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ABSTRACT 
Fifteen years ago lin-4 was reported to be the first endogenous small non-coding, but 
interfering RNA structure involved in developmental timing in C. elegans. First thought 
not, or only rarely, to occur in mammals, microRNAs are now among the major players 
in up-to-date genomic research. The mature molecules are ~22 nucleotides in length and, 
by targeting predominantly the 3’ UTR of mRNAs, lead to translational repression or 
degradation of the target message, hence controlling important cellular mechanisms, 
including division, differentiation and death. This key role makes them excellent targets 
for cancer research. In fact they have been shown to have a major impact on cancer 
development in many cases. However, miRNAs are not a homogeneous class and can be 
subclassified into intragenic and intergenic, depending on their genomic position. 
Whereas intergenic miRNAs are expected to be independent transcriptional units, 
intragenic miRNAs are commonly believed to be regulated through their host gene. 
Despite of the growing knowledge on how miRNAs integrate into cellular regulatory 
networks, our current knowledge about the specific role of intragenic miRNAs is rather 
limited. In this work we integrated current miRNA knowledge bases, ranging from 
miRNA sequence and genomic localization information to target prediction, with 
biochemical pathway information and publicly available expression data to investigate 
functional properties of intragenic miRNAs and their relationship to their host genes. To 
the best of our knowledge, we are the first to show in a large-scale analysis that intragenic 
miRNAs seem to act as negative feedback regulators on multiple levels. We furthermore 
investigated the impact of this model on the potential role of intronic miRNAs in cancer 
pathogenesis. 
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1 Introduction 

1.1 MicroRNA – Overview 
Critical cell functions are carried out by proteins. The information on how to assemble 

proteins from their basic chemical structure, namely amino acids, is stored in genes, 

defined regions within the DNA, which can be collectively referred to as the ‘genome’. 

Similarly, the set of all proteins in an organism is called the ‘proteome’. To produce a 

protein, the information on the DNA is read by an RNA polymerase that will transcribe a 

temporary message, the messenger RNA (mRNA), which in turn gets translated into a 

protein. 

In 1993, Lee, Feinbaum and Ambros found that, in C. elegans, the gene lin-4 did not 

encode a protein, but rather a small RNA that would interfere with protein levels of lin-

14 [1]. Based on the involvement in heterochronic pathways, these molecules were first 

dubbed small temporal RNAs (stRNAs) [2]. Almost seven years later, Pasquinelli and 

coworkers were able to identify the small, non-coding RNA let-7 in multiple species, 

including Homo sapiens, leading to speculation that probably more molecules of a similar 

kind would be detected [3-5]. This would come true within a year, when Lagos-Quintana 

et al., Lau et al. and Lee and Ambros successfully cloned several new genes with similar 

properties. In contrast to lin-4 and let-7, however, many of these genes could not be 

linked to temporal development, so the name ‘microRNA’  (miRNA) was established [6]. 

The major properties of miRNAs are that they are processed from a precursor that 

contains a hairpin structure, that their active form is a single-stranded RNA molecule of 

~22 nucleotides in length, and that they seem to primarily bind to the 3’-untranslated 

region (UTR) of certain mRNAs, modulating protein levels. 
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Figure 1 - Classes of miRNA 

Depending on the genomic position, miRNAs can be classified into intragenic and intergenic. 
Intragenic miRNAs can further be subdivided into intronic and exonic. Whereas most intragenic 
miRNA genes are on the same strand as their host genes, a few reside on the opposite strand. In 
this work, only protein coding genes were considered as hosts for miRNAs. 
 

The miRNA class of molecules is not homogeneous, however. Whereas about half of 

human miRNAs are intergenic, i.e. found in distant locations from currently annotated 

genes, the other half of currently known miRNA genes are intragenic, i.e. located within 

protein coding genes. Intragenic miRNAs can be subdivided into intronic and exonic, as 

shown in Figure 1. Most miRNA genes are on the same strand as their host genes, 

suggesting common regulation [2, 7]. Some intergenic miRNAs are clustered and 

believed to be transcribed as a polycistron [7]. 

 

1.2 miRNA Biogenesis 
The process of miRNA processing and cleavage is largely understood. Most miRNAs are 

transcribed by the polymerase Pol II with typical features such as a polyadenylated tail 

and a 5’-cap structure [8, 9]. Few are transcribed by Pol III (mainly those that reside in 

Alu repeats), including some intronic miRNAs [10]. The resulting transcriptional product 

is called the primary miRNA (pri-miRNA) and can vary greatly in length, up to tens of 

thousands of nucleotides. The pri-miRNA forms a hairpin loop structure that undergoes 

further processing in the so-called “microprocessor”, a protein complex including the 
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RNA binding enzyme DGCR8 and the RNAse III Drosha [8, 11-13]. Drosha cuts the 

double-stranded end, leaving a ~70 nucleotide long hairpin precursor miRNA (pre-

miRNA) [14]. As is typical for RNAse III cleavage, the pre-miRNA contains a 2 

nucleotide 5’-end overhang that is recognized by Exportin 5, which is necessary for 

transport into the cytoplasm [15-17]. In contrast to intronic small nucleolar RNA that is 

extracted after the splicing process of its host mRNA [18], Kim et al. recently showed that 

an intronic miRNA can be extracted from its intron before splicing occurs and without 

affecting translation of its host mRNA [19].  

 

In a second processing step, a protein complex including the RNA recognizing protein 

TRBP and another enzyme of the RNAse III family, Dicer, cuts out the hairpin loop 

structure, leaving the mature miRNA:miRNA* double strand [20-24]. Usually, one of the 

two strands will be degraded, whereas the other is incorporated into the so-called RNA-

induced silencing complex (RISC). Which strand will be the active one depends on the 

relative and absolute stability of 5’-base pairing [25, 26]. 

 

1.3 miRNA Target Interaction 
The miRNA incorporated in RISC recognizes its target through Watson-Crick 

complementarity of its 5’-end to the 3’- UTR of its target, and details of this process have 

recently been identified [27]. Whereas in plants miRNAs seem to nearly perfectly match 

the target sequence, this is not true in mammals, where imperfect pairing is predominant 

and near-perfect complementarity is only required for the “seed-region” of the mature 

miRNA (nucleotides 2-8). After recognition, RISC ‘silences’ its mRNA target through 

either translational repression, degradation, cleavage or storage in so-called P-bodies, 

ribosome-less, cytoplasmic structures (reviewed in [28]). Figure 2 illustrates the basic 

mechanism of miRNA target interaction. 

 

So far, the literature suggests that at least four different mechanisms may explain the 

underlying nature of miRNA-induced translational repression. In 2002, Seggerson et al. 

[29] observed that miRNAs and their targets were associated with polysomes that seemed 

to be actively translating target mRNA. Similar results were also found by [30-32], which 
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led to the proposal that miRNAs might be involved in co-degradation of the evolving 

polypeptide chain. However, until today the identity of the protease that would be 

required for such a process remains unknown [28]. Based on a reporter essay, Petersen 

suggested that translational repression might be promoted through premature polysome 

dissociation [32]. 

 

Whereas the previous studies displayed evidence for post-initiation translational 

repression, Kiriakidou et al. could show that Argonaute competes with eukaryotic 

translation initiation factor 4E (eIF4E) for mRNA cap structures that play an important 

role in translation initiation [33]. Another way of repressing translation initiation was 

proposed by Chendrimada et al., whose results suggested that AGO2 might recruit eIF6 

and hence prevent association of ribosomal subunits [34].  

 

 

 
Figure 2 - miRNA Target Interaction 

The mature miRNA single-strand molecule is integrated into RISC. The target is detected by 
complementarity of the miRNA 5’ region to the 3’-UTR of its target mRNA, followed by either 
translational repression or degradation of the mRNA molecule. 
 

Whereas it was originally observed that miRNAs repress the target gene protein levels 

without affecting mRNA levels [1], others were able to show that animal miRNAs 



  - 12 - 

significantly reduce expression levels of targeted mRNA. This allowed the development of 

certain target prediction algorithms [35] that were based on systematic miRNA over-

expression experiments [36]. Whereas in plant-miRNAs endonucleolytic cleavage by 

Argonaute proteins seems to be the prevailing mechanism of mRNA degradation, in animal 

cells mRNAs are processed by the general mRNA degradation machinery, including 

accelerated deadenylation and decapping [37-40]. It is interesting to note that Wu et al. 

were able to show that mRNA degradation and translational repression can be uncoupled 

from one another, suggesting independent mechanisms [39]. 

 

1.4 miRNAs in Human Disease 
Due to their substantial role as regulatory elements, it is not surprising that miRNAs were 

identified as playing central roles in diverse classes of diseases, including cancer, 

infections, muscle conditions and neurologic diseases. 

 

In tumors, proto-oncogenic as well as tumor suppressing miRNAs have been reported. 

For example, Li Ma, Julie Teruya-Feldstein and Robert Weinberg deciphered the 

mechanism of how miR-10b over-expression promotes cell migration and invasion in 

breast cancer. They found that the transcription factor “Twist” positively regulates miR-

10b, which in turn inhibits translation of homeobox D10. This leads to increased 

expression of the pro-metastatic gene RHOC. They also showed that miR-10b over-

expression correlates with clinical outcome [41]. Similar findings have been reported for 

other miRNAs and other tumor types, including miR-21 in colorectal adenocarcinoma 

[42] and breast cancer [43] or miR-155 in lymphatic malignancies [44] and pancreatic 

cancer [45]. Recently, Tavazoie showed that miR-126 inhibits tumor growth and miR-335 

reduces metastatic spread through targeting of the transcription factor SOX4 and the 

extracellular matrix component tenascin C in breast cancer [46]. Likewise, tumor-

suppressive miRNAs have been identified in other tumors [47, 48]. 

 

Interestingly, viral genomes encode miRNAs to modify their hosts microenvironment, 

including herpes simplex virus [49], human cytomegalovirus [50], Eppstein-Barr virus 
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[51, 52], and HIV [53]. Recent evidence accumulates that in fact cell-encoded miRNAs 

may be able to regulate viral mRNA [54-58]. 

 

It is known that certain miRNAs are preferentially expressed in certain tissues. Tissue 

specificity is defined as a greater 20-fold increase in expression levels of a certain miRNA 

as compared to other tissues [59]. Heart and skeletal muscle, brain and pancreas tissue 

contain the largest number of tissue-specific miRNAs known to date [59]. Recently, 

Eisenberg et al. reported multiple differentially expressed miRNAs in primary muscle 

disorders [60]. Similarly, Carè and coworkers discovered that inhibition of miR-1 and 

miR-133 may induce cardiac hypertrophy [61] and evidence accumulates for a significant 

role of miRNAs in myocardial remodeling [62]. 

 

Neurologic disorders comprise another broad class of human diseases displaying 

pathogenetic association with miRNAs (reviewed in [63]). For example, altered miRNA 

expression levels were found in patients with schizophrenia [64], Alzheimer’s disease [65] 

and Parkinson’s disease [66]. However, so far causal links remain to be identified [63]. 

 

1.5 Experimental Methods 

1.5.1 Microarrays 

Microarrays have been developed in the early 1990s and ever since became more and 

more popular in the research community. Microarrays can be classified either as 

oligonucleotide [67] or cDNA arrays [68], which mainly refers to the manufacturing 

technique, or as single color versus dual color arrays. Two color arrays are designed such 

that two samples can be hybridized to the same platform (e.g., a tumorous tissue sample 

and a normal tissue reference sample). Both samples are labeled in different colors, 

usually cyanine 3 (Cy3, “green channel”) and cyanine 5 (Cy5, “red channel”). Single 

color arrays are hybridized to a single sample. Even though twice as many arrays are 

needed compared to two color systems, raw measurements allow better comparison 

across studies. miRNA platforms are slightly different. These are usually self-

manufactured academic cDNA oligo arrays, they are also far less dense, as the number of 
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known miRNA genes in humans approximates 700, opposed to the human genome, 

consisting roughly of 20,000 genes. 

 

A crucial and yet limiting step in microarray analysis is processing of the raw data, before 

expression values can be compared. The whole process can be subdivided into 

background correction, normalization, and summarization. Most platforms do not only 

provide information on the probe intensities, but also supply a background intensity 

measurement to help eradicate systematic background measurement errors. Different 

background correction methods have been proposed [69], the most intuitive being simple 

subtraction. 

 

Normalization is needed when more than one array is involved in the analysis. It is 

obvious that if an experiment is repeated on two microarray platforms, the measured 

expression levels will be similar, but not exactly the same. Introduced systematic biases, 

due to many reasons including physical properties of the platform, small differences in the 

preparation of the samples, or chemical behavior of the used fluorescence, add to random 

variation in gene expression levels, limiting comparability of different arrays. However, if 

samples are from two different tissues, e.g. cancer versus non-cancer, certain variation in 

some genes is of great interest and often times the reason for carrying out the experiment. 

This is referred to as obscuring variation versus interesting variation [70]. The goal of 

normalization is to reduce as much obscuring variation as necessary while maintaining as 

much interesting variation as possible. There are many different methods available, both 

for single color as well as dual color arrays. 

 

A general distinction must be made between complete data methods, i.e. methods using 

all available arrays for the normalization process, such as quantile normalization and 

cyclic locally weighted regression and smoothing scatterplots (loess) [70], and methods 

using baseline arrays, such as scaling and non-linear methods [71].  

 

Quantile normalization [72] is based on the idea that a linear relationship in a quantile-

quantile plot of two arrays means that both arrays will have the same distribution of 
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values. This implies that if one fits the data of multiple arrays to a straight diagonal (in the 

quantile-quantile plot), the same distribution for every chip will be enforced.  

 

The M versus A plot, where M is the difference in log expression values and A is the 

average of the log expression values, is the basis of cyclic loess normalization [70]. The 

plot should be scattered around the horizontal axis. Using loess regression, a 

normalization curve is fitted to the plot and intensities corrected accordingly. However, 

this methodology is somewhat computationally intensive, as it requires pairwise iteration 

through all arrays until the applied changes fall below a certain threshold. 

A different set of methods uses a baseline array, which for example is chosen as being the 

median of all median intensities. Intensities will be corrected by a factor that is the mean 

intensity of the baseline array over its own mean intensity [73-76]. Whereas scaling 

methods can be seen as linear interpolation with offset zero, non-linear methods propose 

an extension to this idea [71]. 

 

1.6 miRNA Bioinformatics 

1.6.1 miRNA Target Prediction 

Until today, there is still no high-throughput method available to identify and validate 

miRNA targets. Therefore, diverse computational methods have been developed to 

predict miRNA target interactions. Six commonly used methods are briefly reviewed 

here: TargetScan, miRanda, PITA, RNA22, MirTarget2, PicTar, as well as TarBase, a 

database containing experimentally validated targets. 

1.6.1.1 TargetScan 

In 2003, Lewis et al. [77] presented an algorithm called TargetScan that used secondary 

RNA structure and cross-species conservation of 3’-UTR motifs as key components to 

predict miRNA targets. In brief, potential targets are identified by perfect Watson-Crick 

complementarity of the 5’- seed region of the miRNA to the 3’ UTRs of potential target 

mRNAs. In a second step, the regions in both directions around the seed are aligned 

using the RNAfold program [78] and a total free binding energy is calculated with the 

RNAeval algorithm [78]. The free energy is converted to a z-score and predictions in 
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each organism are ranked. The algorithm takes three parameters: one that defines the 

relation between the binding energy and the z-score, a z-score cut-off, and a ranking cut-

off value. Additionally, it takes cross-species conservation into account. The authors 

showed that the signal:noise ratio increases from 2:1 (required conservation in human and 

mouse) to 4.6:1 (required conservation in human, mouse, rat and pufferfish). However, 

this comes at the cost of significantly fewer predictions. The estimated false positive rate 

ranges from 22% to 31%, depending on the species and the parameter settings. It is 

remarkable that even though “TargetScan” is among the earliest published algorithms, it 

has maintained its role as a gold standard in many experiments. 

1.6.1.2 miRanda 

The first version of miRanda was developed in 2003 as one of the first miRNA target 

prediction algorithms by Enright et al. [79]. John et al. [80] adapted the algorithm to 

predict targets for human miRNAs in the following year. miRanda uses the same basic 

principles as TargetScan, however the score calculations and parameters are slightly 

different. Its estimated false positive rate ranges from 24% to 39%, depending on the 

setting, the number of predicted target sites for a given mRNA 3’-UTR, and the free 

binding energy score. 

1.6.1.3 RNA22 

RNA22 is conceptually very different from the algorithms described above. Miranda et 

al. [81] use the TEIRESIAS variable length motif finding algorithm [82] to derive a list of 

mature miRNA patterns. Statistical significance of each individual motif is assessed by 

training a second-order Markov chain. The key idea is that, through the guilt-by-

association approach [83], a degree of membership can be calculated for any given 

putative target site complementary to the motif. Any region that receives more than 30 

hits is considered a potential target. The authors use different ways to estimate the false 

positive rate, which is believed to be between 19% and 26%. Sensitivity estimates range 

from 36% to 95%, depending on the training dataset. The strength of this approach is 

that first a sequence in the genome is identified as a potential miRNA target binding site. 

Theoretically, this enables target identification for miRNAs not yet even known. In an 

optional second step, the miRNA with the highest degree of membership is selected. 
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1.6.1.4 PITA 

PITA is a relatively new algorithm, published in 2007 by Kertesz and coworkers [84] and 

mainly based on secondary RNA structure. They could show that site accessibility to the 

mRNA target site, defined as the energetic cost of resolving intra-mRNA interactions, is 

as important as seed pairing. In a reporter gene essay, the purely thermodynamic score, 

which is a combination of the gain in energy by the miRNA binding to the target site and 

the cost of unpairing the target site’s nucleotides, had a high correlation with measured 

translational repression. They also found that taking into consideration the cost of 

unpairing 3 nucleotides upstream and 15 nucleotides downstream of the miRNA target 

site, further significantly improves this correlation. Hence, their algorithm first identifies 

potential matches by aligning the seed region to the 3’ UTR of potential mRNA targets. 

It then calculates and combines thermodynamic scores for each putative binding site of 

the miRNA to derive a unique score for a miRNA target interaction. While this method 

may perform slightly better than PicTar and miRanda, a great advantage is that it does 

not require cross-species conservation scores or other parameters. 

1.6.1.5 MirTarget2 

MirTarget2 [35, 85] uses a machine learning approach to target prediction. The key to 

this method is an experiment by Linsley et al. [36], who systematically studied the change 

in mRNA expression levels after over-expression of different miRNAs. Wang et al. used 

this to extract 131 heterogeneous features in the miRNA/target mRNA sequences that 

correlate with reduced mRNA expression. They then trained a non-linear support vector 

machine (SVM) on 454 positive samples (down-regulated genes) and 1017 negative 

samples (unaffected genes). The resulting classifier achieved an Area Under the Receiver 

Operator Characteristic (ROC) Curve (AUC) of 0.79 in 10-fold cross validation. In 

transfection experiments, MirTarget2’s predictive performance appears to be roughly 

comparable to TargetScan. The strength of this idea is the utilitzation of biological 

observation. However, one must keep in mind that observed down-regulation of mRNA 

could be due to indirect effects, such as downregulation of an enhancing transcription 

factor. 
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1.6.1.6 PicTar 

PicTar was published in 2005 by Krek and colleagues [86]. Even though it also makes use 

of successfully employed principles like free binding energy and cross species 

conservation, the authors increase specificity by reasoning that, similar to transcriptional 

regulation, co-expressed miRNAs are more likely to target the same mRNAs. Therefore, 

they use a validated, probabilistic algorithm that has been successfully applied to 

transcription factor binding site identification [87, 88]. According to the authors, adding 

probabilistic knowledge about co-expression significantly increases specificity. There exist 

two different versions of PicTar, the major difference being the number of species for 

which conservation is required (PicTar 4 requires conservation in human, dog, mouse 

and rat; PicTar 5 requires also conservation in chicken). 

1.6.1.7 TarBase 

While the previous methods described are algorithms for computational prediction of 

targets, TarBase is a database housing manually collected validated miRNA target 

interactions from different organisms, including human, mouse, fruitfly, worm, and 

zebrafish [89]. Notably, negative findings are reported as well. Each entry contains the 

miRNA and target mRNA name associated with the target site, the type of experiment 

performed, information about whether translational repression or degradation of the 

transcript was observed, and a reference to the original publication. A drawback is that, 

due to complex maintenance and current lack of large-scale target validation methods, 

there are few entries, especially for newly discovered miRNAs.  

1.6.1.8 Summary – Target Prediction Algorithms 

The different target prediction methods presented above are quite diverse not only in 

their underlying algorithms, but also in the number of miRNAs predictions are available 

for and number of genes predicted to be targets. Table 1 gives an overview of the 

discussed target prediction methods and their main properties. 
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Table 1 - Overview Target Prediction Algorithms 

Target Prediction 

Algorithm 

Total 

Number of 

Predictions 

% of 

Known 

miRNAs 

Predicted 

Targets   (% 

of Known 

Genes) 

Algorithm 

TargetScan[77] 1,096,412 67.5% 90.8% 
Free binding energy; 

conservation 

miRanda[80] 948,851 97.4% 75.6% 
Free binding energy; 

conservation 

RNA22[81] 247,569 46.1% 63.4% 
TEIRESIAS motif 

detection 

PITA[84] 4,315,726 97.4% 88.9% 
Free binding energy; 

binding site accessibility 

MirTarget2[35, 85] 184,619 74.9% 73.6% 
Support Vector 

Machine classifier 

PicTar 5-way[86] 23,089 22.1% 13.6% 

Free binding energy; 

conservation; Co-

expression 

TarBase[89]** 939 11.6% 2.2% Experimental validation 

 
* This table is based on our own database, i.e. we considered only predictions where we could 
match the miRNA symbol to miRBase as well as the target to a gene symbol from NCBI or 
RefSeq identifier. 
** TarBase is strictly speaking not a target prediction algorithm, but a knowledge-base containing 
information about biologically validated miRNA-mRNA target interactions. 
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2 Motivation 
Until only a few years ago it was commonly believed that intronic DNA regions 

functioned as spacers and contained little or no meaningful information. However, 

several authors were able to point out the significance of intronic regulatory elements and 

their impact on gene expression [90-92]. Some of these correspond to the greater class of 

miRNAs. miRNAs are single-stranded, ~22 nucleotides long non-coding RNA molecules 

that, after being processed from a larger hairpin precursor, recognize target mRNA 

primarily by complementary to its 3’-UTR. Subsequently, the targeted message is 

predominantly subject to either translational repression or degradation [28], making 

miRNAs very effective regulatory elements. 

 

Intragenic miRNAs play a unique role within the family of small, non-coding RNAs. 

Whereas intergenic miRNAs contain their own regulatory elements, including a 

promoter region and a termination sequence [93, 94], intronic miRNAs are believed to 

be co-transcribed with their host genes [7]. In this context, Baskerville and colleagues 

were able to show that expression levels of intronic miRNAs and their hosts were highly 

correlated in cell line experiments [7, 91], supporting the idea of co-regulation through 

co-transcription. However, other authors found that, in cancer samples, only a limited 

number of miRNAs correlated their expression patterns with those of their corresponding 

host genes [95, 96]. These conflicting findings have been attributed to an altered post-

transcriptional regulation of miRNAs in cancer samples [97, 98]. However, the 

consequences of diverging expression levels of host and intragenic miRNA have not yet 

been elucidated. 

 

In a recent experiment, Barik [99] has shown that the intronic miRNA hsa-miR-338 

targets a class of mRNAs that are functionally antagonistic to its host, AATK. Whereas 

this experiment suggests functional synergy, it has also been hypothesized that intronic 

miRNAs could act as negative feedback regulators. Megraw et al. [100] found that, in 

Arabidopsis thaliana, the intergenic miRNAs ath-miR-160 and ath-miR-167 may be regulated 

by auxin response factors. Also, other authors have shown that corresponding mRNAs are 
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targeted by ath-miR-160 and ath-miR-167 [89], which therefore down-regulate their own 

expression. This concept can easily be extended to intronic miRNAs that would target the 

transcription of their own hosts and their regulating elements, such as transcription 

factors or enhancers (Figure 3), as speculated by Li et al. [93]. However, to the best of our 

knowledge, there have been no large-scale experiments hypothesizing either 

complementary action or negative feedback regulation for intronic miRNAs. 

 

The hypothesis tested in this study is that the key aspect of understanding the role of 

intragenic miRNAs lies in the functional relationship to their host genes. The integration 

of diverse data sources (Figure 4) is necessary for multi-dimensional investigation of the 

unique role of intragenic miRNAs. By analyzing the cellular role of their host genes, the 

introns they reside in and their targets, it is possible to build a comprehensive picture of 

the impact of intragenic miRNAs on cellular processes, potentially constituting a new 

approach to understanding carcinogenesis.  

 

 
Figure 3 - Negative Feedback 

Intragenic miRNAs could act as negatively regulating elements on multiple levels, by either 
targeting their host (referred to as “first order negative feedback”), regulating elements (such as 
transcription factors or enhancers) or proteins that interact with the protein expressed from the 
host gene (“multi order negative feedback”). 
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Figure 4 - Integration of Multiple Databases 

The integration of multiple databases allows assessment of properties and functional aspect of 
miRNA – host co-regulation.  
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3 Materials and Methods 

3.1 Public Datasets from GEO 

3.1.1 Prostate Cancer (GSE7055) 

Prueitt and co-workers performed a mRNA (Affymetrix HG-U133A 2.0) and miRNA 

(Ohio State University Comprehensive Cancer Center, Version 2.0) microarray 

expression analysis of samples from 57 patients with adenocarcinoma of the prostate 

[101]. Fifty of these showed perineural invasion (PNI), whereas 7 did not. None of the 

patients had undergone therapy prior to resection of the tumorous tissue. In addition to 

the microarray analysis, quantitative Real-Time PCR analysis was used to confirm 

measurements. Protein expression levels were assessed by immunohistochemistry. The 

authors found 19 miRNAs and 34 protein-coding genes to be differentially expressed 

between tumors with perineural invasion and those without (False Discovery Rate < 

10%). All non-PNI tumors clustered together, with a subset of the PNI tumors from 

hierarchical clustering in gene ontology biological process (GOBP) analysis revealing 

statistical overrepresentation of differentially expressed genes in processes such as 

metabolism and transport of fatty, organic, amino acids and polyamines and processes 

related to negative regulation of programmed cell death. 

3.1.2 Prostate Cancer mRNA (GSE6956) 

Wallace et al. [102] hypothesized that differences in prevalence and lethality of prostate 

cancer in African-American and Caucasian-American men were due to differences in the 

tumor microenvironment. Therefore, they assessed the mRNA gene expression levels 

(Affymetrix HG-U133 2.0) of samples from 69 fresh frozen prostate adenocarcinomas (33 

African-American men, 36 from Caucasian men) collected during 2002 – 2004. The 

tumors were all untreated and the presence of tumor tissue was confirmed by a 

pathologist. Eighteen non-tumor surrounding tissue samples were collected as negative 

controls. The authors were able to detect 162 transcripts that were differentially expressed 

between the two ethnic groups. In a disease association analysis, they related the 

identified transcripts to processes of autoimmunity and inflammation. Additionally, the 
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authors were able to build a 2-gene classifier to successfully distinguish between samples 

from each group. 

3.1.3 Lung Adenocarcinoma mRNA (GSE7670) 

Su et al. [103] suggested usage of DDX5 as a novel internal control for quantitative real 

time polymerase chain reaction (Q-RT-PCR), to facilitate internal control evaluation and 

selection to corroborate microarray data. They used a dataset consisting of 66 lung 

samples. These included 27 cancer samples and surrounding normal tissue from patients 

at Taipei Veterans General Hospital, two tissue mixtures from Taichung Veterans 

General Hospital, two commercial human normal lung tissue samples, as well as 

epithelial and lung cancer cell lines. For the analysis presented here, only 

adenocarcinoma samples and cell lines as well as normal tissue samples were considered, 

resulting in 31 cancer samples and 29 normal controls. 

 

3.2 Platforms 
As mentioned earlier, microarrays are the basis for most contemporary investigations in 

miRNA expression levels in the cell. However, in contrast to mRNA platforms, there are 

currently few commercially available miRNA platforms, so many laboratories employ 

their own single-color cDNA spotted arrays. Due to the different nature of platforms, raw 

data was used for analysis. 

3.2.1 Normalization of miRNA Datasets 

Very little is known about how to best preprocess miRNA microarray data. Even though 

evidence suggests that quantile normalization might be the best method [104], there are 

no systematic studies of which background correction or summarization method works 

best for miRNA microarrays. In this study, the density plots of multiple current 

background correction methods were compared to no background correction in the 

“Prostate Cancer” dataset, and the results are summarized in Figure 5. 
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Figure 5 - Comparing Background Correction Methods 

Several background correction techniques are compared to no background correction at baseline. 
Background subtraction, although popular, was not considered because of missing values. 
The background correction methods “Half” and “Minimum” show distributions close to normal, 
which is helpful for detection of differentially expressed genes. Robust multi-array (RMA) 
expression measure [70, 72, 105], Normexp [69] and McGee [106] appear less optimal choices 
(all of the above methods are reviewed in [69]). 
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After background correction using the minimum of foreground and background intensity 

values, quantile normalization was used [70, 104]. The resulting plots before and after 

normalization are shown in Figure 6 and Figure 7, respectively. 
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Figure 6 - Expression Values Before Normalization 

The top graphic shows a plot of intensity values before normalization. The box plot (middle) 
visualizes mean and standard deviation of the individual microarrays. The bottom graphic shows 
dependence of variance on mean intensity. 
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Figure 7 - Expression Values After Normalization 

After normalization, intensities appear to be normally distributed (top), all the arrays seem to have 
the same mean and standard deviation (middle) and the variance seems to be independent of the 
mean intensity (bottom). 
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3.3 Databases and Classification of miRNAs 

3.3.1 Design of the database 

In order to use a common nomenclature, gene info files from the National Center for 

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/), including the fields 

“gene symbol”, “gene name”, “Ensembl identifier” and “synonyms”, were imported to a 

local database. Also imported was the NCBI RNA reference sequences collection 

(RefSeq) release 31 [107] from University of California, Santa Cruz (UCSC), matching 

those entries to a gene symbol or its synonym in the database. In full, this totaled 27,235 

entries representing 18,684 distinct genes. Exon start and end coordinates were also 

imported (291,478 entries), and (+1) was added to every start coordinate, as described on 

the UCSC website (http://genome.ucsc.edu). 

miRBase release 11.0 (April 2008) [108-112] contains current information on known 

miRNAs in different organisms, including human, mouse, chicken, dog, worm, and 

zebrafish, providing the official miRNA symbol as well as genomic coordinates. A 

summary of the number of known microRNAs of organisms imported for use in this 

study is shown in Table 2. 

 

Table 2 – Known Number of Distinct miRNAs for Different Species (miRBase release 11.0, April 2008) 

Organism Number of miRNAs 

Number of 

Known Genes 

(RefSeq) 

Ratio Protein 

Coding Genes : 

miRNAs 

Homo sapiens 692 18693 27:1 

Mus musculus 482 19228 40:1 

Canis familiaris 204 912 4:1 

Gallus gallus 469 4158 9:1 

Danio rerio 318 13204 42:1 

Drosophila melanogaster 152 14072 93:1 

Caenorhabditis elegans 154 19612 127:1 

 

The genomic position of the miRNAs were mapped to known protein coding genes 

registered in RefSeq, to identify intragenic miRNA whose genomic position lay within the 
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transcription start and the transcription end position of an annotated gene (“host gene”). 

Subsequently, intragenic miRNAs were further subdivided into intronic and exonic. An 

intragenic miRNA was labeled exonic, if its genomic coordinates overlapped with 

genomic coordinates of any exon in the database, and was labeled intronic otherwise. In 

addition, intragenic miRNAs can be classified depending on whether they are on the 

same or the opposite strand of their host gene. In cases where a miRNA overlapped with 

two different genes on two strands, the gene on the same strand was considered the host 

gene. This choice, however, affected only few entries. If the miRNA position overlapped 

with two genes on the same strand, the larger gene was selected. The distance to the next 

upstream exon and the intron length, as defined by the region between the immediate 

upstream and downstream exon, were also calculated. The distributions of intronic, 

exonic and intergenic genes for different organisms are shown in Table 3. The 

distribution of strand direction for intronic miRNAs and their host genes is shown in 

Table 4 (Note: The row sums of Table 3 are greater than the number of distinct known 

miRNAs in Table 2 because different copies of the same miRNAs may be double counted 

as intergenic and intragenic, as is the case for hsa-mir-1184). 

 

Table 3 – Distribution of Classes of miRNAs  

Organism Intronic Exonic Intergenic 

Homo sapiens 296 (42.6 %) 37 (5.3 %) 362 (52.1 %) 

Mus musculus 171 (35.4 %) 30 (6.2 %) 282 (58.4 %) 

Canis familiaris 3 (1.5 %) 0 (0 %) 201 (98.5 %) 

Gallus gallus 50 (10.7 %) 1 (0.2 %) 418 (89.1 %) 

Danio rerio  48 (15.0 %) 1 (0.3 %) 271 (84.7 %) 

Drosophila melanogaster 65 (42.8 %) 2 (1.3 %) 85 (55.9 %) 

Caenorhabditis elegans 51 (33.1 %) 1 (0.6 %) 102 (66.2 %) 
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Table 4 – Distribution of Direction of Intronic miRNAs with Respect to their Host Gene 

 

Organism 

Number of Intragenic 

miRNAs on the Same 

Strand as Host Gene 

Number of Intragenic 

miRNAs on the Opposite 

Strand of Host Gene 

Homo sapiens 282 (84.7 %) 51 (15.3 %) 

Mus musculus 163 (78.2 %) 38 (21.8 %) 

Canis familiaris 2 (66.7 %) 1 (33.3 %) 

Gallus gallus 46 (90.2 %) 5 (9.8 %) 

Danio rerio  39 (79.6 %) 10 (20.4 %) 

Drosophila melanogaster 53 (79.1 %) 14 (20.9 %) 

Caenorhabditis elegans 33 (63.6 %) 19 (36.5 %) 

 

3.3.2 Calculation of Intron Position, Intron Size and Distance to Upstream 
Exon 

RefSeq may contain multiple observations for a given gene, usually revealing distinct 

patterns of alternative splicing. Therefore, it is important to decide, based on the nature 

of the question and underlying biological assumptions, when a region will be called an 

exon or an intron, given that there is evidence of both. In all the experiments, a region 

was considered an exon if and only if there was at least one RefSeq identifier for which 

this region was labeled exonic. All overlapping exons were merged into one exonic 

region. 

3.3.3 Calculating an Expected Distribution of Introns 

The expected proportion of miRNAs in a given intron was calculated as follows: 

 

Assuming an equal chance for a miRNA to be in any intron of a host gene, for intron j in 

gene i and n total introns: 

€ 

pi, j =
1
n

 , for j ≤ n and 0 otherwise. The proportion of miRNAs 
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in a given intron j can be calculated by the normalized weighted sum of probabilities 

€ 

p( j) =

pi, j
i=1

m

∑
m

 , where m is the total number of genes considered. This allows the 

estimation of the expected number of miRNAs, by multiplication with the total number 

of hosts. An example is visualized in Figure 8. 

 
Figure 8 - Calculating the Expected Intron Distribution 

The expected probability that a miRNA occurs in a certain intron can be calculated by normalizing 
the weighted sum of probabilities for individual introns. 
 

3.4 Target Prediction Methods 

3.4.1 Import of Target Predictions 

Precalculated target predictions for TargetScan release 4.2 [77] (April 2008), PITA (top 

15%) [84] catalog version 6 (August 2008), MirTarget2 (mirDB) version 2.0 [35] 

(December 2007), miRanda [80] (September 2008), RNA22 [81] (November 2006) and 
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PicTar 5-way [86] were downloaded. Also included was TarBase version 5.0c [89] (June 

2008) as a reference database for miRNA target interactions with published evidence. 

Only targets that had an assigned value of either “True” (which typically means 

experimental validation via luciferase reporter assay) or “Microarray” for the variable 

“Support Type” were selected.  

 

Some miRNA symbols did not exactly match entries in the database for various reasons, 

including use of non-official names or older miRBase releases. Whenever a miRNA 

symbol could not be found, matching was attempted to an extension such as “-1” or “a” 

(for example, hsa-mir-511 in mirTarget2 was matched to hsa-mir-511-1 and hsa-mir-511-2). 

If the miRNA symbol ended with a letter, it was removed to check for other matches 

(from the PicTar prediction list hsa-mir-128a matched to hsa-mir-128-1, hsa-mir-128-2, and 

hsa-mir-128-3 for example). Predictions for a miRNA symbol were ignored if no matches 

could be found. 

 

3.5 Pathway Analyses  

3.5.1 Gene Ontology 

The Gene Ontology (GO) [113] classifications of all 246 host genes of intragenic miRNA 

genes that were located on the same strand as their host gene were surveyed using 

Cytoscape 2.6.0 [114] and BiNGO 2.3 [115]. We focused our attention on those 

categories that were disproportionately overrepresented. The setting “Hypergeometric 

test” was chosen to calculate the probability of observing an equal or greater number of 

genes in a given functional category that is shared among n genes of the reference set 

(consisting of all known genes) than in the test set x. The False Discovery Rate (FDR), 

which is the standard setting in BiNGO 2.3 [115], was controlled. 

3.5.2 Statistical Software 

The statistical programming software R 2.7.1 [116] was used in combination with 

bioconductor [117] packages AnnBuilder 1.18.0 [118], KEGG.db version 2.2.0 and 

GOStats version 1.7.4 [119] to acquire a list of pathways that were associated with one or 

more of the 246 host proteins. 
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3.5.3 Target Coverage 

The union of predicted targets included more than 90% of all known human genes. Since 

target prediction methods are very different, they are difficult to compare. In this work, 

only targets that were predicted by at least two different methods were considered in the 

calculation of target coverage. This reduced the total number of predictions by almost 

70%, as can be seen in Figure 9. 

 

 
Figure 9 – Target Prediction Agreement of Different Methods 

The requirement that two different methods had to agree on a target prediction for a given 
(intronic) miRNA reduced the total number of predictions by almost 70%. 
 

We defined the set Sp as the set of genes linked to a pathway and St as the set of predicted 

targets of the miRNAs associated with the pathway through their host genes. The target 

coverage (C) for a pathway was defined as 
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€ 

C =
Sp ∩ St
Sp

 . 

Statistical significance of target enrichment within a pathway was tested by randomly 

sampling |Sp| genes from a universe of all known genes, replacing the genes within the 

pathway with the set of genes in the random sample (Si), and subsequently calculate a new 

“random” target coverage Ci’. This procedure was repeated 1000 times, allowing to 

estimate the probability as the number of times a target coverage Ci’ greater or equal to C 

was observed. We defined the indicator function I(Ci’,C) as 

€ 

I(Ci ',C)
1 if Ci ' ≥ C
0 otherwise
 
 
 

 . 

Hence, the probability of observing a greater or equal target coverage for a given 

pathway can be estimated as 

€ 

p(C'≥ C) =

I
Si∩ St
Si

,C
 

 
 

 

 
 

i=1

1000

∑

1000
 , where |Si| = |Sp|. 

Analogously, the enrichment statistics for miRNAs targeting their own hosts were 

calculated, where Sp was defined as the set host genes, St as the set of targets of the 

intragenic miRNAs of these host genes and Si as the set of |Sp| randomly sampled genes 

from the universe of all predicted targets for these miRNAs. 
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4 Results 

4.1 Intronic miRNAs 

4.1.1 Intronic miRNAs Have a Positional Bias Towards 5’ Introns 

The orientation of the gene for an intronic miRNA depends significantly on the direction 

of its host strand (p = 1.3x10-36 in X2 test) as shown in Table 4. This feature is thought to 

be beneficial to the cell [7]. However, the distribution of miRNAs across their hosts’ 

introns might as well be of functional significance. Therefore, the distribution of introns 

containing miRNA genes was compared to an expected distribution calculated by 

assuming an equal probability of occurrence for each intron of a host gene. Interestingly, 

it seems that intronic miRNA genes have a positional bias towards the early 5’ introns 

(Figure 10), when compared to the expected distribution (p-value = 0.02 in X2 test).  

 

 
Figure 10 - Distribution of miRNAs Across Introns of their Host Genes 

Intronic miRNAs seem to have a positional bias towards introns closer to the 5’ end (p = 0.02 in 
X2 test). 
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It is well known that transcriptional activity is higher towards the 5’ region of a gene 

[120] and also that regulatory motifs tend to reside in these regions [92]. This finding 

supports the idea of a functional linkage between host gene and miRNA. 

4.1.2 Reduced Host – miRNA Correlation in Cancer Samples 

miRNA and mRNA expression of 57 prostate cancer samples that were previously 

published [101] were compared. For 42 of the potential 331 [miRNA – host] pairs, 

correlation coefficients and their significance level could be calculated. From the 42 pairs, 

35 miRNAs were on the same strand as their host, and 7 were located on the opposite 

strand. The average Pearson correlation coefficient was +0.12, which was significantly 

higher than would be expected by chance (p<0.001 in 1,000 random permutations). 

However, in contrast to Baskerville and Bartel [7], who found that 67% of miRNAs 

displayed a higher absolute correlation with their hosts than with up- or downstream 

genes, in this analysis only 20%  (p<0.05) were found to be significantly correlated, 

supporting findings of [95]. 

 

Independent regulation of intronic miRNAs has been hypothesized for large introns, 

implying the existence of a potential regulatory region within the intron. This idea could 

also been seen in the context of the finding that intronic miRNAs have a bias towards the 

5’-introns, which are believed to contain regulatory regions [92]. Figure 11 displays the 

relationship between the miRNA expression and host mRNA expression as a function of 

the host intron size. Figure 12 displays the relationship between the miRNA expression 

and host mRNA expression as a function of the distance to the next exon upstream.  

Figure 13 displays the relationship between the miRNA expression and host mRNA 

expression as a function of the intron number. It appears that large intron size decreases 

the correlation of miRNA and host mRNA expression, and that distance to the upstream 

exon has the same effect.  
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Figure 11 - Correlation of Expression of miRNA and Host (Intron Size) 

When the correlation between intronic miRNA expression and the expression of its host is 
visualized according to the size of the corresponding intron, significant correlation (p < 0.05) is 
only observed up to a total intron size of 4-8kb. 
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Figure 12 - Correlation of Expression of miRNA and Host (Distance to Exon) 

Similar results as in Figure 11 are observed when looking at correlation of host expression and 
intronic miRNA expression according to the distance to the closest upstream exon. Again, no 
significant correlation  (p < 0.05) is observed for a distance of greater than 4 – 8 kb. 
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Figure 13 - Correlation of Expression of miRNA and Host (Intron Number) 

Correlation seems to be independent of intron number (intron #1 is defined as the one closest to 
the TSS of the gene). 
 

4.1.3 Intragenic miRNAs Target Their Hosts 

In the recent past, different roles for intronic miRNAs have been claimed. Whereas Li et 

al. attributed the major significance of the relationship between these molecules and their 

host genes to a negative feedback regulatory mechanism [93], Barik identified an intronic 

miRNA that would target genes functionally antagonistic to its host [99]. In a recent 
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report on computational miRNA prediction in amphioxus, Luo and Zhang reported that 

intronic miRNAs do not have complementary target sites in their host genes, but in 

neighboring genes [121], which may suggest a multi-order negative feedback. 

 

Sixty-one miRNAs that potentially target their host genes (predicted by at least one 

method) were identified in our computational analyses, corresponding to 53 different host 

genes. By exchanging the set of host gene names for a set of randomly sampled gene 

names, this number is shown to be significantly higher than expected by chance (p < 

0.01). The background distribution is shown in Figure 14. This result strongly supports 

the idea that intronic miRNAs can potentially act as first-order negative feedback 

regulators.  
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Figure 14 - Intronic miRNAs Targeting Their Hosts 

The background distribution derived from 1000 random samplings follows a Gaussian normal 
distribution (quantile-quantile plot not shown) with a mean of 39.7 and a standard deviation of 5.9. 
The probability of observing 61 miRNAs that target their own hosts can therefore be estimated to 
be p = 6x10-10. 

 

4.2 Functional Analysis of Host Proteins 

4.2.1 Gene Ontology Analysis 

Table 4 shows that most intragenic miRNA genes are read in the same direction as their 

host genes, suggesting a common involvement in biological processes. This supports the 
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idea of indirectly assessing functional aspects of intragenic miRNAs by looking at current 

knowledge about the host genes and their gene products. A GO analysis of the host genes 

was performed, looking for overrepresentation of host genes in the ontologies “biological 

processes”, “molecular function”, and “cellular component”. A biological process is 

defined as being linked to a biological objective, such as “signal transduction” or 

“translation”. It is comprised out of the interplay of multiple “molecular functions”, 

which in turn are defined as specific roles of a protein, such as “enzyme”, “ligand” or 

“adenylatcyclase”. “Cellular component” describes the place of action of the gene 

product in the cell [113]. As has been reported previously [91], hosts of intragenic 

miRNAs are involved in a broad spectrum of cellular functions, the major ones including 

metabolism, biosynthesis and gene regulation (Figure 15, Figure 16). This is in 

accordance with the general notion that miRNAs are important regulators of cell 

development and interaction. Location-wise, main categories belong to synaptic 

processes, cell adherence, communication and muscle development (Figure 17). 
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Figure 15 - Hosts in GO Biological Processes 

Figure 15 shows overrepresentation of host genes in different categories of the “biological 
processes” ontology. A yellow node indicates statistical overrepresentation of host genes in the 
respective category. 
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Figure 16 - Hosts in GO Molecular Function 

In the ontology “molecular function”, five categories show significant overrepresentation, including 
the broad areas of transcriptional regulation, protein binding, and catalytic activity. 
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Figure 17 - Hosts in GO Cellular Component 

An analysis of associated locations of hosts of miRNA genes indicates presence in many distinct 
parts of the cell. Prevailing categories include synaptic processes, cell adherence, and 
communication and muscle development. 
 

4.2.2 KEGG Analysis Suggests Role of Hosts in Signaling Pathways 

The “Kyoto Encyclopedia of Genes and Genomes” (KEGG) [122-124] is a collection of 

multiple databases. The KEGG Pathways database contains information on biochemical 

pathways and protein interactions, hence representing molecular interaction networks, 

including metabolism, genetic information processing, environmental information 

processing, cellular processes, human diseases and drug development. Due to the nature 

of the database, statistical analyses can be performed equivalently to those in GO, and the 

results are summarized in Table 5. Hosts of intragenic miRNAs are significantly 

overrepresented in twelve pathways (p < 0.05). The majority of significant pathways are 

involved in signaling processes (MAPK signaling, axon guidance, ErbB signaling, VEGF 

signaling, calcium signaling), followed by biosynthetic processes (panthothenate and CoA 

biosynthesis, glycan structures biosynthesis, biosynthesis of fatty acids). 
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Table 5 - Overrepresentation of Hosts in KEGG Pathways 

Pathway 

Expected Number 

of Host Genes in 

Pathway 

Observed 

Number of Host 

Genes in 

Pathway 

Total 

Number of 

Genes in 

Pathway 

p-Value 

MAPK Signaling 4 11 264 0.001 

Pantothenate & CoA 

Biosynthesis 
0 3 16 0.001 

Axon Guidance 2 7 128 0.002 

ErbB Signaling 1 5 87 0.008 

Tight Junction 2 6 135 0.013 

DRPLA 0 2 15 0.019 

VEGF Signaling 1 4 73 0.021 

Type 1 Diabetes 

Mellitus 
1 3 43 0.024 

Neuroactive Ligand-

Receptor Interaction 
4 8 255 0.030 

Glycan Structures – 

Biosynthesis 
2 5 122 0.031 

Calcium Signaling 3 6 176 0.041 

Biosynthesis of 

Unsaturated Fatty 

Acids 

0 2 23 0.043 

 

However, statistical over-representation of host genes of intronic miRNAs is not the only 

interesting feature. The full list of pathways itself presents an interesting inside into the 

spectrum of functional association of these genes. Interestingly, intragenic miRNAs are 

present in 16 out of the 21 KEGG signaling pathways, some of which have been shown to 

play a prominent role in carcinogenesis, like MAPK signaling [125], Erbb signaling 

[126], Calcium signaling [127], and mTor signaling [128]. 
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4.2.3 Intronic miRNAs Target Multiple Genes in Their Hosts’ Pathways 

In order to test the hypothesis that intronic miRNAs might act as regulators in the global 

context of a negative feedback loop circuitry, the KEGG pathway analysis was extended 

to identify targets within the biomolecular pathway. To understand the trade-off of 

sensitivity and specificity in existing target prediction algorithms, the number of agreed 

targets was plotted against the number of algorithms in which that prediction was made 

(see Figure 18). In order to check whether the observed target coverage was expected by 

chance, the original genes contained in the pathway were replaced by a set of randomly 

sampled genes and the expected target coverage was calculated. The distributions of 

expected target coverages are visualized in Figure 19 and Figure 20. 

 

When a prediction agreement of ≥ 2 methods was required, 25 pathways out of 74 had a 

significant overrepresentation of targets at a threshold of 0.05 (Table 6). 

Even though there is significant overlap between Table 5 (overrepresentation of hosts) 

and Table 6 (overrepresentation of targets), it is interesting to observe that in cancer 

pathways are ranked high especially among pathways in Table 6. 
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Table 6 - Target Overrepresentation in KEGG Pathways 

Pathway Host Genes 
Target 

Coverage 
p-Value 

Axon Guidance PPP3CA, PTK2,  SEMA4G, 

SEMA3F, SLIT2, SLIT3, 

ABLIM2 

33.6% < 0.001 

ErbB Signaling ERBB4, AKT2, PRKCA, 

PTK2, MAP2K4 
32.2% < 0.001 

Long-term Potentiation PPP3CA, PRKCA, 

RPS6KA2 
18.6% < 0.001 

MAPK Signaling ATF2, DDIT3, AKT2, 

FGF13, ARRB1, PPP3CA, 

PRKCA, CACNG8, 

RPS6KA2, MAP2K4, 

RPS6KA4 

30.3% 0.001 

Focal Adhesion COL3A1, AKT2, PRKCA, 

PTK2, TLN2 
25.8% 0.001 

Non-Small Cell Lung 

Cancer 
AKT2, PRKCA 25.9% 0.001 

Glioma AKT2, PRKCA 27.7% 0.001 

Pancreatic Cancer AKT2 19.2% 0.001 

Regulation of Actin 

Cytoskeleton 

CHRM2, FGF13, SSH1, 

PTK2 
17.6 0.003 

Melanogenesis PRKCA 10.78% 0.003 

Tight Junction AKT2, MYH6, MYH7, 

PRKCA, ASH1L, MYH7B 
25.9% 0.004 

Bladder Cancer DAPK3 19.0% 0.004 

Prostate Cancer AKT2 18.0% 0.004 

T Cell Receptor 

Signaling 
AKT2, PPP3CA 16.1% 0.005 

Amyotrophic Lateral PPP3CA 10.5% 0.007 
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Sclerosis 

Colorectal Cancer AKT2 16.7% 0.007 

GnRH Signaling PRKCA, MAP2K4 10% 0.01 

Calcium Signaling CHRM2, ERBB4, HTR2C, 

ATP2B2, PPP3CA, PRKCA 
25.6% 0.012 

Ubiquitin Mediated 

Proteolysis 

HUWE1, WWP2, BIRC6, 

ITCH 
23.9% 0.022 

Melanoma AKT2, FGF13 19.7% 0.022 

Insulin Signaling AKT2, SREBF1 15.8% 0.034 

Cell Cycle MCM7 24.1% 0.037 

Chronic Myeloid 

Leukemia 
AKT2 14.5% 0.039 

Glycan Structures 

Biosynthesis 

MGAT4B, FUT8, 

CSGLCA-T, GALNT10, 

HS3ST3A1 

18.9% 0.045 

Small Cell Lung Cancer AKT2, PTK2 16.1% 0.048 

Apoptosis AKT2, PPP3CA 14.3% 0.052 

FC epsilon RI Signaling AKT2, PRKCA, MAP2K4 16.9% 0.091 
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Figure 18 – Influence of Prediction Agreement on Target Coverage 

Increasing the required agreement between the different prediction methods increases specificity 
and decreases sensitivity. Solid lines represent observed target coverage, dashed lines indicate 
the by chance expected target coverage. The difference between a solid and dashed line is an 
estimate of the relationship between the underlying signal and noise. 
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Figure 19 - Target Coverage in MAPK, ErbB and Insulin Signaling Pathways 

MAPK, ErbB and Insulin Signaling pathways had a highly significant intra-pathway over-
representation of intronic miRNAs targets. The figure shows the smoothed target coverage 
distribution obtained from random sampling, the dashed line indicates the actually observed 
target coverage (prediction agreement of at least two methods was required).  
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Figure 20 - Target Coverage in T-Cell, Jak-STAT, VEGF and Toll-Like-Receptor Signaling Pathways 

VEGF, Toll-like Receptor (TLR) and Wnt signaling pathways were not found to be significant. 
Solid curves represent the distribution of the by chance expected target coverage, whereas the 
dashed lines show the observed target coverage. 
 

4.2.4 Host – Target Correlation Suggests Role in Cancer Development 

Blenkiron and coworkers [95] suggested that miRNA processing might be disturbed in 

cancer. They were able to show that some important enzymes involved in miRNA 

biogenesis were differentially expressed between tumor and normal samples, which might 

explain lower than expected correlation between host and miRNA expression levels [95]. 
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In the setting of a negative feedback mechanism, this could have great impact, as the 

inhibitory control of the host would be attenuated. Integration of major KEGG pathway 

information with expression data from two publicly available datasets [102, 103] helped 

us investigate this issue. Assuming multi-order negative feedback (i.e. the intragenic 

miRNA does not target its own host, but functionally associated proteins), a host’s 

expression levels and its miRNA’s targets’ expression levels would be negatively 

correlated, if the host and its miRNA were co-expressed. Correlation should be less 

pronounced or even positive, however, in tumor tissue, given reduced co-expression of 

host and miRNA gene. 

 

KEGG ID “05215 – Prostate Cancer” contains a single known intronic miRNA host 

(AKT2), which is not predicted to be targeted by its intronic miRNA (hsa-miR-641). The 

correlations between host and predicted targets involved in and relevant to the pathway 

were calculated. Figure 21 shows a simplified representation based on the KEGG 

pathway information. Host and corresponding targets are color-coded, where the green 

oval indicates the host, AKT2, and yellow, orange, and red indicate whether two, three or 

four methods agreed on the target prediction. In line with the hypothesis of a negative 

feedback circuitry, targets of hsa-miR-641 are to a great extent in close proximity to, and 

functional synergy with its host. A similar target pattern is exposed by both miRNAs, hsa-

miR-641 and hsa-mir-634, in the non small cell lung cancer pathway (Figure 22). 

 

The correlation between host and target expression levels is shown in a two-bar plot. The 

first bar, labeled “N”, represents the correlation between host and target in normal tissue. 

Similarly, the second bar, labeled “T”, represents the correlation between host and target 

in tumorous tissue. In the prostate cancer dataset, seven of the fifteen targets are more 

negatively correlated in healthy tissue than in cancer. In three cases (AKT3, AR, and 

CTNNB1), one can observe a significant negative correlation in normal tissue, which is 

either non-significant or significantly positive in cancer. A similar pattern can be observed 

in the non small cell lung cancer pathway (Figure 22). 
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Figure 21 - Correlation of Host and Target in the Prostate Cancer Pathway 

The PIK3/AKT2 signaling pathway plays a central role in prostate cancer. The majority of 
predicted targets of hsa-miR-641 within the pathway appear to be in close proximity to, and 
functional synergy with its host, AKT2. Multiple potential targets show strong negative correlation 
with AKT2 in normal tissue but weaker negative correlation, no correlation, or even positive 
correlation in tumor tissue (red bar: p < 0.05; yellow bar: p < 0.10; grey bar: p ≥ 0.10). 
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Figure 22 - Correlation of Host and Target in the Non Small Cell Lung Cancer Pathway 

Similarly to what was found in the prostate cancer pathway, the majority of potential targets of 
hsa-miR-641 and hsa-miR-634 are close and functionally synergistic to their host genes. Several 
hypothesized targets are more strongly negatively correlated in normal tissue than in cancer (red 
bar: p < 0.05; yellow bar: p < 0.10; grey bar: p ≥ 0.10). 
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5 Discussion 
Since the first discovery of miRNAs, our understanding of biogenesis, target interaction 

and regulation has exponentially grown. In the recent past, it has been estimated that 

miRNAs that reside in intronic or exonic regions of other genes may be the dominating 

class [19]. However, functional aspects of intragenic miRNAs are still largely unknown. 

 

5.1 Co-regulation Properties of Intronic miRNAs and Hosts 
Little is known about the properties of co-regulation of intragenic miRNAs and their host 

genes. It is generally believed that both genes, host and miRNA, share regulatory control 

[7, 91]. However, recent reports accumulated evidence of post-transcriptional miRNA 

regulation [97, 98, 129], which raises uncertainty about biological means of co-

transcription. After mapping miRNAs to known genes in RefSeq, we found that most 

intronic miRNAs are preferentially oriented in the same direction as their host gene 

(Table 4), significantly more than would be expected by chance. We showed that intronic 

miRNAs are not evenly distributed across the introns of their host genes, but have a 

positional bias towards the 5’ introns. From a functional perspective, this finding 

integrates well with the idea that proximity to the start site of transcription may guarantee 

more stable transcription. Additionally, it is believed that the 5’ introns of a gene contain 

regulatory elements [92], which supports our findings, considering that miRNAs 

themselves can be viewed as regulatory elements, albeit of a different kind. We also 

looked at expression correlation between miRNAs and their hosts in prostate cancer 

[101], where a significant averaged correlation between intragenic miRNAs and their 

hosts was observed. However, only 20% of [miRNA – host] pairs were individually 

significantly correlated (as opposed to 67% reported by Baskerville and Bartel in normal 

tissue [7]), consistent with previous reports that suggested altered post-transcriptional 

regulation at various levels in cancer tissue [95, 96, 98]. Even though the total number of 

42 [miRNA – host] pairs is relatively low, we observed that significant correlation of 

expression levels was only observed in introns shorter than 8kb. This supports the idea 
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that some intronic miRNAs may be independently regulated when the intron is large 

enough to contain additional regulatory regions. 

 

5.2 Functional Significance of Co-regulation 
Co-regulation of intragenic miRNA and host through co-expression can be meaningfully 

explained in the context of either functional synergy or antagonism. In order to 

characterize the relationship between intronic miRNAs and their hosts, it is necessary to 

gather comprehensive information on functional aspects of host genes themselves, 

including their regulation, as well as functional aspects of miRNAs, which may be 

indirectly assessed by analysis of their targets. 

Current knowledge about functional aspects of genes and their products is stored in 

biomedical ontologies, allowing the investigation of the association of a list of genes of 

interest to biological processes, as according to molecular function, localization within the 

cell, or biochemical pathways. We used Gene Ontology’s ontologies “molecular 

function”, “biological process”, and  “cellular compartment” [113] to first investigate the 

role of the hosts with respect to their function within the cell. We found an association 

with metabolic, biosynthetic, and gene regulative processes, as well as associations with 

cell compartments including synapsis, cell adherens and junctions, myofibrils and 

cytoskeleton. These categories capture major functional aspects of miRNAs in general, as 

is reflected by miRNA involvement in diseases such as cancer [130], muscle disorders 

[60], or neurodegenerative diseases [65]. The impact of miRNA in cell processes, via 

their host genes, was studied to further understand their functional role. Additionally, 

surveying KEGG biochemical pathways revealed that hosts of intronic miRNAs were 

associated with many signaling pathways, some of which are known to be involved in 

cancer. 

 

Direct assessment of miRNA targets is difficult, as high throughput methods to 

comprehensively identify and validate targets for given miRNAs are still in development. 

However, some low to medium throughput experiments help us interpret our findings. 

Some researchers systematically over-expressed individual miRNAs and assessed changes 

in mRNA expression levels to infer miRNA-target interactions [36]. As described earlier, 
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however, all miRNA targets that will be translationally repressed cannot be captured by 

this method (false negatives). Also, miRNAs that target transcription factors for certain 

mRNAs may lead to false positives. Some authors developed theories about binding 

properties and tested these in several single miRNA target interaction experiments [84]. 

Conservation of potential mRNA binding sites across species has also been used to 

identify targets [77], but this approach misses those targets that are specific to a species. 

The knowledge of these experiments and hypotheses has been utilized in a variety of 

target prediction algorithms. To acquire a comprehensive list of potential target 

interactions, we combined predictions derived from these algorithms. Using the unified 

set of predictions, we could show that intragenic miRNAs tend to target their own hosts, 

supporting the concept of a first-order negative feedback regulation.  

 

Even though our knowledge about current biochemical pathways and molecule 

interactions is still far from complete, we observed that intronic miRNAs seem to 

preferentially target molecules involved in the same biochemical pathway as their hosts, 

consistent with functional antagonism. A visual representation of the targets of AKT2’s 

intronic miRNA hsa-miR-641, for example, shows how components of many protein 

complexes involved in the signal transduction of growth factor signaling are potential 

targets of hsa-miR-641 (Figure 21). 

 

5.3 Potential Model of Cancer Development 
Cancer encompasses a set of diseases that are characterized by uncontrolled growth of 

cells that are able to invade surrounding tissue and, by using lymphatic or blood vessels, 

metastasize to distinct parts of the body. In order to achieve this, these cells must be able 

to modify signals from surrounding cells or tissue and also signal transduction processes. 

Due to their regulatory function, miRNAs have been shown to be among the major 

players in cancer development [130]. In a recent study, Tavazoie et al. analyzed six 

miRNAs that were significantly under-expressed in breast cancer LM2 cells, as compared 

to normal breast tissue. Four of these miRNAs are intragenic [46]. The authors reported 

that loss of the intronic miRNA hsa-miR-335, which resides in intron 2 of its host gene 

MEST, lead to increased migration and invasion rates and hence increased metastatic 
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capacity. Additionally, they could show that hsa-miR-126 (intron 7, host EGFL7) 

significantly reduced proliferation of breast cancer cells. 

 

Some authors suggested dysregulation of miRNA biosynthesis in malignantly transformed 

cells [95, 96], leading to reduced correlation of expression levels with their hosts and 

hence explaining the apparently contradictory findings of Baskerville and Bartel [7] and 

Blenkiron et al [95]. If the assumption holds that intragenic miRNAs are functionally 

antagonistic to their hosts and that changes in miRNA biosynthesis such as those found in 

cancer reduce correlation of expression levels of miRNA and host, then one would expect 

to see a negative correlation between expression levels of host and target genes in normal 

tissue and a less negative or even positive correlation in cancerous tissue. This 

phenomenon was observed in two distinct datasets in different malignancies (Figure 21, 

Figure 22). A key to pathogenesis of both entities is the phosphatidylinositol 3-

kinase(PIK3)/AKT signaling pathway, deregulation of which has been reported in several 

cancers, including prostate cancer [131], lung cancer [132], ovarian cancer [133, 134], 

breast cancer [134, 135] and colon tumors [133]. Modern drug therapy successfully 

targets AKT and PI3K. Whereas Noske et al. discovered that silencing AKT2 through 

RNA interference leads to reduction in ovarian cancer cell proliferation [136], 

Maroulakou and coworkers reported accelerated development of polyoma middle T and 

ErbB2/Neu-driven mammary adenocarcinomas in mice after AKT2 ablation [137]. 

Though these findings could appear to be contradictory at first, they could be explained 

by our model of an intronic miRNA-driven negative regulatory loop that is disinhibited in 

cancer. Whereas in the first experiment AKT2 was targeted on mRNA level (and 

therefore mimicking the role of the corresponding intronic miRNA), the second 

experiment would downregulate both host mRNA and miRNA (if it exists in mouse), and 

would therefore disable negative feedback regulation by hsa-miR-641. 

 

One should remember though that regulatory networks are far more complex in reality 

than what we are currently able to model. Transcription factors, enhancers, silencers, and 

epigenetic modifications play major roles in cancer development and may influence 

correlation among expression levels of host and target. Also, target prediction methods 
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are just predictions, and at this point we can only speculate about the true nature of 

events. Limitations of our model may justify, for example, why Cyclin E and E2F in Figure 

21 show opposite behavior of what we would expect. For example, Cyclin E and E2F 

might actually not be targets of hsa-miR-641; there may also exist a stronger regulating 

element that controls expression levels, or the primary mode of silencing in that specific 

situation may be through translational repression. Nevertheless, it is interesting how key 

molecules in two different datasets display predicted correlation patterns and how our 

model can explain some recent findings in cancer research. Future steps include 

biochemical validation of the model. A starting point could be to show how selective 

inhibition and restoration of hsa-miR-641 significantly modulates cell growth, 

proliferation, and survival as predicted by the model. 

6 Summary 
Even though intronic miRNAs have long been known, so far there has been no 

conclusive study determining the relationship between intronic miRNAs and their host 

genes and possible implications. The results reported here provide evidence that co-

regulation through co-expression may be a key mechanism for at least a subset of intronic 

miRNAs to act as part of a negative feedback loop. When this mechanism is disrupted, 

abnormal cell development occurs, as is the case in cancer.  

 

We show in this work, how computational analyses that integrate a variety of data and 

knowledge bases can be useful in the formulation of models that advance our 

understanding of disease processes. The fast pace by which technology to measure 

biological processes at a large scale is being developed, coupled with new informatics 

approaches that allow integrated analysis of large amounts of biological and clinical data 

is transforming the way biomedical experiments are being conducted, which is likely to 

accelerate the translation of scientific findings into critical advances in health care. The 

role of miRNAs in disease processes is just beginning to be understood, and much 

remains to be learned. This work represents a small, but important contribution towards 

elucidating the role of miRNAs in health and disease. 
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