
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-045 September 24, 2009

Whanaungatanga: Sybil-proof routing 
with social networks
Chris Lesniewski-Laas and M. Frans Kaashoek

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4411289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Whanaungatanga: Sybil-proof routing with social networks

Chris Lesniewski-Laas M. Frans Kaashoek

ABSTRACT
Decentralized systems, such as distributed hash tables, are

subject to the Sybil attack, in which an adversary creates
many false identities to increase its influence. This paper
proposes a routing protocol for a distributed hash table that is
strongly resistant to the Sybil attack. This is the first solution
to this problem with sublinear run time and space usage.

The protocol uses the social connections between users
to build routing tables that enable Sybil-resistant distributed
hash table lookups. With a social network ofn well-connected
honest nodes, the protocol can tolerate up toO(n/ log n)
“attack edges” (social links from honest users to phoney iden-
tities). This means that an adversary has to fool a large frac-
tion of the honest users before any lookups will fail.

The protocol builds routing tables that containO(
√

n log3/2 n)
entries per node. Lookups takeO(1) time. Simulation re-
sults, using social network graphs from LiveJournal, Flickr,
and YouTube confirm the analytical results.

1 Introduction
Decentralized systems on the Internet are vulnerable to

the “Sybil attack”, in which an adversary creates numer-
ous false identities to influence the system’s behavior [7].
This problem is particularly pernicious when the system is
responsible for routing messages amongst nodes, as in the
Distributed Hash Tables (DHT) [19] which underlie many
peer-to-peer systems, because an adversary can prevent hon-
est nodes from communicating altogether [18].

If a central authority certifies identities as genuine, then
standard replication techniques can be used to fortify these
protocols [2,15]. However, the cost of universal strong iden-
tities may be prohibitive. Instead, recent work [22,21,6,13,
11,3] proposes using the weak identity information inherent
in a social network to produce a completely decentralized
system. This paper resolves an open problem by demonstrat-
ing an efficient, structured DHT which enables honest nodes
to reliably communicate despite a concerted Sybil attack.

Consider a set of honest people (nodes) who are connected
by a network of individual trust relations formed through
collaborations and introductions. These social links are as-
sumed to be reflexive (undirected), and each node keeps track
of his immediate neighbors, but the set of people have no of-

ficial leader — there is no central trusted node. Assume that
the social network is well-connected (Sections4.3, 7.1).

An adversary can infiltrate the network by creating many
Sybil nodes(phoney identities) and gaining the trust of hon-
est people. Nodes cannot directly distinguish Sybil identities
from genuine ones (if they could, it would be simple to re-
ject Sybils). However, we assume that most honest nodes
have more social connections to other honest nodes than to
Sybils; in other words, the network has asparse cutbetween
the honest nodes and the Sybil nodes.

We assume that the adversary cannot prevent immediate
friends from communicating, but can try to disrupt the net-
work by spreading misinformation. Consider an honest node
u that wants to look up the keyx and will recognize the cor-
responding value (e.g., a signed data block, or the current
IP address of another node). In a typical structured DHT,
u queries another node whichu believes to be “closer” to
x, which forwardsu to another even-closer node, and so on
until x is found. The adversary can disrupt this process by
spreading false information (e.g., that its nodes are closeto
a particular key) and then intercepting honest nodes’ rout-
ing queries. Unstructured protocols that work by flooding or
gossip are more robust against these attacks, but pay a heavy
performance price, requiring linear time to find a key.

This paper’s main contribution is Wh ānaungatanga,1 a
novel protocol that is the first solution to Sybil-resistantrout-
ing that has a sublinear run time and space usage. Wh ā-
naungatanga builds on recent results on fast-mixing social
networks; it constructs routing tables by taking short ran-
dom walks on the social network. The second contribution
is a detailed theoretical analysis which shows that the rout-
ing tables containO(

√
n log3/2 n) entries per node. Using

these routing tables, lookups takeO(1) time, like previous
(insecure) one-hop DHTs. The third contribution is an eval-
uation of Wh ānaungatanga using existing social networks.
The evaluation shows that social network graphs from Live-
Journal, Flickr, and YouTube are sufficiently well-connected

1Wh ānaungatangais a M āori word which refers to the collective
support network of mutual obligations associated with kinship and
community relationships. The root wordwh ānauis cognate with
the Hawai’ian word’ohana.

1



that Wh ānaungatanga works well. Simulations using these
graphs confirm the theoretical analysis.

Section2 reviews some of the related work. Section3 in-
formally states our goals. Section4 explains what properties
of the social network we use to design an efficient proto-
col. Section5 presents a simple unstructured protocol that
is clearly Sybil-proof, but inefficient. Section6 presents the
structured Wh ānaungatanga protocol, which is both Sybil-
proof and efficient. Section7 proves Wh ānaungatanga’s cor-
rectness, and Section8 confirms its theoretical properties by
simulations on social network graphs from popular Internet
services. Section9 briefly outlines how to extend the proto-
col to dynamic social networks. Section10summarizes.

2 Related work
Shortly after the introduction of scalable peer-to-peer sys-

tems based on DHTs, the Sybil attack was recognized as a
serious security challenge [7,10,18,17]. A number of tech-
niques [2,15,17] have been proposed to make DHTs resistant
to a small fraction of Sybil nodes, but all such systems ulti-
mately rely on a certifying authority to perform admission
control and limit the number of Sybil identities [7,16,1].

Several researchers [11,13,6,3] proposed using social net-
work information to fortify peer-to-peer systems against the
Sybil attack. Thebootstrap graphmodel [6] introduced a
correctness criterion for secure routing using a social net-
work and presented preliminary progress towards that goal,
but left a robust and efficient protocol as an open problem.

Recently, the SybilGuard and SybilLimit systems [22,21]
have shown how to use afast mixingsocial network (see
Section4.3) as a defense against the Sybil attack in general
decentralized systems. Using SybilLimit, an honest node can
certify other players as “probably honest”, accepting no more
thanO(log n) dishonest Sybil identities per attack edge. (Each
certification costsO(

√
n) bandwidth.) For example, Sybil-

Limit’s vetting procedure can be used to check that at least
one of a set of storage replicas is likely to be honest.

Applying SybilLimit naı̈vely to the problem of Sybil-proof
DHT routing yields a protocol which usesO(n2

√
n) band-

width. Unfortunately, this is more costly than even a sim-
ple flooding protocol (see Section4.1). However, this paper
shows how the underlying technique developed for Sybil-
Limit — short random walks on a fast-mixing social network
— can be adapted to the Sybil-proof routing problem.

A few papers have adapted the same underlying idea for
purposes other than routing. Nguyenet al. use it for Sybil-
resilient content ranking [20], and Danezis and Mittal use it
for Bayesian inference of Sybils [5].

3 Goals
3.1 The setting: informal security definition

At each node, the application provides the DHT with a set
of key-value records to store. The aim of the DHT routing
protocol is to construct a distributed data structure enabling
secure and efficient lookup from any key in the system to its
corresponding value.

A DHT’s implementation is a pair of procedures SETUP

and LOOKUP. SETUP() cooperatively transforms the nodes’
local parameters (e.g. key-value records, social connections)
into a set of routing table structures stored at each node.
(This paper distils the algorithmic content from the the de-
tails of inter-node communication by presenting SETUPas if
it operated on the state of all nodes at once.) After all nodes
complete the SETUPphase, any nodes can call LOOKUP(s, key t)
to use these routing tables to find and return the targetvaluet.

We allow adversaries to deviate from the protocol in a
Byzantine way: they may make up arbitrary responses to
queries from honest nodes, but may not forge messages from
honest nodes. The application might enforce this by authen-
ticating messages using public keys, where each node knows
its social neighbors’ public keys (through, e.g., a physical
rendezvous). Adversaries may create any number of pseudonyms
(Sybils) which are indistinguishable from honest nodes.

We consider a DHT “Sybil-proof” if LOOKUP has a high
probability of returning the correct value, despite arbitrary
attacks by the adversary during both the SETUPand LOOKUP

phases. Note that we can always amplify the probability of
success exponentially by running multiple protocol instances
in parallel.

The adversary can always join the DHT normally and in-
sert an arbitrary key-value pair, including a different value
for a key already in the DHT. Thus, a Sybil-proof DHT pro-
vides availability, but not integrity: LOOKUP must at least
find all values inserted by honest nodes for the specified
key, but may also return some values inserted by the adver-
sary. Many applications will have some application-specific
way to discard bogus key-value pairs. For example, if the
key is a content-hash of the value (as in many block storage
DHTs),then any node can easily check whether they match.

3.2 Performance goals
In addition to security, we are also concerned about the re-

source consumption of a DHT protocol. Section7 examines
performance in detail, but informally, our goals are:
• The routing tables should be constructible by an effi-

cient distributed protocol.
• The table size per node should be reasonably bounded.

If n = 5 × 108, the approximate number of Internet
hosts in 2009, orn = 3×109, the approximate number
of mobile phones in the world, then it may be imprac-
tical to download and storeO(n) table entries to each
node. However,O(

√
n) entries may be acceptable.

• The run time of LOOKUP, and the number of messages
sent, should be reasonably small — ideallyO(1).

• The storage and bandwidth consumption should not be
strongly influenced by the adversary’s behavior.

• An interactive adversary may force an honest nodes to
look up a bogus key, i.e. call LOOKUP(s, k̂) on some
arbitrary keyk̂. Returning a negative result should not
consume too much of the honest nodes’ resources.

As a matter of policy and fairness, we believe that a node’s
table size and bandwidth consumption should be proportional

2



to the node’s degree — that is, highly connected nodes should
do more work than casual participants. While it would be
straightforward to adapt our protocol to a different policy,
this paper does not discuss the topic any further.

4 Approach: use a social network
Any Sybil-proof protocol must make use of some externally-

provided information [7]; we propose that each node be given
a list of its neighbors in the social network. This section
gives a simple example to illustrate how these social connec-
tions can be useful, and then informally describes the charac-
teristics of social networks important for Wh ānaungatanga.

4.1 Strawman protocol: social flooding
An extremely simple protocol demonstrates that a social

network can be used to thwart the Sybil attack [6]. The SETUP
phase does nothing, and LOOKUPsimply floods queries over
all links of the social network:
LOOKUP(u, key t)

1 if keyt = key(u) � The locally-stored record
2 then return value(u) � at u is

`

key(u), value(u)
´

.
3 for v ∈ neighbors(u) � Send message to all neighbors.
4 do try LOOKUP(v, keyt) � Don’t wait for reply.

The above algorithm is secure. The adversary’s nodes might
refuse to forward queries, or they might reply with bogus
values. However, if there exists any path of honest nodes be-
tween the source node and the target key, then the adver-
sary cannot prevent each of these nodes from forwarding the
query to the next. In this way, the query will always reach
the target node, which will reply with the correct value.

Clearly, this illustrative LOOKUP routine has many de-
ficiencies as a practical implementation; for example, the
query messages will always continue to propagate even after
a result is found. Some of the deficiencies are easily patched
using standard techniques, but the flooding approach will al-
ways be inefficient: a large fraction of the participating nodes
are contacted for every lookup. This paper’s goal is to reduce
resource consumption while keeping the system’s security
against the Sybil attack. Reducing the number of messages
per lookup — to sublinear, and then constant, in the number
of nodes — requires progressively more complex protocols.

4.2 The adversary’s attack edges
Figure1 conceptually divides the social network into two

parts, anhonest regioncontaining all honest nodes and a
Sybil region containing all Sybil identities. Anattack edge
is a connection between a Sybil node and an honest node. An
honest edgeis a connection between two honest nodes [22].
(An “honest” node whose software’s integrity has been com-
promised by the adversary is considered a Sybil node.)

Our key assumption is that the number of attack edges,g,
is small relative to the number of honest nodes,n. We justify
this assumption by observing that, unlike creating a Sybil
identity, creating an attack edge requires the adversary toex-
pend social-engineering effort: he must convince an honest
person to create a social link to one of his Sybil identities.

Crucially, our protocol’s behavior does not dependat all
on the number of Sybil identities, or on the structure of the

Figure 1: Social network. A sparse cut (the dashed attack
edges) separates the honest nodes from the Sybil nodes.

Sybil region. Therefore, the classic Sybil attack, of creating
many identities to swamp the honest identities, is ineffective.

4.3 Fast-mixing social networks

We can restate the above assumption, thatg ≪ n, as
“there is asparse cutbetween the honest region and the Sybil
region.” To make any use of this assumption, we naturally
need to make one more assumption: that there isno sparse
cut within the honest region. In other words, the honest re-
gion must be anexpander graph.

Expander graphs arefast mixing, which means that a short
random walk starting from any node will quickly approach
the stationary distribution [4]. Roughly speaking, every hon-
est edge is equally likely to be the last edge crossed by the
random walk. Themixing time, w, is the number of steps a
random walk must take to reach this nearly-uniform distri-
bution. For a fast mixing network,w = O(log n).

Section8.1shows that real social graphs appear to be fast
mixing, except for a tiny fraction of isolated nodes. This matches
our intuition that social networks are highly connected.

4.4 Sampling by random walk

A fast-mixing social network permits us to use random
walks as a powerful tool to build Sybil-resistant protocols.
Consider aw-step random walk starting at an honest node.
If the number of attack edges is small, the random walk is
likely to stay entirely within the honest region: Section7.3
shows that the probability of crossing an attack edge is bounded
by O(gw/n). A random walk which doesn’t cross an attack
edge is entirely unaffected by any behavior of the adversary
— the walk exactly follows the distribution of random walks
on the honest region. Therefore, the last edge crossed follows
a nearly-uniform distribution.

Based on this observation, an honest node can send out
aw-step walk to sample a random node from the social net-
work. If it sends out a large number of such walks, the result-
ing set will contain a large fraction of random honest nodes
and a small fraction of Sybil nodes.

This random sampling subroutine is Wh ānaungatanga’s
main building block, and is the only way our protocol uses
the social network. Because the initiating node cannot tell
which individual samples are good and which are bad, Wh ā-

3



Typical magnitude Description
n arbitrary number of honest nodes
w O(log n) mixing time of honest region
g O(n/w) number of attack edges
ǫ O(gw/n) fraction of loser nodes

Table 1: Model parameters

naungatanga treats all sampled nodes equally, relying only
on the fact that a large fraction will be good samples.

Even if the number of attack edges is small compared to
the number of honest nodes, some honest nodes may be near
a heavy concentration of attack edges. Suchloser nodes
have been lax about ensuring that their social connections
are real people, and random walks starting from those nodes
will be much more likely to escape into the Sybil region.
As a consequence, loser nodes will have to do more work
per lookup than winner nodes, since the adversary can force
them to waste resources. Luckily, only a small fraction of
honest nodes are losers: a high concentration of attack edges
in one part of the network means a low concentration else-
where. Section7.2treats losers and winners in more detail.

A simple unbiased random walk tends to end preferen-
tially at nodes with higher degree, since the final hop is a
uniformly chosen edge. If each nodeu acts asdegree(u) in-
dependent virtual nodes, then good random samples will be
distributed uniformly over all virtual nodes. As a bonus, this
technique fulfils the policy goal (Section3.2) of allocating
both workload and trust according to each person’s level of
participation in the social network.

4.5 Sybil-proofness revisited
The preceding sections have (informally) defined our model

parameters (see Table1), enabling a more precise definition
of a “Sybil-proof” DHT:

Definition. A DHT protocol is(g, ǫ)-Sybil-proof if, against
an active adversary with up tog attack edges, the protocol’s
LOOKUP procedure succeeds with probability better than
1/2 for at least(1− ǫ)n honest nodes.

The probability1/2 above is arbitrary: as noted in Sec-
tion 3.1, any non-negligible probability of success can be
amplified exponentially by running multiple independent in-
stances of the protocol in parallel. Amplifying until the fail-
ure probability is less thanO

(

1/n3
)

essentially guarantees
that all lookups will succeed with high probability (since
there are onlyn2 possible source-target node pairs).

ǫ represents the fraction of loser nodes, which is a function
of the distribution of attack edges in the network. If attack
edges are distributed uniformly, thenǫ may be zero; if at-
tack edges are clustered, then a small fraction of nodes (Sec-
tion 7.3) may be losers.

5 An unstructured DHT
In this section, we show that simple unstructured search

using random walks on the social graph is Sybil-proof. How-

ever, we will find that it is not as efficient as we would hope.
The intuition behind this protocol is straightforward: if an
honest node sends out enough random walks, it will eventu-
ally hit every other honest node.

5.1 Subroutines for random sampling
The RANDOM-WALK procedure implements a random walk

of lengthw on the social graph:

RANDOM -WALK(u0)

1 for i← 1 to w
2 do ui ← RANDOM -CHOICE(neighbors(ui−1))
3 return uw

The protocol uses RANDOM-WALK repeatedly to collect large
random samples of nodes or key-value records:2

SAMPLE-NODES(u, r)

1 for i← 1 to r
2 do vi ← RANDOM -WALK(u)
3 return {v1, . . . , vr}

SAMPLE-RECORDS(u, r)

1 {v1, . . . , vr} ← SAMPLE-NODES(u, r)
2 for i← 1 to r
3 do record i ←

`

key(vi), value(vi)
´

4 return {record1, . . . , recordr}

Recall that the sets returned by SAMPLE-NODES contain a
large fraction of good samples (uniformly distributed over
honest nodes) and a small fraction of bad samples (adversarially-
chosen Sybil nodes), and honest nodes cannot distinguish
between Sybil and honest nodes. Let1/α be the minimum
expected fraction of good samples returned by SAMPLE-
NODES. Section7.3 will specify α more precisely in terms
of the model’s parameters, but typically,1 < α < 4. Note
that to expectk good samples, a node must performαk ran-
dom walks; thus, in general,α acts like a (small, constant)
multiplier on the amount of work an honest node must do.

5.2 Setup and lookup
The SETUPprocedure simply uses SAMPLE-RECORDSto

construct a database ofru samples at each node. (ru is a pro-
tocol configuration parameter which can be statically defined
or dynamically adjusted based on the size of the network.)

In the SETUP procedure, the notation “for each nodeu”
means that all honest nodes will run the subsequent code in
parallel. Of course, Sybil nodes may act arbitrarily.

SETUP(key(·), value(·), neighbors(·); w, ru)

1 for each nodeu
2 do database(u)← SAMPLE-RECORDS(u, ru)
3 return database

The LOOKUPprocedure chooses a random intermediate node
v and sends it a query message. It repeatedly queries differ-
ent nodes until it finds one withkey t in its local database.3

2If RANDOM-WALK is implemented as a recursive request to a
node’s immediate neighbor, many such requests can be batched up
into a single message. This improvement reduces the number of
messages sent, but does not change the total bandwidth consumed.
3There’s no need to throw away the random intermediate nodesv
from LOOKUP; instead, it makes sense to add them to the database,
saving work on future lookups.

4



LOOKUP(s, keyt)

1 repeat v ← RANDOM -WALK(s)
2 try valuet ← QUERY(v, keyt)
3 until found validvaluet

QUERY(v, keyt)

1 if (keyt, valuet) ∈ database(v) for somevaluet

2 then return valuet

3 elseifkeyt = key(v) � Check whether it’s the local record
4 then return value(v)
5 else return “not found”

LOOKUP keeps initiating fresh random walks until it finds
the correct value associated with the target key. Since it will
eventually query every single honest node in the system this
way, LOOKUP is guaranteed to eventually succeed. There-
fore, this protocol is Sybil-proof.

The parameterru tunes the relative workload of SETUP

and LOOKUP. Observe that if we setru = 0 or 1, then
this protocol is similar to existing unstructured ones such
as Gnutella [14]. In this mode, we expect LOOKUP to send
roughlyαn queries before finding the correct target record:
each walk has a1/α chance of returning a good sample, and
each good sample has a1/n chance of being the target.

On the other end of the scale, ifru = αn, we expect each
node’s database to contain the majority of the honest records
in the system. Therefore, LOOKUP should find the target af-
ter querying about 2 good nodes, or sending approximately
2α messages in total. Compared with the Gnutella mode, this
“prefetching” mode has slow SETUP and fast LOOKUP.

To balance the running times of SETUP and LOOKUP, we
would choose an intermediate value ofru in the neighbor-
hood ofα

√
n. Section7.4 proves a general bound on the

maximum number of queries required for a givenru.

6 The Whanaungatanga protocol
Lookups are slow in the unstructured protocol because

each node’s local table is a completely random sample of the
key-value records. Distributed hash tables solve this problem
by adding structure to the routing tables, so that queries can
be directed to nodes which are more likely to know about the
target key. The structured DHT literature offers an enormous
variety of design alternatives. However, naı̈vely applying an
existing design creates an opportunity for the adversary to
exploit the DHT’s structure to disrupt routing [18,17]. As a
consequence, we have carefully crafted Wh ānaungatanga’s
structure to avoid introducing such attacks.

Section6.1describes Wh ānaungatanga’s global structure,
and Section6.2 explains how each of its idiosyncratic fea-
tures relates to specific potential attacks against the struc-
ture. Sections6.3and6.4define SETUP and LOOKUP in de-
tail. Section7 will prove Wh ānaungatanga’s correctness and
analyze its performance.

6.1 Global structure

Wh ānaungatanga’s structure resembles other DHTs such
as Chord [19], SkipNet [9], and Kelips [8]. Like SkipNet and
Chord, Wh ānaungatanga assumes a given, global, circular

Figure 2: Each node is responsible for a subset of the keys
starting at a random point on the ring.

Figure 3: Finger pointers are distributed evenly on the
ring.

ordering≺ on keys. The notationx1 ≺ x2 ≺ · · · ≺ xz

means that for any indexesi < j < k, the keyxj is on the
arc(xi, xk). For many applications, lexical ordering will be
the natural choice for≺.

Like SkipNet, but unlike Chord and many other DHTs,
Wh ānaungatangadoes not embed the keys into a metric space
using a hash function. Therefore, the “distance” between two
keys has noa priori meaning.

To distribute the records evenly, each node chooses a ran-
domID from the set of keys in the system, and stores a table
of its successors, those key-value records following the ID
on the ring (see Figure2). In addition, each node chooses
k = O(log n) layered IDs, each picked randomly from the
IDs in the previous layer; a separate successor table is stored
for each layer. Finally, each node stores a table of pointersto
randomfinger nodes, whose IDs will be distributed evenly
around the ring (see Figure3).

Wh ānaungatanga’s structure is designed for one-hop lookups,
like Kelips, and unlike Chord and SkipNet (which have smaller
tables butO(log n)-hop lookups). The lookup procedure is
simple in principle: send a query message to the nearest fin-
ger node to the target key. If the finger and successor tables
are sufficiently large, and if the chosen finger is honest, then
the finger node will have the target key in its successor table.
All k layers are searched independently.

6.2 Why this particular structure?

Several features of Wh ānaungatanga’s structure, such as
layers, one-hop lookups, and the lack of a hash function, are

5



relatively idiosyncratic compared to typical DHTs. This sec-
tion briefly justifies these decisions.

Most DHTs apply some hash function to keys in order to
distribute them randomly over some metric space. However,
given the hash function, an active adversary can easily use
trial and error to construct many keys which fall between any
two neighboring honest keys. Since this warps the distribu-
tion of keys in the system, it completely defeats the purpose
of the hash function. Therefore, Wh ānaungatanga relies only
upon an arbitrary ordering≺ on keys. The adversary may
choose his keys to fall anywhere in the ordering; this does
not affect Wh ānaungatanga’s security.

Organizing Wh ānaungatanga’s routing tables according to
the given ordering≺ enables fast lookups, but it also enables
a new class of attacks on the ordering. The ordering of the
honest keys is fixed, but the attacker can choose where to
place his keys and his IDs. He may choose to distribute them
evenly, which would be easy for a DHT to handle; or he may
cluster them, attacking a particular honest key or keys [17].

A key-clustering attack would be effective if each node
used a deterministic value (e.g., its IP address or public key [19],
or a locally-stored key [9]) as its ID. By inserting many bo-
gus keys immediately before a targeted key, the adversary
could keep the target key out of the honest nodes’ succes-
sor tables. Wh ānaungatanga prevents this class of attack by
choosing IDs randomly from the set of keys in the system.

Just as the adversary may attack the successor tables by
clustering his keys, he may attack the finger tables by clus-
tering his IDs. If the adversary chooses his IDs to fall near
a targeted key, then honest nodes may have to waste many
query messages to Sybil nodes before eventually querying
an honest finger. Layered IDs prevent this class of attack: if
the adversary chooses to cluster his IDs within a small range,
then the honest nodes will naturally cluster their next-layer
IDs within the same range. As a result, the adversary cannot
dominate any small range in every layer.

Finally, Wh ānaungatanga is a one-hop DHT, unlike many
DHTs which trade longer lookup routes for smaller routing
tables. This is because every level of recursion amplifies the
adversary’s influence by a factor ofα. For example, consider
a hypothetical subroutine that sends out a random walk and
queries the resulting node for a record that was, itself, found
using a random walk. If a walk is 50% likely to return a good
node, then this subroutine would only be 25% likely to suc-
ceed. Extending the recursion toO(log n) hops would allow
the adversary to turn an initially small toehold into an over-
whelming advantage. Therefore, our SETUP and LOOKUP

procedures specifically avoid any deeply recursive queries.

6.3 Setup

The SETUP procedure (Figure4) takes the locally stored
key-value record and the social connections as input and
constructs four routing tables:
• fingers(u): u’s finger nodes, sorted by their IDs.
• database(u): a sample of records used to constructsucc.
• ids(u, ℓ): u’s layer-ℓ ID, a random key.

• succ(u, ℓ): u’s layer-ℓ successor records.
The global parametersrf , rd, rs, andk determine the sizes
of these tables; SETUP also takes the mixing timew as a pa-
rameter. Section7 will show how all these parameters relate
to Wh ānaungatanga’s performance.

The SETUP pseudocode constructs the routing tables in
three separate phases. When implemented as a distributed
protocol, this simply means that each node finishes the cur-
rent phase before responding to the next phase’s queries.
Honest nodes which respond slowly may simply be ignored.

The fingers and database tables are easy to construct.
SETUP’s first phase simply sends outrf random walks and
collects the resulting nodes into the finger table. This ensures
that each node’s good fingers are uniformly distributed.

The second phase sends outrd random walks to collect a
sample of the records in the social network and stores them
in the database table. These samples are used to build the
successor tables, and then thedatabase table is discarded at
the end of the setup procedure. Thedatabase table has the
good property that each honest node’s key-value record is
frequently represented in the other honest nodes’ tables.

The final phase, and the most complex, chooses each node’s
IDs and constructs its successor table. The layer-zero ID
is chosen by picking a random key from a random node’s
database . This has the effect of distributing honest layer-
zero IDs evenly around the key space.

Higher-layer IDs are defined recursively: thei + 1th ID is
chosen by picking a random finger from a random node’s fin-
ger table, and using that finger’sith ID. As explained above,
this causes honest IDs to cluster wherever Sybil IDs have
clustered, ensuring a rough balance between good fingers
and bad fingers in every range of keys.

Once a node has its ID for a layer, it must collect the suc-
cessor list for that ID; this is the hard part of the setup pro-
cedure. It might seem that we could solve this the same way
Chord does, by bootstrapping off LOOKUP to find the ID’s
first successor node, then asking it for its own successor list,
and so on. However, this approach is deeply recursive (Sec-
tion 6.2) and would allow the adversary to fill up the suc-
cessor tables with bogus records. To avoid this, Wh ānaunga-
tanga fills each node’ssucc table without using any other
node’ssucc table; instead, it uses only thedatabase tables.

The information about any node’s successors is spread
around thedatabase tables of many other nodes, so the SUC-
CESSORSsubroutine must contact many nodes and collect
little bits of the successor list together. The obvious way
to do this is to ask each nodev for the closest record in
database(v) following the ID. We chose another way be-
cause it is easier to prove correct in Section7.5.1.

The SUCCESSORSsubroutine repeatedly calls SUCCESSORS-
SAMPLE rs times, each time accumulating a few more potential-
successors. SUCCESSORS-SAMPLE works by contacting a
random node and sending it a query containing the ID. The
queried nodev, if it is honest, sorts all of the records in its
local database(v) by key, and then returns a small random

6



SETUP
`

key(·), value(·), neighbors(·); w, rf , rd, rs, k
´

� 1. Collect a finger list of random nodes.
1 for each nodeu
2 do fingers(u)← SAMPLE-NODES(u, rf )

� 2. Collect random records into thedatabase table.
3 for each nodeu
4 do database(u)← SAMPLE-RECORDS(u, rd)

� 3. Choose an ID and collect a successor list in each layer.
5 for ℓ← 0 to k
6 do for each nodeu
7 do ids(u, ℓ)← CHOOSE-ID(u, ℓ)
8 succ(u, ℓ)← SUCCESSORS(u, ℓ, rs)

� Post-processing: Query all fingers for their IDs.
Pre-sort the successor list by key and the finger list by ID.

9 return fingers, ids, succ

CHOOSE-ID(u, ℓ)

1 v ← RANDOM -WALK(u)
2 if ℓ = 0
3 then Choose a random(key, value) ∈ database(v)
4 return key

5 else Choose a random nodef ∈ fingers(v)
6 return ids(f, ℓ− 1)

SUCCESSORS(u, ℓ, rs)

1 R← {}
2 for i← 1 to rs

3 do R← R ∪ SUCCESSORS-SAMPLE(u, ids(u, ℓ))
4 return R

SUCCESSORS-SAMPLE(u, key0)

1 v ← RANDOM -WALK(u)
2 {(key1, value1), . . . , (keyrd

, valuerd
)} ← database(v)

(sorted so thatkey0 ≺ key1 ≺ · · · ≺ keyrd
≺ key0)

3 R← {}
4 for i← 1 to rd

5 do With probability1/i: R← R ∪ {(keyi, valuei)}
6 return R

Figure 4: Pseudocode for Wh̄anaungatanga’sSETUP procedure to construct routing tables.

sample of the records biased towards those closer to the ID.
Specifically, the record indatabase(v) closest to the ID is
always sent, the second-closest is chosen with 50% probabil-
ity, the third-closest with 33% probability, and so on: if there
areδ intervening records indatabase(v) between a record
and the ID, then a biased coin is flipped and the record is
chosen with odds 1-to-δ. 4 This procedure ends up return-
ing approximately

∑rd

i=1 1/i ≈ log rd + 0.577 = O(log n)
candidate successors for each query.

Since each SUCCESSORS-SAMPLE query is independent
and random, there will be substantial overlap in the result
sets, and some of the records returned will be far away from
the ID and thus not really successors. Nevertheless, Sec-
tion 7.5.1will show that, for appropriate values ofrd and
rs, the union of the repeated queries will contain all the de-
sired successor records.

After all succ tables have been constructed, thedatabase

tables may be discarded (although in a dynamic implementa-
tion, they may be reused). In order to quickly process lookup
requests, each node should sort its successor table by key and
its finger table by ID. Note that, since each node hask IDs,
each finger will appeark times in the sorted table.

6.4 Lookup

The basic goal of the LOOKUP procedure is to find a fin-
ger node which is honest and which has the target key in its
successor table. The SETUPprocedure ensures that any hon-

4The pseudocode seems inefficient, iterating over all the records
in the database. However, since the returned set size isO(log n)
WHP, the same effect can be achieved more efficiently by choos-
ing O(log n) records from the database according to a probability
distribution proportional to1/i. (Returning extra records cannot
harm correctness.) Also, note that if a Sybil node tries to reply to
a SUCCESSORS-SAMPLE query with a larger number of records, it
can safely be ignored.

est fingerf which is “close enough” to the target will have it
in succ(f); and, since every finger table contains many ran-
dom honest nodes, it is likely to have an honest finger which
is “close enough” (ifrf is big enough). However, if the ad-
versary clusters his IDs near the target key, then LOOKUP

might have to waste many queries to Sybil fingers before
finding this honest finger. LOOKUP’s pseudocode (Figure5)
is complex because it must foil this category of attack.

To prevent the adversary from focusing its attack on a sin-
gle node’s finger table, LOOKUP tries once to find the tar-
get using its own finger table, and, if that fails, repeatedly
chooses a random delegate and retries the search from there.

The TRY subroutine searches the finger table for the clos-
est layer-zero IDx to the target keykey t. It then chooses a
random layerℓ to try, and a random fingerf whose ID in
that layer,ids(f, ℓ), lies betweenx and the target key. TRY

queriesf for the target key; as an optimization, if the query
fails, it may choose a new finger and retry.

If there is no clustering attack, then the layer-zero IDx
is likely to be an honest ID; if there is a clustering attack,
thenx can only become closer to the target key. Therefore,
in either case, any honest finger found betweenx andkey t

will be close enough to havekey t in its successor table.
The only question remaining is: how likely is CHOOSE-

FINGER to pick an honest finger? Recall that, during SETUP,
if the adversary clusters his IDs betweenx andkey t in some
layer, then the honest nodes will tend to cluster in the same
range in the next layer. Thus, the adversary’s fingers cannot
dominate the range in the majority of layers. Now, the layer
chosen by CHOOSE-FINGER is random — so, probably not
dominated by the adversary — and therefore, a finger chosen
randomly from that layer is likely to be honest.

In conclusion, for a random honest node’s finger table,
CHOOSE-FINGER has a good probability of returning an hon-

7



LOOKUP(s, keyt)

1 u← s
2 repeat valuet ← TRY(u, keyt)
3 u← RANDOM -WALK(s)
4 until TRY found validvaluet, or hit retry limit
5 return valuet

TRY(u, keyt)

1 {x1, . . . , xrf
} ← {ids(f, 0) | f ∈ fingers(u)}

(sorted sokeyt � x0 � · · · � xrf
≺ keyt)

2 i← rf

3 repeat (f, ℓ)← CHOOSE-FINGER(u, xi, keyt)
4 valuet ← QUERY(f, ℓ, keyt)
5 i← i− 1
6 until QUERY found validvaluet, or hit retry limit
7 return valuet

CHOOSE-FINGER(u, x, keyt)

1 for ℓ← 1 to k
2 do Fℓ ← {f ∈ fingers(u) | x � ids(f, ℓ) � keyt}
3 Choose a randomℓ ∈ {0, . . . , k} such thatFℓ is nonempty
4 Choose a random nodef ∈ Fℓ

5 return (f, ℓ)

QUERY(f, ℓ, keyt)

1 if (keyt, valuet) ∈ succ(f, ℓ) for somevaluet

2 then return valuet

3 error “not found”

Figure 5: Pseudocode for Wh̄anaungatanga’sLOOKUP procedure to search for a key.

est finger which is close enough to have the target key in its
successor table. Therefore, LOOKUP should almost always
succeed after only a few calls to TRY.

7 Analysis
The preceding sections described Wh ānaungatanga’s set-

ting and design, and intuitivively argued for its correctness.
This section rigorously defines concepts which we have only
informally defined above, analyzes Wh ānaungatanga’s cor-
rectness and performance, and sketches the proofs for our
main theorems. Unfortunately, space considerations preclude
us from including fully detailed proofs.

7.1 Mixing time

Definition. Let P i
u be the probability distribution of ani-

step random walk starting atu, and letπ be its stationary
distribution.5 Themixing time of a graph is the smallestw
such that for all node pairs(u, v):

∣

∣Pw
u (v)− π(v)

∣

∣ ≤ π(v)

2

The graph is said to befast mixing if w = O(log n).

A graph’s mixing time is connected with its edge expan-
sion via the Cheeger constant; all expander graphs are fast
mixing and vice versa [4].

For convenience, assume that the social graph is regular,
so that the stationary distribution is uniform over nodes (i.e.,
π(v) = 1/n for all v). This assumption is without loss of
generality, because a standard tranformation, replacing each
node with an expander, converts a general fast-mixing graph
into a regular fast-mixing graph.

7.2 Escape probability and loser nodes

The key underlying observation of our protocol is that a
fast mixing graph has no sparse cuts, but the attack edges
form a sparse cut between the honest region and the Sybil

5We use the standard textbook definitions forP i
u andπ,

P i
u(v)

def
=

X

v′∼v

1

deg v′
P (i−1)

u (v′) π(v)
def
= lim

i→∞
P i

u(v)

region. Therefore, a random walk starting in the honest re-
gion is less likely to cross into the Sybil region.

Definition. Call a walk starting in the honest region anes-
caping walk if it crosses an attack edge. Let theescape
probability pv be the probability that a random walk starting
at the nodev will escape. Order the honest nodes{v1, . . . , vn}
so thatpv1

≥ pv2
≥ · · · ≥ pvn

(i.e., a random walk starting
at v1 is the most likely to escape). Fix anarbitrary constant
fraction0 < ǫ < 1. Call theǫn nodes with highest escape
probability (v1, . . . , vǫn) theloser nodes, and call the rest of
the honest nodes thewinner nodes.

The arbitrary fractionǫ dividing “winners” from “losers”
appears only in the analysis and not in the protocol. Its ap-
pearance reflects the reality that, due to attack edge clus-
tering, some nodes’ escape probability may be so high that
random walks are useless. Naturally, the fraction of losersis
related to the number of attack edgesg, as we show next.

Theorem. Order the nodes as above. For allk, pvk
≤ gw

k .

Proof. Consider choosing a random honest node and then
taking one random step away from that node. This step has
a g/m chance of crossing an attack edge, wherem is the
number of honest plus attack edges, and a1 − g/m chance
of crossing an honest edge, in which case the next node is
a random honest node, exactly the same as the starting dis-
tribution. By repeating this process, observe that a length-w
random walk starting at a random honest node has a(1 −
g/m)w > 1 − gw/m chance of staying within the honest
region. Thus by algebraic rearrangement we have:

Prob [ escape]
def
=

1

n

n
∑

i=1

pvi
<

gw

m
<

gw

n

kpvk
<

k
∑

i=1

pvi
<

n
∑

i=1

pvi
< gw

Thuspvk
< gw

k .

Corollary. If g ≪ n/w, then for all winner nodesv, the
escape probability is small:pv ≤ gw

ǫn = O
(

gw
n

)

≪ 1.

8



Conversely, if the winners’ escape probability must be no
more thanpv, the number of losers may be up toǫn ≤ gw

pv
.

7.3 Effectiveness of random-walk sampling

Let P̂u(v) be the probability that RANDOM-WALK (u) re-
turnsv. We now have the tools to analyze this distribution.

Escaping walks are controlled by the adversary and are
distributed arbitrarily. However, for non-escaping walks, P̂u

is identical to the standard random walk’s distributionPw
u .

Since the walk length is finite,Pw
u is nearly but not exactly

uniform over honest nodes. We conservatively treat this non-
uniformity as adversarially controlled, rolling both thisef-
fect and that of escaping walks into a single parameterα.

Definition. The adversary’sadvantageα ≥ 1 is defined by:

α−1 def
= min

winneru, honestv

P̂u(v)

π(v)
= min

winneru, honestv
nP̂u(v)

We can always rewrite RANDOM-WALK ’s distribution as
a uniform component plus an adversarial componentπ̂:

P̂u(v) =
1

α
π(v)+

(

1− 1

α

)

π̂u(v) =
1

α

1

n
+

(

1− 1

α

)

π̂u(v)

In other words, RANDOM-WALK (u) can be safely treated
as having a1/α chance of returning a uniform honest node,
and a1 − 1/α chance of returning a node chosen by the
adversary. Therefore, if a winner node sends outα random
walks, it may expect to get (on average) one good sample.

Definition. A good sampleis a uniformly random honest
node. We will treat RANDOM-WALK as a process which
flips a weighted coin, and with probability1/α returns a
good sample. Otherwise, it returns an arbitrary node (honest
or Sybil). The caller of RANDOM-WALK cannot distinguish
between the two cases, so it cannot filter out bad samples.

Becauseα acts as a multiplier on the amount of work each
node must do, we wantα to be a small constant.

Theorem. If g ≪ ǫn/w, thenα = O(1).

Proof. From the definition of mixing time in Section7.1, a
non-escaping walk has at least a 1/2 chance of returning a
good sample. ThusProb [ good sample] ≥ (1 − pv)/2.

Recall from Section7.2 that winner nodes have escape
probabilitypv ≤ gw/ǫn ≪ 1. Thus

α ≤
[

1

2

(

1− gw

ǫn

)

]−1

≈ 2
(

1 +
gw

ǫn

)

< 4 = O(1)

Observe that wheng is small,α is a small constant, but
wheng ≫ n/w, thenα grows very rapidly. This is as ex-
pected: largeg means that most walks will escape.

Lemma. LetX be the number of good samples in the output
of SAMPLE-NODES(u, 2αr). Then the expectation isE[X ] ≥
2r, andX ≥ r almost certainly:Prob [ X < r ] ≤ e−r/4.

Proof. Follows immediately from standard expectation and
Chernoff bound of the binomial distributionB(r, 1/α).

7.4 The unstructured protocol’s performance

The unstructured protocol (Section5) obviously always
eventually succeeds, because some random walk will hit the
node which originally stored the target key (see lines3-4 of
QUERY). However, this takes an expectedαn queries. The
point of thedatabase table is to reduce this toO(n/ru).

Theorem. If ru ≤ αn, thenLOOKUP succeeds with proba-
bility > 1/2 after fewer than 24α2n

(1−ǫ)ru
= O( n

ru
) queries.

Proof. Consider two cases. Ifru < 12α/(1 − ǫ), then we
can ignore thedatabase : after 24α2n

(1−ǫ)ru
> 2αn queries, the

probability that no random walk has hit the target node is at
most(1 − 1/αn)2αn ≈ e−2 ≈ 0.135.

If ru ≥ 12α/(1 − ǫ), then we focus on thedatabase. A
call to QUERY is useful if the random walk chooses a winner
node which has not been previously queried. If fewer than
half the winners have been queried yet, then each walk has at
least a(1−ǫ)/2α chance of reaching a new winner node. By
a Chernoff bound, this means that after24α2n

(1−ǫ)ru
queries, the

number of unique winners queried is at leastq = 6αn/ru,
with failure probability less thane−6αn/4r < e−3/2 < 1/4.
(Observe thatq < (1−ǫ)n/2, validating the assumption that
the number of winners queried is less than half.)

Since each winner’sdatabase table is constructed inde-
pendently, queryingq unique winners is like sending outqru

separate random walks, Therefore, the probability that the
target key is in none of the tables is at most(1−1/αn)qru =
(1− 1/αn)6αn/4 ≈ e−6/4 ≈ 0.223.

Combining these results: there is a less than 1/4 chance
of querying fewer thanq unique winners, and less than 1/4
chance that no winner has the target key. Thus, the total prob-
ability of failure is less than 1/2.

The constant factor 24 is a very loose bound, chosen to make
the proof easy: the expected number of queries is closer to

α2n
(1−ǫ)ru

. The failure probability shrinks exponentially with
the table sizeru and the number of queries.

7.5 Whanaungatanga’s performance

For the same reason as the unstructured protocol, Wh ā-
naungatanga’s LOOKUP will always eventually succeed if it
runs for long enough: some random walk (LOOKUP, line 3)
will find the target node. However, the point of Wh ānaunga-
tanga’s added complexity is to improve lookup performance
beyond the trivialO(n) algorithm. This section shows that
LOOKUP uses onlyO(1) messages to find any target key.

There are three prerequisites for a successful lookup:
1. SETUPmust correctly build complete successor tables.
2. SETUPmust correctly build finger tables which contain

an honest finger close enough to every target key.
3. LOOKUP must be able to find that honest finger.

We consider each of these factors in turn.

9



7.5.1 Successor tables are correctly constructed
Definition. Let the databaseD be the disjoint union of all
the honest nodes’database(u) tables:

D def
=

⊎

honestu

database(u)

Intuitively, we expect honest nodes to be heavily represented
in the database.D has exactlyrdn elements; we expect at
least 1−ǫ

α rdn of those to be honest nodes’ records, so ran-
domly sampling from the database is likely to get good records.

Recall that SETUP (Figure4) uses the SUCCESSORSsub-
routine, which calls SUCCESSORS-SAMPLE rs times, to find
all the honest records inD immediately following an IDx.
Consider an arbitrary successor keyy ∈ D, and define∆
be the number of records (honest and Sybil) inD between
x andy. We will show that if thedatabase andsucc tables
are sufficiently large, and∆ is sufficiently small, theny will
almost certainly be collected into the successors table. Thus
any winner nodeu’s tablesucc(u, ℓ) will ultimately contain
all recordsy close enough to the IDx = ids(u, ℓ).

Lemma. For honesty ∈ D and∆ =
∣

∣{z ∈ D|x ≺ z ≺ y}
∣

∣,

Prob [ y ∈ SUCCESSORS-SAMPLE(x) ] ?
1− ǫ

α2

rd

n + ∆

Proof sketch.SUCCESSORS-SAMPLE begins by walking to
a random nodev (line 1), which is a winner with probabil-
ity at least(1 − ǫ)/α. If v is a winner, thendatabase(v)
has aboutrd/α good samples. Each good sample has a1/n
chance of beingy. Thus, ifrd ≪ n, the total probability that
y ∈ database(v) is about1−ǫ

α
rd

α
1
n = 1−ǫ

α2

rd

n .
Now, on average, there will approximatelyδ = ∆/n records

in database(v) betweenx andy. (The distribution of this
distance can be manipulated by the adversary, but not to his
benefit.) After sorting (line2), y’s index will therefore be
approximately1 + δ. So,y will be included in the result set
(line 5) with probability about 1

1+δ = n
n+∆ . Combine this

with the probability thaty ∈ database(v) above, yielding:

Prob [ y ∈ R ] ?

(

1− ǫ

α2

rd

n

)(

n

n + ∆

)

=
1− ǫ

α2

rd

n + ∆

Corollary. After callingSUCCESSORS-SAMPLE(x) rs times,

Prob [ y /∈ succ(u, ℓ) ] >

[

1− 1− ǫ

α2

rd

n + ∆

]rs

< e
1−ǫ

α2

rdrs
n+∆

Thus, we haveProb [ y /∈ succ(u, ℓ) ] > e−c if

rdrs ? c
α2

1− ǫ
(n + ∆) (1)

We can intuitively interpret this result in two ways. First,
regardless of∆, we must haverdrs = Ω(n logn) to ensure
a complete successor table. This makes sense in the context
of the Coupon Collector’s Problem: the SUCCESSORSsub-
routine examinesrdrs random elements fromD, and it must
collect the entire set ofn honest records. Second, the frac-
tion, ∆/|D|, of recordsy likely to be in succ(u, ℓ), grows

as∆/|D| = O(rs/n). In other words, the range of “close
enough” records is proportional tors, as we would hope.

7.5.2 Finger tables: layer zero is evenly distributed
The previous section showed that winner nodes’ successor

tables are correct; we must still show that SETUP constructs
correct finger tables.

Lemma. Honest IDs are distributed evenly: a winner’s layer-
zero ID is, with probability1/α, a random key fromD.

Proof. CHOOSE-ID line 1 performs a random walk, get-
ting a uniform honest nodev with probability at least1/α.
Line 3 picks a random key fromdatabase(v). Since all hon-
est nodes contribute the same number of keys toD, this is
equivalent to picking a random element ofD.

Consider an arbitrary winner’s finger table. Approximately
1−ǫ
α rf of the fingers will themselves be winners, and so ap-

proximatelyr′f = 1−ǫ
α2 rf fingers will have layer-zero IDs

drawn randomly fromD. Pick an arbitrary∆ and an arbi-
trary keyy ∈ D: we expect to find at least

∆

|D|r
′
f =

1− ǫ

α2

∆

n

rf

rd

of these honest fingers in the range of∆ keys inD beforey.

Corollary. The probability that there is no finger in the range:

Prob [ no finger within∆ of y ] >

[

1− ∆

|D|

]r′f

< e
1−ǫ

α2
∆
n

rf
rd

Thus, we haveProb [ no finger] > e−c if

rf

rd
? c

α2

1− ǫ

n

∆
(2)

We can intuitively interpret this result by observing that
∆/|D| = O(1/rf ). In other words, with a large finger table,
we may expect to find fingers in a small range∆ ≪ |D|.
7.5.3 Finger tables: layers are immune to clustering

The adversary may attack layer zero of the finger tables
by clustering his IDs. CHOOSE-ID lines 5–6 cause honest
nodes to respond by clustering their IDs on the same keys.
Line 1’s random walk prevents the adversary from focusing
his attack on one node’s finger table: the honest nodes’ clus-
tering follows the distribution of IDs across all finger tables.

Fix an arbitrary range of keys inD, large enough that at
least one layer-zero ID is expected to fall in the range. Letβi

(“bad fingers”) be the average (over winners’ finger tables)
of the number of Sybil fingers with layer-i IDs in the range.
Likewise, letγi (“good fingers”) be the average number of
honest fingers in the range. Finally, defineµ

def
=

(

1−ǫ
α

)2
.

Lemma. The number of good fingers in a range is at least
µ times the total number of fingers in the previous layer:

γi+1 ? µ(γi + βi)

Proof. The average winner’s finger table contains1−ǫ
α rf win-

ner nodes. Each of those winner nodes chose its layer-(i+1)

10



ID by walking to a random node and querying it for a ran-
dom layer-i finger. The random walk reached another winner
with probability at least1−ǫ

α . By the definition ofγi andβi,
a random layer-i finger from a random winner’s table fell
in our range with probabilityγi+βi

rf
. Thus, the total average

number of good layer-(i + 1) IDs in our range is at least

γi+1 ?

(

1− ǫ

α
rf

)(

1− ǫ

α

)(

γi + βi

rf

)

= µ(γi + βi)

Lemma. Define the density of good fingers in a range of
layer i asρi

def
= γi/(γi + βi). Then

∏k
i=0 ρi ? µk/rf .

Proof. By the previous lemma,ρi = γi

γi+βi
? µγi−1+βi−1

γi+βi
.

By cancelling numerators and denominators,
∏

ρi ? µk γ0

γk+βk
.

Because each finger table contains no more thanrf fingers,
γk+βk ≤ rk. Also, if the range is big enough to have an hon-
est layer-zero finger,γ0 ≥ 1. Therefore,

∏

ρi ? µk 1
rf

.

This result means that the adversary’s scope to affect the
density of good nodes is limited. The adversary is free to
choose any values ofβi between zero andrf . However, the
adversary’s strategy is intuitively limited by the rule that if
it halves the density of good nodes in one layer, it will nec-
essarily double the density of good nodes in another layer.
It thus turns out that the adversary’s optimal strategy is to
attack all layers equally, increasing its clusteringβi by the
same factor from each layer to the next.

Theorem. The average layer’s density of good fingers is

ρ̄ =
1

k + 1

k
∑

i=0

ρi ?
µ

e
(µrf )−

1
k+1 (3)

Proof. By multiplying out terms,(
∑

ρi)
k+1 ≥ (k+1)!

∏

ρi.
Substituting in Stirling’s approximation(k +1)! >

(

k+1
e

)k+1

and the lemma’s bound for
∏

ρi yields(
∑

ρi)
k+1

?
(

k+1
e

)k+1 µk

rf
.

Thus
∑

ρi ? (k + 1)µ
e (µrf )−

1
k+1 .

Observe that ask →∞, the average layer’s density of good
fingers asymptotically approaches the limitµ/e, and that as
we decreasek → 0, the density of good fingers shrinks expo-
nentially. We can get a density reasonably close to the ideal
bound,ρ̄ ? µ/e2, by choosing the number of layers to be

k + 1 = log µrf (4)

7.5.4 Main result: lookup is fast
The preceding sections’ tools enable us to prove that Wh ā-

naungatanga uses a constant number of messages per lookup.
Define a “handicap”η

def
= α2

1−ǫ . Our main theorem will show
that if the parameters satisfy (4) and

η−1rs ?
n

rd
+

n

η−1rf
(5)

then lookups will only needO(1) queries to succeed. The
formula (5) may be interpreted to mean that bothrsrd and
rsrf must beΩ(n): the first so that SUCCESSORS-SAMPLE

is called enough times to collect every successor, and the
second so that successor lists are longer than the distance
between fingers. These would both need to be true even with
no adversary; the handicap factorη = O(1) represents the
extra work required to protect against Sybil attacks.

Theorem (Main theorem). A single iteration ofTRY suc-
ceeds with probability better thanµ4e2 =

(

1−ǫ
2eα

)2
= Ω(1) if

the table size parameters satisfy(4) and(5).
Proof. Consider a range of∆ records inD preceeding the
target key, setting∆ = |D|

η−1rf
to correspond to the average

distance between winner fingers. First, substitute∆ and (5)
into (2). Since (2) is satisfied, with probability at least1 −
1/e, there is an honest finger within the range∆ of the target
key. TRY line 1 findsxrf

, the closest layer-zero finger to the
target key. This may be an honest finger or a Sybil finger,
but in either case, it must be at least as close to the target key
as the closest honest finger. Thus,xrf

is closer than∆ with
probability at least1− 1/e > 1/2.

Second, recall that CHOOSE-FINGER first chooses a ran-
dom layer, and then a random finger from that layer with
ID betweenxrf

andkey t. The probability of choosing any
given layeri is 1/(k + 1), and the probability of getting an
honest finger from the range isρi. Thus, the total probability
that CHOOSE-FINGER returns an honest finger is simply the
average layer’s density of good nodesρ̄ = 1

k+1

∑

ρi. Since
we assumedk + 1 = log µrf , the previous section showed
that we have a probability of success at leastρ̄ ? µ/e2.

Finally, if the finger is honest, the only question remaining
is whether the target key is in the finger’s successor table.
Substituting∆ and (5) into (1) shows that (1) is satisfied by
this choice of parameters. Therefore, when QUERY checks
the finger’s successor table, there is an at least1−1/e > 1/2
chance thatkey t ∈ succ(f, ℓ).

An iteration of TRY will succeed if three conditions are
met: (1) xrf

is within distance∆ of key t; (2) CHOOSE-
FINGER returns an honest fingerf ; (3) key t is in f ’s succes-
sor table. Combining the probabilities of each of these events
yields a total probability of success≥ 1

2
µ
e2

1
2 = µ

4e2 .

Corollary. The expected number of queries sent byLOOKUP

is bounded by4e2

µ =
(

2eα
1−ǫ

)2
= O(1). With high probability,

the number of queries is bounded byO(log n).

7.5.5 Routing tables are small
Any table size parameters which satisfy (4) and (5) will,

by the previous section’s proof, provide fast lookups. How-
ever, it makes sense to balance the parameters to use the min-
imum resources to achieve a given lookup performance.

Recall that SUCCESSORS-SAMPLE returns a set of size
≈ log rd. The total number of table entries is

S ≈ rd + (k + 1)(rf + rs log rd)

Approximating liberally, we takek+1 ≈ log µrf ≈ log rd ≈
1
2 log n ≫ 1 and minimizeS subject to (5), obtaining

S = 1√
2
η
√

n log3/2 n

11



with parameter settingsrd ≈ S/
√

2η log n, rf ≈ S/ logn,
andrs ≈ 2S/ log2 n. This makes the finger tables and the
successor tables about the same size.

Optimizing for SETUP’s bandwidth usage gives broadly
similar results with slightly different parameter settings. The
minimum bandwidth usage isO(η

√
n log3/2 n), the same as

the minimum routing table size.

8 Results
We implemented the Wh ānaungatanga protocol (Section6)

in simulation and tested its performance against graphs ex-
tracted from several social networking services.

8.1 Experimental setup

We used the social network graphs from Misloveet al.’s
study in IMC 2007 [12]. We tested Wh ānaungatanga against
the downloaded LiveJournal, Flickr, and YouTube social net-
works, and we present our results from the two larger graphs,
LiveJournal and Flickr. These graphs have degree distribu-
tions following a power law (coefficient≈ 1.7) and short
average path lengths (≈ 5.8). The LiveJournal graph is esti-
mated to cover 95.4% of users in Dec 2006, and the Flickr
graph 26.9% in Jan 2007.

We performed several preprocessing steps on the input
graphs. We transformed directed edges into undirected edges
(the majority of links were already symmetric), and we dis-
carded everything except the giant component of each graph.
After this step, the LiveJournal graph contained 5,189,809
nodes and 48,688,097 links (average degree: 18.8), and the
Flickr graph contained 1,624,992 nodes and 15,476,835 links
(average degree: 19.0).

In addition, to compare with SybilLimit [21], we prepared
versions of the graphs with nodes with degree less than 5
removed. After this step, the remaining LiveJournal graph
has 2,735,140 nodes and 43,906,710 edges (average degree:
32.1). The remaining Flickr graph has 332,696 nodes and
13,566,771 edges (average degree: 81.6). The results were
broadly similar between the truncated and the full graphs: as
might be expected, the protocol performs better when more
nodes are high-degree, but the change is essentially equiva-
lent to adding more table entries to each node by increasing
r. Because our simulator is memory-limited, we were not
able to obtain as many data points for the full graphs; for
this reason, we present data from the truncated graphs here.

We measured the mixing properties of our data sets by
picking random source nodes and directly calculating the
probability distributions of short random walks from those
nodes. Each line in Figure6 shows the CDF from a different
source node; the thick line shows the ideal case of perfect
mixing. We observe that after only 10 steps, the vast major-
ity of nodes are near the average probability density, and that
as the walk length increases, the random walks’ distribution
approaches the ideal. Barely visible at the bottom-left corner
is the tiny fraction (≈.01%) of nodes which are relatively
isolated and are reached< 1/10 as often as the average.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1e-08  2e-08  3e-08  4e-08  5e-08  6e-08  7e-08

N
od

e 
pe

rc
en

til
e

Node’s probability at end of random walk

ideal (uniform)
10 steps
20 steps
40 steps

Figure 6: CDFs of random walks on the Flickr network

8.1.1 Simulated adversary behavior

To generate an instance withg attack edges, the simula-
tor marked random nodes as “evil” until there were at leastg
edges between marked nodes and non-marked nodes. For ex-
ample, for the Flickr graph, in the instance withg = 6, 000, 050,
there aren = 230, 560 honest nodes (withm = 6, 423, 242
honest edges) and 102,136 Sybil nodes. This method means
that the number of honest nodes and honest edges actually
decreases as the number of attack edges increases: therefore,
our graphs tend to understate the performance of the proto-
col with respect to the ratiog/m of attack edges to honest
edges. Also, because the number of attack edges actually de-
creases when the simulator marks more thann/2 nodes, it is
not possible to test the protocol againstg/m ratios substan-
tially greater than 1.

The simulated adversary does not attempt to target a spe-
cific key with a clustering attack. It swallows all random
walks and returns bogus replies to all requests, which is an
optimal non-targeted attack.

8.1.2 Simulated protocol and simulator behavior

For simplicity, we chose to test the parameter settingsrd =
rf = rs = r andk = 0. We implemented the natural gener-
alization of Wh ānaungatanga to nodes with variable degree;
this differed from the protocol described in Section6 only
in that each node’sr is multiplied by its degree. Therefore,
when interpreting our results, one should generally multiply
the givenr by the average degree to get an effective average
table size, and replacen with m (number of honest edges) in
formulas from the analysis.

In the simulator, TRY gives up after querying 20 fingers.
LOOKUP gives up after trying 20 delegate nodes. Therefore,
the maximum number of messages sent by LOOKUP is 420.
Whenr is sufficiently large that the first finger always has
the target in its successor list, only one query will normally
be needed.

The simulator generated a single sample of 1000 random
source-target node pairs and varied the protocol parameters
against the same set of pairs. When the simulator marked
either the source or target of a pair as evil, the pair was re-
moved from the sample. As a result, the highestg values
for each dataset have only roughly 300 sample pairs. There-
fore, our simulation could not measure failure probabilities
smaller than∼ 0.1%.

12



 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000  1e+06  1e+07

P
er

ce
nt

ag
e 

of
 fa

ili
ng

 lo
ok

up
s

Number of attack edges

r=200
r=10

(a) Flickr

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

P
er

ce
nt

ag
e 

of
 fa

ili
ng

 lo
ok

up
s

Number of attack edges

r=200
r=10

(b) Livejournal

Figure 7: Routing failure rate versus attack edges

8.2 Failure rate

Figure7 plots the rate of lookup failures versus the num-
ber of attack edgesg for two values ofr (10 and 200), using
w = 10. Recall that the protocol provides a strong guar-
antee only whileg ≪ m/w. The transition point, where
g ≈ m/w, is approximately 1,300,000 attack edges for the
Flickr graph, and approximately 4,300,000 attack edges for
the LiveJournal graph. Our graphs plot data beyond this point
only to illustrate how the protocol degrades if it is used out-
side its intended parameters.

As the graphs illustrate, in the intended range of attack
edges, the protocol has a failure rate of 0 forr = 200, as ex-
pected. The graph shows the protocol’s graceful degradation
when the adversary is very powerful. In practice, the number
of failures is largely unaffected by the adversary untilg be-
comes substantial compared to the number of honest edges.
For example, for the Flickr graph, withg = 5, 000, 219 and
m = 7, 871, 073, the failure rate is 9.8%. For the LiveJour-
nal graph, the failure rate starts increasing only at approxi-
mately 10,000,000 attack edges.

The r = 10 lines show that it is important to chose an
appropriate table size parameterr. The choice ofr = 10,
a small value, is only acceptable when there are few attack
edges with the Flickr graph. With the larger LiveJournal graph,
r = 10 is too small for efficient lookup even when there are
no attack edges.

 0

 10

 20

 30

 40

 50

 1  10  100  1000  10000  100000  1e+06  1e+07

M
ed

ia
n 

nu
m

be
r 

of
 m

es
sa

ge
s

Number of attack messages

r=200
r=10

(a) Flickr

 0

 10

 20

 30

 40

 50

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

M
ed

iu
m

 n
um

be
r 

of
 m

es
sa

ge
s

Number of attack edges

r=200
r=10

(b) Livejournal

Figure 8: Median # of messages versus attack edges

8.3 Message overhead

Figure8 plots the median number of queries per LOOKUP

for the same parameters as the graphs in figure7. (Failing
lookups are not included, so the maximum value is 420.)
Whenr = 200, the median number of messages is 1 when
the failure rate is 0, exactly as one would expect for a one-
hop routing protocol. When the number of attack edges is
larger than the range for which the protocol is intended, then
the number of messages increases because LOOKUP repeat-
edly tries to query more predecessors and delegate the search
to other nodes.

For r = 10, the median number of messages is 2 for the
Flickr graph until the number of attack edges becomes large.
This small value ofr yields table sizes of roughly 800 en-
tries on average, while

√
n ≈ 580; therefore, the tables are

just barely large enough to route about half of attempts on
the first try. For the LiveJournal graphr = 10 is simply
too small to route effectively, and so the message counts are
consistently near the maximum. Whenr ≪ √

n, Wh ānau-
ngatanga essentially degrades into unstructured search.

8.4 Choosing sufficiently large table sizer

The pronounced “knee” in the previous graphs indicates
that our analysis in Section7 is correct: Wh ānaungatanga
provides consistently low probability of failures and low lookup
latency as long as table sizes are sufficiently large and the
number of attack edges is below the breaking point atg ≈ m/w.

13



 1

 10

 100

 1000

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

M
in

im
um

 r
 fo

r 
<

 1
%

 fa
ilu

re
 r

at
e

Number of attack edges

LiveJournal
Flickr

Figure 9: r versusg

Figure9 shows the relationship between the table sizer
and the number of attack edgesg that Wh ānaungatanga can
withstand. It plots, for each number of attack edgesg, the
minimum r that yields a failure probability less than 1%.
Wheng is below the breaking point, the number of table en-
tries required is insensitive tog and depends on the honest
network’s size. On the other hand, wheng is near the break-
ing point, adding more table entries can stave off failure, as
the upticks on the right side of the graph shows.

However, for all networks, there comes a point at which
no table size (which we could simulate) can maintain a low
failure rate. For the Flickr and LiveJournal graphs, this point
came atg ≈ 5, 000, 000 andg ≈ 20, 000, 000 respectively.

Again, this sharp cutoff is exactly what we would expect:
wheng is large compared tom, then the adversary’s advan-
tageα grows exponentially withw. Indeed, to test this hy-
pothesis, we ran the same simulations withw = 5 (instead
of 10). Performance was slightly poorer for smallg, but im-
proved greatly for very largeg: for example, on the Live-
Journal graph, failure rates were below 1% whenr = 5000,
w = 5, andg = 20, 000, 000.

9 Dynamic social network
This paper focused on a static view of the social network

in order to highlight Wh ānaungatanga’s algorithmic content
and abstract away implementation details. However, a prac-
tical implementation would have to deal with a dynamic so-
cial network in which nodes constantly join and leave and
social connections are created and destroyed.

The simplest solution would be to re-run SETUPevery day
to incorporate any changes to the social network. A more
sophisticated approach would reuse most of the work from
one SETUP run to the next, observing that a single change to
the social network only affects a small fraction of the values
it computes. For example, an edge creation or deletion af-
fects only those random walks which pass through one of the
edge’s two nodes; while any values that depended on those
walks must be recomputed, all other random walks can be
reused. This approach naturally yields a dynamic protocol
similar to other DHTs, where nodes update only the relevant
parts of their routing tables after a join or leave.

10 Summary
This paper presents the first structured DHT routing layer

which uses a social network to provide strong resilience against
a Byzantine Sybil attacker with many attack edges. Routing
table sizes are typical of one-hop DHTs, atO(

√
n log3/2 n)

entries per node, and lookups take onlyO(1) messages. This
solution has applications to decentralized Internet system de-
sign, censorship resistance, and secure network routing.

11 References
[1] N. Borisov. Computational Puzzles as Sybil Defenses.Peer-to-Peer Computing,

pages 171-176, 2006.
[2] M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron, and D. S. Wallach.

Secure Routing for Structured Peer-to-Peer Overlay Networks.OSDI,Boston,
MA, Dec. 2002.

[3] A. Cheng and E. Friedman. Sybilproof Reputation Mechanisms.Applications,
Technologies, Architectures, and Protocols for Computer Communication,
pages 128–132, ACM Press New York, NY, USA, 2005.

[4] F. Chung.Spectral Graph Theory.American Mathematical Society, 1997.
[5] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil Nodes Using Social

Networks.NDSS,San Diego, CA, Feb. 2009.
[6] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. J.Anderson.

Sybil-Resistant DHT Routing.ESORICS,pages 305-318, 2005.
[7] J. R. Douceur. The Sybil Attack.IPTPS Workshop,pages 251-260, Peter

Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron, ed. Springer Lecture
Notes in Computer Science 2429, Cambridge, MA, Mar. 2002.

[8] I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse. Kelips:
Building an Efficient and Stable P2P DHT through Increased Memory and
Background Overhead.IPTPS Workshop,pages 160-169, M. Frans Kaashoek
and Ion Stoica, ed. Springer Lecture Notes in Computer Science 2735,
Berkeley, CA, Feb. 2003.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:
A Scalable Overlay Network with Practical Locality Properties.USENIX
Symposium on Internet Technologies and Systems,2003.

[10] B.N. Levine, C. Shields, and N.B. Margolin. A Survey of Solutions to the Sybil
Attack. University of Massachusetts Amherst, Amherst, MA,2006.

[11] S. Marti, P. Ganesan, and H. Garcia-Molina. DHT RoutingUsing Social Links.
IPTPS Workshop,pages 100-111, Geoffrey M. Voelker and Scott Shenker, ed.
Springer Lecture Notes in Computer Science 3279, La Jolla, CA, Feb. 2004.

[12] A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and B.Bhattacharjee.
Measurement and Analysis of Online Social Networks.Internet Measurement
Comference,pages 29-42, 2007.

[13] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe and Private Data Sharing
with Turtle: Friends Team-Up and Beat the System.Security Protocols
Workshop,pages 213-220, 2004.

[14] M. Ripeanu and I. T. Foster. Mapping the Gnutella Network: Macroscopic
Properties of Large-Scale Peer-to-Peer Systems.IPTPS,pages 85-93, 2002.

[15] R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-Tolerant
Storage Architecture. MIT CSAIL, Technical Report TR/932,Dec. 2003.

[16] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta. Limiting Sybil Attacks in
Structured P2P Networks.INFOCOM,pages 2596-2600, 2007.

[17] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach. Eclipse Attacks on
Overlay Networks: Threats and Defenses.INFOCOM,2006.

[18] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Distributed Hash
Tables.IPTPS Workshop,pages 261-269, Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, ed. Springer Lecture Notes in Computer Science
2429, Cambridge, MA, Mar. 2002.

[19] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: A Scalable Peer-to-Peer LookupProtocol for
Internet Applications.ToN,11(1):17-32, 2003.

[20] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-Resilient Online Content
Rating.NSDI,Boston, MA, Apr. 2009.

[21] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. A Near-Optimal Social
Network Defense Against Sybil Attacks.IEEE Symposium on Security and
Privacy,Oakland, CA, May 2008.

[22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. SybilGuard: Defending
Against Sybil Attacks Via Social Networks.SIGCOMM,pages 267-278, Piza,
Italy, Sept. 2006.

14




