

SUSY at ATLAS:

Getting Ready for Data

Rencontres de Moriond, 18 - 25 March, 2006

For the ATLAS Collaboration Ambreesh Gupta University of Chicago

<u>Supersymmetry</u>

Symmetry has played fundamental role in the development of particle physics

- Does nature obey a space-time symmetry that transforms fermions into bosons?
- This idea of Supersymmetry (SUSY) has tantalized physicist for 3 decades.

- Hierarchy Problem
 - -- SUSY stabilizes the Higgs mass.
- Unification of couplings
- -- SUSY unifies three couplings close to planck scale.
- One experimental question
 - Constituent of Dark Matter in the Universe?
 - -- SUSY provides a viable candidate.

LHC experiments ATLAS and CMS will probe large SUSY parameter space \rightarrow this talk on ATLAS.

SUSY@ATLAS

Atlas is a large and complex HEP detector

- Readout channels: Calorimeter (200K), Muon (1.5M) and Tracking (140M).
- Collision rate 40MHz; 23 interaction/crossing at design luminosity; ~1725 particle produced.
- ~ 10 peta-byte worth of data every year.
- Detector commissioning is under way.
- 3rd data challenge to test software and analysis setup to start soon
- It will be a new regime of distributed analysis with data and MC spread across the world.
- And, not too far in the future (mid 2007), the first beam is expected in the LHC ring.

Expected Event Rates (10³³cm⁻² sec⁻¹)

Process	Events/s	Events for 10 fb ⁻¹	<u>Total</u> statistics <u>collected</u> at previous machines by 2007
$W{\rightarrow}e\nu$	15	108	10 ⁴ LEP / 10 ⁷ Tevatron
$Z \rightarrow ee$	1.5	107	10 ⁷ LEP
tī	1	107	10 ⁴ Tevatron
$b\overline{b}$	10^{6}	$10^{12} - 10^{13}$	109 Belle/BaBar ?
H m=130 GeV	0.02	105	?
$\widetilde{g}\widetilde{g}$ m= 1 TeV	0.001	104	
Black holes	0.0001	10 ³	

- W,Z and Top will serve as calibration sample.
- Once running begins, systematics issues will quickly dominate over statistics

ATLAS SUSY Studies

In the past (ATLAS Physics Technical Design Report (TDR) 1998)

- The studies used fast simulation (physics process+parametrized detector sim.)
- Many studies that focused on discovery potential and properties of s-particle.

Now: Preperation for 1st Physics

- Studies with detailed detector simulation underway
 - SUSY events provide a good test for reconstruction and calibration.
 - Data challenge studies with specific SUSY points -- understanding the logistics of moving large data samples and analysis enviorenment.
- Strong emphasis on background estimation
 - Development of tools and techniques that can be reliably used and help in the discovery potential.
- For discovery Focus on inclusive signatures in the beginning.

Data Challenge 2 studies

DC2/Rome studies used WMAP constraint as guidance to generate samples at different SUSY points.

SUSY Signatures

- Q: What do we expect SUSY events at LHC to look like?
- A: Look at typical decay chain:

- Strongly interacting sparticles (squarks, gluinos) dominate production.
- Heavier than sleptons, gauginos etc., \rightarrow cascade decays to LSP.
- Long decay chains and large mass differences between SUSY states
 - Many high p_T objects observed (leptons, jets, b-jets).
- If R-Parity conserved LSP (lightest neutralino in mSUGRA) stable and s-particle pair produced.
 - Large E_T^{miss} signature.
- Closest equivalent SM signature $t \rightarrow Wb$.

Inclusive Signatures

SUSY events dominated by $jets + E_T^{miss} + n$ -leptons

Effective Mass variable: $M_{eff} = \Sigma |p_T^i| + E_T^{miss}$.

- discriminate SM and SUSY
- correlated with SUSY mass scale

 $M_{\text{eff}} \propto M_{\text{SUSY}} = \min(m_{\tilde{g}}, m_{\tilde{q}})$

General selection cuts -

- 2 jet with $p_T > 100 \text{ GeV}$, 4 jets with $p_T > 50 \text{ GeV}$
- $E^{T}_{MISS} > max(100 \text{ GeV}, 0.2 M_{eff})$
- Transverse spherecity $S_T > 0.2$
- No isolated muon or electron with p_T>20 GeV (0-lepton case)

SUSY Search Potential

Expected Sensitivity (TDR)

- A scan was performed in $m_0 m_{1/2}$ plane to estimate signal significance
 - -- Mass scale of 2 TeV with 10fb⁻¹
 - -- Mass scale of 1.5 TeV with 1 fb⁻¹

Some Caveats

- The studies only used statistical error
- SM background generated with parton shower
 - -- Multi-jet cross-section were low.
- Detector was simulated with parametric model (ATLFAST)
- -- Detector E_t^{miss} estimates were low. New studies to map the expected sensitivity.

 M_0 (GeV)

Backgrounds to SUSY

Main backgrounds for jets $+ E_T^{miss} + n$ -leptons

Parton showering and number of hard jets

- PS good good approximation in collinear region.
- but, PS has problem in high pt region
- hard jets not emitted in parton showering

tt(\rightarrow bbl ν | ν) + Njets tt(\rightarrow bbl ν qq) + Njets W(\rightarrow I ν) + Njets Z($\rightarrow \nu \nu$) + Njets Z($\rightarrow \tau \tau$) + Njets QCD QQ+Njets (Q=b,c semileptonic decay) QCD mlutijets (light flavor)

- hard jets should be estimated by matrix element (ME) calculation (ALPGEN)

Ambreesh Gupta

Recontres de Moriond

Parton shower vs Matrix Element

- Recent studies with ALPGEN + PYTHIA (MLM match) + ATLFAST
- Background increases by about 2-5 times.

PS vs ME (cont.)

- 1-lepton mode better than 0-lepton for S/B
 - dominant background is Top

- E^{T}_{MISS} Missing energy crucial for SUSY searches.
 - Missing energy from multiple jets can be controlled by tighter cuts.

Recontres de Moriond

Top background

Top event topology similar to SUSY - dominant SM background.

Studies to design methods to estimate background from data

An example to estimate top background from data,

- Top mass is largely uncorrelated with E_t^{miss} (calibration variable).
- Reconstruct Top in a mass window (140-200) GeV
- Normalize E_T^{miss} distribution for SUSY selection in low etmiss region
- Extrapolate to high etmiss region to estimate the background

QCD background

Very large cross section of QCD can create backgrounds to SUSY

- Missing energy is produced either from heavy quark decay or jet mis-measurements in detector (Fake missing energy).
- Impossible to do full detector simulation (Geant4) sample size needed by QCD
 - -- need robust fast detector simulation

Jets/EtMiss

Good Jets and E_T^{miss} performance crucial for SUSY searches

- Jet scale will be monitored with in-situ calibration samples Top and Z+jet sample.
- Poor jet resolution will directly effect missing energy estimate.
- For discovery the jet scale requirement is ~10%.
- To measure SUSY masses the requirements are more stringent ~ 1%.

Exclusive Signatures

- If SUSY is discovered nest step to measure of the sparticle masses
- Two invisible LSP in each event, so no direct mass measurement possible.
- Obtain kinematic edges from invariant mass distributions of involved particles, e.g. dilepton distribution m_{ll}.
- Remove SUSY/SM BG using OppositeFlavor/OppositeSign (OF/OS) pairs,
 .e.g: e⁺e⁻ + μ⁺μ⁻ e⁺μ⁻ μ⁺e⁻

Summary

- SUSY is one of the primary goals of ATLAS.
- SUSY searches will commence on Day 1 of LHC operation.
- Many studies of exclusive channels already performed.
- Lots of input from both theorists (new ideas) and experimentalists (new techniques).
- Renewed emphasis on use of full simulation tools.
- Big challenge for discovery will be understanding systematics.
- Big effort ramping up now to understand how to exploit first data in timely fashion
 - Calibrations
 - Background rejection
 - Background estimation
 - Tools
 - Prescale strategy