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ABSTRACT 
 

Members of the E2F family of transcription factors are critical downstream effectors of the 
pocket protein family and mediate the regulation of genes required for cellular proliferation. 
The repressive E2Fs act in association with the pocket proteins to promote a G0/G1 
phase of the cell cycle. These complexes recruit histone deacetylases to target gene 
promoters to prevent the transcription of genes required for cell cycle progression. As cell 
cycle exit is often concomitant with differentiation, it is not surprising that mutation of the 
E2Fs and pocket proteins results in defective development and differentiation. Mutation of 
the most abundant E2F, E2F4, is known to disrupt the proper differentiation of several cell 
types, including erythrocytes and respiratory epithelium cells. Here, I analyzed a novel role 
for E2f4 in bone development. I found that mutation of E2f4 causes defects in 
intramembranous and endochondral bone development. The calvarial bones of the skull 
exhibit the most severe defect in development, which is caused by a significant delay in 
differentiation of osteoblasts. I showed that E2f4 loss does not alter the differentiation 
potential of osteoblast progenitors. Instead, loss of E2f4 impairs the ability of these cells to 
exit the cell cycle and increases the pool of undifferentiated progenitor cells, delaying bone 
formation. To further elucidate the role of E2f4 in cell cycle exit and differentiation, I have 
generated conditional E2f4 knockout mice. Analysis of these mice will address the cell 
autonomous roles E2f4 plays during differentiation and development, in addition to 
establish compensatory roles E2f4 may share with other E2F family members. Taken 
together, this work has established the in vivo role of E2f4 in osteoblast differentiation and 
bone development. Furthermore, this work opens new fields of study regarding E2f4 
function during mouse development.  

 

Thesis Supervisor: Jacqueline A. Lees 
Title: Professor of Biology 



  3 

ACKNOWLEDGMENTS 
 
 
First, I would like to thank my advisor, Jacqueline Lees, for her guidance, support, and 
encouragement throughout my graduate career. Through her mentorship, I have grown as 
a scientist, developing the confidence and skill set that will enable me to succeed in any 
future endeavor. I would also like to thank past and present members of the Lees Lab. The 
Lees Lab is a wonderful place to work, filled with people who are not only incredible 
scientists, but also great co-workers and friends. I would especially like to thank Phil 
Iaquinta, Tiziana Parisi, Ali Landman, Paul Danielian, and Seth Berman. Phil – thank you for 
being a caring and considerate friend who was always willing to answer my questions and 
go for coffee breaks. Tiziana – thank you for being someone that I could always talk to in 
the lab whenever I needed to vent or chat. Ali – you have helped keep me sane during 
many tough times in lab. Thank you for being a great bone group collaborator and for 
helping edit part of this thesis. Paul – you have been the best baymate that a girl could 
ever ask for and more. You’ve always offered brilliant suggestions that have pushed my 
research forward, helped edit documents like this thesis, taught me British words, such as 
“squiffy” and “knackered”, and shared cognac with me for any occasion. And Seth – thank 
you for being an amazing mentor and collaborator. You have always been there for me, 
helping me succeed in lab. I cannot thank you enough for your support while I was trying 
to finish this thesis. 
 
I am grateful not only for the environment that Jackie has provided in lab, but also for the 
unrivalled feeling of community, collaboration, and friendship that is found on the 5th floor 
of the Koch Institute. Long days in lab are much more enjoyable when you are surrounded 
by fantastic people (and adorable dogs). I would like to thank my committee members, 
Tyler Jacks and Frank Solomon, for their time spent giving thoughtful feedback and ideas 
about my research. In addition, Frank has been a kind and patient mentor, who has always 
wanted me to succeed since the first day of biochemistry. I would also like to thank David 
Housman and Phil Hinds for joining my thesis committee in the final stage of my graduate 
career. 
 
Finally, I thank my friends and family. To my classmates Vineet Prabhu, Josh Wolf, Mary 
Lee, and Mary Ellen Wiltrout – thank you for all the lunches, dinners, coffee breaks, drinks, 
dancing, and game playing that we have shared. I would have barely survived first year 
without you, nevermind the rest of my gaduate career. I am very fortunate to have you as 
my friends. Mom, Dad, Cathy, Sarah, and Steve – thank you for your constant support and 
love throughout my life. Thank you for always believing in me. 
 
Thank you! 



  4 

TABLE OF CONTENTS 
 

Abstract ............................................................................................................................2 
Acknoweldgments.............................................................................................................3 
Table of Contents ..............................................................................................................4 
Chapter One......................................................................................................................7 

Part I: Overview of the pocket protein/E2F growth control pathway..............................8 

A.  Discovery and characterization of the retinoblastoma gene family ........................8 
B.  The E2F family of transcription factors................................................................11 

i. Discovery of E2F..............................................................................................11 
ii. Classification of the E2Fs ................................................................................12 

a. The activating E2Fs ....................................................................................12 
b. The repressive E2Fs...................................................................................16 
c. The pocket protein-independent E2Fs........................................................18 

C. Regulation of the cell cycle by pocket protein and E2F family members .............20 

i. Transcriptional repression ................................................................................22 
ii. Transcriptional activation .................................................................................25 
iii. E2F target genes ............................................................................................25 

Part II: Roles of the pocket proteins and E2Fs in development and differentiation.......28 

A. The pocket proteins............................................................................................28 

i. The tumor suppressor, pRb .............................................................................28 
ii. p107 and p130 ...............................................................................................35 
iii. Overlapping roles of the pocket proteins.........................................................36 

B. The activating E2Fs ............................................................................................37 

i. Single knockout mice.......................................................................................37 
ii. Compound mutant mice .................................................................................39 

C. The repressive E2Fs ...........................................................................................40 

i. Classical repressors .........................................................................................40 
ii. Pocket protein-independent repressors...........................................................42 

D. E2F and pocket protein double knockout mice...................................................43 

Part III: Bone development and osteoblast differentiation............................................45 

A. Overview and anatomy of the bone....................................................................45 
B.  The coordination of players involved in bone formation.......................................46 



  5 

i. Chondrocytes ..................................................................................................48 
ii. Osteoblasts.....................................................................................................50 
iii. Osteoclasts ....................................................................................................53 

References.................................................................................................................56 

Chapter Two ...................................................................................................................80 
Abstract .....................................................................................................................81 
Introduction................................................................................................................82 
Results.......................................................................................................................85 

E2f4-/- embryos exhibit defects in bone development ..............................................85 
Loss of E2f4 affects osteoblast differentiation in vivo ...............................................88 
E2f4-/- calvarial preparations differentiate to a greater extent in osteoblasts than 
wildtype calvarial preparations in vitro .....................................................................91 
E2f4 deficiency increases the pools of osteoblastic progenitors in vivo....................93 

Discussion .................................................................................................................99 
Experimental Procedures .........................................................................................102 
Acknowledgments ...................................................................................................107 
References...............................................................................................................108 

Chapter Three ...............................................................................................................111 
Abstract ...................................................................................................................112 
Introduction..............................................................................................................113 
Results.....................................................................................................................116 

Generation of E2f4 conditional knockout mice ......................................................116 
Acute ablation of E2f4 disrupts normal asynchronous proliferation in MEFs...........119 

Discussion ...............................................................................................................122 
Experimental Procedures .........................................................................................125 
Acknowledgments ...................................................................................................128 
References...............................................................................................................129 

Chapter Four .................................................................................................................132 
E2F4 in bone development and osteoblast differentiation......................................133 
Synergistic roles of E2F4 and E2F5 in cell cycle exit and terminal differentiation ....137 
Synergy of E2F4 and the pocket proteins in mesenchymal stem cell 
differentiation........... .............................................................................................141 
Acute ablation of E2f4 in vitro causes reduced proliferation in MEFs......................142 
Conclusion............................................................................................................143 

References...............................................................................................................144 

Appendix A....................................................................................................................146 



  6 

Abstract ...................................................................................................................147 
Introduction..............................................................................................................148 
Results.....................................................................................................................151 

Mutation of Rb and p53 in Osteoblast Precursors Results in Osteosarcomas. ......151 
Cell Lines Derived from Osteosarcomas Are Immortal and Form Osteogenic Tumors 
When Transplanted in Nude Mice. ........................................................................157 
Osteosarcoma Cell Lines Demonstrate Properties of Mesenchymal Stem/Progenitor 
Cells in vitro. .........................................................................................................159 
Osteosarcoma Cell Lines Express Sca-1, a Marker of Early Mesenchymal 
Progenitors, and This Correlates with Their Tumorigenic Potential.........................163 

Discussion ...............................................................................................................168 
Experimental Procedures .........................................................................................172 
Supporting Information.............................................................................................175 
Acknowledgments ...................................................................................................183 
References...............................................................................................................184 

Appendix B....................................................................................................................187 
Abstract ...................................................................................................................188 
Introduction..............................................................................................................189 
Results.....................................................................................................................192 

pRb-Deficient Embryos Exhibit Bone Defects during Development........................192 
The Loss of pRb Affects an Early Step in the Differentiation of Osteoblasts in vivo.197 
pRb-Deficient Osteoblasts Differentiate to a Greater Extent than Wild-type Cells In 
vitro. .....................................................................................................................199 
Acute Ablation of pRb Promotes the Differentiation of Osteoblasts in vitro ............202 
Depletion of pRb in Progenitor Osteoblasts Causes Cell Cycle Exit Defects in 
vitro.......................................................................................................................203 
The Loss of Rb Prevents Osteoblasts from Properly Exiting the Cell Cycle in vivo .208 
Deletion of E2f1 Suppresses the Cell Cycle and Ossification Defects in Rbc-/c-  
Embryos ...............................................................................................................210 

Discussion ...............................................................................................................215 
Experimental Procedures .........................................................................................220 
Supplementary Figures ............................................................................................223 
Acknoeldgments ......................................................................................................226 
References...............................................................................................................227 

 

  



  7 

 

 

 

 

 

 

 

 

Chapter One 
 

 

 

 

 

Introduction 



Chapter 1: Introduction 

  8 

Historically, members of the E2F family of transcription factors are best known as 

critical downstream effectors for the retinoblastoma family of pocket proteins. E2F/pocket 

protein complexes function to regulate cell cycle progression. Early studies of E2F only 

hinted at the involvement of these proteins in cellular processes beyond cell cycle 

progression; however, a number of recent studies have revealed a diverse catalog of 

context-dependent functions for E2Fs in vivo. Although many of these functions rely on the 

cell cycle regulatory properties of associated pocket protein family members, there is 

emerging evidence that the E2Fs are capable of several cell cycle-independent roles. This 

chapter describes the functions that pocket protein and E2F family members are 

responsible for in the cell, focusing on development and differentiation. The first part of this 

chapter introduces each family member and discusses the roles each protein plays to 

control cell cycle progression. The second part of this chapter reviews the evidence 

implicating pocket protein or E2F involvement in development and differentiation. As the 

majority of the work in this thesis aims to gain a better understanding of bone 

development, the final part of this chapter describes the cell types and their functions that 

contribute to skeleton formation. 

Part I: Overview of the pocket protein/E2F growth control pathway 
 

A. Discovery and characterization of the retinoblastoma gene family 
 

Retinoblastoma is a malignant cancer of the eye, most commonly occurring in 

children. Typically, patients with retinoblastoma exhibit either a single tumor in one eye 

(unilateral retinoblastoma) or multiple focal tumors in both eyes (bilateral retinoblastoma). 
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The uncommon genetics of the disease led Alfred Knudson to propose that two genetic 

mutations, or “hits,” are required for retinoblastoma formation (Knudson, 1971). Thus, 

sporadic retinoblastoma results when individuals acquire two somatic mutations in the 

retinoblastoma susceptibility gene and familial retinoblastoma occurs when an individual 

carrying a germline mutation in one allele of this gene acquires an additional somatic 

mutation in the second allele. 

The susceptibility to retinoblastoma was mapped to a region of chromosome 13, 

13q14, by cytogenetic studies of non-tumorigenic samples from human retinoblastoma 

patients (Dryja et al, 1986; Sparkes et al, 1980). Chromosomal walking techniques led to 

the identification of RB-1, which encodes a nuclear phosphoprotein that is 110 kilodaltons 

(Lee et al, 1987b). Indeed, mutations of this locus were verified to occur in retinoblastomas  

(Friend et al, 1986; Fung et al, 1987; Lee et al, 1987a). The finding that RB-1 mutations 

occur in retinoblastoma suggested that the protein product, pRB, plays a role in cell cycle 

progression. Indeed, studies of DNA tumor viruses and their viral oncoproteins, such as 

adenovirus E1A, SV40 large T antigen, and the human papillomavirus E7, demonstrated 

that oncoprotein binding to pRB leads to increased cell proliferation and is required for 

cellular transformation (DeCaprio et al, 1988; Dyson et al, 1989b; Whyte et al, 1988). 

Additional targets bound by proteins encoded by small DNA tumor viruses were also 

found. p107 and p130, which are homologous to pRB, were identified by their ability to 

associate with adenovirus E1A (Dyson et al, 1989a). Although p107 and p130 share 

structural similarities to pRB, p107 and p130 are more homologous with each other (50% 

similarity) than either one is with pRb (30-35% similarity) (Ewen et al, 1991; Hannon et al, 
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1993; Li et al, 1993). Much of this homology is found within the hallmark pocket domain 

found in all three proteins; thus, pRB, p107, and p130 are referred to as the pocket 

proteins. In addition to sharing structural homology to pRB, p107 and p130 also play a 

role in cell cycle progression, most likely as a consequence of their ability to bind to and 

regulate the E2F family of transcription factors, like pRB (E2Fs are discussed in Part B). 

Although all pocket protein family members play a role in regulating the cell cycle, 

pRB is the only one that acts as a bona fide tumor suppressor. Somatic mutations in Rb 

have been identified in various cancers, indicating that its tumor suppressor role is not 

restricted to the retina (Weinberg, 1992). Indeed, it is estimated that RB-1 is either mutated 

or altered in approximately one-third of all human tumors (Weinberg, 1992). There is 

evidence that p130 mutations have been found in a subset of human tumors (Claudio et 

al, 2000a; Claudio et al, 2000b; Helin et al, 1997), suggesting that p130 may act as a 

tumor suppressor in certain contexts. Compound mutant mouse models have also 

suggested potential tumor suppressive roles for p107 or p130; however, this is limited to 

cells that lack pRB. For example, retinoblastoma only occurs in mice if both Rb and p107 

or p130 are altered in retinal cells (MacPherson et al, 2007; MacPherson et al, 2004). 

Furthermore, mice chimeric for Rb and p107 or Rb and p130 develop novel tumor types, 

such as retinoblastoma, not seen in Rb mutants alone (Dannenberg et al, 2004; Robanus-

Maandag et al, 1998).  
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B. The E2F family of transcription factors 

i. Discovery of E2F 

The E2F transcription factor was first identified as a cellular component required for 

the transcription of the early adenoviral E2 gene. Upon infection with adenovirus, the first 

viral transcript to be produced is E1A, which induces the expression of several other early 

viral transcripts, such as E2. Specifically, E1A recruits a cellular activity termed the E2 

promoter-binding factor, or E2F, at two DNA recognition sites (5’-TTTCGCGC-3’) in the E2 

promoter (Kovesdi et al, 1987; Yee et al, 1987). E2F is critical for the activation of cellular 

genes required for the G1/S transition of the cell cycle, nucleotide biosynthesis, and DNA 

replication (Trimarchi & Lees, 2002). Studies revealed that E1A causes a cellular protein to 

dissociate from E2F, which led to the finding that a known E1A interacting protein, pRB, 

inhibits E2F activity (Trimarchi & Lees, 2002). Based on the ability of the encoded protein 

to interact with pRB, a subunit of E2F was cloned and named E2F-1 (Helin et al, 1992; 

Kaelin et al, 1992; Shan et al, 1992). Concomitant with the identification of E2F, studies 

performed in murine embryonic carcinoma stem cells identified DRTF1, differentiation 

regulated transcription factor 1, which is down-regulated upon differentiation (La Thangue 

& Rigby, 1987). Interestingly, DRTF1 binds the same consensus DNA sequence as E2F, 

and also interacts with pRB (Bandara & La Thangue, 1991; La Thangue & Rigby, 1987). 

Subsequently, studies proved DRTF1 and E2F were the same factor. 

Further studies with DRTF1 led to the identification of DP1, which stands for DRTF-

polypeptide 1 (Girling et al, 1993). The related DP2 protein was identified later 

(Ormondroyd et al, 1995; Rogers et al, 1996; Wu et al, 1995; Zhang & Chellappan, 1995). 

Both DP proteins can form heterodimers with E2F1-6 in vivo, with no differences between 
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DP1- or DP2- containing E2F complexes (Bandara et al, 1993; Helin et al, 1993; Krek et al, 

1993; Trimarchi et al, 1998; Wu et al, 1995). These complexes bind E2F consensus sites 

and stimulate transcription of target genes. Furthermore, the amino acids that contact E2F 

binding sites are conserved in both DP and E2F proteins. The DP moiety is required for 

DNA binding in vivo (Bandara et al, 1993; Huber et al, 1993), while the E2F subunit confers 

different transcriptional and cellular responses depending on which E2F is in the complex 

(discussed below). 

ii. Classification of the E2Fs 

Although there are eight E2f genes to date, two loci, E2f3 and E2f7, encode two 

isoforms each: E2f3a and E2f3b, and E2f7a and E2f7b, constituting a family of ten distinct 

gene products. Based on differences in sequence and function, the E2Fs can be classified 

into three groups. E2F1, 2, and 3 are referred to as the “activating E2Fs,” E2F4 and E2F5 

comprise the “repressive E2Fs,” and E2F6, 7, and 8 are also transcriptional repressors, 

but function independently of the pocket proteins. 

a. The activating E2Fs 

The first member of the E2F family of transcription factors, E2F1, was cloned based 

on its ability to interact with pRB (Helin et al, 1992; Kaelin et al, 1992; Shan et al, 1992). 

Using the minimal DNA binding domain of E2F1 as a probe, low stringency screening of a 

cDNA library led to the identification of two related proteins, E2f2 and E2f3 (Ivey-Hoyle et 

al, 1993; Lees et al, 1993). All of the activating E2Fs are structurally similar and possess 

distinct domains for DNA binding, DP dimerization, and transactivation (Figure 1). The  
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Figure 1. The E2F family of transcription factors 

The E2F family is classified into three groups based on their structure and function. All the 
E2Fs possess homologous DNA binding domains. The activating E2Fs, E2F1, E2F2, 
E2F3a, and E2F3b each contain a nuclear localization signal (NLS), a DP dimerization 
domain, and overlapping transactivation and pocket protein binding domains. The classic 
repressors, E2F4 and E2F5, lack the N-terminal domain found in the activating E2Fs and 
possess a nuclear export signal (NES), rather than a NLS. E2F6-8 lack sequences required 
for the transactivation and pocket protein binding domains; therefore, these proteins 
function as pocket protein-independent repressors of transcription. E2F7a, E2F7b, and 
E2F8 also lack a DP dimerization domain. Instead, these proteins contain a duplication of 
the DNA binding domain, allowing them to bind DNA as heterodimers or homodimers with 
each other, without the aid of a DP protein. 

E2F7a

E2F8

E2F6

E2F5

E2F4

E2F7b

E2F3a

E2F3b

E2F2

E2F1

Activators

Classic E2F repressors

Pocket protein-independent repressors

= NLS
= Pocket Protein= Transactivation

= DNA Binding
= NES

= DP Dimerization

E2F7a

E2F8

E2F6

E2F5

E2F4

E2F7b

E2F3a

E2F3b

E2F2

E2F1

Activators

Classic E2F repressors

Pocket protein-independent repressors

= NLS
= Pocket Protein= Transactivation

= DNA Binding
= NES

= DP Dimerization



Chapter 1: Introduction 

  14 

pocket protein-binding domain lies within the transactivation domain near the C-terminus. 

These domains display a high degree of conservation, ranging from 45-100% identity 

when compared to equivalent regions in E2F1 (Lees et al, 1993). In addition, E2F1, 2, and 

3 possess a nuclear localization signal found in the amino terminus of the proteins (Muller 

et al, 1997) (Verona et al, 1997). 

The activating E2Fs have well-established roles in promoting cell cycle entry. In 

transient reporter assays, E2F1-3 all act as strong transcriptional activators (Helin et al, 

1993; Lees et al, 1993). Indeed, overexpression of any one of these proteins will induce 

the expression of genes involved in DNA synthesis and cell cycle progression, and is also 

sufficient to promote cell cycle re-entry in quiescent cells (DeGregori et al, 1997; Johnson 

et al, 1993; Kowalik et al, 1995; Lukas et al, 1996; Qin et al, 1994). Furthermore,in some 

cases, overexpression of E2F1, 2, or 3 can override growth arrest signals (DeGregori et al, 

1995; Mann & Jones, 1996; Schwarz et al, 1995). 

Expression data for the activating E2Fs also provides evidence for their role in 

promoting proliferation. In quiescent cells, E2F1, 2, and 3 proteins are present at low or 

barely detectable levels, but their ability to bind DNA of target genes peaks as cells enter 

the cell cycle (Leone et al, 1998; Leone et al, 2000; Moberg et al, 1996). The localization of 

these proteins is constitutively nuclear, which is most likely due to their nuclear localization 

signal (Muller et al, 1997; Verona et al, 1997). Additionally, E2F1-3 are bound to E2F-target 

gene promoters during G1/S, and these interactions are coincident with the transcriptional 

activation of these genes (Rayman et al, 2002; Takahashi et al, 2000). Finally, the induction 

of E2F-responsive genes is dependent on an unaltered E2F DNA consensus sequence in 
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the target gene promoter as well as a functional transactivation domain in E2F itself (Hsiao 

et al, 1994; Lam & Watson, 1993). 

Genetic studies have provided further evidence that activating E2F activity is 

required for cell cycle progression. All three activator E2Fs are required for entry into the 

cell cycle as MEFs lacking E2F1-3 are unable to proliferate (Wu et al, 2001). However, 

some studies demonstrate the importance of individual E2F activity. The absence of E2F3 

in MEFs causes a delay in proliferation due to decreased DNA synthesis and an impaired 

ability to re-enter the cell cycle from a quiescent state (Humbert et al, 2000b). Although 

E2f1-/- MEFs do not display any cell cycle defects (Humbert et al, 2000b), the acute 

ablation of E2f1 or E2f3 expression with shRNAs prevents quiescent cells from entering 

the cell cycle upon serum addition (Kong et al, 2007). 

The genetic locus for E2f3 encodes two isoforms, E2f3a and E2f3b, which are 

transcribed from two distinct promoters (He et al, 2000; Leone et al, 2000). E2F3a is found 

predominantly in cycling cells with enrichment in S phase, while E2F3b is expressed 

throughout the cell cycle and found complexed with pRb in quiescent cells (He et al, 2000; 

Leone et al, 2000). Based on this expression data, E2F3b was originally proposed to 

function as a transcriptional repressor. However, recently developed mouse models that 

conditionally inactivate both E2f3a and E2f3b argue against this model. Chromatin 

immunoprecipitation and gene expression analyses have demonstrated that both E2f3a 

and E2f3b contribute to G1/S-specific gene expression and cell proliferation (Chong et al, 

2009). Moreover, expression of either isoform is sufficient to activate E2F target gene 

expression and cell proliferation in the absence of E2f1 and E2f2, suggesting redundant 
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roles between the activating E2Fs (Chong et al, 2009). Despite these overlapping 

functions, E2f3a and E2f3b contribute different functions for cell cycle progression. E2f3a-/- 

MEFs have a low penetrance proliferation defect, while MEFS deficient for E2f3b do not 

(Danielian et al, 2008). In addition, in vitro studies indicate that E2f1-/-;E2f3a-/- MEFs display 

significant proliferation defects, but these defects are not seen when E2f1 loss is combined 

with the loss of E2f3b (Danielian et al, 2008). 

b. The repressive E2Fs 

The repressive E2Fs, E2F4 and E2F5, were discovered based on their ability to 

interact with the pocket proteins p107 and p130 (Beijersbergen et al, 1994; Ginsberg et al, 

1994; Hijmans et al, 1995; Sardet et al, 1995). Structurally, these proteins are distinct from 

the activating E2Fs, exhibiting 80% similarity between each other and only 30-60% 

similarity with the activating E2Fs. E2F4 and 5 possess domains that are required for DNA 

binding, DP dimerization, and transactivation/pocket protein binding, similar to the 

activators. However, the repressive E2Fs lack a similar amino terminus present in the 

activating E2Fs, which includes the nuclear localization signal (Figure 1). Instead, E2F4 and 

E2F5 contain hydrophobic nuclear export signals, which are responsible for the primarily 

cytoplasmic localization of E2F4 (Gaubatz et al, 2001). In order for E2F4 to enter the 

nucleus in G0/G1, it must participate in a pocket protein complex (Lindeman et al, 1997; 

Magae et al, 1996; Rayman et al, 2002; Verona et al, 1997). Since E2F4 is the most 

abundant E2F in vitro (Moberg et al, 1996), most experiments have focused on 

ascertaining the role of E2F4 in cell cycle regulation. E2F5 is thought to function in a 

manner similar to E2F4 due, largely in part, to their high degree of similarity. 
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The roles of E2F4 and E2F5 differ dramatically from the roles that the activating 

E2Fs play in cell cycle regulation. Although early studies demonstrated that E2F4 is able to 

activate transcription (Ginsberg et al, 1994; Lukas et al, 1996), it was subsequently found 

that overexpression of E2F4 or E2F5 was not sufficient to drive progression through the 

cell cycle and was also unable to cause arrested cells to re-enter the cell cycle (DeGregori 

et al, 1997; Lukas et al, 1996; Mann & Jones, 1996). Furthermore, E2f4-/- and E2F5-/- 

MEFs display a normal cell cycle profile (Humbert et al, 2000a; Lindeman et al, 1998; 

Rempel et al, 2000). These studies suggest that E2F4 and E2F5 function, in part, by 

regulating and maintaining a cell cycle arrest. Consistent with this role, E2f4-/-;E2F5-/- MEFs 

are unable to properly arrest despite an overexpression of the growth-inhibitory signal 

p16INK4A (Gaubatz et al, 2000). Similarly, MEFs that lack the pocket protein binding partners 

exclusive to the repressive E2Fs, p107 and p130, are unable to arrest (Classon et al, 

2000b; Hurford et al, 1997). 

The expression and subcellular localization of E2F4 and E2F5 also support their role 

in target gene repression and cell cycle arrest. The activating E2Fs are primarily expressed 

in cycling cells; however, the repressive E2Fs are present in all phases of the cell cycle, 

including G0 (Muller et al, 1997; Sardet et al, 1995; Takahashi et al, 2000; Vairo et al, 

1995; Verona et al, 1997; Wells et al, 2000). In contrast to the nuclear localization of E2F1-

3, E2F4 and E2F5 contain two nuclear export signals (Figure 1) and their predominantly 

cytoplasmic localization is dependent upon the CRM1 nuclear export factor (Gaubatz et al, 

2001). In G0 and early G1, E2F4 and E2F5 are found associated with pocket proteins in 

the nucleus, bound to target gene promoters when these genes are not expressed (Muller 
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et al, 1997; Sardet et al, 1995; Takahashi et al, 2000; Vairo et al, 1995; Verona et al, 1997; 

Wells et al, 2000). As the pocket protein binding domain overlaps with the transactivational 

domain of E2F, association with pocket proteins eliminates the transactivation potential of 

E2F4. Finally, E2F4 is able to form complexes with the three pocket proteins, while E2F5 

binds pRB and p130 (Hijmans et al, 1995; Moberg et al, 1996). 

c. The pocket protein-independent E2Fs 

E2F6-8 are structurally distinct from the other members of the E2F family due to the 

absence of both the transactivation and pocket protein binding domains (Figure 1). E2F6 

was originally hypothesized to act as either a transcriptional repressor or a dominant-

negative inhibitor of the other E2Fs due to its lack of transactivational activity (Trimarchi et 

al, 1998). Indeed, E2F6 can cause transcriptional inhibition upon recruitment to a reporter 

gene promoter using a heterologous DNA binding domain and can block the 

transcriptional activity of other E2Fs (Cartwright et al, 1998; Gaubatz et al, 1998; Morkel et 

al, 1997; Trimarchi et al, 1998). E2F6 associates with members of the Polycomb group, 

which are repressors of homeobox genes that control the anterior-posterior patterning of 

the developing embryo. E2F6 interacts with Bmi1, Ring1, HP1γ, EZH2, and PHC3 and is 

likely able to mediate transcriptional repression through these interactions (Attwooll et al, 

2005; Deshpande et al, 2007; Ogawa et al, 2002; Trimarchi et al, 1998). 

While E2F4 and E2F5 typically regulate genes during G0 and early G1, E2F6 

represses the induction of E2F target genes during G1/S. However, a recent study has 

demonstrated that the transcriptional inhibition of these genes as cells progress through 

the cell cycle is only partially mediated by E2F6 (Giangrande et al, 2004). If E2F6 
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expression is lost, E2F4 can play a compensatory role, which may explain the lack of a cell 

cycle defect in both E2f6-null mice and cells (Courel et al, 2008; Giangrande et al, 2004; 

Pohlers et al, 2005; Storre et al, 2002). If both E2F4 and E2F6 are depleted, the G1/S 

targets become de-repressed, but no significant change in the cell cycle occurs 

(Giangrande et al, 2004). E2F6 also exerts tissue-specific repression in gonad-specific 

isoforms of structural proteins, such as Stag3, SMC1β, TUBA3, and TUBA7. Loss of E2F6 

results in the expression of these genes in other tissues, rather than being restricted to the 

testis only (Pohlers et al, 2005; Storre et al, 2002). Thus, E2F6 is limited to binding only a 

subset of E2F target genes while simultaneously having a broadened number of unique 

targets. The mechanism behind this, however, is unclear. 

 Similar to E2F6, E2F7 and E2F8 do not possess domains required for 

transcriptional activation and pocket protein binding, but they differ from E2F6 because 

they lack the DP dimerization domain. Rather, E2F7 and E2F8 contain a duplication of the 

DNA binding domain (Figure 1), which allows them to bind DNA as homodimers or 

heterodimers with each other without the aid of a DP protein (Christensen et al, 2005; de 

Bruin et al, 2003a; Di Stefano et al, 2003; Logan et al, 2004; Logan et al, 2005; Maiti et al, 

2005). The E2f7 locus encodes two isoforms: E2F7a is the shorter protein of 728 amino 

acids, while E2F7b, the more abundant protein, is 911 amino acids (Di Stefano et al, 

2003). The two proteins differ only in their C-terminal tails starting from amino acid 713 (Di 

Stefano et al, 2003). Overexpression studies with E2F7 and E2F8 demonstrate that they 

are capable of blocking E2F transcriptional activation, suggesting that E2F7 and E2F8 play 

repressive roles in transcription. Furthermore, during S phase, E2f7 and E2f8 become 
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induced and E2F7 binds to the promoters of some E2F-responsive genes (Christensen et 

al, 2005; Di Stefano et al, 2003). Thus, the proposed function of E2F7 and E2F8 is to 

repress E2F-target genes once they have become activated in S phase, in a role 

analogous to that of E2F6. 

C. Regulation of the cell cycle by pocket protein and E2F family members 

Members from both the E2F and pocket protein families form various complexes 

that are regulated throughout the cell cycle. In G0/G1, E2F is in a transcriptionally inactive 

complex with a hypophosphorylated pocket protein. The domain responsible for pocket 

protein binding overlaps with the transcriptional activation domain (Figure 1) (Helin et al, 

1992) (Kaelin et al, 1992), thus E2F binding to a pocket protein renders this complex 

unable to induce transcriptional activity (Flemington et al, 1993; Hiebert et al, 1992). 

Indeed, when pRB is bound to E2F, several residues required for transactivation become 

concealed (Lee et al, 2002a). In response to mitogenic signaling, the pocket proteins 

become hyperphosphorylated by cyclin D-CDK4/6 in G1 and subsequently by cyclin E-

CDK2 and cyclin A-CDK2 in G1/S (Mittnacht, 1998). Pocket protein phosphorylation 

modifies key residues at the interface of E2F binding (Xiao et al, 2003), causing the release 

of an E2F subunit capable of transcriptional activity. 

The activity of the pocket protein/E2F complex in the cell cycle is dictated by the 

function of the E2F moiety, leading to the following model of cell cycle regulation (Figure 2). 

The activating E2Fs promote cell cycle progression, while the repressive E2Fs function to 

maintain a G0/G1 state. In G0/G1, hypophosphorylated pRB binds to the activating E2Fs,  
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Figure 2. Cell cycle dependent transcription by E2F and pocket protein family members 

In G0/G1, repressive complexes consisting primarily of p130 and E2F4 occupy promoters 
of E2F target genes. p130/E2F4 complexes are able to recruit chromatin remodeling 
enzymes such as histone deacetylases (HDAC), further contributing to transcriptional 
repression of E2F-responsive genes. The activating E2Fs are bound to pRB preventing 
their transcriptional activity. Upon mitogenic signaling, cyclin-CDK complexes are able to 
overcome inhibition by CDK inhibitors such as p16, and phosphorylate pRB and p130. 
Phosphorylation disrupts pocket protein-E2F binding, causing E2F4 to be exported from 
the nucleus. Concomitantly, the activating E2Fs are free to bind cell cycle-regulated target 
gene promoters and activate their transcription. 
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preventing their ability to transactivate genes required for cell cycle progression. To further 

prevent entry into the cell cycle, the repressive E2Fs, E2F4 and E2F5, associate with p107, 

p130, and possibly pRB at target gene promoters to prevent entry into S-phase. As cells 

are stimulated to enter the cell cycle, the pocket proteins become hyperphosphorylated by 

cyclin/CDK complexes, causing the release of free E2F.  E2F4 and E2F5 contain nuclear 

export signals and are exported from the nucleus upon release from members of the 

pocket protein family, thereby relieving transcriptional repression.  Concomitantly, the 

activating E2Fs are now free of their pRB-mediated inhibition and activate the transcription 

of genes required for cell division. 

i. Transcriptional repression 

There is a growing amount of evidence that the repressive E2Fs actively repress the 

transcriptional activation of target genes when bound to their promoters in addition to 

merely preventing their transcription. Alteration of the E2F-binding sites in the B-myb, 

cdc2, and E2f1 promoters leads to an increase in activity during G0/G1, when all activating 

E2Fs are still transcriptionally inhibited by pRB (Dalton, 1992; Hsiao et al, 1994; Lam & 

Watson, 1993). Thus, the E2F complex that binds these promoters must actively repress 

transcriptional activity during G0/G1. Since DNA footprinting analysis revealed that the 

promoters of B-myb, cdc2 and cyclin A2 are bound by E2F only in quiescent cells, it was 

presumed that active repression was the only form of gene regulation (Huet et al, 1996; 

Tommasi & Pfeifer, 1995; Zwicker et al, 1996). However, the more sensitive chromatin 

immunoprecipitation technique revealed that activating E2Fs were found to associate with 
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the promoter of B-myb during G1/S (Takahashi et al, 2000), but B-myb activation may not 

require E2F binding (Lam & Watson, 1993). In addition, overexpression of an E2F1 

expression construct capable of binding DNA and displacing endogenous E2F complexes, 

but lacking a transactivation domain, was able to induce the transcription of E2F target 

genes (Zhang et al, 1999a). These data clearly underscore the importance of repressive 

pocket protein/E2F complexes in preventing the activation of E2F target genes.  

Pocket protein/E2F complexes are also able to recruit various factors that alter 

chromatin structure leading to further repression of E2F target genes. All three pocket 

proteins are able to recruit histone deacetylases (HDACs) (Brehm et al, 1998; Ferreira et al, 

1998; Luo et al, 1998) and, furthermore, HDAC1 and HDAC2 associate with E2F4 and 

p107 or p130 at target gene promoters in G0/G1 (Rayman et al, 2002). In experiments 

where the interaction between Rb and HDACs has been weakened, the ability of these 

mutants to inhibit transcriptional activation was not altered, but they were unable to 

actively repress the transcription of some E2F target genes (Chen & Wang, 2000; Dahiya 

et al, 2000). Chromatin structure is also regulated by nucleosome sliding complexes, such 

as BRG/BRM. pRb can interact with both these proteins (Dunaief et al, 1994; Singh et al, 

1995) and it has also been shown that pRb can simultaneously bind to both BRM and 

E2F, suggesting that a SWI/SNF/Rb/E2F complex can form at promoters with E2F binding 

sites (Trouche et al, 1997). 

Another mechanism for active transcriptional repression is via histone 

methyltransferases, such as SUV39H1. pRB interacts with SUV39H1 and recruits it to the 

cyclin E promoter, causing the methylation of lysine 9 of histone H3 (H3K9) and HP1 
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binding to repress the cyclin E promoter (Nielsen et al, 2001). In quiescent cells, the 

binding of E2F4 and p130 is accompanied by H3K9 methylation at the promoters of cyclin 

A and cdc6 (Ghosh & Harter, 2003). Finally, pRb, E2F1, and HDAC1 were identified in 

complex with DNMT1 during its purification. This study revealed that the effect of pRb 

repression was enhanced by DNMT1 (Robertson et al, 2000). 

Recent studies suggest that E2F4 plays a key role in the transcriptional repression 

that is mediated via TGF-β signaling. Cycling HaCaT cells treated with TGF-β induces the 

formation of repressive E2F4-pRb and E2F4-p107 complexes at the promoters of E2F1, 

B-myb, and HsORC1 gene (Li et al, 1997). Mutation of the E2F binding site results in 

increased expression from these promoters during TGF-β treatment (Li et al, 1997). 

Similarly, the cell cycle arrest program activated by TGF-β in human keratinocytes causes 

the generation of E2F4-p130 complexes that associate HDAC1, to inhibit the activity of the 

cdc25 promoter (Iavarone & Massague, 1999). Further study revealed that E2F4-p107 and 

E2F5-p107 form complexes with Smad3 in the cytoplasm. Upon treatment with TGF-β, 

these complexes translocate to the nucleus, associate with Smad4, and bind to the TGF-β 

inhibitory element in the c-myc promoter to repress is transcription (Chen et al, 2002). 

Finally, TGF-β signaling has been implicated in repressing the expression of survivin in 

prostate epithelial cells. Ligand-bound TGF-β receptors activate Smad 2 and 3, which 

hypophosphorylate pRb and allow E2F4 binding at the survivin promoter, inhibiting 

transcriptional activity (Yang et al, 2008). 
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ii. Transcriptional activation 

As the repressive E2Fs play an active role in transcriptional repression, it is possible 

that the activating E2Fs play an analogous role in transcriptional activation. Indeed, E2F 

transcriptional activation has been associated with histone acetyl transferase (HAT) activity. 

Together, p300 and Creb-binding protein (CBP) form a complex capable of HAT activity 

(Vo & Goodman, 2001) and interact with the activating E2Fs, stimulating their 

transcriptional activity (Martinez-Balbas et al, 2000; Marzio et al, 2000; Trouche et al, 

1996). Three lysine residues located near the DNA-binding domain are acetylated by 

P/CAF (Martinez-Balbas et al, 2000; Pediconi et al, 2003). Other HAT-containing 

complexes such as GCN5/TRRAP and Tip60 also interact with the activating E2Fs (Dyson, 

1998). Further evidence supporting the role of acetylation in transcriptional activation is the 

finding that promoter binding at the G1/S transition occurs concomitantly with HAT binding 

and before histone acetylation occurs (Caretti et al, 2003; Taubert et al, 2004). E2F/HAT 

activity is likely to facilitate transcriptional activation by weakening the interaction between 

the histone and chromatin, allowing transcription factors to have more accessibility to the 

DNA. 

iii. E2F target genes 

Once the E2F-binding sequence was found in the E2 promoter, similar sequences 

were found in promoter regions of several genes, suggesting that these genes are 

potential E2F targets. Several studies have identified the presence of E2F-binding sites and 

confirmed that mutation of this site reveals a critical role for E2F in cell cycle-regulated 

transcription. For example, alteration of the dihydrofolate reducatase (DHFR) promoter 
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demonstrated that E2F binding is essential for its activation during G1/S (Means et al, 

1992; Wade et al, 1992). Indeed, early studies identified E2F as a regulator of many cell 

cycle-regulated genes responsible for S-phase entry, such as cyclin E, c-Myb, and CDK2. 

Other targets are involved in the assembly of pre-replication complexes at origins of 

replication: Cdc6, ORC proteins, and MCMs, and genes directly involved in DNA synthesis 

have also been identified as E2F targets: ribonucleotide reductase, thymidine kinase, and 

DNA polymerase α (Stevaux & Dyson, 2002). The E2F pathway is also able to regulate 

itself positively and negatively via E2F binding and activation of E2f1, E2f2, E2f3, RB-1, 

p107, and E2F7 promoters. 

In addition to regulating genes directly involved in cell cycle entry, other E2F targets 

were found that are involved in mitosis and DNA repair. E2F regulation has been confirmed 

for genes with mitotic functions such as cyclin B1 and B2, cdc2, cdc20, cdc25a, and 

smc2 and 4 (Ishida et al, 2001; Muller et al, 2001; Ren et al, 2002). Studies have 

demonstrated that several classes of DNA repair enzymes are also regulated by E2F. The 

mismatch repair genes msh2 and mlh1, excision repair genes such as Fanconi anemia and 

rpa3, and the recombination repair genes rad51 and rad54 have all been identified in 

microarray analyses as novel classes of E2F target genes (Ren et al, 2002; Weinmann et 

al, 2002). The physiological relevance of these target genes is not clear, nor is the 

mechanism as to how E2F regulates these promoters in vivo, but it does suggest that E2F 

regulation may extend past its well-defined role in G1/S regulation. Indeed, a recent study 

using genome-wide chromatin immunoprecipitation revealed that cycling cells exhibit 

layers of regulation from both activator and repressive E2F-pocket protein complexes 
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(Balciunaite et al, 2005). In addition, this study also revealed unique target gene regulation 

by individual E2F and pocket protein species, such as E2F4, p107, and p130 (Balciunaite 

et al, 2005). 
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Part II: Roles of the pocket proteins and E2Fs in development and differentiation 
 

Analyses of both single and compound mutant mice have revealed not only roles 

for the pocket proteins and E2F family members in cell cycle regulation, but also their roles 

in the normal development and the differentiation of several cell lineages. Not surprisingly, 

many of these novel roles in development depend on proper cell cycle regulation. 

However, members of both families are capable of exerting cell cycle-independent roles in 

influencing the differentiation of various cell types. Although it has become increasingly 

clear that the pocket proteins and the E2F family of transcription factors exhibit 

overlapping, compensatory roles, they also possess remarkable specificity of function in 

vivo. 

A. The pocket proteins 

i. The tumor suppressor, pRb 

Analyses of Rb-mutant mice demonstrated its importance in development and 

differentiation. Rb-null mice are embryonic lethal, dying between embryonic day (e) 13 and 

15 with defective development of the nervous system, lens, erythroid, muscle, and extra-

embryonic tissue (Clarke et al, 1992; de Bruin et al, 2003b; Jacks et al, 1992; Lee et al, 

1992; Wu et al, 2003). These embryos exhibit abnormal erythropoiesis, apoptosis, and 

ectopic proliferation. Later studies demonstrated that a placental defect prevents efficient 

nutrient and gas exchange to the embryo, and a wildtype placenta allows Rb-/- embryos to 

survive until birth (de Bruin et al, 2003b; Wu et al, 2003). In addition, a wildtype placenta 

also ameliorates some of the apoptotic defects, suggesting a non-cell autonomous 
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phenotype for Rb loss (Lipinski et al, 2001; Maandag et al, 1994; MacPherson et al, 2003; 

Williams et al, 1994), but does not affect the ectopic proliferation defect. 

Further elucidation of the function of pRb in several cell types has established its 

role in regulating differentiation. Early studies reported that neither Rb-/- adult chimeric mice 

nor Rb-null embryos with wildtype placentas exhibited significant defects in erythropoiesis. 

However, Rb chimeric embryos exhibited a slight increase in the number of nucleated red 

blood cells, and the presence of a wildtype placenta in Rb-/- embryos was not able to 

completely rescue abnormal erythrocyte development (de Bruin et al, 2003b; Maandag et 

al, 1994; Williams et al, 1994; Wu et al, 2003). Moreover, acute ablation of Rb in erythroid 

progenitor cells causes defects in the ability of these cells to properly exit the cell cycle and 

terminally differentiate in vitro (Clark et al, 2004; Spike et al, 2004). Finally, Rb is required to 

regulate the expansion of erythrocytes and to promote the enucleation of red blood cells 

(Spike et al, 2004). 

Another tissue that is affected in Rb-/- animals is the lens, which undergoes ectopic 

cell cycles and apoptosis. When these animals are supplied with a wildtype placenta, the 

defects in the lens are not suppressed, suggesting that these defects are cell autonomous 

(de Bruin et al, 2003b; Wu et al, 2003). In addition, Rb-null animals exhibit reduced 

expression of the late markers for lens differentiation, filensin and γ-crystallin, when 

compared to wildtype levels of these genes (Liu & Zacksenhaus, 2000; Morgenbesser et 

al, 1994). This defect appears to be independent of cell cycle exit defects, suggesting that 

pRb is playing a more direct role in the differentiation of this tissue. Indeed, it was found 



Chapter 1: Introduction 

  30 

that pRb forms a functional complex with Pax6, which is required for lens development 

(Cvekl et al, 1999). 

Skeletal muscle differentiation occurs coincident with an increase in mRNA and 

protein levels of Rb (Coppola et al, 1990). Consistent with this, myocytes lacking Rb are 

unable to properly differentiate due to the loss of a physical interaction between the 

muscle-specific transcription factor, MyoD, and pRb, which augments the activity of MyoD 

(Gu et al, 1993). Moreover, animals deficient for Rb die at birth with severe defects in 

skeletal muscle differentiation, such as increased apoptosis, increased numbers of 

elongated nuclei that actively synthesize DNA within myotubes, reduced muscle fibers, and 

reduced expression of late markers of muscle differentiation (Zacksenhaus et al, 1996). 

These defects are unable to be rescued by a wildtype placenta (de Bruin et al, 2003b; Wu 

et al, 2003). A direct role for pRb in myogenic differentiation is still under investigation as 

the physical interaction between pRb and MyoD has not been demonstrated in vivo (Li et 

al, 2000). However, it is clear that defects in Rb-/- skeletal muscle differentiation are due to 

deregulation of the cell cycle (Huh et al, 2004; Li et al, 2000; Zhang et al, 1999b). 

Furthermore, conditional ablation of Rb in skeletal muscle cells provides compelling 

evidence that pRb is essential for cell cycle exit and the initiation of differentiation in this 

tissue (Huh et al, 2004). 

Recent studies have also revealed an important role for pRb in the differentiation of 

several types of epithelial cells. A lung-specific knockout of Rb causes increased 

proliferation in the epithelia of the lung. Interestingly, only neuroendocrine cells are 

affected, while other lung epithelial cells, such as Clara cells and ciliated cells, are normal 
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(Wikenheiser-Brokamp, 2004). It is likely that the role of Rb as a cell cycle regulator is the 

underlying cause of the neuroendocrine defect. Conditional deletion of Rb in the epidermis 

of the skin causes an increase in proliferation and altered expression of the differentiation 

markers K5, K6, and K10 (Ruiz et al, 2004). Similarly, Rb ablation in the intestine results in 

ectopic entry into S-phase and mitosis (Haigis et al, 2006; Yang & Hinds, 2007). These 

effects were accompanied by up-regulation of the differentiation markers Cdx1 and Cdx2 

(Haigis et al, 2006).  

pRb has also been implicated in the maintenance of certain stem cell populations. 

Proper proliferation and differentiation of stem cells is not only reliant on intrinsic signals, 

but also on extrinsic cues that come from a stem cell’s microenvironment. Rb-null mice 

display defects in hematopoiesis (Spike et al, 2004), and one group found that Rb loss 

causes a myeloproliferative disorder only when Rb is ablated from both hematopoietic cells 

and the bone marrow niche (Walkley et al, 2007). This study suggests that Rb plays an 

important role in maintaining the proper niche that is conducive to proper hematopoiesis. 

The role that Rb plays in directly regulating hematopoietic stem cells is controversial, and 

more research is required to elucidate the role of pRb. Loss of pRb in both germline and 

conditional knockout mice has demonstrated the importance of pRb function in the 

placenta and for embryonic survival (Clarke et al, 1992; de Bruin et al, 2003b; Jacks et al, 

1992; Lee et al, 1992; Wu et al, 2003). A recent study has shown an Rb-null placenta is 

sufficient to cause embryonic lethality even if the embryo is wildtype (Wenzel et al, 2007). 

Embryos lacking Rb in trophoblast stem cells exhibit hyperproliferation of these cells, 

broader expression of trophoblast markers, and a global disruption of placental 
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architecture, suggesting a crucial role for Rb in stem cell population maintenance (Wenzel 

et al, 2007)}(Wu et al, 2003). Moreover, differentiation of embryonic stem cells occurs 

concomitantly with the activation of pRb (White et al, 2005). Another group demonstrated 

that pRb reduction in Arabidopsis increases the amount of stem cells without affecting the 

duration of mitosis, while overexpression of pRb decreases the number of stem cells 

(Wildwater et al, 2005). 

The neuronal compartment also undergoes massive apoptosis upon loss of Rb 

(Clarke et al, 1992; Jacks et al, 1992; Lee et al, 1992). However, this defect in neuronal 

lineages is non-cell autonomous (Ferguson et al, 2002; Lipinski et al, 2001; MacPherson et 

al, 2003; Wu et al, 2003). Loss of Rb correlated with ectopic proliferation and the 

decreased expression of several neuronal markers, including neurotrophin receptors TrkA, 

TrkB, and p75 (Lee et al, 1994). The use of a neuronal specific promoter that drives the 

LacZ reporter gene demonstrated that loss of Rb causes defects in several parts of the 

developing nervous system, including the olfactory epithelium, the retina, and the 

neocortex (Slack et al, 1998). These studies underscore the importance of pRb in neuronal 

fate commitment. More recently, loss of Rb in the telencephalon demonstrated that the 

aberrant migration of a specific subpopulation of interneurons in the brain occurs 

independent of any cell cycle defects (Ferguson et al, 2005; Ferguson et al, 2002). 

Although most evidence linking pRb and differentiation is dependent on the role of 

pRb as a cell cycle regulator, there is mounting evidence that implicates the direct 

involvement of pRb in the differentiation of several cell types. One example is the role of 

pRb in osteoblast differentiation. pRb physically interacts with Runx2/CBFA1, an essential 
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transcription factor required for osteogenesis, and, together, they bind osteoblast-specific 

promoters in vivo (Thomas et al, 2001). Moreover, in vitro data demonstrate that pRb acts 

as a transcriptional activator for Runx2 (Thomas et al, 2001). Furthermore, while wildtype 

MEFs are able to secrete a calcified matrix upon BMP-induced differentiation, no 

mineralization is observed in Rb-null MEFs (Thomas et al, 2001). Embryos that have been 

conditionally deleted for Rb, both in the embryo proper and in the bone, exhibit impaired 

bone formation (Berman et al, 2008; Gutierrez et al, 2008). These defects are 

accompanied by altered expression of bone differentiation markers, such as alkaline 

phosphatase and collagen1a1 (Berman et al, 2008; Gutierrez et al, 2008). One caveat is 

that these studies suggest that Rb plays a major role in promoting cell cycle arrest in order 

to facilitate terminal osteoblast differentiation. However, these data do not discount the 

possibility that pRb plays a direct role in osteoblast differentiation. Indeed, it was found 

that Rb loss in osteoblasts enabled adipogenic differentiation, suggesting a higher 

multipotency inherent in these cells compared to wildtype (Gutierrez et al, 2008). Further 

study is needed in order to determine what cell cycle-independent role pRb is playing in 

osteoblast differentiation and bone development. 

Perhaps the most convincing studies implicating a cell cycle-independent role for 

Rb is in promoting adipogenesis. pRb physically interacts with CCAAT/enhancer-binding 

protein (C/EBP) transcription factors, which are essential for inducing adipocyte 

differentiation (Chen et al, 1996). In addition, pRB enhances both C/EBP binding to DNA 

and the transactivation by C/EBPs (Chen et al, 1996). Furthermore, Rb-deficient MEFs lack 

the ability to differentiate into adipocytes, either spontaneously or in response to hormone 
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treatment (Chen et al, 1996; Classon et al, 2000a). This block in differentiation can be 

circumvented by the addition of a PPARγ ligand (Classon et al, 2000a; Hansen et al, 

1999), which is a transcription factor critical for adipocyte differentiation that is induced by 

upstream factors such as C/EBP. This data suggests that the role of Rb in adipogenesis is 

not linked to its ability to repress E2F-responsive promoters.  

Since E2F1 induces PPARγ transcription during clonal expansion, it is possible that 

the loss of pRb results in unrestricted activation of PPARγ (Fajas et al, 2002b). However, 

one group reported that PPARγ promotes adipogenesis more efficiently in the absence of 

pRb (Fajas et al, 2002a). Furthermore, pRb interacts with PPARγ and HDAC3 (Fajas et al, 

2002a). It is possible that Rb plays a dual role in adipogenesis, first by promoting cell cycle 

exit and transactivation by C/EBPs, but then regulates the extent of adipogenesis by 

antagonizing downstream PPARγ signaling. Although further studies are required to fully 

understand the role of pRb in adipogenesis, it is clear that, in vitro, the function of pRb is 

to regulate adipocyte differentiation in a cell cycle-independent manner. 

pRb also plays a role in regulating the decision to become either brown or white fat. 

In embryonic and neonatal mice, white fat precursors express pRb, while the lack of 

nuclear pRb characterizes brown fat adipocytes (Hansen et al, 2004). Another difference 

between these tissues is that pRb becomes hyperphosphorylated in brown fat after adult 

mice are exposed to cold temperatures whereas white fat remains unchanged (Hansen et 

al, 2004). Similarly, in vitro data further suggest that pRb plays an inhibitory role in brown 

fat conversion. In the presence of PPARγ ligand, genes that are differentially expressed in 

white fat and brown fat show markedly different expression pattern profiles during the 
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differentiation of wildtype and Rb-/- MEFs. In MEFs lacking Rb, the brown fat-specific 

markers UCP-1 and PGC-1α were expressed at levels comparable to normal brown 

adipose tissue (Hansen et al, 2004). Conversely, Cre-mediated deletion of Rb in adult pre-

adipocytes resulted in an almost complete block in white adipose tissue differentiation 

(Scime et al, 2005). These data suggest that the presence of pRb drives adipocytes to 

become white fat. Consistent with this, chromatin immunoprecipitation assays 

demonstrate that pRb binds to the PGC-1α promoter and represses transcription (Scime 

et al, 2005), thereby regulating the switch between white and brown fat differentiation from 

adult progenitors in adipose tissue. 

ii. p107 and p130 

Genetic analyses of p107-/- and p130-/- mice also uncover roles in promoting 

differentiation. Mice deficient for p107 or p130 reveal that there are strain-specific 

differences in the resulting phenotypes. There are no obvious phenotypic consequences 

for p107 or p130 loss in either a C57Bl/6 or 129/Sv background (Cobrinik et al, 1996; Lee 

et al, 1996); however, p130-/- embryos do not survive past e13.5 and display defective 

neural, muscle, and heart development in a Balb/c background (LeCouter et al, 1998b). 

Similarly, Balb/c mice deficient for p107 experience impaired growth, exhibit a 

myeloproliferative disorder, have defective white fat development, and 70% die before 

weaning (LeCouter et al, 1998a; Scime et al, 2005). Upon a single backcross to C57Bl/6, 

the phenotypes of both p107-/- and p130-/- mice are reverted to wildtype, highlighting the 

importance of both genes in development, but in a strain-specific manner (LeCouter et al, 

1998a; LeCouter et al, 1998b).  
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iii. Overlapping roles of the pocket proteins 

Compound mutant mice reveal overlapping and distinct contributions made by 

each pocket protein member during development. Not surprisingly, creating double 

mutant animals frequently exacerbates pre-existing phenotypes. For example, losing one 

copy of Rb in addition to lacking p107 results in mice that are born at lower than expected 

Mendelian frequencies and are growth retarded (Lee et al, 1996). Complete loss of Rb and 

p107 causes lethality two days earlier than embryos lacking Rb alone (Lee et al, 1996). In 

addition, Rb loss in the intestinal epithelium, combined with the deletion of either p107 or 

p130, resulted in epithelial hyperplasia not observed in Rb-/- mice (Haigis et al, 2006). 

Similarly, when skin-specific deletions of Rb are combined with loss of p107, the severity 

of hyperplasia, hyperkeratosis, and abnormal epidermal differentiation increases (Ruiz et al, 

2004). Conditional ablation of all three pocket proteins in the lung causes the number of 

neuroendocrine cells to increase, blocks differentiation of Clara and ciliated cells, and 

results in lethality within the first three weeks of age (Wikenheiser-Brokamp, 2004). 

Analyses of mice lacking both p107 and p130 revealed compensatory functions in 

the regulation of chondrocyte growth and differentiation in long bone development 

(Cobrinik et al, 1996). These defects are caused by inappropriate cell cycle progression 

and loss of Runx2 induction, preventing these cells from differentiating (Cobrinik et al, 

1996; Laplantine et al, 2002; Rossi et al, 2002). p107-/-;p130-/- mice exhibit an altered 

epidermis with defective keratinocyte differentiation and the development of abnormal hair 

follicles (Ruiz et al, 2003). In addition, double knockout MEFs exhibit an increased ability to 

differentiate into adipocytes in vitro (Landsberg et al, 2003), which is similar to the 
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differentiation seen when either pocket protein is absent in 3T3-L1 pre-adipocyte cells 

(Classon et al, 2000a). However, anti-sense oligonucleotides against p107 in 3T3-L1 cells 

block adipocyte differentiation (May et al, 2001), which is consistent with the defective 

adipogenesis described in p107-/- mice (Scime et al, 2005). 

B. The activating E2Fs 

i. Single knockout mice 

Studies of E2F knockout mice have not only revealed roles in regulating the cell 

cycle, but also identified diverse functions that are context dependent and, in some cases, 

cell cycle-independent. Mice deficient for E2f1 are fully viable, but exhibit testicular atrophy, 

exocrine abnormalities, increased T cell proliferation due to defective negative selection, 

and a range of tissue-specific tumors (Field et al, 1996; Garcia et al, 2000; Yamasaki et al, 

1996; Zhu et al, 1999). Tumor types include lymphomas, reproductive tract sarcomas,  

uterine tumors, and lung adenocarcinomas (Field et al, 1996; Yamasaki et al, 1996). E2f1-/- 

mice are also resistant to obesity when fed a high-fat diet, likely due to the inability to 

stimulate adipogenesis through activation of PPARγ (Fajas et al, 2002b). Another study 

implicated a role of E2f1 in bone development. When E2f1 is overexpressed, chondrocytes 

are unable to properly exit the cell cycle, preventing chondrocyte differentiation and 

delaying endochondral bone development (Scheijen et al, 2003). Similarly, E2f1 

overexpression in keratinocytes in vitro also prevents proper differentiation (Wong et al, 

2003). Recently, results from a sensitive subtractive screen identified E2F1 as an activator 

of several atypical cell cycle-independent targets (Iwanaga et al, 2006). Several of the 

genes identified may be involved in development or differentiation, such as Neogenin, 
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WASF1, and SGEF (Iwanaga et al, 2006). Additionally, the neuronal migration gene, NRP-

1, contains an E2F binding sequence in its promoter and is activated upon E2F1 binding 

(Jiang et al, 2007). E2F1 is able to block the effects of G-CSF, which acts as a survival 

factor and promotes granulocyte differentiation (Strom et al, 1998; Wells et al, 2002). 

E2f2-/- mice are born at the expected frequency and are viable (Murga et al, 2001). 

However, these animals die prematurely due to autoimmunity-related defects caused by 

excessive T cell proliferation, such as splenomegaly and glomerulonephritis (Murga et al, 

2001). In addition, mice deficient for E2f2 exhibit erythroid maturation defects (Li et al, 

2003) and a high incidence of tumors, including hematopoietic malignancies, a histiocytic 

sarcoma, and a lung adenoma (Zhu et al, 2001). 

In contrast to both E2f1-/- and E2f2-/- mice, E2f3-/- mice in a pure genetic 

background are embryonic lethal, while only a small proportion of mixed background E2f3-

null mice are able to survive (Cloud et al, 2002; Humbert et al, 2000b). Loss of E2f3 

impairs myocardium proliferation, resulting in hypoplastic ventricular walls, septal defects, 

and embryonic lethality (King et al, 2008). Interestingly, surviving E2f3-/- mice do not 

develop tumors like E2F1-null mice; rather, these mice die prematurely due to congestive 

heart failure (Cloud et al, 2002; King et al, 2008). In vitro, E2f3-/- MEFs exhibit a slightly 

reduced capacity to differentiate into adipocytes, suggesting that E2F3 may promote 

adipogenesis through the activation of PPARγ (Fajas et al, 2002b). 

Conditional mouse models have further elucidated the extent to which each E2f3 

isoform contributes to development. Both E2f3a and E2f3b single knockouts are viable 

and develop normally (Danielian et al, 2008; Tsai et al, 2008), suggesting that these 
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proteins have redundant functions throughout development. However, further examination 

has revealed unique context-specific roles that each isoform is required for in 

development. For example, miRNA-mediated ablation of E2f3b revealed an essential role 

in promoting myogenic differentiation (Asp et al, 2009). In addition, chromatin 

immunoprecipitation-on-chip analysis has suggested divergent roles for each isoform of 

E2f3. While genes targeted by E2F3a are predominantly proliferation-associated, the 

majority of E2F3b targets are involved in differentiation and development (Asp et al, 2009). 

Indeed, despite the ability of E2F3a to bind E2F3b-specific gene promoters when 

overexpressed, E2F3a is unable to stimulate the transcription of these genes (Asp et al, 

2009). 

ii. Compound mutant mice 

Analysis of double and triple knockout mice have elucidated redundant functions 

among the activating E2Fs, explaining the relatively mild single mutant phenotypes, while 

also revealing individual E2F-specific roles during development. E2f1-/-;E2f2-/- mice are 

viable, but develop diabetes and die prematurely (Iglesias et al, 2004). They also exhibit 

exacerbation of defects characteristic of single knockout animals, such as autoimmunity, T 

cell defects, and tumor development (DeRyckere & DeGregori, 2005; Zhu et al, 2001). In 

addition, hematopoietic defects arise from impaired S-phase progression in hematopoietic 

progenitors, and B-cells exhibit defective maturation, presumably due to a failed cell cycle 

exit (Li et al, 2003; Zhu et al, 2001). Moreover, the loss of E2f3 in addition to E2f1 or E2f2 

exacerbated the developmental and age-related phenotypes present in E2f1 and E2f2 

single knockouts (Cloud et al, 2002; Wu et al, 2001). Although mice doubly-deficient for 
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E2f1 and E2f3b are viable and do not exhibit any tissue-specific defects, E2f1-/-;E2f3a-/- 

mice die within the first few weeks of life, suggesting that E2f3a plays a more critical role in 

development in vivo than E2f3b (Danielian et al, 2008). Finally, these mice exhibit defective 

cartilage development, likely due to an exacerbation of the existing chondrocyte 

differentiation defect present in single E2f1-/- and E2f3-/- mice (Danielian et al, 2008). 

C. The repressive E2Fs 

i. Classical repressors 

Although E2F4 and E2F5 exhibit overlapping roles in promoting cell cycle exit, in 

vivo studies have provided evidence for distinct roles during development. Loss of E2F4 

results in developmental defects and bacterial infections that cause poor postnatal survival 

(Humbert et al, 2000a). The susceptibility to bacterial infections results from the 

replacement of ciliated cells in the respiratory epithelium with mucin-secreting columnar 

secretary cells; this defect occurs independently from any alterations in cell cycle 

progression (Danielian et al, 2007). In addition, E2f4-/- mice exhibit craniofacial defects that 

may contribute to bacterial infections (Humbert et al, 2000a). E2f4 has also been 

implicated in development of other types of epithelial cells. In the proximal lung epithelium, 

loss of E2F4 results in the aberrant expression of the Clara cell marker CC10 (Danielian et 

al, 2007). Similarly, abnormal crypt formation occurs in the intestinal epithelium of E2f4-

deficient mice (Rempel et al, 2000). 

During development, E2f4-/- mice are anemic and display defects in red blood cell 

maturation (Humbert et al, 2000a), likely due to an impaired cell cycle progression (Kinross 

et al, 2006). E2f4-deficient mice exhibit severe early eye patterning defects, such as altered 
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optic cup formation, coloboma, and abnormal eye pigmentation (Ruzhynsky et al, 2009). 

Additionally, these embryos also display patterning defects in the optic vesicle and altered 

marker gene expression of the optic stalk and the ventral cup (Ruzhynsky et al, 2009). 

Loss of E2F4 also has an effect on T lymphocytes. Acute ablation of E2f4 during CD8+ T 

cell priming results in increased primary proliferation and has a negative effect in secondary 

stimulation, demonstrating the importance of E2F4 in the proper formation of functional 

memory T cells (Bancos et al, 2009). The absence of E2F4 results in the reduction of the 

ventral telencephalon as well as the complete loss of Sonic Hedgehog expression 

(Ruzhynsky et al, 2007). While there are no proliferation defects in neural progenitor cells, 

these cells experience a reduced ability to self-renew (Ruzhynsky et al, 2007). The self-

renewal defect can be rescued by restoring Sonic Hedgehog signaling, which is 

specifically reduced in the absence of E2F4 (Ruzhynsky et al, 2007). Together, these in 

vivo data suggest that E2F4 contributes to development and differentiation of several 

lineages through both cell cycle-dependent and -independent mechanisms. 

In vitro studies have further implicated E2f4 in differentiation. Overexpression of 

E2F4 enhances NGF-induced neuronal differentiation as well as the maintenance of a 

differentiated state upon loss of NGF induction (Persengiev et al, 1999). E2F4 forms 

repressive complexes with p107 or p130 at the FGFR1 promoter in proliferating myoblasts 

and myotubes, thereby regulating skeletal muscle differentiation (Parakati & DiMario, 2005; 

Parakati & Dimario, 2005). Finally, E2F4 is required to repress adipocyte differentiation. In 

association with p107 or p130, E2F4 can bind to and repress PPARγ expression during 

terminal adipocyte differentiation (Fajas et al, 2002b; Landsberg et al, 2003). In chimeric 
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mice, E2f4-/- cells contribute to a greater proportion of white adipose tissue compared to 

control chimeric cells (Fajas et al, 2002b). 

The generation of E2f5-/- mice demonstrated that E2f4 and E2f5 make differential 

contributions during development. E2f5-null mice are born at expected frequencies, but 

soon develop ataxia, ruffled coats, and dehydration (Lindeman et al, 1998). These mice die 

prematurely due to intracerebral hemorrhage and hydrocephalus, implicating E2f5 in the 

regulation of cerebral spinal fluid secretion (Lindeman et al, 1998). Combined loss of both 

transcriptional repressors, E2F4 and E2F5, results in embryonic lethality early in 

development (Gaubatz et al, 2000), demonstrating the functional redundancy between 

these two proteins. 

ii. Pocket protein-independent repressors 

E2F6 represses transcription through its association with Polycomb group proteins, 

which are repressors of homeobox genes that control the anterior-posterior patterning of 

the developing embryo. Indeed, mutation of E2F6 results in mice that exhibit posterior 

transformations of the axial skeleton (Courel et al, 2008; Storre et al, 2002). These mice 

also exhibit defective spermatocyte development, but this defect does not affect fertility 

(Storre et al, 2002). 

E2F7 and E2F8 are the newest members to the E2F family, and conditional mouse 

models are beginning to elucidate the roles these proteins play in development and 

differentiation. Both E2f7-/- and E2f8-/- mice are viable and do not exhibit any abnormalities; 

however, E2f7-/-;E2f8-/- embryos are unable to survive past e11.5 (Li et al, 2008). Moreover, 

E2f7+/-;E2f8-/- mice develop normally, but E2f7-/-;E2f8+/- mice die within 3 months, 
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suggesting a greater contribution of E2F7 versus E2F8 during development (Li et al, 2008). 

Mice lacking both E2f7 and E2f8 exhibit vascular defects, multifocal hemorrhages, and 

massive apoptosis (Li et al, 2008). Interestingly, both E2F7 and E2F8 occupy the E2f1 

promoter and repress its transcription. Upon loss of both proteins, E2F1 becomes 

overexpressed and results in the activation of an apoptotic response (Li et al, 2008). 

Finally, a recent in vitro study has found that E2F7 was able to inhibit proliferation and 

initiate differentiation of keratinocytes (Endo-Munoz et al, 2009). 

D. E2F and pocket protein double knockout mice 
 

The analysis of compound mutant mice that are deficient for both an E2F and a 

pocket protein can reveal novel phenotypes, which may not have been discovered in 

crosses with a member of its own family.  For example, analysis of Rb-null mice revealed 

an up-regulation E2F2 (Dirlam et al, 2007). Consistent with its expression pattern, deletion 

of E2f2 restored the ability of erythroid cells to terminally differentiate, revealing a tissue 

specific role of E2F2 in promoting erythropoiesis (Dirlam et al, 2007). Moreover, pRb 

mediates placental differentiation and nervous system development by inhibiting the 

activation of E2F target genes by E2F3a (Chong et al, 2009). Furthermore, neuronal 

differentiation in the retina is regulated via pRb suppression of E2F3a, but in a manner 

independent of cell cycle regulation (Chen et al, 2007). A similar result was found for Rb 

and E2f3a in regulating neuronal differentiation and migration in the brain by a cell cycle-

independent mechanism (Chen et al, 2007; Chong et al, 2009; McClellan et al, 2007). 

Combining E2f and Rb mutations can lead to unexpected effects on tumorigenesis. 

For example, E2f3, in combination with loss of Rb, has been shown to both suppress and 
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promote tumorigenesis depending on the tissue (Parisi et al, 2007; Ziebold et al, 2003). 

One of the more surprising results was that loss of E2f4 suppresses tumorigenesis in Rb+/- 

mice. Since loss of E2f1 significantly diminishes the development of pituitary and thyroid 

tumors in Rb+/- animals, it was originally hypothesized that loss of E2f4, which accounts for 

the majority of endogenous pocket protein activity, would exacerbate tumorigenesis. 

Unexpectedly, deletion of E2f4 significantly extends the lifespan of Rb+/- mice (Lee et al, 

2002b). Biochemical analyses suggest that loss of E2F4 allows p107 and p130 to bind to 

and inhibit the activator E2Fs in a process the authors refer to as “pocket protein 

reshuffling” (Lee et al, 2002b). Indeed, loss of E2F4 rescues inappropriate proliferation and 

E2F target gene expression (Lee et al, 2002b). 
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Part III: Bone development and osteoblast differentiation 
 

Pocket protein and E2F family members are essential for the terminal differentiation 

of numerous cell types. E2F4 comprises the majority of E2F/pocket protein complexes in 

vivo and is able to associate with all of the pocket proteins. Interestingly, all pocket protein 

family members have been shown to contribute to proper bone development in mice. 

Therefore, we sought to determine if E2F4 could also contribute to osteoblast 

differentiation and bone formation. The following is an overview of bone development. 

A. Overview and anatomy of the bone 

Bone is a specialized connective tissue and comprises the skeleton, which provides 

support that gives the body shape. In combination with associated muscles, the bones of 

the skeleton can also provide a means of locomotion and related movement. The skeleton 

also encases vital organs of the body, protecting them from damage. Finally, bones act as 

a reservoir for inorganic ions, such as calcium and phosphate. 

The skeleton is made of two types of bone, cortical and trabecular bone. Cortical 

bone (also referred to as compact bone) is found along the shafts of long bones, such as 

the femur, tibia, radius, and ulna. It is also the primary component of flat bones like the 

skull and ribs. Since cortical bone is quite strong, it is responsible for supporting body 

weight and protecting internal organs. Cortical bone makes up approximately 80% of 

skeletal mass while the second type of bone, trabecular, comprises the remaining 20%. 

Trabecular bone is also called cancellous or spongy bone due to its less dense and more 

porous appearance. This type of bone is found in the vertebrae of the spinal cord and in 

the epiphyses of the long bones.  
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Despite the differences in appearance and strength, compact and trabecular bone 

have identical chemical compositions. Both are composites of inorganic and organic 

material, with organic making up about 75% of bone. The initial event in bone formation is 

the deposition of type 1 collagen, termed osteoid, which is made of two Collagen1a1 

proteins chains and one Collagen1a2 protein chain. In addition to collagen, bone-forming 

cells called osteoblasts also secrete Osteocalcin and Osteopontin into the collagen matrix. 

Bone formation is incomplete until minerals are incorporated into the osteoid. Calcium, 

phosphate, and hydroxyl ions constitute the majority of hydroxyapatite, which is the 

inorganic component that creates a mineralized bone matrix. Hydroxyapatite also contains 

magnesium, fluoride, and potassium, providing an accessible source of ions for the body. 

B. The coordination of players involved in bone formation 

The relatively static appearance of bone belies the complexities of patterning and 

cellular differentiation required during development. The skeleton is made of two tissues 

(cartilage and bone) and three cell types (chondrocytes, osteoblasts, and osteoclasts) that 

need to be exquisitely coordinated in order to form more than 200 different skeletal 

elements throughout the body. The first step in bone formation is skeletal morphogenesis, 

which is the migration of mesenchymal cells to their ultimate location and their subsequent 

condensation into precursors of cartilage and bone. Mesenchymal precursors forming the 

craniofacial skeleton are derived from cranial neural crest cells, the axial skeleton is derived 

from the paraxial mesoderm or somites, and the limb skeleton is formed from lateral plate 

mesoderm cells. Once these cell lineages migrate to a location where skeletal elements will 
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develop, they form characteristic mesenchymal condensations and differentiate into either 

chondrocytes, the cell type specific to cartilage, or osteoblasts (Hall & Miyake, 1992). 

Endochondral ossification is responsible for the formation of most bones in the 

body, including long bones, ribs, and vertebrae. During this process, mesenchymal 

condensations differentiate into chondrocytes. These cells proliferate and secrete cartilage 

matrix, forming a cartilaginous template that becomes replaced by bone. Both proliferation 

and cartilage matrix deposition cause the template to elongate and expand. Chondrocytes 

in the center of the template differentiate into hypertrophic chondrocytes, which stop 

proliferating and enlarge. Hypertrophic chondrocytes secrete a unique extracellular matrix, 

which includes Collagen X, and also induce osteoblast differentiation in cells residing in the 

perichondrium, forming the bone collar. In addition, hypertrophic chondrocytes cause 

blood vessels to grow out from the perichondrium by releasing angiogenic factors. These 

blood vessels deliver osteoblasts, hematopoietic cells, and also bone-resorbing 

osteoclasts, creating a primary ossification center. At these centers, the Collagen X-

containing matrix is degraded by osteoclasts. Simultaneously, hypertrophic chondrocytes 

undergo apoptosis, which clears the way for invading osteoblast cells to secrete an 

osteoid matrix and hematopoietic cells to create bone marrow. 

Flat bones such as the calvarial bones of the skull and part of the clavicle form via 

the second process, intramembranous ossification. Bones formed through 

intramembranous ossification do not form via a cartilage intermediate; rather, 

mesenchymal condensations differentiate directly into osteoblasts to produce bone. Once 

both types of bones are formed, bone mass is constantly regulated by a process called 
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bone remodeling. During bone remodeling, the bone undergoes periods of bone 

resorption and bone formation. 

i. Chondrocytes 

During the development of endochondral bones, mesenchymal condensations 

must first differentiate into chondrocytes. Although further investigation is required to fully 

understand the complex signaling involved in cartilage development, it is clear that Sox9 is 

an early transcription factor required for chondrogenesis. Chimeric mouse studies revealed 

that Sox9-null cells do not express any chondrocyte-specific markers and are excluded 

from chondrogenic condensations, indicating that Sox9 is required for chondrocyte 

differentiation and cartilage formation (Bell et al, 1997; Bi et al, 1999). Sox9 is essential for 

the expression of cartilage-specific components of the extracellular matrix, such as type II 

collagen (Bi et al, 1999; Lefebvre & de Crombrugghe, 1998). Sox9 belongs to a family of 

transcription factors that include Sox5 and Sox6, which are also involved in the expression 

of the type II collagen gene, Col2a1. Since Sox5, 6, and 9 form a complex with other 

nuclear proteins in chondrocytes, and Sox5 and Sox6 are co-expressed with Sox9 in sites 

of chondrogenesis, it is believed that all three Sox genes cooperatively activate Col2a1 

(Zhou et al, 1998). Finally, Sox5-/-;Sox6-/- mice die at e16.5, and growth plate chondrocytes 

exhibit a failure to differentiate into hypertrophic chondrocytes (Lefebvre et al, 1998). 

Mutant mouse models have elucidated some of the transcriptional regulators that 

cause chondrocytes to exit the cell cycle and become hypertrophic, such as Runx2 and 

HDAC4. Mice deficient for the transcription factor Runx2 exhibit skeletal elements that lack 

hypertrophic chondrocytes (Kim et al, 1999). Moreover, Runx2 is transiently expressed in 
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pre-hypertrophic chondrocytes, the subpopulation of proliferating chondrocytes that will 

differentiate into hypertrophic chondrocytes (Takeda et al, 2001). Furthermore, constitutive 

expression of Runx2 enhances hypertrophy and causes tracheal cartilage to convert into 

bone (Takeda et al, 2001; Ueta et al, 2001). HDAC4 is also expressed in pre-hypertrophic 

chondrocytes, and associates with and inhibits Runx2 (Vega et al, 2004). Indeed, 

overexpression of HDAC4 disrupts hypertrophy and results in a phenotype similar to that 

of Runx2-null mice. 

Other factors implicated in coordinating chondrocyte proliferation and hypertrophy 

are Indian hedgehog (Ihh) and PTHrP. Ihh, a member of the Hedgehog family of signaling 

molecules, stimulates the proliferation of growth plate chondrocytes and prevents 

differentiation into hypertrophic chondrocytes. Ihh-null mice exhibit severe dwarfism in axial 

and appendicular skeletal elements and do not form endochondral bones (St-Jacques et 

al, 1999). Ihh activates the expression of PTHrP, a secreted molecule, in chondrocytes, 

and PTHrP signals through its receptor to inhibit chondrocyte hypertrophy and to suppress 

Ihh expression by keeping chondrocytes in a proliferating state (Lanske et al, 1996; St-

Jacques et al, 1999). Null mutations of PTHrP or its receptor decreases the number of 

proliferating growth plate chondrocytes and increases the hypertrophic zone (Karaplis et 

al, 1994; Lanske et al, 1996). Interestingly, both null mutations and overexpression of 

PTHrP resulted in dwarfism, likely due to the importance of chondrocyte hypertrophy in 

longitudinal bone growth. 
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ii. Osteoblasts 

Osteoblasts are responsible for synthesizing the components of the bone matrix in 

both intramembranous and endochondral bones. In vitro studies have identified several 

proteins that are specific to or highly expressed in differentiating osteoblasts (Figure 3). 

Individually, the up-regulation of these genes may not be unique to bone development, but 

together they collectively define a characteristic bone signature during osteoblast 

differentiation. The enzyme alkaline phosphatase, which plays a role in matrix 

mineralization, and type I collagen are expressed early during the commitment to an 

osteoblastic fate. Early- to mid-stage markers of osteoblast differentiation are Osteopontin 

and Osteonectin, while Osteocalcin is specifically expressed by mature osteoblasts. Finally, 

the production of calcium-containing bone nodules is characteristic of terminally 

differentiated osteoblasts. Although in vitro studies of bone marker induction has facilitated 

the elucidation of osteoblast differentiation, they do not address how osteoblast markers 

become induced.  

Osteoblasts originate from mesenchymal cells, and many proteins contribute to the 

regulation of this differentiation process. One such protein is Runx2, which is the earliest 

master regulator of osteoblast differentiation. The transcription factor, Runx2, was 

identified based on its ability to regulate the expression of several bone proteins, including 

Osteocalcin, alkaline phosphatase, and type I collagen (Ducy et al, 1997; Lee et al, 2007). 

Runx2 is expressed in cells that will eventually become the skeleton as early as e10.5 and 

regulates many genes required for osteoblast differentiation (Ducy, 2000). Consistent with 

its pattern of expression and function in vitro, mice deficient for Runx2 exhibit a complete 
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Figure 3. In vitro osteoblast differentiation 

Schematic representation of the expression of bone differentiation markers during in vitro 
osteoblast differentiation. Mesenchymal progenitor cells destined to differentiate into pre-
osteoblasts are characterized by the expression of the master regulators of bone 
differentiation, Runx2 and Osterix, OSX. Other bone markers that are expressed early 
during in vitro osteoblast differentiation are alkaline phosphatase (ALP) and type 1 collagen 
(Col1). Osteopontin (OPN) is a bone differentiation marker that is expressed in early to mid-
stage osteoblasts, while Osteocalcin (OCN) is specifically expressed by terminally 
differentiated, mineralized matrix-secreting osteoblasts. 

 

 

 

Mesenchymal
progenitor cell Pre-osteoblast Osteoblast

Proliferative period
Collagen matrix deposition

Mineralization

Runx2
OSX

ALP
Col1

OPN
OCN



Chapter 1: Introduction 

  52 

absence of bone tissue despite a relatively normal cartilage skeleton (Komori et al, 1997; 

Otto et al, 1997). Indeed, no early or late osteoblast markers are expressed in these 

embryos, demonstrating that Runx2 activity is required for bone matrix deposition by 

mature osteoblasts (Ducy et al, 1997). Conversely, overexpression of Runx2 in fibroblasts 

or myoblasts in vitro induces the expression of osteoblast specific markers in these cell 

types (Ducy et al, 1997). 

Another transcription factor that is essential for osteoblast differentiation in mice is 

Osterix (Osx). Osx is expressed in and highly specific to the osteoblast lineage, although 

some studies have observed expression in chondrocytes in vivo and other tissues in vitro 

(Milona et al, 2003; Nakashima et al, 2002; Rodda & McMahon, 2006; Yagi et al, 2003). 

Mice lacking Osx expression are perinatal lethal due to the absence of bone formation 

(Nakashima et al, 2002), a phenotype similar to that of the Runx2 mutants. Additionally, 

there is no detectable expression of bone-specific markers in Osx-null mice (Nakashima et 

al, 2002). In situ hybridization analysis revealed that Osx is not expressed in Runx2-null 

animals, but Osx-deficient animals express Runx2 suggesting that Osx acts downstream 

of Runx2 in osteoblast differentiation (Nakashima et al, 2002). Indeed, in vitro 

overexpression of Osx is sufficient to induce differentiation and expression of osteoblast 

markers (Nakashima et al, 2002; Tai et al, 2004; Wang et al, 2006). 

Several other proteins are involved in the proper regulation of osteoblast 

differentiation and function. A recent study suggested that the transcription factor ATF4 is 

essential for terminal differentiation of osteoblasts and their function. ATF4 can bind to an 

osteoblast-specific element in the Osteocalcin promoter and directly activate its 
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transcription (Ducy & Karsenty, 1995; Schinke & Karsenty, 1999; Yang et al, 2004). In 

addition, ATF4 and its associated kinase, RSK2, post-transcriptionally regulate the 

expression of type I collagen (Yang et al, 2004). Mutation of either Atf4 or Rsk2 cause 

reduced bone mass in mice due to impaired bone formation (Yang et al, 2004). The 

nuclear protein SATB2 regulates osteoblast differentiation and function by physically 

interacting with both Runx2 and ATF4 (Dobreva et al, 2006). Moreover, SATB2 binds to 

and regulates the Osteopontin and Osteocalcin promoters (Dobreva et al, 2006). In vivo 

bone development is also negatively impacted when mutations are introduced into Ihh 

(Long et al, 2004; Rodda & McMahon, 2006), β-catenin (Day et al, 2005; Hill et al, 2005; 

Hu et al, 2005; Rodda & McMahon, 2006), Msx2 (Satokata et al, 2000), or Dlx5 (Acampora 

et al, 1999). Finally, pRb can associate with Runx2 and bind osteoblast-specific 

promoters, such as Osteopontin (Thomas et al, 2001). Moreover, this association 

enhances the transcriptional activity of Runx2; however, these findings have only been 

demonstrated in vitro (Thomas et al, 2001). 

iii. Osteoclasts 

Unlike osteoblasts and chondrocytes, which originate from mesenchymal stem 

cells, the osteoclast is derived from the monocyte/macrophage hematopoietic lineage. 

Osteoclasts are multinucleated cells that release acid and lytic enzymes that degrade the 

bone to which they are attached. Proper regulation of osteoclast activity is critical for 

maintaining the density of bone. Most adult skeletal diseases are the result of excessive 

osteoclast activity (Rodan & Martin, 2000), such as osteoporosis, rheumatoid arthritis, and 
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periodontal disease. Conversely, too little osteoclast activity causes osteopetrosis, which is 

characterized by increased bone mass that fills the bone marrow cavity. 

Co-culture studies using bone marrow or spleen cultures with stromal cells yielded 

osteoclasts, creating a breakthrough in the understanding of osteoclastogenesis 

(Takahashi et al, 1988). Osteoblasts secrete three main factors that regulate osteoclast 

differentiation: CSF-1, RANKL, and Osteoprotegrin (OPG). Both CSF-1 and RANKL are 

required for the differentiation of osteoclasts and the induction of osteoclast-specific 

genes, including tartrate-resistant acid phosphatase. Indeed, mice with inactivating 

mutations of CSF-1 lack osteoclasts (Yoshida et al, 1990). Similarly, mice lacking the 

ligand for the TNF-related RANK receptor, RANKL, do not produce osteoclasts and also 

exhibit osteopetrosis (Kong et al, 1999; Yasuda et al, 1998b). The last factor secreted by 

osteoblasts, OPG, acts as a decoy receptor for RANKL (Simonet et al, 1997; Yasuda et al, 

1998a). Since OPG can sequester RANKL, OPG strongly inhibits osteoclastogenesis. 

Accordingly, mice deficient for OPG exhibit osteopetrosis. Although osteoblasts do not 

play a direct role in bone resorption, their ability to secrete factors that influence osteoclast 

differentiation further underscores the importance of osteoblasts in bone remodeling. 

 

Mutant mouse models have significantly contributed to our understanding of E2F 

function. In addition to the vast number of studies that link E2Fs to pocket protein-

mediated regulation of the cell cycle, there is a growing body of knowledge that highlights 

the functions of the E2Fs in development and differentiation. Indeed, many of these roles 

are intimately linked to cell cycle exit. Therefore, this study is aimed at determining the role 
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of E2F4, the major repressive E2F in vivo, during bone development (Chapter 2). The 

highly homologous repressive E2F, E2F5, may compensate and preclude the complete 

understanding of E2F4 function in single knockout animals. Therefore, we have generated 

a conditional E2f4 mouse that can be bred with E2f5+/- mice to address the synergistic 

roles that E2F4 and E2F5 may play during cell cycle exit and bone development (Chapter 

3). 
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ABSTRACT 
 

The E2F family of transcription factors, in association with the pocket protein family 

members, function to regulate genes required for cellular proliferation. The most abundant 

E2F, E2F4, maintains a G0/G1 cell cycle state through the transcriptional repression of 

genes that encode key proliferation regulators. E2F4’s deletion in mice disrupts the 

development of specific tissues such as the airway epithelium. Here, we investigate E2F4’s 

role in bone development. We found that E2F4 loss impairs the formation of several bones 

that arise through intramembranous or endochondral ossification. The most severe defect 

occurred in the calvarial bones of the skull where we observed a striking delay in the 

differentiation of calvarial osteoblasts. Through both in vivo and in vitro analyses, we show 

that E2F4 loss did not abolish the differentiation potential of osteoblastic progenitors, but it 

impaired their ability to exit the cell cycle and increased the endogenous pool of 

undifferentiated progenitor cells. We conclude that E2F4 plays an important role in 

enabling osteoblastic progenitors to exit the cell cycle and therby contributes to the 

commitment of these cells to the osteoblast lineage and to bone formation. 
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INTRODUCTION 
 

The E2F family of transcription factors is best known for its role in regulating genes 

required for cellular proliferation (Attwooll et al, 2004; Dimova & Dyson, 2005). To date, ten 

E2F family members have been identified. These can be subdivided into two distinct 

groups based on their predisposition to either activate or repress transcription of E2F-

responsive genes. E2F4 functions primarily as a transcriptional repressor and its nuclear 

localization is largely dependent on its association with pocket protein family members 

pRb, p107, and p130 (Gaubatz et al, 2000; Rayman et al, 2002; Verona et al, 1997). 

These complexes recruit histone deacetylases to E2F-responsive gene promoters to 

directly repress transcription (Blais & Dynlacht, 2007; Rayman et al, 2002; Takahashi et al, 

2000; Wells et al, 2000). Upon mitogen-induced phosphorylation of the pocket proteins by 

cyclin dependent kinases, the pocket protein/E2F4 complexes dissociate and E2F4 is 

exported to the cytoplasm because it contains nuclear export signals (Attwooll et al, 2004; 

Dimova & Dyson, 2005; Trimarchi & Lees, 2002). This removes E2F4 from promoters, 

thereby relieving the active repression of the target genes. 

While the role of the E2F family of transcription factors in cell cycle progression has 

been well characterized, we are only beginning to understand the role of E2Fs in 

development (McClellan & Slack, 2007). E2F4 affects the differentiation and development 

of many cell lineages through cell cycle-dependent and cell cycle-independent 

mechanisms. For example, E2f4 knockout embryos are transiently anemic and exhibit cell 

autonomous defects in red blood cell maturation (Humbert et al, 2000; Kinross et al, 2006; 

Rempel et al, 2000). These animals show incomplete enucleation and an increased 
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population of progenitor and immature erythrocytes (Humbert et al, 2000; Rempel et al, 

2000). Mutation of E2f4 also leads to neonatal lethality caused by chronic rhinitis and 

associated opportunistic bacterial infections (Humbert et al, 2000). The susceptibility to 

infection seems to result from a defect in the differentiation of the nasal epithelium that 

causes mucin-secreting cells to replace ciliated cells leading to impairment of mucus 

clearance (Danielian et al, 2007). Although the mechanism underlying the cilial cell defect is 

unknown, it appears to be independent of disregulated cellular proliferation. E2F4 also 

contributes to adipocyte differentiation and this seems to occur through both cell cycle-

dependent and -independent mechanisms (Fajas et al, 2002; Landsberg et al, 2003). 

A role for E2F4 in chondrocyte or osteoblast differentiation has not been 

investigated. However, its pocket protein binding partners have been implicated in the 

differentiation of these cell types. Specifically, mutation of p107 and p130 in vivo prevents 

chondrocytes from properly exiting the cell cycle (Cobrinik et al, 1996), while loss of pRb 

inhibits osteoblast differentiation in vitro (Berman et al, 2008; Thomas et al, 2001). 

Therefore, it is plausible that E2F4 may also function in the differentiation of these cell 

types and, consequently, bone development. Bone development occurs via two distinct 

processes (Wagner & Karsenty, 2001).  In the first process, intramembranous ossification, 

mesenchymal progenitor cells differentiate directly into osteoblasts, which secrete the 

calcified extracellular matrix that constitutes bone. This occurs primarily in the flat bones of 

the cranium and the medial clavicles. Most bones in the skeleton form via the second 

process, endochondral ossification, where condensations of mesenchymal progenitor cells 

differentiate first into chondrocytes. These chondrocytes proliferate and secrete a cartilage 
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matrix, forming the template for ossified bone formation. Upon terminal differentiation, 

chondrocytes become hypertrophic and undergo apoptosis, which provides space for 

osteoblasts to invade and generate the bone matrix. In this study, we show that E2f4-/- 

embryos exhibit a defect in the normal development of bones formed through either 

endochondral or intramembranous ossification and establish that E2F4 is required for 

appropriate differentiation of osteoblasts. 
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RESULTS 

E2f4-/- embryos exhibit defects in bone development 
 

To determine the effect of E2F4 loss on skeletal development, we examined the 

skeletons of wildtype and E2f4-/- embryos at e18.5 by Alizarin Red staining for bone and 

Alcian Blue staining of cartilage. At this stage of development, several bones in the E2f4-/- 

embryos were less ossified compared to the bones of wildtype littermate controls (Figure 

1). The sternebrae, xiphoid process, and presphenoid bone, which form through 

endochondral ossification, had reduced Alizarin Red staining in E2f4-null embryos, 

indicating reduced ossification (Figure 1A, B).  A similar defect is seen in the bones that 

form through intramembranous ossification; in E2f4-/- embryos, the frontal and parietal 

bones of the skull demonstrate dramatically reduced ossification compared to wildtype 

embryos (Figure 1C). 

We analyzed embryos at earlier time points to determine if there were any skeletal 

defects in the initiation of the ossification process. At e13.5, the first and only bone to 

become ossified is the clavicle. In E2f4-/- embryos, the clavicle is not ossified as judged by 

the absence of Alizarin Red staining of this bone in comparison with wildtype littermates 

(Figure 2). At e15.5, there is also a reduction in the amount of Alizarin Red staining in the 

skulls of E2f4-null embryos compared to wildtype (Figure 2). In addition, we observed a 

decrease in the amount of Alcian Blue staining in the basisphenoid and the presphenoid 

bones at this stage (Figure 2). Interestingly, this finding suggests that the presphenoid 

bone ossification defect in e18.5 embryos may, at least in part, be a result of defective or 

delayed cartilage differentiation, which forms the template for this bone. The data from  
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Figure 1. Deletion of E2f4 causes defects in embryonic bone development. 

(A-C) Alizarin Red (bone) and Alcian Blue (cartilage) staining of e18.5 and P0 littermate 
embryos.  e18.5 E2f4-/- embryos exhibit less ossification in the sternebrae (arrows) and 
xiphoid (A), presphenoid bone (B), and cranium (C). Abbreviations: xp, xiphoid process; 
pp, palatine process; ps (with arrow), presphenoid; fr, frontal bone; pa, parietal bone. 
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Figure 2. Deletion of E2f4 causes defects in early embryonic cartilage and bone 
development. 

Alizarin Red (bone) and Alcian Blue (cartilage) staining of e13.5 (A) and e15.5 (B) embryos.  
(Left column) e13.5 E2f4-/- embryos exhibit less ossification in the clavicles (arrowheads).  
(Right column) e15.5 E2f4-/- embryos display less ossification of bone (arrowhead) and less 
deposition of cartilage matrix in the presphenoid and basisphenoid elements.  
Abbreviations: bs, basisphenoid; ps, presphenoid. 
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these embryos indicate that loss of E2F4 affects the normal embryonic development of 

several bones of the skeleton. 

We also examined the skeletons of mice at birth (P0). At P0, the skeletal defects 

were less apparent (Figure 1). Indeed, many of the affected bones appeared to be ossified 

appropriately at this timepoint, although the presphenoid bone still showed decreased 

ossification relative to the controls (Figure 1B). Taken together, these data show that E2F4 

disrupts the normal timing of bone development but its loss does not prevent ossification 

of the murine skeleton. 

Loss of E2f4 affects osteoblast differentiation in vivo 
 

Bone levels are influenced by three different cell types: osteoclasts, chondrocytes 

and osteoblasts. Osteoclasts resorb bone matrix; thus, we considered the possibility that 

E2F4 loss delayed bone ossification by increasing osteoclast activity. However, by 

performing a tartrate resistant acid phosphatase (TRAP) assay, a well-established test for 

osteoclast activity, we showed that there was no difference in osteoclast activity between 

E2f4-null and wildtype frontal bones (data not shown). Chondrocytes and osteoblasts both 

play a positive role in bone formation. As we described above, a delay in cartilage 

development may contribute to the impaired endrochondral differentiation in the E2f4 

mutants, raising the possible involvement of a chondrocyte defect. However, this could not 

explain the defect in intramembranous ossification, such as the frontal bone of the skull, 

because this does not involve a cartilage intermediate. Thus, we focused our attention on 

osteoblasts because these are required for both types of bone differentiation. To eliminate 
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any possible influence of chondrocytes, we used the frontal bones to assess osteoblast 

differentiation. First, we examined the expression of alkaline phosphatase (ALP), an early 

marker of osteoblast differentiation, at e17.5 (Figure 3A). E2f4-/- frontal bones display 

significantly less ALP activity than the wildtype control and this correlated with a significant 

difference in the extent of Alizarin Red staining between the two genotypes (Figure 3A). 

Thus, these data indicate that E2F4 loss disrupts osteoblast differentiation at an early step. 

Given that regulation of cell cycle progression and exit are important processes 

during the initial steps of osteoblast differentiation and that E2F4 acts to prevent cells from 

entering the cell cycle, we hypothesized that osteoblast defects in the E2f4 mutants may 

be associated with a cell cycle defect. Therefore, we examined cell cycle progression in 

the frontal bones by assessing incorporation of the nucleotide analogue 5-Bromo-2-

deoxyuridine (BrdU) and also expression of Ki67, a proliferation marker. At both e16.5 and 

e17.5, we observed a higher level of BrdU-positive osteoblast progenitor cells in the frontal 

bones of E2f4-/- embryos than the wildtype littermate controls that was statistically 

significant (data not shown, Figure 3B). Consistent with this finding, a greater percentage 

of e17.5 E2f4-/- osteoblasts in the frontal bone stained positively for Ki67 compared to 

wildtype osteoblasts (Figure 3B). The increased number of cells cycling in the e17.5 E2f4-/- 

frontal bone was not associated with an apoptotic response, as determined by TUNEL 

staining (data not shown). Importantly, by e18.5, there was no significant difference in the 

level of osteoblast proliferation between the two genotypes (data not shown). Taken 

together, these data suggest that E2F4 inactivation impairs the ability of osteoblasts to exit  
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Figure 3. E2f4-deficient frontal bones display decreased levels of alkaline phosphatase 
while E2f4-deficient progenitor osteoblasts do not properly exit the cell cycle in vivo. 

(A) Coronal sections of frontal bones from e17.5 embryos were assessed by histochemical 
analysis of alkaline phosphatase activity (left column, ALP) and Alizarin Red staining of 
bone (right column, AR). E2f4-/- frontal bone sections (bottom row) exhibit decreased levels 
of both markers compared to wildtype (top row). 2X magnification shown.  Arrows indicate 
the front of activity or staining, respectively. (B) Immunohistochemical analysis of BrdU 
incorporation (left column) or Ki67 protein expression (right column) in coronal sections of 
frontal bones from e17.5 embryos. Pregnant females were labeled with BrdU for two 
hours. E2f4-/- frontal bones (bottom) exhibit a greater percentage of nuclei positively 
staining for BrdU or Ki67 than wildtype frontal bones (top).  20X magnification shown. 
Frontal bones (bar). Results of five separate experiments are quantified below the images; 
bars, 1 SD; *, P<0.05. Abbreviations: de, dermis; fr, frontal bone; br, brain. 
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the cell cycle at the appropriate developmental stage in vivo and thereby significantly 

delays the bone differentiation program. 

E2f4-/- calvarial preparations differentiate to a greater extent in osteoblasts than wildtype 
calvarial preparations in vitro 
 

We used an in vitro osteoblast differentiation assay to better understand how loss 

of E2F4 may affect osteoblast differentiation. Specifically, we generated calvarial 

preparations from e18.5 E2f4-null and wildtype embryos and then assessed their ability to 

differentiate into osteoblasts. Unexpectedly, we found that the E2f4-deficient osteoblasts 

consistently produced a greater amount of calcified bone matrix than their wildtype 

counterparts as determined by Alizarin Red staining (Figure 4A). Notably, we first observed 

calcified bone matrix the same number of days after the initiation of differentiation in both 

genotypes (data not shown), suggesting that the rate of matrix formation was comparable 

in the wildtype and E2f4 mutant cells. To further explore this, we used quantitative RT-PCR 

to determine the levels of several osteoblast markers during the differentiation time course. 

For these studies, we examined Runx2 and Osterix (Osx), two transcription factors that are 

master regulators of osteoblast differentiation (Ducy et al, 1997; Nakashima et al, 2002; 

Otto et al, 1997), and also the early markers, alkaline phosphatase (ALP) and Collagen1 

(Col1), the early/mid-marker, Osteopontin (OPN) and the late-marker, Osteocalcin (OC), 

indicative of osteoblast differentiation. This showed that there was no obvious disruption in 

the relative timing expression of these genes in the E2f4-deficient cells (Figure 4B), 

indicating that E2F4 loss does not alter the differentiation process. However, these cells 

showed a significant up-regulation of OSX, OPN, and at times, ALP compared to wildtype  
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Figure 4. E2f4-/- calvarial cells differentiate to a greater extent than wildtype, but do not 
display altered cell cycle arrest. 

(A) Terminal differentiation of primary calvarial cells was determined by Alizarin Red staining 
of secreted calcium deposits after 0 and 35 days.  E2f4-/- calvarial cells (bottom row) 
secrete a greater number of calcium deposits than wildtype osteoblasts (top row).  (B) 
Quantitative RT-PCR measurements of bone marker mRNA levels from wildtype (red bars) 
and E2f4-/- (blue bars) calvarial cells during differentiation.  E2f4-/- calvarial cells express 
greater levels of Osterix, Osteopontin, and, at times, Alkaline Phosphatase mRNAs 
compared to wildtype cells. Ubiquitin was used as an internal control to normalize for RNA 
levels within each sample. Each time point is an average of three samples. Columns, 
results from a representative littermate pair; bars, 1 SD. (C) Indirect immunofluorescence 
analysis of cell cycle proliferation in confluence arrested cells. Wildtype (top two rows) and 
E2f4-/- (bottom two rows) calvarial cells were cultured with BrdU for 24 hours at the 
indicated time points during differentiation in vitro.  Nuclei were stained for BrdU 
incorporation (green) and DAPI (blue). 20X magnification shown. (D) Quantitation of the 
immunofluorescence in (C). A minimum of 250 cells was analyzed per sample from three 
separate experiments; bars, 1 SD. Wildtype (red bars) and E2f4-/- (blue bars) calvarial cells 
display similar confluence arrest profiles. 
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preparations (Figure 4B), consistent with the increased matrix production (Figure 4A). 

These results demonstrate that E2f4-/- calvarial preparations secrete a greater amount of 

calcified extracellular matrix and possess increased mRNA levels of several osteoblast 

differentiation markers upon induction of differentiation compared to wildtype cells. 

It is well established that the density of osteoblasts correlates positively with their 

ability to differentiate in vitro (Gerber et al 2001, Purpura et al 2004). Thus, we 

hypothesized that the enhanced differentiation properties of the E2f4-/- calvarial 

preparations might reflect a defect in their ability to exit the cell cycle as the cells reach 

confluence. To address this possibility, we compared the cell cycle kinetics of the wildtype 

and E2f4-/- calvarial cells during differentiation by assessing their ability to incorporate BrdU 

during a 24-hour pulse. Contrary to our test hypothesis, the two genotypes had the same 

percentage of BrdU-positive cells at every stage of the differentiation time-course  (Figure 

4C, D). Moreover, in cycling populations, there was also no detectable difference in the 

percentage of E2f4-/- and wildtype calvarial cells that incorporated BrdU during a two-hour 

pulse (data not shown). Taken together, these experiments show that E2f4-/- calvarial 

osteoblasts have an increased ability to differentiate in vitro and this occurs without any 

change in their proliferative capacity during either asynchronous proliferation or confluence 

arrest and terminal differentiation. 

E2f4 deficiency increases the pools of osteoblastic progenitors in vivo 
 

Given that E2F4 loss in vivo resulted in less ossification of various bones, along with 

a cell cycle exit defect, we were surprised to find that E2f4-/- osteoblasts have increased 
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potential to differentiate in vitro and display no cell cycle defect. We considered two 

possible hypotheses to reconcile the in vitro and in vivo phenotypes. E2F4 could play a 

direct role in bone differentiation that is apparent in vitro but obscured in vivo because 

E2F4 is also required for cell cycle exit. Alternatively, the increased differentiation in vitro 

could reflect an increase in the level of osteoblastic progenitors in the calvarium due to the 

cell cycle exit and differentiation defects in vivo. Thus, we tested both of these hypotheses.  

We used two complementary approaches to determine whether E2F4 plays a direct 

role in osteoblast differentiation. Initially, we tested the effect of restoring E2F4 in the 

deficient osteoblasts by isolating E2f4-deficient calvarial cells and infected them with either 

a control retrovirus or one expressing the human E2F4 protein and then compared their 

ability to differentiate. After staining with Alizarin Red, we found that, although cells infected 

with human E2f4 robustly expressed E2F4 (Figure 5B), there was no difference in the 

amount of calcium deposits secreted by these cells and those infected with empty virus 

(Figure 5A). Accordingly, there was no significant difference in the expression levels of 

osteoblast markers between these two populations (Figure 5C). It seemed plausible that 

the E2f4 mutant cells had passed a critical point in osteoblast differentiation such that the 

re-introduction of E2F4 was unable to reverse the defect. Therefore, we performed the 

converse experiment in which we isolated wildtype calvarial cells, infected them with 

retroviruses carrying either a hairpin against E2f4 or a control hairpin against luciferase and 

induced them to differentiate. Consistent with the add-back experiment, we saw no 

difference in the extent of mineralization between either cell population despite a strong  
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Figure 5. E2F4 does not function to modulate osteoblast differentiation in vitro 

(A) Alizarin Red staining of secreted calcium deposits after 0 and 35 days.  E2f4-/- calvarial 
cells were stably infected with hE2f4 or an empty virus.  No difference is observed 
between E2f4-/- cells over-expressing hE2F4 or E2f4-/- control cells. (B) Stable infection of 
the hE2f4 cDNA construct constitutively over-expresses hE2F4 protein through the 35 day 
duration of a differentiation time course experiment.  GAPDH is shown as a loading 
control. (C) Quantitative RT-PCR results of (A) display no differences in the expression of 
osteoblast markers between control cells (red bars) and cells over-expressing E2F4 (blue 
bars). Quantitative RT-PCR was performed as described in Figure 3B. (D) Alizarin Red 
staining of secreted calcium deposits after 0 and 35 days.  Wildtype calvarial cells were 
stably infected with either a control hairpin against luciferase or a hairpin against E2f4.  No 
difference is observed between wildtype cells with E2F4 knockdown or with the luciferase 
control hairpin. (E) Stable infection of the E2f4 hairpin constitutively knocks down the E2F4 
protein through the 35 day duration of a differentiation time course experiment. GAPDH is 
shown as a loading control. (F) Quantitative RT-PCR results of (D) display no differences in 
the expression of osteoblast markers between control cells (red bars) and cells with knock 
down of E2F4 (blue bars). Quantitative RT-PCR was performed as described in Figure 4B. 
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knockdown of E2F4 expression (Figure 5D, E). There was also no change in the 

expression levels of bone differentiation markers (Figure 5F). Together, these experiments 

suggest that E2F4 loss does not modulate osteoblast differentiation in vitro. 

Our alternate hypothesis is that the increased in vitro differentiation potential of the 

E2f4-/- calvarial preparations, relative to the wildtype controls, reflects the presence of a 

greater number of osteoblastic progenitors in the E2f4 mutant calvarium due to the 

impaired osteoblast differentiation in vivo. To test this hypothesis, we performed an 

osteoblast progenitor assay in which wildtype and E2f4-/- calvarial cells were plated at very 

low density directly into differentiation media. This allows for the growth of individual 

colonies capable of differentiating into osteoblasts, which stain with alkaline phosphatase. 

Notably, starting at day 7, the E2f4 mutants had a higher number of alkaline phosphatase-

expressing colonies than the wildtype controls (Figure 6A). To quantify this difference, we 

performed a limiting dilution assay and determined the number of alkaline phosphatase-

positive colonies one week later. This showed that the frequency of osteoblastic progenitor 

cells is 1 in 21 for E2f4-/- cells versus 1 in 50 for wildtype controls (Figure 6B). Taken 

together, our data strongly suggest that E2F4 loss impairs bone formation in vivo by 

disrupting the ability of osteoblastic progenitors to exit the cell cycle at the appropriate 

point in development, thereby increasing the levels of osteoblastic progenitors. These cells 

are able to differentiate in vitro, accounting for the higher differentiation potential of E2F4 

mutant versus wildtype calvarial cells. 
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Figure 6. E2f4-/- calvarial preparations contain more progenitor osteoblasts than 
wildtype preparations 

(A) Alkaline phosphatase staining of osteoblast progenitor cells at the indicated time points.  
Calvarial preparations were isolated and sparsely plated directly into differentiation media. 
E2f4-/- progenitor osteoblasts (bottom row) produce more alkaline phosphatase-positive 
colonies than wildtype cells (top row). (B) Limiting dilution assay of wildtype and E2f4-/- 
osteoblast progenitor cells. Cells were plated directly into induction media and alkaline-
phosphatase-positive colonies were assessed 7 days later. E2f4-/- progenitor osteoblasts 
exhibited a higher clonal frequency of alkaline phosphatase-positive colonies compared to 
wildtype cells. 
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DISCUSSION 
 

E2F4 is primarily considered to be a repressive E2F that functions in G0/G1 to 

maintain growth arrest. E2F4 can bind to all three pocket proteins, pRb, p107, and p130 

in vivo (Moberg et al, 1996). Interestingly, all of these pocket proteins have been implicated 

in bone development. Deletion of p107 and p130 in the mouse causes an increase in 

chondrocyte proliferation in vivo, affecting the development of long bones (Cobrinik et al, 

1996), whereas pRb loss perturbs osteoblast differentiation in vitro and in vivo (Berman et 

al; Thomas et al, 2001). Therefore, we hypothesized that E2F4 may have a role in bone 

development. Our results suggest that E2F4 plays a key role in establishing the 

appropriate timing of osteoblast differentiation that reflects its role in enabling cell cycle exit 

of osteoblast progenitor cells, as opposed to a more direct role in the differentiation 

process. Specifically, we find that E2F4 loss delays osteoblast differentiation in vivo at an 

early stage, as judged by analysis of ALP activity, and this correlates with an increase in 

the level of proliferating cells. Accordingly, in vitro differentiation assays confirm that the 

E2f4-deficient calvaria retain a higher level of osteoblastic progenitors than the wildtype 

controls. Moreover, both add-back and knockdown experiments argue against a 

requirement for E2F4 in the actual osteoblast differentiation process. 

It is formally possible that defective cell cycle exit could reflect a non-cell 

autonomous role of E2F4. For example, E2f4 knockout mice are anemic during 

embryogenesis (Humbert et al, 2000), and thus the anemic state of the embryo could 

prevent adequate nutrients and gases from reaching cells of all types, including 

osteoblasts. In this situation, many cellular processes could be adversely affected, causing 
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a delay in the development of various embryonic tissues. We are now generating an E2f4 

conditional model knockout mouse, which will allow us to directly address whether E2F4’s 

role in osteoblast differentiation is cell autonomous. Despite this uncertainty, we favor the 

notion that E2F4 acts in a cell autonomous manner to promote cell cycle exit in 

osteoblasts through its role as a transcriptional repressor of E2F-responsive genes. 

In order to maintain cell cycle arrest, E2F4 associates with pocket protein family 

member pRb and recruits histone deacetylases to E2F-responsive gene promoters to 

actively repress transcription. We have previously reported that Rb-deficient embryos also 

display defects in bone development. Specifically, Rb inactivation leads to defects in the 

formation of the cranium, the hyoid bone, the palatine process, and the sternum. In 

addition, both in vivo and in vitro studies demonstrate that Rb-/- calvarial osteoblasts fail to 

properly exit the cell cycle (Berman et al, 2008). Although both E2f4- and Rb-deficient 

embryos have defective bone formation in the cranium and sternum, they display unique 

defects in the formation of many other bones. These phenotypic differences suggest that 

E2F4 and pRb play overlapping, but distinct roles in bone development. 

We believe that there are two non-mutually exclusive possibilities that could 

account for the difference in phenotype between E2f4- and Rb- deficient embryos. First, it 

is possible that this reflects the varying abilities of the other E2F and pocket protein 

members to compensate for the loss of E2F4 versus pRb in individual tissues. We have 

previously shown that E2F4 loss alters the interaction between the pocket proteins and the 

remaining E2Fs, presumably altering their transcriptional properties (Lee et al, 2002). 

Moreover, it is well established that p107 and p130 can compensate for the loss of pRb to 
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varying degrees in different settings (Sage et al, 2003; Wikenheiser-Brokamp, 2004).  

Presumably, the relative expression levels of E2F4 and pRb, in the normal tissues, and the 

remaining E2F and pocket proteins, in the mutant tissues, would account for the specific 

spectrum of bone defects that are observed in E2f4 versus Rb mutants. For example, 

E2F4 might be the predominant E2F protein in the presphenoid bone, but play a lesser 

role, compared to the other E2Fs, in the hyoid bone and palatine process. The alternative 

possibility is that while both E2F4 and pRb play indirect roles in bone development by 

promoting cell cycle exit, pRb plays an additional, more direct role in bone development by 

regulating Runx2, one of the master regulators of bone development (Luan et al, 2007; 

Thomas et al, 2001).  

Our data indicate that E2F4 loss disrupts both intramembranous and endochondral 

ossification of bones. As endochondral bones ossify via a cartilage intermediate, it is 

possible that some of the defects in bone development could be attributed to disrupted 

chondrocyte differentiation. If true, we speculate that this defect would also reflect the 

inability of these cells to exit the cell cycle. It is interesting to note that both osteoblasts 

and chondrocytes arise from a common mesenchymal precursor cell. If E2F4 loss 

prevents osteoblast progenitor cells from exiting the cell cycle, thereby preventing terminal 

differentiation into mature osteoblasts, it is also possible that chondrocyte progenitor cells 

would have the same problem. Although our in vitro data suggest that E2F4 does not 

directly influence terminal differentiation of osteoblasts, it is entirely possible that E2F4 

could play a direct role in the differentiation of earlier progenitor cells, such as 

osteochondro progenitors or even mesenchymal progenitor cells. 
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EXPERIMENTAL PROCEDURES 
 

Animal maintenance and histological preparations 

The generation of E2f4-/- mice has been described previously (Humbert et al, 2000).  

Gestation was dated by detection of a vaginal plug. Pregnant mice were injected with 10 

µl/gm body weight of 5 mg/ml 5-Bromo-2’-deoxyuridine (BrdU) in phosphate buffered 

solution (PBS) two hours prior to tissue collection. Collected embryonic tissue was 

immediately embedded in OCT or fixed in 4% paraformaldehyde (PFA) and embedded in 

paraffin. Histological sections were cut at 6-8 microns. 

Histological analyses 

Enzymatic alkaline phosphatase assays were performed on unfixed frozen sections.  

Briefly, 0.06g sodium nitrite was dissolved into 1.5 ml of water and added to 600 µl of 50 

mg/ml of new fuchsin (Sigma) in 2M HCl. This solution was added to 210 ml Tris buffer (pH 

9.0).  Finally, 1.8 ml of 83.3 mg/ml Naphthol AS-Bi-Phosphate (Sigma) in DMF (Sigma) was 

added.  Sections were incubated with this solution for 15 minutes, washed in PBS and 

counterstained with hematoxylin. Alizarin red staining was performed by incubating unfixed 

frozen sections for 5 minutes in 20 mg/ml alizarin red (Sigma), pH 4.2. 

Immunohistochemical analyses were performed using antibodies against BrdU (1:50 

347580, BD Biosciences) and Ki67 (1:50 550609, BD Biosciences) as described (Danielian 

et al, 2007). Statistical significance was determined using the two sample Student’s T Test 

with two-tailed distribution and unequal variance. 
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Skeletal staining 

Embryos were sacrificed, skinned, and eviscerated. The remaining tissue was fixed 

in 95% ethanol for 4 days, transferred to acetone for 3 days, and subsequently transferred 

to staining solution (final volume of 0.015% alcian blue 8GX (Sigma), 0.005% alizarin red S 

(Sigma) and 5% glacial acetic acid in ethanol) at 37°C for two days and room temperature 

for a third day. Tissue was cleared in 1% potassium hydroxide for several days and 

ultimately stored in glycerol.   

Calvarial preparations and culture 

Calvaria from e17.5 or e18.5 embryos were removed, treated with several rounds 

of collagenase/trypsin digests at 37°C, and plated onto 6-well plates. Cells were grown 

and expanded in αMEM with 10% fetal bovine serum and Pen/Strep. For differentiation, 

250,000 cells were plated onto 3 cm tissue culture plates. Upon reaching confluence, 

calvarial osteoblasts were treated with media supplemented with 50 µg/ml of ascorbic acid 

and 10 mM β-glycerol-phosphate. To assay for calcium deposits, plates were stained with 

1% alizarin red S solution (pH 5.0) for 15 minutes. For osteoblast progenitor assays, 450 

cells/cm2 were plated directly into induction media. Osteoblast differentiation was detected 

by staining with BCIP/NBT Liquid Substrate System (Sigma) by manufacturer’s 

instructions. In limiting dilution assays, 5, 10, 25, 100, and 250 cells were plated into 96-

well plates containing differentiation media and stained with BCIP/NBT Liquid Substrate 

System (Sigma) 7 days later. Statistical significance was determined using L-Calc Software 

(StemCell Technologies). 
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E2f4 and luciferase hairpins were cloned into the MSCV-LMP retroviral vector 

(EAV4679 Open Biosystems). The luciferase hairpin was excised from pPRIME-CMV-GFP-

FF3 (Stegmeier et al., 2005) with EcoRI and XhoI and subcloned into MSCV-LMP. The 

E2f4 hairpin, 5’ CAGAGATTTAGAAAGATTT 3’, was cloned into MSCV-LMP as described 

in the manufacturer’s instructions (Open Biosystems). Phoenix cells at 60% confluence 

were transfected with 2 µg/ml MSCV-LMP. The media was replaced 8 hours later and 

supernatants were collected at 24 hours and filtered. Supernatants containing 10% FBS 

and 8 µg/ml polybrene were added to calvarial cells. Infected cells were selected with 2.5 

µg/ml of puromycin for 2 days. Knockdown of E2F4 protein was confirmed by quantitative 

RT-PCR and by Western, using a monoclonal antibody against human E2F4 (1:10 LLF4.2 

(Moberg et al, 1996)) and GAPDH (1:5000, AM4300, Ambion) as a loading control. 

pBabe-E2f4 (Landsberg et al, 2003) was used to overexpress E2f4. Calvarial cells 

were infected as described above. Infected cells were selected with 2.5 µg/ml puromycin 

for 2 days. Overexpression of hE2F4 was confirmed by Western analysis using the same 

antibodies described for the knockdown experiment. 

Immunofluorescence 

For in vitro BrdU incorporation, osteoblasts were plated onto coverslips prior to 

achieving confluence.  BrdU was added to the media (final concentration of 10 µM) and 

incubated for 24 hours prior to 4% PFA fixation.  Antigen was detected using an antibody 

against BrdU (1:50 347580, BD Biosciences) and Texas Red-X goat anti-mouse 

secondary (1:1000, Invitrogen).  Statistical significance was determined using the 

Student’s T Test. 
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Quantitative real-time PCR 

RNA was isolated from differentiation plates using the Qiagen RNeasy kit.  First-

strand cDNA was transcribed from 1 µg of RNA using Superscript III Reverse 

Transcriptase (Invitrogen) following manufacturer’s instructions.  Quantitative RT-PCR with 

100 ng cDNA was performed using SYBR Green (Applied Biosystems).  Reactions were 

run on the ABI Prism 7000 Sequence Detection System and analyzed using the 7000 SDS 

software.  Primers are listed in Table 1. 
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Table 1. Quantitative RT-PCR Primer Pairs 

Gene Primer Sequence 

Alkaline Phosphatase For: TCT CCA GAC CCT GCA ACC TC 
Rev: CAT CCT GAG CAG ACC TGG TC 

Collagen1a1 For: CGA GTC ACA CCG GAA CTT GG 
Rev: GCA GGC AGG GCC AAT GTC TA 

Cyclin A For: AGT TTG ATA GAT GCT GAC CC 
Rev: TAG GTC TGG TGA AGG TCC 

Cyclin E For: TGT TTT TGC AAG ACC CAG ATG A 
Rev: GGC TGA CTG CTA TCC TCG CT 

Osteocalcin For: CTC TGT CTC TCT GAC CTC ACA G 
Rev: CAG GTC CTA AAT AGT GAT ACC G 

Osteopontin For: TGC TTT TGC CTG TTT GGC AT 
Rev: TTC TGT GGC GCA AGG AGA TT 

Osterix For: GCA AGG CTT CGC ATC TGA AA 
Rev: AAC TTC TTC TCC CGG GTG TGA 

Runx2 For: TGA GAT TTG TGG GCC GGA 
Rev: TCT GTG CCT TCT TGG TTC CC 

Ubiquitin For: TGG CTA TTA ATT ATT CGG TCT GCA T 
Rev: GCA AGT GGC TAG AGT GCA GAG TAA 
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ABSTRACT 
 

The E2F transcription factors are critical downstream effectors of pocket protein 

family members that function to regulate genes required for cell cycle progression. The 

repressor E2Fs, E2F4 and E2F5, function primarily to maintain a G0/G1 cell cycle state 

and actively repress transcription of E2F target genes. The deletion of either protein 

disrupts the development of specific tissues, such as the calvarium and the choroid 

plexus. Moreover, loss of both E2F4 and E2F5 causes lethality as early as embryonic day 

8.5. Here, we describe the generation of conditional E2f4 knockout mice with the aim of 

addressing the overlapping roles that E2F4 and E2F5 play during development. We also 

show that acute ablation of E2f4 in wildtype and E2f5-/- MEFs impairs proliferation, 

suggesting that the combined loss of both repressor proteins will have profound effects on 

cell cycle progression and the differentiation of several cell lineages. 
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INTRODUCTION 
 

The E2F family regulates the transcription of genes required for DNA synthesis and 

cell cycle progression (Attwooll et al, 2004; Dimova & Dyson, 2005). To date, eight E2F 

genes (E2f1-8) have been identified, which can be divided into two distinct groups based 

on differences in their predominant function. The activator E2Fs, E2F1-3, play a key role in 

activating genes required to enter the cell cycle, while E2F4-8 function to repress the 

transcription of E2F target genes (Attwooll et al, 2004; DeGregori & Johnson, 2006; 

Dimova & Dyson, 2005; Trimarchi & Lees, 2002). E2F4 and E2F5 were identified based on 

their ability to associate with the pocket proteins p107 and p130 (Beijersbergen et al, 

1994; Ginsberg et al, 1994; Hijmans et al, 1995; Sardet et al, 1995). E2F4 functions 

primarily as a transcriptional repressor, and its nuclear localization largely depends on 

association with members of the pocket protein family, pRb, p107, and p130 (Gaubatz et 

al, 2001; Rayman et al, 2002; Verona et al, 1997). The resulting complexes recruit histone 

deacetylases to E2F target gene promoters, reducing transcription (Blais & Dynlacht, 

2007; Rayman et al, 2002; Takahashi et al, 2000; Wells et al, 2000). Upon mitogenic 

signaling, cyclin-dependent kinases phosphorylate the pocket proteins and cause the 

release of E2F4, which can be exported from the nucleus due to the presence of nuclear 

export signals (Gaubatz et al, 2001). E2F5 is thought to function in a manner analogous to 

that of E2F4 based, in large part, on their high degree of structural similarity. 

Early studies found that E2F4 could activate transcription (Ginsberg et al, 1994; 

Lukas et al, 1996); however, in contrast to the activating E2Fs, subsequent studies 

demonstrated that over-expression of either E2F4 or E2F5 was not sufficient to drive 
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progression through the cell cycle and was also unable to stimulate serum-arrested cells 

to re-enter the cell cycle (DeGregori et al, 1997; Lukas et al, 1996; Mann & Jones, 1996). 

Given that chromatin immunoprecipitation assays suggest that E2F4/5-p130/p107 

complexes are predominantly found at the promoters of key cell cycle-regulated genes 

during G0/G1 (Conboy et al, 2007; Takahashi et al, 2000) and that p107-/-;p130-/- MEFs 

exhibit a deregulated cell cycle and altered E2F target gene expression (Hurford et al, 

1997), it was expected that the loss of either E2F4 or E2F5 would cause ectopic S-phase 

entry. However, MEFs lacking E2f4 or E2f5 exhibit a normal cell cycle profile (Humbert et 

al, 2000; Lindeman et al, 1998; Rempel et al, 2000). Due to the structural similarity 

between E2F4 and E2F5, it is possible that these proteins function in a redundant manner. 

Indeed, E2f4-/-;E2f5-/- MEFs continue to enter S-phase despite growth arrest signals from 

p16INK4A, while MEFs deficient for E2f4 or E2f5 alone properly growth arrest (Gaubatz et al, 

2000).  

There is an increasing amount of evidence implicating the E2F family of transcription 

factors in the differentiation of several cell types. Although many of these novel roles in 

development are dependent upon proper regulation of the cell cycle, many studies have 

found cell cycle-independent roles for E2F in the differentiation of specific cell types. 

Analyses of E2f5 knockout mice revealed that embryonic and neonatal development in 

these animals is normal. However, around 3-4 weeks old, these mice develop ruffled 

coats, ataxia, and dehydration (Lindeman et al, 1998). These E2f5-null mice die 

prematurely due to intracerebral hemorrhage and hydrocephalus. Further studies indicated 

that the hydrocephalus was a consequence of increased cerebral spinal fluid secretion in 
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E2f5-/-mice (Lindeman et al, 1998). E2f4 mutants have completely non-overlapping defects. 

Embryos lacking E2f4 are transiently anemic and exhibit cell autonomous defects in red 

blood cell maturation, resulting in increased numbers of progenitor and immature 

erythrocytes and incomplete enucleation (Humbert et al, 2000; Kinross et al, 2006; Rempel 

et al, 2000). E2f4-/- mice are neonatal lethal due to chronic rhinitis and associated 

opportunistic bacterial infections (Humbert et al, 2000). The susceptibility to infections 

results from defective differentiation of the nasal epithelium, resulting in mucin-secreting 

cells in place of ciliated cells within the airway, which causes chronic rhinitis (Danielian et 

al, 2007). It is unclear what the underlying mechanism is that causes the cilial cell defect, 

but it appears to be independent of an altered cell cycle progression. E2F4 also plays a 

role in adipocyte differentiation, through both cell cycle-dependent and -independent 

functions (Fajas et al, 2002; Landsberg et al, 2003). Recently, we have found that E2F4 

contributes to the commitment of osteoblast progenitor cells to the osteoblast lineage and 

to bone formation by enabling these cells to properly exit the cell cycle (Chapter 2). 

Although the phenotypes of E2f4 and E2f5 single knockout mice suggest that they 

make differential contributions during development, mice deficient for both E2f4 and E2f5 

are embryonic lethal (Gaubatz et al, 2000; unpublished observations, J. Sero, T. Yuan, and 

J.A.L), suggesting that E2F4 and E2F5 perform largely overlapping functions. Given that 

both E2F4 and E2F5 are involved in promoting and maintaining a cell cycle arrest, and that 

the ability to properly exit the cell cycle is often concomitant with terminal differentiation of 

several cell types, we have generated an E2f4 conditional knockout mouse to elucidate the 

synergistic roles that E2F4 and E2F5 play during development.  
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RESULTS 

Generation of E2f4 conditional knockout mice 
 

To create conditional E2f4 mutants, we used recombineering to introduce loxP sites 

surrounding exons 2, 3, and 4 (Figure 1). Upon Cre-mediated recombination, the majority 

of the gene encoding the DNA binding domain and the DP dimerization domain is deleted 

from the genome, thereby constituting a null allele. Figure 1 shows the targeting vector 

construct, which contains the 5’ LoxP site and a neomycin cassette flanked by Frt sites in 

intron 1 and the 3’ LoxP site in intron 4. The vector also includes the diptheria toxin (DTA) 

gene for negative selection of random integration events. After electroporation of the 

targeting construct into 129/B6 F1 hybrid embryonic stem (ES) cells, recombinant ES cells 

were selected based on their resistance to G418. Out of 223 clones picked, 8 correctly 

targeted clones were verified by Southern blot analysis (Figure 2a) using the 5’ and 3’ 

probes shown in Figure 1. Clone 4C6 was injected into blastocysts, resulting in 7 male 

chimeric pups with all but one displaying 99%, or more, chimerism based on coat color. 

Using the PCR genotyping strategy in Figure 2b, we have confirmed germline transmission 

of the targeted allele (Figure 2c). We are now breeding these mice to E2f5 mutants in the 

presence of various Cre recombinases to assess the overlap of E2F4 and E2F5 function in 

key tissues. 
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Figure 1. Schematic of the targeting construct and the endogenous E2f4 locus 

The endogenous E2f4 locus is pictured on top, the targeting vector is in the middle, and 
the targeted allele is pictured on the bottom. The E2f4 exons are represented by dark blue 
boxes. DTA represents the diptheria toxin negative selection cassette, the purple boxes 
are Frt sites flanking the neomycin positive selection cassette, and the orange boxes are 
LoxP sites. The bracketed lines represent the predicted sizes of genomic fragments 
identified by the 5’ and 3’ probe sequences used for Southern blot analysis after 
homologous recombination. 
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Figure 2. Germline transmission of the conditional E2f4 allele 

(A) The predicted sizes of the genomic fragments after digestion with either KpnI or EcoRI 
and hybridization with the 5’ probe or 3’ probe, respectively, are shown along with 
Southern analysis of representative targeted clones. In each case, one non-targeted clone 
and two targeted clones are shown. Abbreviations: W, wildtype band; T, targeted band(B) 
PCR screening strategy to identify mice carrying the targeted allele. Primers C2 and N1 
amplify a 195 bp fragment of DNA. (C) PCR from ear clips confirming germline 
transmission of the conditional E2f4 allele (upper band). Asterisk denotes a non-specific 
band. 
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Acute ablation of E2f4 disrupts normal asynchronous proliferation in MEFs 
 

It has been previously reported that MEFs lacking either E2f4 or E2f5 display a 

normal cell cycle profile (Humbert et al, 2000; Lindeman et al, 1998; Rempel et al, 2000). 

Only when MEFs are deficient for both E2f4 and E2f5 do they exhibit the inability to exit the 

cell cycle while in the presence of the growth arrest signal, p16INK4A (Gaubatz et al, 2000). 

In addition, E2f4-/-;E2f5-/- MEFs generated from e13.5-14.5 embryos exhibit normal growth 

arrest in response to serum-starvation, normal proliferation kinetics following serum-

stimulation, and normal E2F target gene regulation (Gaubatz et al, 2000). In our laboratory, 

however, E2f4-/-;E2f5-/- embryos were very rarely detected at e13.5, indicating that genetic 

background has an impact on the penetrance of the phenotype (unpublished 

observations, J. Sero, T. Yuan, and J.A.L). These data suggest that other E2Fs, or other 

factors, may compensate for the loss of E2f4 and E2f5 in germline deficient embryos. 

Indeed, a compensatory role for E2F4 has been found in cells that are deficient for E2F6 

(Giangrande et al, 2004). Given these findings, we were interested in the effect of 

combining germline loss of E2f5 with the acute ablation of E2f4 in vitro. Other studies have 

indicated that acute ablation of pocket proteins or E2Fs have more severe effects in vitro 

than germline mutations (Kong et al, 2007; Sage et al, 2003) 

Wildtype and E2f5-/- MEFs previously generated in the lab were infected with a 

retrovirus carrying either a hairpin against E2f4 or a control hairpin against luciferase, and 

the properties of the resulting cell pools were compared in standard proliferation assays.  
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Figure 3. Acute ablation of E2f4 alters asynchronous proliferation in MEFs 

Asynchronous proliferation assays of wildtype and E2f5-/- MEFs (A) or wildtype and E2f5-/- 
MEFs infected with either a hairpin against E2f4 or a luciferase control (B). A total of 4 x 
104 cells were plated in duplicate in a 3 cm dish and their growth was monitored by daily 
counting for 6 days. 
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E2f5-/- MEFs expressing the E2f4 hairpin exhibited a marked decrease in their ability to 

asynchronously proliferate compared to E2f5-/- MEFs expressing the luciferase control 

hairpin (Figure 3b). Surprisingly, wildtype MEFs expressing the E2f4 hairpin also displayed 

a reduced proliferative capacity compared to the luciferase control infected wildtype MEFs 

(Figure 3b). It should be noted that in this preliminary experiment, the E2f5-/- MEFs began 

with a reduced ability to proliferate before being infected with the retrovirus (Figure 3a). 

These results suggest that acute E2f4 knockdown causes alterations in asynchronous 

proliferation in both wildtype and E2f5-/- MEFs. 
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DISCUSSION 
 

Members of the E2F family of transcription factors are key regulators of the cell 

cycle. E2F4 and E2F5 primarily function as transcriptional repressors that promote and 

maintain a cell cycle arrest (Attwooll et al, 2004; Dimova & Dyson, 2005; Trimarchi & Lees, 

2002). Previous studies of E2f4 and E2f5 knockout mice have revealed critical roles in 

promoting cell cycle exit and enabling the terminal differentiation of several cell types, such 

as erythrocytes, osteoblasts, and neuronal epithelial cells in the choroid plexus (Humbert et 

al, 2000; Kinross et al, 2006; Lindeman et al, 1998). Since mice doubly deficient for E2f4 

and E2f5 are embryonic lethal beginning as early as embryonic day 8.5 (Gaubatz et al, 

2000; unpunlished observations, J. Sero, T. Yuan, and J.A.L), it has not been possible to 

fully explore the overlapping contributions that E2F4 and E2F5 make during embryonic 

development. In order to investigate the loss of both E2F4 and E2F5 during embryonic and 

adult development, we have generated conditional E2f4 knockout mice. 

To begin elucidating the roles that the repressor E2Fs share in regulating the cell 

cycle and promoting terminal differentiation, we acutely ablated E2f4 in wildtype and E2F5-

/- MEFs. We found that the sudden loss of E2f4 in an E2f5-/- null background decreases the 

ability of these cells to proliferate. As E2F4 and E2F5 are transcriptional repressors, we 

were expecting the proliferative capacity of these cells to increase, not decrease. In 

addition, decreased proliferation was also observed in wildtype cells that expressed the 

hairpin against E2f4. These results could suggest a pro-proliferative role for these proteins. 

Alternatively, these data could support the pocket protein reshuffling model that our lab 

has previously proposed to account for the tumor suppression in Rb+/-;E2f4-/- mice in 
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comparison to Rb+/- mice (Lee et al, 2002). Since E2F4 accounts for the majority of 

endogenous pocket protein binding activity, the loss of E2F4 in this case caused the 

released pocket proteins, p107 and p130, to form novel complexes with the normally pRb-

specific activating E2Fs, E2F1-3, in vitro and in vivo, thereby reducing their activity (Lee et 

al, 2002). It is likely that the acute loss of E2f4 is also increasing the free pools of pocket 

proteins in wildtype and E2F5-/- MEFs, which could bind and inhibit the transcriptional 

activity of activator E2Fs. To confirm this hypothesis, co-immunoprecipitation or gel shift 

assays could be performed using extracts from wildtype and E2f5-null MEFs expressing 

either the luciferase or E2f4 hairpin. 

In this experiment, the E2f5-null MEFs appear to have a proliferation defect, which 

is in contrast to what has been previously published. Only two distinct MEF lines have 

been characterized in this assay, and we feel that analysis of additional lines is necessary 

to conclude whether or not germline loss of E2f5 causes proliferation defects. Although 

these are preliminary data, we are encouraged by the observation that acute ablation of 

E2f4 decreases the current proliferative state of the E2f5-deficient cells to a similar degree 

to the effect on wildtype cells. 

We recently found that germline loss of E2f4 prevents calvarial osteoblast precursor 

cells from properly exiting the cell cycle and interferes with the ability of these cells to 

commit to the osteoblast lineage, resulting in defective bone development (Chapter 2). 

During mouse development, E2F4 is widely expressed, while E2F5 expression is restricted 

to terminally differentiated cells (Dagnino et al, 1997a; Dagnino et al, 1997b). It is possible 

that both E2F4 and E2F5 work in concert to ensure exit from the cell cycle and promote 
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differentiation. E2F4 could be largely responsible for promoting cell cycle exit and initiating 

differentiation, while E2F5 maintains both cell cycle arrest and, thus, terminal 

differentiation. Osteoblasts deficient for E2f4 display a transient inability to exit the cell 

cycle, and the transient nature of the phenotype could be a consequence of compensation 

by other E2F members, such as E2F5. We are interested in determining what effect the 

combined loss of E2F4 and E2F5 has on osteoblast differentiation and bone development; 

thus, we are generating homozygous conditional E2f4 mice (E2f4c/c) to cross with Osterix1-

GFP::Cre transgene (Osx-Cre) carrying mice (Rodda & McMahon, 2006) and E2f5+/-;Osx-

Cre mice to obtain control, E2f4c/c;Osx-Cre mice, and E2f4c/c;E2f5-/-;Osx-Cre mice. The 

Osterix transcription factor is one of the master regulators of bone development expressed 

in pre-osteoblasts and is required for their commitment to their osteoblastic fate 

(Nakashima et al, 2002). Using these lines it will be possible to assess if the additional loss 

of E2f5 exacerbates the bone defects that are predicted to arise from the loss of E2F4 

and/or reveals novel bone phenotypes. 
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EXPERIMENTAL PROCEDURES 
 

Cloning of the targeting construct and confirmation of germline transmission of the 
conditional E2f4 allele 

The BAC clones 33, 104, and 119 from the RPCI-22 library were verified to contain 

the E2f4 genomic locus by Southern blot analysis using a probe made by amplifying a 

region from exon 10 with the primers 3’ exon 10 and 5’ exon 10 (all primer sequences are 

listed in Table 1). Glycerol stocks were made from the recombinogenic bacterial strains 

DY380 that were transformed with BACs 104 and 119 (as described in 

http://recombineering.ncifcrf.gov/). Two sets of primers (RecombineeringPrimer 1F and 

pL451 5’ neo, RecombineeringPrimer 2R and pL451 3’ neo) were used to amplify 

overlapping halves of the Frt-Neo-Frt cassette using Hi-Fidelity Taq (55° C anneal, 1.5 min 

extension, 30 cycles). The two PCR fragments were digested with BssHII and EagI, 

ligated, purified, and recombineered into DY380 cells containing BAC 104. pBR322 was 

PCR amplified with Hi-Fidelity Taq using primers pBR322-1554,12600 F and pBR322-

4330,10100 R to subclone the E2f4 locus genomic DNA using gap repair 

(http://recombineering.ncifcrf.gov/), creating a pBR322+104+Neo plasmid. The 3’ LoxP 

site was annealed by combining 9 µl of 10 µM NewKpnILoxP F, 9 µl of 10 µM 

NewKpnILoxP R, and 2 µl 1x NTE (10mM Tris, 10mM EDTA pH 7.4, 100mM NaCl), 

heating to 80° C, and allowed to cool to below 30° C. pBR322+104+Neo was cut using 

EcoRV, ligated with the 3’ LoxP site, and transformed into DH5α cells 

(pBR322+104+N+L). The NewLoxP R primer was used to sequence the plasmid to verify 

clones with the correct LoxP orientation. The targeting construct from pBR322+104+N+L 
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was sequentially digested with AflII then XhoI. pBR322 was digested with EcoRV then SalI, 

ligated with the insert from pBR322+104+N+L, and transformed into DH5α cells. 

To ensure no mutations were introduced into the exons found in the targeting 

construct, DNA sequencing was performed with the following primers: upstream 5’ loxP F, 

downstream exon 2 R, mid-exon 3, 4, 5 F,  exon 6 and 7 F, and exon 8 F. The targeting 

vector was linearized and sent to the Rippel Transgenic Facility for electroporation into 

129/B6 F1 hybrid ES cells and selected with G418. E2f4c/+ clones were detected by 

Southern blot analysis using external 5’ and 3’ probes in addition to a neomycin probe. 

Clone 4C6 was used to generate chimeras and all pups resulting from matings were 

genotyped by PCR analysis of ear clip DNA using the common primer, Conditional E2F4 

C2, and the neomycin-specific primer, Conditional E2F4 N1. 

E2f4 and luciferase knockdown and MEF analyses 

The cloning of the E2f4 and luciferase hairpins and the stable integration into 

primary cells has been previously described (Chapter 2). The proliferation assay was 

performed essentially as described (Aslanian et al, 2004). 
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Table 2. Primers used for the generation of conditional E2f4 mice 

Primer Name Sequence 

3’ exon 10 TCCTCCGACTTTCTCCACCTCC 
5’ exon 10 CTCTGCAATGGCTCTAAATGAGGG 
3’ probe F TGAGGTTCCTAATGGGCCTGTGTG 
3’ probe R GAGCTGGAGCCATTCTTAGGTACC 
5’ probe F CAGTGCTGATTGGTGGTTGAAGGC 
5’ probe R AGGTAAGTGTGGCTCAGTGGCTGA 
RecombineeringPrimer 1F tgcaggccctcgtggcccttggcgactaggacagggagccgagcatcaga 

aATAACTTCGTATAGCATACATTAT 
RecombineeringPrimer 2R ccttccaatcactccgcgagtgtgtcgggaagagtcttggcttagctgtg 

GAATTCCGAAGTTCCTATTCTCTAGAAAGTAT 
pL451 3’ neo CCTCGCTAGCTGATCACTCAGAAGAACTCGTCAAGAAGGCG 
pL451 5’ neo GGTCGCTAGCCGGATCGGCCATTGAACAAGATGG 
pBR322-1554,12600 F tggggatggagagtgatgcatgtgcattcctgcccccaagatgttccagg 

CCGATACGCGAGCGAACGTGAAGC 
pBR322-4330,10100 R cctggagcgggtccactttgcatcgcctgtgcttccggagccaggggctc 

GACGAAAGGGCCTCGTGATACGCC 
NewKpnILoxP F ATAACTTCGTATAGCATACATTATACGAAGTTATGTAC 
NewKpnILoxP R ATAACTTCGTATAATGTATGCTATACGAAGTTATGTAC 
NewLoxP R CTGGAACTTGCAATGTAGACAAGG 
Conditional E2F4 C2 GACTAGGACAGGGAGCCGAGCATC 
Conditional E2F4 N1 ATGCTGGGGATGCGGTGGGCTCTA 
upstream 5’ loxP F TAGCAAGGAAGAGTCGGGTGGTTC 
downstream exon 2 R TATGCCTTCCACACAGCCCTCAGA 
mid-exon 3, 4, 5 F ACCAGCACAAGGTGTGGGTGCAGC 
exon 6 and 7 F GTACCCAGTGCTCTAGGGAGGTAG 
exon 8 F CACACTGGTTGTCCTGGCCATAGG 
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The E2F family of transcription factors, in association with pRb and the related 

pocket protein family members, p107 and p130, control the regulation of the cell cycle. As 

a result, these proteins play an integral role in other cellular processes, such as 

differentiation. Here, I analyzed the in vivo role of E2F4 in murine embryonic development 

and differentiation. I found that E2F4 is essential for calvarial cells to exit the cell cycle and 

begin their subsequent commitment to become osteoblasts, thereby contributing to bone 

development (Chapter 2). To further explore the effects that loss of E2F4 causes in vivo, I 

have generated conditional E2f4 knockout mice. By investigating the phenotypes that arise 

in mice lacking either E2F4 alone or E2F4 and E2F5, we will gain new insight about the 

synergistic roles each protein plays during development. 

E2F4 in bone development and osteoblast differentiation 
 

 E2F4 functions primarily as a transcriptional repressor and can bind to all of the 

pocket protein family members (Moberg et al, 1996). Interestingly, all three binding 

partners have been implicated in the differentiation of cell types that contribute to bone 

formation. Both p107 and p130 exert overlapping roles to ensure proper differentiation of 

long bone chondrocytes (Cobrinik et al, 1996), while pRb is required to promote osteoblast 

differentiation (Berman et al, 2008; Thomas et al, 2001). Therefore, we hypothesized that 

E2F4 may play a similar role in bone development. Examination of embryonic skeletons 

revealed that bone development is disrupted from an early stage, as E2f4-deficient mice 

exhibit decreased expression of the early bone differentiation marker, alkaline 

phosphatase. Moreover, loss of E2F4 increases the number of osteoblast progenitor cells 
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that continue to enter the cell cycle compared to wildtype cells. Therefore, we believe that 

abrogating E2F4 function prevents pre-osteoblasts from exiting the cell cycle, a step that is 

coincident with differentiation in many cell types. My in vitro data demonstrate that, while 

E2F4 does not play a cell cycle-independent role in osteoblast differentiation, E2F4 loss 

increases the number of osteoblast progenitor cells due to the cell cycle exit defect. 

Although these data suggest that loss of E2F4 affects osteoblast differentiation in 

vivo, it is unclear if E2F4 is influencing bone development in a cell autonomous manner. As 

E2f4-/- embryos are transiently anemic, it is possible that the anemic state of the embryo 

prevents nutrients and gases from being efficiently delivered to cells of all types, such as 

osteoblasts. Therefore, many cellular processes could be disrupted, causing a delay in the 

development of multiple embryonic tissues. I have generated conditional E2f4 mice with 

the goal of addressing the cell autonomy of E2F4 function. To study the effect of E2F4 loss 

specifically in osteoblasts, one could cross E2f4c/c mice with Osx-Cre transgenic mice. If 

E2F4 plays a cell autonomous role in promoting osteoblast differentiation, then conditional 

deletion of E2f4 in Osx-expressing cells should cause similar bone defects as those 

observed in embryos with germline loss of E2F4. 

However, it is also possible that E2f4c/c;Osx-Cre mice will appear normal, 

suggesting that E2F4 does not play a cell intrinsic role in promoting cell cycle exit in 

osteoblast precursor cells. However, this outcome would not rule out the possibility that 

E2F4 is required for bone development. Although my data indicate that loss of E2F4 

affects an early step in osteoblast differentiation, it did not address in which cell type E2F4 

function is necessary for proper bone development. Since the original skeletal analysis was 
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performed in mice with germline loss of E2F4, it is possible that E2F4 is required in 

osteoblasts and/or the cells from which they arise, the mesenchymal stem cell (MSC). To 

better define the period in which E2F4 is required for bone development, one could 

determine the in vitro and in vivo requirement for E2F4 in MSCs. MSCs are able to 

differentiate into osteoblasts in vitro without the requirement of a confluence arrest. One 

could isolate E2f4c/c MSCs and infect them with either a control adenovirus containing GFP 

(Adeno-GFP) or an adenovirus expressing the Cre recombinase gene (Adeno-Cre). By 

performing a similar progenitor assay as described in Chapter 2, one could determine if 

E2F4 is essential for cell cycle exit in MSCs by comparing the number of alkaline 

phosphatase-positive colonies in the acutely ablated MSCs compared to the control 

infected E2f4c/c MSCs. Assuming cell cycle exit is necessary for MSCs to initiate osteoblast 

differentiation, one should observe a delay in the secretion of calcium deposits in E2f4-null 

MSCs compared to E2f4c/c MSCs after osteogenic induction. One caveat is that we do not 

know if MSCs continue to proliferate while they differentiate in vitro. Therefore, it will be 

important to assess the cell cycle profile of Adeno-Cre infected cells and Adeno-GFP 

infected cells during differentiation. If it is found that the control-infected MSCs continue to 

proliferate as they differentiate, it will be difficult to determine what role, if any, E2F4 plays 

in promoting cell cycle exit and, consequently, osteoblast differentiation in MSCs. 

Conditional E2f4 mice will elucidate the in vivo role E2F4 plays in MSC 

differentiation. By crossing E2f4c/c mice with mice carrying the Prx-Cre transgene, E2f4 will 

be deleted from mesenchymal progenitor cells (Logan et al, 2002). One could examine 

embryonic skeletons stained with Alizarin Red to determine if E2f4c/c;Prx-Cre embryos 
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display disrupted bone ossification compared to E2f4c/c controls. Subsequently, one could 

analyze cell cycle progression of osteoblasts found in affected bones by comparing the 

number of nuclei that have incorporated BrdU and express Ki67 to the number observed 

in control mice. 

The original skeletal analysis of E2f4-/- embryos revealed defects in both 

intramembranous and endochondral bone development. I demonstrated that E2F4 loss 

specifically affects osteoblasts in intramembranous bones; thus, it is possible that loss of 

E2F4 alters endochondral bone development by disrupting chondrocyte differentiation. To 

investigate this possibility, one could study cartilage formation in the presphenoid and 

basisphenoid bones, which exhibit reduced cartilage matrix secretion at e15.5. 

Immunohistochemistry analyses of these bones could be used to determine if loss of E2F4 

affects chondrocyte differentiation. By analyzing BrdU incorporation or Ki67-positive nuclei, 

we could determine if E2F4 promotes cell cycle exit in chondrocytes. In addition, one 

could analyze the expression of chondrocyte differentiation markers, including Sox9 and 

collagen type II, to determine if a particular step in chondrocyte differentiation is affected in 

E2f4-/- embryos. 

Using my conditional E2f4 mouse, one could delete E2f4 in chondrocyte progenitor 

cells using a cartilage-specific Cre recombinase transgene, such as Sox9-Cre (Akiyama et 

al, 2005). This will enable one to determine if E2F4 is essential for an early step in cartilage 

development. Alcian Blue staining of E2f4c/c;Sox9-Cre embryonic skeletons can reveal 

defective endochondral bone formation. In addition, BrdU incorporation and Ki67 staining 

analyses will reveal any chondrocyte progenitor proliferation defects. Similarly, one could 
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examine a later step in cartilage development by depleting E2f4 in cells that express 

collagen II using the Col2a1-Cre transgene (Ovchinnikov et al, 2000), elucidating the 

requirement for E2F4 in chondrocytes to maintain a terminally differentiated state. Since 

chondrocytes form a cartilage template for subsequent osteoid matrix deposition, bone 

defects can also be analyzed in both mouse models using the assays described in 

Chapter 2. 

Finally, one can characterize the effect E2F4 loss has on in vitro chondrocyte 

differentiation. One could isolate embryonic chondrocytes and their progenitor cells from 

E2f4-null (germline and conditionally ablated) and control limbs to study possible 

proliferation and differentiation defects (Pfander et al, 2003; Shakibaei, 1995). An 

alternative approach is to differentiate ES cells into chondrocytes and investigate any 

alterations in proliferation, differentiation, and chondrocyte gene expression caused by the 

loss of E2F4. 

Synergistic roles of E2F4 and E2F5 in cell cycle exit and terminal differentiation 
 

E2F4 and E2F5 are thought to act primarily as transcriptional repressors and are 

present during all phases of the cell cycle (Muller et al, 1997; Sardet et al, 1995; Takahashi 

et al, 2000; Vairo et al, 1995; Verona et al, 1997; Wells et al, 2000). Mice deficient for both 

E2f4 and E2f5 die in the early stages of embryogenesis (Gaubatz et al, 2000), suggesting 

that they perform overlapping functions during development. My data show that loss of 

E2F4 causes an increase in the number of osteoblast progenitors due to continued S-

phase entry. However, this phenotype is transient, and we hypothesize that other E2Fs 
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may compensate for the loss of E2F4, such as E2F5. My conditional E2f4 mice will also 

help to address the interplay between E2f4 and E2f5 in various tissues. The clavicle, which 

is the first bone to develop, becomes ossified at e13.5. In our laboratory, it is rare to find a 

double knockout mouse at e13.5. Therefore, the use of conditional E2f4 mice will enable 

us to perform this analysis. 

We are in the process of generating E2f4c/c;Osx-Cre, E2f4c/c;E2f5-/-;Osx-Cre, E2f4c/c; 

Prx-Cre, and E2f4c/c;E2f5-/-;Prx-Cre animals that lack E2F4 expression in osteoblasts and 

mesenchymal stem cells, respectively. Alizarin Red and Alcian Blue staining of embryonic 

skeletons will reveal possible exacerbations of the E2f4-/- phenotype, as well as any novel 

phenotypes caused by the additional loss of E2f5. Additional alterations in cell cycle 

progression and bone differentiation marker expression can be determined by using 

analyses described in Chapter 2. 

To complement the in vivo analysis, one could also determine the synergistic roles 

E2F4 and E2F5 play in osteoblast and chondrocyte differentiation in vitro. One could 

isolate E2f4c/c and E2f4c/c;E2f5-/- MSCs, infect parallel populations with Adeno-GFP or 

Adeno-Cre, and induce either osteogenic or chondrogenic differentiation. By comparing 

the amount of secreted cartilage or osteoid matrix between E2f4c/c and E2f4c/c;E2f5-/- cells, 

one could determine the impact that E2f5 loss has on the differentiation of these cell 

lineages. BrdU incorporation, Ki67 staining, and osteoblast and chondrocyte differentiation 

marker analysis can also be performed as described in Chapter 2 and in the above 

section. 
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Another cell type of interest to study with the conditional E2f4 mouse is the 

adipocyte, which, like the osteoblast and the chondrocyte, arises from mesenchymal stem 

cells. Previously, our lab reported that E2F4 loss enhances the ability of MEFs to 

differentiate into adipocytes. This can be largely attributed to that fact that E2F4, in 

association with p107 and p130, can bind to and repress PPARγ expression during 

terminal adipocyte differentiation (Fajas et al, 2002; Landsberg et al, 2003). However, 

these experiments do not take into account the possibility that more adipocyte progenitors 

may be present in the population of E2f4-/- MEFs compared to wildtype MEFs, a situation 

similar to that seen in E2f4-/- osteoblast progenitors. One could test this hypothesis by 

comparing the number of BrdU-positive nuclei in E2f4c/c MSCs that have been infected 

with either Adeno-Cre or Adeno-GFP. To further elucidate how E2F4 affects adipogenesis, 

one could differentiate E2f4-deleted MSCs or control MSCs into adipocytes in vitro. By 

comparing the number of lipid vacuoles that stain with Oil Red O in both E2f4-deleted and 

control cells, one could confirm that loss of E2F4 causes increased adipogenic 

differentiation. In addition, one could analyze the expression of general adipocyte genes, 

including PPARγ, C/EBPα, and SREBP-1c, to corroborate the differentiation results. One 

could further examine adipocyte differentiation by looking at possible changes in the 

expression of genes specific for brown fat, such as UCP-1, NRBF1, and PGC-1. This 

analysis will allow one to determine if loss of E2f4 affects the commitment of adipocyte 

progenitors to either lineage. By adding E2f4c/c;E2f5-/- MSCs into the above analysis, one 

could determine if E2F4 and E2F5 have cooperative roles in adipogenesis. 
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The conditional E2f4 mouse also allows investigation of white fat development in 

vivo. While brown fat begins to develop during gestation, white fat does not visibly 

accumulate until after birth (Rangwala & Lazar, 2000). This has been hard to study in E2f4-

/- mice because of their neonatal lethality. By comparing E2f4c/c and E2f4c/c;Prx-Cre mice, 

one will be able to investigate the effect that deletion of E2f4 in adipocytes will have on 

white and brown fat development. As loss of E2F4 in MEFs causes spontaneous 

adipocyte differentiation, it will be interesting to determine if E2f4c/c;Prx-Cre mice will have 

more white fat than control mice. Additional deletion of E2f5 can reveal the extent that 

E2F4 and E2F5 are able to compensate for each other during in vivo adipogenesis.  

During development, E2F4 is widely expressed, while E2F5 expression is restricted 

to terminally differentiated cells. It is possible that these proteins predominantly act during 

separate stages of cellular differentiation. E2F4 could primarily be responsible for 

promoting cell cycle exit and initiating differentiation. E2F5 could function later in the 

differentiation process by maintaining both cell cycle arrest and a terminally differentiated 

state. One could test this hypothesis by inducing E2f4-null osteoblast progenitors, 

chondrocyte progenitors, or MSCs to differentiate into bone, cartilage, or fat in vitro. One 

could infect these cells with a lentivirus expressing either a hairpin against E2f5 or 

luciferase and subsequently examine these cells for alterations in cell cycle profile and 

differentiation status. 
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Synergy of E2F4 and the pocket proteins in mesenchymal stem cell differentiation 
  

Given that E2F4 associates with the pocket proteins to repress transcription and to 

promote cell cycle arrest, it is not surprising that many of the same cell lineages become 

disrupted upon the loss of one of these repressive complex components. Some of these 

cell types include osteoblasts, chondrocytes, and adipocytes. In our laboratory, we have 

conditional mouse models of both E2f4 and Rb, enabling us to determine the overlapping 

roles these proteins play during development and differentiation. Recently, it was found 

that loss of Rb affects osteoblast differentiation (Berman et al, 2008; Gutierrez et al, 2008). 

It would be interesting to combine E2f4-/-;Rbc/c animals with either Osx-Cre or Prx-Cre to 

study bone development. Although some bones are similarly affected in Rb and E2f4 

single mutant mice (frontal and parietal bones, sternebrae), some bone defects are unique 

to each mutant (hyoid and palatine process in Rb-/- mice and presphenoid bone in E2f4-/- 

mice) (Berman et al, 2008). This data suggests that the overall contribution to cell cycle exit 

and differentiation that each protein is involved in during bone development is different for 

certain bones. By analyzing double mutant embryos using assays described in Chapter 2, 

one could determine the functional overlap between E2F4 and pRb in osteoblast 

progenitor cell cycle exit and differentiation. One could perform similar studies as 

described above for cartilage differentiation by deleting E2f4 and Rb using Sox9-Cre, 

Col2a1-Cre, and/or Prx-Cre. Our lab has shown that E2f4-/-;p107-/-;p130-/- animals display 

similar defects in long bone development (Landsberg, 2003); thus it would be interesting to 

see if the specific loss of E2f4 in E2f4c/c;p107-/-;p130-/-;Prx-Cre animals would exacerbate 

the defects characteristic of p107-/-;p130-/- animals. Finally, like E2F4, pocket proteins have 
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been implicated in the differentiation of adipocytes. Although our lab has already 

characterized the adipogenic phenotypes of MEFs lacking E2f4, p107, and p130 in 

addition to E2f4-/-;Rb-/- MEFs (unpublished data, R. Landsberg and J.A.L), it would be 

interesting to explore the roles of each of these proteins in adipogenesis in the more 

physiologically relevant mesenchymal stem cell. 

Acute ablation of E2F4 in vitro causes reduced proliferation in MEFs 
 

I have presented preliminary data suggesting that acute ablation of E2f4 causes 

reduced proliferation in MEFs (Chapter 3). Since E2F4 comprises the majority of 

endogenous E2F/pocket protein complexes, we believe that loss of E2F4 increases the 

number of free pocket proteins available in the cell. As a result, the pocket proteins can 

form novel complexes with the activator E2Fs, preventing both their association with target 

gene promoters and subsequent transcriptional activation. Indeed, this has been observed 

in the Rb+/-;E2f4-/- and Rb+/-;E2f4+/- MEFs (Lee et al, 2002). By performing co-

immunoprecipitation experiments and gel shift assays, one could verify if pocket protein 

reshuffling is indeed occurring in E2F4 knockdown MEFs. One could also compare the cell 

cycle profiles of E2f4-depleted MEFs and MEFs expressing the control hairpin to determine 

if the reduced proliferation is the result of a block in the cell cycle. Another possibility as to 

why the sudden loss of E2F4 causes decreased proliferation is that it activates a novel 

apoptotic response. One could test this by comparing the number of TUNEL-positive cells 

found in the population of cells expressing the E2f4 hairpin and cells expressing the 

luciferase control. At this point, it is unclear what the physiological relevance of pocket 
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protein reshuffling will have in the development and differentiation in vivo of cell types that 

require E2F4 and/or E2F5. 

Conclusion 
 

The ability of cells to form specialized tissues relies on the exquisite coordination of 

the proteins that regulate cell cycle division and subsequent terminal differentiation. 

Indeed, defects in tissue development are often accompanied by the continued 

proliferation of constituent cells, preventing the initiation of differentiation. Here, I describe 

a novel role for the transcriptional repressor protein, E2F4, in bone development. I show 

loss of E2F4 causes defects in intramembranous bone formation. These defects arise due 

to the inability of osteoblast progenitor cells to exit the cell cycle in vivo, thus preventing 

terminal differentiation of osteoblasts and proper bone formation. 

E2f4-/- mice are neonatal lethal, limiting research on this mouse model to embryonic 

studies. As a result, many studies of cellular differentiation must be done in an in vitro 

setting, which may inadequately address the importance of E2F4 function in vivo. 

Furthermore, the synergistic roles that E2F4 shares with other E2F and pocket protein 

family members often result in earlier embryonic lethality, making many studies impossible. 

Thus, I have generated a conditional E2f4 mouse that will elucidate the biological functions 

of E2F4 in postnatal development and allow potential compensatory roles by related 

proteins to be revealed. 
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ABSTRACT 
 

Mutation of the RB-1 and p53 tumor suppressors is associated with the 

development of human osteosarcoma. With the goal of generating a mouse model of this 

disease, we used conditional and transgenic mouse strains to inactivate Rb and/or p53 

specifically in osteoblast precursors. The resulting Rb;p53 double mutant (DKO) animals 

are viable but develop early onset osteosarcomas with complete penetrance. These 

tumors display many of the characteristics of human osteosarcomas, including being 

highly metastatic. We established cell lines from the DKO osteosarcomas to further 

investigate their properties. These immortalized cell lines are highly proliferative and they 

retain their tumorigenic potential, as judged by their ability to form metastatic tumors in 

immunocompromised mice. Moreover, they can be induced to differentiate and, 

depending on the inductive signal, will adopt either the osteogenic or adipogenic fate. 

Consistent with this multipotency, a significant portion of these tumor cells express Sca-1, 

a marker that is typically associated with stem cells/uncommitted progenitors. By assaying 

sorted cells in transplant assays, we demonstrate that the tumorigenicity of the 

osteosarcoma cell lines correlates with the presence of the Sca-1 marker. Finally, we show 

that loss of Rb and p53 in Sca-1-positive mesenchymal stem/progenitor cells is sufficient 

to yield transformed cells that can initiate osteosarcoma formation in vivo. 
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INTRODUCTION 
 

Osteosarcomas account for ≈30% of malignant bone tumors and 3–4% of all 

childhood malignancies (Clark et al, 2008; Kansara & Thomas, 2007). They arise primarily 

around the knee joint, lower femur and upper tibia, which are all regions of active bone 

growth and repair. These tumors are predominantly osteoblastic in nature, although there 

is a correlation between loss of differentiation and poor prognosis. The generation of new 

therapeutic treatments for osteosarcoma has improved the 5-year survival rate of affected 

individuals. However, like other mesenchymal neoplasms, osteosarcomas are predisposed 

to metastasize via the hematogenous route, and thus, pulmonary metastasis is a major 

cause of death. Analyses of both sporadic and hereditary tumors show that inactivation of 

the p53 and RB-1 tumor suppressors plays a key role in the development of this tumor 

type (Clark et al, 2008; Kansara & Thomas, 2007). Li-Fraumeni patients, who often carry 

germ-line mutations in p53, are predisposed to a variety of tumors, 12% of which are bone 

sarcomas (Bell et al, 1999; Malkin, 1993). p53 mutations are also observed in 20–60% of 

sporadic osteosarcomas (Tsuchiya et al, 2000; Wunder et al, 2005). Similarly, patients 

carrying germ-line mutations in RB-1 have an ≈500-fold higher incidence of osteosarcoma 

than the general population (Gurney et al, 1995). Moreover, RB-1 mutations are detected 

in 70% of all adolescent osteosarcomas (Feugeas et al, 1996). Finally, human 

osteosarcomas can carry mutations in both p53 and RB-1 (Toguchida et al, 1988). 

Mouse models have provided considerable insight into the role of p53 in bone 

development and tumorigenesis. Experiments from three different settings suggest that 

p53 plays an important role in bone development by modulating the differentiation of 
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osteoblasts. First, p53-deficient mice display both accelerated osteoblast differentiation 

and increased bone density (Wang et al, 2006). Second, hyperactivation of p53, via 

deletion of the p53-inhibitor Mdm2, suppresses osteoblast differentiation by inhibiting 

expression of the bone-specific transcription factor Runx2 (Lengner et al, 2006). Finally, in 

vitro studies show that deletion of p53 from mesenchymal stem cells (MSCs) and 

osteoblast precursors in vitro promotes transcriptional changes associated with the early 

stages of osteogenesis but impairs end-stage differentiation to mature osteocytes (Tataria 

et al, 2006). Together, these experiments suggest that p53-loss promotes commitment to 

the osteoblast lineage but blocks the terminal differentiation of these progenitors. 

Importantly, mice carrying tumor-associated alleles of p53 develop a variety of tumor types 

including osteosarcoma (Iwakuma et al, 2005). The status of Rb in these tumors has not 

been investigated. However, sarcomas arising in Rb+/−;p53−/− mice do undergo loss of 

heterozygosity of Rb (Williams et al, 1994). 

Analyses of cell lines and mouse models also provide intriguing links between Rb 

and osteogenesis. The retinoblastoma protein pRb has been shown to physically interact 

with Runx2, and the resulting complex transcriptionally activates the late osteoblast marker 

osteocalcin (Thomas et al, 2001). Loss of pRb, but not the pRb-related pocket proteins 

p107 and p130, can suppress the terminal osteogenic differentiation of cultured cell lines 

(Thomas et al, 2001). Moreover, we have recently shown that embryos conditionally 

deleted for Rb display defects in both endochondral and intramembranous ossification that 

result, at least in part, from a cell cycle exit defect (Berman et al, 2008). Unfortunately, 

these conditional Rb mutant animals die at birth, precluding analysis of adult bone 
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phenotypes. Heterozygous Rb mutant mice and Rb−/−/wild type chimeras are viable, but 

they develop pituitary and thyroid tumors, never osteosarcomas (Vooijs & Berns, 1999). 

Thus, to date, there is no mouse model of Rb mutant osteosarcoma. 

In this study, we have used conditional and transgenic mouse strains to inactivate 

Rb and/or p53, specifically in osteoblast precursors. The resulting compound mutant 

animals developed metastatic osteosarcomas that closely resemble human tumors. 

Analysis of these tumors shows that their tumorigenic potential correlates with their 

expression of the Sca-1 stem cell marker and other aspects of the stem cell gene 

expression program. 
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RESULTS 

Mutation of Rb and p53 in Osteoblast Precursors Results in Osteosarcomas. 
 

To generate a mouse model of osteosarcoma, we used mice carrying three alleles: 

the conditional alleles of Rb (Sage et al, 2003) and p53 (Jonkers et al, 2001) and the Osx1-

GFP::Cre transgene (Rodda & McMahon, 2006). In this Cre transgene (herein called Cre), 

expression of Cre recombinase is driven by promoter sequences of Osterix1 (Osx1), a 

master regulator of bone differentiation, and is therefore restricted to osteogenic 

precursors derived from skeletal progenitors (Rodda & McMahon, 2006). By crossing 

Rb+/c;Cre+, p53+/c;Cre+ or Rb+/c;p53+/c;Cre+ males with Rbc/c,p53c/c, or Rbc/c;p53c/c females, 

we generated animals carrying every possible combination of Rb and p53 alleles, with or 

without Cre. All genotypes arose at approximately the expected frequency [supporting 

information (SI) Table S1]. Mice carrying Cre were slightly smaller than their littermates at 

birth, but this did not affect their survival. By 2–3 months of age, mice of all genotypes 

were of similar size (data not shown). Consistent with previous reports (Rodda & 

McMahon, 2006), we confirmed that Cre was expressed specifically in osteoblasts and not 

other mesenchymal lineages using reporter mice (A.S.L. and J.A.L., unpublished data). We 

also showed that the Cre transgene catalyzed efficient recombination of the conditional Rb 

and p53 alleles in the bone, by using PCR-based genotyping assays (Fig. S1). 

To screen for tumors, we established an aging colony of the various Rb;p53 mutant 

genotypes and monitored them carefully. Moribund animals were euthanized and all  
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tissues were analyzed for tumor phenotypes by histopathology. Up to 1 year of age (Fig. 

1A and Table 1) and beyond (data not shown), the vast majority of Rbc/c;Cre+ mice 

remained tumor-free. Two of these animals did develop tumors at 9 and 12 months of 

age. However, these were pituitary tumors, the typical tumor of Rb+/− germ-line mutant and 

Rb−/− chimeric mutant animals (Vooijs & Berns, 1999). This result suggests that the Cre 

transgene is expressed at low levels in neuroendocrine tissues/precursors. Because the 

Cre transgene is known to act in osteoblast precursors and histological analysis did not 

reveal tumorigenic lesions in the bones of adult Rbc/c;Cre+ animals (data not shown), we 

conclude that Rb loss is not sufficient to promote the transformation of murine osteoblast 

precursors. 

Consistent with the presence of osteosarcoma in humans and mice with germ-line 

p53 mutations (Kansara & Thomas, 2007), a large fraction of the p53c/c;Cre+ mice 

developed osteosarcoma, but not other tumor types, by 1 year of age (Fig. 1A and Table 

1). Although p53 loss is clearly sufficient to promote tumorigenesis, our data reveal strong 

synergy between Rb and p53 mutations in osteosarcoma development (Fig. 1A and Table 

1). The Rb+/c;p53c/c;Cre+ and Rbc/c;p53+/c;Cre+ genotypes were highly predisposed to 

develop osteosarcoma, and their mean survival time was considerably shorter than that of 

the p53c/c;Cre+ animals (Fig. 1A and Table 1). In addition, osteosarcomas arose in a 

significant fraction of the Rb+/c;p53+/c;Cre+ animals, but rarely (p53+/c;Cre+) or never 

(Rb+/c;Cre+) in the single heterozygous mutants (Table 1 and data not shown). Importantly, 

with the exception of the occasional neuroendocrine tumor, osteosarcoma was the only 

tumor type arising in Rb+/c;p53c/c;Cre+, Rbc/c;p53+/c;Cre+, p53c/c;Cre+ and Rb+/c;p53+/c;Cre+  
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Figure 1. A mouse model of metastatic osteosarcoma. 
 
(A) Kaplan–Meier plot of the indicated genotypes carrying Osx1-GFP::Cre up to 12 months 
of age. (B–I) Analyses of osteosarcomas and associated metastases arising in DKO mice. 
(B) 3D reconstructed images from microComputerised Tomography are shown for a 
control femur (Left) versus a femur containing an osteosarcoma (Right). Central panels 
show 2D images at the indicated positions. Note the loss of bone cortex and the presence 
of bone spicules located in the tumor that has grown beyond the periosteum (arrows). (C) 
Histological analyses of an osteosarcoma in a femur show areas of bone cortex erosion 
(Left, arrow) and the presence of little mineralized bone within the tumor (Right). (D–G) 
Analysis of a representative snout tumor by soft x-ray image to show the typical sunburst 
pattern (arrow) (D), H&E staining and analysis of adjacent sections of undecalcified tumor 
(E) with Alizarin Red to detect calcified bone matrix (F) or Sirius Red to detect collagen (G). 
(H and I) Representative examples of osteosarcoma metastases (arrow), in lung (H) and 
liver (I) containing detectable bone matrix. (Magnification: C and E ×2; F–I ×40.) 
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animals. This observation supports the view that the Cre transgene is highly tissue-specific 

and strongly suggests that these osteosarcomas arise through transformation of 

osteoblast precursors. Like human osteosarcomas, a significant fraction of these tumors 

were metastatic (Table 1). The metastases were most commonly seen in the lung and liver, 

but they also arose in the spleen, kidney, ovary, and adrenal glands (Fig. 1 and Table S2). 

The synergy between Rb and p53 is underscored by the phenotype of the 

Rbc/c;p53c/c;Cre+ (herein called DKO) mice. These animals had a substantially shorter mean 

lifespan than the intermediate genotypes (Fig. 1A and Table 1) and developed 

osteosarcomas (75% of animals), neuroendocrine tumors (60% of animals), and 

hibernomas (44% of animals), tumors derived from brown adipose tissue (Fig. S2). Many 

DKOs presented with multiple tumor types, and in 40% of cases metastasis of at least one 

of the primary tumors was observed (Table 1 and Table S2). There was no obvious 

correlation between the time of death of the DKOs and their associated tumor types (data 

not shown). Lack of correlation suggests that the shortened lifespan of the DKOs, vs. other 

genotypes, is not due simply to the presence of additional tumor types but likely reflects 

the accelerated onset and/or aggressiveness of the tumors. 

The osteosarcomas arose in a variety of locations, including the femur, a major site 

for human osteosarcoma, and the snout (the most common site in our model), spine, and 

skull. These tumors displayed characteristics typical of human osteosarcomas (Fig. 1 and 

data not shown). For example, microComputerized Tomography and H&E staining of 

femoral osteosarcomas showed destruction of the bone cortex and the presence of 

ossified spicules in the tumor mass located outside of the periosteum (Fig. 1 B and C). 
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Similarly, x-ray analysis of a typical snout tumor revealed the classic sunburst pattern 

indicative of osteoid tissue (osseous tissue before calcification: Fig. 1D). Moreover, the 

osteosarcomas were largely composed of osteoblastic cells, as judged by H&E staining 

and Sirius Red staining for collagen (Fig. 1 C, E, and G). However, like many human 

osteosarcomas, these tumors were predominantly poorly differentiated or undifferentiated, 

as judged by low levels of Alizarin Red staining of calcified bone matrix (Fig. 1F). We also 

used quantitative real-time PCR (qRT-PCR) to analyze the expression of differentiation 

markers in primary osteosarcomas derived from DKO mice (Fig. S3). These tumors 

contained mRNAs associated with early to mid stages of bone differentiation, such as 

Runx2, Osx, Alkaline Phosphatase (Alp), and Collagen1 (Col1), at the same or higher levels 

than control bone tissue. In contrast, Osteocalcin (Oc) mRNA, associated with fully 

differentiated osteoblasts that have secreted bone matrix, was present at lower levels than 

in the control. Notably, mRNAs associated with adipose tissue were not expressed in the 

primary osteosarcomas, but were present in hibernomas (Fig. S3). Finally, as noted above, 

a significant fraction of the osteosarcomas metastasized to lung and liver (Fig. 1 H–I, Table 

1, and Table S2). Thus, mutation of Rb and p53 using this Cre transgene induces 

formation of metastatic osteosarcomas that resemble the human disease. 

Cell Lines Derived from Osteosarcomas Are Immortal and Form Osteogenic Tumors 
When Transplanted in Nude Mice. 

 

To further characterize these tumors, we dissected primary osteosarcomas from 

three different DKO mice, mechanically disaggregated the cells, and placed them in 

culture. The tumors used for this experiment span the range of osteosarcoma phenotypes  
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Figure 2. OS cell lines can form bone tumors in immuno-compromised mice. 
 
(A and B) H&E stained section of the primary osteosarcomas 985 and 2380, respectively. 
Tumors derived from s.c. (C–E) or i.v. (F–H) injection of DKO-OS-985. (C and F) H&E 
staining. Adjacent sections were stained with either Alizarin Red (D, G) or Sirius Red (E, H) 
to stain calcified bone matrix and collagen, respectively. (Magnification: A–C and F ×40; D, 
E, G, and H ×2.) 
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seen in our mice: two of the tumors (985 and 2674) were largely undifferentiated, whereas 

the third (2380) had a higher level of osteoid matrix (Fig. 2 A and B). All three tumors 

yielded rapidly growing cell populations, and PCR verified that the Rbc/c and p53c/c 

conditional alleles had undergone complete recombination (data not shown). The resulting 

cell lines (called DKO-OS-985, DKO-OS-2380, and DKO-OS-2674) were fully 

immortalized. 

To investigate their tumorigenic potential, we injected the osteosarcoma (OS) cell 

lines into immuno-compromised mice, both s.c. and i.v. DKO-OS-985, DKO-OS-2380, 

and DKO-OS-2674 all yielded ≥1 cm3 masses (s.c.) or bone nodules in the lungs (i.v.) 

between 50 and 100 days (Fig. 2 and Table S3). The resulting tumors closely resembled 

the parental osteosarcomas. They were osteoblastic in nature, as determined by H&E, 

Sirius Red, and Alizarin red staining (Fig. 2 C–H). However, they were poorly differentiated 

or undifferentiated, as only small regions of the tumor produced calcified bone (Fig. 2 C–

H). Moreover, the s.c. tumors were highly invasive and in some (DKO-OS-2380 and DKO-

OS-2674) or all (DKO-OS-985) instances, they metastasized to the liver and other organs 

(data not shown). Thus, the OS cell lines retained their ability to form metastatic 

osteosarcomas in vivo. 

Osteosarcoma Cell Lines Demonstrate Properties of Mesenchymal Stem/Progenitor 
Cells in Vitro. 

 

The specificity of the Cre transgene, characteristics of the primary osteosarcomas, 

and osteoblastic properties of the transplanted tumor cell lines all suggest that the tumors 

result from transformation of cells committed to the bone lineage. Thus, we asked whether 
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the cultured tumor cells retained their ability to differentiate into bone in vitro. For these 

experiments, we allowed the tumor cells to reach confluence and then cultured them in 

osteogenic induction media. DKO-OS-985 (Fig. 3), DKO-OS-2380, and DKO-OS-2674 

(data not shown) all gave similar results: The bone differentiation program was rapidly 

activated as judged by the detection of bone matrix by Alizarin Red staining and by the 

expression of key bone differentiation markers. Notably, the OS cell lines all retained a 

large number of proliferating cells throughout the differentiation time course, as assessed 

by BrdU incorporation (Fig. 3 and data not shown). In contrast, wild-type osteoblast and 

MSC preparations consistently stopped proliferating before they produced bone matrix 

(data not shown). The OS cells lines displayed one other unexpected phenotype: Some of 

the cells in bone differentiation media adopted the adipogenic fate, as judged by Oil Red O 

staining for lipid droplets (Fig. 3). Consistent with this finding, adipocyte differentiation 

markers were induced in these cells (Fig. 3). To explore adipocyte differentiation further, we 

cultured the tumor cells in adipogenic differentiation media (Fig. 3). Under these conditions, 

a significant fraction of the cells differentiated into adipocytes, as confirmed by both Oil 

Red O staining and gene expression analysis of adipocyte differentiation markers (Fig. 3). 

Notably, these cells also expressed bone differentiation markers. They did not stain with 

Alizarin Red, but this is likely because of the absence of inorganic phosphate (a 

component of osteogenic but not adipogenic differentiation media), which is essential for 

formation of the mineralized bone matrix. Contrary to normal adipogenesis, proliferating 

cells persisted throughout the differentiation time course. Thus, for both bone and fat 

differentiation, the normal link between differentiation stimuli and cell cycle exit is disrupted  
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Figure 3. Osteosarcoma cells lines are multipotent in vitro. 
 
DKO-OS-985 cells were induced to differentiate into the bone (Left) and fat (Right) lineages 
and assayed at the indicated time points (days). Mineral deposits were stained with Alizarin 
Red (AR) as a marker for osteogenic differentiation. Oil-Red O (ORO) was used to stain 
lipid droplet accumulation during adipogenic induction. Cells were pulsed with BrdU to 
determine the proliferative status during differentiation. Expression of differentiation 
markers for bone and fat was determined by qRT-PCR. 
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in these OS cell lines. Finally, preliminary studies suggest that the OS cell lines can also be 

induced to differentiate into cartilage-producing chondrocytes when cultured in 

chondrogenic media (data not shown). Taken together, these data suggest that the DKO-

OS cell lines possess characteristics reminiscent of MSCs/mesenchymal progenitor cells 

(MPCs). 

Osteosarcoma Cell Lines Express Sca-1, a Marker of Early Mesenchymal Progenitors, 
and This Correlates with Their Tumorigenic Potential. 

 

Given the multipotency of the OS cell lines, we tested them for the expression of a 

known MSC/MPC marker, Sca-1. We found that a significant fraction of the DKO-OS-985, 

DKO-OS-2380, and DKO-OS-2674 cells expressed Sca-1 (Fig. 4A and data not shown). 

We then asked whether the presence or absence of Sca-1 influenced the tumorigenicity of 

the OS cell lines. To answer this question, we used FACS to isolate populations of DKO-

OS-985 that had either high or low/no Sca-1 expression and were all CD45− (to eliminate 

any hematopoietic stem cells) and assayed their tumorigenicity by s.c. injection in 

immunocompromised mice. In one experiment, tumors arose only from the Sca-1high 

population (Table S3). In another experiment, the Sca-1high cells produced a much larger 

tumor than the Sca-1low/− cells (Fig. 4B). Therefore, the tumorigenicity of the OS cell lines 

correlates with the presence of the Sca-1 marker. 

Given this finding, we wished to establish whether the inactivation of Rb and p53 in 

Sca-1high MSC/MPC preparations is sufficient to confer tumorigenicity. For this experiment, 

we isolated stromal cells from the bone marrow of Rbc/c;p53c/c mice and placed the cells in 

culture to establish flox MSC/MPCs. After two passages, the flox MSC/MPCs were  
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Figure 4. Sca-1 expression and Rb- and p53-loss are both required for efficient 
tumorigenesis in vivo. 
 
Sca-1 expression in DKO-OS-985 and DKO-OS-2380 cell lines versus flox MSC/MPCs (A) 
or flox MSC/MPC+Ad-Cre cells, in which Rb and p53 have been inactivated, versus flox 
MSC/MPCs (C). (B) Tumors arising in immunocompromised mice injected s.c. with 105 
DKO-OS-985 cells sorted for either ScaIlow/− or ScaIhigh. (D and E) Tumors arising in 
immunocompromised mice injected s.c. with 106 flox MSC/MPC+Ad-cre stained for Alp 
expression (D) or Alizarin Red (E). Sca-1 expression in primary DKO osteosarcomas (F) and 
DKO MSC/MPCs versus flox MSC/MPCs (G). 
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infected with a Cre-expressing adenovirus and recombination of the conditional alleles was 

confirmed by PCR genotyping (data not shown). Untreated and recombined (flox 

MSC/MPC+Ad-Cre) MSC/MPCs were briefly expanded to yield sufficient cells for s.c. 

injection into immunocompromised mice. At this time point, the two populations were 

similarly composed of predominantly Sca-1high/CD45− cells (Fig. 4C and data not shown). 

However, whereas the wild-type flox MSC/MPCs did not form tumors, the flox 

MSC/MPC+Ad-Cre yielded tumors that stained positive for both the bone marker Alp and 

Alizarin Red (Fig. 4 D and E and Table S3). Thus, we conclude that the loss of Rb and p53 

in Sca-1high MSC/MPCs is sufficient to create osteosarcoma-initiating cells. Long-term 

passaging of the flox MSC/MPC+Ad-Cre cultures confirmed that these cells are fully 

immortalized in vitro. Furthermore, the composition of the cell population shifted over time 

to give a mixture of Sca-1high and Sca-1− cells (data not shown), indicating that division of 

the Sca-1+ tumor-initiating cells can yield Sca-1− progeny. 

The presence of Sca-1+ cells within the OS cell lines was somewhat unexpected 

because Cre expression, and therefore p53 and Rb inactivation, occurs in committed 

osteoblast precursors (i.e., cells that are presumed to be Sca-1−). To determine whether 

these Sca-1+ cells exist in the endogenous tumors, we dissociated primary osteosarcomas 

from DKOs and analyzed them directly by FACS. Importantly, Sca-1+/CD45− cells 

consistently constituted a relatively small percentage (≈1%) of the tumor, with the bulk 

consisting of Sca-1−/CD45− cells (Fig. 4F). To further explore this finding, we isolated bone 

marrow stromal cells from 6- to 10-week-old DKO mice before the presence of gross 

osteosarcomas. We placed these cells in culture and assayed the passage 1 DKO 
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MSC/MPC population by FACS. Remarkably, the majority of the DKO MSC/MPCs were 

Sca-1low/− (Fig. 4G). Notably, this cellular composition represents a clear departure from the 

properties of wild-type flox MSC/MPCs (which are predominantly Sca-1high) (Fig. 4G), and it 

more closely resembles that of the primary osteosarcoma. Thus, inactivation of Rb and 

p53 had greatly altered the properties of the bone marrow mesenchymal cells by 6–10 

weeks of age. Given the short culture time of the DKO MSC/MPC preparations, we 

conclude that the Sca-1low/− osteoprogenitors must exist in the DKO bone marrow, and 

their predominance within the culture suggests that their levels are significantly elevated 

compared with wild-type bone marrow. Additionally, the absence of Rb and p53 may help 

enable these cells to be established in culture. We believe there are two potential sources 

for the Sca-1low/− osteoprogenitors in vivo. First, they could result from the accumulation 

and expansion of Sca-1low/−-committed osteoblast precursors that were the target of Rb 

and p53 loss. Second, they could be the progeny of the DKO Sca-1+ osteoprogenitors 

that arose after the loss of Rb and p53 in the committed osteoblast. Taken together, our 

findings provide insight into the cell lineages that contribute to osteosarcoma in our model. 

First, loss of Rb and p53 occurs in committed osteoblast precursors. Second, DKO Sca-

1+ cells arise at low frequency in vivo and Sca-1 expression correlates with tumor-initiating 

capacity. Finally, the DKO Sca-1+ cells can give rise to Sca-1− progeny, and such Sca-1− 

cells constitute the bulk of the endogenous osteosarcomas. 
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DISCUSSION 
 

Mutation of Rb and p53 is associated with development of human osteosarcoma. 

We have used an Osx1-Cre transgene (Rodda & McMahon, 2006) to induce inactivation of 

these tumor suppressors in murine osteoblast precursors. Loss of Rb alone is insufficient 

to establish osteosarcoma in these animals. However, because other Rb/p53 genotypes 

are tumor prone, the lack of osteosarcomas is not because of an inability of the Cre-

expressing precursors to become tumor-initiating cells. Instead, we presume that the 

tumorigenic consequences of Rb-loss are suppressed in these cells. It seems likely that 

other pocket proteins contribute to this suppression, because chimeras generated with 

Rb;p107, but not Rb, mutant ES cells develop osteosarcomas at low frequency 

(Dannenberg et al, 2004). In addition, our data underscore the key role of p53 in 

osteosarcoma development. First, p53-loss in osteoblast precursors is sufficient to allow 

osteosarcoma formation. Second, we see robust synergy between p53 and Rb in 

tumorigenesis. The rapidity with which these mice die from osteosarcoma correlates with 

the dosage of p53 and Rb mutant alleles. Moreover, the DKO mice show a broadened 

tumor spectrum that includes hibernomas and neuroendocrine tumors and 

osteosarcomas. Indeed, these mice can develop multiple tumor types and die as early as 

4 months of age. Importantly, irrespective of the starting genotype, the osteosarcomas 

display many of the characteristics of human osteosarcomas, including a shared 

predisposition to develop tumors within the femur, a similar cellular composition, and a 

high incidence of metastases. 
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Our study also has important implications for questions regarding the 

osteosarcoma cell-of-origin. To date, much of our understanding of tumor stem cells has 

come from the study of hematological malignancies. For example, it has been shown that 

acute myeloid leukemia can arise from a committed progenitor cell (Krivtsov et al, 2006). In 

these studies, although normal progenitor cells lost the expression of self-renewal 

pathways, transformed progenitor cells “acquired” the aberrant activation of self-renewal 

pathways. The resultant tumor-initiating cells thus contained a hybrid gene expression 

program, with some elements of progenitor cells and some elements of more primitive 

stem cells. In contrast to hematopoietic tumors, very little is known about tumor-initiating 

cells in osteosarcomas. The analysis of gene expression programs in Ewing's sarcoma, a 

tumor of bone and soft tissue, revealed an expression program that resembles MSCs 

(Tirode et al, 2007). Notably, silencing or inhibiting the EWS/ETS fusion gene product in 

sarcoma cell lines released them from their undifferentiated state and permitted both 

adipocytic and osteoblastic differentiation, implying that Ewing's sarcomas retain a 

population of undifferentiated cells that resembles MSCs. However, whether these MSC-

like cells could reinitiate tumors (and thus represent a putative tumor stem-cell population), 

or conversely, whether differentiated cells lost their tumor initiating potential, was not 

established. 

Here, we show that cell-lines derived from DKO osteosarcomas can differentiate 

into at least two lineages in vitro and retain gene expression programs of multiple lineages 

even after commitment to one lineage. Thus, although these cells necessarily arise from a 

cell that expresses Osx1 (and has thus committed to the osteoblast pathway), they display 
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a capacity for multipotent differentiation. Furthermore, these cell lines are also capable of 

reinitiating secondary tumors, and this capacity correlates with their expression of Sca-1, 

an antigen that is widely recognized as a marker of stem cells/uncommitted progenitors. 

Importantly, we confirm that these Sca-1+/CD45− cells exist in the endogenous 

osteosarcomas. How do these cells arise? One possibility (Model 1) is that Sca-1 and 

Osx1 are actually coexpressed in a small fraction of cells in vivo, presumably during the 

transition from uncommitted progenitor to early osteoblast precursor. These Sca-1+/Osx1+ 

cells would represent the key target for transformation by Rb and p53. Alternatively (Model 

2), expression of Sca-1 and Osx1 is mutually exclusive, but loss of Rb and p53 in the Sca-

1−/Osx+ committed bone precursor changes the property of these cells to allow, at low 

frequency, reactivation of a stem-cell-like phenotype that includes Sca-1 expression. 

Notably, by 6–10 weeks of age, the loss of Rb and p53 has altered the properties of the 

bone marrow mesenchymal cells such that MSC/MPC preparations shift from being 

predominately Sca-1high/CD45− (wild type) to predominantly Sca-1low/−/CD45− (DKO). We 

speculate that this shift reflects the expansion of the DKO Sca-1−/Osx+ osteoblast 

precursors in vivo. Presumably, this population either already contains rare DKO Sca-

1+/Osx1+ recombinants (Model 1) or is a fertile ground for the rare dedifferentiation event 

that creates the DKO Sca-1+/Osx1+ (Model 2) cells. 

Irrespective of the mechanism by which the DKO Sca-1+/Osx1+ cells arise, they 

clearly have hybrid properties. First, they have elements of more primitive stem cells that 

allow multilineage differentiation, expression of a stem cell antigen, and tumor reinitiating 

capacity. Second, they have elements of osteoblast precursor cells, as evidenced by their 
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strong commitment to form osteosarcomas in vivo. Further experiments are required to 

understand the nature of this Sca-1+ cell population and, because Sca-1 is a murine 

marker, to translate these findings to human tumors. However, we hypothesize that these 

Sca-1+ cells represent, or at least include, the tumor-initiating cell for the osteosarcomas 

arising in this mouse model. 
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EXPERIMENTAL PROCEDURES 
 

Animal Maintenance and Histological Analyses. 

All animal procedures followed protocols approved by the Institute's Committee on 

Animal Care. The Rbc/c (Sage et al, 2003), p53c/c (Jonkers et al, 2001), and Osx1-GFP::Cre 

(Rodda & McMahon, 2006) mice were maintained on a mixed genetic background. The 

criteria for euthanizing aging animals and the preparation and staining of sections are 

described in SI Experimental Procedures. Analysis of 3D bone structure was performed by 

using high-resolution microtomographic imaging, as described in (Glatt et al, 2007). 

Analysis of Tumor Study Mice. 

The criteria for euthanasia by CO2 inhalation were a total tumor burden of 2 cm3, 

tumor ulceration/bleeding, signs of infection, respiratory distress, impaired mobility, 20% 

reduction in body weight, or general cachexia. All tissues were collected and hip bones, 

femurs and tibias were separated and fixed overnight in PBS with 3.7% formaldehyde. Soft 

tissues were transferred into 70% ethanol and dehydrated via an ethanol series before 

embedding in paraffin for sectioning. Tissues containing bone were either decalcified in 

0.46M EDTA, 2.5% Ammonium Hydroxide pH 7.2 for 2 weeks, and processed for paraffin 

sectioning or fixed, transferred directly into OCT Compound (Tissue-Tek) and frozen at  

80°C and cut at 10 µm for frozen sections. All paraffin embedded sections were cut at 4  

µm, dewaxed, and stained with H&E. Blood smears were fixed in methanol for 10 min and 

then stained with Wright’s (Sigma,WS16) and Giemsa (Sigma GS-500) stains following 

standard protocols. For Sirius red staining, sections were briefly stained with hematoxylin, 

then with 0.1% Sirius red in saturated picric acid (Electron Microscopy Sciences) for 1 h, 
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washed in 5% vol/vol glacial acetic acid, and then dehydrated in ethanol/xylene before 

mounting. For Alizarin red staining, sections were rinsed in water, placed in 2% Alizarin 

Red S (pH 4.2) for 5 min, dipped 20 times in acetone followed by acetone:xylene (1:1), and 

then mounted. For Alkaline Phosphatase staining, sections were incubated with BCIP/NBT 

solution (Sigma-Aldrich) per the manufacturer’s instructions. 

Primers for Mouse Genotyping. 

To identify the Rb conditional allele we used primer 5 lox: 5 -

CTCTAGATCCTCTCATTCTTC- 3  and primer 3 lox: 5 -CCTTGACCATAGCCCAGCAC- 3 . 

Primer Rbcre3.2 was used in conjunction with primer 5 lox to detect the recombined allele: 

5 -GGTTAATGAAGGACTGGG- 3 . To identify the p53 conditional allele we used primer 

p53A: 5 -CACAAAAACAGGTTAAACCCAG-3  and primer p53B: 5 -

AGCACATAGGAGGCAGAGAC-3 . The recombined allele was detected using primer 

p53A in conjunction with primer p53D: 5 -GAAGACAGAAAAGGGGAGGG-3 . To 

determine the presence of the Osx1-GFP::Cre transgene we used primers TGCK5 : 5 -

GCCAGGCAGGTGCCTGGACAT- 3  and Osx-10(3 ): 5 -CTCTTCATGAGGAGGACCCT- 3. 

Isolation and Analysis of OS Cell Lines and MSC/MPCs. 

Osteosarcomas were dissected, minced, filtered through a 70-µm filter, and plated 

in normal growth medium (10% FBS in DMEM, 1% P/S, l-glutamine) to generate the OS 

cell lines. Cells were passaged as they reached confluence. For differentiation into bone 

and fat, cells were plated, allowed to reach confluence, and induced to differentiate as 

described in (Mukherjee et al, 2008). For RNA purification, cells were rinsed two times with 

PBS, and RNA extraction was performed by using the RNeasy kit (Qiagen). Gene 
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expression was performed by SYBR-Green quantitative RT-PCR, using Ubiquitin mRNA to 

normalize RNA inputs. Primers used for qRT-PCR and mouse genotyping are shown in SI 

Experimental Procedures and Table S4. 

MSC/MPCs were generated as described in (Mukherjee et al, 2008). Conditional 

MSC/MPCs were infected with Ad5CMVCre-eGFP at ≈100 pfu per cell (University of Iowa 

Gene Transfer Vector Core). FACS analysis of OS and MSC/MPCs was performed on a 

FACSCalibur HTS (Becton-Dickinson) using ScaI and Cd45 antibodies (BD Pharmigen). 

For transplant assays, 105–106 unsegregated or sorted cells were injected either s.c. or 

i.v. into NOD/SCID mice. Moribund animals were euthanized, and tumors were collected 

for further experiments. 
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SUPPORTING INFORMATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. Analysis of Rb and p53 recombination in DKO osteosarcomas. 
 
PCR genotyping was used to test for the efficiency of Cre-mediated recombination. As 
controls, DNA from Rbc/c, Rbc/c;p53c/c, and Rbc/c

 ;p53c/c
  Osx-cre mice were used. DNA for 

the left three samples was extracted from ear-clips and from osteosarcoma 
cell lines for the right two samples. All the bands migrated at the expected sizes. The 
recombined (rec) bands for Rb (second row) and p53 (fourth row) correlate 
with the presence of the Osx-cre transgene (fifth row). NS, nonspecific band. 
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Fig. S2. Histological analyses of neuroendocrine tumors and hibernomas arising in 
DKO mice. 
 
(A and B) A typical neuroendocrine tumor located near the neck, showing densely packed 
cells with little cytoplasm, oval nuclei, and granular nucleoplasm surrounded by 
fibrovascular stroma. Neuroendocrine tumor cells metastasize to both the lung (C) and liver 
(D). (E and F) A neuroendocrine tumor located in the brain (arrows), likely a pinealoma. (G) 
Example of a hibernoma located on the back near the forelimbs. Hibernomas were 
comprised of sheets of malignant vacuolated cells containing polymorphic nuclei and lipid 
droplets of varying sizes, sometimes arranged in small clusters surrounded by fibrous 
stroma. In many cases, multinucleate giant cells were also present. (H) Hibernoma 
metastasis located in the lung (I) and liver (J). All sections were stained with H&E, and t 
indicates tumor. (Magnification: A, E, and G  2; B–D, F, H–J,  40.) 
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Fig. S3. Analyses of gene expression in osteosarcomas derived from Rbc/c;p53c/c;Cre+  
mice. 
 
qRT-PCR was used to assess the expression levels of the indicated genes in normal bone 
(Bone), three independent osteosarcomas (OS1–3) and, as controls, a hibernoma (Hib), 
white adipose tissue (Wat), and brown adipose tissue (Bat). (Left) mRNA profiles of genes 
associated with bone differentiation, including markers of osteoblast progenitors Runx2 
and Osterix1 (Osx); early stages of osteoblast differentiation, alkaline phosphatase (Alp), 
collagena1 (Col1); and late stages of osteoblast differentiation osteopontin (Opn) and 
osteocalcin (Oc). Osteosarcomas expressed genes associated with the osteoblast lineage, 
although, in general, with slightly lower levels of late differentiation markers. (Right) mRNA 
profiles of genes associated with adipogenesis (Pparγ, C/ebpα, and Srebp1c) and genes 
specific for brown adipose tissue (Pparγ, Ucp1, and Pgc1). 
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ABSTRACT 
 

Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to 

osteosarcoma formation. This observation and the documented interaction between the 

retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone 

development. To assess this hypothesis, we used a conditional knockout strategy to 

generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows 

that Rb inactivation causes the abnormal development and impaired ossification of several 

bones, correlating with an impairment in osteoblast differentiation. We further show that Rb 

inactivation acts to promote osteoblast differentiation in vitro and, through conditional 

analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in 

vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts 

have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the 

observed differentiation defects. Consistent with this observation, we show that the cell 

cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of 

E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that 

pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of 

E2F and consequently promoting cell cycle exit. 
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INTRODUCTION 
 

The first tumor suppressor to be cloned was the retinoblastoma gene, RB. RB is 

mutated in approximately one-third of all sporadic human tumors, but there is strong 

correlation with certain tumor types. Specifically, RB mutations are observed in almost all 

retinoblastomas (Weinberg, 1992) and also in a large percentage of osteosarcomas and 

small cell lung carcinomas. For patients who carry germ line RB mutations, osteosarcoma 

is the second most common tumor type after retinoblastoma (Gurney et al, 1995). Overall, 

>70% of osteosarcomas show a molecular change or mutation at the RB locus (Belchis et 

al, 1996; Feugeas et al, 1996). 

The gene product, pRb, belongs to a family of proteins, including p107 and p130, 

termed the pocket proteins, although only pRb has been shown to possess significant 

tumorsuppressive properties (Lipinski & Jacks, 1999). The best characterized role of pRb 

is its regulation of cell cycle progression. Overexpression of pRb causes G1 cell cycle 

arrest (Huang et al, 1988), whereas acute ablation of pRb induces cell cycle re-entry in 

quiescent cells (Sage et al, 2003). To execute its cell cycle–inhibitory function, 

hypophosphorylated pRb binds to and inhibits the E2F family of transcription factors 

(Trimarchi & Lees, 2002). During G1, pRb becomes hyperphosphorylated by the cyclin D-

cdk4/6 complex and subsequently by cyclin E-cdk2. This phosphorylation releases the 

E2Fs from pRb to induce the transcription of cellular genes essential for S phase entry and 

cell division. 

The analyses of in vivo mouse models and in vitro experiments show that pRb is 

required for the differentiation of specific tissues. In erythropoiesis, the loss of Rb results in 
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inefficient enucleation and incomplete terminal differentiation of erythroid cells (Clark et al, 

2004; Spike et al, 2004). In skeletal muscle, pRb is required for proper cell cycle exit and 

differentiation (Huh et al, 2004). Conditional deletion of Rb in the intestine causes 

increased proliferation and abnormal expression of differentiation markers (Haigis et al, 

2006; Yang & Hinds, 2007). The loss of pRb affects the normal expression of 

differentiation genes, such as β- and γ-crystallines, in the lens (Morgenbesser et al, 1994). 

These deficiencies in differentiation seem to be due, at least partially, to a defect in cell 

cycle exit, a step believed to be required in most differentiation pathways. However, this 

does not rule out the possibility that pRb contributes to differentiation in a more distinct 

and specific manner. Notably, pRb binds to NRP/B, a protein up-regulated during 

neuronal differentiation and involved in neuronal process formation (Kim et al, 1998). 

Relevant to this, other markers of neuronal differentiation are decreased in the Rb-deficient 

embryo (Lee et al, 1994). With respect to fat cells, pRb physically interacts with 

CAAT/enhancer binding protein-β, and the loss of this interaction inhibits adipocyte 

differentiation (Chen et al, 1996). 

Several studies implicate a role for pRb in osteoblast differentiation. SV40-derived 

large T-antigen, which targets the pocket proteins, prevents the differentiation of stromal 

cell lines into osteoblasts (Feuerbach et al, 1997). The adenoviral E1A 12S protein also 

represses osteoblast differentiation, and this is dependent on a functional E1A pocket 

protein-binding domain (Beck et al, 1998). Most striking is the finding that in immortalized 

cell lines, pRb physically interacts with Runx2/CBFA1, one of the transcription factors 

essential for osteoblast differentiation (Luan et al, 2007; Thomas et al, 2001). This latter 
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observation suggests that pRb may play a role in osteoblast differentiation that is 

independent of cell cycle regulation. 

Determining the role of pRb in osteoblast differentiation in vivo may ultimately 

provide some important insights concerning the high prevalence of Rb mutations in 

osteosarcoma. However, murine embryos deficient for pRb die between embryonic days 

13.5 and 15.5 (Clarke et al, 1992; Jacks et al, 1992; Lee et al, 1992). This early lethality 

has thus far precluded the study of pRb in bone development, which primarily does not 

occur until embryonic day 15.5 in mice. To circumvent this problem, we generated a 

conditional Rb mouse strain that allows pRb-deficient embryos to survive until birth. This 

mouse model has enabled us to perform in vitro and in vivo studies to determine the 

effects of pRb loss in osteoblast differentiation and bone development. 
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RESULTS 
 

pRb-Deficient Embryos Exhibit Bone Defects during Development 
 

The retinoblastoma gene, RB, is mutated in a large proportion of osteosarcomas. In 

vitro studies suggest that Rb may play a direct role in bone development (Beck et al, 1998; 

Feuerbach et al, 1997; Thomas et al, 2001), but this has not been examined in vivo. The 

germ line Rb-/- mice die in mid-gestation (between embryonic days 13.5 and 15.5), prior to 

the formation of most bones. However, recent studies show that this mid-gestational 

lethality results from a placental defect (Wenzel et al, 2007; Wu et al, 2003). Thus, we 

generated a conditional mouse strain that allows Rb mutant embryos to develop in the 

presence of a wildtype placenta. Specifically, we crossed an Rb mutant mouse line with 

loxP sites flanking the third exon of Rb (Rbc/c; (Sage et al, 2003)) with a Mox2-Cre 

transgenic line (Mox2+/Cre) that expresses the Cre recombinase in the embryo proper, but 

not in the placenta, beginning approximately at embryonic day 6.5 (Tallquist & Soriano, 

2000). The resulting Mox2+/Cre
 conditionally null Rb embryos (Rbc-/-c-) survive until birth, 

allowing us to assess pRb’s role in bone development. Importantly, we observed no 

difference between wild-type embryos or cells (Rb+/c; Mox2+/+) and heterozygous animals 

or cells (Rb+/c
 ;Mox2+/Cre) in any of our in vivo or in vitro experiments, and therefore have 

used wild-type animals as controls in our study. 

Initially, we examined skeletons of wild-type and Rbc-/c-
 embryos at embryonic day 

17.5 by alizarin red staining of bone and Alcian blue staining of cartilage. Compared with 

wild-type littermate controls, the embryonic day 17.5 Rbc-/c-
 embryos displayed less 

ossification in a variety of bones (Fig. 1). These include the frontal and parietal calvarial 
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bones of the skull (Fig. 1A) that arise through intramembranous ossification and the hyoid 

bone (Fig. 1B) that develops by endochondral ossification. These defects were partially 

penetrant, as 9 of 13 Rbc-/c-
   embryos exhibited the decreased ossification. Moreover, other 

bones in the Rbc-/c-
 embryos, including the pterygoid bone and palatine process in the head 

and the xiphoid process of the sternum, were appropriately ossified but showed an 

abnormal structure (Fig. 1C and D). These abnormal structures were observed in all 13 

Rbc-/c-
    embryos examined. Finally, several other bones such as the long bones of the 

forelimbs and hind limbs did not exhibit any differing phenotypes between the Rbc-/c-
 and 

wild-type embryos. It is possible that certain embryonic bones, such as the limbs, are less 

susceptible to the effects of Rb loss than others, perhaps due to the compensation effects 

of p107 and p130. Alternatively, the Mox2-Cre transgene may be less efficient in some 

settings. 

To further explore the defects that were observed in the Rbc-/c-
 embryos, we 

examined the skeletons of mutant embryos at other developmental stages. At earlier time 

points, embryonic days 15.5 and 16.5, the Rbc-/c-
 embryos displayed all of the bone 

defects described above (data not shown). At the later time points, embryonic days 18.5 

and 19.5/birth, the phenotype was altered somewhat: we still observed aberrantly 

developed bones, such as the pterygoid, palatine process, and xiphoid process (Fig. 1C 

and D; data not shown) with nearly complete penetrance (seven of eight embryonic day 

18.5 Rbc-/c-
 embryos). However, we observed a similar alizarin red staining in the calvaria 

and hyoid bone of Rbc-/c-
 embryos versus wild-type littermate controls (Fig. 1A and B; data  
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Figure 1. Deletion of Rb causes defects in embryonic bone development. 
 
A to D. Alizarin red (bone) and Alcian blue (cartilage) staining of embryos. Embryonic day 
17.5 Rbc−/c− mice exhibit less ossification in the cranium (A) and hyoid bone (B). Bar, the 
difference in hyoid bone ossification at embryonic day 17.5 (B). Rbc−/c− embryos at 
embryonic days 17.5 and 18.5 display aberrant formation of bones in the head (ventral 
view of head in C) and sternum (D). The aberrantly shaped or missing palatine process in 
the Rbc−/c− embryos is circled in C. E. Pregnant mothers were injected at embryonic day 18 
with calcein for 12 h. Coronal sections of the frontal bone of embryonic day 18.5 mice 
were analyzed for calcein incorporation. Rbc−/c− embryos incorporate less calcein than their 
wild-type littermates. Original magnification, ×2. The distance from the front of calcein 
incorporation (arrow) to the midline of the suture was measured in nine Rbc−/c− and nine 
wild-type embryo sections. Columns, mean; bars, 1 SD; *, P < 0.001, statistically 
significant difference. Abbreviations: fr, frontal bone; pa, parietal bone; pp, palatine 
process; pt, pterygoid bone; xp, xiphoid process. WT, Rb+/c;Mox2+/+; Rb, Rbc−/c−;Mox2+/Cre. 
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not shown). We considered two explanations for this latter observation. The first possibility 

was that pRb loss initially impaired or delayed bone differentiation, but this defect was then 

corrected by acceleration in the rate of bone deposition after embryonic day 17.5. The 

second possibility was that pRb loss impaired bone differentiation at all developmental 

stages, but this impairment was not apparent at later time points because the alizarin red 

detection method is more qualitative than quantitative. In other words, by embryonic day 

18.5, there was some ossification in the appropriate regions of the Rbc-/c-
 calvaria and 

hyoid bone but the level of deposited bone was still lower than in the wild-type controls. To 

distinguish between these two possibilities, we directly assessed the rate of new bone 

formation after embryonic day 18.5 using calcein incorporation. Calcein is a fluorescent 

compound that can be injected into an animal and is then incorporated into newly forming 

bones. We analyzed the amount of calcein incorporation into the frontal bone of embryonic 

day 18.5 embryos 12 hours after the calcein injection of pregnant females. Notably, the 

Rbc-/c-
 frontal bones incorporated significantly less calcein compared with wild-type 

littermates (Fig. 1E). Similar results were obtained when calcein was injected 12 hours prior 

to birth (data not shown). These data indicate that pRb loss does not cause an 

acceleration in frontal bone formation in the late stages of gestation. Instead, the rate of 

ossification remains considerably lower than that observed in wild-type embryos. Taken 

together, our data indicate that the loss of pRb causes a defect in the rate of ossification 

and/or proper formation of several bones throughout embryonic skeletal development. 
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The Loss of pRb Affects an Early Step in the Differentiation of Osteoblasts In vivo 
 

Notably, pRb loss impairs the development of bones that arise through two distinct 

mechanisms, termed endochondral (e.g., the hyoid) and intramembranous (e.g., the 

calvaria) ossification. The former is influenced by three cell types: chondrocytes, which 

form an essential cartilage template; osteoblasts, which differentiate to secrete the bone 

matrix; and osteoclasts, which oppose bone formation by degrading and reabsorbing 

bone. In contrast, intramembranous ossification is influenced by osteoblasts and 

osteoclasts but occurs in a cartilage-independent manner. This fact, along with the 

apparently normal development of the cartilage skeleton within Rbc-/c-
 embryos (Fig. 1B-D; 

data not shown), suggests that a chondrocyte defect cannot fully account for the defective 

bone development. Therefore, we examined both osteoblast and osteoclast function. To 

assess osteoclast levels, we screened the frontal bones of embryonic day 17.5 embryos 

for the presence of tartrate-resistant acid phosphatase activity, an osteoclast specific 

marker. There were no active osteoclasts present in either the wild-type or the Rbc-/c-
 frontal 

bones (Supplementary Fig. S1). Thus, the decreased ossification in Rbc-/c-
 embryos is likely 

not due to either cartilage defects or increased osteoclast activity. 

Given these findings, we next screened embryonic day 17.5 frontal bones for the 

presence of osteoblast-specific markers. Two early markers of differentiating osteoblasts 

are alkaline phosphatase (ALP) activity and Collagen1a1 (Col1) mRNA expression. The 

activity and expression, respectively, of these two markers were significantly decreased in 

the Rbc-/c-
 frontal bone compared with those in wild-type sections (Fig. 2). Moreover, the 

expression levels of osteopontin (OPN), an early to mid-differentiation marker, were also  
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Figure 2. pRb-deficient frontal bones display decreased levels of osteoblast markers.  
 
Coronal sections of frontal bones from embryonic day 17.5 embryos were assessed by 
histochemical analysis of alkaline phosphatase activity (left column) and in situ analysis of 
Collagen1a1 mRNA (right column). Rbc−/c− frontal bone sections (bottom row) exhibit 
decreased levels of both markers compared with wild-type (top row). Original 
magnification, ×2. The distance from the front of activity or expression (arrows) to the 
midline of the suture was measured in at least 8 embryo pairs for Col1 and in 12 pairs for 
ALP. Columns, mean; bars, 1 SD; *, P < 0.01, statistically significant difference. WT, 
Rb+/c;Mox2+/+; Rb, Rbc−/c−;Mox2+/Cre. 
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typically downregulated in the Rbc-/c-
 embryos relative to wild-type controls (data not 

shown). These data indicate that osteoblast differentiation is perturbed in Rbc-/c-
 embryos at 

the earliest stages of the pathway. 

pRb-Deficient Osteoblasts Differentiate to a Greater Extent than Wild-type Cells In vitro 
 

Our in vivo data show that an early step in osteoblast differentiation is affected. One 

possibility is that pRb regulates osteoblast differentiation directly. For example, it has been 

reported previously that pRb can interact with and co-activate Runx2/CBFA1, one of the 

transcription factors essential for osteoblast differentiation (Luan et al, 2007; Thomas et al, 

2001). To further dissect the role of pRb in osteoblast differentiation, we used a well-

defined and often used in vitro osteoblast differentiation system. Specifically, primary cells 

were isolated from the calvaria of wild-type and Rbc-/c-
 embryos and expanded. Two 

hundred and fifty thousand cells were plated onto 3-cm tissue culture dishes and then 

induced to differentiate upon confluency. In this system, bone-like calcium deposits are 

secreted by fully differentiated osteoblasts and can be analyzed by alizarin red staining. 

Based on our in vivo data and previous in vitro differentiation studies with fibroblasts 

(Thomas et al, 2001), we anticipated that Rbc-/c-
 osteoblasts would differentiate to a lesser 

extent than wild-type cells. Contrary to this hypothesis, however, the Rbc-/c-
 osteoblasts 

secreted a greater number of calcium deposits than wild-type osteoblasts based on the 

alizarin red staining (Fig. 3A). 

We then used quantitative real-time PCR (RT-PCR) to analyze the mRNA levels of 

several osteoblast markers during the differentiation of these cells. Although the  
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Figure 3. Rbc−/c− primary osteoblasts differentiate to a greater extent than wild-type. 
 
A. Terminal differentiation of primary calvarial osteoblasts was determined by alizarin red 
staining of secreted calcium deposits from 0 to 35 d. Rbc−/c− osteoblasts (bottom row) 
secrete a greater number of calcium deposits than wild-type osteoblasts (top row). B. 
Quantitative RT-PCR results of bone marker expression levels from wild-type (red columns) 
and Rbc−/c− (blue columns) osteoblasts during differentiation. Rbc−/c− osteoblasts express 
greater mRNA levels of Runx2, osterix, osteopontin, and osteocalcin but not alkaline 
phosphatase or Collagen1a1 compared with wild-type osteoblasts. Ubiquitin was used as 
an internal control to normalize for RNA levels within the samples. Each time point is an 
average of four reactions. Columns, results from a representative littermate pair; bars, 1 
SD. WT, Rb+/c;Mox2+/+; Rb, Rbc−/c−;Mox2+/Cre. C. Rbc/c primary calvarial osteoblasts were 
infected with adenovirus expressing either the Cre recombinase enzyme or green 
fluorescent protein 2 d prior to differentiation. Terminal differentiation was assessed by 
alizarin red staining. Rbc/c osteoblasts acutely ablated for pRb (bottom row) secrete a 
greater number of calcium deposits than control-infected osteoblasts (top row). D. 
Quantitative RT-PCR analysis done as described in B. Osteoblasts acutely ablated for pRb 
(blue columns) express greater mRNA levels of Runx2, osterix, osteopontin, and 
osteocalcin but not alkaline phosphatase or Collagen1a1 compared with control-infected 
osteoblasts (red columns). 
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transcriptional levels of Alp and Col1 were unchanged, the Rbc-/c-
 osteoblasts exhibited 

significantly greater levels of expression for several other osteoblast genes compared with 

the wild-type cells (Fig. 3B). Notably, Runx2 and osterix (OSX), two transcription factors 

that are necessary to induce osteoblast differentiation (Ducy et al, 1997; Nakashima et al, 

2002; Otto et al, 1997), were up-regulated in the Rbc-/c-
 cells from the earliest stages of the 

differentiation process (Fig. 3B). Runx2 and OSX have been shown to induce the 

transcription of downstream osteoblast differentiation genes (Ducy et al, 1997; Nakashima 

et al, 2002; Wang et al, 2006). In accordance with these findings, we observed the 

increased expression of the early/mid- and late-differentiation markers, osteopontin (OPN) 

and osteocalcin (OC), respectively, in the Rbc-/c-
 osteoblasts. Together, these data suggest 

that osteoblasts deficient for pRb differentiate to a greater extent than wildtype cells in 

vitro, and this correlates with the increased transcriptional levels of Runx2, OSX, and their 

downstream targets. 

Acute Ablation of pRb Promotes the Differentiation of Osteoblasts In vitro 
 

The wildtype and Rbc-/c-
   osteoblasts were prepared on embryonic day 17.5, when 

there was a significant difference in the degree of calvarial differentiation (Fig. 1A). This 

raised the possibility that the increased in vitro differentiation of the Rbc-/c-
 versus wildtype 

cells simply reflected the presence of a larger pool of progenitor osteoblasts in the Rbc-/c-
 

versus wildtype calvaria. To address this hypothesis, we isolated conditional Rbc/c 

osteoblasts. These cells were brought to confluence and then infected with either a control 

adenovirus containing green fluorescent protein (Adeno-GFP) or one expressing the Cre 



Appendix B: The Retinoblastoma Protein Tumor Suppressor Is Important for Appropriate Osteoblast Differentiation and Bone 
Development 
 

  203 

recombinase gene (Adeno-Cre). This strategy yielded parallel populations of control and 

Rbc-/c-
 osteoblasts that had identical starting numbers of progenitors. Consistent with 

previous studies (Sage et al, 2003), we found that the Adeno-Cre was sufficient to acutely 

ablate pRb within 2 days of infection (data not shown). Therefore, 2 days post-infection 

(denoted day 0 in Figs. 3C and D and Figs. 4D-F) we placed the confluent wildtype and 

Rbc-/c-
 cells in differentiation media. The acutely ablated Rbc-/c-osteoblasts differentiated to a 

greater extent than the control-infected Rbc/c cells, just as we had observed with the germ 

line Rbc-/c-
   osteoblasts (compare Fig. 3C and A). Moreover, the acutely ablated Rbc-/c-cells 

expressed increased levels of Runx2, OSX, OPN, and OC relative to the Adeno-GFP–

infected cells in a comparable manner to that observed in the germ line Rbc-/c-osteoblasts 

(compare Figs. 3D and B). These data show that loss of pRb acts in an intrinsic manner to 

increase the differentiation of primary osteoblast cultures in vitro. 

Depletion of pRb in Progenitor Osteoblasts Causes Cell Cycle Exit Defects In vitro 
 

We aimed to understand the molecular changes that accompanied this increased 

differentiation. One possibility is that pRb possesses a cell cycle–independent repressive 

function in osteoblast differentiation. In this manner, loss of pRb would allow for the 

deregulated increase in osteoblast genes such as Runx2 and OSX. We have attempted 

several experiments to test the potential contribution of this interaction, including 

conducting chromatin immunoprecipitations of Runx2 at osteoblast-specific promoters in 

wildtype, Rbc-/c-, and Rbc /c; E2f1-/- calvarial preparations (data not shown). These studies 

did not yield any evidence that Rb loss altered Runx2 promoter -binding activity. Moreover, 
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we did not detect any pRb binding to the Runx2 and OSX promoters. This latter, negative 

chromatin immunoprecipitation result is not particularly informative because pRb chromatin 

immunoprecipitation works poorly in murine cells. However, the Runx2 and OSX promoter 

both lack conventional E2F binding sites. Thus, although these observations do not rule 

out a direct, repressive role for pRb in osteoblast differentiation in vitro, we have no data to 

support this model. 

A second potential cause of the observed increase in osteoblast differentiation in 

vitro upon pRb loss may be related to cell cycle defects. Notably, the increased density of 

osteoblast cultures is known to enhance their differentiation (Gerber & ap Gwynn, 2001; 

Purpura et al, 2004). We hypothesized that loss of pRb may affect the normal confluence 

arrest of the calvarial cells, leading to an increase in proliferation and consequently, an 

increase in cell density. Thus, we compared the proliferation of wildtype versus germ line 

Rbc-/c-
 cells throughout the differentiation process. At all time points, we found that a higher 

proportion of the Rbc-/c-
 osteoblast nuclei incorporated 5-bromo-2- deoxyuridine (BrdU) 

compared with the wildtype controls (Fig. 4A and B). In agreement with these findings, the 

Rbc-/c-
 osteoblasts showed elevated levels of cyclin A and cyclin E mRNAs (Fig. 4C). Finally, 

total cell counts during the initiation of differentiation showed an increase in the total 

number of cells present in Rbc-/c-
 confluent cultures compared with wildtypes (Table 1). 

Similar results in all of these assays were observed in the analyses of osteoblasts acutely 

ablated for pRb (Fig. 4D-F; Table 1). Thus, we conclude that pRb loss increases the 

proliferation, and consequently, the density of confluent osteoblast cultures, thereby 

leading to an increase in primary calvarial osteoblast differentiation in vitro. Notably, the  
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Figure 4. Confluent osteoblasts in vitro exhibit excess proliferation upon loss of pRb. 
 
A. Immunofluorescence analysis of BrdU incorporation in differentiating osteoblasts. Wild-
type (top two rows) and Rbc−/c− (bottom two rows) osteoblasts were treated with BrdU 
(green) for 24 h at the indicated time points during differentiation in vitro. Nuclei are stained 
with 4′,6-diamidino-2-phenylindole (blue). Original magnification, ×20. B. Quantitation of 
the immunofluorescence analysis in A. A minimum of 250 cells was counted from each of 
three or more separate images for each sample. A greater percentage of Rbc−/c 
osteoblasts incorporate BrdU compared with wild-type cells at all time points. C. 
Quantitative RT-PCR analysis was done as described in Fig. 3. Rbc−/c osteoblasts (blue 
columns) express greater mRNA levels of cyclin E and cyclin A relative to wild-type 
osteoblasts (red columns) during in vitro differentiation. D. Nuclei of mock-infected (top two 
rows) and acutely ablated (bottom two rows) Rbc/c osteoblasts were stained for BrdU 
(green) and 4′,6-diamidino-2-phenylindole (blue). Original magnification, ×20. E. 
Quantitation of the immunofluorescence analysis in D. A greater percentage of Rbc/c 
osteoblast nuclei acutely ablated for pRb (blue columns) stain positively for BrdUrd 
incorporation than control nuclei (red columns). F. Quantitative RT-PCR shows that acutely 
ablated Rbc/c osteoblasts (blue columns) express greater mRNA levels of cyclin E and 
cyclin A compared with mock-infected osteoblasts (red columns). Bars, 1 SD. *, P < 0.05, 
a statistically significant difference. WT, Rb+/c;Mox2+/+; Rb, Rbc−/c−;Mox2+/Cre. 
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increased proliferation in Rbc /c cultures is not perpetual, as the percentage of proliferating 

cells does decrease to almost zero by day 35 (Fig. 4; data not shown). This suggests that 

compensatory mechanisms, perhaps through the pocket proteins p107 and p130, exist to 

eventually enable cell cycle exit in the osteoblasts. 

The Loss of Rb Prevents Osteoblasts from Properly Exiting the Cell Cycle In vivo 
 

Having established a likely basis for the increased differentiation of pRb-deficient 

osteoblasts in vitro, we wished to determine whether a similar mechanism could explain 

the impaired bone development in vivo. Specifically, because appropriate cell cycle exit is 

important for the early stages of osteoblast differentiation in vivo, we hypothesized that 

pRb loss might impair cell cycle exit in vivo and cause a negative effect on bone formation. 

Thus, to assess cell cycle progression in vivo, we analyzed coronal sections of embryonic 

day 17.5 frontal bones for BrdU, which incorporates into newly synthesized DNA during S 

phase. Embryos deficient for pRb exhibited a significantly greater percentage of osteoblast 

nuclei that incorporated BrdU compared with the wildtype embryos (Fig. 5A). We also 

tested frontal bone sections for protein expression of proliferating cell nuclear antigen 

(PCNA), a known proliferation marker. Consistent with our BrdU data, we observed a 

greater number of Rbc-/c-
 osteoblast nuclei that stained positively for PCNA compared with 

wildtype nuclei (Fig. 5B). Interestingly, at the apex of the frontal bone (the midline of the 

skill) where most of the osteoprogenitors were still proliferating, we did not observe a 

difference in BrdU or PCNA staining between the wildtype and Rbc-/c-
 embryos (data not 

shown). This would indicate that the loss of pRb does not affect the proliferation rate of  
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Figure 5. pRb-deficient osteoblasts do not properly exit the cell cycle in vivo. 
 
A and B. Immunohistochemical analysis of BrdU incorporation (A) or PCNA protein 
expression (B) in coronal sections of frontal bones from embryonic day 17.5 embryos. 
Pregnant females were injected with BrdU for 2 h. Rbc−/c− frontal bones (bottom) exhibit a 
greater number of nuclei positively staining for BrdU or PCNA than wild-type littermates 
(top). Original magnification, ×20. Frontal bones (bar). Columns, quantified results from four 
pairs of Rbc−/c− and wild-type frontal bone sections; bars, 1 SD; *, P < 0.05, statistically 
significant difference. C. Quantitative RT-PCR analysis of cyclin E (top) and cyclin A 
(bottom) mRNA levels from Rbc−/c− and control littermates. mRNA was isolated from the 
calvaria of embryonic day 16.5 embryos. Analysis done as described in Fig. 3. Rbc−/c− 

calvaria (blue columns) express increased levels of cyclin A and cyclin E relative to wild-
type littermates (red columns). Bars, 1 SD. Abbreviations: br, brain; de, dermis; fr, frontal 
bone. WT, Rb+/c;Mox2+/+; Rb, Rbc−/c−;Mox2+/Cre. 
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osteoprogenitors but does affect their ability to properly exit the cell cycle and to remain 

outside of the cell cycle. We did not observe any proliferative differences between Rbc-/c-

and wildtype forelimbs (data not shown), corresponding with our finding that there was no 

difference in the forelimbs based on alizarin red staining. 

We also extracted RNA from the calvaria of Rbc-/c-
  and wildtype embryos to examine 

the transcript levels of cyclin A and cyclin E. Like PCNA, these transcripts are specifically 

induced in proliferating cells. Rbc-/c-
 calvaria typically expressed greater mRNA levels of 

cyclin A and cyclin E than wildtype skulls (Fig. 5C). Importantly, the unrestricted cell cycle 

progression in Rbc-/c-
 frontal bones was not associated with an apoptotic response, as 

determined by terminal nucleotidyl transferase–mediated nick end labeling staining (data 

not shown). These data suggest that pRb deficiency impairs osteoblasts from exiting the 

cell cycle in vivo at the appropriate developmental stage. 

Deletion of E2f1 Suppresses the Cell Cycle and Ossification Defects in Rbc-/c-
 Embryos 

 

The cell cycle regulatory activity of pRb is known to be at least partially dependent 

on its ability to suppress the E2F transcription factors and prevent the activation of genes 

such as PCNA, cyclin A and cyclin E that control cell cycle progression. E2F1 is an 

archetypal member of the E2F family. It is bound to and inhibited by pRb in arrested cells, 

and it contributes to the activation of target genes once pRb is inactivated by either 

mitogenic signaling in wildtype cells or genetic lesions in tumor cells. Previous work has 

shown that the loss of E2F1 can suppress the ectopic cell cycles arising from the loss of 

Rb in other tissues (Tsai et al, 1998). We found that Rb and E2f1 are both expressed in the 
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calvaria (Supplemental Fig. S2). Thus, we crossed a mouse possessing a deletion of E2f1 

into our conditional Rb model, and we then examined the compound mutant embryos to 

determine if E2F activity contributes to the excess proliferation and ossification defects 

arising in the Rbc-/c-
 embryos. 

First, we assessed the level of cellular proliferation in the embryonic osteoblasts 

through analysis of both BrdU incorporation and PCNA expression in frontal bone sections 

from embryonic day 17.5 embryos (Fig. 6A). These two assay methods yielded highly 

concordant results. First, there was no significant difference in the levels of either BrdU- or 

PCNA positive nuclei in the wildtype versus the E2f1-/-
 osteoblasts. Thus, loss of E2f1 alone 

seems insufficient to perturb osteoblast proliferation. Second, consistent with our prior 

analysis, proliferating osteoblasts were present at significantly higher levels in the Rbc-/c-
 

frontal bone compared with the wildtype and E2f1-/- controls. Finally, the deletion of E2f1 

was sufficient to almost fully suppress the excess proliferation arising in the Rbc-/c-
 embryos. 

The loss of E2f1 on its own or in the Rbc-/c-
 background did not affect proliferation at the 

apex of the frontal bone (data not shown), suggesting that the rate of progenitor 

proliferation remained unaffected. Therefore, we conclude that inappropriate activation of 

E2F1 contributes to the inability of pRb-deficient osteoprogenitors to properly exit the cell 

cycle in vivo. 

We then assessed whether E2f1 inactivation modulated the Rbc-/c-
 embryonic 

skeletal defects observed at embryonic day 17.5 (Fig. 6B). Consistent with the absence of 

any proliferation defects, the deletion of E2f1 alone did not cause any detectable defects in 

skeletal development. As observed previously, Rb deficiency caused decreased  
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Figure 6. Deletion of E2f1 suppresses the bone defects due to the loss of pRb. 

A. Immunohistochemical analysis of BrdU incorporation (top) or PCNA protein expression 
(bottom) in coronal sections of frontal bones from embryonic day 17.5 embryos, done with 
four to six samples of each genotype. Deletion of E2f1 suppresses the increased BrdU 
incorporation and PCNA expression observed in Rbc−/c− frontal bone osteoblasts. B. 
Skeletal staining of embryonic day 17.5 embryos as described in Fig. 1. Deletion of E2f1 
suppresses the decreased ossification found in the Rbc−/c− calvaria (first column) and hyoid 
bone (second column). Deletion of E2f1 also suppresses the aberrant formation of the 
palatine process and pterygoid bone (third column) and xiphoid process (fourth column) 
observed in Rbc−/c− skeletons. An aberrant palatine process in the Rbc−/c− and a suppressed 
palatine process in the double mutant are circled (third column). Bars, 1 SD; *, P < 0.05, 
statistically significant difference between Rbc−/c− and wild-type, E2f1−/−, or Rbc−/c−;E2f1−/−. 
WT, Rb+/c; Mox2+/+; E2f1+/+; E2f1, Rb+/c; Mox2+/+; E2f1−/−; Rb, Rbc−/c−; Mox2+/Cre; E2f1+/+; 
RbE2f1, Rbc−/c−; Mox2+/Cre;E2f1−/−. 
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ossification in the skull and hyoid, and aberrant formation of the xiphoid process, palatine 

process, and pterygoid bone. Notably, in almost all E2f1-/-;Rbc-/c-
 double mutant embryos 

(12of 13), the reduced ossification was partially or completely ameliorated (Fig. 6B, first 

two columns). Moreover, f40% (5 of 13) of the double mutants exhibited normal formation 

of the palatine process, pterygoid bone, and the xiphoid process was completely normal 

(Fig. 6B, latter two columns). Taken together, these data show that deletion of Rb causes 

defects in embryonic skeletal development that are due, at least in part, to the 

inappropriate release of E2F1. 
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DISCUSSION 
 

The RB locus is mutated or altered in >70% of all osteosarcomas (Belchis et al, 

1996; Feugeas et al, 1996). Moreover, several in vitro studies implicate pRb and the 

pocket proteins in osteoblast differentiation (Beck et al, 1998; Feuerbach et al, 1997; Luan 

et al, 2007; Thomas et al, 2001). Given these observations, we used the Mox2+/Cre 

transgene to conditionally inactivate Rb in the Rbc/c embryo proper, but not in the placenta, 

and thereby generate pRb deficient embryos that survive until birth. This conditional 

strategy allows us to assess pRb’s role in bone development in vivo and primary 

osteoblast differentiation in vitro. Our analyses reveal a role for pRb in the promotion of 

osteogenesis via the regulation of proper cell cycle exit. 

In the developing embryo, the loss of pRb impaired bone formation in a manner that 

caused two types of defects. Some bones, such as the pterygoid bone, palatine process, 

and xiphoid process, developed abnormally and were misshapen, whereas the skull and 

hyoid bone exhibited decreased bone formation. The decreased ossification in the Rbc-/c 

frontal bone was accompanied by reduced alkaline phosphatase activity and decreased 

levels of Col1 and OPN mRNA. Previous studies have shown that deletion of the pRb-

related proteins, p107 and p130, or overexpression of E2F1 affect chondrocyte 

differentiation and development (Cobrinik et al, 1996; Rossi et al, 2002; Scheijen et al, 

2003). Although our data do not rule out a role for pRb in cartilage development, they 

clearly show that pRb plays a role in bone development that is independent of 

chondrocytes. Specifically, Rbc-/c-
 skeletons did not show any apparent defects in cartilage 

formation, and several of the affected bones formed via intramembranous ossification, a 
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process that does not involve chondrocytes. Moreover, the bone defects in the Rbc-/c-
 

frontal bone, and presumably in other affected bones, were not the result of increased 

osteoclast activity or apoptosis. Therefore, our data suggest that the loss of Rb impairs 

osteoblast differentiation in vivo at the earliest stages of the pathway. 

One caveat of the in vivo studies is that they do not prove that pRb’s requirement 

for osteoblast differentiation is cell autonomous. To address this issue, we determined how 

the loss of pRb affects the differentiation of primary osteoblasts in vitro. Given our in vivo 

defects and the prior observation that pRb-deficient MEFs were impaired in their ability to 

undergo osteogenesis (Thomas et al, 2001), we anticipated that primary osteoblasts 

isolated from Rbc-/c embryos would display an impaired differentiation phenotype in vitro. 

However, the exact opposite was observed: the Rbc-/c-
 osteoblasts differentiated to a 

greater extent than the wildtype controls. Importantly, we found that the acute ablation of 

Rb in confluent osteoblasts was sufficient to trigger increased differentiation. These data 

show that loss of pRb acts in a cell autonomous manner to promote osteoblast 

differentiation in vitro. 

Our study shows that two distinct molecular changes accompany the improved in 

vitro differentiation upon loss of pRb. First, we observe a dramatic up-regulation of 

osteoblast genes, such as Runx2 and OSX in differentiating pRb-deficient osteoblasts to 

levels that are sometimes not reached by wildtype cells. At this time, we do not know if the 

extreme up-regulation in Rbc-/c-
 cultures is due to an increased ability of individual cells to 

induce osteoblast genes, an increased percentage of terminally differentiated cells in the 

culture, or both. Interestingly, in these in vitro assays, pRb loss clearly induces some (e.g., 
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Runx2 and OSX) but not all (ALP and Col1) osteoblast genes. The reason for this 

differential response is unclear. However, we note that even prior to the induction of 

differentiation, the ALP and Col1 mRNAs are present at much higher levels in the cultured 

osteoblasts than in the endogenous calveria. This suggests that the in vitro culture 

somehow induces ALP and Col1 expression or that it selects for a subpopulation of the 

calverial cells that are committed to the osteoblast lineage and therefore have high ALP 

and Col1 expression. 

The second molecular change that accompanies the improved in vitro differentiation 

of pRb-deficient osteoblasts is an increase in the fraction of cells that are proliferating and 

the sustained presence of proliferating cells at later time points in the differentiation 

process. Because the density of osteoblasts has been reported to correlate positively with 

their ability to differentiate in vitro (Gerber & ap Gwynn, 2001; Purpura et al, 2004), we 

believe that the increased proliferation of the pRb-deficient osteoblasts contributes to their 

improved differentiation by increasing the density of the confluent cells. We tried two 

distinct approaches to directly test this model. First, we attempted to maintain the Rbc/c 

osteoblasts in the presence of anti-proliferative drugs prior to the ablation of pRb. 

However, the experiment requires several days of drug treatment to which the cells faired 

poorly. Second, because our in vivo data indicate that deletion of E2f1 suppresses excess 

proliferation due to the loss of Rb, we analyzed the consequence of E2f1 deficiency in 

acutely ablated and germ line–deleted Rbc-/c osteoblasts. Unfortunately, the loss of E2f1 did 

not suppress the cell cycle defects of osteoblasts in this in vitro setting. Thus, we have 

been unable to prove that a cell cycle exit defect can account for the increased 
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differentiation of Rb-depleted osteoblasts in vitro. Despite this limitation, our in vivo studies 

provide strong support for this model. Specifically, we find that osteoblasts of the Rbc-/c-
 

frontal bone fail to exit the cell cycle at the appropriate stage of development, and we can 

completely suppress both the proliferation defect and the decreased ossification of the 

skull and hyoid bones through inactivation of E2f1, a known pRb target and proliferation 

inducer. 

If a cell cycle exit defect is the major underlying cause of both the in vitro and in vivo 

defects, how does this account for the apparently opposing effects on bone differentiation 

seen in the two settings? One possibility is that this is an aberrant consequence of the in 

vitro culture that somehow enables the Rb-deficient cells to overcome their differentiation 

defect. The alternative possibility, which we favor, is that pRb loss affects cells at early and 

late stages of osteoblast differentiation in a differential manner, and the in vivo and the in 

vitro studies highlight the defects in these distinct populations. Specifically, we hypothesize 

that pRb loss leads to ectopic proliferation that prevents early progenitors from entering 

osteoblast differentiation but concomitantly enhances the differentiation of late stage 

osteoblasts. In this model, the in vitro cultures could favor analysis of the late stage 

osteoblasts, thereby showing that pRb loss promotes osteoblast differentiation. In 

contrast, the in vivo phenotype would be more complex. Specifically, our data clearly show 

ectopic proliferation of Rbc-/c-
 cells in the developing frontal bone, but we cannot know 

whether these represent uncommitted early progenitor cells or differentiating osteoblasts 

that are proliferating inappropriately. In fact, we believe that both populations coexist. In 

this event, at early time points in the bone differentiation process, the shortage of 
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committed osteoprogenitors would initially impair bone formation—exactly as we observe 

in the late stage embryos. However, as the committed osteoblasts accumulate, their 

increased proliferation would eventually allow, and perhaps ultimately enhance, bone 

differentiation—as we observe in the in vitro assays. Unfortunately, because the Rbc-/c-
 

animals die at birth, we cannot determine whether their osteoblast density and bone 

deposition ultimately exceeds that seen in wildtype animals. 

There is considerable evidence to suggest that pRb plays a direct role in regulating 

the transcriptional programs that control osteoblast differentiation. Most compelling is the 

finding that pRb can positively regulate Runx2 in vitro (Luan et al, 2007; Thomas et al, 

2001). Our findings do not discount the possibility that pRb plays a direct role in bone 

differentiation through Runx2, or some other mechanism, or that this might contribute to 

the bone defects we observe in vivo. However, they argue that the primary role of pRb in 

bone differentiation is to inhibit E2F1 and thereby facilitate cell cycle exit. Given that Rb 

inactivation is observed in a large proportion of osteosarcomas, it will be important to 

develop additional models that allow a comparison of the mechanisms by which loss of Rb 

affects bone development versus osteosarcoma formation. 
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EXPERIMENTAL PROCEDURES 
 

Animal Maintenance and Histologic Preparations 

The generation of Rbc/c and Mox2-Cre mice has been described previously (Sage et 

al, 2003; Tallquist & Soriano, 2000). Rbc/c and E2f1-/- mice were provided by Tyler Jacks. 

Mox2-Cre mice were purchased from The Jackson Laboratory. Gestation was dated by 

detection of a vaginal plug. Pregnant mice were injected with 10 µL/g body weight of 5 

mg/mL BrdU in PBS 2hours prior to tissue collection. For calcein incorporation, pregnant 

mice were injected with 10 µL/g body weight of 2.5 mg/mL calcein 12 or 24 hours prior to 

tissue collection. Collected embryonic tissue was fixed in 4% paraformaldehyde and 

embedded in optimal cutting temperature. Frozen sections were cut at 6 to 8 µm except 

for those for in situ analysis, which were cut at 10 to 12 µm. The morphology of the brain 

and presphenoid bone were used to ensure that equivalent planes of the frontal bone were 

analyzed in all samples. 

Histologic Analyses 

Enzymatic ALP assays were done on unfixed frozen sections. Briefly, 0.06 g of 

sodium nitrite was dissolved into 1.5 mL of water and added to 600 µL of 50 mg/mL of 

new fuchsin (Sigma) in 2mol/L of HCl. This solution was added to 210 mL of Tris buffer 

(pH 9.0). Finally, 1.8 mL of 83.3 mg/mL naphthol AS-Bi-phosphate (Sigma) in DMF (Sigma) 

was added. Sections were incubated with this overall solution for 15 min, washed in PBS 

and counterstained with hematoxylin. Immunohistochemical analyses were done using 

antibodies against BrdU (1:50 347580; BD Biosciences) and PCNA (1:2,000 sc56; Santa 

Cruz) as previously described (Danielian et al, 2007). For Collagen1a1 in situ, digoxigenin-
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11-UTP–labeled single-strand riboprobe was prepared (probe was a gift from B. Olsen), 

and hybridization was carried out overnight in 50% formamide at 55° C. Washing, 

detection, staining, and mounting of slides were carried out as described previously 

(Bohme et al, 1995). Statistical significance was determined using the two-sample 

Student’s t test with two-tailed distribution and unequal variance. 

Skeletal Staining 

Embryos were sacrificed, skinned, and eviscerated. The remaining tissue was fixed 

in 95% ethanol for 4 days, transferred to acetone for 3 days, and subsequently transferred 

to staining solution [final volume of 0.015% Alcian blue 8GX (Sigma), 0.005% alizarin red S 

(Sigma), and 5% glacial acetic acid in ethanol] at 37° C for 2 days and at room 

temperature for a 3rd day. Tissue was cleared in 1% potassium hydroxide for several days 

and ultimately stored in glycerol. 

Calvarial Preparations and Culture 

Calvaria from embryonic day 17.5 embryos were removed, treated with several 

rounds of collagenase/trypsin digests at 37° C, and plated onto six-well plates. Cells were 

grown and expanded in αMEM with 10% fetal bovine serum and penicillin/streptomycin. 

For differentiation, 250,000 cells were plated onto 3-cm tissue culture plates. Upon 

reaching confluence, calvarial osteoblasts were treated with medium supplemented with 

50 µg/mL of ascorbic acid and 10 mmol/L of h-glycerol-phosphate. Adenovirus (University 

of Iowa Gene Transfer Vector Core) was added to the medium at 100 plaque-forming units 

per cell and washed away 24 h later. To assay for calcium deposits, plates were stained 

with 1% alizarin red S solution (pH 5.0). 
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Immunofluorescence 

For BrdU incorporation, osteoblasts were plated onto coverslips prior to achieving 

confluence. BrdU was added to the medium (final concentration of 10 µmol/L) and 

incubated for 24 h prior to 4% paraformaldehyde fixation. Antigen was detected using 

antibody against BrdU (1:50 347580; BD Biosciences) with Texas red-X goat anti-mouse 

secondary (1:1,000; Invitrogen). Statistical significance was determined using Student’s t 

test. 

Quantitative RT-PCR 

RNA was isolated from differentiation plates using the Qiagen RNeasy kit. First-

strand cDNA was transcribed from 1 µg of RNA using Superscript III reverse transcriptase 

(Invitrogen) following the instructions of the manufacturer. Quantitative RT-PCR with 20 to 

100 ng cDNA was done using SYBR Green (Applied Biosystems). Reactions were run on 

the ABI Prism 7000 Sequence Detection System and analyzed using the 7000 SDS 

software. Primers are listed in Table 2. 
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SUPPLEMENTARY FIGURES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1. Deletion of Rb in vivo does not affect osteoclast activity. 

TRAP analysis of coronal sections from wild-type and Rbc-/c- frontal bones of e17.5 
embryos.  Neither wild-type nor Rbc-/c- frontal bones exhibit osteoclasts as assessed by 
TRAP staining.  A positively stained osteoclast (arrow) within a facial bone from the same 
section as the wild-type frontal bone is shown (“+ Ctrl” and “+ Ctrl 40X”).  20X 
magnification shown except for “+ Ctrl 40X,” which is 40X magnification.  Frontal bones 
are marked with the bar.  Abbreviations: S, suture.  WT = Rb+/c;Mox2+/+, Rb = Rbc-/c-

;Mox2+/Cre. 
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Supplemental Figure 2.  Rbc-/c- calvaria display increased mRNA levels of E2f1.  

Quantitative RT-PCR analysis of Rb (left) and E2f1 (right) mRNA levels from Rbc-/c- and 
control littermates.  mRNA was isolated from the calvaria of e16.5 embryos.  Analysis 
performed as described in Figure 3.  (Left) Rb mRNA is expressed in the calvaria of E2f1-/-, 
Rb heterozygous, and wild-type embryos.  (Right) Rbc-/c- calvaria express increased levels 
of E2f1 relative to control littermates.  Error bars signify one standard deviation.   WT = 
Rb+/c;Mox2+/+;E2f1+/+, E2f1 = Rb+/c;Mox2+/+;E2f1-/-, Rb = Rbc-/c-;Mox2+/Cre;E2f1+/+. 
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Table 2. Cell numbers at Day 0 of differentiation* 

 

 Germline Conditional 
Genotype Wild-type Rbc-/c- Adeno-GFP Adeno-Cre 

Cell Count (X1000) 481 ±16.5 656 ± 14.1 483 ± 24.5 579 ± 17.6 
 

*250,000 cells were plated onto a three-cm tissue culture dish and allowed to reach 
confluency (typically four days later). For “Germline” cells, this confluency arrest constituted 
Day 0 of differentiation, and the number of cells was ascertained.  For “Conditional” cells 
(Rbc/c) at confluence, adenovirus containing either GFP or Cre recombinase was added to 
the media.  Two days after adenovirus addition (designated as Day 0 of differentiation) cells 
were counted.  Average cell counts from at least 3 separate experiments ± standard 
deviation are shown. 
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