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ABSTRACT ficial leader — there is no central trusted node. Assume that

Decentralized systems, such as distributed hash tabées, ar (€ social network is well-connected (Sectien§ 7.1).
subject to the Syhil attack, in which an adversary creates An adversary can infiltrate the network by creating many
many false identities to increase its influence. This paper Sybil nodegphoney identities) and gaining the trust of hon-
proposes a routing protocol for a distributed hash tablesha  est people. Nodes cannot directly distinguish Sybil idessi
strongly resistant to the Sybil attack. This is the first Holu from genuine ones (if they could, it would be simple to re-
to this problem with sublinear run time and space usage. ject Sybils). However, we assume that most honest nodes
The protocol uses the social connections between userdhave more social connections to other honest nodes than to
to build routing tables that enable Sybil-resistant distted ~ Sybils; in other words, the network hasjgarse cubetween
hash table lookups. With a social networkofell-connected ~ the honest nodes and the Sybil nodes.
honest nodes, the protocol can tolerate ugt@/ logn) We assume that the adversary cannot prevent immediate
“attack edges” (social links from honest users to phoney-de friends from communicating, but can try to disrupt the net-
tities). This means that an adversary has to fool a large frac work by spreading misinformation. Consider an honest node

tion of the honest users before any lookups will fail. u that wants to look up the keyand will recognize the cor-
The protocol builds routing tables that conté]h\/ﬁlog3/2 n) responding value (e.g., a signed data block, or the current
entries per node. Lookups take(1) time. Simulation re- IP address of another node). In a typical structured DHT,
sults, using social network graphs from LiveJournal, Flick « queries another node whiehbelieves to be “closer” to
and YouTube confirm the analytical results. x, which forwardsu to another even-closer node, and so on

. until z is found. The adversary can disrupt this process by
1 Introduction spreading false information (e.g., that its nodes are diose

Decentralized systems on the Internet are vulnerable toa particular key) and then intercepting honest nodes’ rout-
the “Sybil attack”, in which an adversary creates numer- ing queries. Unstructured protocols that work by flooding or
ous false identities to influence the system’s behavifr [  gossip are more robust against these attacks, but pay a heavy
This problem is particularly pernicious when the system is performance price, requiring linear time to find a key.

re_sp(_)nsible for routing messages am_ongst nod_es, as inthe This paper's main contribution is Whanaungatadga,
Distributed Hash Tables (DHT)L] which underlie many  nqye| protocol that is the first solution to Sybil-resisteonit-
peer-to-peer systems, because an adversary can preventhoflg that has a sublinear run time and space usage. Wha-
est nodes from communicating altogethes][ naungatanga builds on recent results on fast-mixing social
If a central authority certifies identities as genuine, then networks; it constructs routing tables by taking short ran-
standard replication techniques can be used to fortifyethes dom walks on the social network. The second contribution
protocols P, 15]. However, the cost of universal strong iden-  js a detailed theoretical analysis which shows that the-rout
tities may be prohibitive. Instead, recent wod[21, 6,13, ing tables contairO(\/ﬁlog3/2 n) entries per node. Using
11,3] proposes using the weak identity information inherent these routing tables, lookups takk1) time, like previous
in a social network to produce a completely decentralized (insecure) one-hop DHTSs. The third contribution is an eval-
system. This paper resolves an open problem by demonstratyation of Whanaungatanga using existing social networks.
ing an efficient, structured DHT which enables honest nOdeSThe evaluation shows that social network graphs from Live-
to reliably communicate despite a concerted Sybil attack.  journal, Flickr, and YouTube are sufficiently well-conreett
Consider a set of honest people (nodes) who are connected
by a netvvprk of Il’l(.jIVIdua| trust relations fo_rmgd through Whanaungatangas a Maori word which refers to the collective
collaborations a”O! mtrodu'ctlons. These social links are a support network of mutual obligations associated with kipsnd
sumed to be reflexive (undirected), and each node keeps trackommunity relationships. The root wowh anaus cognate with
of his immediate neighbors, but the set of people have no of- the Hawai’ian wordohana




that Wh'anaungatanga works well. Simulations using these A DHT'’s implementation is a pair of procedureg 8P

graphs confirm the theoretical analysis.
Section2 reviews some of the related work. Secti®m-
formally states our goals. Sectidrexplains what properties

and Lookupr. SETUP() cooperatively transforms the nodes’
local parameters (e.g. key-value records, social conmesjti
into a set of routing table structures stored at each node.

of the social network we use to design an efficient proto- (This paper distils the algorithmic content from the the de-
col. Section5 presents a simple unstructured protocol that tails of inter-node communication by presentirerdp as if

is clearly Sybil-proof, but inefficient. Sectidhpresents the it operated on the state of all nodes at once.) After all nodes
structured Wh'anaungatanga protocol, which is both Sybil-complete the 8TuPphase, any nodecan call LOOKUP(s, key,)
proof and efficient. Sectioriproves Wh anaungatanga’s cor- to use these routing tables to find and return the target,.
rectness, and Secti@confirms its theoretical properties by We allow adversaries to deviate from the protocol in a
simulations on social network graphs from popular Internet Byzantine way: they may make up arbitrary responses to

services. Sectiof briefly outlines how to extend the proto-
col to dynamic social networks. Secti@ summarizes.

2 Related work
Shortly after the introduction of scalable peer-to-pesr sy

queries from honest nodes, but may not forge messages from
honest nodes. The application might enforce this by authen-
ticating messages using public keys, where each node knows
its social neighbors’ public keys (through, e.g., a phyisica
rendezvous). Adversaries may create any number of pseadony

tems based on DHTs, the Sybil attack was recognized as a(Sybils) which are indistinguishable from honest nodes.

serious security challengé,[L0, 18, 17]. A number of tech-
niques p,15,17] have been proposed to make DHTSs resistant
to a small fraction of Sybil nodes, but all such systems ulti-
mately rely on a certifying authority to perform admission
control and limit the number of Sybil identities,[L6, 1].
Several researchers], 13,6, 3] proposed using social net-
work information to fortify peer-to-peer systems agaihgt t
Sybil attack. Thebootstrap graphmodel [] introduced a
correctness criterion for secure routing using a social net
work and presented preliminary progress towards that goal,
but left a robust and efficient protocol as an open problem.
Recently, the SybilGuard and SybilLimit system&,[21]
have shown how to use fast mixingsocial network (see
Section4.3) as a defense against the Sybil attack in general
decentralized systems. Using SybilLimit, an honest node ca
certify other players as “probably honest”, accepting noeno

thanO(log n) dishonest Sybil identities per attack edge. (Each

certification costg)(/n) bandwidth.) For example, Sybil-
Limit’s vetting procedure can be used to check that at least
one of a set of storage replicas is likely to be honest.

Applying SybilLimit naively to the problem of Sybil-proof
DHT routing yields a protocol which us&3(n?,/n) band-
width. Unfortunately, this is more costly than even a sim-
ple flooding protocol (see Secti@nhl). However, this paper
shows how the underlying technique developed for Sybil-
Limit— short random walks on a fast-mixing social network
— can be adapted to the Sybil-proof routing problem.

A few papers have adapted the same underlying idea for
purposes other than routing. Nguyenal. use it for Sybil-
resilient content ranking?[J], and Danezis and Mittal use it
for Bayesian inference of SybilS].

3 Goals

3.1 The setting: informal security definition

At each node, the application provides the DHT with a set
of key-value records to store. The aim of the DHT routing
protocol is to construct a distributed data structure @ngbl
secure and efficient lookup from any key in the system to its
corresponding value.

We consider a DHT “Sybil-proof” if lookup has a high
probability of returning the correct value, despite aeiyr
attacks by the adversary during both trer8pand Lookup
phases. Note that we can always amplify the probability of
success exponentially by running multiple protocol insem
in parallel.

The adversary can always join the DHT normally and in-
sert an arbitrary key-value pair, including a differentual
for a key already in the DHT. Thus, a Sybil-proof DHT pro-
vides availability, but not integrity: OKuP must at least
find all values inserted by honest nodes for the specified
key, but may also return some values inserted by the adver-
sary. Many applications will have some application-specifi
way to discard bogus key-value pairs. For example, if the
key is a content-hash of the value (as in many block storage
DHTSs),then any node can easily check whether they match.

3.2 Performance goals

In addition to security, we are also concerned about the re-
source consumption of a DHT protocol. Sectibaxamines
performance in detail, but informally, our goals are:

e The routing tables should be constructible by an effi-
cient distributed protocol.
The table size per node should be reasonably bounded.
If n = 5 x 108, the approximate number of Internet
hosts in 2009, on = 3 x 10, the approximate number
of mobile phones in the world, then it may be imprac-
tical to download and stor@(n) table entries to each
node. However)(,/n) entries may be acceptable.
The run time of lookuPp, and the number of messages
sent, should be reasonably small — ideal1).
The storage and bandwidth consumption should not be
strongly influenced by the adversary’s behavior.
An interactive adversary may force an honest notte
look up a bogus key, i.e. calldokupr(s, k) on some
arbitrary keyl?;. Returning a negative result should not
consume too much of the honest nodes’ resources.

As a matter of policy and fairness, we believe that a node’s
table size and bandwidth consumption should be propoitiona
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to the node’s degree — thatis, highly connected nodes should

do more work than casual participants. While it would be

straightforward to adapt our protocol to a different palicy - O/Qi
this paper does not discuss the topic any further. h

\
4 Approach: use a social network 4/6 \ /
Any Sybil-proof protocol must make use of some externally- / /%
provided informationT]; we propose that each node be given D\O

a list of its neighbors in the social network. This section -
gives a simple example to illustrate how these social connec
tions can be useful, and then informally describes the chara
teristics of social networks important for Wh anaungadang

4.1 Strawman protocol: social flooding

An extremely simple protocol demonstrates that a social

network can be used to thwart the Sybil attackThe SETUP  Sybil region. Therefore, the classic Sybil attack, of dreat

glrllﬁrs]isdgfefhgostgggf ﬁgf\’i’tgr}(kgpsimply floods queries over  any identities to swamp the honest identities, is inefffect

Figure 1: Social network. A sparse cut (the dashed attack
edges) separates the honest nodes from the Sybil nodes.

LOOKUP(u, key,) 4.3 Fast-mixing social networks
if key, = key(u) > The locally-stored record We can restate the above assumption, thak n, as
then return value(u) > atuis (key(u), value(u)). “there is asparse cubetween the honest region and the Sybil
for v € neighbors(u) t Send message to all neighbors. region.” To make any use of this assumption, we naturally
do try LOOKUP(v, key, ) > Don’t wait for reply.

: ) ) ~need to make one more assumption: that thereisparse
The above algorithm is secure. The adversary's nodes mightcyt within the honest region. In other words, the honest re-
refuse to forward queries, or they might reply with bogus gion must be aexpander graph

values. However, if there exists any path of honest nodes be-

Expander graphs afast mixing, which means that a short
tween the source node and the target key, then the adver'random walk starting from any node will quickly approach

sary cannot prevent eaqh of these nodes frqm forwarding they, stationary distributiony]. Roughly speaking, every hon-
query to the next. In this way, the query will always reach gt aqge is equally likely to be the last edge crossed by the
the target node, which will reply with the correct value. random walk. Thenixing time, w, is the number of steps a

_ Clearly, this illustrative 100kUP routine has many de-  anqom walk must take to reach this nearly-uniform distri-
ficiencies as a practical implementation; for example, the ) o For a fast mixing networky = O(log n).

query messages will always continue to propagate even after Section8.1shows that real social graphs appear to be fast

aresult is found. Some of the deficiencies are easily patChedmixing, exceptfor a tiny fraction of isolated nodes. Thistatres

using standard techniques, but the flooding approach will al L . :
L . A our intuition that social networks are highly connected.
ways be inefficient: a large fraction of the participatinglas

are contacted for every lookup. This paper’s goal is to reduc 4.4 Sampling by random walk

resource consumption while keeping the system’s security A fast-mixing social network permits us to use random
against the Sybil attack. Reducing the number of messagesyalks as a powerful tool to build Sybil-resistant protocols

per lookup — to sublinear, and then constant, in the number Consider av-step random walk starting at an honest node.
of nodes — requires progressively more complex protocols. |f the number of attack edges is small, the random walk is
4.2 The adversary’s attack edges likely to stay entirely within the honest region: Sectidrs

Figure1 conceptually divides the social network into two ~Shows that the probability of crossing an attack edge is dedn
parts, anhonest regioncontaining all honest nodes and a by O(gw/n). A random walk which doesn't cross an attack
Sybil region containing all Sybil identities. Aattack edge ~ €dge is entirely unaffected by any behavior of the adversary
is a connection between a Sybil node and an honest node. Am— the walk exactly follows the distribution of random walks
honest edgds a connection between two honest nod&$.[ on the honest region. Therefore, the last edge crossea®llo
(An “honest” node whose software’s integrity has been com- @ nearly-uniform distribution.
promised by the adversary is considered a Sybil node.) Based on this observation, an honest node can send out

Our key assumption is that the number of attack edges, aw-step walk to sample a random node from the social net-
is small relative to the number of honest nodes\Ve justify work. If it sends out a large number of such walks, the result-
this assumption by observing that, unlike creating a Sybil ing set will contain a large fraction of random honest nodes
identity, creating an attack edge requires the adversayto ~ and a small fraction of Sybil nodes.
pend social-engineering effort: he must convince an honest This random sampling subroutine is Whanaungatanga'’s
person to create a social link to one of his Sybil identities.  main building block, and is the only way our protocol uses

Crucially, our protocol’'s behavior does not depextdll the social network. Because the initiating node cannot tell
on the number of Sybil identities, or on the structure of the which individual samples are good and which are bad, Wha-



Typical magnitudel Description ever, we will find that it is not as efficient as we would hope.
n arbitrary number of honest nodes The intuition behind this protocol is straightforward: i a
w O(logn) mixing time of honest region honest node sends out enough random walks, it will eventu-
g O(n/w) number of attack edges ally hit every other honest node.
€ O(gw/n) fraction of loser nodes 5.1 Subroutines for random sampling

The RANDOM-WALK procedure implements a random walk

Table 1: Model parameters of lengthw on the social graph:

) RANDOM-WALK (ug)
naungatanga treats all sampled nodes equally, relying only ¢ . 110w

on the fact that a large fraction will be good samples. 2 do u; «— RANDOM-CHOICE(neighbors(u; 1))

Even if the number of attack edges is small compared té retum u.w
the number of honest nodes, some honest nodes may be neafhe protocol uses Ribom-WALK repeatedly to collect large
a heavy concentration of attack edges. Slﬂ_ﬂer nodes_ random samples of nodes or key-value recofds:
have been lax about ensuring that their social connections
are real people, and random walks starting from those nodesSAMPLE-NODES(u, )
will be much more likely to escape into the Sybil region.l fori«—1tor
As a consequence, loser nodes will have to do more wo returﬂo{”;:'BfU“iE;OM'WALK(“)
per lookup than winner nodes, since the adversary can force
them to waste resources. Luckily, only a small fraction of SAamPLE-RECORDSu, )
honest nodes are losers: a high concentration of attaclsedde {vi,...,v-} «— SAMPLE-NODEu, 1)
in one part of the network means a low concentration elsg~ fori < 1tor

. . . . do record; «— (key(vi), Value(vi))

where. Sectioi7.2treats losers and winners in more detail. , | oum {recordy, ..., record, }

A simple unbiased random walk tends to end preferen-
tially at nodes with higher degree, since the final hop is a Recall that the sets returned byPLE-NODES contain a
uniformly chosen edge. If each nodects asiegree(u) in- large fraction of good samples (uniformly distributed over
dependent virtual nodes, then good random samples will behonest nodes) and a small fraction of bad samples (advaligari
distributed uniformly over all virtual nodes. As a bonussth ~ chosen Sybil nodes), and honest nodes cannot distinguish
technique fulfils the policy goal (Sectidh2) of allocating between Sybil and honest nodes. li¢i be the minimum
both workload and trust according to each person’s level of expected fraction of good samples returned ByMSLE-
participation in the social network. NODES Section7.3will specify a more precisely in terms
45 Sybil-proofness revisited of the model's parameters, but typically,< « < 4. Note
}hat to expeck good samples, a node must perfasmran-
dom walks; thus, in general acts like a (small, constant)
multiplier on the amount of work an honest node must do.

5.2 Setup and lookup

Definition. A DHT protocolis(g, €)-Sybil-proof if, against The SETuPprocedure simply usesA®1PLE-RECORDStO
an active adversary with up fpattack edges, the protocol's  construct a database af samples at each node,(is a pro-
Lookup procedure succeeds with probability better than oo configuration parameter which can be statically define

1/2 for at least(1 — ¢)n honest nodes. or dynamically adjusted based on the size of the network.)
. , ) _ In the SETUP procedure, the notation “for each nodé
The probabilityl/2 above is arbitrary: as noted in Sec- means that all honest nodes will run the subsequent code in

tion 3.1, any non-negligible probability of success can be parallel. Of course, Sybil nodes may act arbitrarily.
amplified exponentially _by running mqupIe_ mdept_end(_ant N Serup (key (), value(:), neighbors(-); w, 1)

stances of the protocol in parallel. Amplifying until thelfa = .

ure probability is less thaf)(1/n?) essentially guarantees 2 do database(u) — SAMPLE-RECORDSw, 1)

that all lookups will succeed with high probability (since3 retum database

5 ; ) .
there are only. p033|blle source-target node .pa|_rs). . The Lookupprocedure chooses a random intermediate node
e represents the fraction of loser nodes, which is a function 4, and sends it a query message. It repeatedly queries differ-

of the distribution of attack edges in the network. If attack ent nodes until it finds one withey, in its local databasé.
edges are distributed uniformly, thermay be zero; if at- 2 - .

X If RANDOM-WALK is implemented as a recursive request to a
tack edges are clustered, then a small fraction of nodes (Sec,,4e's immediate neighbor, many such requests can be banghe

tion 7.3 may be losers. into a single message. This improvement reduces the nuniber o
5 An unstructured DHT ?essages sent, but does not change the totall bandwnqtkmedsu
. . . There’s no need to throw away the random intermediate nodes
In this section, we show that simple unstructured search from Lookup; instead, it makes sense to add them to the database,
using random walks on the social graph is Sybil-proof. How- saving work on future lookups.

The preceding sections have (informally) defined our mode
parameters (see Tahlg, enabling a more precise definition
of a “Sybil-proof” DHT:
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LOOKUP(s, key,)

repeat v «— RANDOM-WALK(s)
try values <+ QUERY(v, key,)
until found validvalue;

QUERY(v, key,)

if (key,, value;) € database(v) for somevalue;
then return valuey

elseifkey, = key(v) > Check whether it's the local record
then return value(v)

else return “not found”

Figure 2: Each node is responsible for a subset of the keys

Lookup keeps initiating fresh random walks until it finds starting at a random point on the ring.
the correct value associated with the target key. Sincelit wi
eventually query every single honest node in the system this
way, Lookup is guaranteed to eventually succeed. There-
fore, this protocol is Sybil-proof.

The parameter, tunes the relative workload ofESup
and LookuPr. Observe that if we set, = 0 or 1, then
this protocol is similar to existing unstructured ones such
as Gnutella4]. In this mode, we expectokuUP to send
roughly an queries before finding the correct target record:
each walk has &/« chance of returning a good sample, and
each good sample had an chance of being the target. ) ] ) o

On the other end of the scalesif = an, we expect each E|gure 3: Finger pointers are distributed evenly on the
node’s database to contain the majority of the honest record "N9:
in the system. Therefore,dokup should find the target af-
ter querying about 2 good nodes, or sending approximately
2a messages in total. Compared with the Gnutella mode, this
“prefetching” mode has sloweSup and fast LOOKUP.

ordering< on keys. The notation; < z3 < -+ < z,
means that for any indexés< j < k, the keyz; is on the

To balance the running times oESUP and LOOKUP, we arc(x;,xy). For many applications, lexical ordering will be

would choose an intermediate valuergfin the neighbor- the natural choice fox.

hood of a/nn. Section7.4 proves a general bound on the  Like SkipNet, but unlike Chord and many other DHTSs,
maximum number of queries required for a given Wh anaungatanga does not embed the keys into a metric space

6 The Wh t t | using a hash function. Therefore, the “distance” between tw
€ anaungatanga protoco keys has na priori meaning.

Lookups are slow in the unstructured protocol because 14 gjstripute the records evenly, each node chooses a ran-
each node’s local table is a completely random sample of the 451D from the set of keys in the system, and stores a table

key-value records. Distributed hash tables solve thislprob ¢ it 5\ ,ccessorsthose key-value records following the 1D
by anlng structure to the routing tab!es, so that querias ca on the ring (see Figur@). In addition, each node chooses
be directed to nodes which are more likely to know aboutthe ;. _ O(log n) layered IDs, each picked randomly from the
targetkey. The structured DHT literature offers an enorsnou | ps i, the previous layer: a separate successor table idstor
variety of design alternatives. However, naively appiyam for each layer. Finally, each node stores a table of poitbers

existing design creates an opportunity for the adversary {05 4omfinger nodes, whose 1Ds will be distributed evenly
exploit the DHT’s structure to disrupt routingd, 17]. As a around the ring (see FiguB}.

consequence, we have carefully crafted Wh'anaungatanga’s — . :
9 ’ y 9 9 Wh anaungatanga’s structure is designed for one-hoppspku

str;gtcutir(()antg f ;Zgjclr?greosd\lljvcrllrgn?ﬁh Z:;Ck;"s lobal structure like Kelips, and unlike Chord and SkipNet (which have snralle
' 9 9asg "tables butO(log n)-hop lookups). The lookup procedure is

and Sectiorb.2 explains how each of its idiosyncratic fea- . Loy '
simple in principle: send a query message to the nearest fin-

tures relates to specific potential attacks against the-stru ,
ture. Section$.3and6.4define $TuPand LOOKuUPin de- ger nod.e.to the target key. If the finger "?md successor tables
tail. Section7 will prove Wh'anaungatanga’s correctness and are sufficiently large, and if the chosen finger is honest the

' the finger node will have the target key in its successor table

analyze its performance. All k layers are searched independently.
6.1 Global structure

Whanaungatanga’s structure resembles other DHTs suclfls'2 Why this particular structure?
as Chord 9], SkipNet [2], and Kelips B]. Like SkipNet and Several features of Whanaungatanga’s structure, such as
Chord, Whanaungatanga assumes a given, global, circulatayers, one-hop lookups, and the lack of a hash function, are



relatively idiosyncratic compared to typical DHTs. Thigse o succ(u, f): u's layer£ successor records.
tion briefly justifies these decisions. The global parameters;, 74, r;, andk determine the sizes
Most DHTs apply some hash function to keys in order to of these tables; Srup also takes the mixing time as a pa-
distribute them randomly over some metric space. However, rameter. Sectioi will show how all these parameters relate
given the hash function, an active adversary can easily useto Wh'anaungatanga’s performance.
trial and error to construct many keys which fall betweenany  The S=Tup pseudocode constructs the routing tables in
two neighboring honest keys. Since this warps the distribu- three separate phases. When implemented as a distributed
tion of keys in the system, it completely defeats the purpose protocol, this simply means that each node finishes the cur-
of the hash function. Therefore, Wh anaungatangarellgs on rent phase before responding to the next phase’s queries.
upon an arbitrary ordering: on keys. The adversary may Honest nodes which respond slowly may simply be ignored.
choose his keys to fall anywhere in the ordering; this does  The fingers and database tables are easy to construct.
not affect Wh anaungatanga’s security. SETUPS first phase simply sends ot random walks and
Organizing Wh anaungatanga’s routing tables according tocollects the resulting nodes into the finger table. This ezsu
the given orderings enables fast lookups, but it also enables  that each node’s good fingers are uniformly distributed.
a new class of attacks on the ordering. The ordering of the  The second phase sends outrandom walks to collect a
honest keys is fixed, but the attacker can choose where tosagmple of the records in the social network and stores them
place his keys and his IDs. He may choose to distribute themin the database table. These samples are used to build the
evenly, which would be easy fora DHT to handle; or he may syccessor tables, and then theabase table is discarded at
cluster them, attacking a particular honestkey orkéys[  the end of the setup procedure. Theabase table has the
A key-clustering attack would be effective if each node good property that each honest node’s key-value record is
used a deterministic value (e.g., its IP address or pubi¢kd,  frequently represented in the other honest nodes’ tables.
or a locally-stored keyd]) as its ID. By inserting many bo- The final phase, and the most complex, chooses each node’s
gus keys immediately before a targeted key, the adversary|ps and constructs its successor table. The layer-zero 1D
could keep the target key out of the honest nodes’ succes-is chosen by picking a random key from a random node’s

sor tables. Wh anaungatanga prevents this class of aftack bj,14p4s¢. This has the effect of distributing honest layer-
choosing IDs randomly from the set of keys in the system.  zerg |Ds evenly around the key space.

Just as the adversary may attack the successor tables by Higher-layer IDs are defined recursively: the 1" ID is
clustering his keys, he may attack the finger tables by clus- -gsen by picking a random finger from a random node’s fin-
tering his IDs. If the adversary chooses his IDs to fall near ger table, and using that fingei ID. As explained above
a targeted key, then honest nodes may have to waste manyhs causes honest IDs to cluster wherever Sybil IDs have

query messages to Sybil nodes before eventually queryingejystered, ensuring a rough balance between good fingers
an honest finger. Layered IDs prevent this class of attack: if 5,4 pad fingers in every range of keys.

the adversary chooses to cluster his IDs within a small range

A i Once a node has its ID for a layer, it must collect the suc-
then the honest nodes will naturally cluster their nexelay

e cessor list for that ID; this is the hard part of the setup pro-
IDs within the same range. As a result, the adversary cannot.qqure. It might seem that we could solve this the same way

dominate any_small range in every layer. i Chord does, by bootstrapping ofdlokup to find the ID’s
Finally, Wh anaungatangais a one-hop DHT, unlike many fj-st 5yccessor node, then asking it for its own succesgor lis

DHTs which trade longer lookup routes for smaller routing 54 <o on. However, this approach is deeply recursive (Sec-
tables. This is because every level of recursion amplifies th 4, 6.2 and would allow the adversary to fill up the suc-

adversary’s influence by a factorf For example, consider  coqq0r tables with bogus records. To avoid this, Whanaunga
a hypothetical subroutine that sends out a random walk andtanga fils each node’suce table without using any other

queries the resulting node for a record that was, itselfpdou 1\, qers e table; instead, it uses only thiatabase tables.

using a random walk. If a walk is 50% likely to return a good The information about any node’s successors is spread
1 1 0% |i -

nodg, Itzh?n tg!s sn:rg)routlne yvouldlonly t;]e 25% l'klzly Itlo SUC- around thelatabase tables of many other nodes, so thecs

cr?e d xtendingthe recu_rglpr;lctli 8 TI) oEsl\évc_)u atlow CESSORSsubroutine must contact many nodes and collect

t ﬁ? \_/ersa(rjy to tturn a_rllr:n't'? y sma ge 0 d|r|]_t(§) an 6ver jile bits of the successor list together. The obvious way

whelming advantage. Therelore, OUE™P and LOOKUP. to do this is to ask each nodefor the closest record in

procedures specifically avoid any deeply recursive queries database(v) following the ID. We chose another way be-

6.3 Setup cause it is easier to prove correct in Secffob.1

The SETUP procedure (Figurd) takes the locally stored The SuccessoRssubroutine repeatedly callW8CESSORS
key-value record and the social connections as input andSAMPLE r, times, each time accumulating a few more potential-
constructs four routing tables: successors. \BECESSORSSAMPLE works by contacting a

e fingers(u): u's finger nodes, sorted by their IDs. random node and sending it a query containing the ID. The

e database(u): asample of records used to constratatc.  queried node, if it is honest, sorts all of the records in its

e ids(u,?): u's layer< D, a random key. local database(v) by key, and then returns a small random
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SETUP(key(-),value(~), neighbors(-); w,r¢,74,7s, k) CHOOSEID(u, £)
> 1. Collect a finger list of random nodes. v < RANDOM-WALK (u)
for each node: if£=0
do fingers(u) < SAMPLE-NODESu, ) then Choose a randorfkey, value) € database(v)
return key
else Choose a random nodec fingers(v)
return ids(f, ¢ — 1)

> 2. Collect random records into théatabase table.
for each node.
do database(u) <+ SAMPLE-RECORDSu, 74)

OO WNPE

o SUCCESSORSu, £, 1s)
> 3. Choose an ID and collect a successor list in each layer.

for £ — 0to k ; grf {}1to
do for each node: b L0 ,
do ids(u, £) — CHOOSEID(u, £) i t dog « R U SUCCESSORSSAMPLE(u, ids(u, £))
succ(u, £) — SUCCESSORSu, £, 1) return
> Post-processing: Query all fingers for their IDs. SUCCESSORSSAMPLE(u, keyq))
Pre-sort the successor list by key and the finger list by ID. 1 v «— RANDOM-WALK (u)
retumn fingers, ids, succ 2 {(keyy,valuer),..., (key, , valuey,)} « database(v)
(sorted so thakey < keyy < -+ < key,, < keyp)
3 R—{}
4 fori< 1tory
5 do With probability1/i: R « R U {(key,, value;)}
6 return R

Figure 4: Pseudocode for Wianaungatanga’sSETUP procedure to construct routing tables.

sample of the records biased towards those closer to the ID.est fingerf which is “close enough” to the target will have it
Specifically, the record irlatabase(v) closest to the ID is  in succ(f); and, since every finger table contains many ran-
always sent, the second-closest is chosen with 50% prebabil dom honest nodes, it is likely to have an honest finger which
ity, the third-closest with 33% probability, and so on: iétlk is “close enough” (ifr; is big enough). However, if the ad-
are¢ intervening records inlatabase(v) between a record  versary clusters his IDs near the target key, therokup
and the ID, then a biased coin is flipped and the record is might have to waste many queries to Sybil fingers before
chosen with odds 1-t6- # This procedure ends up return- finding this honest finger. hokuP's pseudocode (Figurs)
ing approximatelyy~'¢, 1/i ~ logry + 0.577 = O(logn) is complex because it must foil this category of attack.
candidate successors for each query. To prevent the adversary from focusing its attack on a sin-
Since each 8CCESSORSSAMPLE query is independent  gle node’s finger table, okup tries once to find the tar-
and random, there will be substantial overlap in the result get using its own finger table, and, if that fails, repeatedly
sets, and some of the records returned will be far away from chooses a random delegate and retries the search from there.
the ID and thus not really successors. Nevertheless, Sec- The TRY subroutine searches the finger table for the clos-
tion 7.5.1will show that, for appropriate values of; and est layer-zero IDr to the target keycey,. It then chooses a
rs, the union of the repeated queries will contain all the de- random layer to try, and a random fingef whose ID in
sired successor records. that layer,ids(f, ¢), lies betweer: and the target key. RY
After all succ tables have been constructed, theabase queriesf for the target key; as an optimization, if the query
tables may be discarded (although in a dynamic implementa-fails, it may choose a new finger and retry.
tion, they may be reused). In order to quickly process lookup If there is no clustering attack, then the layer-zerodD
requests, each node should sort its successor table by &ey anis likely to be an honest ID; if there is a clustering attack,

its finger table by ID. Note that, since each node h#bs, thenz can only become closer to the target key. Therefore,
each finger will appeak times in the sorted table. in either case, any honest finger found betweeand key,
6.4 Lookup will be close enough to haveey, in its successor table.

The only question remaining is: how likely isHOOSE
FINGERto pick an honest finger? Recall that, duringrsp,
if the adversary clusters his IDs betweeandkey, in some
layer, then the honest nodes will tend to cluster in the same
“The pseudocode seems inefficient, iterating over all therdsc ~ range in the next layer. Thus, the adversary’s fingers cannot
in the database. However, since the returned set sigkliss n) dominate the range in the majority of layers. Now, the layer
WHP, the same effect can be achieved more efficiently by ehoos chosen by @ooSEFINGER is random — so, probably not

idn_g O.b(lo.g n) records frolm th/e d(.gabasg according to aaprobability dominated by the adversary — and therefore, a finger chosen
istribution proportional tal /i. (Returning extra records cannot e
harm correctness.) Also, note that if a Sybil node tries phyréo randomly from that layer is likely to be honest.

a SUCCESSORSSAMPLE query with a larger number of records, it In conclusion, for a random honest node’s finger table,
can safely be ignored. CHOOSEFINGER has a good probability of returning an hon-

The basic goal of the hokuP procedure is to find a fin-
ger node which is honest and which has the target key in its
successor table. TheeSuP procedure ensures that any hon-
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LOOKUP(s, key,) CHOOSEFINGER(u, z, key, )

for £ — 1tok

do Fy — {f € fingers(u) | x < ids(f,€) < key,}
Choose arandome {0, ..., k} such thatF, is nonempty
Choose a random nodec Fj
return (f,¢)

U < S
repeat value; «— TRY(u, key,)
u < RANDOM-WALK(s)
until TRY found validvalue, or hit retry limit
return value¢

O~ wWwN -

TRY(u, key, )

{z1,... zr b {ids(f,0) | f € fingers(u)} 1
(sorted sckey, < zg < --- X Try < key,) 2

QUERY(f, £, key,)
if (key,, valuet) € succ(f, ) for somevaluet
then return value;

te—r 3 error “not found”

repeat (f,¢) < CHOOSEFINGER(u, z;, key,)
valuey — QUERY(f, ¢, key,)
i—1i—1
until QUERY found validvaluey, or hit retry limit
return valuey

Figure 5: Pseudocode for Wianaungatanga’sL 0oKuUP procedure to search for a key.

est finger which is close enough to have the target key in its region. Therefore, a random walk starting in the honest re-
successor table. Thereforepbkupr should almost always  gion is less likely to cross into the Sybil region.

succeed after only a few calls tRY. — N :
y Definition. Call a walk starting in the honest region as-

7 Analysis caping walk if it crosses an attack edge. Let tescape
The preceding sections described Whanaungatanga’s sefrobability p, be the probability that a random walk starting
ting and design, and intuitivively argued for its correctse  atthe node will escape. Order the honestnodes, . . ., v,, }
This section rigorously defines concepts which we have only SO thatp,, > p,, > -+ > p,,, (i.e., a random walk starting
informally defined above, analyzes Whanaungatanga’s coratv: is the most likely to escape). Fix ambitrary constant
rectness and performance, and sketches the proofs for oufraction0 < e < 1. Call theen nodes with highest escape

main theorems. Unfortunately, space considerationsydecl ~ probability (s, ..., ve,) theloser nodesand call the rest of

us from including fully detailed proofs. the honest nodes tiveinner nodes

7.1 Mixing time The arbitrary fractior dividing “winners” from “losers”
Definition. Let P! be the probability distribution of ai appears only in the analysis and not in the protocol. Its ap-
step random walk starting at, and letr be its stationary pearance reflects the reality that, due to attack edge clus-
distribution.® Themixing time of a graph is the smallest tering, some nodes’ escape probability may be so high that
such that for all node pair@, v): random walks are useless. Naturally, the fraction of losers

7(v) related to the number of attack edgess we show next.
PY () — < 7
| w (v) W(U)| - Theorem. Order the nodes as above. For &lJ p,, < %~.

The graph s said to bRast mixing if w = O(log n). Proof. Consider choosing a random honest node and then

A graph’s mixing time is connected with its edge expan- taking one random step away from that node. Thi.s step has
sion via the Cheeger constant; all expander graphs are fas@ 9/ chance of crossing an attack edge, wherés the
mixing and vice versa/]. number of honest plus attack edges, and-ag/m chance

For convenience, assume that the social graph is regular®f €rossing an honest edge, in which case the next node is
so that the stationary distribution is uniform over nodes (i & fandom honest node, exactly the same as the starting dis-
m(v) = 1/n for all v). This assumption is without loss of tribution. By repea_tlng this process, observe that a length
generality, because a standard tranformation, replacioly e randowm walk starting at a random honest node hés a
node with an expander, converts a general fast-mixing graph¥/7)" > 1 — gw/m chance of staying within the honest

into a regular fast-mixing graph. region. Thus by algebraic rgarrangementwe have:
7.2 Escape probability and loser nodes Prob [ escapé £ 1 > b < i
The key underlying observation of our protocol is that a =1
fast mixing graph has no sparse cuts, but the attack edges k n
form a sparse cut between the honest region and the Sybil kpy,, < vai < vai < gw
=1 =1
SWe use the standard textbook definitions Rjrandr, Thusp,, < % O
. . . k c "
Pi) & Y PEUG)  w() £ dim Pi() |
5=, degv oo Corollary. If ¢ < n/w, then for all winner nodes, the

escape probability is smalp, < £2 = O(£2) < 1.



Conversely, if the winners’ escape probability must be no 7.4 The unstructured protocol’s performance

more tharp,, the number of losers may be upeto < . The unstructured protocol (Sectid) obviously always

eventually succeeds, because some random walk will hit the
node which originally stored the target key (see liBesof

Let P, (v) be the probability that RNDOM-WALK (u) re-  query). However, this takes an expected queries. The
turnsv. We now have the tools to analyze this distribution. point of thedatabase table is to reduce this t0(n/r,,).

Escaping walks are controlled by the adversary and are

7.3 Effectiveness of random-walk sampling

distributed arbitrarily. However, for non-escaping walks Theorem. If r, < an, thenLOOKUP succeeds with proba-
is identical to the standard random walk’s distributiBi. bility > 1/2 after fewer than 240%n  _ O(2) queries.
Since the walk length is finite? is nearly but not exactly (1=e)ru Tu

uniform over honest nodes. We conservatively treat this non

uniformity as adversarially controlled, roIIing both the$ Proof. Consider two cases. i, < 12&/(1 — 6), then we

fect and that of escaping walks into a single parameter can ignore thelatabase: after (ﬁﬁfu > 2an queries, the
Definition. The adversary’advantagea > 1 is defined by: probability that no random walk has hit the target node is at
» Po(v) X most(1 — 1/an)?*™ ~ e=2 ~ 0.135.
al = min == = min _ nP,(v) If r, > 12a/(1 — ¢), then we focus on théatabase. A
call to QUERY is useful if the random walk chooses a winner
We can always rewrite RADOM-WALK'’s distribution as  node which has not been previously queried. If fewer than
a uniform component plus an adversarial comporient half the winners have been queried yet, then each walk has at

P 1 ) 1\ . 11 ) 1\ . least &1 —¢€) /2« chance of reaching a new winner node. By
(V) = aw(v)Jr - (V) = antiti—g u(v) a Chernoff bound, this means that aff%ffﬁ queries, the

In other words, RNDOM-WALK (u) can be safely treated ~humber of unique winners queried is at legast 6an/ry,
as having a /a chance of returning a uniform honest node, With failure probability less than—6en/4" < ¢=3/2 < 1/4.
and al — 1/« chance of returning a node chosen by the (Observethag < (1—e¢)n/2, validating the assumption that
adversary. Therefore, if a winner node sends@uandom  the number of winners queried is less than half.)
walks, it may expect to get (on average) one good sample. Since each winner'database table is constructed inde-
pendently, querying unique winners is like sending owt,,
separate random walks, Therefore, the probability that the
target key is in none of the tables is at m@ist- 1 /an )™ =
(1 —1/an)b/* ~ e=6/* ~ 0.223.

Combining these results: there is a less than 1/4 chance
of querying fewer tham unique winners, and less than 1/4
chance that no winner has the target key. Thus, the totat prob

winneru, honest 7T(U) winnerw, honest

Definition. A good sampleis a uniformly random honest
node. We will treat RNDOM-WALK as a process which
flips a weighted coin, and with probability/« returns a
good sample. Otherwise, it returns an arbitrary node (ltones
or Syhil). The caller of RNDOM-WALK cannot distinguish
between the two cases, so it cannot filter out bad samples.

Because acts as a multiplier on the amount of work each ability of failure is less than 1/2. O
node must do, we want to be a small constant.
Theorem. If g < en/w, thena = O(1). The constant factor 24 is a very loose bound, chosen to make
o S _ the proof easy: the expected number of queries is closer to
Proof. From the definition of mixing time in Section.1, a (1325? . The failure probability shrinks exponentially with

non-escaping walk has at least a 1/2 chance of returning
good sample. ThuBrob [ good samplé > (1 — p,)/2.
Recall from Sectior7.2 that winner nodes have escape /-5 Whanaungatanga’s performance
probabilityp, < gw/en < 1. Thus For the same reason as the unstructured protocol, Wha-
1 gw -1 gw naungatanga’s Gokup will always eventually succeed if it
a < [5 (1 — 5)} ~ 2 (1 + 5) <4=0(1) O runs for long enough: some random walko@kup, line 3)
will find the target node. However, the point of Wh anaunga-
Observe that whep is small,« is a small constant, but  tanga’s added complexity is to improve lookup performance
wheng > n/w, thena grows very rapidly. This is as ex-  beyond the trivialO(n) algorithm. This section shows that
pected: largg means that most walks will escape. Lookupuses onlyO(1) messages to find any target key.

Lemma. Let X be the number of good samples in the output There are three prerequisites for a successful lookup:

of SAMPLE-NODES(u, 2ar). Then the expectation 5[X] > 1. SETuPpmust correctly build complete successor tables.
2r, andX > r almost certainlyProb [ X < r] < e~"/4. N 2. SETupmust correctly build finger tables which contain

an honest finger close enough to every target key.
Proof. Follows immediately from standard expectation and 3. LookupP must be able to find that honest finger.
Chernoﬁ bound Of the binomial d|Str|bUt|CB(7’7 1/0{) O We Consider each Of these factors in turn.

8the table size, and the number of queries.



7.5.1 Successor tables are correctly constructed

Definition. Letthe databaseD be the disjoint union of all
the honest nodeglatabase(u) tables:

D= H-J database(u)
honestu
Intuitively, we expect honest nodes to be heavily represknt
in the databaseD has exactlyryn elements; we expect at
Ieast%rdn of those to be honest nodes’ records, so ran-
domly sampling from the database is likely to get good resord

Recall that &TuP (Figure4) uses the BCCESSORSsUb-
routine, which calls BCCESSORSSAMPLE 7, times, to find
all the honest records i immediately following an IDz.
Consider an arbitrary successor key= D, and defineA
be the number of records (honest and SybilDrbetween
x andy. We will show that if thedatabase andsucc tables
are sufficiently large, and is sufficiently small, thery will
almost certainly be collected into the successors tablesTh
any winner node:’s table succ(u, £) will ultimately contain
all recordsy close enough to the ID = ids(u, £).

Lemma. Forhonesty € DandA = |{z € Djz < z < y}|,
1—€¢ 7y
a2 n+ A

>

Prob[y € SUCCESSORSSAMPLE() ]

Proof sketch.SuccEssoORsSSAMPLE begins by walking to
a random node (line 1), which is a winner with probabil-
ity at least(1 — €)/a. If v is a winner, thendatabase(v)
has about;/« good samples. Each good sample hag=a
chance of being. Thus, ifry < n, the total probability that
y € database(v) is about! =2 1 — locrd

Now, on average, there will approximateély= A /n records
in database(v) betweens andy. (The distribution of this

asA/|D| = O(rs/n). In other words, the range of “close
enough” records is proportional tQ, as we would hope.
7.5.2 Finger tables: layer zero is evenly distributed

The previous section showed that winner nodes’ successor
tables are correct; we must still show th&t®p constructs
correct finger tables.

Lemma. Honest IDs are distributed evenly: a winner’s layer-
zero ID is, with probabilityl /«, a random key fronD.

Proof. CHoosEID line 1 performs a random walk, get-
ting a uniform honest node with probability at least /.
Line 3 picks a random key fromiatabase(v). Since all hon-
est nodes contribute the same number of keyB tohis is
equivalent to picking a random elementf O

Consider an arbitrary winner’s finger table. Approximately
1;677 of the fingers will themselves be winners, and so ap-
proximatelyr} 1;;77 fingers will have layer-zero IDs
drawn randomly fromD. Pick an arbitraryA and an arbi-
trary keyy € D: we expect to find at least

A, 1—€eA Ty

DT a2

|D| a? nrg

of these honest fingers in the rangekeys inD beforey.

Corollary. The probability that there is no finger in the range:

, - AT Leary
Prob [ no finger withinA of y | < [1 - 5} <ee?mTa
Thus, we hav®@rob [ no finger] < e € if
2
Ty a® on
L > — 2
Td ~ cl —eA ( )

We can intuitively interpret this result by observing that

distance can be manipulated by the adversary, but not to hisp /|p| = O(1/r). In other words, with a large finger table,

benefit.) After sorting (line2), y’s index will therefore be
approximatelyl + 4. So,y will be included in the result set
L — _n_ Combine this

(line 5) with probability about1 = —x.

with the probability thay € database(v) above, yielding:

—€ry n =€ g
a2 nf\n+A)

a2 n+ A
Corollary. After calingSUCCESSORSSAMPLE(z) r times,
1—e rg 1™
a2 n+A
Thus, we hav®rob [y ¢ succ(u,l)] < e Cif
2

1
Prob[y e R] > (

l—eTdrs

< @ a2 ntAa

Prob[y ¢ succ(u,l)] < {1 -

(n+A4A) 1)

We can intuitively interpret this result in two ways. First,
regardless of\, we must have,r, = 2(nlogn) to ensure

TdTs 2 C]. P

we may expect to find fingers in a small rangye< |D|.
7.5.3 Finger tables: layers are immune to clustering

The adversary may attack layer zero of the finger tables
by clustering his IDs. @00sEID lines 5-6 cause honest
nodes to respond by clustering their IDs on the same keys.
Line 1's random walk prevents the adversary from focusing
his attack on one node’s finger table: the honest nodes’ clus-
tering follows the distribution of IDs across all finger tabl

Fix an arbitrary range of keys i@, large enough that at
least one layer-zero ID is expected to fall in the range d;et
(“bad fingers”) be the average (over winners’ finger tables)
of the number of Sybil fingers with layenDs in the range.
Likewise, let; (“good fingers”) be the average number of

def (5)2
o .

honest fingers in the range. Finally, defjne-
Lemma. The number of good fingers in a range is at least

a complete successor table. This makes sense in the context times the total number of fingers in the previous layer:

of the Coupon Collector’s Problem: theyJSCESSORSsub-
routine examines,r, random elements fror®, and it must
collect the entire set af honest records. Second, the frac-
tion, A/|D|, of recordsy likely to be in succ(u, £), grows

10

Yir1 = p(vi + Bi)

Proof. The average winner's finger table contaiag r; win-
ner nodes. Each of those winner nodes chose its lgyet-)



ID by walking to a random node and querying it for a ran-
dom layer: finger. The random walk reached another winner
with probability at Ieast%. By the definition ofy; andg;,

a random layet-finger from a random winner’s table fell
in our range with pl’ObabIhtyH—’B‘ Thus, the total average

number of good laye(: + 1) IDs in our range is at least

Vit1 2 <1 ; 67‘f><1 — 6)(% i 5i> =p(y +6;) O

« rf
Lemma. Define the density of good fingers in a range of
layeri asp; = i/ (vi + Bi)- ThenHz opi 2 18Ty

Proof. By the previous lemmay; = — 2 > u ;:Z’f—l.
Yo

By cancelling numerators and denominatdfs; > /ka
Because each finger table contains no more thafingers,

vk +08k < 1. Also, if the range is big enough to have an hon-
est layer-zero fingery, > 1. Therefore] [ p; > uk% O

This result means that the adversary’s scope to affect the
density of good nodes is limited. The adversary is free to
choose any values ¢f; between zero and;. However, the
adversary’s strategy is intuitively limited by the rule ttifa

it halves the density of good nodes in one layer, it will nec-
essarily double the density of good nodes in another layer.
It thus turns out that the adversary’s optimal strategy is to
attack all layers equally, increasing its clusterjfigby the
same factor from each layer to the next.

Theorem. The average Iayer’s density of good fingers is

p:kJrlszZ (ury)~ 71 (3)
Proof. By multiplying outterms(>" p;)**" > (k+1)!T] pi-
Substituting in Stirling’s approximatiofk: + 1)! > (1)

k+1 Hk
ry’

O

and the lemma’s bound f¢f p; yields(>~ pi)™" =
Thus)  pi = (k+1)E(ury)™ R

Observe that aB — oo, the average layer’s density of good
fingers asymptotically approaches the limjte, and that as

we decreask — 0, the density of good fingers shrinks expo-
nentially. We can get a density reasonably close to the ideal
bound,p > /€2, by choosing the number of layers to be

(4)

)

E+1=logpry
7.5.4 Main result: lookup is fast

is called enough times to collect every successor, and the
second so that successor lists are longer than the distance
between fingers. These would both need to be true even with
no adversary; the handicap factpr= O(1) represents the
extra work required to protect against Sybil attacks.

Theorem (Main theorem) A single iteration OfTRY suc-

ceeds with probability better thagz = (3= ) = Q(1) if
the table size parameters satigfl) and(5).

Proof. Consider a range oA records inD preceeding the
target key, setting\ = n'fflf to correspond to the average
distance between winner fingers. First, substithtand 6)

into (2). Since @) is satisfied, with probability at leagt—

1/e, there is an honest finger within the ranyef the target
key. TRy line 1 findsx, ., the closest layer-zero finger to the
target key. This may be an honest finger or a Sybil finger,
but in either case, it must be at least as close to the target ke
as the closest honest finger. Thus, is closer tham\ with
probability at least — 1/e > 1/2.

Second, recall that GOOSEFINGER first chooses a ran-
dom layer, and then a random finger from that layer with
ID betweenxrf andkey,. The probability of choosing any
given layer: is 1/(k + 1), and the probability of getting an
honest finger from the rangegs. Thus, the total probability
that CHOOSEFINGER returns an honest finger is simply the
average layer’s density of good nodes- k—Jlrl > pi. Since
we assumed + 1 = log ury, the previous section showed
that we have a probability of success at lgagt 1/ ¢.

Finally, if the finger is honest, the only question remaining
is whether the target key is in the finger's successor table.
SubstitutingA and &) into (1) shows thatQ) is satisfied by
this choice of parameters. Therefore, whene®y checks
the finger’s successor table, there is an at least /e > 1/2
chance thakey, € succ(f,?).

An iteration of TRy will succeed if three conditions are
met: (1) z,, is within distanceA of key,; (2) CHOOSE
FINGER returns an honest finggr, (3) key, isin f's succes-
sor table. Combining the probabilities of each of these &ven

yields a total probability of success 1 41 = ;. O

Corollary. The expected number of queries sent bpkup
is bounded by*— (3 ) = O(1). With high probability,
the number of queries is bounded®ylog n).

2eq

7.5.5 Routing tables are small

Any table size parameters which satisflj and 6) will,
by the previous section’s proof, provide fast lookups. How-

The preceding sections’ tools enable us to prove that Wh a-eyer, it makes sense to balance the parameters to use the min-

naungatanga uses a constant number of messages per looku
Define a “handicaph £ "i Our main theorem will show
that if the parameters satisfff)(and

2 S+ — (5)

Td noory

then lookups will only need (1) queries to succeed. The
formula 6) may be interpreted to mean that both; and
rsr¢ must beQ(n): the first so that BCCESSORSSAMPLE

Ui

11

iPaum resources to achieve a given lookup performance.
Recall that ¥CCESSORSSAMPLE returns a set of size
~ log r4. The total number of table entries is

S~rqg+(k+1)(ry+rslograg)

Approximating liberally, we také+1 ~ log ur¢ ~ logrq ~
3 logn > 1 and minimizeS subject to §), obtaining

S = %n\/ﬁlogWQ



with parameter settings; ~ S//2nlogn, ry ~ S/logn, 1
andr, ~ 25/log?n. This makes the finger tables and the
successor tables about the same size.

Optimizing for ETUP's bandwidth usage gives broadly
similar results with slightly different parameter setsnghe 02|
minimum bandwidth usage @(1,/n log®? n), the same as ol
the minimum routing table size. 0 1e08

8 Results

We implemented the Wh'anaungatanga protocol (Segjtion
in simulation and tested its performance against graphs ex-
tracted from several social networking services.
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Figure 6: CDFs of random walks on the Flickr network

8.1.1 Simulated adversary behavior

To generate an instance withattack edges, the simula-
tor marked random nodes as “evil” until there were at lgast
edges between marked nodes and non-marked nodes. For ex-
ample, for the Flickr graph, in the instance with= 6, 000, 050,
there aren = 230, 560 honest nodes (withh = 6,423, 242
honest edges) and 102,136 Sybil nodes. This method means
that the number of honest nodes and honest edges actually
decreases as the number of attack edges increases: tkerefor
our graphs tend to understate the performance of the proto-
col with respect to the ratig/m of attack edges to honest
edges. Also, because the number of attack edges actually de-
creases when the simulator marks more thAnnodes, it is

8.1 Experimental setup

We used the social network graphs from Mislateal.’s
study in IMC 2007 [.2]. We tested Wh anaungatanga against
the downloaded LiveJournal, Flickr, and YouTube social net
works, and we present our results from the two larger graphs,
LiveJournal and Flickr. These graphs have degree distribu-
tions following a power law (coefficient 1.7) and short
average path lengths«(5.8). The LiveJournal graph is esti-
mated to cover 95.4% of users in Dec 2006, and the Flickr
graph 26.9% in Jan 2007.

We performed several preprocessing steps on the input

graphs. We transformed directed edges into undirectedsedge , possible to test the protocol agaipgin ratios substan-
(the majority of links were already symmetric), and we dis- tially greater than 1.
carded everything except the giant component of each graph. The simulated adversary does not attempt to target a spe-
After this step, the LiveJournal graph contained 5,189,809 ... . .

cific key with a clustering attack. It swallows all random

nodes and 48,688,097 links (average degree: 18.8), and th : o
. X . alks and returns bogus replies to all requests, which is an
Flickr graph contained 1,624,992 nodes and 15,476,835 link optimal non-targeted attack.

(average degree: 19.0).

In addition, to compare with SybilLimit{1], we prepared
versions of the graphs with nodes with degree less than 5 For simplicity, we chose to test the parameter settiggs
removed. After this step, the remaining LiveJournal graph r; = r, = r andk = 0. We implemented the natural gener-
has 2,735,140 nodes and 43,906,710 edges (average degrealization of Whanaungatanga to nodes with variable degree
32.1). The remaining Flickr graph has 332,696 nodes andthis differed from the protocol described in Secti®mnly
13,566,771 edges (average degree: 81.6). The results werén that each node’s is multiplied by its degree. Therefore,
broadly similar between the truncated and the full grapsis: a when interpreting our results, one should generally miyitip
might be expected, the protocol performs better when morethe givenr by the average degree to get an effective average
nodes are high-degree, but the change is essentially equivatable size, and replagewith m (number of honest edges) in
lent to adding more table entries to each node by increasingformulas from the analysis.

r. Because our simulator is memory-limited, we were not  In the simulator, Ry gives up after querying 20 fingers.
able to obtain as many data points for the full graphs; for Lookup gives up after trying 20 delegate nodes. Therefore,
this reason, we present data from the truncated graphs herethe maximum number of messages sent mokupr is 420.

We measured the mixing properties of our data sets by Whenr is sufficiently large that the first finger always has
picking random source nodes and directly calculating the the target in its successor list, only one query will normall
probability distributions of short random walks from those be needed.
nodes. Each line in Figu@shows the CDF from a different The simulator generated a single sample of 1000 random
source node; the thick line shows the ideal case of perfectsource-target node pairs and varied the protocol parameter
mixing. We observe that after only 10 steps, the vast major- against the same set of pairs. When the simulator marked

8.1.2 Simulated protocol and simulator behavior

ity of nodes are near the average probability density, aatd th
as the walk length increases, the random walks’ distrilbutio
approaches the ideal. Barely visible at the bottom-lefheor
is the tiny fraction £.01%) of nodes which are relatively
isolated and are reached1/10 as often as the average.
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either the source or target of a pair as evil, the pair was re-
moved from the sample. As a result, the highgstalues

for each dataset have only roughly 300 sample pairs. There-
fore, our simulation could not measure failure probaleiiti
smaller thanv 0.1%.
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Figure 7: Routing failure rate versus attack edges Figure 8: Median # of messages versus attack edges

8.2 Failure rate 8.3 Message overhead

Figure8 plots the median number of queries peyaxkup
for the same parameters as the graphs in figurgailing
lookups are not included, so the maximum value is 420.)
antee only whileg < m/w. The transition point, where :/r\{:?;ifur:e ?gtoé :2% rgig';? n;srgt;]eer\?vgmgs:fg:; IfzrlaW:r?Q
g =~ m/w, is approximately 1,300,000 attack edges for the h " i ’I Wh y th ber of F‘Zt K ed ;
Flickr graph, and approximately 4,300,000 attack edges for Op routing protocol. en the number of attack edges 1S
the LiveJournal graph. Our graphs plot data beyond thistpoin larger than the range for Wh'Ch the protocol is intended) the
the number of messages increases becaosxUpP repeat-

only to illustrate how the protocol degrades if it is used-out dlv tries t q d deleqate théh
side its intended parameters. :ao éhré?sné)d(ll;erymore predecessors and delegate thésearc

As the graphs illustrate, in the intended range of attack Forr — 10, the median number of messages is 2 for the
edges, the protocol has a failure rate (?f Ofor: 200, as ex- . Flickr graph until the number of attack edges becomes large.
pected. The graph S.hOWS the protocol's gracgful degraulatio This small value of- yields table sizes of roughly 800 en-
Whef‘ the a_dversary is very powerful. In practice, the F‘“mber tries on average, whil¢/n ~ 580; therefore, the tables are
of failures is Iargely unaffected by the adversary upfile- just barely large enough to route about half of attempts on
comes substantial compared to the number of honest edge e first try. For the LiveJournal graph — 10 is simply
For example, for the F!|ckr graph, with= 5,000, 219 and too small to route effectively, and so the message counts are
m = 7,871,073, the failure rate is 9.8%. For the LiveJour- consistently near the maximum. When< /77, Whanau-
nal graph, the failure rate starts increasing only at approx ngatanga essentially degrades into unstructu}ed search.
mately 10,000,000 attack edges. _ . _

Ther = 10 lines show that it is important to chose an 8.4 Choosing sufficiently large table size
appropriate table size parameterThe choice ofr = 10, The pronounced “knee” in the previous graphs indicates
a small value, is only acceptable when there are few attackthat our analysis in Section is correct: Wh anaungatanga
edges with the Flickr graph. With the larger LiveJournafdra provides consistently low probability of failures and lavokup
r = 10 is too small for efficient lookup even when there are latency as long as table sizes are sufficiently large and the
no attack edges. number of attack edges is below the breaking poiptatm /w.

Figure7 plots the rate of lookup failures versus the num-
ber of attack edgegfor two values ofr (10 and 200), using
w = 10. Recall that the protocol provides a strong guar-
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S T T T T 10 Summary

/ This paper presents the first structured DHT routing layer
f which uses a social network to provide strong resilienc@asga
] a Byzantine Sybil attacker with many attack edges. Routing
table sizes are typical of one-hop DHTs (/7 log® n)
entries per node, and lookups take oflf1 ) messages. This
3 solution has applications to decentralized Internet syste-
sign, censorship resistance, and secure network routing.
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