to give 3 space points per track.
The first pixel layer (“b–layer”), located at 4 cm from the interaction point, gives a
substantial contribution to the secondary vertex measurements, and is designed to be
replaceable due to the very hostile environment. At |η < 0.25| the pixels transverse
impact parameter resolution can be parametrized as σ(d0) = (11 + 60/pT )µm when
the dedicated b–physics layer is present, the longitudinal impact parameter resolution
as σ(z0) = (70 + 100/pT )µm [7].

• The SemiConductor Tracker (SCT) system follows the PD up to 56 cm from
the beam line, and is again based on the silicon technique. The barrel SCT uses 4
layers of micro-strips to provide precision points in space.

• the Transition Radiation Tracker (TRT) is based on the use of straw tubes that
can operate at very high rate. The use of Xe gas provides the TRT with electrons
identification capability, that is exploited by the detection of the transition–radiation
photons coming from polypropylene radiators located between the straws.
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Hadronic Tile
Calorimeters

EM Accordion
Calorimeters

Hadronic LAr End Cap
Calorimeters

Forward LAr
Calorimeters

Figure 1.4: Tridimensional cut–away view of the ATLAS calorimetry system.

1.2.2 Calorimetry

A crucial role in the LHC experiments will be played by the calorimeters. They will
be responsible to measure photons, electrons, isolated hadrons and jets, as well as the
missing transverse energy. Furthermore, the calorimetric informations will be used by the
first level trigger to discriminate if an occurring physics event is interesting or is to be
rejected (Section 1.2.5). In association with the ID, the calorimetry system will be used
to identify electrons and photons.

Because of the LHC operating conditions, fast detectors response and fine granularity
are required to minimize the pile–up effect, together with high radiation resistance. Using
different techniques the ATLAS calorimeters cover the range |η < 5| (Figure 1.4). The
coverage and granularity of the ATLAS calorimeters are listed in Table 1.2.

The electromagnetic calorimeter (EMC) is a lead–liquid Argon (LAr) sampling
calorimeter [3], consisting in one barrel and two end–caps detectors covering the region
|η| < 3.2. Being the main subject of this work, Chapter 2 is dedicated to a detailed
discussion of its main characteristics.

The tile hadronic calorimeter (TILECAL) [8] consists of one barrel and two
extended–barrel cylinders that cover the region |η| < 1.7. The detector is based on
a sampling technique with plastic scintillator planes (“tiles”). The tiles are placed in
planes perpendicular to the beam axis, and embedded in an absorbing iron matrix; the
scintillation signals are read through wavelength shifting optical fibers. The TILECAL is
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Chapter 1 – The ATLAS detector at the LHC

calorimetry system η coverage ∆η × ∆φ granularity sampling

Presampler |η| < 1.8 0.025×0.1
electromagnetic barrel |η| < 1.4 0.003×0.1 (S1)

0.025×0.025 (S2)
0.05×0.035 (S3)

electromagnetic end-caps 1.4 < |η| < 3.2 as in the barrel for |η < 1.8|
hadronic barrels |η| < 1.7 0.01×0.1 (S1, S2)

0.02×0.1 (S3)
hadronic end-caps 1.5 < |η| < 2.5 0.01×0.1 (S1, S2, S3)

2.5 < |η| < 3.2 0.02×0.2 (S1, S2, S3)
forward calorimeter 3.2 < |η| < 4.9 ∼0.02×0.2

Table 1.2: ATLAS calorimeters coverage and granularity (see Chapter 2 for details
on the EMC structure.)

longitudinally segmented in three layers. The relative energy resolution is required to be
σE

E
= 50%√

E(GeV)
⊕ 3%, mainly driven by the jets measurements accuracy.

Two hadronic end–caps calorimeters (HEC) complement the hadronic calorimetry
in the region 1.5 < |η| < 3.2. They are based on the LAr technology because of the high
radiation level to be stand [3].

The HEC’s are housed in the same electromagnetic end–caps cryostats (see Chapter 2)
with the forward calorimeters (FCAL). These detectors cover the region 3.1 < |η| < 4.9,
thus assuring a continuity of coverage even in a region where the radiation level is really
high. For this reason they are again based on the LAr technology [3].

1.2.3 Muon spectrometer

The ATLAS detector is equipped with a high–resolution muon spectrometer [9], with
momentum measurement and stand–alone triggering capability over a wide range of
transverse momentum, pseudorapidity and azimuthal angle. The magnetic deflection of
the muon tracks is induced by the air–core toroid magnets system (see Section 1.2.4).

The muon spectrometer system is composed by two different types of detectors
(Figure 1.5): the Monitor Drift Tubes (MDT) perform a precision measurements of
the tracks coordinates in the principal direction of the magnetic field over most of the
pseudorapidity range; the Cathode Strips Chambers (CSC) are used in the first station
of the end–cap region and for pseudorapidity |η| > 2 to sustain the demanding rate and
background conditions.

The required muon transverse momentum resolution is ∆pT

pT
' 1% for transverse

momentum pT > 6 GeV/c, and ∆pT

pT
' 10% for transverse momentum pT > 1 TeV/c.

The expected muon identification efficiency is 90% at pT > 6 GeV/c.

The muon spectrometer is also equipped with trigger chambers (Resistive Plate
Chambers (RPC) in the barrel region |η| < 1.4, and Thin Gap Chambers (TGC) in
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Chambers
Chambers

Chambers

Chambers

Cathode Strip
Resistive Plate

Thin Gap

Monitored Drift Tube

Figure 1.5: Tridimensional cut–away view of the ATLAS muon spectrometer
system.

the end–cap regions), used as threshold detectors for the bunch crossing identification.
These chambers have a time resolution better than the 25 ns LHC bunch spacing, and are
used to trigger the acquisition of events with a definite pT cut–off.

1.2.4 Magnets system

The ATLAS detector system is provided with two different kind of magnetic fields [10]
(Figure 1.6).

A central superconducting–coil solenoid provides a 2 T field to the ID in the region
|η| < 1.5. It bends the charged particles that cross the tracking system, allowing the
momentum measure. The central solenoid is housed between the ID and the EMC, in the
EM barrel cryostat. It represents indeed an additional amount of material in front of the
EMC, that can in principle degrade the EMC performance (see Chapter 2 and 6).

The muon spectrometer is equipped with a system of three large superconducting
air–core toroids (one barrel and two end–caps, Figure 1.6), that produce the magnetic
deflection of the muons tracks. The large barrel toroid (∼20 m diameter), consisting in
eight coils that surround the hadronic calorimeter, provides the magnetic bending in the
region |η| < 1. In the 1.4 < |η| < 2.7 region the muon tracks are bent by the two smaller
end–caps toroid, while in the 1 < |η| < 1.4 range the magnetic bending is assured by a
combination of the barrel and end–caps toroids fields.
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Chapter 1 – The ATLAS detector at the LHC

Figure 1.6: Tridimensional pictorial view of the ATLAS magnets coils system.
The central cylindrical coil of the superconducting solenoid is visible,
surrounded by the air–core barrel and end–caps toroids coils.

1.2.5 Trigger and DAQ

The LHC experiments need a trigger system able to reduce the huge amount of data
coming from the detectors because of the high interaction rate. Only 1 event over ∼ 107

is to be selected and recorded for the off–line analysis. The ATLAS trigger system is
organized around three decision levels, and on the concept of the “Region Of Interest”
(ROI).

Since it is impossible to take a decision about the event quality in the 25 ns bunch
spacing, all the data from the detectors are stored in pipeline memories, while the
information from the calorimetry system and from the muon spectrometer are used to
make a first selection (Level 1 trigger (LV1) [11], Figure 1.7 left), and, in case the
event seems promising, to define in which regions of the detector the event has left its
main signatures (ROI, Figure 1.7 right). The LV1 computation is performed by dedicated
hardware processors, and is expected to reduce the event rate from 40 MHz to 100 kHz.
The latency time of the LV1 is ∼2 µs.

The Level 2 trigger (LV2)[12] refines in the ROI’s only the raw analysis of the
detector informations performed the LV1. The latency time of the LV2 is ∼10 ms; it is
expected to reduce the event rate from 100 kHz to 1 kHz. Finally, the events selected
by the LV2 are analysed by the Level 3 trigger (“event filter”) (LV3/EF) [12]. It
that reconstructs the selected event using the informations coming from the full ATLAS
detector, as retrieved from the memory pipelines. The LV3/EF output rate is expected
to be between 10 Hz and 100 Hz.

The scheme of the DAQ pipelines architecture along with the event selection stages is
illustrated in Figure 1.8.
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Calorimeters	 Muon Detectors

Level-2 TriggerFront-End Systems

Calorimeter Trigger 
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Muon 
Trigger 
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jetET
miss	 e / γ
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Figure 1.7: Operating principles of the ATLAS Level 1 trigger: informations flow
from the ATLAS main sub-detectors (left); “Regions Of Interest”
(ROI’s) (right);
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TRIGGER
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TRIGGER

CALO MUON TRACKING
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(ROBs)

EVENT FILTER
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~ 1 kHz

~ 100 Hz

Interaction rate
~1 GHz

Regions of Interest Readout drivers
(RODs)

Full-event buffers
and

processor sub-farms

Data recording

Figure 1.8: Scheme of the ATLAS DAQ pipelines, along with the trigger levels.
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1.2.6 A short outline of the ATLAS physics program

The ATLAS experiment has been optimized for the detection of a large variety of physics
signatures, accessible at the high luminosity and center–of–mass energy of the LHC pp
collisions. We propose here a very short outline of the ATLAS physics program. It is
beyond the scope of this work a detailed discussion of the full ATLAS physics potential;
an exhaustive documentation of all the relevant ATLAS physics studies can be found in [5].

Being the optimization of the EMC performances the main subject of this work, a
summary of the physics requirements on this detector is proposed in Section 2.4, along
with a brief discussion of the physics study that will mostly take advantage of the
electromagnetic calorimetry informations.

The main goals of the ATLAS physics program follow the LHC construction
motivations. The main focus of the experiment is the investigation of the nature of the
electro–weak symmetry breaking, and therefore the search for the Higgs bosons. Thanks
to the sensibility of the different ATLAS sub–detectors to different decay channels, the
Higgs bosons could be discovered over a wide mass range (see Section 2.4 and Figure 2.10).

The complementary aim of the ATLAS experiment is to find signatures of physics
beyond the SM. Targets of this search are the particles predicted by SUSY or Technicolor
theories, as well as new gauge bosons and composite quarks and leptons up to mass
∼5 TeV.

Besides the discovery potential, the ATLAS experiment has also a large capability of
performing precision measurements on the SM particles properties (e.g. W mass, t mass,
triple gauge coupling). As an example, the error on the W mass is expected to be 0.02 GeV
in ATLAS, i.e. better than that achieved in previous experiments (∼0.02 GeV).

An important part of the ATLAS physics program is constituted by the b–physics
studies. A proof of direct CP violation can be established thanks to the achievable precision
on the sin 2β and sinα parameters of ±0.01 and ± 0.05 respectively.
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Chapter 2

The liquid Argon electromagnetic

calorimeter

The LHC experimental framework will be highly demanding, imposing severe constraints
on the detectors in terms of spatial coverage, response speed, radiation tolerance,
background rejection capability, noise handling and time stability. For what concerns the
electromagnetic calorimeter (EMC), the ATLAS collaboration has chosen a lead–liquid
Argon (LAr) sampling calorimeter with an accordion geometry. This geometric feature
guarantees a full azimuthal coverage without cracks and dead zones. The LAr used as
ionizing medium is intrinsically radiation tolerant. The fast electronic readout can handle
the LHC signal rate, and the noise contribution to the total energy, coming both from
electronics and from pile–up due to minimum–bias events, is minimized using an optimized
bipolar shaper and a digital filtering signal reconstruction technique (Appendix B). The
whole system can be calibrated cell by cell with an embedded electronic system, and its
sensitivity does not degrade in time.

A detailed description of the ATLAS LAr EMC system is found in [3]. The calorimeter
performances has been deeply investigated in [4], their impact on the ATLAS physics
program is discussed in [5]. In this chapter the major characteristics of the system are
briefly reviewed: a particular attention is given to those directly related to this work.

2.1 General description

The ATLAS EMC is a sampling calorimeter, consisting in a sequence of active layers, in
charge of recording the particles signal, and passive layers, that are the major responsibles
of the shower developing, and absorb the greater part of the shower energy. In the
ATLAS EMC the active medium is LAr, kept at a temperature of ∼ 89 K in a cryostat
(Figure 2.1), while the passive medium consists in lead absorbers, covered in stainless steel
for mechanical reasons. The main properties of the EMC active and passive components
are review in Table 2.1 and 2.3.

The LAr gaps between consecutive absorbers are instrumented with electrodes, which
are built as sandwiches of three copper planes separated by two kapton insulator layers
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Figure 2.1: View of one half on the EMB cryostat.
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2.1 – General description

LAr Pb

atomic number Z 18 82
atomic weight A 39.948 207.2
density† ρ (g cm−3) 1.381 11.35

radiation length X0 ' 180 A
Z2 (g cm−2) 19.55 6.37

radiation lento X0 (cm) 14.2 0.56

Moliere radius RM ' 7A
Z

(g cm−2) 13.9 17.7
Moliere radius RM (cm) 10.1 1.55
Critical energy Ec ' 560

Z
(MeV) 30.5 6.82

Table 2.1: Main physical properties of the ATLAS EMC sampling calorimeter

components (†LAr density at T = 89.3 K).
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Figure 2.2: Detailed view of a EMB LAr gap section.
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1.9 LAr

40.1

25

2.2

0.1 inox

o.1 inox

1.8 Lead

Kapton

Figure 2.3: Sketch of the ATLAS LAr electromagnetic calorimeter accordion
structure (left); GEANT simulation of an electromagnetic shower
developing in the EMC.

(Figure 2.2). The two external copper planes distribute the high voltage (HV) across the
LAr gap, thus forcing the drift of electrons and ions produced by the ionizing shower
particles; the electrode inner plane records the ionization current by capacitive coupling.
The absorbers provide the ground reference both for the HV distribution and for the
ionization current. The electrodes are kept in place by means of honeycomb spacers. Both
electrodes and absorbers have an accordion geometry (Fig. 2.3, [22]): the accordion shape
makes the detector continuous, offering a full azimuthal acceptance 0 < φ < 2π without
dead zones. The EMC pseudorapidity coverage is |η| < 3.2 (see Section 2.2 for details).
The region |η| < 2.5 is designed to be used for precision physics measurements [5].

The EMC sampling frequency fsamp computes how many times the developing shower
is sampled in a radiation lent X0:

fsamp(η) =
X0

a(η) + p(η)
(2.1)

a(η) is the depth of a single active LAr gap, p(η) is the depth of the passive absorber, as
seen by a crossing particle at a given η position. The calorimeter effective radiation Lent
is X0 ' XPb

0 , being XPb
0 � XLAr

0 (Table 2.1). At η = 0 a = 0.015 X0 and p = 0.28 X0, the
sampling frequency is fsamp(η = 0) = 3.4. For geometrical reasons the sampling frequency
decreases at large |η|, thus leading to an increase of the fluctuations in the number of
secondary electron tracks in the LAr gaps, and therefore reducing the detector intrinsic
resolution. This effect is compensated by a reduction of the lead thickness in the absorbers
in the region |η| > 0.8 [3].

The EMC sampling fraction F measures the ratio between the energy deposited by
Minimum Ionizing Particle (MIP) in the active medium, and the total energy lost in the
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full detector (LAr gaps + passive lead absorbers). In the ATLAS EMC [3]:

F =
∆ELAr

∆ELAr + ∆EPb
' 19% (2.2)

Being a sampling calorimeter, the detector intrinsic energy resolution is dominated by
the poissonian fluctuations of the number N of the shower secondary electron tracks that
cross the active LAr gaps:

∆E

E

∣
∣
∣
∣
intr

=

√
N

N
=

a√
E

(2.3)

being N proportional to the incoming particle energy E, at least at first order. The
sampling term a is expected to be of order of 10%

√
GeV [3]. There are other effects

that contributes to deteriorate the energy resolution of the EMC, that can in general be
expressed as:

∆E

E
=

a√
E

⊕ b

E
⊕ c (2.4)

The term b takes into account the fluctuation on the energy measurements due to noise
from the readout electronics and the pile–up events (see Appendix A). The electronics
readout system has been designed in order to keep b ' 400 MeV. The constant term
c includes all the effects related to the detector imperfections (active medium impurity,
absorbers or gap thickness non–uniformity, . . . ) and to the quality of the calibration (see
Section 7.1). It is the most critical parameter in terms of high energy performance of the
detector.

2.2 Segmentation and granularity

The EMC is divided in two parts: the barrel (EMB), that covers a pseudorapidity range
|η| < 1.4, and the end-cap (EMEC), located in the region 1.4 < |η| < 3.2. Each part
covers a full azimuth acceptance 0 < φ < 2π. The detector is segmented in longitudinal
samplings, that for example in the barrel are defined as (Fig. 2.4):

• S1 (“Front” or “Strips”), made of narrow strips to perform position measurement
and γ−π0 separation, has a 6 X0 depth. It has a granularity ∆η×∆φ ' 0.003×0.1.

• S2 (“Middle”), made of square towers with a depth of 16 to 18 X0, collects most of
the e/γ shower energy. It has a granularity ∆η × ∆φ ' 0.025×0.025.

• S3, (“Back”), with a depth of 2 to 12 X0, is used to sample high energy showers
and helps to separate hadronic to electromagnetic particle. It has a granularity
∆η × ∆φ ' 0.05×0.025.
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Figure 2.4: Sampling segmentation and granularity of the EMB.

In the region |η| < 1.8, Presampler detectors located in front of the EMC are used to
correct for the energy lost in the material upstream (mainly the inner tracking system,
the LAr cryostat and the solenoid coil).

Projectivity and granularity in pseudorapidity η are obtained by properly etching the
readout electrodes (Figure 2.5). For construction reasons, two types of electrodes are used:
type A for 0 < |η| < 0.8 and type B for 0.8 < |η| < 1.4. Along the azimuthal angle φ the
projective geometry imposes that the accordion angles of absorbers and electrodes become
more acute at increasing radius, thus ensuring a constant LAr gap and sampling fraction.
Granularity in φ is defined by grouping together a proper number of electrodes: the signals
coming from electrodes contiguous in azimuth are merged by the “summing boards” (SB)
to form the read–out cells (Figure 2.6). The number of gaps merged for each sampling,
and the relative granularity in η × φ, are displayed for the EMB in Table 2.2.

Figure 2.5: View of the signal layer of the EMB readout electrodes A and B. The
readout pads for the different samplings are shown.
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Figure 2.6: View of the front side of the accordion, showing the placement of
the Strips summing boards (SB) and the mother board (MB). Similar
connection for the Middle and Back sampling are present on the back
side of the accordion.

Sampling Number of Granularity
merged gaps (∆η × ∆φ) w.r.t. Middle

Strips 16 0.00375×0.1 1/8 × 4
Middle 4 0.025×0.025 1 × 1
Back 4 0.050×0.025 2 × 1

Table 2.2: Granularity and number of merged gaps per read-out cell for the different
samplings. η is pseudo-rapidity and φ is azimuth.
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LAr property value

normal boiling point (bp) (K) 87.27
〈∆EMIP(1cm)〉 (MeV) 2.1
W -value (1 MeV electrons) (eV/ion–pair) 23.3
electron mobility at bp (m2V−1s−1) 0.048
ion mobility at bp (m2V−1s−1) 0.016·105

dielectric constant εr 1.6

Table 2.3: Properties of LAr related to the ionization signal generation.

The angular position, usually defined by the pseudorapidity η and the azimuthal angle
φ (in radians), is often indicated by the coordinates ηcell, φcell, which are expressed in units
of Middle layer cells. Therefore, the Middle cell at lowest η, φ in the module is labeled by
ηcell = 0, φcell = 0, and since the granularity of this layer is ∆η ×∆φ = 0.025× 0.025, the
following general relation holds:

{
η = (ηcell + 0.5) × 0.025
φ = (φcell + 0.5) × 0.025

(2.5)

In the present work, references to Middle cells will often have the form Mx, where x = ηcell

runs from 0 to 54 in the EMB (e.g. the first eight cells in electrodes B are named
M32÷M39). Each pair of Middle cells share the same Back cell, therefore referencing
will be based on the number of the associated even Middle cell (e.g. B32 refers to the
Back cell shared by M32 and M33).

2.3 Readout system

2.3.1 Signal generation

After the passage of the ionizing particles produced in the electromagnetic shower,
electrons and positive ions drift along the electric field. Because of mobility reasons (see
Table 2.3) the fast signal is produced by the electrons drift. The resulting current has
a triangular waveform [29] with a sub–nanoseconds rise time followed by a linear decay
with the duration of the electron drift time Td (Figure 2.7). In the EMB the drift time is
Td ' 450 ns for a gap thickness g = 2.1 mm and 2000 V HV bias. The deposited charge
is collected by the readout electrodes, the absorbers provide the ground reference. The
ionization electron signal generation is detailed in Appendix A.

The ionization current peak is proportional to the deposited energy: the energy-to-
current nominal sensitivity for the EMB is 2.7 µA/GeV in the 0 < |η| < 0.8 region, and
3.1 µA/GeV in the 0.8 < |η| < 1.4 region [3]. The dynamic range is expected to range
between 50 MeV (electronics noise level) and 3 TeV (energy scale of the electrons that
could come from the Z ′ and W ′ decays [5]).
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Figure 2.7: Ionization signal with amplified–and–shaped signal superimposed.
Sampling points are shown.

2.3.2 Ground reference

Each SB located behind1 the EMB covers 4×4 Middle cells and 2×4 Back cells,
corresponding to an acceptance ∆η × ∆φ = 0.1 × 0.1. For each φ row, the signal out
of the SB is arranged in the pattern M-B-M-M-B-M, where M and B denote Middle and
Back cells (Figure 2.8). Each signal line has its own ground reference; the ground plane
of the SB is connected to the absorbers through paths located on the electrodes that end
with springs (“ground springs”) touching the absorbers. Each SB is designed to take the
ground reference from the two sides; however, on the first electrodes design, the “odd”
read-out connectors located near the HV connectors had only one ground return path to
the absorber, located on the low-η side. The consequence of this type of grounding on the
detector performances is detailed studied in Chapter 3.

2.3.3 Readout lines

The SB’s are grouped in 2× 2 patterns by the “mother-boards” (MB), therefore each MB
covers an acceptance ∆η×∆φ = 0.2×0.2, corresponding to 8×8 Middle cells and 4×8 Back
cells. An analogous structure on the detector front collects and routes the signals from
the Strips. A complex chain of readout lines is in charge to carry the signals from the MB
to the readout electronics, that is located in warm crates outside the EMC cryostat. The
readout line elements are listed in Table 2.4, from the MB connector to the baseplane of
the crate in which the readout electronics cards are plugged. The characteristic impedance
of the readout cables chain is optimized for the cell capacitance in order to minimize the

1Similar SB’s are located in front of the EMB and collect the signals from the Strips
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Chapter 2 – The liquid Argon electromagnetic calorimeter

gnd MM M MBB gnd

Figure 2.8: Detail of the EMB electrode back connector. The termination of the
striplines in charge of the ground (gnd), Middle (M) and Back (B) cells
connections with the summing board are shown.

noise contributions [3].

Readout line element Z0(Ω) length (ns)

Connector 40 0.3
Pigtail + Cold Cable 25 7 ÷ 30
Cold Feedthrough 50 0.2
Vacuum Cable 33 2.2
Warm Feedthrough 50 0.2
Warm Cable 33 2.2
Base Plane 75 0.3

Table 2.4: Breakdown of the read-out line elements from the MB to the front-end
crate baseline preamplifier. The impedance of the pigtail and the cold
cable is matched with that of the preamplifier, which is 25 Ω for Middle
and Back channels. The length of the pigtail and cold cable changes
according to the distance of the MB from the feedthrough.

2.3.4 Readout electronics

The active front–end (FE) readout electronics is located on the Front End Boards
(FEB [24]), that are allocated in dedicated Front End Crate (FEC) immediately outside
the EMC cryostat, in order to minimize the readout cables length (Figure 2.1).

A preamplifier [25] is in charge to amplify the signal emerging from the detector in
order to reduce the sensitivity to the noise in the following stages of the readout system.

The amplified signal is shaped by a multi–gain CR − RC 2 filter [26], whose internal
time constant τsh = 15 ns has been chosen in order to optimize the signal–to–noise ratio.
The area of the shaped signal is null, thus allowing to treat the pile–up events as a noise
contribution to the interesting physics signals (see Section B.1 for details).
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The shaped signal is sampled at the 40 MHz LHC bunch–crossing frequency (i.e. one
sample every 25 ns, Figure 2.7). The samples are stored in analog memory arrays waiting
for the Level 1 trigger to accept or reject the event. When a Level 1 trigger occurs, the
best gain from the 3 available at the shaper level is chosen; 5 samples in the positive lobe
of the shaped signal are digitized and kept for each readout cell.

Apart from the FEB’s, the FEC contains also the “tower builder” card, that uses the
signal from the EMC to compute a first information about the energy released in the
calorimeter to be used by the trigger processors; the calibration board (Section 2.3.5); the
control electronics. A schematic view of the FE electronics is shown in Figure 2.9.

2.3.5 Calibration strategy

The ATLAS LAr EMC is a system with no internal gain. For this reason the calibration
of the calorimeter can in principle be factorized in a cell–to–cell calibration of the readout
system, followed by an overall energy scale determination [3].

The basic concept of the LAr EMC electronics calibration consists in injecting at the
LAr gap level a known current signal that mimics “as much as possible” the ionization
signal [28]. The signal emerging from the detector is read and reconstructed through the
whole readout chain, thus the actual gain of each channel can be measured and monitored.
This procedure takes into account the non–linearity of the gain over the full dynamic range
of the readout system, thus assuring a linear behavior of the detector over the large energy
range it has been designed for.

The calibration signal must have a fast rise time and a decay time similar to the
ionization pulse drift time. For this scope an exponential voltage pulse with a proper decay
time is generated by the calibration board (CB) [27] located in the FEC, and brought to
the MB inside the LAr cryostat by a cables chain. Precision resistors located on the MB
[23] convert the voltage pulse to a current signal. A detailed description of the calibration
pulse can be found in Section A.2.

The aim of the electronic calibration system, together with the signal reconstruction
method for the ionization signals (see Chapter 4 e 5), is to obtain a constant term c in the
relative energy resolution expression (2.4) smaller than 0.5% in a region ∆η×∆φ = 0.2×0.4
(local constant term, see Section 2.4).

The electronic calibration system will be complemented at the LHC by the on–site
calibration based on known physics processes, such as Z → e+e− ([4, 20]), in order to
correct for long distance disuniformities, and to achieve a constant term of 0.7% over the
calorimeter coverage that is to be used for the precision physics measurements (0 < φ < 2π,
0 < η < 2.5, global constant term) [5].

2.4 LHC physics requirements overview

LHC detectors will deal with a challenging experimental framework: the search for new
physics implies the observation of rare decay channels over large backgrounds. In most of
these channels a crucial role in energy and position reconstruction of photons and electrons
is played by the EMC. This is the case for example in the decay channels of the Higgs
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Figure 2.9: Schematic view of the EMC front–end electronics locate in the FEC.
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boson H → γγ and H → e+e−e+e−. The ATLAS EMC design have been optimized for
such physics searches [5].
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Figure 2.10: Expected significance of the SM Higgs boson signal in the ATLAS
detector, as function of the Higgs mass, for an integrated luminosity
of 30 pb−1 (left) and 100 pb−1 (right), for several decay channels The
significance of a channel signal is defined as the ratio S√

B
between the

signal S and the poissonian RMS of the corresponding background
√

B.

The SM Higgs boson will be sought over a very large mass range (100 GeV <
mH < 1 TeV), its mass being an unknown parameter of the model (Figure 2.10). For
mH ≤ 150 GeV one of the most suitable channels is H → γγ [18]: both the energy of
the two photons and their opening angle, necessary to deduce the γγ invariant mass, will
be measured through the EMC, thus requiring optimal energy and angular resolution and
response uniformity.

For 120 GeV< mH < 700 GeV one of the most promising search channels will be
H → ZZ(∗) → e+e−e+e− [19], thus challenging again the EMC on the electron energy
reconstruction performances.

Another interesting search channel, that would be the only useful for mH > 700 GeV, is
H → WW → lνlν, in which a part on the energy is carried by undetectable neutrinos. In
this case a good ermeticity of the calorimeter is required, in order to accurately reconstruct
the missing transverse energy and detect the toward jets from the underlying events.

All this arguments imply the following EMC properties [5, 4]:

Response uniformity

A 0.7% constant term in the energy resolution over the whole rapidity coverage of the
barrel and part of the end-cap (0< η <2.5) is required, especially driven by Higgs boson
physics (see Section 2.3.5).
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Chapter 2 – The liquid Argon electromagnetic calorimeter

We shows in this work (Chapter 3 and 4) that the response uniformity of the LAr
EMC is the most critical parameter to the energy reconstruction and calibration strategy;
the present work is devoted to the study and to the development of such reconstruction
algorithms (Chapter 4, 5 and 6). The response uniformity will be investigated in relation
to the signal reconstruction and calibration methods, their effectiveness will be directly
tested in the analysis of the data from the EMB production module exposed to electrons
beam at CERN (Chapter 7).

Sampling term

For the decay products of a low mass Higgs boson the sampling term a is still important in
the energy resolution expression (2.4). In order to obtain a good invariant mass resolution,
a must be kept by design smaller than 10%.

Position measurement resolution

Several position measurements can be performed thanks to the excellent EMC granularity.
The φ position of the shower can be measured in the S2 compartment, the η position both
in S1 and in S2. By combining these two measurements it is possible to estimate the
shower direction in θ and therefore extrapolate the primary vertex along the beam axis.
The EMC angular resolution for photons scales as d√

E
; the terms d must be kept around

50 mrad by design, in order to ensure the γγ invariant mass resolution within the SM
Higgs boson H discovery limits.

Mass measurement

Beside the search for new physics, the large events statistics due to the high luminosity will
allow precision measurements within the SM, such as that of the W mass. This measure
implies an absolute electromagnetic energy scale of better than 0.02%. This goal can be
achieved combining the linearity of the apparatus with an optimal calibration system.

Time measurement

Timing information of the reconstructed signals can be important for some supersymmetric
channel identification, such as the Gauge Mediated Supersymmetry Breaking model
channel χ̃0 → G̃γ, through the identification of showers generated by non–pointing
photons. For this kind of measurement an accuracy of 100 ps is required.
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Chapter 3

Electrical properties and signal

shapes in the EMC

3.1 Foreword: the 2000 test-beam results

In years 1999 and 2000, a prototype of the EMB modules that will be assembled in
the ATLAS experiment –the “Module 0” [43]– has been exposed to electron beams at
CERN. Typical results from a position scan performed with 245 GeV electrons from year
2000 test-beam data are presented in Figure 3.1 [51]. The top plot shows the energy
as a function of the impact position, for three different η-rows (φcell = 9, 10, 11). The
total energy1 is obtained from the standard 3×3 cluster from the Middle sampling, plus
clusters of corresponding granularity from Presampler, Strips and Back samplings. The
energy response as a function of the η coordinate exhibits a clear pattern with a periodicity
of 8 Middle cells, over which the peak-to-peak variation is about 10 GeV (4%); the RMS
over the full η range is 5 GeV (2%). The bottom left plot of Figure 3.1 shows the energy
spread over cells 1÷47 at φcell = 10; the bottom right plot shows the relative energy spread
in φ, after removing the oscillations along η.

The general idea in the ATLAS LAr collaboration was that the cause of non–uniformity
was to be sought in the electrical properties of the detector itself. In fact, as we discuss
in detail along this chapter, the calibration signal is injected at the motherboards (MB)
level, while the signal induced by electromagnetic cascades originates inside the detector,
at the LAr gap level: this introduces differences in shape and amplitude between the two
signals.

In this sense, a basic electrical model that describes each detector channel as a LC
circuit is inadequate, and a complete model accounting for all the parameters is too
complex to be handled with a reasonable confidence. The goal of this work consists
in building both an effective model suitable to simulate the detector electrical behavior,

1The energy deposited in each cell is reconstructed from the digitized samples of the corresponding
ionization signal. The “parabola” signal reconstruction (SR) algorithm, as implemented in the standard
EMB test–beam reconstruction code EMTB [52], is used. This SR method is discussed in detail in
Chapter 4.
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Figure 3.1: Energy response of the EMC barrel prototype “Module 0” to 245 GeV
electrons, from data taken during the year 2000 test–beam session (see
text for details).
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and a hardware model, as similar as possible to the real calorimeter, to directly investigate
the non–uniformity origin and to suggest a solution.

In Section 2.3.2 the asymmetry in the ground springs that causes the “odd” summing
boards along one η line to have only one reference ground connected to the electrodes
instead of two has been described. This was firstly believed to completely explain the
8–fold periodicity along η of the energy response as seen in Figure 3.1. We show in this
chapter that the absence of the second ground contact was in fact the main source of
the non–uniformity along η. This results has lead to the electrodes design modification,
consisting in adding a second ground springs to the connectors lacking of the “odd” one
(Section 3.7).

It is important to say that the knowledge of the electrical properties of the detector
gained with this study points anyway out the need of additional corrections in the EMC
signal reconstruction procedure. This holds also after that the ground spring modification
has been implemented in the electrodes design. We discuss this point in detail in Chapter 4.

3.2 Detector models

3.2.1 Basic detector electrical model

L

C

line

Ical

inj

Iphy

inj

Rpre CR-RC2 Vout

MB + SB

e
l
e
c
t
r
o
d
e

LArg gap

Figure 3.2: Basics electrical model of a LAr cell with schematic readout chain and
simplified calibration network.

In Figure 3.2 the simplest model for a detector cell is drawn. The liquid argon (LAr) gap
can be described as a capacitor C between the absorber (ground reference) and the readout
electrode. The signal originated by an e.m. shower (“ionization” or “physics” signal) is
represented by a triangular current generator applied between the two capacitor plates
(see Section A.1 for details): we refers to it here as Iphys

inj . This signal is brought to the
summing board (SB) and the mother board (MB) through a path on the electrode, which
is inductive; L is the total inductance of such path plus the SB and MB contribution. The
calibration pulse is an exponential current generator injected on the MB (see Section A.2
for details) with a decay time τcali ' 400 ns: we refers to it here as I cali

inj
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The readout line consists of a set of lines connected to each other and closed on a
preamplifier with input impedance Rpre = 25 Ω. The line can be described (see for
example [64]) by a transfer matrix M such that:

(
Vline,in

Iline,in

)

= M

(
Vline,out

Iline,out

)

=

(
MV V MV I

MIV MII

)(
Vline,out

Iline,out

)

(3.1)

Since Vline,out = RpreIline,out, the line presents at its input an impedance:

Zline,in =
MV V Rpre + MV I

MIV Rpre + MII

(3.2)

and the voltage at the line output (i.e. at the preamplifier input) is:

Vline,out = Vpre,in =
Rpre

MIV Rpre + MII
Iline,in

= HlineIline,in (3.3)

The preamplifier provides a gain α (assumed to be constant over the relevant frequency
range) and the shaper is of the type CR-RC2, therefore the overall transfer function of the
two components is:

Hsh =
Vout

Vpre,in
= α

sτsh

(1 + sτsh)3
(3.4)

where τsh = 15 ns is the shaper characteristic time (2τsh is the peaking time of the shaper
response to a step-function input), and s = iω represents the complex frequency in the
usual Laplace notation [65].

Due to the inductive path connecting the LAr gap to the readout line, the calibration
signal sees a circuit different than the physics signal. In fact, the calibration current
entering the line is given by:

Icali
line,in = Icali

inj

Zdet + Zconn

Zdet + Zconn + Zline,in
(3.5)

while the physics current entering the line is:

Iphys
line,in = Iphys

inj

Zdet

Zdet + Zconn + Zline,in
(3.6)

where Zdet and Zconn are the impedances offered by the detector gap and by its connection
to the readout line, respectively. In this simple model, the detector and “connection”
impedances are:

Zdet =
1

sC
(3.7)

Zconn = sL (3.8)
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The complete formulæ for the output voltage due to physics and calibration signals
are as follows:

V phys
out = HshHlineI

phys
inj

Zdet

Zdet + Zconn + Zline,in
(3.9)

V cali
out = HshHlineI

cali
inj

Zdet + Zconn

Zdet + Zconn + Zline,in
(3.10)

The ratio between physics and calibration signal at the shaper output is then:

V phys
out

V cali
out

=
Iphys
inj

Icali
inj

Zdet

Zdet + Zconn
(3.11)

which, in the simple detector model described by equations (3.7), (3.8), reads:

V phys
out

V cali
out

=
Iphys
inj

Icali
inj

1

1 + s2LC
(3.12)

The meaning of this result is that the two signals differ for two reasons: one is the
different injected shape (triangular and exponential, respectively), the other is that the two
are injected at different locations. All the effects due to the readout line, the preamplifier
and the shaper (described by the parameters Zline,in,Hsh,Hline) are common to both signals
and cancel out when taking the ratio.

3.2.2 Detailed electrical model of an electrode channel

The detector model described in Section 3.2.1 is very simplified. In the reality, things
differ for the following reasons:

• each detector cell consists of more electrode channels connected together by the
summing board (16 for the Strips, 4 for Middle and Back samplings);

• channels belonging to Strips, Middle and Back samplings are not electrically
independent, being connected by resistors on the high-voltage (HV) layers; more
precisely, each Middle channel has 8 Strips associated and shares a Back channel
with another neighboring Middle channel (see Figure 2.5);

• the high-voltage layer of each Middle or Back cell is subdivided in pads, while the
signal layer is continuous; the signal and the HV layers of each electrode channel
are capacitively-coupled through the kapton layer, the overall capacitance through
kapton being ≈ 80 times larger than that through the LAr gap.

• cross-capacitances and, possibly, mutual inductances exist between neighboring
channels.

Figure 3.3 shows a more realistic electrical scheme of one middle channel in one
electrode. The complete scheme, accounting for “all” high voltage pads, is drawn in (a),

31



C
h
a
p
ter

3
–

E
lectrica

l
p
ro

p
erties

a
n
d

sig
n
a
l
sh

a
p
es

in
th

e
E

M
C

Absorber
(ground)

H.V. layer

Signal layer

Liquid Argon Gap

Kapton layer

One Middle CellOne Back Cell 8 strips

Absorber
(ground)

H.V.
layer

Signal
layer

Liquid Argon Gap

Kapton layer

Simplified
Middle Cell

Simplified
Back Cell

8 strips
lumped

Cmiddle

gap

Cmiddle

kapton

Cback

gap

Cback

kapton

Rmid

HVRback

HV

Rm-b

HV

C8strips

gap

C8strips

kapton

R8strips

HV

(a)

(b)

F
ig

u
re

3
.3

:
C

o
m

p
lete

sch
em

a
tics

o
f

a
n

electro
d
e

M
id

d
le

ch
a
n
n
el

(a
)

a
n
d

a
rea

so
n
a
b
le

sim
p
lifi

ca
tio

n
(b

)3
2



3.3 – Hardware model of the EMC: the mock–up

while (b) represents a reasonable simplification, in which the 8 Strips are lumped together
(with effective resistance and capacitance equal to the parallels of the 8 Strips resistances
and capacitances) and the Middle and Back HV layers are considered as continuous. The
reason of the last assumption is that two consecutive pads are coupled through the signal
layer and the two kapton capacitances, that offer an impedance much smaller than the
resistor in the frequency region of interest (& 100 kHz).

As it will be shown in Section 3.4, the model proposed here is necessary to understand
some results from the impedance measurements, while the simpler LC model is not
adequate. In Section 3.6, the effect of adding the Strips and Back will be shown on
the physics and calibration signals.

3.3 Hardware model of the EMC: the mock–up

3.3.1 General system layout

The detector hardware model (“mock–up ”) realized in Milano consists of 4 B–electrodes2

and 5 absorbers piled-up and interspaced by holed polypropylene (PP) Strips in the plane
portions to simulate the LAr gaps (see Figure 3.4). The PP thickness is (2.0±0.1) mm,
and its plastic/air ratio was chosen in order to reproduce an average dielectric constant
εr ' 1.53, similar to that of LAr at 80 K temperature.

For all the measurements and analysis concerning the mock–up references to middle
sampling cells will have the form Mx, where x represent the ηcell value as defined in
Chapter 2. For the EMB it runs from 0 to 54 (e.g. the first eight cells in electrodes B
are named M32÷M39). Each pair of Middle cells share the same Back cell, therefore
referencing will be based on the number of the associated even Middle cell (e.g. B32 refers
to the Back cell shared by M32 and M33).

Inside the 2nd gap4 twelve Middle cells (M32÷M43, corresponding to three SB’s) have
been equipped with “physics injectors”, described below, to simulate the electromagnetic
shower that develops in the LAr gaps. The coaxial cables carrying the signal from the
pulse generator to the injectors run along the electrode folds, that are free of PP.

The mock–up is laid on plastic supports and pushed by a pressing system that provides
a better mechanics stability (it has been observed that modest pressure variations cause
sizable fluctuations in the gap width, and therefore in the capacitances).

Three SB’s are available to be plugged on the electrodes back connectors, to merge
together Middle and Back samplings channels from the 4 different gaps. L and C
measurements can be performed both on separate gaps and at the SB’s level (cell grouped
gaps). The electrodes in use are yet of the type with asymmetric ground returns on some

2The electrodes used were discarded because not satisfying the requirements for being used in an EMC
module, therefore their quality is poor, especially for what concerns the HV resistors values; broken resistors
were repaired with silver epoxy or resistive ink, there are no broken paths on the signal layer, and the
measured kapton capacitances are regular.

3The value of εr has been tested to be stable to better than 0.5% over a wide frequency range:
100 kHz ÷ 100 MHz.

4Gaps are numbered 1 through 4 starting from that on the top.
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Chapter 3 – Electrical properties and signal shapes in the EMC

Figure 3.4: Picture of the mock–up during assembling. The two bottom gaps (3rd

and 4th in our numbering scheme) are complete, the 2nd is open and the
PP Strips and physics injection cables are visible.
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Figure 3.5: Detail view of the mock–up system in its final layout; the accordion
structure of the detector is visible.
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Figure 3.6: View of the mock–up system in its final layout; the Faraday cage is
visible on top of the detector model.
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back connectors (see Section 2.3.2 for details): connectors 1 and 3 (Middle cells 32÷35
and 40÷43 respectively) have two ground springs, while connectors 2 and 4 (Middle cells
36÷39 and 44÷47) have only one on the small–η side. However, connector 2 has been
equipped with removable extra–ground springs on the large-η side, in order to study the
effects of this asymmetry.

A Faraday cage has been built to screen the system from external electromagnetic
noise (see Figure 3.6). A details of the final layout of the system is shown in Figure 3.5.

For what concerns the measurements treated in this chapter the signal waveforms are
read out directly from the SB’s. Subsequently the layout has been completed with the full
read-out chain as in the real detector (MB + cold cable + vacuum cable + warm cable)
to investigate the signal reconstructions algorithms features (see Chapter 5).

3.3.2 Injection circuits

Figure 3.7: Detail of one physics injector.

For both “physics” and calibration injections, exponential pulses are used, by sending a
fast step-function through an RC circuit, as shown in Figure 3.8. A step–function voltage
signal is sent through a 50 Ω coaxial cable terminated at 50 Ω, and followed by an RC series
circuit producing an exponential signal with a decay constant of 400 ns, which is injected
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50 Ω coax

50 Ω

4 kΩ

100 pF

absorber

electrode

Figure 3.8: Electric scheme of a “physics” injector (see text for details).

between the absorber and the electrode HV layer. The calibration signal is produced in
the same way, but is injected at the SB level.

In order to allow multiple physics injection on neighboring cells (thus simulating a
cluster), 12 physics injectors are located between the electrode and the absorber (see
Figure 3.4 and the detail in Figure 3.7). The calibration injector is unique and can be
plugged in any channel through the SB.

All injectors are made with 4 kΩ resistors and 100 pF capacitors that have been selected
from a larger set with an accuracy of ∼ 0.1%. Each injector has been tested closed on
a 350 pF capacitor and read on the oscilloscope through a 50 Ω cable: the traces on the
scope confirm the uniformity at the ∼ 0.1% level.

3.3.3 Electronic instrumentation and measurement methods

An HP-4395A network/impedance/spectrum analyzer is used to perform impedance
measurements in the frequency domain. Normally each measurement consists of 401
samples, equally spaced in log-scale, over the frequency interval 10 kHz ÷ 100 MHz,
with a 100 Hz IF bandwidth. During such measurements, the channel under exam is read
through a 50 Ω LEMO cable, while all the other channels are left open, to ensure that no
current flows into them through parasitic couplings. Measurements are performed both on
single gaps (i.e. on single electrodes) and at the SB level (i.e. on 4 electrodes in parallel).

Step–function pulses are generated by a LeCroy 9210 dual channel pulse generator with
a 1 ns rise time and a maximum voltage of 5 V. The output signal from the SB is fed into a
programmable CR-RC2 shaper; to avoid saturation at this level, it is necessary to operate
the pulse generator at 3 V maximum. When performing multiple physics injection, the
two channels are used at the same time: one for the central cell, the other, by means of a
power splitter, for the two neighboring cells. In such a way, it is possible to synchronize
the three injections and vary the signal amplitudes independently for the central cell and
the two side cells.

The signal waveforms are acquired on a Tektronix TDS 754D 8 bits, 2GSample/s,
500 MHz bandwidth digital oscilloscope, and averaged over 400 samples. The precision
from digitization, achieved with this procedure, has been estimated from the smallest
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3.4 – Electrical parameters measurements on the mock–up

appreciable output difference, and amounts to ∼ 0.2 mV for a signal amplitude of 1 V.
During signal injection and measurements, the SB is always used, and all channels are
terminated on 25 Ω loads (obtained using either 25 Ω resistors or 50 Ω LEMO cables in
parallel with 50 Ω resistors). This is done to reproduce more faithfully what happens in
the real detector (i.e. cross-talk due to parasitic couplings to the neighboring channels).

3.4 Electrical parameters measurements on the mock–up

A precise measurement of the L,C parameters for each channel is crucial for having a
good understanding of the system behavior. In this section, a critical discussion of such
measurement is proposed, and results are shown.

L

C

Z

r

RHV

Z

r

Cs

Figure 3.9: Simple schematics of a single LAr cell, as seen at the SB level (left), and
simplified equivalent circuit (right).

3.4.1 Extraction of effective L and C values from impedance

measurements

The expected signal-to-ground impedance for a Middle sampling channel, neglecting the
presence of Strips and Back sampling (see the simplified model in Figure 3.9 left), is:

Z = r + jωL +
1

jωC

(

RHV

RHV + 1
jωC

)

(3.13)

where r is a contact resistor (. 1 Ω), and RHV is the HV distribution resistor (≈ 1 MΩ),
whose effect is sizable only at low frequencies (. 10kHz ∼ RHVC), being:

lim
ω�RHVC

1

jωC

(
1

1 + 1/jωRHVC

)

=
1

jωC
(3.14)
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In this situation we can drop the presence of the HV distribution resistor:

ZnoHV = r + jωL +
1

jωC
(3.15)

and define an equivalent circuits (Figure 3.9 right) where the effective series capacitance
Cs is introduced such that:

{
ZrCs = r + 1

jωCs

Im(ZrCs) = − 1
ωCs

(3.16)

This is equivalent to assume that the circuit behaves mainly as a simple rC series
(Figure 3.9 right), which is reasonable for frequencies well below the LC resonance, but
high enough to neglect the effect of RHV. When approaching the resonance frequency
the effect of the presence of the inductance L can be modeled as a Cs dependence on the
frequency. Comparing the imaginary parts of ZnoHV in equation (3.15) and of ZrCs in
equation (3.16), we obtain an ω–dependent expression for Cs, that is related to the L and
C values by the following:

Cs(ω) =
C

1 − (ω/ω0)2
ω0 =

1√
LC

(3.17)

This expression can be used to measure the L and C values: once measured Cs vs frequency,
one can find the resonance ω0 (vertical asymptote), then take a Cs value at a given ω and
work out C from equation (3.17). The advantage of this method is that the measurement
is independent of Re(Z), hence of the contact resistor r.

In practice, the model assumed in Figure 3.9 (left) is not adequate to describe in detail
the detector, as it does not account for the paths parallel to the Middle gap capacitance,
introduced by the Strips and Back sampling (see Figure 3.3). This is evident when
performing a Cs measurement on any Middle channel, as that shown in Figure 3.10,
with SB (top) and for separate gaps (bottom). In the intermediate frequency range
(20 kHz÷2 MHz) a regular slope can be observed, where a plateau was expected from
equation (3.17). However, introducing Strips and Back in the model describes correctly
this slope, as it is shown in Figure 3.11. This proves that the presence of Strips and Back
is in principle not negligible5.

In Figure 3.10(bottom) differences among gaps belonging to the same η are evident.
First, two gaps (number 1 and 3) exhibit similar trends, but n. 3 is systematically higher
than n. 1: this is due to gravity, because lower gaps are subject to larger pressure and are
therefore more squeezed. Moreover, gap n. 2 (the one where physics injection is applied)
shows a clearly different trend: this is due to the injection RC circuit put in parallel to
the gap capacitance, as is evident from simulation in Figure 3.12. It must be noted that
all these effects are well evident in a Cs-vs-freq plot, but not quite in the corresponding
|Z|-vs-freq plot.

5The effects of Strips, Back and injector on the physics and calibration signals will be discussed in
Section 3.6.
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3.4 – Electrical parameters measurements on the mock–up

Figure 3.10: Typical measurements of Cs and |Z| as functions of frequency for:
(top) 4 gaps connected by the SB, and (bottom) single gaps nn. 1, 2,
3. The horizontal scale is logarithmic between 1 kHz and 100 MHz.
In the bottom plot, the gap with anomalous trend (the “knee” at
≈ 15 kHz) is n. 2, where the physics injection is applied.
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Figure 3.11: Simulation of the Strips and Back effect on Cs and X = Im(Z)
for: (top) 4 gaps connected by the SB, and (bottom) a single
gap. The four curves describe the predicted trend for Middle
only (solid), Middle+strips (dashed), Middle+back (dotted) and
Middle+strips+back (dash-dotted). In the simulation, typical values
for the detector parameters are used.
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Figure 3.12: Simulation of the physics injector effect on Cs and X = Im(Z) for:
(top) 4 gaps connected by the SB, and (bottom) a single gap. The
solid line is the trend without injector; the dashed line is the distortion
due to the presence of the 4 kΩ - 100 pF physics injector (i.e. the one
in use); the dotted line shows that decreasing R while keeping RC
constant, increases the distortion.
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As shown in Figures 3.11 and 3.12, the effect of strips, Back and injector does not
affect the value of Im(Z) near the resonance, where it can be described as:

Xres = ωL − 1

ωC
(3.18)

Therefore, L and C are extracted by fitting the function (3.18) to the data in a
frequency range between ±1.5% around the zero crossing6. The frequency interval for
the fit has been chosen in order to keep the result stable. Typical precision, estimated by
repeating the frequency scan few times over the same cells and refitting, are δC ≈ 15 pF
and δL ≈ 5 nH.

3.4.2 Results from L and C measurements

Capacitance and inductance measurements have been carried out over the first 16 middle
channels and 8 Back channel of the mock–up corresponding to the region 0.8 ≤ η ≤ 1.2,
or to Middle cells 32÷47. For each channel, measurements have been performed both on
single gaps and on the SB.

Connectors 1 and 3 (middle cells 32÷35 and 40÷43 respectively) are equipped with
two ground springs each, while connector 4 (middle cells 44÷47) has only one ground
spring on the low-η side. Connector 2 (middle cells 36÷39) was originally equipped with
one ground spring, but a second removable one has been added, and C,L measurements
have been performed both with one and two ground springs.

The C,L scan along η for single gaps, with two ground springs on connector 2, is
displayed in Figures 3.13 and 3.14 for Middle and Back samplings, respectively.

The L measurements show a very good agreement, within few nH, among the different
gaps, which is expected since the inductive paths are located on the electrodes, and
therefore must be equal to each other. In the Middle sampling, a “high-low-low-high”
pattern with periodicity 4 cells is clearly visible: this is evidently due to the readout
electrode layout.

The C measurements show similar trends for gaps nn. 1, 3, 4: the absolute difference is
explained by the dielectric compression due to absorbers weight, which causes lower gaps
to exhibit larger capacitances. The anomalous trend on gap n. 2 in the Middle sampling
is due to the presence of the coaxial cables connected to physics injectors: all cables enter
the mock–up from the large-η edge, and each ends on a different cell, therefore there is
more material in the gap at large η than at low η. This phenomenon has been understood
quantitatively, and it is also a validation of the precision achieved in the measurement.

The C,L scan along η with the SB (i.e. summing together the four gaps) is displayed
in Figures 3.15 and 3.16 for middle and Back samplings, respectively. Here, measurements
are performed both with one and two ground springs on connector 2: the effect can
be observed on cells 36÷39. When removing the ground spring on the large-η side, the
measured inductances increase, especially near the side where the ground is removed, while
the C values are essentially unchanged. The increase in the measured inductance indicates

6Xres is null for ω = ω0 = 1/
√

LC, and the slope is (dXres/dω)ω=ω0
= 2L, therefore the curve of X

around the resonance contains sufficient information to extract L and C.
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3.4 – Electrical parameters measurements on the mock–up

Figure 3.13: Measurements of the L,C values for single Middle gaps in the region
η = 0.8 ÷ 1.2, corresponding to Middle cells 32÷47. Only connector 4
has one ground spring.
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Figure 3.14: Measurements of the L,C values for single Back gaps in the region
η = 0.8 ÷ 1.2, corresponding to Middle cells 32÷47. Only connector 4
has one ground spring. Back cells numbering refer to the corresponding
“even” Middle cell.
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Figure 3.15: Measurements of the L,C values for Middle cells with SB, in the region
η = 0.8 ÷ 1.2, corresponding to Middle cells 32÷47. Connector 4
has one ground spring. For connector 2 the measurement has been
performed both with two and one ground spring (squares and stars,
respectively).

47



Chapter 3 – Electrical properties and signal shapes in the EMC

Figure 3.16: Measurements of the L,C values for Back cells with SB, in the region
η = 0.8 ÷ 1.2, corresponding to Middle cells 32÷47. Connector 4
has one ground spring. For connector 2 the measurement has been
performed both with two and one ground spring (squares and stars,
respectively). Back cells numbering refer to the corresponding “even”
Middle cell.
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that the ground return path from the SB output to the absorber is also inductive, and
more precisely the inductance is located partly on the SB “ground” plane and partly on
the electrode. This feature is discussed in more detail in Section 3.6.

By comparing the measured L values with and without SB (see Figure 3.17)
information can be extracted on the inductive signal path on the SB. Naively (i.e.
neglecting the capacitances!) one would expect:

1

L4gaps
=

4∑

gap=1

1

Lgap
(3.19)

while the data show an offset between the two quantities, which could be taken as an
estimate of the SB inductance (≈ 12 nH)7.

3.5 Signal measurements on the mock–up

In the ATLAS LAr EMC, “physics” signals (originated by electromagnetic cascades) are
like triangular current pulses closed on the detector capacitance C and read-out through
a chain with input impedance Zro; therefore, the current seen is scaled by a factor
1/(1 + sCZro) (in the Laplace domain). This factor is not uniform over the calorimeter,
since the C value varies along η. For this reason, the calorimeter has been designed to be
electronically calibrated cell by cell, by sending a known current pulse in each channel and
reading the output signal. Then, the physics signals must be scaled by a factor inversely
proportional to the corresponding calibration signal amplitude.

This method works only in principle, since the physics and calibration current pulses
are generated on different places in the detector, as already explained in Section 3.2.
Therefore, the calibration procedure must be further refined. The mock–up provides a
good tool to study these features. In particular, the dependence of physics and calibration
signals on the detector capacitance and inductance have been studied, as well as the effect
of having one or two ground springs on a SB connector.

3.5.1 Single physics injection

Physics and calibration signals have been injected on Middle cells 32÷39, corresponding
to the region 0.8 ≤ η ≤ 1.0. The pulse generator has been operated to generate a 3 V
step-function, and the waveforms have been acquired on the Tektronix oscilloscope and
then analyzed offline to find the peak amplitude and timing. For Middle cells 36÷39 the
acquisition has been performed both with two and one ground spring.

Typical examples of physics and calibration waveforms after the shaping filter (τsh =
15 ns) are displayed in Figure 3.19. The calibration waveform (right) differs from the
physics waveform (left) especially for the “shoulder” on the rise. This effect, which is
also predicted by simulations, is due to the cell inductance, which is seen in series with
the read-out by the physics signal, but in parallel by the calibration. The effect is even

7This inductance is located on the signal output path, and is not to be confused with the inductive
ground return mentioned before.
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Figure 3.17: Comparison of L measurements with and without summing board.
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Figure 3.18: Comparison of C measurements with and without summing board.
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more evident when the shaping time is decreased from 15 ns to 5 ns, in which case the
“shoulder” becomes a sharp peak.

physics waveform

calibration waveform
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Figure 3.19: Typical waveforms shaped at τsh = 15 ns, for a physics (black) and a
calibration (red) signal, acquired on the same cell (middle 39 with two
ground springs).

In Figure 3.20 some correlations between signal amplitudes and C, L cell parameters
can be observed. Figures (a) and (b) show that an increase in C determines a decrease
in both the physics and calibration peaks; here the correlation is not so evident, because
the signal amplitude is influenced also by other parameters, such as L. In figure (c) the
correlation between physics and calibration amplitudes is evident, which legitimates the
procedure of correcting the physics signal by the inverse of the calibration. However,
even after this correction, the cells equalization is not complete, as a dependence on the
inductance L is still manifest, as in figure (d). Here, it is also evident that the removal of
one ground spring increases the effective inductance and at the same time increases the
physics-to-calibration ratio.

The η-scan for physics and calibration measurements is displayed in Figure 3.21.
Physics and calibration oscillate with a peak-to-peak variation of ∼ 3%, following similar
patterns. The effect of the 2nd ground spring removal is most evident on Middle cell 39,
where the inductance variation is most sizable; the signal distortion is +0.6% for the
physics, −0.8% for the calibration, and +1.4% for the physics-to-calibration ratio. The
removal of the 2nd ground spring affects also the response uniformity over the examined 8
Middle cells: the r.m.s. non–uniformity in the physics-to-calibration ratio increases from
0.3% to 0.6%, while the peak-to-peak deviation increases from ∼ 1% to ∼ 2%.
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Figure 3.20: Correlations among signal amplitudes and C, L cell parameters.
Measurements are displayed both for two ground springs (solid circles)
and one ground spring (open squares).
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Figure 3.21: Physics and calibration signal measured as a function of η. The
plots on the left show the peaks of the output shaped signals
for “physics”and “calibration” injection in cells 32÷39 from Middle
sampling, and the ratio between the two. Solid circles (open squares)
refer to measurements performed with two (one) ground springs per
connector. The corresponding plots on the right show the relative
deviation between the two ground configurations.
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3.5.2 Multiple physics injection

To simulate the effect of grouping neighboring cells into a “cluster”, as it happens in
the real detector offline analysis, a multiple “physics” injection has been performed on
groups of three contiguous cells. The central cell and the two side cells of each group are
injected with 2.4 V and 0.3 V step-function, respectively, in order to mimic a 10%-80%-
10% energy sharing8.The calibration signals have been injected on single cells 9.The region
0.8 ≤ η ≤ 1.05 has been scanned, corresponding to Middle cells 32÷41.

In the mock–up framework the amount of current injected to generate the calibration
signal is always the same for each cell: following the standard EMC calibration strategy,
we define the “gain” of each readout channel as Gm = 1

Ecali
m

, where Ecali
m is the calibration

signal amplitudes measured at the end of the readout chain (i.e. after the shaper) on cell
m. The calibrated cluster “energy” around cell k (32 ≤ k ≤ 40) is then computed as the
sum of the calibrated “energy”:

Eclus
k =

k+1∑

m=k−1

GmEphys
m =

k+1∑

m=k−1

Ephys
m

Ecali
m

(3.20)

where Ephys
m is the physics signal amplitudes measured at the end of the readout chain on

cell m.

The results are shown in Figure 3.22. Clusters around cells M32 and M41 are about
10% lower than the others, because one of the side cells is missing (cell M31 and M42
respectively). Clusters around cells M33÷M38 (two consecutive connectors, excluding cell
M32) exhibit a spread of 0.3% (0.45%) when two grounds are (one ground is) connected.
Removing the 2nd ground from the 2nd connector, the maximal deviation is observable in
the cluster around cell M39, amounting to 1.1%.

8In test–beam data analysis, clusters are obtained grouping 3×3 Middle cells. By requiring that the
energy centroid be well centered with respect to the central cell, the energy sharing for a 300 GeV electron
is about (in percentage):

0.75 7 0.75

7 69 7

0.75 7 0.75

therefore, projecting onto the η axis, one gets 8.5%-83%-8.5%, similar to the sharing used here.
9This is slightly different from what happens in the real calorimeter, where more than one cell are

pulsed at the same time, according to the pattern:

3 4 1 2

1 2 3 4

3 4 1 2

1 2 3 4

This fact might induce signal distortions in the pulsed cells, due to cross-talk effects.
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Figure 3.22: Signal amplitudes, measured as a function of η, for calibrated cluster
obtained by injecting 80% of the signal in the central cell and 10% in
each of the side cells. In the top figure, solid circles (open squares)
refer to measurements performed with two (one) ground springs per
connector. The bottom figure displays the relative variation between
the two configurations.
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3.6 Signals simulation

The response of the mock–up detector both to a “physics” and to a “calibration” pulse
has been simulated using a SPICE [61] equivalent circuit model, performing a transient
analysis while injecting the cells in the appropriate place of the network. The goal of the
simulation is to to test the accuracy of the model used to describe the detector. It has
been also possible at the same time to investigate the dependence of the response to the
pulses on the values of the lumped elements of the network.

3.6.1 Effective detector description for simulation

Since the electrode model discussed in Section 3.2.2 is too complex to be suitable for a
simulation, we develop an effective description of the six cells that share the same SB
(four cells in the Middle and two in the Back sampling), starting from the “reasonably
simplified” equivalent circuit of one detector cell shown in Figure 3.3.

The effect on the distribution of the ground voltage reference on SB itself and the
capacitive coupling between neighboring cells is taken into account. This complete
equivalent circuit model of the six cells is shown in Figure 3.23.

The full complexity of the circuit is anyway not necessary to accurately simulate the
electrical behavior of the mock–up cells. The final equivalent circuit used in the simulation
is somehow simpler, mainly because of the following two assumptions:

• A cell, composed by four LAr gaps joined together by a SB, is well represented in
the useful frequency range by an effective single capacitance and an effective single
inductance connected in serie. It is reasonable to neglect the effect of the kapton
capacitances, since in the SPICE circuit the effective C and L values, measured as
described in Section 3.4, are used. Mutual inductances between neighboring channels
are also neglected.

• The effect of the resistive coupling between the cells of the Middle and the Strips
(drawn as R-C branches in parallel to the Middle gap capacitances in Figure 3.23)
causes an attenuation of −0.3% on the signal peak. This distortion is quantitatively
the same (within 0.02%) for physics and calibration signal, and it does not depend
on the cell parameters (L, C, etc.), therefore it does not affect the uniformity, and
cancels out when evaluating the physics-to-calibration ratio. The presence of physics
injectors in gap n. 2 affects the calibration signal by a −0.3%, again uniformly over
the different cells. For this reason, the Strips and the physics injectors have not been
included in the simulation. Similar arguments prove that the HV bias resistances
can be neglected in the simulation.

Other basic characteristics of the model used in the simulation are the following:

• The six read-out lines take the ground reference from the same shared SB. This
“ground return” path is naively modeled by an inductive chain, exactly as shown in
Figure 3.23. The inductance between two neighboring channels is supposed to be
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Figure 3.23: Complete equivalent circuit describing six cells (four from Middle and
two from Back sampling) sharing the same SB. The inductive ground
return path and the cross capacitances between neighbor cells are
shown.
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small and equal (Lx) for each pair of neighboring cells. The ground plane on the
SB is connected to the ground reference on the absorber planes by two inductive
paths (LG) going to the ground springs (see Section 3.6.2 for details on Lx and LG

calculation). The effect of the absence of the of the second ground connection in
cells 36÷39 is simulated by removing one of the two LG in the large-η side.

• The capacitive coupling between neighboring cells has been described connecting
the channels with cross capacitances (Cx). The direct measurement of the Cx values
on the mock–up is difficult and really imprecise. In the simulation we used one
single value for the Cx between every two adjacent Middle cells (Cmm

x = 80 pF),
and one for the Cx between every Middle cells and its neighboring Back (Cmb

x = 5
pF). These values have been estimated from the low-voltage test measurements on
the electrodes.

• For every cell the readout chain is represented by a 25 Ω resistance, that simulates
the behavior of a perfectly terminated line followed by a perfect preamplifier with
infinite flat bandwidth. After this termination resistance an equivalent circuit for a
CR-RC2 shaper is connected. This is modeled as a chain of CR or RC stages, each
powered by a voltage source driven by the output voltage of the previous stage.

CR RC2 CR RC2 CR RC2 CR RC2 CR RC2 CR RC2

M B M M B M

Lx

Lg Lg

Lx Lx Lx Lx

LM BL BLLM LM LM

BC BCMCMCMC MC
xC
mb

xC
mb

xC
mb

xC
mb

xC
mm

xC
mm

xC
mm

Figure 3.24: Simplified equivalent circuit used for the SPICE simulation, describing
six cells (four from Middle and two from Back sampling) sharing the
same SB.

The actual equivalent circuit used for the simulation is shown in Figure 3.24. The
simulation is performed on a global equivalent circuit describing 12 cells of the Middle
sampling (32÷43) and the corresponding 6 cells of the Back sampling. C and L values
are taken from measurements described in Section 3.4. The circuit corresponds to 3 SB.
The measured values for the cells effective capacitances and inductances are used for all
the cells of the Middle and Back samplings of the mock–up. Cross-capacitances between
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neighboring cells of the Middle sampling sharing different SB have been added, their values
being estimate from the standard low–voltage RC tests performed on the electrodes.

Results of the simulation using this effective circuit and comparisons with
measurements on the hardware model are discussed in Section 3.6.3.

3.6.2 Inductive ground return estimate

For the cells belonging to the second SB (middle cells from 36 to 39) the measurements
of the effective values of capacitances and inductances has been performed both with
and without the second ground connection. We find compatible values for the effective
capacitance, and, as expected, different values for the effective inductance. These pairs of
different L values are used to estimate the components Lx and LG of the inductive ground
return path.

Calling Lk the specific inductance, located on the electrode, of the k-th cell out of the
n sharing the same SB, according to the model shown in Figure 3.23 the k-th channel sees
an effective total inductance amounting to:

L2gnd
k = Lk + (LG + (k − 1)Lx) ‖ (LG + (n − k)Lx)

= Lk +
L2

G + (n − 1)LGLx + (n − k)(k − 1)L2
x

2LG + (n − 1)Lx
(3.21)

in the case where both of the ground springs are connected, or

L1gnd
k = Lk + LG + (k − 1)Lx (3.22)

in the case where only one is connected. In this evaluation, possible effects due to mutual
inductances have been neglected. The difference between these two values is:

∆Lk =
(LG + (k − 1)Lx)2

2LG + (n − 1)Lx
(3.23)

from which it is possible to calculate the values of Lx and LG, since:

∆Ln − ∆L1 = (n − 1)Lx (3.24)

L2
G = ∆L1 (2LG + (n − 1)Lx) (3.25)

The values of the effective inductance measured on the mock–up for cells 36÷39 of the
Middle sampling and 36 and 38 of the Back sampling are shown in Figure 3.25, versus
their relative position on the SB itself (M36, B36, M37, M38, B38, M39). An increasing
trend is clearly visible when removing the second ground connection.

The estimate of Lx and LG has been done using the global variation of L between
the two edge channels on the SB (k = 1, Middle cell 36; k = 6, middle cell 39):
(∆L6 − ∆L1) = 5Lx ' 8.7 nH from which we obtain the values:

Lx ' 1.7 nH
LG ' 3 nH

that are used in the SPICE equivalent circuit.
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Figure 3.25: Effective L values of mock–up cells 36÷39 of the Middle sampling
and 36 and 38 of the Back sampling, versus their relative position
on the SB itself (M36, B36, M37, M38, B38, M39). On top the values
measured with and without the second ground connection, on bottom
the difference between the two series.
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Figure 3.26: Results of simulation using the detector SPICE model. The plots on
the left show the peaks of the output shaped signals for “physics”and
“calibration” injection in cells 32÷39 from Middle sampling, and the
ratio between the two. The two series in each plot refer to two-grounds
(solid circles) and one-ground (open squares) configurations on the
second connector. The corresponding plots on the right show the
relative deviation between the two ground configurations.
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3.6.3 Results and comparison with measurements

Results of the simulation are shown in Figure 3.26. The first two plots on the left show the
peaks of the output shaped signals for “physics” and “calibration” injection in cells 32÷39
from Middle sampling. The two series of data in each plot refer to the values obtained
using one or two ground connections in the second connector. The third plot on the left
shows the ratio between the “physics” and “calibration” output signal peaks, again both
for the one-ground and two-grounds configurations. The corresponding plots on the right
show the relative deviation between the two ground configurations.

The trend of the “physics” and “calibration” output signals peaks is mainly driven by
both the cell capacitances and the cross-capacitances values. The effect of the capacitance
values is the same for both “physics” and “calibration” signals, and cancels out when
calculating the ratio.

The output of cell 32 is significantly higher then the others, both in “physics” and in
“calibration”. This is due to the absence of a capacitive coupling to a neighboring cell
on the small-η side: this is in agreement with what observed in the data collected on the
mock–up.

The simulation predicts an increase of the “physics” signals, due to the absence of the
second ground connection, that is roughly linearly dependent on the position of the cell in
the SB. The maximum value of the relative increase is +0.4% for cell 39, which is farthest
from the ground spring. A similar behavior is predicted for “calibration” output signals,
that shows a linear decrease whose maximum value is −1.2% for cell 39. The overall
effects of the absence of the second ground connection on the ratio between “physics”
and “calibration” signal is +1.6% for cell 39. This result is in fair agreement with what
observed on the mock–up (see Section 3.5). This leads to conclude that the set-up used to
simulate the detector is correct, both in the equivalent circuit model and in the parameters
values used.

Simulations similar to the one described above have been performed using different
values of the equivalent circuit parameters. As mentioned before, the results are not
sensitive to cell capacitances or cross capacitances values, at least in the ratio between
“physics” and “calibration” output signals. On the other hand, this ratio is very sensitive
to the inductance values, especially to the ground return path component Lx, as can be
noticed from Figure 3.27.

The plots report the percentage variation on the output signal peaks on cell 39 from
Middle sampling, between the configuration with one and two ground connections. It is
evident that the effect increases linearly with the value of Lx; the proportionality constant
is approximately 0.9% /nH10

3.6.4 Multiple physics injection

Similarly to what has been done for the signal measurements, a simulation has been carried
out to study the performances of clusters. Three cells are injected at the same time, with

10This refers to a variation on the value of each Lx out of the five in the inductive ground chain. In
every simulation the value of the two LG is left equal to 3 nH each.
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Figure 3.27: Percentage variation on the output signal peaks (“physics”,
“calibration”, ratio between the two) on cell 39 from Middle sampling,
between the configuration with one and two ground connections.
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80% of the overall energy in the central cell and 10% in each side cell. The cell around
which the cluster is built runs from M32 to M43.

The results are shown in Figure 3.28. Clusters around cells M32 and M43 are about
10% lower than the others, because one of the side cells is missing (cell M31 and M44
respectively). Clusters around cells M33÷M38 exhibit a spread of 0.3% (0.7%) when two
grounds are (one ground is) connected. Removing the 2nd ground from the 2nd connector,
the maximal deviation is observable in the cluster around cell M39, amounting to 1.5%.

Figure 3.28: Signal amplitudes, predicted for calibrated cluster obtained by
injecting 80% of the signal in the central cell and 10% in each of
the side cells. In the top figure, solid circles (open squares) refer to
measurements performed with two (one) ground springs per connector.
The bottom figure displays the relative variation between the two
configurations.
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3.7 Summary and perspectives

The mock–up built in Milano proved to be a good apparatus to test in detail the electrical
properties of the ATLAS LAr EMC. It has been possible to better understand the electrical
behavior of the electrodes, and create a model with lumped elements that reasonably
describes the observations. Signal waveforms are understood, both for ionization and
calibration signals.

The system exhibits an intrinsic non–uniformity over the first eight Middle cells of
electrode B (corresponding to 0.8 < η < 1.0) of about 0.3%. This value is worsened when
removing one ground spring from the 2nd electrode-to-SB connector, becoming 0.6% for
single injection and 0.45% for cluster-like injection. The effect of this distortion is mostly
evident on Middle cell 39 (0.975 < η < 1), where the ground spring removal causes an
increase of the physics-to-calibration ratio of 1.4% for single cell injection and of 1.1%
for cluster-like injection. The values are in fair agreement with simulations, that predict
respectively 1.6% and 1.5%. The simulations prove that the effect of removing one ground
spring is due to the inductive nature of the ground reference on the SB, and amounts to
∼ 0.9%/nH × Lx, where Lx is the inductance on the SB ground plane existing between
two adjacent channels. As a direct consequence of the results of this study, the design of
the EMB electrodes as been changed adding a second ground–connection spring to the
connectors lacking of one. A picture of the modification is shown in Figure 3.29.

These results go in the right direction to explain the disuniformities observed in the
2000 EMB test-beam data, which are however at least a factor of two larger than observed
on the mock–up. There are several reasons why we can expect the mock–up to give a
better performance of a real module at the test-beam:

• In the “mock–up” we mimic the ionization signals with a single exponential pulse
injected on a single LAr gap; in the test-beam the real ionization signal is triangular
(see Appendix A for details), and it is generated by the charge released by the
developing electromagnetic shower. No cross–talk is directly taken into account in
the mock–up.

• The mock–up signals are not acquired through full readout chain (MB + cables +
analogic and digital electronics), they do not suffer of reflections and electronics
noise as in the test-beam.

• Finally, the mock–up signals are not digitized at the ATLAS 40 MHz sampling
frequency as in the test-beam: the peak reconstruction is easier and more precise,
since the oscilloscope provide a 1 GHz sampling, and we keep the whole extension
of the signals up to 1 µs. As in the ATLAS experiment, in the test-beam only 5
samples every 25 ns are kept and used to reconstruct the signals amplitudes.

In the next chapters we devote our attention to this last point: we show how the signal
reconstruction algorithm can magnify the system intrinsic non–uniformity, then we move
to study how this non–uniformity can be cured by an ad–hoc improved reconstruction and
calibration procedure.
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Figure 3.29: Ground connection spring modification on the EMB readout
electrodes: (top) missing–spring old layout; (bottom) new symmetric
layout.
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Chapter 4

Signal reconstruction algorithms

study

The EMC system intrinsic non–uniformity, that we showed to be related to the detector
electrical properties, has been discussed in Chapter 3. We now focus the attention to the
signal reconstruction (SR) algorithms.

In Section 4.1 we show the uniformity results when the same SR algorithm that is used
to reconstruct the energy with the test-beam data discussed in Section 3.1 (Figure 3.1) is
applied to the mock–up signals. We show that this SR algorithm (“parabola” SR) magnifies
the intrinsic system non–uniformity. Using aagain the mock–up signals, we demonstrate
then how the non–uniformity can be cured applying an ad–hoc correction (Section 4.2).
We finally discuss how this correction can be applied to the data coming from the real
detector system, in the framework of the optimal filtering SR technique (Section 4.3).

4.1 Analysis of the “parabola” SR algorithm

The ATLAS EMC data acquisition (DAQ) system is synchronized on the 40 MHz LHC
bunch–crossing frequency; for obvious reasons, the same holds for the EMC test-beam
DAQ system. In this case however the beam particles come asynchronous with respect
to the DAQ clock: the ionization signals are therefore uniformly randomly distributed
with respect to the 25 ns sampling period. The test-beam framework needs a SR system
able to reconstruct the peak of the signals, whatever the delay between the sampling
clock and the signal arrival time is. The so-called “parabola” algorithm is the first and
simplest SR system that as been implemented in the reconstruction software for the EMC
test-beam [52].

4.1.1 Algorithm working principles

The ionization signals emerging from each EMC readout cell are continuously sampled
every 25 ns. When a physics event is accepted by the trigger system, 5 samples are digitized
and saved. The “parabola” SR algorithm uses 3 out of the 5 saved samples to reconstruct
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the amplitude and peak time of the signal. It is the SR technique used to analyze the
data discussed in Section 3.1. The “parabola” SR algorithm attempts to retrieve the signal
amplitude and arrival time values performing an interpolation of the digitized samples.
The 25 ns sampling period is too long to allow a direct peak reconstruction through a fit
procedure. The “parabola” strategy consists in obtaining a first “raw” informations from
the 3 samples interpolation, and coming then to the refined values in applying an ad–hoc
correction:

PARABOLA peak value - delay = 12 ns
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 (
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)
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Figure 4.1: First step of the “parabola” SR algorithm: a “raw” timing information
is computed interpolating 3 sampled points of the signal.

• 3 signal samples out of the 5 saved (the greater one and its two neighbors) are
interpolated with a parabolic function (Figure 4.1). The time corresponding to the
vertex of the interpolating parabola is used as a first “raw” timing information.

• The signal waveform after the shaping filter is assumed to be perfectly known
(reference signal, Figure 4.2); two correction functions are computed from this
reference waveform. The first function correlates the reference signal peak time to the
“raw” timing information that can be obtained through the “parabola” interpolation
(Figure 4.3 (top)). The second function correlates the ratio between the reference
signal real amplitude and the maximum signal sample to the same “raw” timing
information (Figure 4.3 (bottom)).

• The two correction function are stored in a software look-up table. During the
EMC test-beam data reconstruction, for each signal the “raw” timing information
is computed from the 3 samples. The “true” peak time of the digitized signal is
directly obtained from the first correction function. The digitized signal amplitude
is computed applying to the maximum signal sample the proper correction value
from the second function.
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Figure 4.2: Reference signal waveform after the shaping filter. In the “parabola”
SR algorithm the shape of this reference waveform is assumed to be
perfectly known.

Two concurrent problems affect this system: the set of correction functions used in the
test–beam data reconstruction software EMTB [52] is the same for all the cell of the same
sampling, thus the system does not take into account the cell-to-cell signal difference we
showed in Chapter 3; the reference waveform used to compute the correction functions
is a calibration waveform, thus it does not take into account the ionization-to-calibration
difference we showed in Chapter 3.

4.1.2 Test on mock–up signals

We take a mock–up calibration waveform from cell M32 (according to the numbering
explained in Section 3.3.1) and compute the correction functions as a function of the delay
value. We use then these correction functions with the “parabola” SR algorithm, and
reconstruct peak and arrival time of:

• the same waveform used to compute the functions (Figure 4.4);

• the “ionization1” waveform collected from the same cell (Figure 4.5);

• the calibration waveform from a different cell (M39) (Figure 4.6);

• the “ionization” waveform collected from a different cell (M39) (Figure 4.7).

1Here “ionization” is used according to the mock–up standard, e.g. an exponential pulse injected on
the detector gap.
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Figure 4.3: “Parabola” SR algorithm time (top) and amplitude (bottom) correction
functions.
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Figure 4.4: “Parabola” SR algorithm performances, when the correction functions
obtained from a mock–up calibration waveform are used to reconstruct
the same sampled calibration signal: difference between “true” and
reconstructed peak time, as a function of the signal delay value
(left); percentage difference between “true” and reconstructed signal
amplitude, as a function of the signal delay value (right).
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Figure 4.5: “Parabola” SR algorithm performances, when the correction functions
obtained from a mock–up calibration waveform are used to reconstruct
the sampled “ionization” signal from the same cell: difference between
“true” and reconstructed peak time, as a function of the signal delay
value (left); percentage difference between “true” and reconstructed
signal amplitude, as a function of the signal delay value (right).
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Figure 4.6: “Parabola” SR algorithm performances, when the correction functions
obtained from a mock–up calibration waveform are used to reconstruct
the a sampled calibration signal from a different mock–up cell: difference
between “true” and reconstructed peak time, as a function of the
signal delay value (left); percentage difference between “true” and
reconstructed signal amplitude, as a function of the signal delay value
(right).
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Figure 4.7: “Parabola” SR algorithm performances, when the correction functions
obtained from a mock–up calibration waveform are used to reconstruct
the sampled “ionization” signal from a different mock–up cell: difference
between “true” and reconstructed peak time, as a function of the
signal delay value (left); percentage difference between “true” and
reconstructed signal amplitude, as a function of the signal delay value
(right).
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If for the same waveform the accuracy of the reconstruction method is virtually perfect
(Figure 4.4), when it is applied to a different waveform (for cell or type) it shows its
weakness. The reconstructed signal amplitude and time strongly depend in fact on the
signal delay. The different electrical properties of the readout cells distort the signals,
leading to a deviations up to ∼0.3% in the amplitude estimation, and up to ∼700 ps in
the time estimation (Figure 4.6). The effect is similar and even greater due to the fact
that the ionization and the calibration signals have not the same shape: a deviation in the
time estimation up to ∼700 ps is again found, the amplitude estimation can be incorrect
up to ∼0.4% (Figure 4.7).

A further step consists in trying to simulate the test-beam SR conditions along the 8
mock–up Middle sampling cells, similarly to what we did in Chapter 3. In this case:

• the “ionization” signals are multiply–injected in order to simulate the shower energy
sharing among the neighboring cells (this procedure has been described in detail in
Section 3.5.2;

• the “ionization” signals peaks are reconstructed with the “parabola” SR algorithm
for the 25 different possible delay values, the resulting peak values are averaged;

• since calibration signals are supposed to be synchronous with the DAQ, the
maximum of every signal is forced to directly correspond to a sample.

Results of this procedure are shown in Figure 4.8, where the “ionization” peaks, calibration
peaks and “ionization”–over–calibration peak ratios are reconstructed using a polynomial
fit on the 1 GHz oscilloscope samplings (“true” reconstruction, as used in Chapter 3),
and through the “parabola” SR algorithm. The procedure has been applied to the signals
collected both with 1 and 2 ground springs on the second mock–up connector.

The effect of removing the second ground connection on cell M39 pass from 1.1%
(“true” reconstruction) quoted in Section 3.5.2 to 1.4% (“parabola” reconstruction). The
uniformity (RMS/mean) of the 8 Middle cells system pass from 0.3% to 0.4% when the
second ground is connected, from 0.6% to 0.8% when it is removed. The intrinsic non–
uniformity of the system is evidently magnified by the “parabola” SR algorithm. For this
reason the “parabola” SR algorithm is presently used only for the raw on-line monitoring
of energy deposited in the EMC modules during test-beams data takings.

A final remark is necessary: apart from its non–uniformity–magnifying properties, the
“parabola” SR algorithm use a single sample to compute the amplitude of the signal. For
this reason the quantities obtained using this technique are more affected by the noise
fluctuations than the ones computed with techniques using more than one sample. It
would therefore not be suitable to be used at the LHC, while running at low luminosity
L ' 1033 cm−2s−1. At that condition in fact the EMC readout electronics is not optimized
to minimize the noise (see Appendix B for details).
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Figure 4.8: Comparison between “parabola” (empty symbols) and “true” (full
symbols, corresponding to a polynomial fit on the peak region) peak
reconstruction of the mock–up signals, in case of multiple “physics”
injection (cluster 10%/80%/10%): “ionization” vs. Middle cell position
(top); calibration (middle); “ionization” over calibration ratio (bottom).
Red symbols refer to the mock–up having only 1 ground returns
connected in the second connector; black symbols to 2 ground returns
connected.
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4.2 Injection point correction

4.2.1 Basics

The intrinsic non–uniformity of the EMC system can be cured with a cell–dependent
correction to be applied on the signals. The ionization and calibration pulses differ in shape
(Appendix A), and they are generated in different place of the detector, as it is showed in
Figure 3.2. Since the gain of each readout cell is computed through the reconstruction of
a calibration pulse (see Section 2.3.5), this gain should be applied to the ionization signal
emerging from the cell after is has been corrected for its difference respect to the calibration
signal. The non–uniformity due to the cells electrical properties is reduced if corrections
for the ionization–to–calibration shape difference and for the different injection points are
applied to the ionization signals during the peak reconstruction.

If we consider the simplest model of an EMC cell discussed in Section 3.2.1, from
equation (3.12) we know that at the end of the readout chain the ionization pulse differs
from the calibration pulse by two factors:

V phys
out (s) = V cali

out (s) ×
(

Iphys
inj (s)

Icali
inj (s)

)

︸ ︷︷ ︸

ionization–

to–calibration

signal shape ratio

×
(

1

1 + s2LC

)

︸ ︷︷ ︸

injection–point

difference

(4.1)

being L the effective inductance and C the effective capacitance of the cell. The readout
gain obtained from the calibration pulse should then be applied to the corrected ionization
signal:

V phys
out (s)

∣
∣
∣

corr
= V phys

out ×
(

Icali
inj (s)

Iphys
inj (s)

)

︸ ︷︷ ︸

ionization–

to–calibration

shape correction

×
(
1 + s2LC

)

︸ ︷︷ ︸

injection–point

correction

(4.2)

The injection–point correction needs the knowledge of the LC parameter for each readout
cell. We’ll come later to the details of the ionization–to–calibration signal shape difference

correction
(

Icali
inj

/
Iphys
inj

)

.

4.2.2 Injection point correction on mock–up signals

The effectiveness of the injection–point correction can be easily tested on the mock–up
signals. In the mock–up framework we mimic the ionization signal injecting at the detector
gap level a pulse that is identical to the calibration exponential one (see Section 3.3.2).
The mock–up corrected “ionization” signal is then:

Iphys
inj (s) = Icali

inj (s) ⇒ V phys
out (s)

∣
∣
∣

corr
= V phys

out (s) ×
(
1 + s2LC

)
(4.3)
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or, in the time domain:

V phys
out (t)

∣
∣
∣

corr
=

(

1 + LC
d2

dt2

)

V phys
out (t) (4.4)

We proceed as the following (see Figure 4.9):

• The correction (4.4) is applied to the mock–up “physics” signals V phys
out (t);

• The peak of the corrected “physics” signal Aphys = max
{

V phys
out (t)

∣
∣
∣

corr}

is

reconstructed as in Chapter 3 (polynomial fit on the 1 GHz oscilloscope samplings);

• The peak Acali = max
{
V cali

out (t)
}

of the corresponding mock–up calibration signals
is reconstructed in the same way;

• The “calibrated” signal is computed as the ratio Aphys

Acali as for the mock–up uniformity
study of Chapter 3.

The injection–point correction to the “physics” signals is applied using the LC values
measured from the mock–up Middle cells, according to the procedure described in
Section 3.4.

The “calibrated” signals along the 8 mock–up Middle cells are shown in Figure 4.10
both in the 1–ground and 2–ground connection configuration; they are compared with the
non–corrected results discussed in Chapter 3. The uniformity values are listed in Table 4.1.

uniformity (%) non–corrected with LC correction

1 ground 0.36 0.14
2 ground 0.60 0.15

Table 4.1: Mock–up uniformity (RMS %) with and without injection–point (LC)
correction.

Since after the correction the 8 Middle cells residual non–uniformity is compatible
with the mock–up signal injectors non–uniformity (see Section 3.3.2), we can state that
the injection–point correction eliminates almost perfectly the intrinsic non–uniformity of
the system, in both the two ground connections configurations. Being in fact the ground
spring effect of inductive nature (Chapter 3), the correction is able to flatten the detector
response for the cells the second mock–up connector (M36÷M39), even if the second ground
spring is not present (Figure 4.11).

The corrected calibrated response is systematically lower than the non–corrected one
(Figure 4.10): the cell effective inductance L is in fact responsible for the systematic
increase of the ionization signals peak, as in has been shown in Figure 3.20. If the
injection–point correction is not applied, even after the calibration procedure the cells
equalization is not complete, and the reconstructed energy is in general overestimated.
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Figure 4.9: Injection–point correction on the mock–up M39 cell signals: measured
“ionization” signal (black) and corrected “ionization”signal (red)
comparison (top left); measured calibration signal (black) and
corrected “ionization” signal (red) comparison (bottom left); measured
“ionization” signal peak detail (top right); corrected “ionization” signal
peak detail (middle right); measured calibration signal peak detail
(bottom right).
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Figure 4.10: Mock–up “calibrated” signals with and without injection–point (LC)
correction.

Figure 4.11: Response variation
(

(1 gnd - 2 gnds)
2 gnds

)

in the second mock–up connector

(Middle cells M36÷M39) adding the second ground spring, with and
without injection–point (LC) correction.
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4.3 Electronic calibration using the optimal filtering

technique

4.3.1 Basics

The injection–point correction is a powerful calibration tool for the EMC, since it can
flatten the intrinsic non–uniformity of the system due to its electrical properties. This
correction, together with the ionization–to–calibration shape correction, is to be applied
to the EMC test-beam data, and then extended to the ATLAS EMC data reconstruction.

The correction can be directly applied using the optimal filtering (OF) SR technique.
The OF reconstructs the ionization signal amplitude S and starting time τ as the weighted
sums of the 5 signal samples si:

{
S =

∑n
k=1,5 aksk

Sτ =
∑n

k=1,5 bksk
(4.5)

The details of the {ak} and {bk} coefficients sets computation are discussed in Appendix B.
The important thing to be pointed out is anyway that, in order to complete the OF
coefficients computation, the normalized shape of the ionization signal gphys(t) is needed.
The injection–point correction and the ionization–to–calibration shape correction can then
be directly implemented during the OF coefficients computation, through the correct
definition of “normalized” ionization waveform. The ionization waveform is “normalized”
when it corresponds to a calibration pulse of unitary peak, according to the following
relation derived from equation (4.1):







gphys(s) = gcali(s) ×
(

I
phys
inj (s)

Icali
inj (s)

)

×
(

1
1+s2LC

)

max
{
gcali(t)

}
= 1

(4.6)

In this way the predicted “normalized” ionization waveform gphys(t) would in general have
a peak greater than 1 (max

{
gphys(t)

}
> 1), due mainly to the injection–point correction to

be applied to the calibration waveform. When the OF coefficients sets {ak} are computed
using this gphys(t), the peak estimator would be S =

∑n
k=1,5 ak gphys(tk) = 1, for the

OF technique intrinsic properties. This ensures that the disuniformities due to the cell
electrical properties are reduced during the peak reconstruction, and the electronics gain
computed using the calibration pulses can be safely applied.

4.3.2 Test-beam OF4 SR implementation

The OF SR technique have been implemented in the EMC test-beam data reconstruction
software [52] in different incarnations. The corrections (4.6) have been firstly implemented
through the OF SR technique by [32] (OF4). This is presently the official SR technique
used for the EMB test-beam data analysis.

The OF4 coefficients are computed using the ionization waveform prediction (4.6),
according to the following strategy [32]:
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• The ionization signal is supposed to be triangular (equationA.6) with drift time Td;
the calibration signal is supposed to be a simple exponential (equationA.8) with
decay time τcali. The ionization-to-calibration signal shape difference correction is
then (see Appendix A for the signals different analytic descriptions):

(

Iphys
inj (s)

Icali
inj (s)

)

=
(1 + sτcali)(sTd − 1 + e−sTd)

s2Tdτcali
(4.7)

• The cell–dependent parameter LC is obtained through a fit procedure, that attempts
to adjust the gphys(t) waveform to the average ionization pulse profile that can be
reconstructed from the test-beam electrons data. This is possible because the test-
beam particles are asynchronous with respect to the DAQ: thanks to the TDC [45]
external information, that provides the time difference between the DAQ clock and
the particle arrival time, a mean ionization pulse can be reconstructed over a range
of 175 ns with a 1 ns step, similarly to what is done with the calibration pulses.

• The ionization signal prediction is performed in the frequency domain and then
converted to the time domain using a Fast Fourier Transform (FFT) procedure.

"parabola" SR (ionization signal peak)

OF SR (LC correction included)

Figure 4.12: Energy response of the EMC barrel prototype “Module 0” cells line
φcell = 10 to 245 GeV electrons, from data taken during the year
2000 test–beam session: signal reconstructed and calibrated using the
“parabola” SR method (full black dots) and with the OF4 SR method
(open red squares).

The “Module 0” 2000 test-beam data presented in Section 3.1 have been re–
reconstructed and analyzed using the OF4 SR technique ([51, 53]) and compared with
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the results obtained using the “parabola” SR method. The energy response of the EMC
barrel prototype “Module 0” obtained with the two different SR methods is showed in
Figure 4.12 for cells line φcell = 10. As for the mock–up data, the energy response 8–fold
periodicity along η is suppressed thanks to corrections implemented in the SR method.
The overestimation of the ionization signals peaks due to the cell effective inductance
L presence is avoided. The φcell = 10 cells line uniformity improvements are listed in
Table 4.2 for the electrode A and B regions [51]. The table shows also the additional
improvement that can be obtained applying the “dead–material and longitudinal–leakage”
correction, that is discussed in detail in Chapter 6.

Uniformity (%) 0 ≤ ηcell < 32 32 ≤ ηcell ≤ 55

“parabola” 1.8 1.7
OF4 1.1 1.2

OF4 + leakage corr. 0.7 (0≤ ηcell ≤ 55)

Table 4.2: Energy response uniformity (RMS %) of the EMC barrel prototype
“Module 0” cells line φcell = 10.to 245 GeV electrons.

4.4 Summary and perspectives

The EMC system intrinsic non–uniformity can be corrected through the SR and calibration
procedure. A SR algorithm that takes into account the detector cell–dependent electrical
properties discussed in Chapter 3 is needed to flatten the detector energy response.
Such a need has been extensively demonstrated using the mock–up signals; the power of
the injection-point correction and of the ionization–to–calibration signal shape difference
correction has been demonstrated.

The extension of such corrections to the test-beam data reconstruction found its natural
way in the framework of the OF SR technique. The 2000 barrel “Module 0” test-beam
data, reconstructed with the OF technique implementing the necessary corrections (OF4),
do not show anymore the 8–fold non–uniformity.

The limits and the possible improvements of the OF4 SR and calibration procedure are
discussed in Chapter 5, where a possible extension to the ATLAS experimental framework
is studied.
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Chapter 5

A stand–alone SR and calibration

procedure for the ATLAS EMC

5.1 Possible improvements in the OF SR procedure

The corrections for the detector cell–dependent electrical properties and for the ionization–
to–calibration signal shape differences can be included in the OF SR procedure (OF4, [32]).
This strategy proved to be a powerful tool to calibrate and reconstruct the energy in the
EMC, as it is shown in Section 4.3 and in [53]. On the other hand, the OF4 SR procedure
has some intrinsic limitations that would not let it be suitable for the ATLAS experimental
framework:

1. The OF4 LC parameter extraction uses the mean ionization pulse that can be
obtained from the test-beam electrons asynchronous data. It is not obvious that
this could be done in the ATLAS framework: at the LHC the incoming particles will
be synchronous to the DAQ clock, thus a complete reconstruction of the ionization
pulse will not be directly possible. The ionization pulse prediction should be based
only on information that would be available at LHC.

2. Due to the way the calibration signal is generated, it can be more complex than
a simple exponential (Section A.2). The signals description used to compute the
ionization–to–calibration correction can be refined, in order to take into account
these smaller effects that can affect the precision of the method.

3. Like every Fast Fourier Transform based algorithm, the procedure used to predict the
OF4 “normalized” ionization signal waveform is very sensitive to the signal window
choice (see for example [63]). A time–domain convolution should get rid of this
dependence, and use the whole extension of the signals.

The goal of this study is to demonstrate that each of the problems posed in the previous
list can be solved, and to propose then an improved OF SR reconstruction and calibration
procedure that can be directly extended to the ATLAS framework.
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5.2 Ionization signal prediction

We take as a starting point the relation (4.6) between the “normalized” ionization pulse
and the normalized calibration pulse expressed in equation . Once the normalized
calibration waveform gcali(s) is known, the “normalized” ionization pulse can predicted
through the following:

gphys(s) = gcali(s) ×
(

Iphys
inj (s)

Icali
inj (s)

)

×
(

1

1 + s2τ2
0

)

(5.1)

being:

{
τ0 =

√
LC = 1

ω0

max
{
gcali(t)

}
= 1

(5.2)

The parameter ω0 = 1√
LC

= 1
τ0

is the detector cell characteristic frequency. In order to

get rid of the limitation described in point 3. of the previous section, the expression (5.13)
can be converted to a time domain relation:

gphys(t) = gcali(t) ∗ L−1

{

Iphys
inj (s)

Icali
inj (s)

}

︸ ︷︷ ︸

gexp → tri(t)

∗L−1

{
1

1 + s2τ2
0

}

︸ ︷︷ ︸

gMB → det(t)

(5.3)

the two corrections being factorized in two different time–domain convolutions1.

The ionization waveform is still supposed to be triangular with drift time Td

(equation A.6). The calibration signal is described by the complete analytical expression
(A.11); in this case the signal shape is characterized by the decay time τcali and saturation
fraction fstep (see Appendix A for a detailed description of the parameters meaning in the
different cases). The ionization-to-calibration signal shape difference correction function

1For rigorous mathematical details about the direct and inverse Laplace transforms and their properties,
see for example [65]. We recall that the time domain convolution of two function f(t) and g(t) is defined
as:

f(t) ∗ g(t) =

Z

f(t − t′)g(t′)θ(t − t′)dt′ =

Z t

0

f(t − t′)g(t′)dt′ (5.4)

In our case the n samples gi = g(ti) of the g(t) function, and the analytic expression of the f(t) function,
are known. The i-th sample of the convolution function f(t) ∗ g(t) can be then numerically estimated as:

{f(t) ∗ g(t)}
i
=

 

i
X

j=1

f(ti − tj) × gj

!

× ∆t (5.5)

being ∆t the sampling interval (in our case ∆t = 1 ns).
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is then:

gexp → tri(t) = L−1

{

Iphys
inj (s)

Icali
inj (s)

}

(5.6)

= L−1

{
(1 + sτcali)(sTd − 1 + e−sTd)

sTd(fstep + sτcali)

}

(5.7)

= δ(t) +

[
1 − fstep

τcali
e
−fstep

t
τcali − 1 − fstep

fstep

(

e
−fstep

t
τcali − 1

)]

θ(t) +

1 − fstep

fstep

(

e
−fstep

t−Td
τcali − 1

)

θ(t − Td) (5.8)

being:







L−1
{

1+sτcali
fstep+sτcali

}

= δ(t) +
1−fstep

τcali
e
−fstep

t
Td

∫ t

0 dt
1−fstep

τcali
e
−fstep

t
τcali =

1−fstep

fstep

(

e
−fstep

t
τcali − 1

)

The case in which the calibration pulse is a simple exponential (equation A.8) corresponds
to the limit of (5.8) in which the saturation fraction fstep = 0:

gexp → tri(t)|fstep=0 = L−1

{
(1 + sτcali)(sTd − 1 + e−sTd)

s2Tdτcali

}

(5.9)

= δ(t) +

(
1

τcali
− 1

Td

− t

τcaliTd

)

θ(t) +

(
1

Td

+
t − Td

τcaliTd

)

θ(t − Td) (5.10)

The injection–point correction function is:

gMB → det(t) = L−1

{
1

1 + s2τ2
0

}

(5.11)

=
1

τ0
sin

(
t

τ0
t

)

θ(t) (5.12)

The connection between the detector cell and the readout line has always a small
resistive component (r ∼ Ω, see Chapter 3), at least because of the contact resistance
between the connectors. This resistive behavior of the cell can be modeled by a resistance
r added to the cell equivalent circuit of Figure 3.2, as in Figure 5.1). The expression (5.1)
becomes:

gphys(s) = gcali(s) ×
(

Iphys
inj (s)

Icali
inj (s)

)

×
(

1

1 + sτr + s2τ2
0

)

︸ ︷︷ ︸

gMB → det|r 6=0

(5.13)
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Figure 5.1: Basic detector cell equivalent circuit, taking into account the resistive
component r of the connection between the electrodes and the readout
line.

being τr = rC the additional parameter to be taken into account with the (5.2) conditions.
The injection–point correction function is in this case:

gMB → det|r 6=0 = L−1

{
1

1 + sτr + s2τ2
0

}

(5.14)

=
2

τa

e
− τr

2τ2
0

t
sin

(
τa

2τ2
0

t

)

θ(t) ; when (τ 2
r − 4τ2

0 ) < 0 (5.15)

being:







τa =
√

4τ2
0 − τ2

r

L−1
{

1
(s−a)(s−b)

}

= e−bt−e−at

a−b
1
2i

(
eix − e−ix

)
= sin(x)

The case (τ 2
r − 4τ2

0 ) < 0 is always fulfilled for the r, L and C detector typical values (see
Chapter3).

5.3 Parameters extraction from the calibration waveform

The time–domain correction functions to be used used in (5.3) or in then analogous (5.13)
depend on several parameters:







gexp → tri(t) = gexp → tri(t, {Td, τcali, fstep})
gMB → det(t) = gMB → det(t; {τ0})
gMB → det(t)|r 6=0 = gMB → det(t; {τ0, τr})

Some of them (i.e. τcali, fstep) are typical of the calibration line that generates the
calibration pulse; the others (i.e. Td, τ0 and eventually τr) are related to the detector
cell properties.

According to what we discuss at point 1. of Section 5.1, in the ionization waveform
prediction procedure we do not want to use any information that would not be similarly
available at the LHC. Some of the necessary parameters could be gathered from the
calibration pulse itself, as it as been firstly proposed by [34] and [33]. This is the case for
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the calibration pulse shape parameters τcali and fstep, and of the detector cell characteristic
parameter τ0 (and eventually τr), that can in principle be extracted from the calibration
waveform.

The drift time Td is a specific characteristic of the ionization electrons motion in the
LAr gap. It has no direct influence on the calibration waveform, it is then to be retrieved
from a different source. It can anyway be shown (Section 5.5.3) that the ionization
waveform prediction is rather insensitive to the Td value, at least in the region of interest
for the OF coefficients computation: for this reason the nominal Td value can be used.

5.3.1 Calibration output transformation strategy

Recalling the simple model of a LAr readout cell shown in Figure 5.1, the calibration pulse
at the end of the readout chain can be written in the frequency domain as:

V cali
out (s) = Icali

inj (s) × Hdet(s) × Hreadout(s) (5.16)

The function Hdet(s) describes the effects of the detector cell properties on the injected
calibration signal Icali

inj (s), while Hreadout(s) is the readout (line + preamplifier + shaper)
transfer function.

The strategy to retrieve the needed parameters is based on the computation and
analysis of what would be the response of the system (detector cell + readout system) to
a signal different from the standard “exponential” calibration pulse. The system response
can in fact be sensitive to a particular injected waveform, the output showing in some
case easily recognizable characteristics. Let a generic current pulse Yinj(s) be injected on
the system at the MB level, exactly as it is done with the calibration pulse I cali

inj (s). The
response Wout(s) of the system to this signal would be:

Wout(s) = Yinj(s) × Hdet(s) × Hreadout(s) (5.17)

=
Yinj(s)

Icali
inj (s)

× Icali
inj (s) × Hdet(s) × Hreadout(s)

=
Yinj(s)

Icali
inj (s)

× V cali
out (s) (5.18)

or, in the time domain:

Wout(t) = L−1

{

Yinj(s)

Icali
inj (s)

}

∗ V cali
out (t)

= fY
tran(t) ∗ V cali

out (t) (5.19)

The “transformed” response Wout(t) to the test signal Yinj(t) can be then computed as
the (numeric) time–domain convolution of the sampled calibration signal V cali

out (t) and a

proper transformation function f Y
tran(t) = L−1

{

Yinj(s)

Icali
inj (s)

}

.
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Mockup calibration waveform - η = 32
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Figure 5.2: Calibration waveform collected from the mock–up cell M32 (black). The
extracted parameters and the relative transformed waveforms are shown:
step–response transformation (red); cosine–response transformation
(green); injection–point–correction residual oscillation (blue). The tail
starting point is tmin = 600 ns for all the transformed waveform tail
minimizations (see text for details).

90



5.3 – Parameters extraction from the calibration waveform

5.3.2 Calibration pulse parameters through the step–response

transformation

The calibration pulse parameters τcali and fstep can be obtained computing the response
of the system to a step function Sinj [34]:

Sinj(s) =
1

s
(5.20)

In the frequency domain the relative transformation function is:

f step
tran (s, τ ′

cali, f
′
step) =

Sinj(s)

Icali
inj (s, τ ′

cali, f
′
step)

=
1

s
× s(1 + sτ ′

cali)

sτ ′
cali + f ′

step

=
1 + sτ ′

cali

sτ ′
cali + f ′

step

(5.21)

being τ ′
cali and f ′

step the assumed values of the calibration pulse parameters. It can be
easily verified that, when the conditions τ ′

cali = τcali and f ′
step = fstep are verified, the

output function is exactly the response of the system to a step function:

Uout(s) =
1

s
× Hdet(s) × Hreadout(s) (5.22)

The function Uout(s) has the property to go to zero in the tail, at least after a sufficient
portion of the signal, since the functions Hdet(s) and Hreadout(s) contain only short time
constants and do not give rise to a long tail in the waveform.

This null–tail property of the step–response can be used to recognize when the
conditions τ ′

cali = τcali and f ′
step = fstep are verified. A χ2–like function can be built

summing the squares of the step–response function values over the tail of the pulse, the
tail being defined as the portion of pulse after the time tmin. The values of τcali and fstep

values are extracted finding the minimum of this function:







Q2(τ ′
cali, f

′
step) =

∑

t>tmin
U2

out(t, τ
′
cali, f

′
step)

min
{
Q2(τ ′

cali, f
′
step)

}
⇒
{

τ ′
cali = τcali

f ′
step = fstep

(5.23)

The time domain transformation function to be used in the convolution (5.19) to obtain
the step–response Uout(t) is:

f step
tran (t, τ ′

cali, f
′
step) = L−1

{

1 + sτ ′
cali

sτ ′
cali + f ′

step

}

= δ(t) +

(
(1 − f ′

step)

τ ′
cali

)

e
−

f ′
stept

τ ′
cali (5.24)

Since the convolution with a δ–function simply reproduces the original function, the step–
response transformation can be computed as a correction on the original calibration output
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Figure 5.3: Surface (left) and contour (right) plot of the function log
{
Q2(τ ′

cali, f
′
step)

}

in the (τ ′
cali,f

′
step) parameters space. The “saw–teeth” structure around

the minimum in left plot is not real, being due to the chosen number
of points in the plot.

waveform:

Uout(t, τ
′
cali, f

′
step) = f step

tran(t, τ ′
cali, f

′
step) ∗ V cali

out (t)

= V cali
out (t) +

(
(1 − f ′

step)

τ ′
cali

)

e
−

f ′
stept

τ ′
cali ∗ V cali

out (t)

= V cali
out (t) + ∆U step(t, τ ′

cali, f
′
step) (5.25)

Figure 5.3 shows the surface of log
{
Q2(τ ′

cali, f
′
step)

}
in the (τ ′

cali,f
′
step) parameters space.

The Q2(τ ′
cali, f

′
step) function is computed from the mock–up calibration waveform shown

in Figure 5.2; the signal is sampled every 1 ns for a 1 µs interval (1000 points), the
tail starting point is tmin = 600 ns. The Q2(τ ′

cali, f
′
step) function has indeed a minimum,

that is located in a narrow flat valley of the (τ ′
cali,f

′
step) parameters space. The τ ′

cali

and f ′
step parameters are strongly correlated. The function properties suggest that it is

better to directly perform the minimization of log
{
Q2(τ ′

cali, f
′
step)

}
, in order to increase

the numerical procedure convergence speed.
We wrote a numerical code that, given the sampled calibration signal V cali

out (t), computes
the transformation convolution (5.25), then builds the χ2–like function and performs the
minimization (5.23) using a set of the MINUIT routines [62], in order to extract the
correct τcali and fstep values. The results are given with the relative uncertainties due
to the numerical algorithms used in the minimization procedure. The starting point of
the signal tail tmin can be set as an external parameter. The MINUIT routines show to
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be able to handle the log
{
Q2(τ ′

cali, f
′
step)

}
function properties and the strong parameters

correlation, the step–response code is able to converge to reasonable results. An example of
the output of this routine is showed in Figure 5.2, where the step–response minimization is
applied to a mock–up calibration signal. The calibration signal V cali

out (t) is shown, together
with the Q2(τ ′

cali, f
′
step)–minimizing step–response transformation. The tail starting point

is tmin = 600 ns. For a detailed discussion of the parameters results and of the algorithm
accuracy see Section 5.4.

Since the results of the minimization procedure depend in principle on the tail starting
point value tmin, the correlation between this parameter and the final τcali and fstep values
is studied. In Figure 5.4, together with the usual trial mock–up calibration signal (top),
the final parameters fstep (middle) τcali (bottom) are shown as a function of the signal
tail starting point value tmin. Even if there is a clear correlation between the parameters
results and the tmin value, we believe that there is a tmin region for which the τcali and
fstep values are stable enough. In the example case, this is for tmin ∈ [∼500 ns, ∼600 ns].

We found that a robust criterion to choose the “stable” tmin value to be used in the
step–response minimization consists in correlating it with a signal–dependent parameter.
We compute the tail starting point as tmin = tneg. lobe

min + 100 ns, being tneg. lobe
min the

minimum of the negative lobe of the shaped signal. This choice proves to be effective
and is automatically implemented in the numerical minimization code.

5.3.3 Detector cell characteristic frequency through the cosine

transformation

According to the equivalent circuit of Figure 3.2, the detector transfer function H det(s) is:

Hdet(s) =
1 + s2LC

1 + sCZline + s2LC
Zline (5.26)

The function Hdet(s) has a zero in ω0 = 1√
LC

. If a monochromatic pulse of frequency

ω0 is injected on the detector cell, the response of the detector at the end of the readout
system is null. We compute the response of the system to a monochromatic cosine pulse
Cinj of frequency ω:

{
Cinj(t, ω) = cos(ωt)
Cinj(s, ω) = s

s2+ω2

(5.27)

The relative frequency–domain transformation function is:

f cos
tran(s, ω, τ ′

cali, f
′
step) =

Cinj(s, ω)

Icali
inj (s, τ ′

cali, f
′
step)

=
s

s2 + ω2
× s(1 + sτ ′

cali)

sτ ′
cali + f ′

step

(5.28)

If the conditions τ ′
cali = τcali and f ′

step = fstep are satisfied, the output function is exactly
the response of the system to a cosine pulse of frequency ω:

Xout(s) = Cinj(s) × Hdet(s) × Hreadout(s) (5.29)
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Figure 5.4: Step–response minimization final parameters τcali and fstep correlation
with the signal tail starting point value tmin. The region of tmin for
which the final τcali and fstep values are stable is show.
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5.3 – Parameters extraction from the calibration waveform

For this purpose the τcali and fstep values computed with step–response analysis
(Section 5.3.2) are used.

The property of the cosine–response to be null when the ω = ω0 condition is verified
is used to extract the LC parameter. Again, a χ2–like function can be built summing the
squares of the cosine–response function values along the tail of the pulse, the tail being
defined as the portion of pulse after the time tmin. The values of ω0 can be extracted
finding the minimum of this function:

{

Q2(ω) =
∑

t>tmin
X2

out(t, ω)

min
{
Q2(ω)

}
⇒ ω = ω0 = 1√

LC

(5.30)

The time domain transformation function to be used in the convolution (5.19) to obtain
the cosine–response Xout(t) is:

f cos
tran(t, ω, τ ′

cali, f
′
step) = L−1

{

s

s2 + ω2
× s(1 + sτ ′

cali)

sτ ′
cali + f ′

step

}

= δ(t) +
1

f ′2
step + ω2τ ′2

cali

×
{

e

−tf ′
step

τ ′
cali (f ′2

step − f ′3
step) −

ω ×
[ (

f ′
step + ω2τ ′2

cali

)
sin(ωt) +

(
ωτ ′

cali(f
′
step − 1)

)
cos(ωt)

]}

(5.31)

Since the convolution with a δ–function simply reproduces the original function, the
cosine–response transformation can be computed as a correction on the original calibration
output waveform:

Xout(t, ω, τ ′
cali, f

′
step) = f cos

tran(t, ω, τ ′
cali, f

′
step) ∗ V cali

out (t)

= V cali
out (t) +

{

1

f ′2
step + ω2τ ′2

cali

×
{

e

−tf ′
step

τ ′
cali (f ′2

step − f ′3
step) −

ω ×
[ (

f ′
step + ω2τ ′2

cali

)
sin(ωt) +

(
ωτ ′

cali(f
′
step − 1)

)
cos(ωt)

]}
}

∗ V cali
out (t)

= V cali
out (t) + ∆U cos(t, ω, τ ′

cali, f
′
step) (5.32)

In Figure 5.5 (top) the cosine–response χ2–like function (5.30) is shown versus the
ω frequency value. The Q2(ω) function does not shows a clear minimum: this is due
to the contribution in the original calibration waveform of the readout transfer function
Hreadout(s), that in the ideal case is:

Hreadout(s) = α
sτsh

(1 + sτsh)3
(5.33)
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where α is the preamplifier gain and τsh the shaper internal constant. The shaper acts
as pass-width filter that blocks the higher frequency components. It prevents the Q2(ω)
function to rise at increasing frequency, making the minimum search impossible. This
problem can be solved deconvolving the shaper transfer function from the transformed
detector output. It can be easily done after the cosine transformation has been computed,
since the cosine output function Xout(t, ω) depends only on the single frequency value
ω. The shaper transfer function contribution can be eliminated using a single correction
factor, computed as the inverse of the absolute magnitude of (5.33) at the given frequency
ω:

X ′
out(t, ω, τsh) = Xout(t, ω)

√

(1 + (ωτsh)2)
3

(ωτsh)2
(5.34)

The minimization as a function of ω can then be performed on the corrected χ2–like
function (see Figure 5.5 (bottom)), the shaper internal constant τsh being given as an
external parameter:







Q′2(ω, τsh) =
∑

t>tmin
X ′2

out(t, ω, τsh) = Q2(ω)

(

(1+(ωτsh)2)
3

(ωτsh)2

)

min
{
Q′2(ω, τsh)

}
⇒ ω = ω0 = a√

LC

(5.35)

The Q′2(ω, τsh) function plotted in Figure 5.5 shows a principal minimum around ω ∼
150 MHz, corresponding to the 1√

LC
characteristic frequency. The Q′2( 1√

LC
) value is not

strictly zero, due to the fact that a detector cell is fairly more complex than a simple
LC–circuit, and there is always at least a small resistive component r that should be
considered. The electrode complex structure and its transmission–line behavior at high
frequency produce the other local minima of the Q′2(ω, τsh) function.

We wrote a numerical code that, given the sampled calibration signal V cali
out (t) and

the parameters τcali, fstep and τsh, computes the transformation convolution (5.32), then
builds the χ2–like function and performs the minimization (5.35) using a set of the MINUIT
routines [62], in order to extract the correct ω0 value. The result is given with the relative
uncertainty due to the numerical algorithms used in the minimization procedure. The
starting point of the signal tail tmin can be set as an external parameter. An example of
the output of this routine is showed in Figure 5.2, where the cosine–response minimization
is applied to a mock–up calibration signal. The calibration signal V cali

out (t) is shown, together
with the Q2(ω, τsh)–minimizing cosine–response transformation. The tail starting point
is tmin = 600 ns, the shaper constant is τsh = 15 ns. For a detailed discussion of the
parameters results and of the algorithm accuracy see Section 5.4.

Since the result of the procedure depends in principle on the tail starting point
value tmin, the correlation between this parameter and the final ω0 value is studied. In
Figure 5.6, together with the trial mock–up calibration signal (top), the final parameter
ω0 is shown as a function of the signal tail starting point value tmin (bottom). The ω0

parameter is clearly uncorrelated with the tmin value, its final value being stable in the
limit of the numerical algorithm precision. We arbitrary decide to chose tmin = tneg. lobe

min ,

being tneg. lobe
min the minimum of the negative lobe of the shaped signal. This choice is

automatically implemented in the numerical minimization code.
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frequency ω.
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Figure 5.6: Cosine–response minimization final parameter ω0 correlation with the
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5.3.4 Detector contact resistance through the injection–point correction

residual oscillation minimization

If the resistive component r is taken into account in the detector cell description
(Figure 5.1) the detector transfer function Hdet(s)|r 6=0 becomes:

Hdet(s)|r 6=0 =
1 + srC + s2LC

1 + s(r + Zline)C + s2LC
Zline (5.36)

An attempt to simultaneously extract both the τ0 =
√

LC and τr = rC parameters
can be done, implementing a zero–cancellation procedure in the transformation–and–
minimization framework [34]. The calibration waveform can be corrected for the
“injection–point” factor:

V cali
out (t)|corr = f i.p.

tran(t, τ
′
0, τ

′
r) ∗ V cali

out (t)

= L−1

{
1

1 + sτ ′
r + s2τ ′

0

}

∗ V cali
out (t) (5.37)

the transformation function being:

f i.p.
tran(t, τ0, τr) = L−1

{
1

1 + sτ ′
r + s2τ ′

0

}

(5.38)

= e
− t

τ1 sin
t

τ2
(5.39)

where:






τ1 =
2τ ′2

0
τ ′
r

τ2 =
2τ ′2

0√
4τ ′2

0 −τ ′2
r

(5.40)

If the condition {τ ′
0 = τ0, τ

′
r = τr} is verified, the factor (1 + srC + s2LC) embedded in

the original calibration waveform because of the detector transfer function H det(s)|r 6=0

is canceled. Otherwise the zero–cancellation is incomplete, and oscillations of frequency
ω res = 1

2πτ ′
0

are produced in the transformed waveform V cali
out (t)|corr.

The correct values of the τ0 and τr parameters are sought searching the minimum of
this residual oscillations. A χ2–like function can be built summing the squares of the
difference between the observed calibration signal and the correct one in the tail region
on the pulse, the tail being defined as the portion of pulse after the time tmin:







∆V cali
out (t) = V cali

out (t) − V cali
out (t)|corr

Q2(τ ′
0, τ

′
r) =

∑

t>tmin

(
∆V cali

out (t, τ ′
0, τ

′
r)
)2

min
{
Q2(τ ′

0, τ
′
r)
}
⇒
{

τ ′
0 = τ0

τ ′
r = τr

(5.41)

Figure 5.7 shows the surface of log
{
Q2(τ ′

0, τ
′
r)
}

in the (τ ′
0,τ

′
r) parameters space.

The Q2(τ ′
0, τ

′
r) function is computed from the mock–up calibration waveform shown in
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Figure 5.7: Surface (left) and contour (right) plot of the function log
{
Q2(τ ′

0, τ
′
r)
}

in the (τ ′
0,τ

′
r) parameters space.

Figure 5.2; the signal is sampled every 1 ns for a 1 µs interval (1000 points), the tail starting
point is tmin = 600 ns. The minimum of the Q2(τ ′

0, τ
′
r) function is hardly found: even in

logarithmic scale there is a wide and nearly flat (τ ′
0,τ

′
r) region in which the log

{
Q2(τ ′

0, τ
′
r)
}

variation is so small that a numerical minimization procedure would result long and rather
imprecise. Furthermore, the τ0 and τr parameters are strongly correlated: even if a numeric
algorithm succeeds in converging to a minimum value, we can expect large errors on the
extracted parameters.

We wrote a numerical code that, given the sampled calibration signal V cali
out (t), computes

the transformation convolution (5.37), then builds the χ2–like function and performs the
minimization (5.41) using a set of the MINUIT routines [62], in order to extract the correct
τ0 and τr values. The results are given with the relative uncertainties due to the numerical
algorithms used in the minimization procedure. The starting point of the signal tail tmin

can be set as an external parameter. An example of the output of this routine is showed in
Figure 5.2, where the injection–point correction residual oscillation minimization is applied
to a mock–up calibration signal. The calibration signal V cali

out (t) is shown, together with the
Q2(τ0, τr)–minimizing residual oscillation. The tail starting point is tmin = 600 ns. In this
case the results appears quite promising, since τ0 ∼ 1

ω0
, the ω0 parameters being obtained

with the cosine transformation algorithm (the actual values are shown in Figure 5.2).
On the other hand, for other calibration waveform the MINUIT routines fail in finding a
reasonable convergence.

As for the previous algorithms, we investigate the correlation between the tail starting
point value tmin and the final τ0 and τr values. In Figure 5.8, together with the usual trial
mock–up calibration signal (top), the final parameters τ0 (middle) and τr (bottom) are
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Figure 5.8: Step–response minimization final parameters τcali and fstep correlation
with the signal tail starting point value tmin.
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shown as a function of the signal tail starting point value tmin. The algorithm shows again
its weakness: the strong correlation between the final parameters values is confirmed, and
a nearly–random dependence on the tmin value appears.

For these reasons this parameters–extraction method is judged not to be robust enough
to be used in a EMC calibration algorithm. The τr estimate remains a problem to be
further investigate.

5.4 Parameters extraction from mock–up signals

The parameters extraction algorithms described in Section 5.3.2 and 5.3.3 are applied on
the calibration signals collected from the mock–up Middle cells. For this validation study
the mock–up system has been completed with the full calibration–injection and signal–
readout warm–to–cold cables chains (Section 2.3). The new system setup is shown in
Figure 5.9. All the measures relative to this section are taken with the mock–up second
removable ground spring connected (two ground connections in the second connector).

Figure 5.9: Mock–up system setup, complemented with the full calibration–injection
and signal–readout cables chains.

Since the calibration and the readout cables are supposed to be used in LAr, and
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some of their characteristics (e.g. the skin effect) change with the temperature, during
the signals injection and measure we eventually allow the cables to be immerse in liquid
nitrogen (LN2) from the MB connection up to the warm–to–cold pin carrier (Figure 5.10).
In this Section we refer to a “warm” measure (or result) when the calibration and the
readout cables are kept at room temperature, to a “cold” measure (or result) when they
are immerse in the LN2 dewar.

Figure 5.10: Calibration–injection and signal–readout cables, kept in a LN2 dewar
from the MB connection up to the warm–to–cold pin carrier.

Because of the cables presence, the calibration injection system has been slightly
modified with respect to the one used in Chapter 3. The exponential signal is (again)
obtained by the injection of a voltage step through a RC circuit (Figure 5.11). In this
case a discrete capacitive component (C = 3.97 nF ' 4 nF) is directly plugged between the
beginning of the calibration cables chain and the voltage step generator, whose internal
resistance is rint = 50 Ω. The cables are supposed to be correctly terminated, their
effective impedance Z acts (mostly) as a resistance. The voltage pulse at the cables
termination resistance on the MB is then an exponential, with characteristic decay time
τcali = (rint + Z)C. The injector resistance on the MB is in charge to convert the voltage
signal into a current pulse. We estimate the calibration cables effective impedance Z with
a Time Domain Reflectometer, both at warm and at cold. The expected values of τcali
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Figure 5.11: Mock–up calibration pulse injection circuit. The exponential decay
time is obtained as τcali = (rint + Z)C, Z being the effective
characteristic impedance of the calibration cables chain.

are listed in Table 5.1. When the injection circuit is directly plugged to the oscilloscope
(Z = r int = 50Ω), we measured the exponential pulse decay time to be τcali ' 400 ns.

Z (Ω) τ expected
cali (ns)

oscilloscope ∼ 50 ∼ 400
warm cables ∼ 57 ∼ 425
cold cables ∼ 54 ∼ 415

Table 5.1: Expected mock–up calibration decay time value, as a function of the the
cables effective characteristic impedance Z.

The calibration signals are injected on the mock–up Middle cells M32÷M39 at warm
and cold, and acquired with an oscilloscope according to the procedure already described
in Chapter 3. The output signal sampling frequency is 1 GHz (∆t=1ns), the pulse are
recorded for a 1 µs interval. The step–response and the cosine–response of the collected
signals are computed, the fstep, τcali and ω0 parameters are extracted for each of the 8
Middle cells at warm and cold.

The calibration pulse characteristic parameters fstep and τcali are shown in Figure 5.12.
The extracted fstep and τcali values are compatible for all the different mock–up cells, as
expected since they are related to the same injection circuit. This proves that the step–
response algorithm is capable to handle the cell-dependent signal properties. The average
values of the parameters are listed in Table 5.2; the exponential decay time 〈τcali〉 is indeed
compatible with the prediction of Table 5.1, both at warm and at cold. As expected, the
extracted fstep values are really small, and compatible with zero at least for the warm
measures. This is in agreement with the theoretic description of the mock–up calibration
pulse, as discussed in Appendix A.

In Figure 5.13 the cell characteristic frequency ω0 = 1√
LC

is shown, and compared with

the LC direct measure discussed in Section 3.4. The extracted values of the ω0 parameter
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〈τcali〉 (ns) 〈fstep〉
warm 425 ± 2 1.99 · 10−7 ± 2.97 · 10−5

cold 415 ± 4 7.07 · 10−3 ± 3.06 · 10−3

Table 5.2: Average τcali and fstep calibration parameters values, as extracted at
warm and cold from the 8 mock–up Middle cells with the step–response
transformation.

show the expected trend along the 8 Middle cell positions. They are systematically smaller
than the direct measures. This effect can be explained by the presence of the MB, that
provides each cell with an additional ∼ 10 nH inductive contribution [23]. The direct L
and C measures of Chapter 3 were in fact performed at the SB level. There is no significant
difference between the warm and cold ω0 values: the cosine–response algorithm proves to
be able to estimate the cell-dependent LC parameters directly from the calibration signal
pulses.

5.5 Parameters extraction from the test–beam 32–samples

delay waveforms

The parameters extraction procedures are applied to the EMC delay calibration
waveforms. The goal is to extract the {τcali, fstep, ω0} parameters set for each readout cells,
to predict the ionization waveform and to compute the corresponding OF coefficients to
be used for the energy reconstruction. The calibration waveforms used for this procedures
come from the delay curves generated from the test-beam calibration data [27].

In the standard test-beam setup the delay waveforms are built using a 7–samples
readout configuration: the resulting curves are defined over a 175 ns interval. Since a long
tail portion of the calibration signal is needed to apply the algorithms of Section 5.3.2
and 5.3.3, some special calibration runs have been acquired for this purpose, using a 32–
samples readout configuration: the resulting curves are defined over a 800 ns interval. The
32–samples delay runs have been acquired during the test–beam periods for the EM barrel
production modules M10 (October 2001), in the region {ηcell ∈ [16, 23], φcell ∈ [0, 7]}, and
P15 (June 2002), in the region {ηcell ∈ [0, 55], φcell ∈ [8, 15]}.

This analysis is presently concentrated on the Middle cells, since this is indeed the
sampling that is mostly responsible for the detector non–uniformity. The greater part of
the electromagnetic shower energy is in fact released in the Middle cells; the Middle cells
shows the greatest effective inductance L, they are indeed the cells in which the most
appreciable difference between the calibration and the ionization signal shapes is found.

5.5.1 Master Waveform computation

Each delay curve is usually built from the calibration data generated by the injection
of a calibration pulse of defined normalization, corresponding to a definite Digital–to–
Analogic–Converter (DAC) setting on the calibration board (CB) [27]. The calibration
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data are acquired in defined readout gain region (Low, Medium or High) [24]. The aim of
this work is to come to a single set of OF coefficients for each gain region, assuming that
in each of these the response of the detector is linear.

The CB output is sensitive to the card clock feed–through [27]: even when the CB is
supposed to inject a null signal (DAC = 0), in fact, there is a non–zero signal emerging
from the board (DAC0 signal). Since the response of the detector is not dependent on
this residual signal, its effect should be subtracted from the delay curves.

The linearity assumption and the need of the DAC0 signal subtraction are implemented
through the use of the Master Waveform (MW) for the calibration analysis. The MW
values m are determined by the linear response of the system for several DAC values at a
given time bin t, from which the input current can be computed:

y = m × DAC + DAC0 ∀t ∈ [0, 800]ns (5.42)

where y is the system response in ADC counts for the relative DAC setting, as extracted
from the corresponding delay curve. The m and DAC0 values are obtained through a
linear fit to the delay data at each time t. For this purpose only the delay curves in
the linear–response region of the calorimeter are used. This procedure allows to map the
detector response m(t) to a calibration pulse, averaged on the different DAC values and
independent of the DAC0 offset.

The final MW m(t) is measured in ADC/DAC units. An example of the MW
computation in the Medium gain region is proposed in Figure 5.14, 5.15 and 5.16, where
the input 32–samples delay curves, four examples of the (5.42) fits for different t values,
and the final m(t) and DAC0(t) results are shown.
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Figure 5.14: 32–samples delay curves for different DAC values, acquired from the
EMB module M10 Middle cell ηcell = 16, φcell = 1 in Medium gain.
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5.5.2 Parameters extraction results

The parameters extraction procedure is applied to the EM barrel production module M10
Middle cells, in the region {ηcell ∈ [16, 23], φcell ∈ [0, 7]}, and to the P15 module Middle
cells in the region {ηcell ∈ [0, 55], φcell ∈ [8, 15]}.

Calibration pulse parameters

The calibration pulse characteristic parameters τcali and fstep values are shown in
Figure 5.17 for module M10 cells, and in Figure 5.18 for module P15 cells. The obtained
values are compatible with the direct measures on the production CB’s [38], from which
τcali = 347 ns ± 5.7 RMS and fstep ' 7% is obtained (see Appendix A).

The parameters distributions show a consistent spread, and a structure can be noticed
at least in the M10 results. The total distributions accumulate parameters values relative
to different calibration lines: each calibration board is in fact equipped with 8 different
pulsers. Since the calibration injection pattern is known (see [3] and Chapter 3), each
pair of fstep and τcali values can be attributed to a specific CB channel. Examples
of the parameters clustering is shown in Figure 5.19 for the M10 values coming from
Sector 4 (24 ≤ ηcell ≤ 31), and in Figure 5.20 for the P15 values coming from Sector 1
(0 ≤ ηcell ≤ 7). The extracted parameters group well around a line–dependent central
value, that is computed as the weighted mean, and shown superimposed with the relative
uncertainty. Similar results are obtained for all the other module sectors. This is an
additional prove of the precision of the step–response parameters extraction algorithm.

A direct comparison between the values extracted from the two different modules data
for the same calibration lines it is presently not possible, since the 32–samples delay runs
have been acquired from two completely non–superposing {η, φ} regions.

Cell characteristic frequency

The cell characteristic frequency values ω0 = 1√
LC

are shown as a function of ηcell for the

different φcell lines in Figure 5.21 for module M10 cells, and in Figure 5.22 for module P15
cells. The results reproduce well the electrode structure. The 4–ηcell pattern due to the
effective inductance L located on the connection strips (see Chaper 3) is clearly evident
in both cases.

Figure 5.23 (Figure 5.24) shows the same ω0 values for the module M10 (P15), as
function of the φcell position . A perfect symmetry would be expected, but a trend appears
once the η dependence connection show smaller ω0 (greater LC) value. This effect can
be due a non–perfectly equalized inductive contribution on the MB or on the SB, but its
study is behind the scope of this work. More details on this effect are discussed in the
comparison with the direct LC measures on the P15 module cells.

Comparison with the LC values from direct measure and OF4 fit

Direct measures of the cells effective L and C parameters (Lmeas, Cmeas) has been
performed on the prototype module M0, and on some of the production modules (M15,
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Figure 5.17: Calibration pulse characteristic parameters fstep

(top) and τcali (middle) distributions, as extracted from the EM barrel
production module M10 Middle cells 32–samples MW, in the region
{ηcell ∈ [16, 23], φcell ∈ [0, 7]}. The parameters correlation is shown in
the bottom plot.

112



5.5 – Parameters extraction from the test–beam 32–samples delay waveforms

 Step response transformation (layer = 2)

0

5

10

15

20

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
fstep

0

10

20

30

0.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355 0.36
x 10

-6τc

0.05

0.06

0.07

0.08

0.09

0.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355 0.36
x 10

-6τc

f st
ep

Figure 5.18: Calibration pulse characteristic parameters fstep

(top) and τcali (middle) distributions, as extracted from the EM barrel
production module P15 Middle cells 32–samples MW, in the region
{ηcell ∈ [0, 55], φcell ∈ [8, 15]}. The parameters correlation is shown in
the bottom plot.
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Figure 5.19: Calibration pulse characteristic parameters fstep (top) and τcali

(bottom) as a function of the calibration board line number. The
values refers to the Middle cells of Sector 4 of the EM barrel production
module M10 (24 ≤ ηcell ≤ 31). The weighted means of each line groups
of values are shown superimposed (black triangle) with the relative
uncertainties.
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Figure 5.20: Calibration pulse characteristic parameters fstep (top) and τcali

(bottom) as a function of the calibration board line number. The
values refers to the Middle cells of Sector 1 of the EM barrel production
module P15 (0 ≤ ηcell ≤ 7). The weighted means of each line groups
of values are shown superimposed (black triangle) with the relative
uncertainties.
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φcell lines. The values have been extracted from the 32–samples MW
with the cosine–response algorithm.

Cosine transformation

1100

1200

1300

1400

1500

1600

1700

1800

1900

x 10 5

0 10 20 30 40 50

φ = 8

φ = 9

φ = 10

φ = 11

φ = 12

φ = 13

φ = 14

φ = 15

η

ω
0 

(H
z)

Figure 5.22: EM barrel production module P15 Middle cells characteristic
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Figure 5.23: EM barrel production module M10 Middle cells characteristic
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LC

values, as a function of φcell for the different

ηcell positions, and averaged along η. The values have been extracted
from the 32–samples MW with the cosine–response algorithm.
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Figure 5.24: EM barrel production module P15 Middle cells characteristic

frequencies ω0 = 1√
LC

values, as a function of φcell for the different

ηcell positions, and averaged along η. The values have been extracted
from the 32–samples MW with the cosine–response algorithm.
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P13 and P15) [39]. These measures are performed with a RCL–meter on all the Middle
and Back cells at the SB level. The module is in air (i.e. not filled with LAr) at room
temperature. For different ν frequency values the impedance Z and the relative phase are
obtained. The Lmeas(ν) and Cmeas(ν) values are extracted with a fit procedure on Im(Z).
According to [39], the Lmeas(ν) and Cmeas(ν) values are strongly correlated; their fit values
depend on the used frequency range. The product Lmeas(ν)Cmeas(ν) seems more stable
(∼ 0.5 %). Part of the modules (e.g. P15) are known to have bad measurements ore cells
in which the Im(Z) fit fails.

In order to perform a comparison with the ω0 parameters extracted with the cosine–
response algorithm, a frequency–averaged value ωmeas = 1√

〈LmeasCmeas〉ν
is computed for the

module P15 Middle cells. Because of the way the direct LC measurement are performed
(SB connection, no MB and cables, air dielectric module at warm), only a qualitative
comparisons is possible. A scaling of the ωmeas to the LAr temperature could in principle
be possible [39]:

ωcold
meas =

1
√

〈LmeasCcold
meas〉ν

(5.43)

Ccold
meas = εLAr

r

(

Cmeas − Ceff
SB

)

+ Ceff
SB (5.44)

being εair
r ' 1 and εLAr

r = 1.53. Ceff
SB ' 0.077 nF represents the capacitive contribution

of the SB to the cell measured capacitance [39]. The ωcold
meas values could anyway not be

suitable, since the single 〈Cmeas〉ν value proved not to a stable and trustable measurements.

The ω0 parameters should also be compared with the corresponding one obtained by
the OF4 coefficients computation with a fit procedure involving the ionization pulse [40].
These ωOF4 = 1√

LOF4COF4
parameters are expected to represent the correct value to be

used in the ionization waveform prediction, at least according in the (5.1) model, since
they are computed fitting the mean ionization pulse obtained from the test–beam data
[32] with a function of the LOF4COF4 parameter.

The P15 ω parameters obtained through the 32–samples delay runs analysis, from the
direct impedance measure scaled to LAr temperature, and through the OF4 computation
procedure using the ionization pulses are compared in Figure 5.25. The values are shown as
a function of ηcell, for the 8 different φ lines from which the 32–sample delay runs has been
acquired. The ω0 values are systematically greater than the ωOF4 ones, while the ωcold

meas

ones are systematically smaller; but there is anyway a significant qualitative agreement
between the extracted, measured and fitted values, expecially in the local patternswhich
are well reproduced in the three approaches.

The systematical differences between the ω values obtained with the different approches
need indeed to be further studied. An indipendent study of the 32–sampled delay runs
[41, 33], based on the FFT frequency analysis of the cell resonance, returns ω values
compatible at the 0.5% level with the ones obtained with the cosine–response algorithm.
On the other hand the ωOF4 parameter, being obtained through a fit procedure on the
ionization pulse extracted from the electrons test–beam data, could take into account both
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Figure 5.25: EM barrel production module P15 Middle cells characteristic
frequencies, as a function of ηcell for 8 different φ lines. The cosine–
response extracted ω0 values are compared with the direct measure
ωcold

meas and with the ωOF4 values obtained through the OF4 fit procedure
on the ionization pulses.
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the injection point effect, related to the real LC values, and other smaller contributions
that are not directly included in the model (5.1) (e.g. the τr parameter related to the
contact resitance), assuming the role of a sort of effective parameter. We return on this
point in the conclusive remarks summary at the end of this work.

In Figure 5.26 the ω values are compared as a function of φcell for 8 different η position.
Similar results are obtained for all the other η positions. The φ behavior that was noticed
on the extracted ω0 parameters is reproduced by both the measured ωmeas values and the
ωOF4 values obtained through the OF4 fit procedure on the ionization pulses. The Middle
cells connected at the center of the SB show a lower characteristic frequency. It is behind
the present aims of this work to investigate the origin of this effect; the fact that the
cosine–response algorithm is able to recognize such a property is anyway a further prove
of the accuracy of the method.

5.5.3 Ionization signal prediction and OF coefficients computation

Once the set of parameters {τcali, fstep, ω0} has been extracted from the 32–samples MW,
the calibration waveform can be easily normalized to its peak values, and the corresponding
“normalized” ionization pulse can be computed through the (5.3). An example of this
procedure is shown in Figure 5.27.

As it has been mentioned before, the nominal Td value is to be used; in the EM
barrel, Td ' 450 ns. This choice does not represent a real limitation to the precision
of the procedure, since the ionization signal prediction is not really sensitive to the Td

value, at least in the region of the signal that is used for the OF coefficients computation.
In Figure 5.28 the ionization signal prediction is computed using the Td = 450 ns EMB
nominal value, and the test values T 1

d = 430 ns and T 2
d = 470 ns. It is immediately noticed

that the peak region of the ionization signal prediction it is not affected by such strong
variations in the Td value, while the biggest differences are registered in the tail of the
signal.

Once the ionization pulse has been computed from the calibration MW on a time range
of 800 ns, the positive lobe region is selected in a 125 ns interval, and the OF coefficients
sets are computed for each of the 25 possible delay values according to the procedure
exposed in Appendix B. An example of the OF coefficients obtained for the Medium gain
region from the ionization waveform of Figure 5.27 is shown in Figure 5.29.

A naive test of these OF coefficients is proposed in Figure 5.30. The peak of the
“normalized” ionization waveform that was used to compute the coefficients sets is
reconstructed using the OF SR technique itself. For each possible delay value 5 samples
are selected, one every 25 ns. Peak and arrival time of the signal are reconstructed using
the first OF coefficient set available, the obtained time is used as a correction to choose
the following set to be used. The iterative procedure is stopped when the computed time
correction is smaller than 0.5 ns. In this case the OF coefficients set is the one to be
used. The convergence is always reached after 3 iterations at maximum. The distribution
of the reconstructed peak, each value being obtained for the different signal delays, is
well centered around 1 with a 10−5 RMS. There is no evident correlation between the
signal delay and the reconstructed peak value. Analogous considerations hold for the
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Figure 5.26: EM barrel production module P15 Middle cells characteristic
frequencies, as a function of φcell for 8 different η lines. The cosine–
response extracted ω0 values are compared with the direct measure
ωcold

meas and with the ωOF4 values obtained through the OF4 fit procedure
on the ionization pulses.
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Figure 5.30: Test of the OF SR iterative procedure. The peak of the “normalized”
ionization waveform used to compute the coefficients is reconstructed
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reconstructed time.

The OF coefficients obtained with the ionization waveform predicted using the
LC values from the cosine–response algorithm are presently not to be considered as
“production” values for the EMB modules test-beam data analysis, at least until the
systematic differences from the OF4 values pointed out in Section 5.5.2 have been solved,
or the physics pulse prediction model has been sufficiently refined (see the conclusive
remarks summary for details).

5.5.4 A possible EMC calibration scenario at the LHC

In conclusion we try to imagine a possible EMC calibration scenario at the LHC. The actual
gain of each readout channel is computed injecting and reconstruction calibration pulses of
different normalization (ramp runs). The noise (electronics + pile–up) is measured during
the pedestal runs. The full shape of the calibration signal is reconstructed through the
analysis of several 32–samples delay curves, acquired for different injected current (DAC)
values (at least 3); a MW is obtained for each cell. The step–response transformation
and the cosine–response transformation are computed from the MW, the parameters
set {τcali, fstep, ω0} is extracted2. The MW is normalized to its peak value, and the
“normalized” ionization waveform is computed (e.g. using the nominal drift time Td

value). Using this ionization pulse prediction and the noise autocorrelation information
from the pedestal runs, the OF coefficients are computed for each readout gain region.
They can then be directly used for the physics events signal reconstruction.
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Figure 5.31: Pictorial flowchart of a possible EMC calibration scenario at the LHC.

2Any other parameter needed to complete the ionization pulse prediction (e.g. τr) is to be extracted
from the MW at this point of the procedure, or inferred from nominal value or first–principles computation.
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5.6 – Open questions

A pictorial summary of the procedure is proposed in Figure 5.31. The evident
advantage of this algorithm is to be fast and completely stand–alone. The calibration
steps can be performed once in a while, the final OF coefficients sets would be (nearly)
immediately available at the end of the computation procedure.

5.6 Open questions

5.6.1 Ionization signal prediction

It has been shown in this chapter that the EMC ionization signal prediction, needed to
complete the OF coefficients computation and therefore the EMC energy reconstruction,
can in principle be performed using only the calibration waveform. Most of the needed
information, represented by the parameters used in the ionization pulse prediction from
the calibration waveform, can be retrieved directly from the calibration waveform itself.
There are anyway some open problems which are not directly faced in this thesis, but that
need to be solved if the advertised calibration accuracy is to be achieved.

We already mentioned the systematic difference between the OF4 LC values obtained
through a direct fit procedure on the ionization mean pulse [32], and the ones we obtain
from the MW’s cosine–response analysis. This systematic difference might be related to
some intrinsic property of the cosine algorithm; it is anyway reasonable to believe that
the ωOF4 value could take into account both the injection point effect related to the real
LC value, and other effect contributions that are not directly included in the cell model
described by equation (5.1).

Some of the open questions that need to be solved and included in the stand–alone
ionization waveform prediction are:

• The problem of the resistive term in the electrode. The EMC cell model
proposed Figure 3.2 does not take into account the unavoidable presence of at
least a contact resistance between the readout electrodes and the SB. The model
in Figure 5.1 should instead be used. The relative importance of the τr = rC
parameter in the detector transfer function can be estimated using typical values of
the circuit model components of a Middle cell. If r = 1 Ω, L = 25 nH and C = 2 nF
one obtains:

{
τr = 2 ns
τ0 ' 7 ns

⇒ τr

τ0
' 28%

Indeed the resistive term cannot be ignored while performing the ionization signal
prediction. Since the algorithm based on the output transformation proposed in
Section 5.3.4 is not able to converge to reasonable results, a different approach must
be tempted. A possible strategy could be the frequency analysis of the resonance
width around the cell characteristic frequency [33, 41].

• The change in rise time of the calibration pulse due to the skin effect. The
calibration pulses must travel over a cable of about 4 m in length that connects the
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CB to the MB. This path induces a distortion on the signal, that therefore should
be corrected before being analysed and transformed. This distortion is mainly due
to the cable skin effect [34], that in the frequency domain produces an attenuation
proportional to e−

√
stse on the calibration signal, tse being a characteristic parameter

related to the calibration cable length and properties. The main effect of this
distortion is to slow the rise time of the calibration pulse, that in all the analysis in
this work is always considered to be null.

• The determination of the drift time. The Td value is shown to weakly contribute
to the precision of the ionization physics waveform (Section 5.5.3), for this reason we
suggest that the nominal value can be used in the ionization waveform prediction.
Nevertheless, it could be useful to investigate more deeply this point, especially if
the algorithm is to be applied to the EMC end–caps data, where the non–uniformity
of the LAr gap thickness give rise to different drift time along the detector [3].

• The cross-talk contribution to the ionization signal. As we show in Chapter 3,
the neighboring EMC cells are electrically coupled in different way (capacitively,
inductively and resistively). These couplings produce a “cross–talk” effect that in
principle distorts the ionization signals. Some attempt are presently being done to
understand if the “cross–talk” effects can be corrected in the framework of the OF
signal reconstruction [42].

5.6.2 Signals normalization and readout gain

It is worth to add here a short remark about the way the signal normalization is carried out.
In this work we followed the EMC test–beam data reconstruction framework approach:
since the actual gain of each readout channel is computed using the ramp runs [52] and
applied by default, the peak of the calibration MW, from which the ionization waveform is
predicted, must be normalized to 1. Nevertheless, if the linearity assumption that is made
in the calibration MW computation is valid, it should be possible from the MW data alone
(i.e. not normalized) to derive OF coefficients in units of DAC/ADC (corresponding to
µA/ADC), which would directly give the reconstructed ionization signal in current units
(DAC). The channel gain information is in fact fully contained in the MW itself. The only
additional constant that would have to be applied would be the sensitivity (DAC/GeV or
µA/GeV), which should be a constant for each type of LAr calorimeter in ATLAS.
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Chapter 6

Energy calibration using a

layer–weighting technique

The shower energy response of a calorimeter with a longitudinal multi–layer segmentation,
evaluated as a simple sum of the energies recorded by all layers, is affected by several
effects which deteriorate the total energy resolution and bias the measured value of the
total energy. Some of these effects can be recovered by reconstructing the total energy
Etot as a weighted sum of the energy measurements in all the longitudinal layers:

Etot =
n∑

i

wiEi (6.1)

n being the numbers of sampling layers. The problem can be studied on the ATLAS
EMC, which has three longitudinal layers (Strips, Middle, Back) and is complemented in
the region 0< η <1.8 by a thin Presampler layer put in front [3]. Referring to this setup:

• The energy loss due to the amount of material in front of the EMB can be recovered
by weighting the energy deposited in the Presampler (and potentially even in the
Strips).

• A small fraction of the shower energy is deposited in the material between the
Presampler and the Strips. It can be potentially recovered by weighting the energy
deposited in the Strips.

• For showers of hundred GeV or more, the energy resolution loss due to a
longitudinal leakage can be recovered by weighting the energy deposited in the Back
compartment.

Since the loss of energy in non–active zones of the calorimeter worses the detector
measurement accuracy, one of the possible approach is to choose the weights wi’s in order
to minimize the relative energy resolution σ[Etot]/〈Etot〉.

A preliminary study of the energy losses is conducted using a “toy” MonteCarlo (MC)
simulation of electromagnetic shower development and energy deposit in a EM barrel
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(EMB) module (Section 6.1). An analytic solution for the optimal weights is proposed
in Section 6.2, together with a numerical method to estimate their statistics fluctuations
(Section 6.3). Furthermore, this technique is applied to the electrons test–beam data from
an EMB production module exposed to electrons of E0 = 245 GeV. The optimal weights
are studied as functions of the η, φ coordinates, and the improvements on the energy scale,
resolution and uniformity are presented (Section 6.4).

6.1 Energy losses estimate using a “toy” MC

The EMB modules setup is described in detail in a simulator program [56] based on
GEANT [57], both for the ATLAS and for the test–beam framework. Using this simulation
code [54, 55], the mean amount of material in the calorimeter for the EMB test–beam setup
has been computed, in term of radiation lengths X0 as a function of η. In Figure 6.1 the X0

longitudinal boundaries of the detector samplings are shown. Apart from the active zones
(Presampler, Strips, Middle and Back samplings), the shower energy can be deposited
(and lost) in three non–active (“dead”) regions: in the material in front of the Presampler
(Ecryostat), in the material between the Presampler and the Strips (Efront), and behind the
Back sampling (Eleakage).
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Figure 6.1: Amount of material in term of radiation lengths X0 (linear scale, left,
and logarithmic scale, right) in the EMB calorimeter in the test-beam
setup, as a function of η. The boundaries of the different samplings are
shown. The active samplings (from bottom, Presampler, Strips, Middle
and Back) are drawn in yellow, the non–active (“dead”) regions (before
the Presampler and between the Presampler and the Strips) are drawn
in red.

The mean longitudinal profile of the energy deposition in an electron–induced
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6.1 – Energy losses estimate using a “toy” MC

electromagnetic shower is reasonably described by the function [58, 59]:

dE

dt
= E0

b(a+1)tae−bt

Γ(a + 1)
(6.2)

where E0 is the incoming electron energy, and:







t = X
X0

material depth

tmax = ln E0
Ec

− 1 peak of the shower

b ' 0.5 (for very different kind of material)
a = btmax

Ec ' 560 MeV
Z

critical energy of the crossed material

(6.3)

In the ATLAS EMC case a reasonable approximation is Ec ' EPb
c ' 6.8 MeV. An example

of the curve (6.2) for an electron of E0 = 245 GeV is shown in Figure 6.2.

X/X0

dE
/d

X
0 

(G
eV

/X
0)

E0 = 245. GeV

Z = 82

Ec = 6.82927 MeV

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

0 5 10 15 20 25 30 35 40

Figure 6.2: Mean longitudinal profile of the energy deposition in an electromagnetic
shower generated by a E0 = 245 GeV electron in lead (ZPb = 82,
EPb

c ' 6.8 MeV).

A mean estimate of energy deposited in each of the active samplings and in the “dead”
regions can be computed as a function of η, integrating1 the function (6.2) between the
proper X0 boundaries shown in Figure 6.1. The results for an electron of E0 = 245 GeV
are shown in Figure 6.3 (active samplings) and Figure 6.4 (“dead” regions).

The energy losses can in principle be recovered by weighting the proper sampling
measurements. The energy lost in front of the module is recover by weighting the
Presampler measure, the energy lost between the Presampler and the Strips by weighting
the Strips measure, the longitudinal energy leakage by weighting the Back measure. The

1The Gauss-Legendre numerical integration formula [63] is used.
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Figure 6.3: Mean energy loss in the EMB active samplings as a function of η, for
an e.m. shower induced by a 245 GeV electron. From top to bottom,
Presampler, Strips, Middle and Back.
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an e.m. shower induced by a 245 GeV electron. Form top to bottom,
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weights are defined as:







w0 = 1 +
Ecryostat

EPresampler

w2 = 1 + Efront
EStrips

w3 = 1 +
Eleakage

EBack

(6.4)

The weights values obtained from the “toy” MC computation for a shower induced by a
245 GeV electron are shown in Figure 6.6.

A real shower is known to increases more rapidly than the (6.2) parametrization, being
the Γ distribution very flat near the origin: equation (6.2) fails badly for about the first two
radiation lengths [59]. For this reasons the weights values obtained from this “toys” MC
analysis can only give a qualitative information about what the optimal weights should
be. Some considerations are anyway possible:

• The Presampler weight can be reasonably expected to be greater than 1. The energy
lost in front of the EMC is well correlated with the one measured in Presampler
(Figure 6.5). The Presampler weight can be also expected to be slightly varying as
a function of η.
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Figure 6.5: Correlation between the energy lost in material in front of the EMB and
the energy deposited in the Presampler, for an e.m. shower induced by
a 245 GeV electron, according to the “toy” MC analysis.

• The Strips weight is to be expected to be slightly greater than 1 at high η only, where
the amount of “dead” material between the Presampler and the Strips crossed by the
incoming particles increases because of a geometric effect. The fraction of energy
to be recovered is in fact small compared to the amount measured in the Strips
themselves.

Furthermore, in the real experimental framework, the Strips energy measurement
would have a finite resolution. This resolution can be expected to be comparable
with the amount of energy to be recovered weighting the Strips measurement itself,
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6.2 – Energy resolution minimization

at least for high energy showers. According to the “toy MC” in fact, the energy lost
between the Presampler and the Strips by a shower of E0 = 245 GeV is <4% of the
Strips mean measurement. It is therefore to be verified if a Strips weight can really
improve the accuracy of a high energy shower measure.

• The Back weight should show a structure that respects the detector total X0 depth
as a function of η.

6.2 Energy resolution minimization

The total optimized energy defined in expression (6.1) is a function of the stochastic
variables Ei’s, whose averages are 〈Ei〉 = µi. Their RMS’s and correlations are described
by the covariance matrix Cov[Ei, Ej ] = Cij. These parameters can be derived from the
data set with the usual formulæ:

µi =

∑N
k=1 E

(k)
i

N
(6.5)

Cij =

∑N
k=1(E

(k)
i − µi)(E

(k)
j − µj)

N − 1
(6.6)

where N is the number of events collected, and the superscript (k) flags the event number.
The average and variance of Etot are:

〈Etot〉 =

n∑

i=1

wiµi (6.7)

Var[Etot] =
∑

i,j

wiwjCij (6.8)

A possible approach to estimate the optimal weights wi consists in minimize the quantity
σ[Etot]/〈Etot〉, where σ[Etot] =

√

Var[Etot]. The energy losses in the material in front
of the EMC and the shower longitudinal leakage contribute in fact to deteriorate the
total energy resolution of the detector. The energy resolution minimization problem can
be analytically solved in different ways; an elegant solution is found using a matricial
approach. The following notation is used:

• C = covariance matrix Cij = Cov[Ei, Ej ]

• ~µ = mean energies µi vector

• ~w = weights wi vector

• ~wT = transpose of the ~w vector
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Figure 6.6: EMB Energy recovering weights for an e.m. cascade induced by a 245
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with “toy” MonteCarlo (see text for details). Presampler weight (top);
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136



6.2 – Energy resolution minimization

The total energy resolution σ[Etot]/〈Etot〉 is therefore:

σ[Etot]

〈Etot〉
=

√
~wT C ~w

~wT ~µ
(6.9)

The minimization is directly performed with respect to the ~w vector. The extremals of
(6.9) are vectors ~w that satisfy:

0 =
∂

∂ ~w

(√
~wT C ~w

~wT ~µ

)

=
1

(~wT ~µ)2

[
(C ~w)(~wT ~µ)√

~wT C ~w
− ~µ

√
~wT C ~w

]

(6.10)

=

[
C ~w~wT ~µ − ~µ~wT C ~w

]

(~wT ~µ)2
√

~wT C ~w
(6.11)

which is equivalent to:

(
~wT ~µ

)
~w =

(
~wT C ~w

)
C−1~µ (6.12)

provided that the covariance matrix C is invertible2 If ~w is a solution, then it must have
the same direction as C−1~µ. Conversely, any vector ~w ∝ C−1~µ is a solution of (6.12),
as can be easily verified by substitution. Therefore, the (1-dimensional vector space of)
extremals ~w have the form:

~w = λ(C−1~µ) λ ∈ R (6.13)

that is easily reduced to the standard notation:

wi = λ
∑

k

C−1
ik µk (6.14)

Some considerations are needed:

• All the weights are defined up to an overall multiplicative constant λ, that affects
the total energy scale. This result should not be surprising, since the starting

2A generic n × n covariance matrix C is by definition symmetric and semi–defined positive. It can
always be written as

C =

0

B

B

B

@

C11 ρ12

√
C11C22 · · · ρ1m

√
C11Cnn

ρ21

√
C11C22 C22 · · · ρ2m

√
C22Cnn

...
...

. . .
...

ρn1

√
C11Cnn · · · ρ(n−1)n

p

C(n−1)(n−1)Cnn Cnn

1

C

C

C

A

where ρij is the correlation coefficient

ρij =
Cij

p

CiiCjj

It can be shown [66] that C is defined positive (and therefore invertible) if there is no perfect linear
correlation between any two of the n variables, namely if ρij 6= ±1. This is always the case for the
energy measurements in different calorimeter compartments, due to the stochastic mechanism of shower
development. In case ρij = ±1, C is singular.
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point was the optimization of the relative energy spread σ[Etot]/〈Etot〉. The way
to set an absolute scale for the weights, and therefore the energy, must come from
further considerations. The choice adopted here is to assume that the sampling
layer recording the largest energy release (call it the M -th layer) does not need any
correction, i.e. wM = 1, and the remaining weights are scaled accordingly. This fixes
λ, and the weights so normalized are:

w̃i =

∑

k C−1
ik µk

∑

k C−1
Mkµk

(6.15)

• The minimization of σ[Etot]/〈Etot〉 must be carried out simultaneously as a function
of all the weights. Figure 6.7 shows the dependence of the relative energy resolution
on the Presampler and Back weights, for the EMB (Strips and Middle weights are
set to 1, see Section 6.4 for explanation). Clearly, the effects of the two weights are
not separable.
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Figure 6.7: Relative energy resolution σ[Etot]/〈Etot〉 as a function of the Presampler
and Back weights (3-D plot and level curves). The weights for Strips
and Middle layer are constrained to 1.

• The minimization algorithm is exact, therefore it does not introduce any systematic
error to the wi’s. However, the variables µi’s and Cij ’s, as extracted according
to equations (6.5),(6.6) from the finite data sample under exam, are affected by
statistical fluctuations, that propagate into the evaluation of the weights3. An
estimate of their effect is described in Section 6.3.

3Notice that these fluctuations are completely unrelated to the “errors” that could be obtained from
an iterative minimization algorithm (e.g. MINUIT), which are due to the way the algorithm handles the
function to minimize. In the case under exam, the minimum is known analytically with absolute precision,
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6.3 – Statistical fluctuations on the weights

6.3 Statistical fluctuations on the weights

The uncertainties on the quantities µi’s and Cij ’s are in general correlated. An analytical
error propagation on formula (6.14) or (6.15) is not suitable, therefore a numerical MC
approach can be followed. The steps are the following:

• Find a linear transform of the variables Ei’s:

Êr =
∑

i

UriEi

such that the covariance matrix

Ĉrs = Cov[Êr; Ês]

is diagonal. This is always possible since the matrix C is symmetric; the transform
matrix U is therefore orthogonal (U−1 = UT ), and

Ĉrs =
∑

ij

UriUsjCij

• The variables Êr’s are now uncorrelated. Their average values are:

〈Êr〉 = µ̂r =
∑

i

Uriµi

and their spreads are:

σ̂r =

√

Ĉrr

For a sample of N events, the statistical uncertainty on µ̂r is:

RMS[µ̂r] =
σ̂r√
N

Under the hypothesis of large N and gaussian distribution, the uncertainty on σ̂r is
uncorrelated with that on µ̂r, and amounts to:

RMS[σ̂r] =
σ̂r√
2N

• For each of the µ̂r’s and σ̂r’s one can generate the corresponding smeared quantity
µ̂∗

r (randomly sampled from a gaussian distribution centered in µ̂r, with standard
deviation equal to σ̂r/

√
N) and σ̂∗

r (randomly sampling the quantity (σ̂∗
r/σ̂r)

2 from
a χ2 distribution with (N − 1) degrees of freedom). Applying the inverse transform
UT one obtains µ∗

i =
∑

r Uriµ̂
∗
r and C∗

ij =
∑

r UriUrj(σ̂
∗
r )

2, from which a new set of
weights w∗

i ’s can be evaluated.

• The previous procedure is to be repeated several times4, in order to get a histogram
for each w∗

i (see Figure 6.8). The RMS spread of each histogram is then used as an
estimate of the statistical uncertainty on wi.

once the function is given. However, the function itself is affected by uncertainties of statistical origin
(through the quantities Cij ’s and µi’s), and their effect must be studied.

4NMC = 10000 would provide at least 1%precision on the central values of the weights distributions.
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Figure 6.8: Example of typical distributions for the weights w∗
i , as obtained from

the MC errors propagation. The values of µi’s and Cij ’s are from an
EMB test beam run, and the weights normalization is w3 = 1.

6.4 Application to the EMB test-beam data samples

The optimal weights are computed using equation (6.15) from the data samples collected
from the EMB production modules test-beam sessions (in this chapter, the module P15
data are used5), and then applied to the same measurements. For each selected cell, only
“electron” events are used to evaluate the covariance matrix Cij and the average energies
µi. The data selection used to evaluate the weights values are extensively described in
Section 7.3.

6.4.1 Normalization strategies

As it is discussed in Section 6.2, the energy measure of a M -th layer has to be chosen
to define an overall normalization constant for the weights set. The most natural choice
here would be the Middle layer (i.e. the sampling that collects the largest energy signal),
therefore w̃3 = 1. On the other hand, the “toy” MC study (Section 6.1) suggests that
a Strips weight may not help in improving the total energy measurement accuracy. A
variation of the first normalization approach consists then in considering the Strips and
Middle samplings as one single layer with weight w̃2+3 = 1. Strips and Middle are
contiguous and homogeneous in terms of constituent materials, and should not suffer of
longitudinal containment effects. Since the energies Ecluster

Strips and Ecluster
Middle recorded in Strips

and Middle are strongly anti-correlated (ρ23 ∼ −0.97), the spread of Ecluster
Strips + Ecluster

Middle

is much narrower than that of Ecluster
Middle alone. For test–beam electrons of E0 = 245 GeV

5An analogous procedure has been applied to the other EMB modules test–beam data analysed in
Chapter 7

140



6.4 – Application to the EMB test-beam data samples

it is found σEcluster
Strips +Ecluster

Middle
∼ 4 GeV, instead of σEcluster

Middle
∼ 11 GeV. Since the choice of

the weights scale λ in equation (6.14) always involves some arbitrariness, we believe the
sum of Strips and Middle measurements to be the most reasonable energy reference. On
the other hand this normalization does not correct for the possibility that some shower
develops in the material between the Presampler and the Strips.

6.4.2 Weights patterns and symmetries

The resulting weights from the EMB production module P15 are shown in Figure 6.9
and Figure 6.10, for normalizations w̃3 = 1 and w̃2+3 = 1 respectively. Qualitatively,
the trends obtained in the two cases are similar. For all layers, the weights are clustered
around “main distributions”, with some exceptions of points scattered away, that however
are affected by large statistical errors. The Presampler weight is slightly geater than 1
(∼ 1 ÷ 1.3), and weakly increases with η, while that of the Strips, for the normalization
w̃3 = 1, regularly rises with ηcell, from 0.96 to 1.03, indicating that the material between
Presampler and Strips also increases, as it is intuitive from projectivity considerations.

The weight of the Back has a more complicate structure, that can be understood
in terms of the depth of the sampling layers (Section 6.1). For ηcell ≥ 16 the depth of
Strips+Middle is constant, while that of the Back increases with ηcell in the two ranges
16 ≤ ηcell ≤ 31 and 32 ≤ ηcell ≤ 47; the trend of the Back weight tends to compensate
the resulting variation of containment. For ηcell ≤ 15 the depth of the Middle decreases
for decreasing ηcell, while that of the Back is constant, therefore the longitudinal leakage
is even larger, but more energy flows through the Back; as a result, the Back weight does
not need to increase further as ηcell → 0.

The dependence of the weights on φcell does not exhibit any evident trend. For this
reason, their values at each ηcell can be averaged over all the φcell’s (see Figures 6.11
and 6.12 for the choices w̃3 = 1 and w̃2+3 = 1). To reduce the local fluctuations, the
profiles as a function of ηcell have been fit with a combination of exponential functions in
the three mentioned η ranges.

6.4.3 Resolution improvements and measurement accuracy

The total energy released in the EMB (sum of the cluster energies of all the layers) can be
plot as a function of the hit cell position ηhit

cell, φ
hit
cell. The bare sum of cluster energies (i.e.

without applying weights) from the P15 module test-beam data is displayed in Figure 6.13.
The trend of the total energy as a function of ηhit

cell shows a slight slope for the region
ηhit
cell < 31 (electrode A); a similar effect is observed at the beginning for the electrode B

region (32 < ηhit
cell < 35). These two effects can be attributed to the longitudinal leakage

of the shower. The drop of few GeV at ηhit
cell = 31, 32 is instead due to energy loss in the

small gap between electrodes A and B.

Applying the fit weights displayed in Figure 6.12, with the normalization w̃2+3 = 1,
the total energy profile as a function of ηhit

cell changes slightly, as in Figure 6.14. There is a
small but visible improvement in the profile in the electrode A region, that is now flatter;
the profile at the beginning of the electrodes B region is also improved. As expected, the
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Weighting recipes
RMS[Epeak]

〈Epeak〉

∣
∣
∣
module

RMS[Epeak]
〈Epeak〉

∣
∣
∣
FT0

RMS[Epeak]
〈Epeak〉

∣
∣
∣
FT−1

no weights 1.03% 0.84% 1.05%

single cell weights, w̃3 = 1 1.13% 1.00% 1.08%

single cell weights, w̃2+3 = 1 0.98% 0.77% 1.01%

fit weights, w̃3 = 1 1.57% 1.71% 1.31%

fit weights, w̃2+3 = 1 0.97% 0.67% 1.08%

Table 6.1: Uniformity of the energy Epeak obtained with different weighting recipes
for the full EMB module P15 coverage (module), and in the FT0
(0 ≤ φcell ≤ 7) and FT-1 (8 ≤ φcell ≤ 15) regions.

energy drop at ηhit
cell = 31, 32 is still present in the weighted energies; the ad–hoc correction

for this effect is behind the scope of this work, as well as the correction of the response of
the remaining misbehaving cells.

With the fit weights displayed in Figure 6.11, i.e. with the normalization w̃3 = 1, the
energy profile becomes as in Figure 6.15. The evident deterioration is due to the few %
variation of the Strips weight. This does not necessarily mean that leaving the Strips
weight as a free parameter is wrong: probably the explanation is that the choice of the
normalization w̃3 = 1 is too arbitrary. At least from an empirical point of view, one can
conclude that this normalization is not suitable.

The uniformity, without weights and with weights evaluated in different ways (i.e.
with normalizations w̃2+3 = 1 and w̃3 = 1, and with or without fitting) are summarized in
Table 6.16 for the full EMB module extension, and for the FT0 (0 ≤ φcell ≤ 7) and FT-1
(8 ≤ φcell ≤ 15) regions. The reason for such a distinction is related to the EMB test–beam
setup, that can be considered ATLAS–like only in the FT0 region (see Chapter 7 for a
details). The FT0 region results should be looked as a reference to judge the weighting
algorithm performances.

As expected, the relative energy resolution shows an improvement when computing
the total energy as the weighted sum of the layer measurements. In Figure 6.16 the values
of σ[Etot]/〈Etot〉 as a function of ηhit

cell, mediated over φhit
cell, are shown, for different weights

normalizations, using the weights evaluated cell by cell. The best energy resolution is
obtained with the normalization w̃3 = 1, as expected since it has the largest degree of
freedom. Figure 6.17 displays the same quantities, but using the weights from the fits. In
this case, the normalization w̃2+3 = 1 yields the best energy resolution. In both cases,
the improvement is at the level of 0.1%÷0.2%, and is essentially due to the application of
weights, the difference between the two normalizations being almost negligible.

6The energy response uniformity values quoted in Table 6.1 for the P15 module are slightly worse than
the ones proposed in Table 7.1 in Chapter 7. This is due to the fact that in the full data analysis a further
gaussian fit is performed is on the Epeak distribution, in order to get rid of the remaining misbehaving
cells.
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Figure 6.13: Total energy vs ηhit
cell at several φhit

cell (no weights applied).
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Figure 6.14: Total energy vs ηhit
cell at several φhit

cell (weights normalization: w̃2+3 = 1).
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Figure 6.15: Total energy vs ηhit
cell at several φhit

cell (weights normalization: w̃3 = 1).
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Figure 6.16: Values of the σ[Etot]/〈Etot〉 energy resolution, mediated over φhit
cell, as a

function of ηhit
cell, for different weighting recipes. The weights evaluated

cell by cell are used.
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Figure 6.17: Values of the σ[Etot]/〈Etot〉 energy resolution, mediated over φhit
cell, as

a function of ηhit
cell, for different weighting recipes. The weights from

the fits are used.

6.5 Summary and perspectives

The energy resolution of the ATLAS electromagnetic barrel calorimeter (EMB) can be
improved by reconstructing the total energy as the weighted sum of the measurements in
all the longitudinal layers. The set of optimal weights can be obtained through an exact
analytical minimization of the energy resolution, expressed as a function of the averages
and covariance matrix elements of the layers measurements. Statistical fluctuations on
the optimal weights can be efficiently evaluated through a numerical MC approach.

Since the optimal weights are defined up to an overall multiplicative constant, two
different normalizations have been developed and tested, consisting in constraining the
weight of Middle layer, or that of the Strips+Middle pseudo–layer, to be equal to 1.
Both the “toy” MC study of the energy losses in the dead zone of the detector, and
the results obtained from the EMB module P15 test-beam data samples, suggest that —
at least for high energy shower — the Strips+Middle pseudo–layer normalization is the
most performing, providing a sensible improvement in the energy uniformity and scale.
In the case of the module P15 electrons data the relative energy resolution improves by
0.1%÷0.2% with both normalizations. The algorithm proves to be a powerful tool in order
to complete the EMC calibration, and it will be used in Chapter 7 as a complementary
correction in the uniformity study.

There are several questions related to the calibration weights that should be
investigated, but that are certainly behind the direct scope of this work. The weights
computation algorithm should be tested on data from different EMB production modules,
in order to study the stability of the optimal weights. The behavior of the optimal weights
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Chapter 6 – Energy calibration using a layer–weighting technique

at different beam energies should be investigated. In order to state the feasibility of the
energy weighting calibration technique in the ATLAS framework (for what concerns the
first attempts, see for example [21]), it would indeed necessary to study the scaling of
the weights values with the amount of material in front of the calorimeter. This could be
done in the EMB test–beam setup, with the aim to find a possible parametrization to be
extended to the full ATLAS environment.
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Chapter 7

Energy response uniformity of the

EMC

7.1 Energy response non–uniformity sources

The quality of the energy response uniformity of the ATLAS LAr EMC depends on several
factors, each being expected to contribute to the relative energy resolution constant term
c in equation (2.4). The main sources of the EMC energy response non–uniformity have
been extensively studied [4], and can be summarized as follows:

• Detector mechanical non–uniformity (absorber and gap thickness). They
are minimized thanks to an accurate detector components design, production and
assembly (see for example [60]).

• Detector geometry (“φ modulation”). The accordion geometry induces a variation
in the sampling fraction of the calorimeter along the φ coordinate, because of the
imperfect overlap among the absorbers due to finite bending radius.

• Finite size of the readout cluster (“η modulation”). The readout cluster has a
finite dimension, that is usually relatively small along the η coordinate. The shower
energy is not fully contained, the EMC response depends on the impact point of the
incoming particle with respect to the cell position. The response is maximum when
the particle hits the center of the cell, and decreases at the edges.

• Calibration quality (amplitude accuracy and stability, difference between the
calibration an ionization signals). Chapter 3 and 4 of this work are dedicated to show
how the signal reconstruction and the electronic calibration technique contribute to
the quality of EMC response uniformity.

• Upstream material (low energy tails). It can cause the shower to start developing
before the EMC, so that its energy is not fully contained in the detector. In this
case the EMC energy resolution is worsened by the appearance of low energy tails
in the calorimeter energy distribution (see Chapter 6).

151



Chapter 7 – Energy response uniformity of the EMC

• Longitudinal leakage of high energy showers (see Chapter 6).

• Long range non–uniformity sources, such as signal dependence on the LAr
purity and temperature, HV variations, cables lengths, mechanical deformations,
localized discontinuities (e.g. between the EMB A and B electrodes, or between the
EMB and the EMC).

The detailed discussion of all the non–uniformity contributions, as well as the optimization
of the relative corrections, is well behind the scope of this work. On the other hand, it
is reasonable to assume that the non–uniformity sources contribute independently to the
final energy response performances of the EMC.

This chapter is dedicated to study the energy response uniformity of the EMB
production modules exposed to 245 GeV electrons test–beam at CERN during the 2001 ans
2002 sessions (Section 7.2), using the SR algorithms based on the OF technique discussed
in Chapter 4 and 5, in association with the “dead” material and leakage correction based
on the weighting technique developed in Chapter 6. In order not to be dependent on the
φ and η modulations effects discussed above, the analysis is conducted on the electrons
events hitting the center of the cell (see Section 7.3 for details).

7.2 EMB modules test–beam setup

The beam tests of the EMB modules were conducted on CERN’s H8 beam line For the
modules uniformity study secondary beams of e± of 245 GeV producted by the SPS were
used [44].

The EMB module under test is housed in a dedicated cryostat built with 4 cm thick
aluminum walls separated by a 5 cm vacuum gap (Figure 7.1). Two feed-through’s are
needed to read out the whole EMB module and the corresponding Presampler sectors. FT-
1 covers the 0 < φ < 0.2 region, FT0 the 0.2 < φ < 0.4 one; only FT0 is equipped with the
ATLAS gold–plated pin carriers, thus ensuring the required low–cross–talk connections.
The cryostat is mounted on a movable table, so that each readout position of the EMB
module can be aligned to the beam line, respecting the projective design (Figure 7.2).

A system of three scintillators in front of the cryostat provides the trigger to the DAQ
system [45]. The beam acceptance is defined by the 4×4 cm2 size of the first two. Four
multi–wire proportional chambers [46] (“beam chambers”, BC’s) are located along the
beam line in front of the EMB module cryostat; they provide the position of the incoming
particle track. Since the trigger is asynchronous with respect to the 40 MHz DAQ clock,
the time difference between the trigger and the next clock cycle is measure by a fast Time
Discriminator Counter (TDC), whose counting period is ∼50 ps, and whose resolution is
∼300 ps. Two additional scintillators follow the cryostat: the first one is allocated after a
lead block corresponding to 3 X0, and is used as a threshold counter to discriminate the
pions contaminating the electrons beam. The second one follows after a 5 λI iron block, its
signal is used to detect the muons in the beam. The different elements disposition along
the beam line is schematized in Figure 7.2; details on the test–beam line instrumentation
can be found in [47].
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7.2 – EMB modules test–beam setup

Figure 7.1: The EMB module test–beam cryostat on the movable table (left). An
EMB production module is being inserted in the cryostat (right).
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Figure 7.2: CERN H8 beam line setup. Three different positions of the EMB module
under test are shown.
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The DAQ system used in the EMB modules test–beam sessions is based on the system
developed by the RD13 collaboration (see for example [48]). The data emerging from
the readout system located on the FEC (see Chaper 2) are stored in FIFO registers on
the miniROD system [49], that is read by a RIO8061(2) processor. The whole system is
controlled by different software applications that are detailed described in [50].

7.3 Data sample selection and analysis outline

The data sets under exam come from the position scans performed in 2001 and 2002 on
different EMB production modules1with electron beams at energy Ebeam = 245 GeV. In
each modules the scanned region spans most of the interval 1 ≤ ηcell ≤ 45 (0.025 ≤ η ≤
1.15) for 1 ≤ φcell ≤ 15.

The data are processed off-line through the EMTB [52] package, and the energy
recorded by each readout cell is reconstructed using the OF technique [30], in the OF4
incarnation [32].

For each event, in the Middle layer, a 3× 3 cells cluster is formed around the cell with
the largest energy content. Similar clusters are formed for Presampler, Strips and Back
layer, made of 3× 1, 24× 1 and 2× 3 cells respectively, in order to cover at least the same
region of the Middle cluster. The η and φ coordinates of the impact point are estimated
as the barycentre of the shower contained in the Middle cluster:

(

ηMiddle
bary , φMiddle

bary

)

=

∑

k∈cluster

(
ηMiddle
cell , φMiddle

cell

)
× EMiddle

k
∑

k∈cluster EMiddle
k

(Middle cell units) (7.1)

For each run, the position (ηhit
cell, φ

hit
cell)Middle of the cell hit by the beam is extracted as the

average values of ηMiddle
bary and φMiddle

bary from events where the energy in the Middle cluster
in greater then 30 GeV (Figure 7.3).

The η impact point of the events is obtained also from the Strips sampling records. The
η coordinates of the impact point is estimated as the barycentre of the shower contained
in the Strips cluster using the analogous of equations (7.1); for each run the position
(ηhit

cell)Strips of the cell hit by the beam is extracted as the average values of (ηbary)Strips,
and conveniently converted in Middle cells units. This value is used to check the quality
of the analized run (see Section 7.3.2).

7.3.1 Event selection

For each run, the following event selection is applied:

A1 all events from random trigger, or compatible with muons or pions are rejected; only
events with a physics trigger are selected;

A2 the signal from the 3nd scintillator upstream (S3) must be compatible with one MIP,
otherwise the event is rejected (Figure 7.4);

1M13 (July–August 2001), M10 (October 2001), P15 (June 2002), P13 (July–August 2002)
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Figure 7.3: Example of estimation of the η and φ coordinates of the impact point
in a P15 EMB module test–beam run. The nominal position of the
cryostat table was (ηcell = 18, φcell = 10). From to bottom: (ηhit

cell)Middle

distribution; (ηhit
cell)Strips distribution; ∆ηhit

cell distribution (see text for
details); (φhit

cell)Middle distribution.
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Figure 7.4: Spectrum of the S3 ADC counts. The pedestal peak (black) is estimated
with the random trigger events. The first peak of the distribution,
compatible with a single MIP particle, is selected.

A3 to achieve a further pions and muon rejection, the cluster energy in the Strips must
be > 4 GeV.

A4 a check is performed on the particle track extrapolated from the BC’s system spatial
hits. For each of the BC’s (x, y) coordinates, the residual from the track fit must
be within 1 RMS around the mean of the corresponding residuals distribution
(Figure 7.5), thus avoiding events in which the track reconstruction has been difficult.
The reconstructed η (φ) shower barycentre in the Middle sampling is required to be
consistent with the x (y) coordinate of each of the 4 BC’s (Figure 7.6).

Due to the limited size of the cluster and to the accordion geometry, the cluster energy
exhibits a dependence on the impact position (η and φ “modulations” respectively). As the
optimization of corrections for such effects is behind the scope of this work, it is necessary
to restrict the selection to only those events where the impact point is close to the center
of the hit cell:

A5 |ηbary − ηhit
cell| < 0.1 and |φbary − φhit

cell| < 0.1 (Middle cell units)

This requirement is quite tight: in general only ∼ 6% of the events match it.
After this selection, the cluster energies from all the layers are summed together,

and the total energy Etot for the selected events is plot into a histogram in the range
0.8 · Ebeam ÷ 1.1 · Ebeam. The distribution exhibits a large non-gaussian lower tail, due to
a sizable contamination from pions and electrons that lost energy upstream (Figure 7.7).
The histogram peak is fit with a gaussian in a range between −1.5σ and +2.5σ from the
peak. The result of the fit provides a peak value Epeak and a width σgauss. The events
satisfying the following requirement:

A6 |E − Epeak|/σgauss < 3

are considered as “electrons” from now on.
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Figure 7.5: Distributions of the residuals of the tracks interpolation fit in each of
the four BC’s coordinates. The events which residuals are within 1 RMS
from the mean of each distributions are selected.
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Beam chambers position

-0.2

0

0.2

0.4

-4 -2 0 2 4
η middle baricenter vs. X (BC1)

-0.2

0

0.2

0.4

-4 -2 0 2 4
φ middle baricenter vs. Y (BC1)

-0.2

0

0.2

-4 -2 0 2 4
η middle baricenter vs. X (BC2)

-0.4

-0.2

0

0.2

0.4

-4 -2 0 2 4
φ middle baricenter vs. Y (BC2)

-0.2

0

0.2

0.4

-4 -2 0 2 4
η middle baricenter vs. X (BC3)

-0.4

-0.2

0

0.2

-4 -2 0 2 4
φ middle baricenter vs. Y (BC3)

-0.2

0

0.2

0.4

-4 -2 0 2 4
η middle baricenter vs. X (BC4)

-0.2

0

0.2

-4 -2 0 2 4
φ middle baricenter vs. Y (BC4)

Figure 7.6: Correlations between the event η (φ) barycentre, as reconstructed in the
Middle section, and the BC’s x (y) coordinate. The events for which
the two values are compatible are selected.
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Figure 7.7: Example of the final total energy distribution (top), and of the
corresponding energy distributions in the four calorimeter layers, as
obtained after the A6 selection (see text for details). The plots refers
to electrons data from a run taken on the EMB production module P15
at ηcell = 18, φcell = 10 and Ebeam = 245 GeV. The gaussian fit to
the peak is shown, and the labels Mean, Sigma are Epeak and σgauss

respectively.
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7.3.2 Run and cell selection

Not all the runs can be used for uniformity study and weights optimization, because of
the limited statistics and due to local problems. Therefore:

B1 the position of the hit cell must be extracted from at least 50 events;

The η impact points of the incoming particle as extracted from the Strips and Middle
compartments are required to be compatible. The distribution of

∆ηbary = (ηbary)Middle − (ηbary)Strips

is histogrammed (Figure 7.3), the following requirements on the distribution parameters
are required:

B2 the bare values of (ηhit
cell)Middle and (ηhit

cell)Middle must be the same;

B3 the mean value of the ∆ηbary distribution must be comprise within ±0.15 Middle
cell units;

B4 the ∆ηbary distribution RMS must be smaller than 0.25 Middle cell units;

For each run, the cluster energy spectrum for all layers is histogrammed, using events
matching criteria A1 and A2, and the fraction of events above a given energy threshold
is evaluated (Figure 7.8). If such fraction is too low, then the hit cell is probably dead or
misbehaving, and the run is rejected. The selection criteria are:

B5 at least 50% of events must have Ecluster
Presampler > 0.5 GeV;

B6 at least 50% of events must have Ecluster
Strips > 10 GeV;

B7 at least 50% of events must have Ecluster
Middle > 100 GeV;

B8 at least 50% of events must have Ecluster
Back > 1 GeV;

The Strips pass a further control: even if the total energy from the Strips cluster has
a reasonable value and distribution, in fact, a few of them (namely one or two out of the
eight corresponding to the hit Middle cell) could be dead or misbehaving. The checking
algorithm is based on the comparison of the mean energy deposit in each Strip with the
deposit in the neighbors and with the mean deposit along the Strips cluster, and on a
threshold comparison of the mean energy variation between adjacent Strips (Figure 7.9).

B9 no “dead” Strips must be found by the Strips efficiency check algorithm;

To reject runs where the gaussian fit to the energy peak fails (e.g. due to neighboring
dead cells or calibration problems), a loose cut on the energy resolution is applied:

B10 σgauss/Epeak < 1.5%

160



7.3 – Data sample selection and analysis outline
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Figure 7.8: Example of the cluster energy spectra for all EMC layers (from top to
bottom, Presampler, Strips, Middle and Back): total (black) and above
a given energy threshold (red) (see text for details).
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Strips efficiency check
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Figure 7.9: Strips efficiency check algorithm summary. From top to bottom, in the
exposed Strips region: total number of hits distribution; total energy
distribution; mean energy deposit per events (two different estimation
procedures); mean energy variation between adjacent Strips.
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7.4 – Uniformity of the production modules

The B1—B10 criteria are only used to select runs: if a run pass the previous selection,
then the event selections A1—A6 are used for the analysis. After these selections, data
from different runs belonging to the same hit cell are merged together to increase the
statistics, and the gaussian fit is repeated.

B11 the analysis is performed only on the cells where at least 5000 selected events are
collected, of which at least 100 are flagged as “electron” events.

The last requirement is quite loose: on average, in each cell ∼ 10000 events are collected,
of which ∼ 650 are “electrons”.

7.4 Uniformity of the production modules

Once the analysis is conducted on the full region of the EMB module under test, the
energy response uniformity is estimated as follows:

• the Epeak values from all the (ηhit
cell, φ

hit
cell) positions that pass the selection criteria put

in a histogram;

• the Epeak distribution is expected to be gaussian, apart for some residual
misbehaving cells that pass the run selections. Since these values populate the non–
gaussian tail of the Epeak distribution, and the correction of these local problems is
anyway behind the scope of this work, the Epeak histogram is fit with a gaussian
function to get rid of this residual deviation (see Figure 7.10 for an example).

• the uniformity estimator is computed as the ratio between the σ[Epeak] width and
the 〈Epeak〉 mean value of the Epeak distribution gaussian fit.

The same uniformity computation procedure is separately applied to the (ηhit
cell, φ

hit
cell)

positions belonging to the FT0 (φhit
cell ≥ 8) and to the FT-1 (φhit

cell < 8) regions. Since
the FT-1 is not equipped with the ATLAS gold–plated pin–carriers, in fact, the cross-talk
between the corresponding neighboring cells and the noise contribution are expected to be
higher than in FT0. These effects are expected to worsen the detector performance: for
this reason only the FT0 energy response uniformity will be taken as the reference value in
order to quote the detector performance and the effectiveness of the energy reconstruction
and calibration algorithm used.

The global uniformity results are extensively listed in Table 7.1 for the M10, P13 and
P15 EMB production modules. Values are quoted for different weighting recipes; the sum
of the Strips and Middle energies is used as the reference measurement to normalize the
weights values2

It is immediately noticed that the uniformity, already good at the ∼ 1% level on the
full modules extension thanks to the OF4 signal reconstruction, furtherly improves with
the use of the energy weighting technique. In agreement with the Chapter 6 results, in

2w2+3 = 1, that is shown in Chapter 6 to be the best performing weights normalization scheme.
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Uniformity - full (η-φ) scanned region
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Figure 7.10: EMB production modules M10 energy response uniformity evaluation,
through the fit of the Epeak distribution. From top to bottom, full
module after selections, FT0 and FT-1.
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Uniformity (% RMS) weighting recipes M10 P13 P15

no weights 0.91 0.97 0.93
σ[Epeak]
〈Epeak〉

∣
∣
∣
module

weights (single cell) 0.78 0.87 0.80

weights (fit) 0.76 0.87 0.66

no weights 0.77 0.68 0.73
σ[Epeak]
〈Epeak〉

∣
∣
∣
FT0

weights (single cell) 0.59 0.52 0.50

weights (fit) 0.55 0.46 0.44

no weights 1.04 0.94 1.08
σ[Epeak]
〈Epeak〉

∣
∣
∣
FT−1

weights (single cell) 1.03 0.78 1.07

weights (fit) 0.98 0.99 1.10

Table 7.1: Energy response uniformity of the EMB production modules M10, P13
and P15

all the modules the best uniformity is obtained using the weighting recipes that takes
advantage of the averaging along φ and the parametrization along η.

In all the three modules the FT0 region (∆η × ∆φ = 1.4 × 0.2) shows the best
uniformity (∼ 0.5%). This results confirm the power of the OF signal reconstruction
technique implementing the injection–point and signal–difference corrections (Chapter 4),
and of the energy weighting calibration (Chapter 6). As we mentioned before, the ∼ 1%
uniformity in FT-1 is to be attributed to the test–beam setup.

Uniformity FT0 (% RMS) M10 P13 P15
σ[Epeak]
〈Epeak〉

∣
∣
∣
A

0.51 0.45 0.47

σ[Epeak]
〈Epeak〉

∣
∣
∣
B

0.74 0.90 0.61

Table 7.2: Energy response uniformity of the EMB production modules M10, P13
and P15 in the FT0 region.

In Table 7.2 the energy response uniformity for the FT0 cells are quoted, as obtained
splitting the electrode A (ηcell ≤ 31) from electrode B region (ηcell > 31): since the
sampling fraction is different in the two zones of the EMC (see Chapter 2), the detector
performances could be expected to differ. The uniformity is in fact slightly better in the
electrode A region.

7.5 Summary and perspectives

The aim of this EMB test–beam data analysis is to show the effectiveness of the signal
reconstruction and calibration techniques that are detailed in the previous chapters. The
analysis tests the reconstruction algorithm based on the OF technique that implements
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the necessary signal corrections (Chapter 4), applied to the test–beam data in association
with the energy weighting technique developed in Chapter 6.

The energy response uniformity results are indeed very good. The non–uniformity
effects related to the detector electrical properties, to the material in front of the module
and to the longitudinal leakage can be treated so that a ∼ 0.5% RMS uniformity is obtained
on the whole extensions of the EMB modules that share the ATLAS–like cabling setup.

The effects of local misbehaving cells and of the energy response modulations due to
the detector geometry are not faced in this analysis and need of course to be separately
studied.
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The ATLAS LAr electromagnetic calorimeter (EMC) is designed to provide a precise
energy measurement of electrons and photons, in order to meet the requirements coming
from the LHC physics program. Such a quest for precision poses the problematic of
the reconstruction of the signals emerging from the detector, as well as of the electronic
calibration of the EMC readout cells. This thesis is dedicated to investigate the EMC
signal properties, and to the study and development of adequate energy reconstruction
and calibration algorithms.

The EMC system is in fact shown to be affected by an intrinsic non–uniformity, that
is proved to be related to the detector electrical properties (Chapter 3). These properties
are conveniently analysed using equivalent circuit models with lumped elements. The
development of such models has been complemented by the construction and the study of
a hardware model of a part of the EMC detector (mock–up). The electrical behavior of the
EMC electrodes are now understood, as well as the ionization and calibration waveforms
properties.

The EMC response non–uniformity is demonstrated to be correlated to the inductive
behavior of the the readout channels ground reference. This inductive component in
the ground connections is proved to be different for the readout cells sharing the same
connector, even if both the two ground springs foreseen in the detector design are present.
Furthermore, this distortion effect is worsened by the fact that the calibration signal, used
as a reference to complete the readout channels equalization, is generated in a different
point in the detector with respect to where the ionization current is produced by the
physics events.

The intrinsic non–uniformity of the system is also magnified by the existing signal
reconstruction (SR) algorithm (“parabola” SR), that was used in the preliminary EMC
prototype module test–beam data analysis. The aim of such an algorithm would be
to extract the correct value of peak and arrival time of the sampled signals: the need
of an improved reconstruction and calibration procedure is demonstrated (Chapter 4).
The EMC energy response uniformity can in fact be improved using a SR technique
that takes into account the detector cell–dependent electrical properties discussed
in Chapter 3 (“injection-point” correction and “ionization–to–calibration signal shape
difference” correction): this is extensively demonstrated using the signals from the EMC
hardware model.

The implementation of such corrections to the real experimental data reconstruction
(e.g. the data from the EMC production module test–beam sessions) finds its natural
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way in the framework of the optimal filtering (OF) SR technique. In order to perform
the computation of the OF coefficients, that are used to reconstruct the peak and the
arrival time of an ionization pulse from its digitized sampling, the noise information and
the “normalized” shape of the ionization signal are needed for each readout channel. The
“injection-point” and “ionization–to–calibration signal shape difference” corrections are
then implemented through a correct definition of the ionization pulse “normalization”.
The ionization waveform is in fact to be deduced from the corresponding calibration
pulse, through a transformation that takes into account the different injection points of
the currents in the detector, as well as the different injected pulse shapes (Chapter 5).

Performing such a transformation implies the knowledge of a set of parameters that
characterize the readout cell model. If the mean ionization pulse shape is known, these
parameters can conveniently be retrieved using a fit procedure involving both the ionization
and the calibration pulses (OF4 SR technique [32]). The effectiveness of this SR method
is extensively demonstrated in the energy response uniformity analysis on the EMC barrel
production modules test–beam data analysis (Chapter 7).

In Chapter 5 a possible extension of the OF signal reconstruction technique to the
ATLAS experimental framework is developed. The main characteristics of this method
is that the OF coefficients computation relies only on the information available from the
calibration pulses (“stand–alone” procedure). The ionization signal shape and its correct
normalization can in fact be predicted from the calibration waveform using a time–domain
convolution procedure. The stand–alone procedure is conceived to directly retrieve all
the parameters needed to complete the ionization signal prediction directly from the
calibration waveform itself (i.e. without accessing any information from the test–beam
mean ionization pulses). Even if some aspects of the parameters extraction need a further
investigation, the present status of stand–alone ionization pulse prediction procedure looks
promising, also in view of its implementation within the ATLAS framework.

There are anyway some open points that still need to be clarified if the advertised
calibration accuracy is to be achieved using only the calibration information. They are
discussed in details at the end of Chapter 5, and can be summarized as follows:

• the relevance of the resistive term in the LAr readout cell model;

• the change in rise time of the calibration pulse due to the skin effect in the calibration
injection cables;

• the determination of the drift time of the ionization electrons in the LAr gaps, that
affect the physics signal pulse;

• the cross-talk contribution to the ionization signal.

The energy resolution and uniformity of the ATLAS LAr EMC can be improved
by reconstructing the total energy as the weighted sum of the measurements in all the
longitudinal layers. We show in Chapter 6 that the the optimal weights can be obtained
through an exact analytical minimization of the energy resolution, expressed as a function
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of the averages and covariance matrix elements of the layers measurements. The energies–
weighting algorithm proves to be a powerful tool in order to complete the EMC calibration
provided by the OF signal reconstruction.

As we mentioned before, an EMB test–beam data analysis completes the thesis work
(Chapter7). This analysis is conceived to test the effectiveness of the signal reconstruction
and calibration techniques discussed and developed in the rest of the work. The energy
response uniformity obtained from the EMB production modules test–beam data analysis
is at the level of ∼ 0.5%, proving the power of the developed algorithms.
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Signals description

A.1 Ionization signal

After the passage of the ionizing particles produced in the shower, electrons and positive
ions drift in the LAr gap, forced by the electric field provided between the electrodes and
the absorber by the HV. Due to the different mobilities in LAr, the interesting (faster)
signal is the one generated by the electrons drift. The produced current is a typical
ionization–chamber triangular waveform (Fig. A.1), with a rise time of the order of a few
nanoseconds followed by a linear decay for the duration of the electrons maximum drift
time Td [29].

Figure A.1: Charge collection scheme and current characteristic for a LAr ionization
chamber, assuming uniform ionization over the gap.

In fact, under the (reasonable) assumptions of a uniform electric field E0 and of uniform
ionization along the LAr gap, a current di is generated by the charge dq that drift for a
length dl:

dq =
Q

L
dl

di = vd
E0

V0
dq =

Q

L
vd

E0

V0
dl (A.1)

where Q is the ionization charge deposited along the ionization track length L that will be
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collected by the readout electrode, and vd is the electrons drift velocity. The peak current
Iphys
0 is:

Iphys
0 =

∫ L

0
di =

Q

L
vd

E0

V0

∫ L

0
dl

=
Q

L
vd

E0

V0
L =

Q

Td

(A.2)

being g = V0
E0

the LAr gap width and Td = g
vd

the maximum drift time. The current

Iphys(t) at time t ∈ [0, Td] is then:

Iphys(t) =
Q

L
vd

E0

V0

∫ L− vdt

cos θ

0
dl = Iphys

0

1

L

∫ L− vdt

cos θ

0
dl

= Iphys
0

1

L

(

L − vdt

cos θ

)

= Iphys
0

(

1 − vdt

L cos θ

)

= Iphys
0

(

1 − vdt

g

)

(A.3)

where g = L cos θ is again the LAr gap width, as a function of the ionization track length
L and of the angle θ between the track and the electrode; or, recalling the definition of
maximum drift time Td:

Iphys(t) = Iphys
0

(

1 − t

Td

)

(A.4)

Adding the correct Heaviside θ functions the expression (A.4) can be extended to the full
time domain:

Iphys(t) = Iphys
0

(

1 − t

Td

)

θ(t) θ(t − Td) (A.5)

In the frequency (Laplace) domain it reads:

Iphys(s) = Iphys
0

[
1

s
− 1 − e−sTd

s2Td

]

(A.6)

A.2 Calibration signal

The calibration signal is a known current pulse that mimics the ionization signal. It is
injected as near as possible to the LAr gap where the ionization signals are generated,
and then it is read and reconstructed through the corresponding cell readout chain. In
this way the actual gain of the channel can be computed and the cell can be calibrated
each time it is needed. Details of the ATLAS EMC calibration strategy are discussed in
Section 2.3.5.

The calibration signal should be as similar as possible to the ionization triangular pulse
(see Section A.1). An exponential signal with decay time τcali as been chosen; the decay
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constant τcali has been appropriately trimmed to mimic the EMC ionization signal decay
slope:

Icali(t) = Icali
0 e

− t
τcali (A.7)

In the frequency (Laplace) domain it reads:

Icali(s) = Icali
0

τcali

1 + sτcali
(A.8)

A.2.1 A more detailed description of the calibration signal

In the ATLAS experimental framework the EMC calibration signals are generated by the
calibration boards (CB) [27, 28]. The CB exponential pulser is based on a LR circuit: a
current step of programmable height flows through the parallel of a resistance R and an
inductance L. The values of the R and L components are chosen in order to obtain the
proper exponential decay constant τcali = 2L

R
[3]. The exponential voltage pulse is then

converted to current signal by the calibration resistor located on the MB [23].
For the mock–up measures and analysis we generate the exponential calibration pulse

injecting a voltage step through the series of a resistance R and a capacitance C, thus
obtaining an exponential decay constant τcali = RC.

Both the CB pulser circuit and in the mock–up calibration pulser contains discrete real
elements. In both cases the generated pulse is only approximately exponential, because of
the non-ideal nature of the components. A more detailed description is needed, especially
in the case on CB LR pulser.

Calibration board pulser

The non-ideal inductance L of the CB pulser circuit has a resistive component r that alters
the exponential waveform baseline. According to the simplified scheme in Figure A.2, in
the frequency domain the output pulse is:

Icali(s) = Icali
0







(

r

r+ R
2

)

+ s

(

L

r+ R
2

)

s

(

1 + s

(

L

r+ R
2

))







(A.9)

= Icali
0

[
fstep + sτcali

s(1 + sτcali)

]

(A.10)

= Icali
0

[
(1 − fstep) τcali

1 + sτcali
+

fstep

s

]

(A.11)

where:






fstep =

(

r

r+ R
2

)

is the fraction of the total resistance (r + R
2 )

represented by the resistive component r of
the non-ideal inductance L (fstep ∈ [0, 1]);

τcali =

(

L

r+ R
2

)

is the effective exponential decay constant.

(A.12)
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Figure A.2: Simplified calibration board pulser circuit, showing the non-ideal nature
of the inductance L in its resistive component r.

In the time domain eq. A.11 becomes:

Icali(t) = Icali
0

[

(1 − fstep) e
− t

τcali + fstep

]

(A.13)

The effective calibration pulse is an exponential waveform that does not go asymptotically
to 0, but converges to a non-null baseline. The relative height of this residual baseline is
determined by the resistive component r of the non-ideal inductance L of the CB pulser
circuit. The nominal value of the resistance on the CB is R = 50 Ω [27]. A r ∼ 2 Ω
resistive component of the non-ideal inductance L can be expected [38], leading to a
baseline fraction fstep ∼ 7%.

The effective expression (A.13) is used in all the computations and analysis proposed
in Chapter 5.

Mock–up calibration pulser

All the mock–up calibration different pulsers are based on a RC circuit: a voltage step
is injected through the serie of a capacitance C and a resistance R: in one case this R
element is a real resistive component, in an other it describes the effective behavior of the
sum rint +Z of the step voltage generator internal resistance and of the calibration cables
chain effective impedance (see Section 3.3.2 5.4 for details).

The capacitive component C can indeed exhibit a non-ideal behavior, eventually
showing a (usually very high) resistive component r in parallel (Figure A.3). In this
case the output pulse is:

Icali(s) = Icali
0





(
R

r+R

)

+ s
(

rR
r+R

)

C

s
(

1 + s
(

rR
r+R

)

C
)



 (A.14)
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Figure A.3: Example of a mock–up calibration pulser circuit, showing the non-ideal
nature of the capacitance C in its resistive component r.

that can again be reconducted to the effective expression (A.10) by the definitions:







fstep =
(

R
r+R

)

. 0.1%

τcali =
(

rR
r+R

)

C ∼ RC
(A.15)

being indeed r � R (r ∼ MΩ, R ' 100 Ω) (see Section 5.4).
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Optimal filtering

The optimal filtering (OF) is a technique used to estimate the peak amplitude and the
starting time of a multiply–sampled signal while minimizing the noise contributions. The
method as been first proposed in [30] as a reconstruction technique for signals emerging
from liquid ionization calorimeters in high rate environments. The need of such a signal
reconstruction method in the ATLAS experimental framework is discussed in Section B.1.

The OF reconstructs the signal peak amplitude S and the signal starting time τ as the
weighted sums of a set of n signal samples si:

{
S =

∑n
k=1,n aksk

Sτ =
∑n

k=1,n bksk
(B.1)

Being g(t) the normalized shape of the signal, and g ′(t) its first derivative, the coefficients
set {ak} ({bk}) is obtained as the result of the minimization of the variance of S (Sτ), with
the constrains that the normalized signal shape peak must be unitary (

∑N
k=1 akgk = 1) and

that there must not be a residual time dependence (
∑N

k=1 akg
′
k = 0). The minimization

procedure ensures the required noise suppression; the computation is performed using a
standard Lagrange–multiplier technique (Section B.2).

As a particular case in the digital filtering theory, the OF technique provides an
additional shaping of the signal: the corresponding transfer function is computed in
Section B.3.

B.1 About the need of additional filtering

The signals emerging from the ATLAS EMC suffer of two noise contributions: the
electronics noise, that is related to the readout electronics chain characteristics, and the
“pile–up” noise, due to the minimum–bias events in the detector, whose intensity depends
on the luminosity of the collider. The EMC readout electronic chain has been optimized
minimizing the quadratic sum of the two noise contributions, in order to obtain the best
performances at the LHC high luminosity conditions (L ' 1034 cm−2s−1) [3]. The pile–
up noise contribution [36, 37] increases as

√
τsh, while the electronics noise contribution

decreases as τ
− 3

2
sh (Figure B.1), at least in case of fast–shaping, when the electronics parallel
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noise that scales as τ
− 1

2
sh an can be omitted. It has been shown ([3], [35]) that at high

luminosity the pile–up contribution will be
√

3 times greater that the electronics one. The
shaper optimal time constant has then been chosen τsh = 15 ns over the full EMC rapidity
coverage1 [31].

Figure B.1: Optimization of the shaping time for LHC high and low luminosity
running conditions. The amount of noise is plotted versus the peaking
time of the shaper response to a delta function tp(∆).

In the first years of running the LHC will operate at low luminosity (L '
1033 cm−2s−1); the same optimization would lead to a greater τsh (the optimal shaper

time constant scales as L− 1
4 ), but the readout hardware has been designed to use an

unique τsh. There is then the need of a software method, to be implemented at the signal
reconstruction level, that adds an additional filtering stage to the signals collected at low
luminosity.

B.2 Coefficients computation

Let the multiply sampled signal waveform be

f(t) = Ag(t − τ) + n(t) (B.2)

where A is the signal amplitude, g(t) the signal shape, and τ the delay at which the signal
starts with respect to the sampling trigger time. The function n(t) represents the sum

1A shaper time constant τsh = 15 ns corresponds to a peaking time of the shaper response to a delta
function tp(∆) = 45 ns.
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of the noise contributions that superimpose to the signal during the data acquisition. A
small τ approximation leads to:

f(t) ' A[g(t) − τg′(t)] + n(t) (B.3)

where g′(t) is the first derivative of the signal shape g(t). The sampled points of the signals
at time tk are then:

sk = A(gk − τg′k) + nk (B.4)

where the k label indicates the value of the various functions taken at tk.

The noise is supposed to be a zero–mean function2, and its autocorrelation function to
be known or measurable3:

〈n(t)〉 = 0 〈ninj〉 = Rij (B.5)

The noise at the shaper output is indeed correlated in time by the shaping function.

As we mentioned before, peak and timing values are computed as linear combinations
of the n samplings4 {s1, . . . , sn}. Coefficients are chosen for the expressions:

U =
n∑

k=1

aksk V =
n∑

k=1

bksk (B.6)

such to minimize σU and σV with the constraints:

〈U〉 = A ⇒
N∑

k=1

akgk = 1,
N∑

k=1

akg
′
k = 0 (B.7)

〈V 〉 = Aτ ⇒
N∑

k=1

bkgk = 0,

N∑

k=1

bkg
′
k = −1 (B.8)

Solving using the expressions (B.4) and (B.5) leads to:

σ2
U = var[U ] =

∑

ij

aiajRij (B.9)

σ2
V = var[V ] =

∑

ij

bibjRij (B.10)

2This assumption is true for the electronics contribution, and it is assured for the pile–up noise by the
shaped signal area being null.

3In the ATLAS EMC case, special pedestal runs are taken to measure the noise autocorrelation function
for each cell.

4In the ATLAS EMC case, n = 5.
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The system can be solved using the Lagrange multipliers technique. Two sets of equations
are obtained, one for the peak amplitude coefficients:

0 =
∂

∂ak




1

2

∑

ij

aiajRij − λ
∑

i

aigi − µ
∑

i

aig
′
i



 (B.11)

=
∑

i

akRik −
(
λgk + µg′k

)
(B.12)

ai = λ
∑

k

R−1
ik gk + µ

∑

k

R−1
ik g′k (B.13)

{
λ = Q2

∆

µ = −Q3

∆

(B.14)

and one for the timing information:

0 =
∂

∂bk




1

2

∑

ij

bibjRij − ρ
∑

i

bigi − σ
∑

i

big
′
i



 (B.15)

=
∑

i

bkRik −
(
ρgk + σg′k

)
(B.16)

bi = ρ
∑

k

R−1
ik gk + σ

∑

k

R−1
ik g′k (B.17)

{
ρ = Q3

∆

σ = −Q1

∆

(B.18)

where for equations (B.14) and (B.18) the following relations hold







Q1 =
∑

ij gigjR
−1
ij

Q2 =
∑

ij g′ig
′
jR

−1
ij

Q3 =
∑

ij gig
′
jR

−1
ij

∆ = Q1Q2 − Q2
3

(B.19)

To compute the coefficients ak and bk the normalized signal waveform g(t), its first
derivative g′(t) and the noise autocorrelation matrix Rij = 〈ninj〉 are needed. The results
U and V are unbiased estimators with optimized uncertainty :

〈U〉 = A 〈V 〉 = Aτ (B.20)

The coefficients might have a residual dependence on timing τ , introduced in the
calculation by the first order approximation in eq. (B.3). In order to get rid of this
dependence, coefficients for any τ value are needed to be known. It is then possible to
evaluate A and Aτ assuming coefficients for τ = 0, estimate a new τ value, use appropriate
coefficients and re–iterate to convergence.
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B.3 Transfer function of the OF

According to the digital filtering (DF) theory, computing the peak of a signal as the
weighted sum of its samples corresponds to additionally shape the signal with a virtual
filter. This virtual filter is usually known as Finite Impulse Response (FIR) filter; its
transfer response can be computed using the Z–transform technique.

Let the signal f(t) be sampled at a period Tsamp, such as the samples of signals are
fk = f(kTsamp). The Z–transform F (Z) of f(t) is defined as:

F (Z) =

k=+∞∑

k=−∞
fkZ

−k (B.21)

The digital filter output yk is the weighted sum of n samples of the signal f :

yk =

n∑

i=1

aifk+i−n (B.22)

The Z–transform of y is:

Y (Z) =

k=+∞∑

k=−∞

n∑

i=1

aifk+i−nZ−k (B.23)

By inverting the order of the sums and letting l = k + i − n we obtain:

Y (Z) =

n∑

i=1

aiZ
−i−n

l=+∞∑

l=−∞
flZ

−l (B.24)

=

n∑

i=1

aiZ
−i−nF (Z) (B.25)

from which we can isolate the transfer function of the n–samples digital filter:

Hn
DF =

n∑

i=1

aiZ
−i−n (B.26)

It can be expressed in the frequency domain by the substitution Z = ejωTsamp . The factor
ejωTsamp represents a delay Tsamp in the time domain:

Hn
DF =

n∑

i=1

aie
(−i−n)×(jωTsamp) (B.27)

Replacing in expression (B.27) the solution (B.13) for the OF coefficients {ak} gives the
actual OF transfer function.

It has been shown [31] that at the LHC low luminosity conditions the OF acts as a
low–pass filter with a cut–off frequency fc = 4 MHz, resulting in a slower output signal.
At high luminosity it is a pass–band filter, centered around 10 MHz. In each case, the
frequency response of the OF has bumps every 40 MHz, corresponding as in every sampling
process to the aliasing of the signal spectrum at multiples of the sampling frequency.
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Errata Corrige and Addendum

Chapter 2

page 15, Table 2.1

At line 5 read “radiation lenght” insted of “radiation lento”.

page 16, line 13

Instead of “radiation Lent” read “radiation lenght’.

Chapter 3

page 40, line 12

After “then take a Cs value at a given ω” add “e.g. in correspondence to the Cs minimum
before the resonance (see Figure 3.10)”.

page 53, Figure 3.20

There are some small differences between the C values measured with one and two ground
springs. In principle a constant value of C would be expected, but since the L and C
parameters are strongly correlated, the two setup measurements produce slightly different
C values. This difference is anyway compatible with the δC = 15 pF precision quoted at
page 44.

page 49, line -4

Instead of “The calibration waveform (right) differs from the physics waveform (left)” read
“The calibration waveform (red) differs from the physics waveform (black)”.

Chapter 4

page 70, line 4

Instead of “The 25 ns sampling period is too long to allow...” read “The 25 ns sampling
points spacing is too large with respect to the signal properties to allow...”.
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Errata Corrige and Addendum

page 72, Figure 4.3

The axis labels are (s) instead of (ns); the number on the axises scales are to be multiplied
by 107 (the factor is partially covered by the axis label). The black line in the top plot
represents the case in which the parabola peak time is equal to the true peak time.

page 74, Figure 4.6

The correct plots are:
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page 75, line 5

Instead of “up to ∼700 ps in...” read “up to ∼200 ps in...”.

page 75, line 8

Instead of “up to ∼700 ps is again found” read “up to ∼700 ps is found”.

page 75, line 9

Instead of “(Figure 4.7)” read “ (Figure 4.5 and 4.7)”.

page 76, Figure 4.8

All the symbols labels in the three plot are inverted: open and solid black symbol
correspond to 2 ground returns connected, open and solid red symbol correspond to 1
ground returns connected.
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Errata Corrige and Addendum

page 78, Table 4.1

The uniformity values for the two different ground configuration are inverted. The table
should read:

uniformity (%) non–corrected with LC correction

1 ground 0.60 0.15
2 ground 0.36 0.14

page 82, Figure 4.12

The absence of red symbols (OF4 SR serie) for ηcell ≥ 44 is related to the difficulty in
reconstructing and fitting the mean ionization signal shape in that region of the detector.

Chapter 5

page 87, equation 5.8:

the ionization-to-calibration signal shape difference correction function is:

gexp → tri(t) = δ(t) +

[
1 − fstep

τcali
e
−fstep

t
τcali − 1 − fstep

fstepTd

(

e
−fstep

t
τcali − 1

)]

θ(t) +

1 − fstep

fstepTd

(

e
−fstep

t−Td
τcali − 1

)

θ(t − Td)
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