

 1

MISSION PLANNING AND NAVIGATION SUPPORT FOR
LUNAR AND PLANETARY EXPLORATION

by

JOSEPH R. ESSENBURG

B.S. Engineering Physics, Taylor University, 2002

B.A. Mathematics, Taylor University, 2002

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2008

© 2008 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Department of Mechanical Engineering

September 28, 2008

Certified by
Dava J. Newman, Thesis Supervisor

Professor of Aeronautics and Astronautics & Engineering Systems
Director, Technology and Policy Program

Certified by

Steven Dubowsky, Thesis Supervisor
Professor of Mechanical Engineering

Director, Field and Space Robotics Laboratory

Accepted by
Lallit Anand

Professor of Mechanical Engineering
Chairman, Department Committee on Graduate Students

 2

 3

MISSION PLANNING AND NAVIGATION SUPPORT FOR
LUNAR AND PLANETARY EXPLORATION

by

JOSEPH R. ESSENBURG

Submitted to the Department of Mechanical Engineering on August 28, 2008, in partial
fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering

ABSTRACT

When mankind returns to the moon and eventually voyages to Mars, the ability to effectively
carry out surface extra-vehicular activities (EVAs) will be critical to overall mission success.
This thesis investigates improving planetary EVAs via a support system to enable optimized
mission operations. In order to develop a robustly effective aid capable of performing under the
high time pressure, risk, and uncertainty inherent in space exploration, key surface operation
factors are examined to understand to best fit role of automated support within complex,
changing exploration situations.

A detailed characterization of the makeup and challenges of planetary surface EVAs was used to
establish a specific framework for maximizing the productivity of these missions. Recognizing
the need for automated support in achieving such optimal performance, the presentation of
methods by which all pertinent mission factors may be quantitatively modeled led to creation of
a comprehensive automated mission support architecture.

Based on this analysis and motivated by ongoing field testing, a prototype mission support
system was developed with twofold intent: both for pre-mission planning and simulation as well
as for real-time explorer navigation and re-planning. The prototype presents an intuitive interface
where controllers may quickly represent a broad range of mission parameters and scenarios in
order to determine a best course of action for immediate execution. Specifically, this system
optimizes explorer traverses with respect to given cost functions via a novel implementation of
the A* search algorithm. Developed plans may further be linked to a global positioning system to
empower real-time team navigation.

Through the completion of experimental EVA simulations involving physical explorers on a
remote terrain jointly controlled by a multi-university team, the developed system was shown to
robustly respond to situational updates and contingencies to maintain optimal mission
performance in near real-time, offering enhanced functionality where preceding systems fell
short. The analysis closes with a discussion on the opportunities for such a system as well as
potential areas for further improvement.

Thesis Supervisor: Dava J. Newman
 Professor of Aeronautics and Astronautics & Engineering Systems
 Director, Technology and Policy Program

 4

 5

ACKNOWLEDGEMENTS

For a Midwestern kid who grew up playing with LEGOs, making it through here at MIT has
been a dream come true. There are so many people I need to thank who have helped me along
the way.

First and foremost, I would like to thank God who has lit the path here and faithfully guided me
through every opportunity. I would also like to thank my family for supporting me since the
beginning, helping me keep my sanity, occasionally doing my laundry, and making the best
meals I�ve had in the past too many years. Thanks mom and dad for always being there!

Thanks to Dava Newman, Win Burleson, and Kip Hodges for helping give this broad project a
clear direction, constantly motivating the work, and coming up with (excessively) abundant ideas
for improvement. Also thanks to Steve Dubowsky whose constructive criticism ended up being
instrumental in shaping a specific focus for this work.

A huge thanks goes to Jessica Márquez for her support and enthusiasm in answering all of my
questions, and to Lasse Lindqvist for making clear sense of all the previous work. Thanks to
Daniel Sheehan, without whom this project would not have been possible, for his help with
ArcGIS and setting up the navigation system.

Thanks to Uday Kumar and the team at ASU as well as Chris Assad and the team at JPL for their
excellent work in helping set up the joint EVA simulations. While I�m thinking of it, thanks also

to these teams for being located where they are, providing my best chance to get a tan in the past
year.

Another big thanks goes to Brandon Johnson for his terrific work coding A* in Matlab. Thanks
to Kate Clopeck for her help in setting up early experiments, and to Sally Chapman for helping
keep track of Dava and answering many questions. Most recently, thanks to Marcelo Vazquez
for the opportunity to send the system up for testing at Devon Island this summer.

I have major appreciation for my second monitor, upon which this thesis was written, that has
saved me from countless hours of minimizing and maximizing windows. I suppose appreciation
is also due to Matlab, LabVIEW, ArcGIS, and the Seamless map server; give me a couple
months to recover and I�ll get back to you on that one. Google Maps is still cool with me though,
thanks guys for understanding latitude and longitude, and keeping me from getting lost and
letting me see where I�m headed, and even see the people on the street who happened to be

walking by that day.

Clearly a massive thanks goes out to Leslie Regan for all her support and especially for still
accepting this thesis for Summer graduation despite the current date (which shall remain
nameless in this work).

 6

Beyond academics, thanks to the folks at Warwick, Taylor, Ibanez, Fender, Harmony, and
Michael Kelly Guitars for giving me something to do in my free time. Thanks also to Sportcraft
dartboards in that department.

A huge thank you goes to Alex Edmans, Andrej Kosmrlj, and all of Tang and MIT intramurals.
You�ve kept me young, relaxed, occasionally limping, and relatively in shape over these years.
On a related note, thanks also to Michael Collins for remaining cool after a soccer ball made its
way through the glass of my 19th story window. And thanks for deeming my room not a fire
hazard despite containing a large combustible structure bearing guitar cases, a ceiling fan, and
even a TV, carrying live electrical lines and partially blocking the fire sprinkler.

Thanks to the Thirsty Ear for providing employment so that I didn�t starve before I had funding,

and thanks to Subway, Shinkansen, and Anna�s Taqueria for keeping me fed throughout this

process. Thanks also to Gatorade, Kellogg�s, and Quaker Oats for helping me make it through

many sleepless nights.

A great big thanks to Austin Marks and the MIT Gosple Choir, playing bass for you guys was
exciting to say the least. Also, thanks to Warren Rohsenow for having a lab named after him in
Building 7, being my first cousin twice removed, and letting me crash in Maine, because that�s

just awesome.

Thank you to Specialized bikes for getting me around in the city, and to Southwest airlines for
whenever I left. For in between, thanks to Stafford loans and Honda Financial Services for
enabling a completely broke grad student to afford a 2008 V6.

Thanks to the Chicago Cubs for always giving me something to hope for, and also to Boston
sports for at least keeping things interesting while I was here. Note this sentiment does not
extend to �New England� sports.

I must thank Mark Swanson at Goddard and Bob Davis and Jeremy Case at Taylor for writing
what must have been some amazing letters of recommendation to get me here. Thanks to
everyone at the MVL for your help and support. Finally, thanks to all my friends here at MIT!
Don�t worry, I�m still kicking, I�ll see you as soon as this gets printed.

 7

TABLE OF CONTENTS

Abstract...3

Acknowledgements ..5

Table of Contents ...7

List of Figures...11

List of Tables ..15

1 Introduction..17
 1.1 Motivation..17

 1.2 Objective ..19

 1.3 Thesis Outline ..20

2 Characterizing Planetary Surface Missions ..23
 2.1 Extravehicular Activities ...23

 2.1.1 Past and Present Surface EVAs ...23

 2.1.2 Future Vision of EVAs ..28

 2.2 Mission Interactions...29

 2.2.1 Environment Interactions...29

 2.2.2 Astronaut-Robot Interactions...31

 2.2.3 Mission Control Interactions..32

 2.3 Optimizing Missions..34

 2.3.1 Planning: Inputs and Outputs...35

 2.3.2 Maximizing Productivity ...37

 2.3.3 Contingencies and Re-Planning...39

3 Mission Operation Factors for an Automated Support System41
 3.1 Mission Planning ...41

 3.1.1 Defining Objectives ...42

 3.1.2 Exploration Costs and Constraints...43

 3.1.2.1 Defining Cost Factors ..43

 3.1.2.2 Explorer Modeling ...44

 3.1.2.3 Terrain Characterization ..48

 3.1.2.4 Cost Functions ...51

 3.1.3 Exploration Return...52

 3.1.4 Creating an Optimized Mission Plan ...53

 8

 3.2 Real-Time Mission Support...54

 3.2.1 Explorer Navigation...55

 3.2.1.1 Path Modeling..55

 3.2.1.2 Positioning and Motion Capture ..55

 3.2.1.3 Following a Planned Path ..56

 3.2.2 Monitoring Explorer Energetics ..57

 3.2.3 Mission Alterations and Re-Planning ..58

 3.2.3.1 Modifying Mission Models..59

 3.2.3.2 Implementing an Updated Mission..60

 3.2.4 Contingencies...61

 3.2.5 Relaying Mission Information ...62

4 Pathmaster: A Mission Planning and Support Prototype..65
 4.1 Developing a Mission Support System..65

 4.2 Opening Pathmaster ...68

 4.3 Planning a Mission...68

 4.3.1 Loading Terrain Maps..69

 4.3.2 Entering Map Information ...70

 4.3.2.1 Map Resolution..70

 4.3.2.2 Global Positioning ...71

 4.3.3 Entering EVA Inputs..71

 4.3.3.1 Maximum Traversable Slope...72

 4.3.3.2 Planet Selection..73

 4.3.3.3 Time of Mission and Sun Position...73

 4.3.3.4 Characterizing Explorers ...73

 4.3.3.5 Data Output..73

 4.3.4 Terrain Display ..74

 4.3.4.1 Surface Appearance ...75

 4.3.4.2 Data Layers ..76

 4.3.4.3 Sun Illumination...78

 4.3.4.4 Data Display...78

 4.3.4.5 External Mapping Software Support ...79

 4.3.5 Defining Mission Waypoints ...80

 4.3.6 Editing Terrain Characteristics ..81

 4.3.6.1 Obstacles ..81

 4.3.6.2 Soil Mechanics...82

 4.3.6.3 Scientific Return ..83

 4.3.6.4 Optional Additional Parameters...84

 4.3.7 Establishing Optimized Traverse Paths ...84

 9

 4.3.7.1 The PATH Software and Cost Functions...85

 4.3.7.2 MATLAB Implementation of A* ..87

 4.3.8 Traverse Path and Cost Display...90

 4.3.9 Simultaneous Mission Scenarios ...91

 4.3.9.1 Side-by-Side Comparison ..91

 4.3.9.2 Explorers with Distinct Parameters ...92

 4.4 Virtual Reality Simulation ...92

 4.5 Real-Time Mission Support...93

 4.5.1 Relaying Mission Information ...94

 4.5.2 Explorer Navigation...94

 4.5.2.1 GPS Link via ArcGIS ..94

 4.5.2.2 Virtual Reality Display ..96

 4.5.3 Mission Re-Planning..96

 4.5.3.1 Updating Models and Contingencies ...96

 4.5.3.2 Return Home Paths ..97

 4.6 Additional Features..98

 4.6.1 �Lite� Option ..98

 4.6.2 Reloading Mission Information ...98

5 Field Testing ...101
 5.1 Traverse Planning and GPS-Linked Navigation..101

 5.1.1 Setup ..101

 5.1.2 Operation..104

 5.1.3 Conclusions..104

 5.2 Fundamentals of Engineering Exploration Lab ...105

 5.2.1 Setup ..105

 5.2.2 Operation..109

 5.2.3 Conclusions..111

 5.3 Joint EVA Simulations and the Motivation for Pathmaster...112

 5.4 Jointly Controlled EVA on a Remote Terrain ...114

 5.4.1 Setup ..115

 5.4.2 Operation..118

 5.4.2.1 Communication Failure ...120

 5.4.2.2 Robot Failure ...120

 5.4.3 Conclusions..122

6 Conclusion and Recommendations ..125
 6.1 Contributions..125

 6.1.1 Current Deployment at Devon Island ..125

 10

 6.2 An Ideal Mission Support System ...126

 6.3 Design Recommendations ...127

 6.3.1 Linking Pathmaster with GPS..127

 6.3.2 Explorer Cost Functions ..128

 6.3.3 Waypoint Ordering and Prioritizing ..129

 6.3.4 Activity Constraints ...130

 6.3.5 Variable Sun Positioning ...130

 6.3.6 Interfacing with ARMS..130

 6.3.7 Explorer Heads-Up Display...131

 6.3.8 Integration with the Decision Theater..131

Appendix A: Contents of Enclosed DVD-ROM...133

Appendix B: Pathmaster User Manual...135

Appendix C: MATLAB Code for Pathmaster ...161

Appendix D: Supplementary Information for the Exploration Lab Field Test..................205

Appendix E: LabVIEW Energetics Models ...213

References ...217

 11

LIST OF FIGURES

Figure 1.1 EVA hours to establish a Lunar base, �The Mountain of EVA� (Cooke et al.,
2007) ..17

Figure 1.2 Past EVA experiences. Top: Various planetary traverses to scale (Eppler, 2004).
Bottom Left: Apollo 14 astronaut with lunar map (NASA image, AS14-64-9089). Bottom
Right: Apollo 15 astronaut on the lunar rover (NASA image, AS15-85-11471)18

Figure 2.1 Low sun angles on the flank of cone crater (NASA image, AS14-64-9099).............24

Figure 2.2 Apollo 16 astronaut driving the Lunar Roving Vehicle (NASA image,
S72-37002)...25

Figure 2.3 Apollo 17 astronaut covered with lunar dust (NASA image, AS17-145-22157).......26

Figure 2.4 Past and present exploration robots. Left: Lunokhod 1 (Christy, 2008). Right: Artist�s

rendering of a Mars Exploration Rover on the Martian surface (JPL image)27

Figure 2.5 Future Lunar EVA systems and operations. Left: Artist�s rendering of humans and
robots working together on the moon (NASA image). Right: Model of a prototype
pressurized lunar rover (Cooke et al., 2007)..28

Figure 2.6 Mission control for the Phoenix Mars Lander at the Jet Propulsion Laboratory33

Figure 2.7 Human interaction with automation as a function of certainty (Cummings, 2006) ...34

Figure 2.8 Planetary EVA planning framework (Márquez, 2007) ..36

Figure 2.9 Block diagram of planetary EVA mission planning...36

Figure 2.10 Block diagram of EVA mission planning, error, and actual activity37

Figure 2.11 Heads-up navigation assistance concepts. Left: General Motors �smart windshield�
to enhance the upcoming view (GM, 2008). Right: Mission support system integrated with a
space suit helmet (Lindqvist, 2008) ...38

Figure 2.12 Block diagram of complete EVA planning, activity, and re-planning cycle............40

Figure 3.1 Defining waypoints with respect to global coordinate systems (modified from UNBC,
2008) ..43

Figure 3.2 Planetary EVA explorer types. From left to right: suited astronauts on foot, unmanned
robot, pressurized transport rover (NASA images) ...44

Figure 3.3 Rendering of a digital elevation model (DEM) of Martian terrain (USGS image)....48

Figure 3.4 �Layering� terrain data at each digital elevation model (DEM) grid point................50

Figure 3.5 Mission waypoint positions (blue) overlaid on a terrain model with obstacles (red) ..50

Figure 3.6 Handheld display showing terrain rendering with current explorer position (red circle)
along a planned traverse path (blue lines)..57

 12

Figure 3.7 Example interface for monitoring astronaut energetics signals58

Figure 3.8 Concept 3D mission information display showing terrain rendering with astronaut
position along a planned traverse route ...63

Figure 3.9 Mission information display concepts. From left to right: heads-up display, space suit
imbedded screen, computer screen (NASA images s99_04197, jsc2004e18850,
jsc2004e18859) ..64

Figure 4.1 Elevation data file prompts...69

Figure 4.2 Map Information Menu with global positioning active (left) and inactive (right)70

Figure 4.3 EVA Input menu...72

Figure 4.4 Mission Planner GUI..74

Figure 4.5 Terrain surface appearance options. Left: axes scaling selection; Right: render mode
options..75

Figure 4.6 Surface render modes. From left to right: Earth, Moon, Mars76

Figure 4.7 Terrain data layer display options ..76

Figure 4.8 Terrain data layer displays: elevations (top left), obstacles (top right), soil mechanics
(bottom left), scientific return (bottom right) ..77

Figure 4.9 Simulated sun illumination at midnight (left) and 9:30 AM (right)...........................78

Figure 4.10 Using the terrain data display (top) to locate a feature identified through external
mapping software, in this case Google Maps (bottom) ...79

Figure 4.11 Waypoint edit controls ...80

Figure 4.12 Terrain edit controls ...81

Figure 4.13 Explorer velocity profile as a function of slope (modified from Márquez, 2007) ...86

Figure 4.14 Explorer energy consumption rates, shown for lunar gravity (Márquez, 2007)87

Figure 4.15 Visualization of �smart searching� for a third waypoint (modified from Johnson,

2008) ..89

Figure 4.16 Traverse path and cost display ...90

Figure 4.17 Side-by-side comparison of two EVA strategies. At left, explorers travel together; at
right, explorers divide and conquer ...92

Figure 4.18 Running a Pathmaster developed mission (left) in the Astronaut Rover Mission
Simulator (right)...93

Figure 4.19 Mission planner configuration in ArcGIS (Lindqvist, 2008)95

Figure 4.20 Map Info and EVA Input buttons to re-open the respective menus96

Figure 4.21 Return home paths, shown as dotted routes ...97

Figure 4.22 Normal surface rendering (left) and �lite� rendering (right)98

Figure 5.1 Aerial photograph of the MIT campus (left, courtesy Google Maps), and the
corresponding terrain model loaded in ArcGIS (right)..101

 13

Figure 5.2 Terrain obstacles, shown in red, and mission waypoints ...102

Figure 5.3 Planned traverse route for the field test ..103

Figure 5.4 The Trimble GPS receiver used in the field (courtesy Lindqvist, 2008)....................103

Figure 5.5 Mission plan execution. At left, a crewmember operates the Trimble unit for
guidance. The planned (blue) and executed (yellow) routes are shown to the right104

Figure 5.6 The various surface team rovers...106

Figure 5.7 Aerial map of the Killian terrain denoting zones and sites of interest107

Figure 5.8 Astronaut and rover energetics interfaces ..107

Figure 5.9 Using the mission planner system to monitor traverse distances108

Figure 5.10 Initial mission support system concepts. At left, path planning in MATLAB on a
terrain with obstacles shown in red. At right, OpenSceneGraph rendering of explorers on the
same terrain with displayed nominal and contingency routes ...114

Figure 5.11 The Mars Yard at JPL, looking south...115

Figure 5.12 Point cloud of Mars Yard Reigl mapping looking southeast (right) and associated
Pathmaster mapping viewed aerially (left) ..116

Figure 5.13 LabVIEW interface for approximating astronaut physiological signals117

Figure 5.14 Initial mission plan with sites labeled ..118

Figure 5.15 Astronaut view of the rocks at waypoint A as seen in ARMS119

Figure 5.16 Astronaut assumes two robot waypoints, then rendezvous with the robot...............121

Figure 5.17 Robot proceeds to base, astronaut to waypoint 6 ...121

Figure 5.18 Astronaut leaves waypoint 6 to meet robot and carry it back to base122

Figure 6.1 Navigating along an optimal route on a suited traverse at Devon Island...................126

Figure 6.2 The Decision Theater at Arizona State University...131

 14

 15

LIST OF TABLES

Table 3.1 Levels of automation (Parasuraman et al., 2000) ..42

Table 3.2 Cost functions: input parameters from models and output cost factors.......................51

Table 4.1 Levels of automation (Parasuraman et al., 2000) ..66

Table 4.2 Estimated explorer velocities as a function of surface slope, from Márquez, 200786

Table 4.3 Estimated explorer energy consumption rates, from Santee et al., 2001.....................87

Table 5.1 Summary of joint mission control task allocation ...117

Table 5.2 Astronaut feedback from planned waypoints ..119

 16

 17

1 INTRODUCTION

1.1 MOTIVATION

On January 14, 2004, President George W. Bush announced a new national focus for future

space operations. A primary goal of this Vision for Space Exploration is to return manned crews

to the lunar surface by 2020, with the purpose of �establishing an extended human presence on

the moon� (Bush, 2004). Such an undertaking will be the first of its kind since the Apollo era,

and it will serve as a stepping stone for human exploration to Mars and beyond.

The task of developing an outpost on the moon is extraordinary. Of the massive obstacles to be

overcome is the imposing extent of extra-vehicular activities (EVAs) necessitated for

construction and field exploration. By comparison, the extent of EVAs required to assemble the

International Space Station (ISS) became known as the �wall of EVA,� as this undertaking

significantly overshadowed the total previous experiences from the Gemini program through the

initial Space Shuttle missions (Ney & Looper, 2005). In turn, the projected EVA hours required

to establish an occupied lunar base has been coined �the mountain of EVA,� as this easily dwarfs

even the ISS construction (Figure 1.1).

Figure 1.1 EVA hours to establish a Lunar base, �The Mountain of EVA� (Cooke et al., 2007)

 18

To develop a successful planetary operations program, we must leverage our experience from the

Apollo era along with nearly half a century of technological advancements. The Apollo EVAs

were conducted with minimal support for the explorers in the field. On the traverse of Apollo 14

to Cone Crater, the astronauts experienced fatigue and disorientation as they climbed

unexpectedly steep terrain with only a paper map to guide them (Márquez, 2007). The addition

of the Lunar Roving Vehicle in later missions enabled broader travel, yet the explorers still

lacked support in distinguishing the varying terrain and locating objectives. The Apollo

experience clearly demonstrates both the theme of expanding EVA ambition and, in turn, the

need for improved planning and support systems (Figure 1.2). On the future lunar surface, EVAs

will become routine, daily tasks. Hence, our ability to complete them safely and efficiently will

be critical to overall mission success.

Figure 1.2 Past EVA experiences. Top: Various planetary traverses to scale (Eppler, 2004)
Bottom Left: Apollo 14 astronaut with lunar map (NASA image, AS14-64-9089)

Bottom Right: Apollo 15 astronaut on the lunar rover (NASA image, AS15-85-11471)

 19

As the number and scope of surface operations grow much greater, the ability to maximize crew

safety and productivity while minimizing costs becomes essential. This thesis focuses on

improving planetary EVAs via optimal mission operations. The task of optimizing planetary

operations begins with mission planning. Planners must establish clear objectives and lay out a

course of action for achieving them while keeping within a set of constraints. In the case of

running an EVA with maximized productivity, mission planners require foreknowledge of the

terrain and the ability to quantitatively estimate costs and returns. Especially when several

astronauts or robots may be used within a mission, planners need to be able to compare various

scenarios and strategies in order to determine the best option. In turn, a traversing astronaut or

robot must continuously manage mission information, exploration activities, navigation, safety,

and constraints under time pressure and in a hostile, unfamiliar environment. Creating an ideal

plan is futile if the field explorers cannot effectively understand and follow it. Furthermore, since

surface teams must react to situations in real-time, mission control must also be capable of

responding in real-time to offer support. Inherent to exploration are contingencies and

unexpected discoveries, and in these cases a new plan of action is required. In order to maintain

productivity and safety, all proceeding mission re-planning must be optimized within operational

constraints as well. Hence, a complete planning and navigation support system capable of

adapting to changing situations in real-time is essential to optimizing EVA performance. The

scope of such a system extends to any remote excursion with a team of explorers whether on

Earth, Moon, Mars, or beyond.

1.2 OBJECTIVE

Planning an optimally productive EVA mission requires the quantitative representation of

mission costs, returns, and constraints coupled with the ability to compare the results of various

operation strategies and situations. When shifted to real-time during a mission, optimized re-

planning further necessitates the capacity to quickly analyze changing situations and seamlessly

update the mission plan with the best course of action. The knowledge base upon which these

decisions are made must continuously be updated with feedback from the field explorers as the

mission is carried out. Finally, productive operation further demands effective support for the

surface explorers in navigating along planned paths to objective sites and carrying out the desired

activities.

 20

The primary goal of this thesis is to develop a model automated support system for optimizing

planetary EVA operations. This system�s use will be twofold: both for pre-mission planning and

simulation as well as for real-time explorer navigation and re-planning. To this end, surface EVA

missions will be characterized and the optimization process examined. All operation factors

relevant to mission support will be identified, and automated system performance evaluated. The

prototype mission support system will then be presented, followed by field tests involving key

system components. The results will be discussed along with several design recommendations

for enhancing mission fidelity.

1.3 THESIS OUTLINE

Chapter 2 begins by establishing the general makeup and especially challenges of planetary

surface missions through a pragmatic overview of past, present, and projected future EVAs.

Mission operations are further classified into a set of specific interactions between the

environment, field explorers, and mission control. From here, the methods by which these

interactions, and hence mission performance, can be optimized in terms of productivity is clearly

specified. In particular, the framework for providing robust real-time support is developed.

Chapter 3 further breaks down EVA operations into a set of specific factors pertinent to

automated mission support, and the functionality of a comprehensive automated support system

is presented. The aid provided by such a system is necessary to enable optimal performance of

controllers and explorers given the high time pressure of making decisions and completing

planned objectives on schedule. In particular, the distinct support system functions of optimal

mission planning, surface explorer activity support, and real-time re-planning in response to

uncertain situations are explained in detail.

In Chapter 4, a subset of the established factors and functionality of automated support are

implemented in the development of a prototype mission operation support system, named

Pathmaster. All features of this prototype system are presented in detail, outlining the near real-

time process by which users may represent a mission situation and develop an optimal plan of

explorer traverses to be executed. The generation of predicted explorer costs and the subsequent

traverse optimization routine are explained as well.

 21

Chapter 5 summarizes the field testing that has motivated the development of the automated

support system into its current state. The setup and operation of each experiment is presented,

and the key system components addressed are identified. Results are discussed in terms of the

intended and actual performance of the system and emergent desire for improved functionality.

Chapter 6 concludes by summarizing the contributions of the current work and discussing the

formation of an ideal mission support system. To close, numerous design recommendations to

improve the fidelity and utility of the Pathmaster system are provided along with opportunities

for continued research in EVA operational support.

 22

 23

2 CHARACTERIZING PLANETARY SURFACE MISSIONS

2.1 EXTRAVEHICULAR ACTIVITIES

On July 21, 1969, man first landed on the Moon. While Neil Armstrong and Buzz Aldrin spent

21 hours on the lunar surface that day, they are eternally remembered for the two and a half

hours that they ventured outside the Lunar Module carrying out the first extravehicular activity

(EVA) on the surface of another world (NASA, 2004; BBC, 2008). Every subsequent manned

mission to land on the moon has included a set of EVAs as well, with ever broadening objectives

and ambitions. In order to design a planning and support system for these sorties, the first step is

to characterize the makeup, expectations, operation, and challenges of such missions.

2.1.1 PAST AND PRESENT SURFACE EVAS

Our experience with planetary EVA operations begins with the Apollo program, where each

mission was completed by a team of two suited astronauts. Sticking together, the team would

travel to pre-planned sites and complete various activities such as drilling and collecting samples.

Although extensive preparation involving scientists, engineers, astronauts, and mission planners

would be undertaken to maximize scientific return of each mission, the resulting traverse routes

and estimated travel times were established based upon low-resolution photographic images and

crude topographic maps (Muehlberger, 1981). The Apollo 11 and 12 EVAs focused mostly on

engineering testing, and it wasn�t until Apollo 14 that mission objectives shifted more toward

surface exploration and scientific advancement (Márquez, 2007). In these missions, where

traverses grew along with the demand on crews, several common problems emerged.

On the second EVA of Apollo 14, the astronauts were provided with only a paper map as a guide

to locate the edge of Cone Crater (NASA, 1971). Wearing bulky space suits on the unfamiliar

vast monochromatic terrain, the astronauts became unsure of their position and began climbing

unexpectedly steep slopes which were obscured by low sun angles (Figure 2.1). The astronauts

began pushing the limits of exertion with elevated breathing and heart rates, forcing them to

periodically stop and rest. Falling behind schedule, fatigued, and unable to accurately determine

 24

their objective, the planned destination was abandoned and the crew had to settle for another site.

As a result, the crew recommended incorporating a 30% safety margin in future mission

scheduling (Engle, 2004).

Figure 2.1 Low sun angles on the flank of cone crater (NASA image, AS14-64-9099)

Apollo 15 � 17 saw the addition of a Lunar Roving Vehicle (LRV), and with it an inertial �dead-

reckoning� navigation system (Figure 2.2). This onboard system provided the range and bearing

back to the Lunar Module, at least to within 600 meters (LaPiana, 1971; Wade, 2008). Despite

enabling astronauts to travel considerably farther with much less effort, neither the rover nor the

navigation system provided astronaut assistance in distinguishing objective sites or judging

 25

terrain slopes and feature sizes. Crew members reported consciously driving slower as a result of

not being able to accurately anticipate the upcoming terrain (Jones, 1995). The introduction of

the LRV also imposed a strict safety constraint known as the �walk-back� requirement on all

EVAs. By this rule, the astronauts were never allowed to venture a distance farther from the

Lunar Module than they would be capable of walking back with the remaining oxygen. This

way, should the LRV fail, the astronauts could still make it back safely on foot (Jones, 2006). As

a result of this constraint, exploration to farther sites came with a high time pressure so as not to

exhaust undue oxygen and violate the �walk-back� requirement. Any delays or unexpected

findings jeopardized the completion of all planned objectives. Such a situation occurred during

Apollo 17, when astronauts found �orange soil� and had to quickly assess whether they could

collect unplanned core samples given the resource limitations (Jones, 1995; Márquez, 2007).

Figure 2.2 Apollo 16 astronaut driving the Lunar Roving Vehicle (NASA image, S72-37002)

 26

In addition to issues with navigation and unplanned findings, technical difficulties also caused

crews to fall behind schedule. The lunar surface dust in particular became a considerable

problem. This very fine, unweathered dust �can adhere to every object and penetrate very small

openings�the dust permeated the cabin, covered the EVA suits, and soiled the field experiment

hardware� (Figure 2.3) (Lindqvist, 2008). The dust impeded the performance of instruments and

forced crews to take extra time to clean equipment. Each crew also had to deal with occasionally

malfunctioning equipment, including the LRV. A recurring theme of EVAs on the moon was a

general lack of time to complete all planned activities (Márquez, 2007). All lunar missions

sustained considerable time delays or contingencies in one form or another. Faced with resource

limitations, the explorers and mission control were required to perform real-time re-planning of

each lunar EVA to salvage the objectives of highest priority and return the crew home safely.

Figure 2.3 Apollo 17 astronaut covered with lunar dust (NASA image, AS17-145-22157)

When the Apollo 14 crew landed in 1971, another somewhat less known explorer from earth was

also roaming the moon. Launched by the Soviet Union, Lunokhod 1 was the first remote

controlled robot to land on another world. Along with its successor Lunokhod 2, these 8 wheeled

vehicles slowly rolled alone across the lunar terrain performing soil analyses and capturing

thousands of images (Christy, 2008). Such EVAs were an early analog to our present exploration

of Mars (Figure 2.4). The Mars Exploration Rovers (MER), Spirit and Opportunity, are currently

surveying Mars on a daily basis carrying out various scientific goals. Unlike the Apollo missions,

 27

these long-term unmanned EVAs did not originate with a set of pre-selected objective locations.

Instead, all investigation sites have been determined in-situ by planetary scientists based upon

imagery and spectroscopy data taken by the rover (Márquez, 2007).

Figure 2.4 Past and present exploration robots. Left: Lunokhod 1 (Christy, 2008)
Right: Artist�s rendering of a Mars Exploration Rover on the Martian surface (JPL image)

The real-time planning of traverses and tasks for the MER takes place every Martian day (sol) by

a team of scientists and engineers. This group interfaces with the rovers using the Scientific

Activity Planner (SAP) (Norris, et al., 2005). The SAP processes data received from the rover

and produces terrain maps detailing slopes, solar energy, and instrument reachability (Leger,

Deen, & Bonitz, 2005). The limiting aspect of the rovers� exploration capacity is their navigation

ability. The topography and soil mechanics of the Martian terrain vary considerably and have a

large impact on rover traverse speed, slippage, and power requirements (Iagnemma et al., 2004;

Márquez, 2007). Once waypoints and end goal states are chosen, a mission simulation is run that

predicts power consumed, time required, data volume, and final position (Norris, et al., 2005).

The physical rover then assesses the mission plan and determines the actual traverse path itself,

avoiding any obstacles (Márquez, 2007).

Despite this highly sophisticated and meticulous planning routine, the MER missions have

revealed EVA problems and concerns in addition to those encountered during the Apollo era.

While the Apollo astronauts may have fallen behind schedule and experienced difficulties with

navigation, they never had to deal with becoming altogether immobilized like on Mars when a

 28

rover got stuck in a sand dune (Biesiadecki, Leger, & Maimone, 2005). This contingency

highlights the great sensitivity that robots particularly have to traverse path planning, which is

ultimately based upon predictive modeling of the upcoming terrain characteristics. It also

exposes the limits of a robot in recovering from difficulties during an EVA. A human explorer

has the inherent ability to cope with uncertainty and make real-time judgments in response to the

unexpected, whereas a robot becomes dependent upon operator intervention when things do not

go as planned. The Apollo and MER programs have provided a fair, though limited,

understanding of the requirements and challenges incorporated in planetary surface EVA

operations. We must leverage this experience as we look toward the future of EVA exploration.

2.1.2 FUTURE VISION OF EVAS

When we return to the moon, mission operations will be far more complex and demanding than

experienced before. EVA traverses will likely be conducted in a fashion similar to the MER

program, where sites of interest are chosen in real-time based upon constantly updating terrain

data and imagery. However, unlike MER or Apollo, these missions will involve a greater number

of explorers, both human and robot, working cooperatively. The goal of establishing an extended

presence on the moon also requires humans to remain on the lunar surface for much longer

durations and endure a significantly higher number of EVA missions than ever before. EVA

activities will expand from simple testing and sample collection to daily construction,

maintenance, and extended exploration sorties (Figure 2.5).

Figure 2.5 Future Lunar EVA systems and operations
Left: Artist�s rendering of humans and robots working together on the moon (NASA image)

Right: Model of a prototype pressurized lunar rover (Cooke et al., 2007)

 29

Missions such as these bring a host of additional EVA concerns that must be addressed. First,

supporting human life on the surface of another world for an extended period has yet to be

accomplished. To ensure crew safety, new restrictions limiting the total astronaut work

performed, acceptable radiation exposure, and nighttime traversals will need to be enacted

(Márquez, 2007). Second, since science in the vicinity of an outpost can be quickly exhausted,

extended range surface mobility becomes essential (Cooke et al., 2007). Such expansive

exploration necessitates improved surface navigation. The Apollo 17 crew travelled just over 11

kilometers from the Lunar Module at farthest (Eppler, 2004). In contrast, pressurized rover

missions have been proposed with ranges exceeding 900 kilometers from an outpost (Cooke et

al., 2007)). Crews must not only be able to traverse the upcoming local terrain robustly and with

ease, but also require the capacity to accurately locate objective sites and precisely navigate back

to base. Lastly, any robots joining an EVA must augment the capabilities of a team, not burden

them. This demands that robots in the field be capable of keeping up with human explorers in

terms of physical travel, power life, and data processing. Developing effective systems able to

perform these tasks on a daily basis is a formidable obstacle that engineers and mission planners

will need to surmount.

2.2 MISSION INTERACTIONS

In an abstract sense, EVA operations can be thought of as a set of interactions between the

environment, the field explorers, and mission control. The management of these interactions is

paramount in promoting EVA productivity

2.2.1 ENVIRONMENT INTERACTIONS

Environmental factors that determine the execution of an EVA are terrain properties, sun

lighting, gravity, atmospheric characteristics, radiation, space suit or robot capabilities, support

equipment (rovers, tools, etc.), consumable resource supplies, and safety constraints. Barring

contingencies, all of these factors remain constant over the course of a planetary mission except

for the remaining resources, sun lighting, and local terrain. For EVA planning to occur in real-

time, these variable parameters must be continuously monitored and updated. Measuring

remaining consumables is relatively simple, and has been accomplished routinely in past and

present EVAs both on the moon and in orbit. In turn, sun illumination may be determined

 30

mathematically given the current time and global position of the surface team. A detailed

analysis on the interaction of sun position and EVA performance is provided in Márquez, 2007.

We lastly focus on characterizing and interacting with the planetary terrain.

Conducting a surface EVA begins with the ability to successfully traverse the terrain and access

sites of interest. This means that explorers must be able to robustly maneuver across varying

features and negotiate any obstacles in order to reach objective destinations. Any hiker knows

that increased surface slopes correlate to greater exertion and slower speeds. Differing soil types

further have a large impact on the ease of explorer mobility within an area (Iagnemma et al.,

2004). Unpredicted terrain makeup or topography as well as poor visibility may also

significantly affect travel routes and times. Finally, during a traverse explorers may encounter a

feature or region of unexpected apparent interest. Travel to or through this territory hence

becomes desirable considering the potential scientific gain. On earth, humans manage interacting

with various surface properties and shifting immediate objectives quite intuitively on a daily

basis. However, wearing a confining space suit and faced with an inhospitable terrain with no

familiar references under high time pressure, these tasks become significantly formidable.

Instructing a robot to do the same is even more troublesome.

Beyond merely crossing a terrain, explorers must also accurately locate and distinguish objective

sites. This means that one must not only be able to dependably navigate areas of traversability

and avoid obstacles, but also pinpoint the arrival at a destination. Geological research

additionally requires constant monitoring of explorer location in respect to a geographic database

(Eppler, 2004). For positioning on earth, we have the Global Positioning System (GPS) as well

as a global magnetic field that enables the use of a compass. No such conveniences exist on the

moon or Mars (Arnett, 2005; Acuña, 2003). The Apollo experience has shown us that unaided

astronauts dealt rather poorly with navigating unfamiliar lunar territory, and MER has shown us

that navigating a lone robot across the Martian surface is quite painstaking. Properly executing

all of these terrain interactions, though, makes the difference between successfully reaching

destinations on schedule and being forced to abandon mission objectives or even getting stuck.

 31

2.2.2 ASTRONAUT-ROBOT INTERACTIONS

Future planetary missions will likely be conducted in teams of multiple astronauts and robots.

Synergy in the field will rely upon explorer to explorer interactions. Human to human interaction

is intuitive (at least for most) and has been exhaustively studied. Allocating tasks between

humans is also relatively routine. During Apollo, there were no significant issues with astronauts

working together. Human-robot interaction, on the other hand, is a relatively new and much less

well defined field. Taking full advantage of the diverse capabilities of both astronauts and robots

begins with allocating mission tasks to the best suited team members. Astronauts hold

advantages in ease of mobility, dexterity, reasoning, improvisation, and exercising judgment.

Meanwhile, robots have advantages in precision, repetitiveness, computation capacity,

quantitative data collection, and multitasking (Márquez, 2007). The use of robots is also

relatively cheap, and it eliminates human risk (Squires, 2008).

In past experiences with humans and robots working cooperatively, two general strategies have

emerged. The first is to treat the robots as a separate unit, while the second is to use the robots as

a technical tool (Casper & Murphy, 2003; Cabrol et al., 1999). Treating the robot as a separate

unit generally involves sending the robot alone to complete tasks that are either significantly

costly or impossible for a human to execute. A common such assignment involves sending the

robot as a scout ahead of an astronaut team to characterize environmental parameters (Cooke et

al., 2007). Another example is sending astronauts to quickly traverse an area and flag sites of

interest, while a trailing robot visits each flagged site and performs a longer and more tedious

analysis (Cabrol et al., 1999). Finally, a smaller robot can be called in to access regions that are

either inaccessible or too dangerous for astronauts. This general strategy enables mission

planners to employ the fast human understanding of the environment and main mission

objectives when most advantageous, while capitalizing on the low cost and low risk of using

robots to complete lengthy repetitive tasks in a hostile environment (Cabrol et al., 1999).

In turn, robots have also been used as a technical tool travelling along with a human team.

Associated tasks generally include surveillance of the human team, use as a search camera,

transporting tools and samples, or use as a computational analysis instrument (Cabrol et al.,

1999; Casper & Murphy, 2003). The major advantage here is that the robot replaces a

 32

crewmember in completing mundane tasks, which frees the human to perform other tasks. Also,

sophisticated onboard systems could aid astronauts in identifying and mapping terrain features

and sites of interest as well as quickly analyzing samples. A considerable drawback to this

strategy, though, is the limited mobility of robots on rough terrain. Robots supporting astronauts

in the course of doing field work �must be able to go up the hills, over the rocks, everywhere the

human goes, at the same speed� (Eppler, 2004). Indeed, �what [MER style] rovers can do in a

day, humans could do in a minute� (Squires, 2008). The theme of robots falling behind humans

on a joint mission is clearly observed in the field tests presented in Chapter 5 as well. Robot

locomotive technology will need to make great strides before robots are ready to keep up with

traversing astronauts.

Both of these strategies, while highly useful in certain situations, fall short of fully incorporating

robots as team members. Robots have the potential to be far more than a modest tool or

instrument. While astronauts are readily able to assist robots in dealing with uncertainty today,

future robotic systems could be capable of mitigating human EVA uncertainty and errors. There

is great need for advancement both in the field of human-robot interactions and in robotic

technology before the vision of astronauts and robots working cohesively on the surface of

another world becomes a reality.

2.2.3 MISSION CONTROL INTERACTIONS

All major EVA decisions are made via a team on earth overseeing the entire mission, known as

mission control (Figure 2.6). In order to make decisions and re-plan activities in real time,

mission control must gather all data taken by the surface team, assess the current situation,

develop a plan, and relay the new course of action back to the explorers. This must be

accomplished quickly and seamlessly, so as not to waste valuable consumables while re-

planning. Achieving this necessitates mission control to maintain updating models of the local

environment and the estimated explorer costs for completing each task. All resources and

constraints must be monitored as well. Essentially, mission control must remotely interact with

all aspects of an EVA in order to provide effective support.

 33

Figure 2.6 Mission control for the Phoenix Mars Lander at the Jet Propulsion Laboratory

Mission control interacts with the EVA environment by modeling it within a database employed

for making decisions. Most environmental parameters are known beforehand or, as in the case of

sun lighting and consumables, may be calculated or measured directly. Terrain characteristics

and explorer costs, however, must be represented as modeled estimates. A traversing explorer

may find new terrain to be substantially easier or more difficult to negotiate than expected. The

soil mechanics may vary drastically, obstacles may emerge, or a new interesting features may

become apparent. In these cases, mission control must document the new explorer feedback

within the environment models. In addition, explorer costs such as time or metabolic expenditure

required to perform certain EVA tasks may also deviate from the predicted values. Again, this

feedback must be incorporated into the activity cost models as fit. Once updated models are

generated, a new mission plan based upon the latest data may be developed.

Interactions between mission control and the physical explorers involve relaying information and

commands. Explorers actively supply mission control with relevant EVA data, and passively

transmit consumable resource measures. In turn, mission control conveys the latest commands

 34

and objectives back to the surface. The process of monitoring explorers and revising commanded

activities in response to feedback represents a continuous support cycle. Astronauts may

intuitively send and understand relayed information audibly or visually. They require little aid in

quickly adapting to understood commands. In the case of a robot, though, these interactions are

potentially much more involved. A human operator at mission control is responsible for directly

assisting a robot whenever situation uncertainty or unexpected scenarios cannot be immediately

resolved (Figure 2.7). The controller, in turn, must receive all possible data from the robot in

order to accurately assess the situation and make appropriate judgments. The value of this

operator-robot interaction has been highlighted in the MER missions (Márquez, 2007). To

summarize, when mission uncertainty cannot be mediated by the surface team alone, mission

control intervenes and determines the next course of action.

Figure 2.7 Human interaction with automation as a function of certainty (Cummings, 2006)

Finally, mission control is not necessarily a single localized entity. In fact, the majority of current

NASA missions are operated by multi-organizational teams which are dispersed across various

locations (Clement et al., 2007). Effective collaboration between institutions is dependent upon

site to site interaction. Mission control locations must have mutual access to all databases as well

as open inter-site audio and visual communication. Interaction with the surface team, however,

must not be convoluted, stemming from multiple disconnected sources. Instead, a small

contingent should be dedicated to communication with the surface team and operation of robots.

All mission updates would be sent via this team.

2.3 OPTIMIZING MISSIONS

Now that we have a clear picture of the general makeup and operation of surface EVAs, we

focus on the key aspects which will enable maximization of mission productivity. Achieving

Very uncertain
world

Significant human
interaction

Very little human
interaction

Highly certain
world

Interaction

Certainty

 35

productivity may in an abstract sense be thought of as optimizing each of the mission

interactions detailed in the previous section. In another sense, fostering productivity involves

mitigating and working through the challenges encountered on an EVA. Either way, the efficacy

of mission operation is ultimately determined by the ability to develop an optimal mission plan,

the subsequent ability to carry that plan out, and the robust ability to re-plan in the face of

uncertainty.

2.3.1 PLANNING: INPUTS AND OUTPUTS

The goal of mission control when planning a mission is to maximize EVA return and minimize

costs while remaining within all operational constraints. Numerous factors are incorporated into

the planning of an EVA. To begin, the mission environment is modeled. This representation

includes the terrain properties as well as sun lighting, gravity, atmospheric makeup, and

radiation. Next, the resources available to a mission are identified. Resources include astronauts,

robots, and equipment as well as consumable supplies such as oxygen or battery power.

Furthermore, each distinct explorer must be modeled in terms of the time and consumables

required to perform EVA tasks. Lastly, constraints are applied to the system. Constraints include

limits on resource consumption and elapsed time as well as restrictions on terrain areas which

may be traversed. Once the EVA environment has been modeled, mission objectives are

identified. Objectives are driven by scientific return, and may include both destination sites and

specific activities. Collectively, with the environment, resources, constraints, and objectives

clearly defined, we achieve a complete representation of the EVA situation.

Once all situational inputs are entered, an optimization is applied to determine the best course of

action. This optimization ensures that the greatest possible extent of mission objectives are met

while incurring the least possible cost. Essentially, this routine optimizes the travel and activity

plans in terms of favorable explorer-environment interactions, as well as the overall mission

strategy in terms of the most advantageous astronaut-robot interaction schemes. The output of

such mission planning is a well defined set of EVA destination sites, traverse routes, desired

activities, and time and cost schedules. This plan is relayed to the surface team for immediate

execution. The overall planetary EVA planning framework is summarized in Figure 2.8.

 36

Figure 2.8 Planetary EVA planning framework (Márquez, 2007)

Viewed as a functional block diagram, the task of EVA mission planning is shown in Figure 2.9.

Figure 2.9 Block diagram of planetary EVA mission planning

ACTUAL ENVIRONMENT

Terrain

Resources

Costs

MODELED ENVIRONMENT

Terrain

Resources

Costs

Mission
Control

Astronauts
Robots

Objectives

Optimized
mission plan

Constraints

Constraints

 37

2.3.2 MAXIMIZING PRODUCTIVITY

Maximizing EVA productivity begins with generating an optimal mission plan based upon the

best available data. However, providing an ideal plan is irrelevant if the physical explorers are

unable to accurately follow it. The primary operational challenges identified in the Apollo and

MER experiences include difficulties in terrain navigation and falling significantly behind

schedule. The associated missions had been carefully planned, yet in many cases the explorers

were unable to complete desired tasks or keep up with the desired timing. Due to uncertainty,

error is induced into the mission planning framework. This error results in discrepancies between

the mission plan and the actual EVA performance (Figure 2.10). These discrepancies potentially

correlate to substantial degradation in operation productivity and even the abandonment of

mission objectives.

Figure 2.10 Block diagram of EVA mission planning, error, and actual activity

Assuming that the plan developed by mission control is in fact optimal, maximizing EVA

productivity becomes a matter of eliminating the errors which result in operational discrepancies.

There are two primary sources of error: modeling error and explorer error. Modeling error

primarily results from uncertainties in terrain property and explorer cost estimates. Apollo

astronauts struggled to assess slopes and terrain features, while mission planners significantly

ACTUAL ENVIRONMENT

Terrain

Resources

Costs

MODELED ENVIRONMENT

Terrain

Resources

Costs

Mission
Control

Astronauts
Robots

Objectives

Optimized
mission plan

Constraints

Constraints

Actual
activity

Discrepancy
Modeling

error

Explorer
error

 38

underestimated the time and exertion levels required to complete certain tasks on the moon. In

turn, MER engineers still struggle to predict varying Martian soil mechanics and the associated

energy required for robot motion (Perko, Nelson, & Green, 2006). Constantly updating a model

database with the most recent data, ideally in real-time, is perhaps the most effective method for

mitigating modeling error. The best models are not based upon a priori estimates, but upon actual

experience.

Explorer error is primarily a product of navigational difficulties. In cases where modeling error is

not to blame, explorer error results from general disorientation, deviation from a planned route,

inability to locate or recognize objective sites, lack of visibility, or failure to distinguish samples

of interest. Dependable navigation support is a critical aspect in future planetary missions, not

only to promote productivity by reducing explorer error, but also to ensure explorer safety in

returning to shelter. Navigation support in the form of a display detailing the terrain, traverse

routes, objectives, and current position would greatly enhance a human explorer�s interaction

with the unfamiliar environment. For robots, offering mission data along with closed-loop

position feedback would alleviate situation uncertainty. Current research in the automotive

industry with �smart windshields� is a simplified analog to heads-up navigational assistance

which would be highly beneficial on the moon and Mars (Figure 2.11) (GM, 2008). Equipped

with an optimized mission plan based upon reliable models and coupled with accurate navigation

support, future astronauts stand to be far more productive than their Apollo counterparts.

Figure 2.11 Heads-up navigation assistance concepts
Left: General Motors �smart windshield� to enhance the upcoming view (GM, 2008)
Right: Mission support system integrated with a space suit helmet (Lindqvist, 2008)

 39

2.3.3 CONTINGENCIES AND RE-PLANNING

Error in modeling and navigation is not the only factor that can cause significant deviations

between a mission plan and the actual situation. Contingencies are prevalent in all past surface

EVA experiences, and they are typically even more disruptive to a mission than general planning

uncertainty. Developments such as equipment failure, explorer health concerns, unexpected

discoveries, or environmental emergencies can drastically alter the available mission resources,

immediate objectives, and activity constraints. Inherent in exploration is the unexpected. In order

to maintain productivity, EVA operations must be robustly adept in handling multifarious

unpredicted scenarios.

By incorporating any errors or contingencies into the mission model database, an accurate

representation of the current situation is attained. From here, a new mission optimization can be

performed to generate a revised plan which outlines the best operational response for the

remainder of the mission. This closes the loop of planning, activity performance, coping with

uncertainty, and re-planning with updated information (Figure 2.12). This process repeats itself

whenever the surface team deviates from the established plan, either by choice, mistake,

intervention from mission control, or contingency. Maintaining this cycle is essential to ensuring

productivity in the face of uncertainty. By updating the mission model database and re-planning

accordingly, the surface team may at all times act according to an optimal plan based upon the

best available data. Coupled with perhaps a heads-up display, explorers could seamlessly receive

new mission information and begin implementing it in the blink of an eye. Such functionality,

though, imposes a high pressure on mission control to be capable of updating models and

robustly re-planning in real-time. Mission planners will require high-fidelity, automated support

to meet the optimal operational demands of these future EVAs.

 40

Figure 2.12 Block diagram of complete EVA planning, activity, and re-planning cycle

ACTUAL ENVIRONMENT

Terrain

Resources

Costs

MODELED ENVIRONMENT

Terrain

Resources

Costs

Mission
Control

Astronauts
Robots

Objectives

Optimized
mission plan

Constraints

Constraints

Actual
activity

Discrepancy
Modeling

error

Explorer
error

Contingencies

 41

3 MISSION OPERATION FACTORS FOR AN

 AUTOMATED SUPPORT SYSTEM

3.1 MISSION PLANNING

The goal in developing an EVA plan is to maximize mission return while minimizing explorer

costs within all constraints. To accomplish this, mission planners need organized methods for

analyzing all factors of EVA performance, comparing various potential scenarios, and making

optimal decisions. Considering the likely future EVA architecture where sites of interest are

determined in real-time, there arises a high pressure to develop new plans quickly. This means

that all aspects of the decision making process need to function seamlessly, from updating

planning inputs with the latest feedback to clearly conveying the new mission information for

immediate understanding and execution. A support system must be developed that relieves any

computational burdens and enables mission planners to rapidly evaluate EVA situations and

determine optimal courses of action. This way, human controllers can focus on promptly making

high level decisions and relegate the tedious details to the support system.

The planning support system should perform automatically with minimal need for human

mediation. Specific levels of automation (LOA) for such a system, listed from 1 to 10, are

defined in Table 3.1. Due to the high-risk nature of planetary exploration, no mission plan should

be executed without ultimate mission control approval. This limits the support system�s

permissible LOA range from 2 to 5. Automated systems depend upon quantitative

representations of inputs and outputs in order to function. Hence, all relevant EVA mission

operation factors including the explorers, environment, objectives, and constraints must be

expressed as quantitative models to provide the support system with situation awareness.

Automated assessment of potential operation scenarios further requires a framework for

representing the relative cost and return of each task. In this way, given a mission situation,

various activity scenarios can be directly compared and an optimal plan identified.

 42

Table 3.1 Levels of automation (Parasuraman et al., 2000)

 Automation Level Automation description: The computer�
 1 offers no assistance: human must take all decisions and actions
 2 offers a complete set of decision/action alternatives
 3 narrows the selection down to a few
 4 suggests one alternative
 5 executes the suggestion if the human approves
 6 allows the human a restricted time to veto before automatic execution
 7 executes automatically, then necessarily informs the human
 8 informs the human only if asked
 9 informs the human only if it, the computer, decides to
 10 decides everything and acts autonomously, ignoring the human

3.1.1 DEFINING OBJECTIVES

The primary goal of surface EVAs, aside from any construction or maintenance activities, is

scientific return. Scientific return is a broad term denoting all interesting data or samples

gathered as a result of general activities including engineering trials, environmental analysis, and

surface exploration. These operations feed the overarching space exploration goals of uniting and

expanding human civilization (NASA, 2007). Specific mission objectives typically include

performing desired activities at a site of interest, and in turn venturing to successive destination

sites. On-site objectives, such as collecting samples or performing analyses, may simply be

verbally or textually dictated to astronauts and even pre-programmed for robots. Performing

these localized activities requires minimal support from mission control. In terms of a mission

plan, it suffices to simply list these objectives along with appropriate time and cost scheduling.

Objectives that involve voyaging over unfamiliar terrain to sites of interest, however, have

proven to be more involved. Defining these destination sites, or waypoints, entails distinguishing

their location with respect to a known position, or better yet, with respect to an established

positioning system.

Mission waypoints may be conveniently represented in terms of global position coordinates via

latitude and longitude or via a Cartesian projection comparable to Earth�s Universal Transverse

Mercator system (Riesterer, 2008). Employing such coordinate systems enables precise,

quantitative definition of locational objectives in a manner that is universally understood (Figure

3.1).

 43

Figure 3.1 Defining waypoints with respect to global coordinate systems
(modified from UNBC, 2008)

3.1.2 EXPLORATION COSTS AND CONSTRAINTS

All activities within an EVA incur a measurable cost taken against limited resources. Activity

costs are different for each explorer, and are highly subject to local environmental parameters.

Predicted cost values for each potential activity are the paramount factor in scheduling objectives

given operational constraints. Hence, accurate cost models greatly facilitate the establishment of

realistic mission expectations.

3.1.2.1 DEFINING COST FACTORS

The total physical cost of performing an exploration activity may be simplified into three

fundamental factors: distance, time, and energy. Distance, determined geometrically, refers to the

physical length travelled by an explorer during an activity. Time refers to the elapsed time

required to complete an activity. Finally, energy refers to the net energy expended by an explorer

in completing an activity. By associating explorer activities with distinct values for each of these

factors, a cost profile for each task is expressed numerically. In this manner, assessing the

relative total cost of various activities becomes a simple matter of comparing the associated

numeric cost profiles. Explorer activity models must also incorporate any applicable constraints.

 44

Operational constraints exist due to limited resources, and these restrictions generally include a

safety margin. Constraints limit the set of permissible activity scenarios, and they may be

expressed as a maximum bound imposed on each cost factor. In this way, explorer capabilities

can be fully characterized in terms of comprehensive cost profiles and factor limits.

3.1.2.2 EXPLORER MODELING

Planetary EVA surface teams are comprised of three general types of explorers: suited astronauts

on foot, unmanned robots, and transportation rovers (Figure 3.2). Although these explorers

represent drastically varying systems and operation, they may be uniformly modeled in terms of

the same cost factor framework. This involves identifying specific parameters which characterize

and restrict explorer activity, and then representing those in terms of cost profiles and limits.

Figure 3.2 Planetary EVA explorer types. From left to right: suited astronauts on foot,
unmanned robot, pressurized transport rover (NASA images)

Astronauts on an EVA rely entirely upon their space suit for life support. Modern space suits are

comprised of two assemblies: pressurized garments referred to as the space suit assembly, and

the life support system commonly recognized as a mounted �back-pack� (Lindqvist, 2008). The

suit provides a miniaturized earth-like environment for the occupant, enabling several

consecutive hours of activity. However, it significantly restricts the natural mobility and

dexterity of the crewmember. Simple activities such as walking or bending limbs, which require

little effort on earth, demand a substantially greater exertion when in a pressurized suit. As a

result, traverse range and performance capabilities are notably bounded due to fatigue. Stated

more precisely, the total work output, or energy, that can be demanded from an astronaut on an

EVA is limited by fatigue. In addition to the total energy expenditure, momentary human

 45

exertion is limited as well by health and safety concerns. Astronaut activities are further

constrained by the total time permitted on the surface due to finite oxygen supplies and, although

the space suit does provide some protection, radiation exposure. Lastly, since astronauts must

always return to shelter at the end of an EVA, the allowed distance away from base (outpost,

pressurized rover, etc.) is at all times restricted by the remaining resources and cost allowances.

Collectively, astronaut exploration cost parameters of concern include momentary and total

energy expenditure, oxygen supply, radiation exposure, and distance from base. In terms of our

cost factors, the energy and distance constraints may be translated directly. Remaining oxygen

and radiation exposure, in turn, set constraints on the permissible time remaining for surface

activity before returning to shelter.

Predicting astronaut activity cost values involves characterizing the specific demands of each

activity. EVA operations may be broken down into two classes: localized on-site activities, and

traversals. Although traversals, which involve travelling considerable lengths across the surface,

are highly subject to numerous terrain and environmental attributes, developing a general

framework for determining each cost factor is relatively straightforward. To begin, distance is

trivially understood as the length of travel along the surface. Next, given a set of terrain

properties and knowing the capabilities of a suited astronaut, both the instantaneous velocity and

exertion of the moving astronaut can be estimated. Required time to traverse a distinct segment is

subsequently found as the quotient of distance over velocity. Finally, total energy expenditure is

evaluated as the modeled exertion integrated over required time. Upon completing a traverse and

arriving at a destination, on-site activities ensue. These localized, repetitive tasks, such as sample

collection or even construction, present a much smaller degree of modeling complexity. For

example, crossing a plain will have a drastically different cost than scaling a mountain, but

lifting a sample along either route requires essentially the same effort. On-site activity costs may

be determined from testing or previous field experience, and can be modeled directly in terms of

required time and energy (distance cost is effectively zero). These activity factors should remain

relatively consistent from site to site over the course of a mission.

Robots on an EVA may function autonomously or be remotely controlled by mission control or

by humans on the surface. The primary factor limiting robot activity is simply stored power,

 46

which in terms of our costs is the total energy available. Ensuring that a robot does not deplete its

electrical reserves involves detailed power budgeting of all onboard science, maintenance, and

mobility systems (Bagherzadeh et al., 2001). Because robots are not bound by a life-support

system, total time spent on the planetary surface is less an issue. However, under pressured

situations, robot time delays indirectly amount to substantial costs if they cause mission schedule

delays, especially when working along with astronauts. Hence, although surface activity time

might not impose a direct constraint on robots, it potentially represents a significant cost within

an overall EVA mission.

Robot activity cost values may be formulated in a similar fashion as done for astronauts. On-site

activities again incorporate repetitive, consistent costs that can be straightforwardly modeled in

terms of required time and energy. In turn, estimating traverse costs requires a more complex

model. General robot traverse capabilities are determined by the robot size and equipped

locomotion system (wheel configuration, degrees of freedom, motor power, etc.). Actual robot

mobility, though, is highly sensitive to the roughness and soil characteristics of the local terrain.

Furthermore, terrain uncertainty can be significantly detrimental to robot performance. While an

astronaut may be able to maintain standard velocities along poorly mapped terrain with intuitive

on-the-fly judgment, robot traverse planning over unfamiliar terrain is a heavily time consuming

process by current methods (Biesiadecki et al., 2005). Hence, robot traverse cost models are

highly contingent upon accurate terrain models. That said, the general framework for estimating

traverse costs is largely the same. Given a specific robot and a set of terrain properties, the

traverse velocity and power requirements may be calculated. Coupled with surface distance, the

total required time and energy are found in the same manner as with an astronaut traverse.

Transportation rovers, such as the Apollo LRV or pressurized vehicles on future EVAs, offer a

highly advantageous tradeoff between astronaut exploration costs and electrical power

consumption (or fuel consumption in certain cases on earth). Rovers benefit from the situation

awareness offered by a human operator coupled with high velocity and power capabilities. In

turn, while any onboard astronauts still incur life-support related costs, their energy expenditure

is at a minimum and radiation exposure can be nearly eliminated with onboard shielding. Rovers

may also be used to transport robots, which can be powered off while travelling. Rover activity is

 47

primarily limited by stored power and onboard oxygen supplies, which respectively represent

energy and time constraints. The overall cost of utilizing a rover includes the distance, time, and

electrical energy required for transportation over the terrain, which may be modeled similar to a

robot traverse, plus the base support costs for any onboard explorers.

There are certain additional parameters affecting all explorers which must be incorporated into

the formulation of cost estimates. The first of these is explorer mass. Stated succinctly, a heavier

explorer requires more energy to move. The mass of an astronaut or robot may vary with

differing outfitted equipment, while the total mass of a rover is dependent upon onboard

explorers or collected samples. Aside from energy differences, changes in mass may also impact

traverse velocities. The second mutual cost parameter, planetary gravity, has a profound impact

on explorer activity. With respect to earth, gravity on the surface of the moon is approximately

one-sixth, while on Mars it is approximately one-third. These substantial differences play a

major role in determining explorer power expenditure and traverse velocities. For astronauts in

low gravity, loping at a relatively higher velocity is actually advantageous over walking in terms

of energy expenditure, contrary to what is experienced on earth (Rader, Newman, & Carr, 2007).

Meanwhile robots and rovers, while steady on earth, may be subject to instability and increased

slippage in lower gravity.

The final parameter presented which mutually affects exploration costs is the sun lighting. For

humans, walking into the sun produces unwanted glare, and low lighting angles obscure the

perception of terrain features (Márquez, 2007). This can adversely affect astronaut traverse

velocities due to increased terrain uncertainty. Robots and rovers, on the other hand, can greatly

benefit from maximized sun exposure via mounted solar cells that replenish electrical supplies. A

robot working in direct sunlight can potentially gain net electrical energy, or effectively incur a

negative energy cost. Modeling sun illumination can be considerably complex since, unlike

explorer mass and gravity, surface lighting varies with respect to time, planetary position, and

even local terrain slopes and hill shade. For local short-term activities on the moon, sun lighting

remains relatively constant as the moon only revolves once per month. This convenience is not

shared on the earth or Mars, which have comparable day lengths. Nevertheless, incorporating sun

lighting into the explorer activity costs is essential in developing high-fidelity models.

 48

3.1.2.3 TERRAIN CHARACTERIZATION

Explorer models provide a computational framework for estimating the specific costs of a

traversal. In turn, predicted cost values are ultimately determined by the makeup of the terrain

being crossed. Incorporating terrain characteristics into the modeling of a traverse involves

describing the terrain in terms of distinct representative parameters that can be fed as inputs into

the formulation of explorer costs.

Terrain modeling begins with portraying the general surface topography. This is typically

accomplished by collecting elevation measurements throughout a region. Such a mapping is

known as a digital elevation model (DEM) (Figure 3.3). A DEM commonly projects the terrain

surface over a uniform two-dimensional grid, and the elevation at each grid point is recorded.

The horizontal spacing between adjacent grid points is known as the map resolution. As this

distance becomes shorter, the resolution is said to increase, and data points become more densely

packed. At low resolutions, terrain details of a scale shorter than the grid spacing will not be

depicted in the model. Instead, these features will be smoothed out, and only the mean local

elevation will be expressed. Hence, a higher resolution enables a more precise representation of

the terrain and its finer details. High resolution DEM models, though, can correspond to

burdensomely large data sets.

Figure 3.3 Rendering of a digital elevation model (DEM) of Martian terrain (USGS image)

 49

A routine gradient operation may be performed upon the elevation data to furnish the

approximate local slope at all points in the model. Surface slopes are a critical first parameter in

determining the cost of traversing a given region. Mimicking the modeling of elevations, slope

data may be stored as an identically sized matrix in the same orientation. Hence, for each

elevation data point in the model, there is now a corresponding terrain slope value.

The next step is to distinguish regions of the terrain that are both traversable and those that are

non-traversable. Areas which explorers are unable to cross are defined as obstacles. Obstacles

are typically large boulders or locations of increased slope such as steep hills, crater walls,

ravines, cliffs, or exceptionally rough patches. Explorers attempting to cross such areas would be

dangerously prone to sliding, falling over, or getting stuck. Hence, explorers are required to

navigate around obstacle regions. Stated precisely, obstacles represent constraints on the

permissible position and planned trajectory of an explorer within the terrain. Obstacle data may

be represented in logical terms: true if an area is an obstacle, otherwise false if the area is

traversable.

Accessible terrain regions further span a broad spectrum of surface characteristics. The

properties that distinguish differing terrain types are in this analysis collectively referred to as

soil mechanics. Such parameters relevant to EVA operations include rockiness and rock

distribution, firmness, strength, stability, and homogeneity (Perko, Nelson, & Green, 2006). Each

of these has a specific impact on explorer stability, traction, and slippage. Considered as a whole,

these parameters define the overall ease of traversability of a terrain, from which predicted

traverse velocities and power requirements may be calculated (Iagnemma et al., 2004).

Following the established modeling scheme, soil mechanics, obstacles, and any other data may

be stored as corresponding matrices along with the elevation and slope data. The concept of

�layering� various collective data within a terrain model is illustrated in Figure 3.4.

 50

Figure 3.4 �Layering� terrain data at each digital elevation model (DEM) grid point

Taking advantage of global positioning, a DEM and accompanying terrain data may be oriented

within the existing coordinate system already employed for locating objective destinations. In

this way, each data point along the grid of the terrain model is matched with its physical location,

given in terms of global positioning coordinates. Hence, distances, headings, and locations in the

terrain model now correspond to real-world values. Moreover, mission waypoints may now be

precisely identified and rendered within the terrain model (Figure 3.5).

Figure 3.5 Mission waypoint positions (blue) overlaid on a terrain model with obstacles (red)

A

B
C

D

Elevation A

Slope A

Obstacles A

Soil Mech A
Elevation B

Slope B

Obstacles B

Soil Mech B

Elevation C

Slope C

Obstacles C

Soil Mech C Elevation D

Slope D

Obstacles D

Soil Mech D

 51

3.1.2.4 COST FUNCTIONS

The explorer and terrain models together specify all parameters necessary to determine the costs

of each activity within an EVA. These numerous parameters serve as variables within a set of

cost functions that calculate the predicted values for each necessary cost factor associated with an

activity. From here, the explorer models produce the ultimate cost profile for that activity in

terms of the fundamental cost factors: distance, time, and energy. The cost functions represent

the final link in determining physical activity costs given the explorer and environment. Each

explorer will have a unique set of these functions, formulated to provide accurately predicted

activity cost values.

As an example, consider an astronaut traversal between two arbitrary points. From the explorer

model, the unknown factors in this case are instantaneous velocity and power. A pair of cost

functions will input all applicable parameters (human energetics, suit mobility, mass, gravity, sun

lighting, terrain slopes, soil mechanics, etc.) and output the velocity and power estimates. Again

per the explorer model, distance over velocity gives required time, and power integrated over

time gives energy. Hence, the cost profile for this activity is fully determined.

In culmination, a conclusive cost function may operate upon the cost profile factors and any

other relevant parameters in order to formulate an ultimate cost index for each activity, denoted

the exploration cost (Table 3.2). While perhaps without a physical interpretation, this single

value represents all EVA cost concerns weighed cumulatively for a given activity. It enables

complete assessment of the relative costs of various activities effectively at a glance. More

importantly, such functionality permits fully automated comparison of the total cost of all

potential activities.

Table 3.2 Cost functions: input parameters from models and output cost factors

Inputs

Outputs

Explorer Environment Terrain

- Type
- Weight
- Activities

- Gravity
- Sun position
- Radiation

- Slopes
- Obstacles
- Soil mechanics

Exploration cost,
distance, time, energy

 52

3.1.3 EXPLORATION RETURN

As stated earlier, the primary goal of planetary exploration is scientific return. This is gained

through the successful completion of objective activities at sites of interest. While all stated

objectives are desirable, certain activities or sites may be more interesting or have a higher

priority within the mission than others. Analogous to exploration cost, exploration return must

also be expressed in measurable terms to enable comparison of activity scenarios. Modeling the

exploration return involves associating relative return values to all EVA objective activities.

Objectives with a higher prioritization or interest will correspond to respectively higher values of

return. Moreover, the incremental gain in return with respect to activity duration at a site is by no

means constant. This may be expressed by assigning respectively higher or lower return values

to activities performed at different times throughout the stay at a site. Lastly, in the same manner

as work is limited by cost constraints, scientific return is also bounded. That is, only a limited

amount of interesting information can be gained from a region before it is exhausted and further

work is fruitless.

The terrain itself can be characterized in terms of relative interest as well. Local terrain features

such as craters or rilles, as well as distinct terrain properties such as chemical composition or

radioactivity, can make certain areas of the terrain far more interesting, or in other words have a

higher potential scientific return, than others. Traversal to or through these regions is

preferential, as this promotes increased overall scientific return from the EVA. In the same

manner as storing terrain cost parameter data such as obstacles or soil mechanics, scientific

return data may be modeled as a corresponding matrix with relative values associated to each

point in the terrain DEM.

Once quantitative scientific return data has been established, a �return function� may be defined

which computes an ultimate scientific return index for each activity, denoted the exploration

return. This single value represents the cumulatively weighed overall mission gain for a given

activity. Analogous to the exploration cost, this enables quick and even automated numeric

comparison of the projected scientific return for various potential EVA scenarios.

 53

3.1.4 CREATING AN OPTIMIZED MISSION PLAN

Mission optimization denotes the process of maximizing return while minimizing cost and

remaining within all constraints. Explorer and terrain models coupled with cost and return

functions provide numerical estimates for the comprehensive exploration cost and return of each

potential activity. These models further describe mission constraints in terms of upper bounds on

the cost and return factors. This enables the actual optimization process to operate entirely

numerically, which moreover permits fully automated performance.

Recall that on a particular mission, exploration activity may ultimately be limited either by costs

due to constraints, or by return due to the exhaustion of interesting science. Automated mission

optimization performs distinct functions in each of these cases.

Case 1: EVA limited by scientific return

In the case where interesting science is exhausted before reaching any operational constraints,

the exploration return is fixed at a limiting value. Here, the function of mission optimization is to

minimize the exploration cost given this fixed return value. This physically translates to

completing all possible objective activities in the most cost efficient manner.

Case 2: EVA limited by operational constraints

The scenario where activity is limited by operational constraints is far more common in the real

world. In this case, one or more cost factors reach their upper bound before all possible science

has been conducted. Here, the function of mission optimization is to maximize the achievable

scientific return given the limited permissible cost. This process is more complicated, and relies

upon highly detailed models of incremental scientific return as well as clear prioritization of

objectives. In this mode, the system must be capable of resolving issues such as whether it is

more beneficial to remain at a current site, or to traverse to a new site and spend the remaining

time and energy there.

The numeric optimization routine computes the best-case scenario of exploration cost and return

values given a mission situation. A mission plan, in turn, details the actual physical activities

associated with these optimal values. Mission plans explicitly describe task scheduling and

 54

division of labor among team members. They also provide detailed explorer traverse routes

between objective locations. Finally, they give the estimated physical costs incurred with each

included activity in terms of desired cost parameters. An optimized mission plan clearly defines

the set of activities that are maximally productive given the EVA situation. Once this plan has

been developed, it is sent to the surface team for immediate execution.

3.2 REAL-TIME MISSION SUPPORT

Regardless of planning, mission productivity is ultimately determined by the actual activities

carried out by the surface team of explorers. Once an optimized mission plan has been created,

the primary goal of mission control shifts to providing support that enables the field explorers to

accurately complete the planned activities on schedule. Crew members on the surface must

manage mission information, exploration activities, navigation, safety, and constraints all in real-

time. Providing support that relieves the burdens of comprehending mission information,

navigating the surface, and monitoring constraints enables crew members to clearly focus on the

specific task at hand. This promotes safer and more efficient performance of activities.

Furthermore, this support aids in eliminating wasted time and energy due to deviations from the

optimal plan.

As explorers react to uncertainty and contingencies in real-time, so must mission control. Hence,

an effective mission support system must also enable planners and explorers to respond to the

unexpected quickly and in a continuously optimal manner. This involves gathering feedback

from the surface team and promptly generating a revised optimal mission plan in light of the

current situation. As with all other mission aid, explorer support and activity re-planning should

perform automatically with minimal need for human mediation. Such a complete support system

not only manages burdensome reevaluation and decision making details, but also empowers

consistently optimal explorer performance. Again, the distinct LOA involved in real-time

support and re-planning must be considered (Table 3.1). As stated earlier, the system as a whole

should maintain an LOA range from 2 to 5.

 55

3.2.1 EXPLORER NAVIGATION

Traverses are most efficient when the explorers follow paths of least cost and highest interest,

arriving at clearly distinguished destination sites. Determination of best-case traverse routes is a

function of the mission plan optimization. Physically following a planned path, in turn, requires

easy recognition of route locations coupled with a clear understanding of current position and

heading, all in respect to the actual terrain and all in real-time. Providing this necessary support

alleviates explorer disorientation and facilitates awareness and smooth correction when

beginning to deviate from a planned route.

3.2.1.1 PATH MODELING

A traverse path may be expressed as a series of line segments along the terrain, connecting a

starting point to a destination location. Hence, the only requisite to fully define a planned route is

the set of endpoints of all such segments, with straight line travel assumed between consecutive

points. In the same manner as mission waypoint positions are overlaid on an oriented terrain

model, such traverse path points may be located and overlaid as well. Animating the

interconnecting line segments produces a continuous rendering of the traverse route from start to

finish. On a mission, the objective waypoints serve as the destination sites between which

individual traverse paths are developed. By distinctly marking the waypoints along each route,

all traverse paths and destination sites for an entire mission may be clearly identified within the

terrain model.

3.2.1.2 POSITIONING AND MOTION CAPTURE

Depicting traverse paths and waypoints on a terrain model essentially yields a detailed map

which the explorers are to follow. However, this alone offers little aid in dealing with uncertainty

and, as known from the Apollo experience, still leaves explorers prone to disorientation and

ambiguity in distinguishing current position and destinations (Márquez, 2007). In order to

effectively follow a defined path, explorers must constantly assess their current location with

respect to the path trajectory. Accurately determining explorer position, however, presents a

significant challenge.

 56

On earth, explorer location may be ascertained directly via the Global Positioning System (GPS).

GPS receivers, worn or mounted on explorers, read various satellite signals to provide real-time

surface position and heading to within less than ten meters (in some cases, less than three

meters). This convenience does not extend to the moon or Mars, although such systems have

been proposed (O�Keefe, Lachapelle, & Skone, 2004; Carney et al., 2005). Without a satellite-

based positioning system, future EVA crews will have to rely upon inertial navigation

technology, positioning with respect to a spread of surface beacons, or perhaps a hybrid of these

systems (Titterton & Weston, 2004; Gorder, 2008). While this is a crucial area of open research

in preparing for future moon and Mars missions, the development of these technologies is

beyond the scope of this analysis.

Once an explorer position is known, it may be represented within the terrain model in the same

fashion as all other spatial data. However, unlike planned waypoints and routes, explorer position

is not static. An effective positioning system must continuously capture and express the motion

of each explorer in real-time. Motion may be assessed indirectly by periodically sampling the

explorer position. In this manner, differences in consecutive position readings specify the current

heading and velocity. This continuous sampling forces the terrain model to become interactive,

with the explorer position constantly updating as the explorer moves.

3.2.1.2 FOLLOWING A PLANNED PATH

Navigation support now becomes a matter of equipping surface team members with a complete

model of the terrain, waypoints, traverse paths, and interactive current position. This enables

explorers to clearly associate a planned traverse with the actual physical surroundings. For

humans, a visual rendering is most beneficial. With such a display, astronauts may follow a

planned path, recognize and correct any deviations, and pinpoint arrival at each waypoint simply

by ensuring that the rendering of their position at all times coincides with the rendering of the

determined route as they travel across the surface (Figure 3.6). Robots may automatically follow

a planned path in the same manner, though instead of a visual interpretation, direct numeric

positional data for paths, waypoints, and location feedback is best suited. Such a system greatly

facilitates the implementation of an optimized traverse.

 57

Figure 3.6 Handheld display showing terrain rendering with current explorer
position (red circle) along a planned traverse path (blue lines)

3.2.2 MONITORING EXPLORER ENERGETICS

During a mission, both the astronaut physiological signs and robot energy levels must be

constantly monitored to ensure that the explorers remain safely fit for activity and that no

operational constraints are violated. Significant astronaut signals include heart rate, breathing

rate, oxygen consumption, carbon-dioxide production, blood pressure, and body temperature. If

any of these spike too high, activity may be suspended and the crewmember ordered to

temporarily rest until admissible levels are restored. Such monitoring is relatively common, and

occurs routinely for those operating in extreme conditions such as deep sea diving or present

manned orbital operations (Asaravala, 2004). For a robot, general diagnostic factors include the

electrical power drain, allocation of that power through the various robot systems, and operating

temperatures. Monitoring these signals is likewise a standard process in present robots. All

energetic data must automatically be transmitted to mission control in real-time so that current

explorer conditions may continually be assessed and activities regulated (Figure 3.7).

 58

Figure 3.7 Example interface for monitoring astronaut energetics signals

The explorer cost models predict values for the energy expenditure of each activity. In turn, the

streaming energetics data may be used to estimate the actual energy expenditure levels for each

explorer. Comparing the predicted and actual values allows planners to gauge the accuracy of the

cost models. While an isolated discrepancy may be due to a contingency factor or deviation from

the plan, systematic differences would suggest an error in modeling. Revising the cost models

according to incoming actual data promotes high-fidelity predictions for the costs of upcoming

similar activities.

3.2.3 MISSION ALTERATIONS AND RE-PLANNING

Despite careful planning, unexpected developments are inherent in exploration. Crucial to

preserving EVA productivity is the ability to robustly maintain optimal operation as mission

scenarios change. Situation awareness is provided to mission control via information relayed

from the surface explorers. In addition to passively transmitting physiological and energetics

signals, explorers actively return scores of real-time data through regular observation and

analysis. When discrepancies between a planned scenario and apparent reality accrue to warrant

a response, the primary goal of mission control momentarily shifts from supporting the current

explorer activities back to assessing the situation and developing a plan. This entails a

reevaluation of the mission models and, in turn, optimizing a new set of activities in light of the

latest explorer feedback. As a revised mission plan is established, the surface activity must adapt

accordingly to maintain optimal productivity. This entire process must be fully streamlined to

prevent wasted time and effort.

 59

3.2.3.1 MODIFYING MISSION MODELS

The need to amend missions in response to new information demands that all aspects of the

planning process become fully interactive. This means that every feature within the mission

models must be made capable of regularly receiving updates to reflect new data. Completing

revisions in real-time further stresses that processes be automated wherever possible, employing

human involvement only when necessary. The general desired interactivity of each model aspect

parallels that already established for explorer position (which automatically updates as the

explorer moves), only now it is applied to substantially more complex elements comprising the

mission cost, return, and objectives.

Revising explorer costs entails adjusting the cost profiles for each activity. For on-site activities,

modeled only in terms of required time and energy, the editing process is quite straightforward.

If a specific activity, for instance drilling, consistently requires a different time or effort than

predicted, then the associated time or energy factor should be altered as fit. Traversal modeling is

notably more elaborate, but the general editing process remains the same. Here, cost factor

values are not assigned directly but rather are calculated via cost functions. In this case, the

actual formulation of any discrepant parameter is what must be altered in order to accurately

match reality. For example, if a robot consistently ascends hills faster than expected, then the

cost function used in estimating the robot�s traverse velocities should be amended as fit.

Terrain models are the easiest to update. Since all data (elevations, slopes, obstacles, soil

mechanics, etc.) are stored as corresponding matrices, editing parameters entails simply entering

new values at specified individual indices. With explorer position along these oriented matrices

known, the specific data points corresponding to any physically observed terrain may quickly be

determined. As explorers encounter a region with unpredicted properties, the entries at associated

data points may be directly updated with the observed appropriate values.

Redressing scientific return models involves a hybrid approach. For on-site activities, the return

value may be edited in the same manner as if editing a cost factor. For instance, if a specific

activity begins to produce far more interesting results than expected, then the corresponding

scientific return value for that activity should be raised. Conversely, if an activity is not

 60

producing meaningful results, then the return value for that activity should decrease. In turn, the

potential scientific return offered from various surface regions is modeled as a matrix in the same

manner as the terrain parameters. Unexpected developments may be portrayed by editing all

associated entries in the terrain scientific return matrix. For example, if the chemical composition

of samples in a region was apparently interesting, but upon examination is not, then the scientific

return values for all data points in that region should be appropriately lowered.

Beyond amending cost and return factors, refining the conclusive functions used to determine

overall activity exploration cost and return indices is a more involved process requiring

additional human reasoning. These functions weigh the relative importance of every aspect of an

activity in order to assign an ultimate cost or return value. Hence, revising them involves

reevaluating the significance of specific activity factors in terms of the overall mission. For

example, if differences in soil properties are causing a greater impact on traverses than expected,

this increased relative importance should be reflected in the cost function that determines the

exploration cost of traversals.

Lastly we consider modifying objective destination sites as a whole. Editing mission waypoints

is relatively simple, and involves selecting new objective locations as well as clearing existing

waypoints as desired. The relative priorities or projected return of each waypoint in the group

may be amended as well. The updated set of waypoints is then represented as usual within the

terrain model.

3.2.3.2 IMPLEMENTING AN UPDATED MISSION

Once all mission models have been updated, the best course of action may be determined

through the same process as the original mission plan. Incorporating the latest information, the

overall exploration cost and return values are optimized within all constraints. Because the

optimization routine is purely numeric, it may be performed automatically and extremely rapidly

by computer, which is ideal considering the time pressure faced by mission control. The optimal

operation scenario is expressed as a new mission plan. As before, the plan details activity

schedules, division of labor, traverse routes, and estimated physical costs.

 61

This revised mission information is then relayed to the surface team for immediate execution. As

the explorers receive the new plan and promptly adapt their activities to match, mission control

shifts its primary focus back to providing explorer activity support. Maintaining this process of

updating mission models, optimally re-planning, and carrying out the revised plan ensures that

the explorers in the field are at all times performing maximally productive activities based upon

the best available data. As uncertainties impact each successive plan, the cycle repeats itself and

the optimal plan adapts. This consistent support framework enables robust optimization of

surface EVA operations.

3.2.4 CONTINGENCIES

Emergencies, accidents, discoveries, and a host of other unexpected events can drastically alter

the makeup of an EVA. Developing a full set of contingency plans encompassing every possible

scenario, from equipment failure and health concerns to unprecedented discoveries and

emergency walk-backs, is a daunting task. However, this is a compulsory responsibility of

mission control to ensure crew safety and productivity. Fortunately, contingency situations may

be managed in a manner consistent with all other mission reevaluation and re-planning, thus

taking advantage of the automated support framework already developed.

Mission contingencies induce an abrupt shift in the current situation facing the explorers. As in

the case of nominal mission uncertainty, the consequence of a contingency scenario may be

represented as a quantitative change in one or more factors within the mission models. As an

example, suppose a robot traversing some distance from a team of astronauts malfunctions and

becomes immobile. Although the astronauts could continue their planned activity, it may be most

beneficial overall to recover the stuck robot. This scenario could be modeled by adding a new

astronaut mission waypoint at the location of the robot, and further setting the exploration return

value respectively high for attending to the robot. Another example is a high radiation event that

forces explorers to immediately seek shelter. This contingency may be modeled as a

prohibitively low constraint on the permissible surface activity time.

By representing the contingency situation in terms of the mission models, the best course of

action may be determined by invoking the same optimization routine used in all mission re-

 62

planning. The output will be a new mission plan which incorporates the contingency and

provides the optimal operational response, while still satisfying all constraints and safety

requirements. Relaying the new plan to the surface team enables them to immediately execute

the best course of action and salvage as much EVA productivity as possible. Hence, the support

framework is also robust in optimally handling mission contingencies. This provides

considerable aid to human controllers in dealing with unexpected events.

3.2.5 RELAYING MISSION INFORMATION

Effective communication between the remote surface team and mission control is the final

crucial link in accomplishing a maximally productive EVA. Data must continuously be sent from

the surface to mission control for situation assessment, and in turn mission information must be

sent from controllers back to the explorers. These exchanges need to happen seamlessly and

without confusion to prevent wasted resources.

Communications from the surface team to mission control are relatively straightforward. Audio

and video links provide direct verbal and visual assessment of EVA operations, while instrument

readings, energetics signals, and even current position coordinates may be sent as routine data

streams. This information grants mission control with full situation awareness, and can be used

to update mission models as necessary.

When a new mission plan is made, the associated activities must be mutually understood by

controllers and explorers. For astronauts, although verbal communication is readily available, it

is insufficient for providing full mission comprehension, in particular navigational requirements.

This is further impractical on Mars considering the time delay of more than three minutes in

transmitting data to and from earth. Instead, traversing astronauts could greatly benefit from a

simple display that clearly depicts the local terrain, current position, and the locations of traverse

routes and waypoints. Mission control already has such a display available in the form of the

rendered terrain model with overlaid mission data. However, remotely loading this full model as

a display presents a challenge since astronauts on the surface lack the computing power and

resources available to mission control. Fortunately, astronauts are not concerned with the actual

 63

model numeric data or editing capabilities. Instead, they require only an image of the model

rendering.

Hence, relaying traversal data that can be immediately understood and carried out by an

astronaut becomes a simple matter of sending a �picture� of the terrain model with clearly

indicated traverse routes and waypoints. Providing real-time navigation support, as explained

earlier, further requires only including a simple interactive rendering of current astronaut

position and heading within this display. For such a system, motion in reality will correspond to

motion of the explorer position within the display. Moreover, ensuring that the displayed

position follows the illustrated route corresponds to physically following the planned path in

reality. To complete the mission plan description, activity schedules may be provided as simple

text lists appended to the mission display. Example 2D and 3D mission information displays

detailing the terrain, astronaut position, and a planned traverse route are shown in Figures 3.6

and 3.8, respectively.

Figure 3.8 Concept 3D mission information display showing terrain rendering with
astronaut position along a planned traverse route

Various astronaut information display concepts are shown in Figure 3.9. Perhaps the most

favorable of these is the hands-free heads-up display depicted at left. Here, an image is projected

within the space suit helmet near the top of the astronaut�s field of vision. Such a system would

enable seamless and intuitive astronaut interaction with both a newly received mission plan and

the upcoming physical terrain.

 64

Figure 3.9 Mission information display concepts
From left to right: heads-up display, space suit imbedded screen, computer screen

(NASA images s99_04197, jsc2004e18850, jsc2004e18859)

Robots may also automatically update their activity via the models available from mission

control. Conversely to astronauts, robots have no use for a visual display. Instead, controllers

would transmit the relevant numerical mission data. In particular, sending robots the DEM,

planned traverse route and waypoint coordinates, and specific activity commands equips them

with a complete understanding of the mission situation and objectives. Coupling this information

with real-time positional feedback potentially enables fully automated execution of the planned

EVA. Adaptation to mission revisions is further a simple matter of downloading the new mission

information and implementing it in place of the previous plan. Hence, the complete support

system can permit automated and continuously optimal robot operation.

 65

4 PATHMASTER: A MISSION PLANNING AND
 SUPPORT PROTOTYPE

4.1 DEVELOPING A MISSION SUPPORT SYSTEM

Ensuring optimal EVA performance throughout all situations necessitates comprehensive

automated operational support. A prototype support system has been developed to aid in

fulfilling the crucial mission productivity criteria of planning and physical execution. This

system enables the planning of optimized explorer traversals, operation scenario comparison,

limited field navigation, and mission re-planning. Hence, it is designed to be utilized both

beforehand by mission planners, as well as in real-time by explorers for navigation support and

mission control for decision making.

This prototype was developed to implement a subset of the factors identified in Chapter 3.

Planning begins by loading an elevation map of the physical mission terrain and providing

orientation information. General EVA parameters that function as inputs for the eventual

determination of activity costs are given next. These include the number, type, and mass of field

explorers, planet and time of the mission, and the maximum traversable surface slope. A scaled

terrain interface next allows planners to locate mission waypoints for each explorer as well as

enter terrain data parameters along the surface including obstacles, soil mechanics, scientific

return, and other potential options. Waypoints define the mission objectives, and terrain

obstacles represent a sole operational constraint. Collectively, this information forms the

characterization of a mission situation.

Once all mission inputs have been entered, traverse paths for each explorer are found by

invoking an optimization routine. This process computes a specific numeric cost for each

incremental step along the surface and works to minimize that cost while avoiding any obstacles

in determining a route. The final output hence delineates valid paths of minimal total cost from

waypoint to waypoint. The predicted physical costs for these traverses are presented as well in

terms of distance, required time, and energetic expenditure. A comprehensive dataset and visual

 66

display depicting the terrain, objective waypoints, optimized route trajectories, and associated

costs constitute an EVA mission plan.

The surface team may use the portrayal of the mission plan alone as a detailed map for guidance

across the terrain. Interactive navigation support is additionally available by feeding the mission

information to certain separate systems. An audio/video link with the explorers enables them to

continually provide feedback while performing activities. As missions develop or contingencies

arise, mission control revisits the terrain interface and updates data parameters as fit. The

optimization process is repeated, a revised plan is generated, and the EVA operation cycle

proceeds.

In order to promote real-time EVA situational response, crucial elements of the support system

should be automated to the highest practical degree. Recall that there are ten distinct levels of

automation (LOA), presented again in Table 4.1. As stated earlier, the overall LOA range for the

system is limited from 2 to 5.

Table 4.1 Levels of automation (Parasuraman et al., 2000)

 Automation Level Automation description: The computer�
 1 offers no assistance: human must take all decisions and actions
 2 offers a complete set of decision/action alternatives
 3 narrows the selection down to a few
 4 suggests one alternative
 5 executes the suggestion if the human approves
 6 allows the human a restricted time to veto before automatic execution
 7 executes automatically, then necessarily informs the human
 8 informs the human only if asked
 9 informs the human only if it, the computer, decides to
 10 decides everything and acts autonomously, ignoring the human

There are three distinct time-pressured, labor intensive functions demanded of mission control:

updating mission models, generating an optimized plan, and conveying the new information. The

majority of real-time feedback from the surface team comes as verbal reports or visual images.

Automated interpretation of this information would be a daunting task; instead, human reasoning

is well suited for quickly translating such qualitative data into distinct parameter values. That

said, the support system can mitigate this task by streamlining the editing process for these

parameters and, when applicable, simplifying their representation into a limited set of discrete

 67

values. For instance, subjective local soil mechanics feedback, while interpreted by a human

controller, can be classified into a discrete numeric index and instantly entered into the terrain

model with the click of a mouse. This desirable model updating functionality represents an LOA

of between 2 and 3.

When creating a subsequent mission plan, we are only interested in one set of paths: the optimal

ones. Since the optimization routine is entirely numeric, it requires no human involvement. The

LOA of mission plan generation, hence, is limited only due to the high risk nature of the domain

in which we are operating (Sarter & Schroeder, 2001). For safety, human controllers must

ultimately assess, amend, and approve any plan before it is commanded to the field team. Here,

the scenario generated by the support system serves as a nominally optimized suggestion for

mission control. Therefore, mission re-planning functions with an LOA of 4.

Once a plan is decided upon, it is relayed to all parties. This involves loading mission

information as a display image and transferring all necessary data between remote hardware

systems. This functionality ideally occurs with an LOA of 5, where specified mission data is

automatically interpreted and transmitted as soon as human controllers approve. Currently,

though, these tasks are currently performed mostly manually through standard computer

procedures, pending further system development.

While this implementation may be a somewhat limited subset of the comprehensive functionality

presented in Chapter 3, it correlates well with the operation of any remote geological excursion

where exploration costs and scheduling are primarily determined by the traversals between sites

of interest. This is a reasonable analogue of the Apollo missions and, perhaps, the first manned

missions back on the moon. Moreover, this prototype highlights the general architecture by

which more versatile, higher-fidelity mission support systems can be developed.

This chapter provides a comprehensive overview of the developed mission support system,

named Pathmaster. Pathmaster is written as a single file entirely in MATLAB, called an m-file. It

runs as a series of GUIs where users may quickly and intuitively enter mission information and

generate optimized mission plans in near real-time. All features are explained in detail here. The

 68

Pathmaster User Manual is presented in Appendix B, and the MATLAB code is recorded in

Appendix C; these are also included on the enclosed DVD-ROM.

4.2 OPENING PATHMASTER

Pathmaster is written for both Windows and Mac OS X. It is intended to be run in MATLAB

R2007a or later. A minimum monitor resolution setting of 1024 by 768 pixels is recommended.

Upon opening MATLAB and setting the file search path appropriately, Pathmaster is called

directly from the command line. There are four general options when opening the program:

>> pathmaster
The command �pathmaster� alone will initialize a prompt to load elevation data from file.

This is the normal method of running Pathmaster.

>> pathmaster(Elevmap)

Calling Pathmaster with a matrix argument loads that matrix as the elevation map.

>> pathmaster(�lite�)

Calling Pathmaster with the �lite� option employs simpler surface rendering. This speeds

plotting time and prevents problems on some machines, and will be discussed later.

>> pathmaster(Elevmap,�lite�) OR >> pathmaster(�lite�,Elevmap)

Calling Pathmaster with both a matrix argument and the �lite� option does both of the

above. The arguments may be entered in any order.

4.3 PLANNING A MISSION

Pathmaster is currently most functional as a mission traverse planning and re-planning tool.

Upon opening, a terrain elevation map is loaded and all general EVA input parameters are

subsequently entered through program menus. The main mission planning GUI, complete with a

scaled interactive terrain rendering, next enables point-and-click editing of mission waypoints

and terrain characteristics. When finished, an optimization routine determines paths of

minimized cost between successive waypoints, avoiding any obstacles. These paths are depicted

 69

within the display along with predicted physical cost data, which together comprise a mission

plan. For making higher level strategic mission decisions, various separate mission scenarios and

their respective optimized plans may be compared side-by-side.

4.3.1 LOADING ELEVATION MAPS

After being called from the Matlab command line, Pathmaster will open a prompt allowing the

user to select an elevation map to be loaded from file (Figure 4.1). In the case where a matrix

argument was entered at the command line, that matrix is loaded and this step is bypassed.

Elevation data may come via either a text file or a MATLAB data file. MATLAB data files are

used to save workspace variables, which are stored under individual �fields�. If such a file with

multiple stored fields is selected, a subsequent prompt will ask to specify the elevation data

(Figure 4.1). Chosen files may also contain a host of additional data which Pathmaster will

automatically recognize and load. This can include map information parameters, additional

terrain data maps, and even pre-defined mission waypoints.

Figure 4.1 Elevation data file prompts

The elevation maps used by Pathmaster are arranged as a rectangular matrix. Matrix indices

correspond to a regular grid projected horizontally across the physical terrain being modeled.

The data stored at each point represents the relative terrain elevation, in meters, at the

corresponding physical location.

 70

4.3.2 ENTERING MAP INFORMATION

Once an elevation map has been loaded, Pathmaster will open the Map Information menu

(Figure 4.2). Here, the size of the elevation map matrix is given in rows and columns, and the

user may enter the map sizing and, if applicable, positioning data. In most cases, this data will

already exist within the selected file. Text files store map information as a set of header lines

before the elevation matrix begins. Matlab data files, in turn, store additional information as

separate data fields. All existing data is automatically recognized and displayed in the

corresponding data fields.

Figure 4.2 Map Information Menu with global positioning active (left) and inactive (right)

4.3.2.1 MAP RESOLUTION

As explained, the elevation map corresponds to a regular grid of data points projected over the

physical terrain. Map resolution denotes the uniform horizontal spacing between adjacent data

points, given in meters. This value is entered in the first data field on the Map Information menu.

A map with a smaller such distance is said to have a higher resolution since data points are more

densely recorded along the terrain.

 71

4.3.2.2 GLOBAL POSITIONING

The remaining data fields in this menu are optional, and they are used to identify the global

position of the mapped terrain. This system, currently applicable only on earth, enables the

calculation of latitude and longitude coordinates for any point in the map. When enlisting this

functionality, Pathmaster necessarily assumes that north is in the upward direction, or topmost

row, of the loaded map matrix. Positioning is given in terms of the Universal Transverse

Mercator (UTM) system, which comprehensively divides the earth into distinct zones each with

independent Cartesian-based surface coordinate projections (Riesterer, 2008). The first field,

UTM zone, represents the east-west zone within which the map is located, numbered 1 through

60. The neighboring dropdown menu then specifies whether the map is in the northern or

southern hemisphere. The lower-left X and Y coordinates finally denote the exact location of the

southwest corner of the mapped terrain within the UTM zone. The X-coordinate specifies the

�easting�, or meters east of the zone origin, while the Y-coordinate specifies the �northing�, or

meters north of the zone origin. The positioning feature may be deactivated by entering a zero

into the UTM zone field.

4.3.3 ENTERING EVA INPUTS

Upon pressing �Continue� in the Map Information menu, Pathmaster opens the EVA Input menu

(Figure 4.3). Here the user enters all general parameters of the EVA, including a designated

name, the number and character of explorers, the planet upon which the mission is run, the time

at which the mission begins, maximum traversable surface slope, and the directory to which

certain output files are written. In addition, if any existing terrain map data or mission waypoints

were stored along with the elevation file chosen when opening Pathmaster, then options to load

this data will appear as a series of check-boxes near the top of this menu. All of these parameters

are used as inputs in determining the costs of any subsequent mission traversals. Aside from

individually defined explorer type and mass, these parameters uniformly apply to all explorers.

 72

Figure 4.3 EVA Input menu

4.3.3.1 MAXIMUM TRAVERSABLE SLOPE

The �Max Slope� field in the EVA Input menu denotes the maximum permissible surface slope

over which explorers may cross, given in degrees. Any areas of the terrain with a local slope

greater than this value will be presented as terrain obstacles, which explorers must avoid and

navigate around. In this way, the slope value represents an operational constraint on mission

traverses. This constraint exists both to spare heavy exertion by the explorers in crossing these

difficult areas as well as for safety to keep away from areas where they may be prone to sliding

or falling over. Typical values for the maximum slope are between 10 and 20 degrees. By their

nature, terrain features such as boulders, crater walls, ravines, cliffs, and rough patches involve

particularly steep changes in elevation, and hence they will appropriately appear as obstacles.

 73

4.3.3.2 PLANET SELECTION

Pathmaster accommodates missions on the surface of earth, the moon, and Mars. Selecting the

planet upon which a mission is to take place determines the assumed environmental gravity.

Gravity on earth is assumed to be 9.8 meters per second squared; it is approximated as one-sixth

of that value on the moon, and one-third of that value on Mars. The planet selection also sets the

default render mode for the terrain display, discussed later.

4.3.3.3 TIME OF MISSION AND SUN POSITION

The date, time, and time zone precisely define the point at which a mission begins. By default,

the current computer time is entered in these fields. Time of day is recognized as military time,

with hours ranging from 0 to 23. These values are used to determine the sun illumination on the

mission surface. This data can be converted into Coordinated Universal Time (UTC). Coupled

with known planetary locations provided by Pathmaster�s positioning feature, the relative sun

position in terms of azimuth and elevation angles may be mathematically determined.

4.3.3.4 CHARACTERIZING EXPLORERS

New explorers may be added to a mission team by clicking on the �Add Explorer� button in the

EVA Input menu. Explorers are individually characterized by their general type and mass. There

are three types of explorers recognized in Pathmaster: astronauts, rovers, and robots. Astronauts

are suited humans on foot. Rovers refer to transportation vehicles which carry astronauts and

robots, such as the LRV, and all-terrain vehicle on earth, or eventually pressurized rovers. Lastly,

robots are unmanned surface exploration machines. Under these criteria, certain systems which

may commonly be referred to as a �rover�, such as a MER style explorer, are classified in

Pathmaster as a robot. An explorer�s type is selected by clicking on the corresponding buttons in

the menu, and the appropriate mass in kilograms is entered in the �Mass� field. This information

is used in determining distinct activity costs.

4.3.3.5 DATA OUTPUT

Pathmaster stores all mission data and parameters to a series of output files while running the

program. The name specified for an EVA is shared by all corresponding files to enable easy

recognition. Data for a new mission is first generated when the user clicks �START� in the EVA

 74

Input menu. All saved mission information is automatically written to a Matlab data file located

in the same directory as the Pathmaster m-file. In addition, a separate �Render� directory

receives specially formatted text files containing the mission data. This directory is specified in a

field at the bottom of the EVA Input menu. The files written to this location may be employed by

an independent render engine in order to create additional simulated mission displays. Such

systems will be discussed later.

4.3.4 TERRAIN DISPLAY

Once all map information and EVA input parameters have been entered, the Mission Planner

GUI opens (Figure 4.4). This is Pathmaster�s main interface, where users may view the terrain

rendering, edit waypoints, edit terrain characteristics, find traverse paths, and display all mission

information. The GUI includes an interactive terrain display accompanied by a menu of controls

and data fields at the top.

Figure 4.4 Mission Planner GUI

 75

4.3.4.1 SURFACE APPEARANCE

The terrain is rendered as a 2.5D surface plot oriented within a scaled XYZ-coordinate system.

Recall that map data is loaded as a matrix. Pathmaster assumes that north is in the direction of

the topmost row of the map. In this intuitive manner, the X-axis is oriented west to east and

corresponds to differing matrix columns, and the Y-axis is oriented south to north and

corresponds to differing matrix rows. The origin is defined in the southwest corner. Map data

points are plotted in this corresponding XY-orientation, maintaining a uniform spacing as

defined by the map resolution distance. The Z-value for each data point is the recorded physical

elevation. In this way, the topography visually appears as it would from an aerial view. If the

global positioning feature is active, a compass will appear in the northeast corner of the map

indicating the implied northern direction.

The scaling of the terrain axes corresponds to actual physical distances. Scales may be displayed

in units of meters, kilometers, feet, or miles. The desired units are chosen through the �Axes�

drop-down menu (Figure 4.5). When a new selection is made, the surface axes and gridlines will

automatically update with new spacing and tick marks as fit.

Figure 4.5 Terrain surface appearance options
Left: axes scaling selection; Right: render mode options

The coloring of the terrain surface is adjustable, and can be set to mimic a chosen planet. Buttons

at the right of the menu allow users to select between distinct earth, moon, or Mars representative

render modes (Figure 4.5). The initial render mode is determined by the entered mission planet.

Changing the render mode, in turn, affects only the display and does not alter the stored planet or

gravity. The available render modes are portrayed in Figure 4.6.

 76

Figure 4.6 Surface render modes. From left to right: Earth, Moon, Mars

4.3.4.2 DATA LAYERS

Beyond the elevation data, additional terrain data parameters employed by Pathmaster include

obstacles, soil mechanics, scientific return, and possibly other information. This data is stored as

a series of corresponding matrices, which are �layered� in the sense that a distinct value for each

terrain parameter is specified at each point in the elevation map. Pathmaster enables the data for

each individual parameter, or data layer, to be visualized as a colored rendering across the

surface. The current layer is chosen in the terrain drop down menu, and its display may be turned

on or off with the toggle buttons to the right (Figure 4.7). If no other display is active, the

elevation rendering will show.

Figure 4.7 Terrain data layer display options

By default, the obstacles are displayed when the Mission Planner GUI opens. Unless a custom

obstacles map is loaded, the initial obstacles represent all regions of the terrain where the local

slope, found via a gradient operation on the elevation data, is greater than the defined maximum

 77

traversable slope. This layer is clearly distinguished as bright red areas superimposed on the

elevation rendering. Every location colored in red represents an obstacle. Data corresponding to

soil mechanics and scientific return, on the other hand, are not binary. These layers are presented

in a gray to maroon or gray to purple rendering, respectively. Areas colored in gray represent

negligible significance in terms of the parameter, whereas darker areas denote a high

significance. Specific parameter values will be discussed later. Example data layer displays are

shown in Figure 4.8.

Figure 4.8 Terrain data layer displays: elevations (top left), obstacles (top right),
soil mechanics (bottom left), scientific return (bottom right)

 78

4.3.4.3 SUN ILLUMINATION

When rendering the surface, Pathmaster creates a light source that mimics the sun in providing

illumination conditions and giving contrast to terrain features. The position of this light is

determined by the time at which a mission is run. The current algorithm is relatively simple, and

places the lighting directly to the east at 6:00 AM and directly west at 6:00 PM, with varying

azimuth and elevation in between. An example of different lighting conditions is shown in

Figure 4.9. This limited functionality is only a temporary measure pending the implementation of

a complete sun positioning algorithm, the majority of which has been developed.

Figure 4.9 Simulated sun illumination at midnight (left) and 9:30 AM (right)

4.3.4.4 DATA DISPLAY

Local terrain data may be displayed by right-clicking anywhere along the surface. The provided

data, shown at top in Figure 4.10, includes elevation and slope as well as any soil mechanics,

scientific return, or other data that has been specified. If the global positioning feature is active,

then the latitude and longitude of the selected location will be given as well. This display feature

provides immediate access to quantitative terrain data and enables the precise location of

interesting sites along the surface.

 79

Figure 4.10 Using the terrain data display (top) to locate a feature identified
through external mapping software, in this case Google Maps (bottom)

4.3.4.5 EXTERNAL MAPPING SUPPORT

Beyond solely relying on Pathmaster, the global positioning feature coupled with the terrain data

display allows users to effectively operate alongside independent mapping systems such as

Google Maps or ArcGIS for additional support (Figure 4.10). These external systems can

 80

provide a significantly higher-fidelity characterization of the mission terrain than offered by

Pathmaster alone. Such advantages include satellite imagery as well as the ability to handle much

more detailed terrain parameter databases. Any features of interest identified in Google Maps or

ArcGIS may be located in terms of latitude and longitude coordinates. These positions,

confirmed via the terrain data display, can then be precisely recorded in the Pathmaster model.

4.3.5 DEFINING MISSION WAYPOINTS

In Pathmaster, mission objectives are defined as a set of waypoints along the terrain to be visited.

Each explorer follows a unique set of corresponding waypoints which are entered separately and

color coded. When the �Waypoints� button in the Mission Planner GUI is depressed, waypoint

edit mode is active. Individual explorers may then be selected with the �Explorer� drop-down

menu (Figure 4.11). Left-clicking on the surface display will add a waypoint at that location for

the chosen explorer. In turn, holding Shift while clicking anywhere on the surface deletes the

latest explorer waypoint. When determining traverses, Pathmaster currently visits waypoints in

the order in which they were entered, regardless of surface position. This ordering is indicated by

a small numeral appearing above each waypoint. The first waypoint entered is labeled as �H� for

�home�, and successive waypoints are numbered beginning with 1. Such a planning scheme

relies upon human reasoning to determine the overall order in which to visit waypoints. In

general, waypoints with a higher priority should be entered earlier, though relative surface

positions must also be considered. Pathmaster does offer support in directly comparing various

potential ordering scenarios, as will be discussed later.

Figure 4.11 Waypoint edit controls

 81

4.3.6 EDITING TERRAIN CHARACTERISTICS

Users can also manually edit the terrain data layers as desired. These parameters including

obstacles, soil mechanics, scientific return, and possibly other data may be employed in the

determination of traverse routes and costs. Recall that all terrain layers are stored as a matrix.

Editing a layer hence involves entering new values into specified indices within these matrices.

Terrain edit mode is activated by clicking on the �Terrain� button in the Mission Planner GUI.

This will force the terrain layer display to be turned on, and the active layer may be selected with

the neighboring drop-down menu (Figure 4.12). In this mode, left-clicking, holding Shift while

clicking, and even double-clicking on the surface will perform various edits to all corresponding

parameter data values within a distinct rectangle surrounding the point clicked. The relative size

of this �edit rectangle� may be adjusted with the �Size� control as shown in Figure 4.12. The size

value is altered by clicking on the neighboring increment and decrement buttons, and can range

from 0.1 to 10. The actual number displayed corresponds to an approximate percentage of the

total map X and Y size that the edit rectangle will encompass. The intuitively functionality of the

terrain editor is comparable to simple drawing software such as MS Paint. Refer to Figure 4.8 for

visualizations of the terrain data layers which may be edited.

Figure 4.12 Terrain edit controls

4.3.6.1 OBSTACLES

Obstacles are non-traversable areas of the terrain, initially set as all points where the local slope

is greater than the chosen maximum traversable slope. These impose constraints on permissible

traverse trajectories, as these regions must be avoided. Obstacle data is binary. All points along

the terrain representing an obstacle will store an obstacle value of one. Meanwhile, all

 82

traversable points will store an obstacle value of zero. Left-clicking or double-clicking on the

surface will add obstacles, or set all obstacle values within the edit rectangle to one. Conversely,

holding Shift while clicking will clear obstacles, or set all points within the edit rectangle to zero.

Caution is necessary when editing obstacles to ensure that mission waypoints do not become

enclosed by them. Such a situation makes reaching the affected waypoint operationally

impossible, and Pathmaster will be unable to determine a traverse path for the corresponding

explorer and instead will return a warning. When viewing the obstacles layer, all points with an

obstacles value of one will appear in bright red, while all traversable areas will be shown with

the regular elevation rendering.

4.3.6.2 SOIL MECHANICS

Soil mechanics refer to qualities of the terrain surface in terms of rockiness and rock distribution,

firmness, strength, stability, and homogeneity, each of which can impact the explorer stability,

traction, and slippage. Collectively, these parameters characterize the relative ease of

traversability of a terrain from which associated explorer traverse velocities and power

requirements may be predicted. In this manner, the numerous local soil mechanics properties

may be represented as a whole in terms of a single index denoting the overall effect these

conditions have on a traversing explorer. This index value may then be interpreted within

explorer cost functions to precisely represent any physical cost effects.

Pathmaster stores soil mechanics data as a matrix of such index values. Each data point may take

a value of zero, one, or two. By default, all points on the terrain have a soil mechanics value of

zero. When this layer is active, left-clicking on the surface will set all points within the edit

rectangle to a value of one. Double-clicking will further set all applicable points to a value of

two. Holding shift while clicking will reset the chosen points back to zero. When viewing the

soil mechanics layer, all points with a value of zero will be grayed. Points with a value of one

will clearly appear as semi-transparent maroon, and points with a value of two will be visible in

sharp, dark maroon.

The soil mechanics index data used in Pathmaster is completely arbitrary on its own. It is up to

the explorer cost functions to give meaning to these index values. For instance, a value of zero

 83

could correlate to nominally easy terrain, a value of one represent moderately challenging

terrain, and a value of two denote particularly difficult terrain requiring substantial additional

time and energy to traverse. As another example, a value of zero could represent clear, hard

terrain, a value of one indicate extensive scattered rocks, and a value of two indicate sand. Once

such a scheme is defined, the explorer cost functions will explicitly determine the effect that

these summarized characteristics have on traverses. While such modeling may seem rather crude,

it enables planners to very quickly represent terrain conditions within a reasonable

approximation.

4.3.6.3 SCIENTIFIC RETURN

Terrain scientific return refers to the relative interest of a region in terms of apparent potential

scientific gain. Features such as craters or rilles as well as distinct characteristics including

chemical composition or radioactivity can make certain areas of the terrain far more interesting

than others. Exploration through these locations hence is preferential to travelling over more

mundane territories. The overall desirability of traversing over a particular terrain region for

scientific gain may be represented in terms of a single comparative index. In this manner, the

relative levels of interest or priority of distinct terrain areas may be quickly established.

Pathmaster stores terrain scientific return data as a matrix of such index values in an identical

manner as soil mechanics data. Each data point may take a value of zero, one, or two. By default,

all points on the terrain have a scientific return value of zero. When this layer is active, left-

clicking on sets all applicable values to one, double-clicking sets them to two, and holding Shift

while clicking resets them to zero. In the display, all points with a value of zero will be grayed,

points with a value of one will appear as semi-transparent purple, and points with a value of two

will appear in deep purple.

The scientific return index data alone is also completely arbitrary, and these values must be

interpreted by the explorer cost functions in order to establish meaning and effect within the

mission. Again, while this may be a considerably limited modeling of complex and subjective

information, it enables planners to very quickly identify and prioritize interesting areas within the

terrain.

 84

4.3.6.4 OPTIONAL ADDITIONAL PARAMETERS

In addition to the data layers presented, Pathmaster offers another layer which is not pre-defined.

Denoted as �Other�, this layer accommodates the incorporation of an additional parameter

significant to the mission. It is again stored as a matrix of index values. Functionality is identical

to soil mechanics and scientific return, with stored values of zero, one, or two appearing as gray,

semi-transparent blue, and dark blue, respectively. These values may be incorporated into the

explorer cost functions when establishing traverses. As an example of using this additional layer,

assume that on a particular EVA a robot is constrained to remain within a certain distance of the

traverse plan for a team of astronauts. This could be represented by highlighting all points within

the given range of the astronaut path with a distinct �other� value. It would then be up to the

robot cost functions to recognize this parameter and apply the stated constraint to all robot

traverse paths (which in this case could be done in the same manner as applying obstacles).

4.3.7 ESTABLISHING OPTIMIZED TRAVERSE PATHS

Once all mission inputs have been entered, users may click on the �Run PATH� button in the

Mission Planner GUI to generate explorer traverse paths. Here, Pathmaster goes to work

determining specific costs for crossing the surface and establishing routes to destination sites. In

all scenarios, Pathmaster assumes a single fixed mission objective of visiting every defined

waypoint in order. The only internally applied operational constraints on traversals are the terrain

obstacles. Assuming all waypoints are accessible (i.e. none are enclosed by obstacles, in which

case a warning would be returned), traverse paths are calculated for each explorer until all

waypoints have been visited, at which point the mission plan ends.

Within Pathmaster, therefore, explorer activity planning is limited by the exhaustion of

objectives. As explained in Chapter 3, the function of EVA optimization in this case is to

minimize the exploration cost of the mission. Thus, the goal of path planning is to automatically

calculate routes of minimized cost for each explorer.

Pathmaster�s general traverse plan functionality is based upon the Planetary Aid for Traversing

Humans (PATH) software presented in Márquez, 2007. All explorer cost criteria and related

functions derive directly from PATH. Pathmaster employs these costs within a novel

 85

implementation of the A* (�A star�) algorithm over the surface domain as demonstrated in

Johnson, 2008. This routine establishes the optimized traverse routes and provides the associated

explorer costs.

4.3.7.1 THE PATH SOFTWARE AND COST FUNCTIONS

PATH was developed in 2007, under a team led by Dr. Jessica Marquez at MIT. The purpose of

this software was to investigate how humans collaborate with automated support, specifically

applied to the task of optimal EVA traverse path planning for an astronaut on the moon. In order

to compare paths, the PATH team established a set of functions to estimate the distance, required

time, and metabolic cost of each traverse. These cost values were calculated on an incremental

basis of moving from a single data point on the terrain model to an adjacent point. All explorers

in Pathmaster currently assume this same model, intended to characterize a suited astronaut on

foot, pending further development of rover and robot specific cost functions.

Distance Cost

The first traverse cost found is distance, which is based upon the physical length between data

points on the map. This length is determined by the map resolution and the direction of travel.

Lateral motion between data points has a distance of the resolution, while diagonal motion

distance is greater by a factor of the square root of two. Overall path distance is minimized by

straight-line travel.

Time Cost

The second traverse cost found is the time required to travel from one location to another. This is

based upon both the distance, already calculated, and the surface slope. The local slope between

points, given in degrees, is determined trigonometrically as the arctangent of elevation

differential over distance. This slope value is fed into a model which gives the predicted traverse

velocity, as shown in Table 4.2 and Figure 4.13. By this model, maximum explorer velocity is

1.6 meters per second, which occurs on flat terrain, and going downhill is faster than going

uphill. Required time is finally calculated as the quotient of distance over velocity.

 86

Table 4.2 Estimated explorer velocities as a function of surface slope, from Márquez, 2007

Figure 4.13 Explorer velocity profile as a function of slope (modified from Márquez, 2007)

Metabolic Cost

The final traverse cost found in Pathmaster is the metabolic expenditure, or energy consumed, by

a traversing explorer. This calculation builds upon the preceding functions, and is dependent

upon traverse time, surface slope, explorer velocity, explorer mass, and gravity. The model

employed was developed by Santee et al. (2001), and gives the energy consumption rate of an

explorer as they cross the surface. The formulation, shown in Table 4.3 and Figure 4.14, is well

suited for approximating extra-terrestrial EVA conditions as it incorporates surface slopes and

explorer velocities along with planetary gravity (Márquez, 2007). In this model, energy rates are

broken up into the base energy required to move forward along with the additional energy

required to move uphill or downhill. High energy rates are incurred for uphill travel, while there

are minimal energetic penalties for going downhill. Metabolic cost is ultimately calculated as the

product of energy rate and required time.

Slope, á Velocity (m/s)

-20° ≤ á < -10°
-10° ≤ á < 0°
0° ≤ á < 6°
6° ≤ á < 15°

á < -20°, á > 15°

0.095 � á + 1.95
0.06 � á + 1.6
-0.02 � á + 1.6

-0.039 � á + 0.634
0.05

 87

Table 4.3 Estimated explorer energy consumption rates, from Santee et al., 2001

Where m is explorer mass, g is gravity, and v is explorer velocity

Figure 4.14 Explorer energy consumption rates, shown for lunar gravity (Márquez, 2007)

4.3.7.2 MATLAB IMPLEMENTATION OF A*

With the cost profile fully determined for any potential travel between adjacent points on the

terrain map, a graph search algorithm may be utilized to identify the desired route of minimal

cumulative cost from a starting point to a goal point. To begin, each data point on the terrain map

is represented as a node with edges connecting to all neighboring nodes both laterally and

diagonally. The cost of crossing each edge is then assigned with a specific desired quantity from

the cost profile. Presently, Pathmaster operates upon the metabolic cost of traverses and hence

searches for paths of minimized explorer energy expenditure.

Slope, á Wslope (J/s)

á = 0°
á > 0°
á < 0°

 0
 3.5 � m � g � v � sin(á)
2.4 � m � g � v � sin(á) � 0.3 |á|/7.65

Energy rate (J/s) = Wlevel + Wslope

Wlevel = [3.28 � m + 71.1] � [0.661 � v � cos(á) + 0.115]

 88

Pathmaster�s traverse optimization routine implements the A* algorithm, first described by Hart

et. al (1968), chosen for its fast computation speed and completeness without sacrificing

accuracy. Beginning at a waypoint, the direct cost for traversing to a neighboring node is coupled

with a heuristic estimation of the cost to travel from that node all the way to a goal point, i.e. the

next waypoint. The heuristic assumes the best-case scenario of straight line travel over flat

terrain, and hence is admissible since it will never overestimate actual traverse costs (Johnson,

2008). The algorithm tests all possible neighboring nodes and proceeds to the one with the

lowest collective direct and heuristic cost. The process then repeats itself from that node,

incorporating the cumulative direct cost to travel from the starting point to all new neighboring

nodes along with heuristic estimations to the goal, meanwhile still considering any previously

searched nodes.

With every iteration, the algorithm proceeds to the successive �best� node with the lowest

running cost, keeping track of which nodes were visited along the way there. In this way, the

routine is known as a �best-first� search. Most importantly, this functionality ensures that the

first time a new node is visited implicitly comes via the best possible route to that node. In other

words, when the algorithm proceeds to a new node, the series of nodes from the start leading to

that point represents an optimized route. If there were a better (least costly) way of getting there,

it would have already been established earlier due to best-first searching. Hence, as soon as the

algorithm first arrives at a goal waypoint, the optimal route to that waypoint has been

established. The resulting path is represented as the series of connecting nodes from start to

finish.

Another important feature of Pathmaster�s optimization routine is the incorporation of bi-

directional searching. Instead of solely examining nodes branching out from the starting point,

simultaneous searches are performed from both the current starting and destination waypoints.

Once the search paths first meet, the optimal route is established again according to the best-first

principle. Using this method, significantly fewer nodes must generally be searched to arrive at

the optimized path. Hence, computation time is reduced to further facilitate real-time planning.

 89

When three or more waypoints are defined, Pathmaster further invokes a �smart searching�

algorithm that augments the benefit of bi-directional searching and reduces redundancy. Along a

path, the goal waypoint for one traverse segment becomes the starting waypoint in the next leg.

Pathmaster recognizes this, maintaining all search data stemming from the goal of a search and

automatically applying that work toward searching for the next waypoint. Figure 4.15 illustrates

this functionality. On the left, a third waypoint is already within the nodes visited from the goal

of a previous search, waypoint two. Hence, with no additional work, the optimized path from

waypoint 2 to 3 has already been established. In the more common case where a third waypoint

is outside of the visited region, Pathmaster builds upon the nodes already scanned and only a

limited set of additional nodes, represented in darker grey, must be searched in order to generate

the path. This process iterates for all successive waypoints.

Figure 4.15 Visualization of �smart searching� for a third waypoint
(modified from Johnson, 2008)

The entire path search routine must operate within our problem domain to respect any defined

terrain obstacles. Fortunately, A* is easily adaptable to incorporate non-traversable areas simply

by setting the cost of crossing edges connecting to such nodes infinitely high. Better yet,

Pathmaster outright ignores these edges and operates as if they don�t exist. Hence, obstacles

effectively alter the makeup of the map representation by removing all corresponding graph

edges. This assures that the search algorithm finds the optimal route incorporating and

necessarily navigating around all obstacles.

1

3 2

1

2

3

 90

Once an optimized path has been established, Pathmaster finishes by smoothing the set of route

nodes into best-fit representative line segments via the midpoint line algorithm (Bresenham,

1965). Each path is hence ultimately stored as a set of line segment endpoint coordinates. The

cumulative distance, time, and metabolic costs from the start to each segment point are

calculated and recorded as well.

4.3.8 TRAVERSE PATH AND COST DISPLAY

As soon as optimized traverse paths are created, the smoothed line segments are clearly overlaid

on the terrain display in representative explorer colors, with waypoints highlighted in green

(Figure 4.16). This display represents the completed mission plan. The estimated total costs of a

selected traverse are displayed in the appropriate fields in the Mission Planner GUI menu. Users

may choose explorer paths either with the explorer drop-down menu or by right-clicking directly

on the desired route. Distance costs are shown in the currently selected axes scale units.

Metabolic cost is displayed in the center, and associated units of kilocalories, BTU, or kilojoules

may be selected with the neighboring drop-down menu. Lastly, estimated time is displayed in

hour and minute format.

Figure 4.16 Traverse path and cost display

 91

In addition to the total traverse costs, users may display detailed information for each leg

between waypoints. Right-clicking on a path will open a data display at the nearest waypoint, as

shown in Figure 4.16. Successive right-clicking on the path or display allows the user to cycle

through various information of interest to planners, including the cost from start, cost from the

previous waypoint, cost to the next waypoint, cost to end, and the local terrain information as

given with the terrain data display.

4.3.9 SIMULTANEOUS MISSION SCENARIOS

Multiple instances of Pathmaster may be run simultaneously on a single machine. With

Pathmaster already open, users can simply re-enter the �pathmaster� command in the MATLAB

main prompt and a new instance will run completely independently of the mission already open.

This enables great flexibility for users to quickly evaluate various potential mission scenarios

with distinct situations as well as operate multiple explorers with unique parameters. Such

functionality facilitates manual optimization of overall mission strategies beyond simply

optimizing activity within a single scenario.

4.3.9.1 SIDE-BY-SIDE COMPARISON

By loading differing mission situations into separate instances of Pathmaster, various mission

plans may be placed literally side-by-side on a controller�s computer screen. This empowers a

direct comparison of all mission routes and costs such that a most desirable option may be

determined. For example, Figure 4.17 depicts the side-by-side evaluation of two strategies for an

EVA involving two astronauts. On the left, explorers travel together for the duration of the sortie.

To the right, the astronauts split objectives and proceed alone. As seen in the menu displays, the

predicted EVA costs for Explorer 1 decrease by less than 15% with the divide and conquer

approach compared to staying together. This somewhat modest cost savings may not offset the

likely increased risk of sending astronauts out alone. In this case, planners could soundly decide

upon keeping the astronauts together based upon this strategic comparison in Pathmaster.

 92

Figure 4.17 Side-by-side comparison of two EVA strategies
At left, explorers travel together; at right, explorers divide and conquer

4.3.9.2 EXPLORERS WITH DISTINCT PARAMETERS

Within a single instance of Pathmaster, all explorers share many common environmental factors

including gravity, sun lighting, obstacles, soil mechanics, scientific return, etc. If a certain

explorer faces different parameters on a mission than other members, distinct modeling may be

accomplished through a separate instance of Pathmaster. The most common example would be

explorers with differing obstacles, such as astronauts and small robots. In this case, astronaut

obstacles and traverse plans can be developed in a separate window from the differing robot

obstacles and subsequent plans. This general strategy may be applied to all other environment

parameters as well. As another important example, consider explorers operating at different

times, hence with differing lighting conditions. Here, all corresponding data could simply be

entered in separate EVA Input menus to model distinct points in time during the mission. Taking

advantage of such diverse modeling capabilities, Pathmaster is able to handle complex missions

with large teams of differing explorers.

4.4 VIRTUAL REALITY SIMULATION

Aside from internal mission plan development and display, Pathmaster also provides output text

files to the �Render� directory that can feed an external virtual reality simulation. The Astronaut

Rover Mission Simulator (ARMS), written in C++ and under development by Uday Kumar at

 93

Arizona State University, cooperates with Pathmaster to provide a fully interactive 3D

environment for mission simulation (Figure 4.18). ARMS incorporates a mobile astronaut and

MER-style robot on a scaled virtual rendering of the physical terrain, offering a realistic surface

level experience. The explorers function independently, and may be controlled remotely within

the environment. Waypoint and traverse path coordinates can be loaded from Pathmaster and

clearly displayed within ARMS in real-time. This system enables teams to run an entire virtual

simulation of a mission ahead of time, which facilitates preliminary evaluation of activity

scheduling and strategies, practicing of missions, and even a general familiarity with terrain

features and objectives before ever stepping foot on the surface.

Figure 4.18 Running a Pathmaster developed mission (left) in
the Astronaut Rover Mission Simulator (right)

4.5 REAL-TIME MISSION SUPPORT

As operations shift to real-time during a mission, the function of a support system becomes the

familiar cyclic pattern of sending out mission information, assisting explorers in following the

plan, responding to changing situations, and updating the plan when necessary. For Pathmaster,

this translates to passing mission plans to all parties, assisting in explorer navigation, and

enabling near real-time mission re-planning. The program currently offers varying degrees of

capability in each of these areas.

 94

4.5.1 RELAYING MISSION INFORMATION

Pathmaster offers three general methods for relaying mission information to other systems,

locations, and explorers. First, comprehensive output files are automatically written to feed any

cooperating applications on the same machine, such as an external rendering system like ARMS.

Second, to relay information to other locations capable of running Pathmaster, a MATLAB data

file containing all mission information is always written to the directory containing the

Pathmaster m-file. This data file may be directly transmitted to all desired sites (up to now, these

files have been routinely e-mailed). By choosing the transmitted file when opening Pathmaster

and selecting the options to load all existing data (waypoints, obstacles, etc.), every controller

will share the same information. Clicking on �Run PATH� in the Mission Planner GUI further

generates the mutually identical mission plan. Lastly, to relay information to field explorers or

any other site with limited computing capabilities, an image (i.e. screenshot) of the terrain model

detailing waypoints and traverse paths may be sent. This serves as an overview of the mission

plan as well as map which explorers may follow.

4.5.2 EXPLORER NAVIGATION

The mission plan image available from Pathmaster, while useful as a summary or reference,

alone is insufficient to accurately guide explorers over unfamiliar terrain to destination sites as

has been explained. Instead, an interactive display capturing explorer position and motion in

relation to a planned traverse is necessary. Although Pathmaster currently has no such

capabilities, certain compatible systems may be employed to achieve this desired navigation

support.

4.5.2.1 GPS LINK VIA ARCGIS

Shortly before development on Pathmaster began, a related mission planner system was

completed by Lindqvist (2008). This system, also based upon PATH, operates within ArcGIS.

The interface enables familiar, though limited, functionality including terrain map display,

calculation of obstacles based upon surface slopes, point-and-click waypoint addition for a single

explorer, and finally calculation of optimized traverse routes via a direct call to the PATH Java

software (Figure 4.19). Pathmaster was designed to be compatible with the ArcGIS mission

planner. Specifically, all output map text files, originally intended to be loaded in Java when

 95

calling PATH, may also be directly loaded into Pathmaster. In fact, this is the general method by

which new terrain maps have been created for Pathmaster.

Figure 4.19 Mission planner configuration in ArcGIS (Lindqvist, 2008)

By loading the corresponding terrain into ArcGIS, mission waypoints may be manually entered

to match a plan developed in Pathmaster. Clicking �Start� in the ArcGIS mission planner GUI

will run PATH and display the corresponding optimized route on the map.

From here, the advantage of using ArcGIS is that instead of a simple screenshot, the terrain view

with overlaid traverse path may be exported as a spatially referenced image by creating a �world

file�. This image and accompanying world file can be loaded directly into a field computer with

a GPS receiver, where the terrain display orientation will be automatically recognized in terms of

corresponding global position. In this manner, the GPS receiver may display current explorer

position along the loaded image. As established in Chapter 3, by ensuring that the displayed

position at all times coincides with the drawn traverse route while crossing the surface, an

explorer physically follows the planned optimal path (see Figure 3.6). Such a GPS link not only

provides extremely intuitive real-time navigation support, but is also very practical since field

explorers need only to upload an updated image and world file to follow a new mission plan.

 96

4.5.2.2 VIRTUAL REALITY DISPLAY

Although still under development, ARMS or a similar system can potentially provide greatly

enhanced navigation support over the aerial view display offered by typical GPS receivers.

Equipped as a heads-up display with motion capture, such a system would offer explorers a real-

time 3D view of the virtual terrain with clearly highlighted traverse paths and waypoints to

seamlessly guide them as they cross the physical terrain (see Figure 3.8).

4.5.3 MISSION RE-PLANNING

When unexpected EVA situations arise to warrant an operational response, mission information

must be updated accordingly. Pathmaster is designed to be well suited for this task, enabling

streamlined modification of mission models and creation of new plans. The general process by

which a mission is modified is the same as planning the original mission. Once edits have been

made, simply clicking the �Run PATH� button again will generate a new optimized mission plan

incorporating the latest information. This updated plan can then be distributed through the

channels identified earlier.

4.5.3.1 UPDATING MODELS AND CONTINGENCIES

As feedback from the surface team arrives, any necessary updates to the mission models may be

made in the Mission Planner GUI via the waypoint and terrain edit controls presented earlier.

Editing an explorer�s waypoints will clear an existing traverse path, if any, while editing terrain

parameters will clear all traverse paths. Additional EVA parameters may be modified by clicking

on the �Map Info� or �EVA Input� buttons in the menu at the top (Figure 4.20). This re-opens

the respective menus, and the desired data fields may be freely altered. Any changes will be

automatically incorporated when the Mission Planner GUI reopens.

Figure 4.20 Map Info and EVA Input buttons to re-open the respective menus

 97

Terrain edit mode allows controllers to modify the terrain models directly in real-time with new

information, while waypoint edit mode allows controllers to freely clear waypoints and establish

new sites in seconds. Taking advantage of these capabilities, any contingency situations and

associated responses may be quickly modeled within Pathmaster. In particular, by modifying

waypoints controllers can immediately instruct explorers to move to urgent sites such as shelter

or the location of an ailing team member. For making high-level operational decisions in

response to contingencies, features such as the side-by-side scenario comparison may be used to

quickly evaluate potential courses of action.

4.5.3.2 RETURN HOME PATHS

Pathmaster offers a specialized built-in contingency response: the �return home� path feature. At

any point along a traverse, an explorer may be directed to immediately return to the starting base,

or home. Perhaps the most recognizable example where this feature is well suited would be a

walk-back situation. Return home paths are found by holding Shift while clicking along a

traverse path. The location clicked on is assumed as the point at which the explorer begins the

return, and an optimized route directly back to the starting point is automatically found. These

special traverses appear as dotted paths along the terrain (Figure 4.21). Associated costs will be

displayed in the menu at the top, and these paths may be selected and evaluated by right-clicking

as with any other path.

Figure 4.21 Return home paths, shown as dotted routes

 98

4.6 ADDITIONAL FEATURES

There are two final features of Pathmaster worth noting.

4.6.1 �LITE� OPTION

Pathmaster may be called directly from the command line with the �lite� option, entered as:

This invokes a simpler surface rendering, as shown in Figure 4.22. Use of this option speeds

plotting time and prevents problems on some machines. It is well suited for cases with limited

computing power. Aside from the terrain appearance, all mission planning functionality is fully

maintained. If a machine encounters problems with Pathmaster terrain renderings, use of the

�lite� option is recommended.

Figure 4.22 Normal surface rendering (left) and �lite� rendering (right)

4.6.2 RELOADING MISSION INFORMATION

Though briefly mentioned before, one last feature is worth highlighting. Each time a mission is

run in Pathmaster, a MATLAB data file sharing the given name entered in the EVA Input menu

is written to the directory containing the Pathmaster m-file. This file holds all stored mission

information, which includes the elevation map, terrain parameter data, and any waypoints. In

order to re-load such a previous mission or terrain, simply select this corresponding file when

 99

opening Pathmaster. The options to use the data within this file will appear as check-boxes near

the top of the EVA Input menu (to load waypoints, all desired explorers must first be added

within this menu). This functionality greatly facilitates creating multiple related mission

scenarios since a common base situation can be mutually loaded. The user should take note

though to rename each successive scenario so that previous files will not be overwritten.

 100

 101

5 FIELD TESTING

5.1 TRAVERSE PLANNING AND GPS-LINKED NAVIGATION

The first test of mission support features in a real traverse situation was performed on the MIT

campus during December of 2007. The purpose of this experiment was to test the efficacy of

using a support system for optimal traverse planning and subsequent real-time explorer

navigation using GPS.

5.1.1 SETUP

This experiment employed the mission planner system developed in ArcGIS by Lindqvist

(2008), presented in the previous chapter. To begin, a map of the MIT campus was loaded into

ArcGIS and the view zoomed to cover the general area including the main entrance at 77

Massachusetts Avenue, Kresge Auditorium, and the corner of Massachusetts Avenue and

Memorial Drive (Figure 5.1). This was chosen as the terrain to be explored.

Figure 5.1 Aerial photograph of the MIT campus (left, courtesy Google Maps),
and the corresponding terrain model loaded in ArcGIS (right).

Next, terrain obstacles were set for all areas with a surface slope greater than three degrees.

Though this is a very low limit for the maximum traversable slope, this value was chosen so that

 102

a significant amount of obstacles would be presented. The selected terrain is rather level and

normally would be quite mundane for navigation. For testing purposes, the low slope threshold

was thought appropriate to present some challenge to the system. The resulting terrain obstacles

are depicted in Figure 5.2.

Figure 5.2 Terrain obstacles, shown in red, and mission waypoints

Four mission waypoints were then established, also shown in Figure 5.2. The first waypoint, or

starting point, was set at the main MIT entrance. The second and third were set just north and

southeast of the Kresge auditorium, respectively. The final waypoint was set at the northeast

corner of Massachusetts Avenue and Memorial Drive. The Planetary Aid for Traversing Humans

(PATH) software, presented in Chapter 4, was then called to find the optimal routes between

these waypoints. The resulting planned mission path was plotted along the terrain, as shown in

Figure 5.3.

 103

Figure 5.3 Planned traverse route for the field test

Finally, the terrain image with the traverse path, which represented the mission plan, was

exported to a handheld computer with a GPS receiver via the procedure described in the previous

chapter. The field unit used was the Trimble Juno ST, shown in Figure 5.4

Figure 5.4 The Trimble GPS receiver used in the field (courtesy Lindqvist, 2008)

 104

5.1.2 OPERATION

A team of four �astronauts�, including the author and Lindqvist, embarked on foot from the

starting point outside the main MIT entrance and attempted to follow the planned route as

closely as possible. Real-time guidance was provided by the Trimble, which animated the current

crew position along the mission plan image. The team traversed to each waypoint location, and

the mission came to an end upon arriving at the final planned road intersection. Figure 5.5

summarizes the execution of the mission.

Figure 5.5 Mission plan execution. At left, a crewmember operates the Trimble unit for
guidance. The planned (blue) and executed (yellow) routes are shown to the right.

5.1.3 CONCLUSIONS

The tested system was successful in planning a traverse and providing the corresponding

information to the surface team. All software and hardware components worked as intended.

During the real-time mission execution, however, several shortcomings became apparent.

The most recognizable problem is clearly seen in Figure 5.5, where the executed route apparently

crosses several obstacles and even passes through a building. This was clearly not the physical

route taken. Instead, these discrepancies are due to complications with the GPS receiver resulting

in offsets or jumps in the read positional values. This problem, most likely caused by campus

buildings interfering with and reflecting the satellite signal, was an unavoidable product of the

chosen terrain. Along with people, trees, cars, traffic lights, etc., the surroundings for this field

 105

test included many hindrances affecting the executed path that would not be present during a

remote sortie, especially on another planet. For the path segments where these difficulties were

less an issue, such as rounding Kresge and proceeding east, the explorers were able to follow the

path relatively well. The lesson here is that the location of future tests should be selected with

more thought so as to resemble conditions on the moon or Mars.

With that said, unexpected hindrances cannot be ruled out when providing real-time support.

Lindqvist�s account (2008) of this field test reveals another shortfall: �As there was a lot of snow

on the ground and some fences that the original map did not include, the route could not have

been followed precisely�� Due to unexpected obstacles not represented in the mission plan

model, the team was forced to respond and re-plan in order to continue the mission. The system

offered no direct support here, and the explorers were left to cope on their own. While only a

minor issue here given the familiarity and small scale of the terrain, such unforeseen situations

could pose a significant problem in a more hostile environment. As stated before, developing an

optimal plan is irrelevant if the field explorers are unable to follow it. This simple test uncovers

the great potential utility in being able to quickly update mission models and develop new

optimal plans accordingly on more complex missions.

5.2 FUNDAMENTALS OF ENGINEERING EXPLORATION LAB

The next test of mission support features involved a complete geological style EVA simulation at

MIT during February of 2008. The experiment was performed as the first laboratory exercise for

the Fundamentals of Engineering course, a freshmen level introductory subject. It was carried

out entirely by students under the supervision of the author. Aside from the educational

objectives of the experiment, the purpose of this simulation was to test the feasibility of

employing a support system in a mission control setting to aid in strategic EVA operation and

decision making. In particular, the real-time performance of mission planning, surface team

audio and video feedback, and explorer energetic monitoring systems was examined.

5.2.1 SETUP

A detailed explanation of the simulated EVA procedures and instructions is given in Appendix

D. In general, the class was broken up into two teams: the surface team and mission control. The

 106

surface team consisted of a group of �astronauts� and three distinct �rovers� (generally referred

to as robots elsewhere in this work) with differing capabilities. In turn, mission control consisted

of a director, communicator, positioning officer, medical officer, rover technician, and geologist.

The terrain to be explored was chosen as Killian Court, while mission control was situated in a

remote conference room.

The surface team was sent out into Killian Court. Astronauts, dressed in mock-up spacesuits,

were restricted to remain together at all times. They were provided an audio link to the

communicator at mission control via a walkie-talkie. Rovers, on the other hand, were allowed to

travel alone. Due to logistics, they were remotely controlled by humans in the field; however,

these controllers did not directly perform any mission activities. The rovers, shown in Figure 5.6,

were equipped with wireless cameras that provided video feeds to the rover technician at mission

control, and the controllers could receive verbal commands from the communicator via walkie-

talkie.

Figure 5.6 The various surface team rovers

The Killian terrain was segmented into three distinct zones, each containing two pre-defined sites

of interest (Figure 5.7). At each site were various �samples� (blocks, balls, etc.) which could be

collected, but only by astronauts who were each permitted to carry one sample at a time. The

geologist at mission control was provided information to determine which samples were deemed

�interesting�. Not all sites necessarily contained interesting samples. Explorers began at the base

location. The mission objectives, listed in order of priority, were:

 1) Safely return all astronauts and rovers to base

 2) Collect a sample of interest from as many zones as possible

 3) Collect as many samples of interest as possible

 107

Figure 5.7 Aerial map of the Killian terrain denoting zones and sites of interest

Constraints on the surface team activities were simulated as limited oxygen supplies for

astronauts and limited battery power for rovers. These levels were monitored at mission control

by the medical officer and rover technician through interfaces designed in LabVIEW, as shown

in Figure 5.8 and detailed in Appendix E. The control team members were responsible for

keeping track of the real-time explorer activity and selecting the corresponding option within

each interface. Simple models then determined the respective oxygen and electrical consumption

rates based upon the activity. These systems essentially mimicked such explorer signals as may

be routinely gathered through wearable sensors or onboard diagnostics.

Figure 5.8 Astronaut and rover energetics interfaces

 108

To test the capability of transmitting information to an alternate mission control site, the

astronaut and rover energetics data produced by these interfaces was streamed in real-time to an

observer at Arizona State University (ASU). A video feed from a camera observing mission

control was transmitted as well.

An additional constraint was placed on the astronauts by limiting the total permitted traverse

distance to 1,000 meters. This was monitored by the positioning officer, who was equipped with

the ArcGIS mission planner system also used in the previous field test (Figure 5.9). The

positioning officer was responsible for keeping track of all sites visited by the astronauts and

finding the approximate total distance travelled. More importantly, they were to immediately

evaluate any proposed astronaut travel to make sure that the astronauts would not violate the

distance constraint. This could be accomplished by entering each site as a waypoint and

computing the traverse path. The ArcGIS interface then provided the estimated distance for each

complete route. Due to the flat and simple nature of the Killian terrain, the optimally straight

paths computed by the mission planner were very good approximations of the intuitively direct

paths taken by the astronauts, hence the predicted distance values were valid.

Figure 5.9 Using the mission planner system to monitor traverse distances

 109

Overall, activity constraints were set such that no single explorer could feasibly visit or return

samples from all sites of interest. Hence, operational strategies had to be developed in order to

best satisfy the mission objectives.

5.2.2 OPERATION

The class was given forty minutes to establish an overall mission operation plan, after which the

first EVA simulation began. The rovers, with cameras and no distance constraint, were initially

employed as scouts and sent individually to the farthest waypoints while the astronauts were

immediately sent to nearer waypoints. The general strategy was to use the video feed from the

rovers to identify if sites contained samples of interest. If so, astronauts would be sent there to

collect them. If not, then the astronauts could save a trip. Mission control also determined the

best order for astronauts to visit interesting sites to minimize distance and oxygen consumption,

with all final decisions made by the director.

Teams soon discovered that rover mobility was significantly slower than predicted. This forced

mission control to decide whether to have the astronauts wait for the rovers to arrive at the

respective objective sites, during which time oxygen is still consumed though at a low level, or to

have the astronauts proceed without the desired scout information. Astronauts waited briefly on

two separate occasions, but in a third case were instructed to proceed to an uninvestigated site as

the rover, running low on battery, turned back toward base.

At the end of the first run, a contingency occurred. Running low on oxygen, the astronauts were

making their final return to base with samples when it became apparent that a rover would be

unable to make it back under the remaining battery power. Since the rover had a higher priority,

the astronauts were instructed to abandon the samples and immediately divert to the rover to

carry it back (a permitted astronaut ability). This took the astronauts significantly off their

planned course. In the end, although all explorers did make it back, the astronauts were left with

less than one percent of the oxygen supply oxygen remaining.

The first run accomplished all EVA objectives, collecting a total of 9 samples with at least one

from each zone. The astronauts travelled a total of 803 meters. At this point the surface team and

 110

mission control members swapped roles. The class was given an additional five minutes to re-

plan a new strategy before a second EVA simulation began. This was run with identical map and

objectives, though the samples at all sites were shuffled.

An interesting astronaut-robot cooperation scheme was devised for the beginning of the second

run. Recognizing the limitations of the rovers and the much greater mobility of the astronauts,

the astronauts were immediately sent to the farthest waypoints while carrying two rovers most of

the way. The third rover that had nearly been stranded in the first run was left unused at base.

The rovers were released at spots nearest to two other waypoints along the way. While the

astronauts explored the two farthest waypoints, the rovers easily made it to their respective

waypoints in plenty of time to scout them. The astronauts returned samples from the farthest

waypoints, one of which had nothing of interest, and then proceeded to the scouted waypoints

while the rovers made their way back to base via the remaining nearest waypoints. In this

manner, by the time the astronauts returned with their second set of samples, all waypoints had

been scouted. Furthermore, the rovers were headed back to base with plenty of energy

remaining. The astronauts were finally sent to an interesting waypoint in the last remaining zone

to satisfy the second objective.

With the luxury of extra time, the team realized that once a sample had been collected from each

zone, the third objective of collecting as many samples as possible did not stipulate that they had

to be from different zones. Hence, the astronauts completed two final round trips collecting

samples at the nearest waypoints with remaining interesting samples. Despite having moderate

oxygen remaining that perhaps may have allowed another trip, the director decided to end the

mission and avoid putting the astronauts at risk like in the preceding simulation.

The second run also accomplished all objectives, but this time with more than 20% oxygen or

battery power left for all explorers. In addition, the team gathered 14 samples and hence was

significantly more productive than in the first run. The astronauts travelled a total of 899 meters.

This greater distance was covered at a lower oxygen cost since the astronauts were never made to

wait.

 111

5.2.3 CONCLUSIONS

Although not an initially stated objective of this experiment, the importance of evaluating

mission strategies and surface team interactions became abundantly clear. While both scenarios

incorporated identical terrain, explorers, objectives, and constraints, the second simulation

produced a significantly greater return with less cost and much more safely due to a superior

team operation strategy. These high-level decisions came about through experience and human

reasoning, with no aid arising from the mission support system.

The ArcGIS mission planner system used by the positioning officer theoretically could have

been employed to compare potential scenarios stemming from different strategies; however this

would have been impractical. In fact, the system struggled just to keep up in tracking the total

explorer distance travelled. In both runs, the controller fell slightly behind while trying to model

the continuous explorer activity. This eventually led the director to somewhat ignore the

positioning officer and give astronaut commands before the associated traverses could be

verified to not violate the distance constraint. Instead, distances were calculated after the fact.

Fortunately the constraint never came into play in these simulations; however, this manner of

operation is generally unacceptable in high-risk situations.

The delay in traverse modeling came as a result of both the limited planning capabilities in the

ArcGIS interface and the necessary calculation time for generating traverse routes. In this

system, the user had to essentially start from scratch in modeling each successive traverse.

Entered waypoints could not be edited, and instead an entirely new traverse needed to be

established each time. Once a new set of waypoints was entered, it took nearly a full minute for

PATH to output the traverse and associated distance. By this point, the astronauts were generally

ready to move on if they hadn�t already, leaving not enough time for the controller to keep up

and certainly none to additionally evaluate potential successive activities.

Aside from this, all systems successfully operated as intended. The energetics models, which

ended up limiting explorer activity in each case, functioned well in providing the real-time

information necessary for controllers to determine when an explorer must return to base.

Furthermore, the corresponding data and video link was received in real-time at ASU. This was a

 112

first step in demonstrating both the feasibility of operating mission control from separate

locations as well as the capability of transmitting actual explorer physiological signals or

diagnostics to mission control.

The audio and video links to the surface team operated well, however it was found that video

feeds were far more informative and alleviated confusion in mission control. When a rover

arrived at a site, the controllers knew the precise rover position and the exact character of

samples at the site simply by glancing at the display. On the other hand, when the astronauts with

only an audio link arrived at a site, there was occasional misunderstanding over exactly which

site they were at as well as repeated confusion over the description of samples at a site. Hence,

video feedback from the surface team is highly preferred.

Overall, the laboratory activity was a great success. Students showed a high level of interest and

enthusiasm, and useful results in regard to the mission support systems were obtained. The test

further provided experience to aid in setting up more elaborate and realistic EVA simulations,

highlighting specific aspects which were most useful as well as those in need of improvement.

5.3 JOINT EVA SIMULATIONS AND THE
 MOTIVATION FOR PATHMASTER

This project was completed as part of a collaboration between MIT, Arizona State University

(ASU), and the Jet Propulsion Laboratory (JPL). Beginning shortly after the Fundamentals of

Engineering EVA simulation presented in the previous experiment, these institutions cooperated

in a series of preliminary tests and significant system development over the course of Spring and

Summer 2008. The purpose of this work was to create a comprehensive and versatile system by

which high fidelity simulated EVA scenarios could be performed. The general desired

framework involved sending a physical team of astronauts and robots to venture out on a remote

terrain while monitored and commanded by a mission control team operating jointly over three

separate locations at MIT, ASU, and JPL. The ultimate goal was to emulate a real lunar or

Martian EVA as closely as possible in order to eventually investigate optimal team (astronaut,

robot, and mission control) interactions and handling of mission contingencies.

 113

The major criteria of this system were to foster accurate modeling of EVA situations, enable

strategic planning and real-time re-planning of EVA activities, and to provide an interactive

environment that could be used by both explorers and mission control to evaluate all mission

information and accurately carry out a plan. The author at MIT took the lead in creating an

interface for real-time situation modeling and mission planning, while a team at ASU undertook

the development of a mission information environment and display.

As a beginning point, the ArcGIS mission planner system was considered for support of these

simulations. A main shortfall in the first field test using this system was an inability to update

mission models and re-plan accordingly. In the second field test, this system was incorporated in

a mission control setting to test the feasibility of real-time re-planning. However, even with a

dedicated operator tracking only a single traverse, the system was unable to keep up with the

physical explorers and much less capable of evaluating potential activities ahead of time.

Furthermore, the architecture required users to be familiar with using ArcGIS. Lastly ArcGIS

was not readily available at all desired mission control locations.

Faced with these challenges and the desire to create an intuitive, versatile, fast, and easily

transferrable mission planning system that would perform well under the demands of real-time

EVA simulations, the idea for Pathmaster was born. It was chosen to be developed in MATLAB

due to the mutual familiarity and access at all institutions as well as the ease of coding and

implementation.

The very first concepts of the MATLAB mission planning system as well as the ASU simulation

environment are shown in Figure 5.10. These depict a region of the Mars Yard at JPL, which will

be described in more detail in the following section, along with planned traverse routes. In

February 2008, the first test of these systems was conducted by placing a physical �astronaut�

and robot on the Mars Yard. A joint control team at MIT and ASU, linked via videoconferencing

software, instructed the explorers to follow the planned routes as pictured at right in Figure 5.10.

The explorers followed a nominal path until a contingency was assumed. At this point, the

explorers diverted and followed other existing routes back to base.

 114

Figure 5.10 Initial mission support system concepts. At left, path planning in MATLAB on
a terrain with obstacles, shown in red. At right, OpenSceneGraph rendering of explorers

on the same terrain with pictured nominal and contingency routes.

Though this test was a moderate success, with teams at MIT, ASU, and JPL collaborating

together to complete the mission with a modeled contingency, the support systems were

essentially non-functional. Instead, the astronaut and robot controller simply followed verbal

commands given by mission control describing the paths to be followed. In response, over the

next few months the MATLAB system known now as Pathmaster was refined and eventually

expanded to include a broader set of additional EVA factors from those presented in Chapter 3.

Meanwhile, the ASU system evolved into the Astronaut Rover Mission Simulator introduced in

the previous chapter.

5.4 JOINTLY CONTROLLED EVA ON A REMOTE TERRAIN

In July of 2008, a complete test of several newly developed mission support systems, including

Pathmaster as presented in Chapter 4, was conducted. The experiment was performed as a

collaborative EVA simulation involving teams from MIT, ASU, and JPL. The purpose of this

test was to evaluate the cooperation and capabilities of the collective support system in a

realistic, time-pressured mission scenario. In particular, the ability to adjust mission models, re-

plan, and execute commands in real-time while continuously tracking the explorers was

examined.

 115

5.4.1 SETUP

The general architecture for this test was presented in the previous section. The simulation

included a mission control team and a field team. Mission control operated jointly from each of

the three institutions, while the field team consisted of a physical �astronaut� on foot and a four

wheeled robot. The remote terrain selected for this test was the Mars Yard at JPL, shown in

Figure 5.11. This approximately half-acre region is specifically designed to present an

approximation of extra-terrestrial terrain, including the soil type and scattered boulders. It was

easily accessible to the JPL team and enabled an internet connection, which was heavily utilized.

Figure 5.11 The Mars Yard at JPL, looking south

A digital mapping of the Mars Yard was made using the Reigl LIDAR scanner. Scans were made

from each corner of the yard, and were then �stitched� together to form a continuous surface. In

MATLAB, this surface was interpolated to a regular grid using a Delaunay triangulation. This

grid, stored as a matrix, was directly loaded into Pathmaster and obstacles were defined for all

areas with a surface slope greater than ten degrees (Figure 5.12).

 116

Figure 5.12 Point cloud of Mars Yard Reigl mapping looking southeast (right)
and associated Pathmaster mapping viewed aerially (left)

The astronaut was equipped with a laptop for viewing mission information, while the robot was

controlled remotely by the mission control team at JPL. The robot was equipped with a camera

to provide video feed to mission control, and JPL also provided additional camera views

surveying the Mars Yard as a whole. A communicator at JPL was given the task of relaying

commands to the field team and passing explorer feedback to mission control.

Mission control at MIT was given the primary task of mission planning and re-planning, which

was performed in Pathmaster. The MIT controller also assumed the responsibility of making

final decisions and announcing mission commands. In addition, astronaut physiological signals

were approximated via a LabVIEW model run at MIT. The controller entered the appropriate

astronaut activity in the interface, shown in Figure 5.13 and detailed in Appendix E, and

estimated values were given for heart rate, breathing rate, oxygen consumption, and carbon

dioxide production. This model, similar to those employed in the previous test, was employed to

mimic the actual signals that could be retrieved through wearable sensors and in turn

demonstrate the capability of managing these signals.

 117

Figure 5.13 LabVIEW interface for approximating astronaut physiological signals

Lastly, the team at ASU was put in charge of tracking the explorer positions in real-time, which

was accomplished within ARMS. This team was also responsible for setting up and maintaining

the network used for mutual information sharing between mission control sites, described next.

The allocation of mission control tasks is summarized in Table 5.1.

Table 5.1 Summary of joint mission control task allocation

Through a variety of software, each mission control site mutually shared all information. A

virtual private network was set up through a freeware application called Hamachi. Data streams

including the astronaut physiological signals as well as positioning updates from ASU flowed

directly over this network. Audio communication between sites was accomplished via a Voice-

over-Internet protocol program called Ventrilo, while all video signals were fed to the

videoconferencing website MeBeam (http://mebeam.com). By dividing tasks between several

systems, issues with limited bandwidth and lagging signals were mitigated.

MIT ASU JPL

� Mission planning &
 re-planning
� Announcing commands
 & decisions
� Monitoring astronaut
 energetics

� Tracking explorer
 position
� Establishing mutual
 data network

� Video surveillance
 of explorers
� Relaying commands
 to the field team
� Conveying explorer
 feedback

 118

5.4.2 OPERATION

After a first day of running a preliminary EVA example to ensure all systems were functional

and fix any bugs, the mission plan shown in Figure 5.14 was presented for day two. Explorers

began at the eastern edge of the map in a shed representing a lunar base. The astronaut mission,

shown to the north in blue, was to explore all gaps in the terrain dataset. These areas of no data

appear as white holes in the map. The explorer was to evaluate why each gap may have occurred,

which could provide useful feedback for improving future mappings. After finishing at waypoint

F, the astronaut was to await further commands. The rover mission, shown in yellow to the

southeast, was to proceed through the rocky area near the base and examine six potential sites of

interest, especially noting if any sites should also be visited by the astronaut. Upon finishing at

waypoint 6, the rover was to await further instructions.

Figure 5.14 Initial mission plan with sites labeled

 119

The astronaut laptop was loaded with an image of this mission plan, and the same image was

provided to the robot controller. This served as a map to guide the explorers, which was

sufficient in this case given the small scale and familiarity of the terrain. The waypoints and

routes were loaded into ARMS as well. The mission began with the command for the astronaut

to proceed to waypoint A and the robot to waypoint 1. Upon embarking, the LabVIEW

energetics model was engaged and the astronaut activity monitored. Meanwhile, astronaut and

rover positions were manually updated in ARMS as the explorers physically moved.

The astronaut completed the entire initially planned traverse without issue. The features at each

site were verbally described and are recorded in Table 5.2. An example astronaut view from the

ARMS display tracking the astronaut is shown in Figure 5.15.

Table 5.2 Astronaut feedback from planned waypoints

Figure 5.15 Astronaut view of the rocks at waypoint A as seen in ARMS

Non-interesting pile of rocks

�Crater� apparently caused by water erosion

Behind a storage shed

Crevice between rocks

Divots in the ground

Divots in the ground

A
B
C
 D
 E
 F

Waypoint Feature feedback

 120

5.4.2.1 COMMUNICATION FAILURE

Shortly after the astronaut was commanded to proceed to waypoint B, the first mission

contingency occurred. The Ethernet connection to the main mission control computer at MIT

inexplicably went down, disconnecting all incoming and outgoing communications. The ASU

team soon realized the situation, and in response assumed the responsibility of announcing

mission commands. In turn, the MIT team coped by establishing limited communication through

alternate means. The astronaut energetics model was being run on a separate laptop, and its

wireless internet access was unaffected. Since data was streaming live, this system was already

connected to the mission control network through Hamachi. Taking advantage of this, the MIT

team was able to textually chat with the teams at ASU and JPL (a feature of Hamachi). Hence,

despite no longer being in effective control of the mission, MIT was able to remain updated and

record explorer data through a backup communication channel.

As a precaution, Pathmaster was quickly loaded onto the laptop in case re-planning became

necessary, though it never came to this. The communication failure lasted for just over ten

minutes, after which full internet access was restored and MIT resumed all typical

responsibilities. During the outage the mission proceeded without delay, and the astronaut visited

sites B through E. The field team was likely never aware of any problem.

5.4.2.2 ROBOT FAILURE

Soon after mission operations returned to normal, the first re-planning became necessary. The

robot performance was significantly slower than expected. Without yet discovering anything

interesting, the robot was only at waypoint 3 by the time the astronaut was finished with the

entire initial traverse (the robot visited waypoint 2 during the communication outage). In

response, waypoints 4 and 5 were assigned to the astronaut while the robot was instructed to

proceed directly to waypoint 6 near the base. However, robot mobility became severely limited

after leaving waypoint 3, and the battery soon died. The astronaut, already having noted an

interesting rock formation and en route to waypoint 5, was instructed to rendezvous with the

downed robot upon leaving the waypoint. The corresponding mission plan, shown in Figure

5.16, was developed in Pathmaster at MIT. The mission data file along with a screenshot were

sent to all sites via e-mail.

 121

Figure 5.16 Astronaut assumes two robot waypoints, then rendezvous with the robot

Upon meeting with the astronaut and receiving a new battery, the robot was deemed fit for travel.

Instructions were given to proceed directly north to get clear of the difficult rocky terrain then

head directly back to base. The astronaut was instructed to finish up at waypoint 6. The new

mission plan was quickly developed and transmitted (Figure 5.17).

Figure 5.17 Robot proceeds to base, astronaut to waypoint 6

 122

However, after traversing only a short distance north the robot shut down again, this time due to

overheating under the California summer sun. The astronaut was instructed to immediately leave

waypoint 6 and carry the rover back to base. This final plan update is shown in Figure 5.18.

Upon returning to base and with all planned waypoints visited, the mission was ended.

Figure 5.18 Astronaut leaves waypoint 6 to meet robot and carry it back to base

5.4.3 CONCLUSIONS

Overall, this test was considered a resounding success. Although unexpected system failures

occurred, mission control was capable of coping in real-time above and beyond the initial scope

of the experiment, still salvaging all simulated EVA objectives. The initial thought before

beginning was to artificially impose contingencies as desired. However, this was clearly not

necessary as unforeseen situations emerged without provocation. This enabled an even more

realistic test of real-time response capabilities, and all mission support systems performed as well

as could be hoped.

The first contingency, where the MIT team nearly went completely offline, illustrates the

importance of redundancy in vital systems. Had solely the MIT team been controlling the

 123

mission, going offline would have crippled all operations and stranded the field team. Operating

mission control from several locations enabled activity to proceed uninterrupted as the other

control teams were able to cope. Moreover, due to a backup communication line between

mission control sites, MIT was able to still remain connected and receive mission updates. The

incorporation of redundant backup systems is a crucial consideration for future EVAs.

The second contingency demonstrates the same shortcomings of robots as seen in the

Fundamentals of Engineering exercise. The robot progress was unable to keep up with the

astronaut, and in this case the astronaut expended a large amount of time and effort attending to

the robot and making up for its unfulfilled objectives. This is generally unacceptable considering

the high cost of astronaut activity. Robot technology and operational strategies must be

developed to make these systems a benefit and not a hindrance in missions.

As far as the simulated EVA objectives of examining gaps in the terrain dataset, the information

gathered by the astronaut helps explain why the LIDAR scans were unable to gather data: there

was no line of sight to these indented or shaded areas. Though not a major issue here, this is a

consideration that should be made when conducting future mappings, especially on more

difficult terrain. An aerial mapping could alleviate this problem.

The primary systems being tested, Pathmaster and ARMS, performed as intended. The astronaut

and robot positions were able to be tracked in real-time without issue, albeit manually. As far as

re-planning in Pathmaster, the first attempt took approximately three minutes to make a decision,

develop the plan, transmit it, and begin execution. This was too slow, and the astronaut was

forced to wait some time for the new mission plan to arrive. Successive re-planning occurred

progressively faster, with the final plan developed in under a minute. While this was somewhat

acceptable, a more expedited procedure is desirable.

At this point, a wide variety of EVA scenarios may be robustly handled by these systems.

However, there is still much room for improvement in developing higher fidelity models,

operating more complex and realistic mission scenarios, and providing enhanced support. This is

discussed in the following chapter.

 124

 125

6 CONCLUSION AND RECOMMENDATIONS

6.1 CONTRIBUTIONS

This work provided a detailed characterization of the makeup and challenges of planetary surface

EVAs. Moreover, a specific framework for maximizing the productivity of these missions was

established. Recognizing the need for automated support in achieving such optimal performance,

methods by which all pertinent mission factors may be quantitatively modeled were presented

and the subsequent architecture of a comprehensive support system employing these factors was

developed.

The greatest contribution of this research was the creation of a prototype automated mission

support system for optimizing planetary EVA operations. Based upon the developed architecture,

this system is effective both for pre-mission planning and strategic scenario comparison as well

as for real-time re-planning and explorer navigation assistance. The prototype presents an

intuitive interface where controllers may quickly represent various situations and determine a

best course of action for immediate execution. Offering enhanced functionality where preceding

systems fell short, the program was shown to robustly respond to situational updates and

contingencies to maintain optimal performance in time pressured settings.

This system further serves as a tool for future research into optimal mission strategies and team

interactions. By collaborating with ASU and JPL, a complete platform for further EVA

simulation and testing was established. Beyond research, there is great educational potential for

such a system as experienced in the Exploration Lab field test.

6.1.1 CURRENT DEPLOYMENT AT DEVON ISLAND

The prototype system is currently being deployed as part of ongoing EVA research at the

Haughton Crater site on Devon Island, Canada. This extremely remote region offers challenging

terrain comparable to areas on the moon or Mars. Headed by Marcelo Vazquez of the National

Space Biomedical Research Institute, the efficacy of optimal route planning and real-time

 126

navigation support for an astronaut on moderately long traversals is being evaluated (Figure 6.1).

In addition, relative measured costs of both suited and unsuited activity are being compared to

the predicted values given by the system cost functions.

Figure 6.1 Navigating along an optimal route on a suited traverse at Devon Island

6.2 AN IDEAL MISSION SUPPORT SYSTEM

Beyond the capabilities of Pathmaster, an ideal mission support system would incorporate

several additional traits. These represent open areas for future research.

� Actual EVA missions are generally limited by activity constraints as opposed to exhaustion

of objectives. An ideal system would handle either case. Hence, all explorer constraints

would be explicitly modeled, and in turn all objectives would be clearly prioritized. In this

manner, mission optimization could function either by maximizing objective return within

the bounds of all operational constraints, or by minimizing costs when given limited

objectives.

� The best predictive models come through experience rather than a priori estimates.

Applied to activity costs, all energetic signals would be monitored within the system to

update the explorer cost models with actual data from previous similar activities.

 127

� An ideal system would be capable of comparatively analyzing surface team dynamics to

automatically find a best scenario. In this way, the support system becomes strategic,

determining optimal explorer cooperation schemes including ordering and allocation of

mission tasks.

� Field explorer support would be provided in the most effective manner, such as an

automatically updating heads-up display for astronauts and analogous data stream for

robots. This would seamlessly navigate the explorer along the mission plan and enable

consistent optimal operation. It would enhance interaction with the terrain by clearly

distinguishing features or sites of significance.

6.3 DESIGN RECOMMENDATIONS

The Pathmaster system, while fully operational in its current state, contains numerous aspects

open for immediate development. This section outlines recommendations for improving the

fidelity and completeness of the system. Items are listed in general priority as determined by the

author.

6.3.1 LINKING PATHMASTER WITH GPS

Before Pathmaster may function as a complete support tool in the field, it must become capable

of real-time interactive navigation support. This is done most conveniently through a GPS link.

Such capability would enable tests involving re-planning in the field, which is highly desirable.

There are several apparent strategies by which this may be accomplished.

All traverses involving GPS positioning are currently run through the ArcGIS mission planner

system. When a traverse is made in ArcGIS, a �shapefile� is overlaid along the terrain detailing

the planned route. A laptop with a GPS receiver can incorporate a position marker directly within

this interface for navigation. To use a handheld unit such as the Trimble, the ArcGIS view is

exported as an image with an associated �world file� which is subsequently loaded on the mobile

device. The Trimble uses ArcPad to load the image and display current position from the GPS

receiver.

 128

1) Pathmaster could write appropriate output files, and the ArcGIS system could be modified

to read these files directly and produce corresponding shape files representing the paths.

2) Pathmaster perhaps could generate shape files directly for ArcGIS. Recall that maps

contain UTM positioning data, and that coordinates for any point may be found in either

UTM format or latitude and longitude.

3) Pathmaster perhaps could bypass ArcGIS and create images and world files directly.

4) Perhaps the best option would be to perform the process entirely in MATLAB. A separate

simple m-file could load an image of the terrain map with planned paths, acquire GPS

data from a receiver, and plot the position accordingly, updating every second or so. This

could also be done within Pathmaster, though that may not be the best option when faced

with limited computing resources. The MATLAB central file exchange has some

example m-files for collecting GPS data.

6.3.2 EXPLORER COST FUNCTIONS

Pathmaster handles several data parameters that are currently unused in finding traverse paths,

including explorer type, time of day, soil mechanics, and scientific return. These values should

be incorporated into the cost function used when optimizing traverse routes. In the cost function

section of the Pathmaster code, the cost to be minimized is stored in the variable C, while the

heuristic estimates are stored in the variable H.

Distinct cost functions for astronauts, rovers, and robots should be developed. The type of each

explorer is stored in a cell array called Data.Explorer. This value would be used to signal the

corresponding function to be employed.

The time of day is used along with explorer global position in determining sun position. The

method by which illumination may be incorporated into the astronaut cost function used for

optimizing paths has already been presented by Márquez (2007). In particular:

 Exploration Cost = (Metabolic Cost) � (1+1/2�SS) , where

 SS = (cos(2è)+2) �(cos(2ö)+2) (Sun Score, Carr et al., 2003)

 129

The metabolic cost is currently already found in Pathmaster. All that remains is to find è and ö,

the respective azimuth and elevation angles of the sun relative the crew member. The methods

for this are essentially fully developed in the PATH Java classes. First, the time information must

be converted to UTC time if on earth, or Pasadena time for the moon or Mars. Next, the

SunElevation class shows how to find the sublatitude and sublongitude of the sun by direct

calculation for earth or table lookup for the moon or Mars. Lastly, the Illumination_from_sunpos

class uses these values to find the sun elevation (ö), and azimuth can be found in relation to the

direction of each point to point travel. This calculation also requires knowledge of the explorer

latitude and longitude. Pathmaster has a routine for finding these on earth. A corresponding

algorithm would need to be developed for the moon or Mars. To speed calculation, a single

latitude and longitude coordinate can probably be assumed for an entire terrain due to the

relatively small planetary scale of our maps.

Soil mechanics and scientific return data are stored as arbitrary index values. See the respective

sections under Editing Terrain Characteristics in Chapter 4 for a conceptual overview on how

these could be employed in cost functions.

A final consideration would be to incorporate any costs related to waypoint site activities in the

total mission cost estimates. Perhaps an activity to perform at every waypoint could be included

as a selection in the EVA Input menu, enabling different choices for each explorer.

6.3.3 WAYPOINT ORDERING AND PRIORITIZING

On a traverse, Pathmaster currently visits waypoints in the order in which they were entered

regardless of orientation. Alternatively, the order in which waypoints are visited could be

automatically optimized as well. The general concept by which this would be accomplished is

commonly known as the Travelling Salesman Problem (TSP). This involves finding (or for

speed, heuristically estimating) the cost from each waypoint to all others. The general TSP would

assume that all waypoints have an equal priority. A more elaborate model would include a

method of weighting waypoints to represent relative priority. Presumably, waypoints with a

higher priority would be visited earlier whenever practical. Once an order is established, the

usual traverse optimization routine could be employed.

 130

6.3.4 ACTIVITY CONSTRAINTS

The only traverse constraint currently imposed by Pathmaster is the terrain obstacles. To promote

a more realistic simulation, activity constraints for distance, time, energetic expenditure, etc.

could be enforced. Ceiling values could appear as choices within the EVA Input menu (or even a

new menu). In turn, these limits could be checked when establishing a path. If a constraint is

encountered, the traverse would presumably still visit as many waypoints as possible. A more

elaborate model could heuristically measure the cost back to the start. If the current cost plus the

estimated cost back to base approaches a constraint, the explorer could automatically be sent

back and the remaining waypoints abandoned.

6.3.5 VARIABLE SUN POSITIONING

Assuming that a sun position feature as described earlier in the Explorer Cost Functions section

has been employed, the next step would be to make that position update along a traverse. This

could be accomplished by retrieving a running time estimate as a path is being found, and at

certain increments (say every half-hour, or alternatively upon arriving at each waypoint)

recalculating the sun position. The path optimization would then proceed with the new lighting

values until they are updated again.

6.3.6 INTERFACING WITH ARMS

The ARMS system developed by Uday Kumar at ASU provides an interactive, 3D virtual reality

EVA simulation environment (see Figure 4.18). Ideally, all Pathmaster functionality would

eventually be incorporated directly into ARMS to form a superior support system. Currently,

Pathmaster interacts with ARMS via the �Render� directory chosen at the bottom of the EVA

Input menu (this must be C:\Content for use with ARMS). Pathmaster writes waypoint, traverse

path, cost, and terrain map data to this directory as a series of text files. Presently, ARMS only

loads the waypoint and traverse path information. Although perhaps more the responsibility of

the ASU team, ARMS should be developed to incorporate the additional data. If a method for

capturing GPS data is developed in Matlab, this may possibly be used to update explorer

positions in ARMS as well (or better yet, a direct GPS link to ARMS could be established).

 131

6.3.7 EXPLORER HEADS-UP DISPLAY

While handheld computers have worked well for explorers on EVA simulations up to now, a

better option would be to develop a heads-up display for viewing mission information in the

field. Such a display could be projected within a space suit helmet, as shown in Figure 2.11 and

Figure 3.9. Presumably a feed from either Pathmaster or ARMS with real-time position updates

could be employed as the visualization.

6.3.8 INTEGRATION WITH THE DECISION THEATER

A final option for enhancing the capabilities of mission control teams would be to incorporate

the support system into the Decision Theater at ASU. The Decision Theater is a seven screen

rear-projected environment that fits about twenty people in a conference setting (Figure 6.2). It

offers great potential for enriching mission interactions, and has already been employed for

virtual EVA simulations on the moon as part of the Engineering Systems and Experimental

Design course during Fall of 2007.

Figure 6.2 The Decision Theater at Arizona State University

 132

 133

APPENDIX A: CONTENTS OF ENCLOSED DVD-ROM

This directory contains electronic copies of all files and software detailed in this thesis. Also
included are supplementary files for running joint EVA simulations, the PATH Java software,
and additional suggestions for continued work.

FOLDER SUMMARY
Instructions EditingPathmaster folder:
 A copy of the design recommendations presented in Chapter 6 is given

along with detailed suggestions on how to modify explorer cost functions
and heuristic estimates for the traverse path optimization routine in
Pathmaster. Instructions for creating new terrain maps are given as well.

 Joint EVA folder:
 A JointEVA_Procedure document provides a detailed overview of setting

up a computer system as part of mission control for a joint EVA
simulation. This is accompanied by instructions for loading and running
all necessary software.

Java_Version The PATH Java software is contained in the PathClasses folder. Also
included is an older version of Pathmaster (Version 6.9) which calls
PATH directly for determining traverse routes in the same manner as the
ArcGIS mission planner system. A ReadMe document provides details of
this system.

LabVIEW_Models These are the explorer energetics models used in the Exploration Lab and
Joint EVA field tests, as presented in Appendix E.

MissionPlanner This contains the Pathmaster software. A Terrain_Maps folder includes all
developed elevation maps stored as text files, which can be readily loaded
in Pathmaster. The Pathmaster m-file itself is given, coded as shown in
Appendix C. A PDF User Manual is provided, also shown in Appendix B,
along with a PowerPoint presentation outlining the primary features of the
software. To load Pathmaster on a new machine, simply transfer over the
MissionPlanner directory (this is all that needs to be done, Pathmaster may
immediately be run in Matlab on the new machine).

SFFClient This is the software used to stream explorer energetics data live to the

mission control network. Refer to the JointEVA_Procedure document in
the Instructions folder for details on how to use this system.

WordCopies Included are Word document files of the Pathmaster user manual and the
Exploration Lab instructions, as presented in Appendices B and D,
respectively. These are provided to expedite future editing and use of these
files.

 134

 135

APPENDIX B: PATHMASTER USER MANUAL

Pathmaster
Mission Planning Interface

User Manual

Joe Essenburg

Man Vehicle Lab, MIT

28 Aug, 2008

 136

Table of Contents

 Page
3����General information

3����Getting Started

4����Running Pathmaster

6����Loading Map Data

7����Map Information Menu

8����EVA Input Menu

10���..Mission Planner GUI

11������Help Menu

11������Menu Buttons

12������Axes Scaling

12������Waypoint Edit Mode

13������Terrain Edit Mode

15������Traverse Paths

16������Return Home Paths

17������Terrain Data Display

18������Render Modes

19������Changing Views

20������Exiting Pathmaster

21���..Sun Illumination

22���..Traverse Path Optimization

23���..External Rendering

24���..File I/O

 137

General Information
 Pathmaster is a Matlab-based interface for operational support of planetary extra-vehicular
activities (EVAs). It is intended to be used both beforehand for mission planning, scenario
simulation, and optimization as well as in real-time for explorer navigation and contingency
handling. Pathmaster allows users to easily load terrain maps, enter mission data, find optimized
traverse routes, record the costs of a traverse, and compare mission scenarios side-by-side.
Pathmaster may also be used to feed mission data to an external virtual reality simulation or field
display. The optimization employed by Pathmaster is based upon the Planetary Aide for
Traversing Humans (PATH) software, developed in Java under Jessica Márquez.

Getting Started
Pathmaster is written for both Windows and Mac OS X. It is intended to be run in Matlab
R2007a or later. A minimum monitor resolution setting of 1024 x 768 is recommended.

1) Download and unzip the MissionPlanner directory.

2) Open Matlab.
Matlab.lnk

 138

Running Pathmaster
1) Add the MissionPlanner directory to your Matlab search path.

 Go to File\Set Path�

 In the upper left, click Add Folder�

 Locate the MissionPlanner directory, and click OK.

 Click Save in the bottom left of the Set Path menu to save changes.

 Alternatively, just use the ADDPATH command in Matlab:

 139

Running Pathmaster, continued
2) Enter pathmaster at the Matlab command line.

 There are four ways to call Pathmaster from the Matlab command line:

>> pathmaster
The command �pathmaster� alone will initialize a prompt to load elevation data from file.

This is the normal method of running Pathmaster.

>> pathmaster(Elevmap)
Calling Pathmaster with a matrix argument loads that matrix as the elevation map.

>> pathmaster(�lite�)
Calling Pathmaster with the �lite� option employs simpler surface rendering. This speeds

plotting time and prevents problems on some machines.

>> pathmaster(Elevmap,�lite�) OR >> pathmaster(�lite�,Elevmap)
Calling Pathmaster with both a matrix argument and the �lite� option does both of the

above. The arguments may be entered in any order.

 Normal rendering: �lite� rendering:

If a machine encounters problems with Pathmaster terrain renderings, use of the �lite�
option is recommended.

To open multiple instances, simply call Pathmaster again from the Matlab command line.

 140

Loading Map Data
After being called from the Matlab command line, Pathmaster will open the following prompt
allowing the user to select the elevation map to be loaded (when no matrix argument is entered):

The elevation map data may be loaded as either a text file (.txt) or a Matlab data file (.mat). All
prepared terrain map text files are located in the Terrain_Maps folder. After running a mission, a
copy of the mission data will be written to a Matlab data file in the working directory (containing
the Pathmaster m-file), which may be used for easy re-loading. For details on these files, see the
File I/O section.

Once a file is selected, click Open.

Selecting a Matlab data file will open the prompt below. In this prompt, simply select the field
(variable) that contains the desired elevation map matrix and click OK.

 141

Map Information Menu
Once an elevation map has been loaded, Pathmaster will open the Map Information menu. Here
the user may input the map sizing and, if applicable, positioning data. Any data present in the
loaded map file is automatically recognized and displayed in the corresponding data fields.

 With Earth Lat/Long positioning Without positioning: Moon & Mars

Map Resolution:
The uniform horizontal spacing between data points in the elevation map matrix, given in meters.

UTM Zone:
Applicable only on Earth, this is the East-West UTM zone where the map terrain is located,
numbered 1 through 60. Entering a value here is necessary if the user wishes to use
latitude/longitude positioning. When the UTM zone is set, all other positioning data cells become
active. The North/South drop-down menu indicates whether the map is located in the northern or
southern hemisphere. To deactivate lat/long positioning, simply enter �0� into the UTM Zone

cell. A �n/a� will appear and all other positioning data cells will be grayed out.
For more information on the UTM system and coordinates, see:
http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/utm.html

Lower-left X-coordinate:
Easting: The horizontal coordinate of the lower-left (southwest) corner of the map in meters east
of the UTM zone origin.

Lower-left Y-coordinate:
Northing: The vertical coordinate of the lower-left (southwest) corner of the map in meters north
of the UTM zone origin.

Continue:
Proceed with the current data.

New map:
Clear the current elevation map and open the prompt to load new elevation map data.

Quit or Close:
Exit Pathmaster (nothing has been saved at this point).

http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/utm.html
http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/utm.html

 142

EVA Input Menu
After all map information has been entered, Pathmaster opens the EVA Input menu.

Name of EVA:
A descriptive name for the mission
scenario to be run. All output files will be
stored beginning with this name. Run each
mission scenario with a different name to
prevent data from being overwritten. Only
alphanumeric characters and underscore
are allowed, no spaces.

Max Slope:
Maximum traversable terrain slope, in
degrees. All terrain with slope greater than
this will be presented as an obstacle. The
buttons at the side increment and
decrement the slope by one.

Mass:
Total explorer mass including gear, in
kilograms.

Planet:
Indicates upon which planet the EVA
takes place. This sets the gravity assumed
when finding traverses as well as the
initial rendering mode.

Date, Time, & Time Zone:
Select the date and military time along with the corresponding time zone for which the EVA
takes place. This is used in determining the sun illumination angles.

Explorer Type:
Select whether each explorer is an astronaut on foot (Astronaut), riding a rover (On Rover), or
whether it is an unmanned robot (Robot).

Multiple Explorers:
Pressing the �Add Explorer� button will add a new explorer to the current mission. Any number

of explorers can participate in a mission. Selecting an explorer number from the drop-down
menu will make that explorer active, and the explorer type and mass will be shown in the
corresponding fields. Each explorer has an independent type and mass; all other fields are
constant for all explorers. If you wish to use differing terrain parameters or times for a certain
explorer, simply open another instance of Pathmaster. Make sure to give the separate instance a
different EVA name.

 143

EVA Input Menu, continued
Render Directory:
This is the directory where all external renderer data files are written and read. The user may
enter a file path manually or use the Browse button.

Load existing Waypoints, Obstacles map, etc:
 If matching waypoints or additional terrain parameters were stored along with the loaded
map data, corresponding checkbox options will appear near the top of the EVA Input menu.
Selecting the checkboxes causes Pathmaster load the chosen terrain or mission data.
 If �Use existing Obstacles map� is selected, Pathmaster will not calculate new obstacles and
the Max Slope control will be disabled. This option is useful for loading obstacles that were
manually edited in a previous scenario. If other terrain maps exist (Soil Mechanics, Scientific
Return, etc.), they may be loaded in the same manner.
 If �Load existing Waypoints� is selected, Pathmaster will load waypoints for each

corresponding explorer that has been added. Waypoint data, if it exists, will only be loaded for
explorers created with the Add Explorer button in this menu. For example, if waypoint data for 4
explorers is stored but only 2 explorers are created in this menu, then only the stored waypoint
data for the first 2 explorers will be loaded. To load waypoints from a previous mission, simply
select the Matlab data file from that mission when opening Pathmaster and this option will
appear. Waypoint loading is only available through selecting a Matlab data file when opening
Pathmaster.

Close:
A prompt will appear ensuring that the user wants to close the current mission and exit
Pathmaster. No data has yet been saved.

START:
Proceed with the current data. If a mission with the same EVA name exists, a prompt will appear
asking if the user would like to overwrite the earlier mission.

Calculating obstacles, writing map files, preparing surface:
After pressing START, Pathmaster goes to work. First, the terrain slopes are calculated via a
surface gradient. The obstacles are then identified based upon the value of Max Slope (unless
using an existing obstacles map). If the entire map is an obstacle with no traversable terrain, a
prompt will appear asking the user to increase the Max Slope. Next, the terrain maps are written
to both text and Matlab files. For details on these files, see the File I/O section. These files may
be used to conveniently reload the same maps later. Finally, the terrain is rendered in the Mission
Planner GUI.

 144

Mission Planner GUI
Once the map information and EVA input data have been loaded, the Mission Planner GUI
opens. Here, the user may view the terrain, edit mission waypoints, edit terrain characteristics,
find traverse paths, and display all mission information in real-time.

 145

Mission Planner GUI, continued
Help Menu:
Pressing the HELP button will open the Help menu, which explains all controls in the Mission
Planner GUI.

Menu Buttons:
Pressing the Map Info button will reopen the Map Information menu. Likewise, pressing the
EVA Input button will reopen the EVA Input menu. Press Continue in either of these menus to
return to the Mission Planner GUI. If data values are changed, a prompt will appear warning the
user of any data or files which may be cleared or overwritten as a result. Upon pressing OK, the
Mission Planner GUI will automatically update to reflect the new data parameters.

 146

Mission Planner GUI, continued

Axes Scaling:
The Axes drop-down menu provides four options for terrain scaling: meters, kilometers, feet, and
miles. When a new unit is selected, the surface axes and gridlines will update with new spacing
and tick marks to reflect this change. In addition, traverse distances and elevations data will be
provided in terms of the new unit.

Waypoint Edit Mode:
When the Waypoints button is depressed, waypoint edit mode is active. Select the current
explorer with the explorer drop-down menu. Edit the explorer�s waypoints by pointing and

clicking on the terrain. Waypoints are color-coded for each explorer. The current explorer color
will be shown in the Explorer drop-down menu. A small numeral appears above each waypoint
indicating the waypoint number, or �H� for starting point or home. On a traverse, waypoints are
visited in order beginning with 1.

Left-Click: Left-clicking on the surface will add the next waypoint at that location.

Shift+Click: Holding Shift while clicking anywhere on the terrain will clear the last

waypoint for the current explorer.

 147

Mission Planner GUI, continued
Terrain Edit Mode:
When the Terrain button is depressed, terrain edit mode is active. Select which terrain parameter
to edit with the drop-down menu. Edit by pointing and clicking with the commands below. Use
the Size control to alter the size of the terrain edit rectangle. The buttons at the side of this field
increase and decrease the size, ranging from 0.1 to 10 (the value corresponds to an approximate
percentage of the map length). The intuitive functionality is comparable to MS Paint.

Left-Click: Left-clicking on the surface will add the terrain feature at that location.

Double-Click: Double clicking will heighten the terrain feature (no effect on obstacles).

Shift+Click: Holding Shift while clicking will clear the terrain feature.

Terrain

edit
sizes,

0.1 - 10

 148

Mission Planner GUI, continued
Terrain Edit Mode, cont�d:
Obstacles: Obstacles are impassable barriers in the terrain, shown in red over the elevation

rendering. The initial obstacles are areas where the surface slope is greater than the
maximum slope defined in the EVA Input menu (unless an alternate obstacles map was
loaded). Obstacle maps have two values: 0 (no obstacle) or 1 (obstacle). An example of
editing obstacles is shown on the previous page. Be careful not to cover or enclose a
waypoint in obstacles. If this occurs, a warning message will be returned when finding
traverse paths.

Soil Mechanics, Scientific Return, Other: Soil mechanics refers to the ease of traversability of a
terrain due to the surface characteristics (rocky, sandy, etc). Scientific return refers to the
projected scientific gain offered at differing locations. A third map, Other, may be used to
characterize an additional terrain feature such as chemical composition, radiosity, or even an
additional explorer constraint. Each of these maps accommodate 3 values: 0, 1, or 2. They
are set entirely to 0 by default. A Left-Click sets the local terrain to 1, a Double-Click sets it
to 2, and holding Shift while clicking resets it back to 0. These arbitrary index values may be
fed into the traverse cost functions for determining optimized routes. Examples of editing soil
mechanics and scientific return are shown below.

 Soil Mechanics:

 Scientific Return:

 149

Mission Planner GUI, continued
Traverse Paths:
Pressing the Run PATH button calls the traverse path optimization routine based upon the PATH
Java software, and all mission data is saved. A new route will be found for all explorers with a
starting point and at least one waypoint that do not already have a path. The traverse paths found
are optimized in terms of a cost function. The current cost function minimizes explorer metabolic
expenditure along the traverse while avoiding all obstacles. Once finished, color-coded traverse
paths are plotted along the terrain. The costs of each traverse are shown in the menu at the top. If
UTM positioning is active, Pathmaster also writes text files containing latitude/longitude position
coordinates for every point along each traverse to a Traverse_Coordinates folder in the working
directory. While finding traverse paths, certain GUI functionality is temporarily disabled.

Right-Click: Right-clicking on a traverse path will select that explorer. The corresponding
traverse costs will be displayed in the menu at the top, and the nearest waypoint
data will be displayed. Continue Right-clicking to cycle through the various
waypoint data: - Cost from start - Cost to end

 - Cost from previous waypoint - Local terrain data
 - Cost to next waypoint
 The explorer drop-down menu may always be used to select an explorer as

well. Remember, Left-clicking will still edit waypoints or terrain.

Dist: The Dist field displays the total traverse path distance for the selected explorer
in the units selected with the Axes drop-down menu.

Cost: The Cost field displays the total explorer metabolic expenditure for the selected
explorer along the traverse path. Use the neighboring drop-down menu to select
from the following cost display units: kilocalories, BTU, or kilojoules.

Time: The Time field displays the total estimated time to complete a traverse for the
selected explorer, in hours and minutes.

 150

Mission Planner GUI, continued
Return Home Paths:
At any location along a traverse, an explorer may be directed to immediately return to the
starting point. Called a �return home path�, these special traverses appear as dotted paths. Costs
for the return traverse alone are displayed in the menu at the top, with an �R� in the Path field

signifying �return home�. One return home path may be found per explorer. Creating a new

return home path will clear any previous return route for that explorer.

Shift-Click: Holding Shift while clicking on a traverse path will prompt the user whether or
not to find a return home path for the corresponding explorer. Pressing Yes will
run the traverse optimization routine, and the new route will be calculated and
plotted with costs displayed in the menu at the top.

 151

Mission Planner GUI, continued
Terrain Data Display:
Local terrain data may be displayed for any point with a click of the mouse. The provided data
includes elevation and slope as well as any soil mechanics, scientific return, etc. information if it
has been defined. If the data text is not visible, slightly rotate or zoom the terrain to fix this (this
is a slightly annoying Matlab bug). Right click on a waypoint to display waypoint data.

Right-Click: Right-clicking on the terrain will display the local terrain data.

If on earth with UTM positioning active, the latitude and longitude of the selected spot will be
provided as well. This latitude/longitude positioning feature allows the user to run Pathmaster
alongside additional mapping systems such as Google Maps or ArcGIS to supplement terrain
knowledge or precisely locate waypoints or terrain features, among other possibilities.

 152

Mission Planner GUI, continued
Render Modes:
Pressing the Render buttons will change the terrain surface rendering to mimic the chosen planet:
Earth, Moon, or Mars. While the initial render mode is determined by the choice of Planet in the
EVA Input menu, changing the render mode affects only the display and does not alter the stored
planet or gravity. When in waypoint edit mode, terrain data portrayal may be turned on or off
with the terrain toggle buttons just above the Render buttons. Below are the render modes with
obstacles on then off.

 Earth:

 Moon:

 Mars:

 153

Mission Planner GUI, continued
Changing Views:
Use the built-in Matlab menu at the top of the Mission Planner GUI to rotate and zoom the
terrain view. To return to the initial aerial view while rotating or zooming, Right-click and select
�Reset to Original View�. Click on the menu icon again to deactivate rotating or zooming.

While editing waypoints or terrain, it is best to remain in the initial aerial view. Otherwise, the
perceived mouse position may vary due to the projection of a 3D surface on a 2D screen.

It is recommended not to use the other menu options, crossed out above. Editing the plot or
changing its format may cause errors in Pathmaster. Mission data is not saved with the Save icon
here; it is saved automatically by Pathmaster when the Run PATH button is pressed or before
closing the Mission Planner GUI. The built-in data cursor is fully functional, but mostly obsolete
in the current release.

 154

Mission Planner GUI, continued
Exiting Pathmaster:
To exit Pathmaster, simply close the Mission Planner GUI.

If any waypoint or terrain edits have been made since last saving (saving occurs when the Run
PATH button is pressed), then the prompt below appears. Pressing �Save edits� saves all

waypoint and terrain data before exiting Pathmaster. Pressing �Don�t save� exits Pathmaster

without saving the recent changes. Pressing Cancel returns the user to the Mission Planner GUI.

Otherwise if no edits have been made since last saving, then a simple prompt ensuring that the
user is finished appears. Pressing Yes closes the Mission Planner GUI and exits Pathmaster.

 155

Sun Illumination
The sun illumination angles are set by the date and time a mission is run, chosen in the EVA
Input menu. Pathmaster mimics the current lighting conditions when creating the terrain
rendering for the Mission Planner GUI. Lighting display functionality is not applicable when
using the �lite� rendering option. An example of lighting differences is shown below.

Sun illumination of the JPL Mars Yard:

 Midnight:

 9:30 AM:

 156

Traverse Path Optimization
When the Run PATH button is pressed, Pathmaster determines optimized traverse paths for each
explorer that has waypoints defined. This routine employs the A* algorithm with bi-directional
searching to individually establish route legs between successive waypoints. Paths are optimized
with respect to a cost function. The current cost function used for all explorers derives directly
from the PATH software, which minimizes the metabolic expenditure of each explorer along the
traverse while avoiding all obstacles. Once a route is established, it is smoothed into distinct line
segments via the midpoint line algorithm.

This routine was developed in cooperation with Brandon Johnson. For further details on the
optimization and search process, please refer to Joseph Essenburg�s thesis (2008), Mission
Planning and Navigation Support for Lunar and Planetary Exploration, pages 84-90. For a
complete description of the PATH software, please refer to Jessica Márquez�s thesis (2007),

Human-Automation Collaboration: Decision Support for Lunar and Planetary Exploration.

 157

External Rendering
Pathmaster writes text files to the Render directory which may be used to feed an external higher
fidelity render engine, such as OpenSceneGraph, or even a virtual reality simulation. The
Astronaut Rover Mission Simulator (ARMS), developed by Uday Bandaru at Arizona State,
provides a virtual mission simulation which is capable of receiving waypoints, traverse paths,
and costs from Pathmaster in real-time. This system serves as a prototype heads-up display to
aide a traversing astronaut in navigation, site recognition, and handling mission information
updating in real time. For details on the external renderer files, see the File I/O section.

Example mission on the JPL Mars Yard and accompanying simulation:

 Pathmaster
 mission plan:

 ARMS
 Simulation:

 158

File I/O
The following provides full details of all data files associated with Pathmaster. They are
categorized by their common use. Provided are the characteristic name, directory location,
contents, and use for each.

Loading Map Data:
The elevation maps used in Pathmaster are arranged as a rectangular matrix. In terms of (x,y)
coordinates, the x-coordinate refers to the column index, and the y-coordinate refers to the row
index, starting at (0,0) in the upper-left corner (the y-axis is reverse-ordered). Pathmaster
assumes that north is in the upwards direction, and this orientation is necessary for Pathmaster�s

optional latitude/longitude positioning feature to function properly.

Map text files: Terrain_##m.txt
Terrain_Maps Directory
Pathmaster compatible map text files consist of 6 or 7 header lines followed by a space-delimited
matrix of elevation data points. Each line in the matrix represents a row of data. The header lines
provide all map information, and are required besides the optional �UTMzone� line. This
format is identical to files generated with the ArcGIS PATH interface. Any such file may be
loaded when opening Pathmaster. During every run, Pathmaster writes all maps to such text files
in the Render directory. Again, these may also be used when opening Pathmaster to re-load
mission data.

 Line: Data:
 ncols Number of columns in the elevation data matrix
 nrows Number of rows in the elevation data matrix
 xllcorner UTM �Easting� of the lower left corner of the map
 yllcorner UTM �Northing� of the lower left corner of the map
 UTMzone (Optional) East-West UTM zone location of the map
 cellsize Resolution of the map in meters (horizontal spacing between data points)
 NODATA_value Data value entered when no terrain data exists (default is -9999)

The Terrain_Maps directory holds a collection of all existing maps ready for use in Pathmaster.
In this directory, the file name describes the general location and resolution of each map.

 159

File I/O, continued

Loading Map Data, cont�d:
Matlab data files: EVAname_Data.mat
Working Directory (containing pathmaster.m)
Matlab data files are used to store variables from the Matlab workspace. During every run,
Pathmaster automatically records all mission data to a Matlab data file in the working directory.
Select these files when opening Pathmaster to re-load any mission data. Optional variables in
addition to the elevation map provide additional mission parameters. This information will be
automatically recognized by Pathmaster so long as the field (variable) name is one of the
following and the corresponding value is appropriate:

 Field: Data:
 Resolution Resolution of the map in meters (horizontal spacing between data points)
 UTMzone East-West UTM zone location of the map, numbered 1 to 60
 xllcorner UTM �Easting� of the lower left corner of the map
 yllcorner UTM �Northing� of the lower left corner of the map
 NoData Data value entered in the elevation matrix when no terrain data exists
 Obstacles Obstacle map matrix
 SoilMech Soil mechanics map matrix
 SciReturn Scientific return map matrix
 Other Other map matrix
 Waypoints Explorer waypoint coordinates

Other fields may exist that provide additional mission information (i.e. Pathpoints, MetCost,
etc.). These are for archiving and reference, and are not loaded in a new mission.

Traverse Coordinates
Traverse Coordinate files: EVAname_Coords#.txt
Traverse_Coordinates Folder within the Working Directory
If UTM positioning is active, these files are written to a folder called Traverse_Coordinates
within the working directory after finding traverse paths. They provide each explorer�s traverse

path coordinates in terms of latitude and longitude. The number before the file extension
corresponds to the explorer number, and an �R� indicates a return home path.

The first line of these files is: �Explorer # Lat/Long:�
After that, each line has the format:
point# Latitude Longitude

 160

File I/O, continued

External Rendering
Waypoint files: EVAname_Waypoints#.txt
Render Directory
These files provide each explorer�s waypoint coordinates in terms of (x,y) matrix coordinates,

with (0,0) at the lower-left corner (these coordinates are written with the y-axis regularly
ordered, opposite the reverse-ordering used internally in Pathmaster). They are written after
pressing the Run PATH button in the Mission Planner GUI. The number before the file extension
corresponds to the explorer number, and an �R� indicates a return home path.

Each line of these files has the format:
way# X Y

Traverse files: EVAname_Traverse#.txt
Render Directory
These files provide each explorer�s traverse path coordinates in the same manner as the waypoint

files described above. They are written after finding traverse paths.

Each line of these files has the format:
path# X Y

Cost files: EVAname_Costs#.txt
Render Directory
These files provide each explorer�s traverse costs listed cumulatively for each traverse path point

written in the corresponding traverse file described above. The costs are listed as distance in
meters, elapsed time in seconds, and metabolic expenditure in BTU. They are written after
finding traverse paths. File numbering carries the same format as those above.

Each line of these files has the format:
cost# Cum-Distance(m) Cum-Time(sec) Cum-MetCost(BTU)

 161

APPENDIX C: MATLAB CODE FOR PATHMASTER

%PATHMASTER Version 7.5
% Joe Essenburg - Last edited August 28, 2008
% Mission planning interface employing a PATH-based optimization
%
% PATHMASTER alone initializes a prompt for the user to load elevation data
% from file. Elevation text files or Matlab data files may be used.
%
% PATHMASTER(ELEVMAP) loads the matrix ELEVMAP as the elevation data.
%
% PATHMASTER(...,'lite') calls the 'lite' option, which uses simpler
% surface rendering to speed plotting time and prevent problems on some
% machines.
%
% Map information and all other mission data are entered on the following
% menus. Pathmaster will then open a GUI for point-and-click waypoint
% editing, terrain editing, traverse path optimization, and displaying
% those paths along with all cost data.
% Data files are written for an independent render engine.
%
% Several mission scenarios may be loaded into multiple instances of
% PATHMASTER simultaneously.

% Pathmaster is a single function that iteratively calls itself with three
% parameters: PROGRESS, SELECT, and DATA. The parameter PROGRESS determines
% which section of code is to be executed, and the parameter SELECT
% determines which sub-section or option to execute when applicable. This
% is accomplished through SWITCH constructs, with the main progress switch
% beginning on Line 178. DATA is a structure holding all necessary
% application and mission data, which is passed and updated in each
% iterative call to pathmaster.
% Any open pathmaster GUI contains its current DATA structure in the
% 'UserData' property, and all GUIs are shielded from the command line.
% This allows multiple instances of pathmaster to be run simultaneously.

function pathmaster(Progress,Select,Data)
%% ************ CHECK FUNCTION CALL & LOAD ELEVATION MAP ******************
if nargin <= 2 % This section only runs on the initial call to pathmaster
switch nargin
 case 0
 calldata = 'LoadFromFile'; Data.Lite = '';
 case 1
 if ~ischar(Progress)
 calldata = 'Progress'; Data.Lite = '';
 elseif strcmp(Progress,'lite')
 calldata = 'LoadFromFile'; Data.Lite = '''lite''';
 else
 calldata = 'error';
 end

 162

 case 2
 params = {'Progress','Select','error'}; Data.Lite = '''lite''';
 calldata = params{find(strcmp('lite',{Select,Progress,'lite'}),1)};
end
mfilepath = mfilename('fullpath');
cd(mfilepath(1:end-10)) % Change directory to that containing pathmaster
[Data.Obst,Data.Soil,Data.SciR,Data.Othe,Data.hasWP] = deal(false);%Terrain
cost map
 %boolean
values
switch calldata
 case 'LoadFromFile' % Load elevation map from file
 [datafile,filepath] = uigetfile({'*.mat;*.txt',...
 'Matlab data files or Elevation text
files'},...
 'Load Elevation Data...');
 if ~datafile, return, end % Exit pathmaster

 if strcmp(datafile(end-3:end),'.txt') % Load from Elevations text
file
 Mapid = fopen([filepath,datafile],'r');
 if ~strcmp(fscanf(Mapid,'%s',1),'ncols') % Check if proper file
 message = ['Incorrect data or data type:\n\n',...
 'Text file must be a PATH Elevations
file.\n\n',...
 'Example: "EVA name"_Elevations.txt'];
 waitfor(warndlg(sprintf(message),'Load Elevation Data'))
 eval(['pathmaster(',Data.Lite,')']) % Restart
 return
 end
 frewind(Mapid)
 Scandata1 = textscan(Mapid,'%*[^]%n',4); % Read 4 data values
 hasUTM = strcmp(fscanf(Mapid,'%s',1),'UTMzone'); % UTM check
 fseek(Mapid,-8+hasUTM,'cof');
 Scandata2 = textscan(Mapid,'%*[^]%n',2+hasUTM); % Rest of data
 Mapdata = [Scandata1{1};Scandata2{1}];
 xll = Mapdata(3);
 yll = Mapdata(4);
 utm = hasUTM*round(Mapdata(5)); % Nonzero if hasUTM
 res = Mapdata(end-1);
 ndt = Mapdata(end);
 Elevmap = dlmread([filepath,datafile],'',... % Read elevations
 [6+hasUTM 0 Mapdata(2)+5+hasUTM Mapdata(1)-1]);
 fclose(Mapid); % Check for matching terrain cost maps
 for tmap = {'Obstacles' 'SoilMech' 'SciReturn' 'Other'}
 try TCM.(tmap{1}) = dlmread([filepath,datafile(1:max(end-
14,1)),...
 tmap{1},'.txt'],'',[6+hasUTM 0 Mapdata(2)+5+hasUTM
Mapdata(1)-1]);
 Data.(tmap{1}(1:4)) =
all(size(TCM.(tmap{1}))==size(Elevmap));
 catch %#ok<CTCH>
 end
 end

 163

 elseif strcmp(datafile(end-3:end),'.mat') % Load from Matlab data
file
 Mapdata = load([filepath,datafile]);
 Vars = sort(fieldnames(Mapdata));
 if length(Vars) == 1
 Elevmap = Mapdata.(Vars{1});
 elseif length(Vars) >= 2
 elevi = listdlg('Name','Load Elevation Data',...
 'ListString',Vars,...
 'SelectionMode','single',...
 'ListSize',[182 67],...
 'PromptString',...
 {'Please select the field',...
 'containing Elevation data:'});
 if isempty(elevi)
 eval(['pathmaster(',Data.Lite,')']) % Restart
 return
 end
 Elevmap = Mapdata.(Vars{elevi});
 end
 Check = whos('Elevmap');
 if isempty(Vars) || ~strcmp(Check.class,'double') ||
min(Check.size)<2
 message = ['Incorrect data or data type:\n\n',...
 'Input must be an elevation map matrix.'];
 waitfor(warndlg(sprintf(message),'Load Elevation Data'))
 eval(['pathmaster(',Data.Lite,')']) % Restart
 return
 end
 i=1; mapinfo = {1,0,0,0,-9999}; % Default map values
 for mv =
{'Resolution','xllcorner','yllcorner','UTMzone','NoData'}
 if any(strcmp(mv{1},Vars)) % Check for existing map values
 mapval = Mapdata.(mv{1});
 Check = whos('mapval');
 if strcmp(Check.class,'double') && all(size(mapval)==1)
 mapinfo{i} = mapval;
 end
 end
 i = i+1;
 end
 [res,xll,yll,utm,ndt] = mapinfo{:}; % Set map values
 for tmap = {'Obstacles' 'SoilMech' 'SciReturn' 'Other'}
 if any(strcmp(tmap{1},Vars)) %Check for matching terrain cost
maps
 [Termap,TCM.(tmap{1})] = deal(Mapdata.(tmap{1}));
 Check = whos('Termap');
 Data.(tmap{1}(1:4)) =
any(strcmp(Check.class,{'double','logical'})) &&...
 all(size(Termap)==size(Elevmap));
 end
 end
 if any(strcmp('Waypoints',Vars)) % Check for existing waypoints
 [Wpts,Data.LoadWaypoints] = deal(Mapdata.Waypoints);
 Check = whos('Wpts');
 Data.hasWP = strcmp(Check.class,'cell') && Check.size(2)==2;
 end

 164

 else % Incorrect filetype
 message = ['Incorrect file type:\n\n',...
 'Elevation data file must be a\n',...
 'Matlab (.mat) or Text (.txt) file.'];
 waitfor(warndlg(sprintf(message),'Load Elevation Data'))
 eval(['pathmaster(',Data.Lite,')']) % Restart
 return
 end

 case {'Progress' 'Select'} % Elevation map entered as an argument
 res = 1; xll = 0; yll = 0; utm = 0; ndt = -9999; % Defaults
 Elevmap = eval(calldata);
 Check = whos('Elevmap');
 if ~strcmp(Check.class,'double') || min(Check.size)<2 ||
ndims(Elevmap)~=2
 message = ['Incorrect input argument:\n\n',...
 'Argument must be an elevation map matrix.'];
 warndlg(sprintf(message),'Open Pathmaster')
 return % Exit pathmaster
 end

 otherwise % Unrecognized parameter
 disp('Error: Pathmaster only accepts ''lite'' as a parameter option')
 return % Exit pathmaster
end
Data.Elev = true;
Progress = 'Initialize'; % Elevation map etc. loaded, go to 'Initialize'
end

switch Progress % This switch determines which code to execute in each call
%% ************ DEFAULT DIRECTORIES & DATA INITIALIZATION *****************
case 'Initialize'
Data.Work_dir = pwd; % Working directory containing pathmaster.m
macpc = {'/','C:\'};
Data.Render_dir = [macpc{1+ispc},'Content']; % Root for render engine
for dir = {Data.Render_dir,
[Data.Work_dir,macpc{1+ispc}(end),'Traverse_Coordinates']}
 if ~exist(dir{1},'file'), mkdir(dir{1}), end
end
Elevmap(Elevmap==ndt) = NaN; % Recognize "no data" values
Data.Elevations = Elevmap; % Elevation data, loaded in the section above
[Data.Rows,Data.Cols] = size(Elevmap);
Data.Resolution = res; % Map values assigned in section above
Data.xllcorner = xll;
Data.yllcorner = yll;
Data.UTMzone = utm;
Data.NoData = -9999; % Value entered in saved maps for no data
Data.EVAname = 'EVA1'; % Default mission name
Data.Explorers{1} = 'Astronaut';%Explorer type: Astronaut or Rover
Data.NumExp = 1; % Number of explorers
Data.MaxSlope = 15; % Maximum traversable slope
Data.Planet = 1; % 1: 'earth', 2: 'moon', 3: 'mars'
Data.Weight(1) = 120; % Suited explorer mass in kg
Datenow = datevec(now); % Default time is right now
Data.Month = Datenow(2);

 165

Data.Day = Datenow(3);
Data.Year = Datenow(1);
Data.Hour = Datenow(4);
Data.Minute = Datenow(5);
Data.TimeZone = 8; % Use 8 for EST, 6 for CST, 14 for MST, 16 for PST
Data.Scrsize = get(0,'ScreenSize');
for tmap = {'Obstacles' 'SoilMech' 'SciReturn' 'Other'}
 if Data.(tmap{1}(1:4)) %Existing terrain cost maps found in section above
 TCM.(tmap{1}) = round(max(TCM.(tmap{1}),0)); %Clean up existing maps
 Data.(tmap{1}) =
min(TCM.(tmap{1}),1+3*(~strcmp(tmap{1},'Obstacles')));
 end
end
Data.Callback = false; % Indicates if call is made from Mission Planner GUI
Data.Path = false; % Indicates if command to run PATH was made
pathmaster('Map',0,Data) % Call to 'Map'

%% ************ MAP INFO MENU **
case 'Map'
switch Select
 case 0 % Initialize Map Information menu
 MapIn = figure('Name','Pathmaster',...
 'Position',[round(Data.Scrsize(3)/4) round(Data.Scrsize(4)/3)
340 300],...
 'Color',[.92549 .913725 .847059],...
 'Resize','off',...
 'IntegerHandle','off',...
 'DockControls','off',...
 'MenuBar','none',...
 'NumberTitle','off',...
 'CloseRequestFcn','pathmaster(''Map'',''Close'',[])');

 utm = {'default',[1 1 1],'n/a',abs(Data.UTMzone)};
 % UIcontrols: {Handle,Style,Position,String,Value,...
 % HorizontalAlignment,FontSize,BackgroundColor,Callback}
 Mui = {'na','text',[15 260 310 30],'Elevation Map Information',1,...
 'center',16,[.58824 .96078 .86275],'';...
 'na','text',[17 220 306 25],sprintf('The entered map is %d x
%d',...
 Data.Rows,Data.Cols),1,'center',16,[1 1 1],'';...
 'na','text',[15 175 155 25],'Map Resolution:',1,...
 'left',16,'default','';...
 'ResolutionH','edit',[171 174 87
27],sprintf('%.3f',Data.Resolution),...
 1,'center',18,[1 1 1],'pathmaster(''Map'',1,[])';...
 'na','text',[260 175 65 25],'meters',1,...
 'left',16,'default','';...
 'na','text',[40 130 150 20],'UTM Zone (1-60):',1,...
 'left',14,'default','';...
 'UTMzoneH','edit',[195 126 40 25],utm{3+(Data.UTMzone~=0)},...
 1,'center',14,[1 1 1],'pathmaster(''Map'',4,[])';...
 'UTMnsH','popup',[238 150 57 1],{'North','South'},...

1+(Data.UTMzone<0),'left',10,utm{1+(Data.UTMzone~=0)},'';...
 'na','text',[15 100 135 15],'Lower-left X-coordinate:',1,...
 'left',10,'default','';...

 166

 'xllcornerH','edit',[15 80 145
20],sprintf('%.5f',Data.xllcorner),1,...

'center',12,utm{1+(Data.UTMzone~=0)},'pathmaster(''Map'',2,[])';...
 'na','text',[180 100 135 15],'Lower-left Y-coordinate:',1,...
 'left',10,'default','';...
 'yllcornerH','edit',[180 80 145
20],sprintf('%.5f',Data.yllcorner),1,...

'center',12,utm{1+(Data.UTMzone~=0)},'pathmaster(''Map'',3,[])';...
 'na','push',[15 16 144 50],'Continue',0,...

'center',18,'default','pathmaster(''Map'',''Continue'',[])';...
 'NewmapH','push',[161 16 106 50],'New map...',0,...

'center',14,'default','pathmaster(''Map'',''NewMap'',[])';...
 'na','push',[269 16 56 50],'Quit',0,...
 'center',14,'default','pathmaster(''Map'',''Close'',[])'};
 for n = 1:size(Mui,1) % Create the GUI using the info above
 Data.(Mui{n,1}) = uicontrol('Style',Mui{n,2},...
 'Position',Mui{n,3},...
 'String',Mui{n,4},...
 'Value',Mui{n,5},...
 'HorizontalAlignment',Mui{n,6},...
 'FontSize',Mui{n,7},...
 'BackgroundColor',Mui{n,8},...
 'CallBack',Mui{n,9});
 end
 Data.UTMzone = abs(Data.UTMzone); % < 0 UTM interpreted as South Hem
 Data.Do = {}; % Tasks to perform when called from Mission GUI
 if Data.Callback
 set(Data.NewmapH,'Enable','off')
 if Data.Planet ~= 1

set([Data.UTMzoneH,Data.xllcornerH,Data.yllcornerH,Data.UTMnsH],...
 'Enable','off')
 end
 end
 set(MapIn,'UserData',Data,... % Set GUI to store Data
 'HandleVisibility','callback')
 % GUI controls
 case {1 2 3 4} % Edit data entries
 MapIn = gcf;
 Data = get(MapIn,'UserData');
 Vars = {'Resolution', .001, 199.999, '%.3f';...
%{Variable,min,max,format}
 'xllcorner', 0, 9999999.99999, '%.5f';...
 'yllcorner', 0, 9999999.99999, '%.5f';...
 'UTMzone', 0, 61, '%.0f'};
 Newvalue = sscanf(get(Data.([Vars{Select,1},'H']),'String'),'%f');
 if ~isempty(Newvalue) % If value too small or big, set to min/max
 Data.(Vars{Select,1}) =
min(max(Newvalue,Vars{Select,2}),Vars{Select,3});
 Data.Do = {Data.Do{:},'NewMaps','ClrPaths'};
 if Select==1 % Resolution edit ==> Don't use existing Obs
 Data.Obst = false;
 Data.Do = {Data.Do{:},'Scale','Obs'};

 167

 end
 end
 set(Data.([Vars{Select,1},'H']),'String',...
 sprintf(Vars{Select,4},Data.(Vars{Select,1})))
 if Select==4 % UTM zone edit
 if Data.UTMzone >= 1 && Data.UTMzone <= 60
 Data.UTMzone = round(Data.UTMzone);
 set([Data.xllcornerH,Data.yllcornerH,Data.UTMnsH],...
 'BackgroundColor',[1 1 1])
 else
 Data.UTMzone = 0;
 set(Data.UTMzoneH,'String','n/a')
 set([Data.xllcornerH,Data.yllcornerH,Data.UTMnsH],...
 'BackgroundColor','default')
 end
 end
 set(MapIn,'UserData',Data)

 case {'Continue' 'NewMap' 'Close'} % Buttons
 MapIn = gcf;
 Data = get(MapIn,'UserData');
 Data.UTMzone = Data.UTMzone*(3-2*get(Data.UTMnsH,'Value')); % +N,-S
 delete(MapIn)
 if Data.Callback
 task = {Data.Do,{}}; % Call to 'Update'
 pathmaster('Update',task{1+strcmp(Select,'Close')},Data)
 elseif strcmp(Select,'Continue')
 pathmaster('Input',0,Data) % Call to 'Input'
 elseif strcmp(Select,'NewMap')
 eval(['pathmaster(',Data.Lite,')']) % Restart
 end
end

%% ************ EVA INPUT MENU **
case 'Input'
switch Select
 case 0 % Initialize EVA Input menu
 chkbx =
25*(Data.Obst+(Data.Soil+Data.SciR+Data.Othe+Data.hasWP)*~Data.Callback);
 PathIn = figure('Name','Pathmaster',...
 'Position',[round(Data.Scrsize(3)/4) round(Data.Scrsize(4)/8)
400 525+chkbx],...
 'Color',[.92549 .913725 .847059],...
 'Resize','off',...
 'IntegerHandle','off',...
 'DockControls','off',...
 'MenuBar','none',...
 'NumberTitle','off',...
 'CloseRequestFcn','pathmaster(''Input'',''Close'',[])');

 macpc = {'/','\'}; % Append / or \
 Data.Work_dir = regexprep(Data.Work_dir,'\w$',['$0',macpc{1+ispc}]);
 Data.Render_dir =
regexprep(Data.Render_dir,'\w$',['$0',macpc{1+ispc}]);
 % UIcontrols: {Handle,Style,Position,String,Value,...
 % HorizontalAlignment,FontSize,BackgroundColor,Callback}

 168

 Gui = {'na','text',[15 485+chkbx 370 30],'Mission Planner EVA
Input',...
 1,'center',16,[.58824 .96078 .86275],'';...
 'na','text',[15 440+chkbx 135 25],'Name of EVA:',1,...
 'left',16,'default','';...
 'EVAnameH','edit',[155 440+chkbx 230 25],Data.EVAname,1,...
 'left',16,[1 1 1],'pathmaster(''Input'',''Name'',[])';...
 'MaxSlopeH1','text',[15 395 105 25],'Max Slope:',1,...
 'left',16,'default','';...
 'MaxSlopeH','edit',[127 395 48 25],Data.MaxSlope,1,...
 'center',16,[1 1 1],'pathmaster(''Input'',1,[])';...
 'MaxSlopeH2','push',[175 407 15 15],'+',0,...

'center',12,'default','pathmaster(''Input'',''MxSlp'',[])';...
 'MaxSlopeH3','push',[175 393 15 15],'-',0,...

'center',12,'default','pathmaster(''Input'',''MxSlm'',[])';...
 'na','text',[15 323 75 25],'Planet:',1,...
 'left',16,'default','';...
 'na','text',[105 345 50 25],'Earth',1,...
 'left',14,'default','';...
 'PlanetH1','radio',[165 345 25 25],'',Data.Planet==1,...
 'left',14,'default','pathmaster(''Input'',11,[])';...
 'na','text',[105 320 50 25],'Moon',1,...
 'left',14,'default','';...
 'PlanetH2','radio',[165 320 25 25],'',Data.Planet==2,...
 'left',14,'default','pathmaster(''Input'',12,[])';...
 'na','text',[105 295 50 25],'Mars',1,...
 'left',14,'default','';...
 'PlanetH3','radio',[165 295 25 25],'',Data.Planet==3,...
 'left',14,'default','pathmaster(''Input'',13,[])';...
 'na','text',[15 245 115 25],'Mass (kg):',1,...
 'left',16,'default','';...
 'WeightH','edit',[127 245 53 25],Data.Weight(end),1,...
 'center',16,[1 1 1],'pathmaster(''Input'',2,[])';...
 'na','text',[210 395 53 25],'Date:',1,...
 'left',16,'default','';...
 'MonthH','edit',[263 395 27 25],Data.Month,1,...
 'center',16,[1 1 1],'pathmaster(''Input'',3,[])';...
 'na','text',[290 395 8 25],'/',1,...
 'center',16,'default','';...
 'DayH','edit',[298 395 27 25],Data.Day,1,...
 'center',16,[1 1 1],'pathmaster(''Input'',4,[])';...
 'na','text',[325 395 8 25],'/',1,...
 'center',16,'default','';...
 'YearH','edit',[333 395 52 25],Data.Year,1,...
 'center',16,[1 1 1],'pathmaster(''Input'',5,[])';...
 'na','text',[210 345 55 25],'Time:',1,...
 'left',16,'default','';...
 'HourH','edit',[275 345 35
25],sprintf('%d%d',zeros(Data.Hour==0),Data.Hour),...
 1,'center',16,[1 1 1],'pathmaster(''Input'',6,[])';...
 'na','text',[310 345 8 25],':',1,...
 'center',16,'default','';...
 'MinuteH','edit',[320 345 35
25],sprintf('%d%d',zeros(Data.Minute<10),Data.Minute),...
 1,'center',16,[1 1 1],'pathmaster(''Input'',7,[])';...

 169

 'na','text',[210 295 110 25],'Time Zone:',1,...
 'left',16,'default','';...
 'TimeZoneH','listbox',[210 239 175 56],{' Alaska Daylight',...
 ' Alaska Standard',' Atlantic Daylight',...
 ' Atlantic Standard',' Central Daylight',...
 ' Central Standard',' Eastern Daylight',...
 ' Eastern Standard',' HawaiiAleutian Daylt.',...
 ' HawaiiAleutian Std.',' Newfoundland Std.',...
 ' Newfoundland Daylt.',' Mountain Daylight',...
 ' Mountain Standard',' Pacific Daylight',...
 ' Pacific Standard'},Data.TimeZone,...
 'left',11,[1 1 1],'pathmaster(''Input'',''Tzone'',[])';...
 'ExplorerH1','toggle',[20 194 120
25],'Astronaut',strcmp(Data.Explorers{end},...

'Astronaut'),'center',14,'default','pathmaster(''Input'',''Astronaut'',[])';.
..
 'ExplorerH2','toggle',[140 194 120 25],'On
Rover',strcmp(Data.Explorers{end},...

'Rover'),'center',14,'default','pathmaster(''Input'',''Rover'',[])';...
 'ExplorerH3','toggle',[260 194 120
25],'Robot',strcmp(Data.Explorers{end},...

'Robot'),'center',14,'default','pathmaster(''Input'',''Robot'',[])';...
 'na','text',[90 149 165 25],'Explorer Number:',1,...
 'left',16,'default','';...
 'ExpNumH','popup',[260 175 45 1],1:Data.NumExp,Data.NumExp,...
 'center',14,[1 1
1],'pathmaster(''Input'',''SelExp'',[])';...
 'na','push',[255 80 125 45],'Add Explorer',0,...

'center',14,'default','pathmaster(''Input'',''AddExp'',[])';...
 'StartH','push',[20 80 235 45],'START',0,...

'center',18,'default','pathmaster(''Input'',''Start'',[])';...
 'na','text',[15 40 120 18],'Render Directory:',1,...
 'left',11,'default','';...
 'Render_dirH','edit',[15 20 318 20],Data.Render_dir,1,...
 'left',10,[1 1 1],'pathmaster(''Input'',21,[])';...
 'na','push',[334 18 51 25],'Browse',0,...
 'center',10,'default','pathmaster(''Input'',22,[])'};...
 for tmap = {'Obstacles' 'SoilMech' 'SciReturn' 'Other'}
 if Data.(tmap{1}(1:4)) %Choice to use existing terrain cost maps
 Gui = vertcat(Gui,{'na','text',[50 409+chkbx 300 25],...
 ['Use existing ',tmap{1},'
map:'],1,'left',16,'default','';...
 [tmap{1}(1:4),'H'],'check',[330 407+chkbx 25
25],'',Data.Callback,'left',...

16,'default',['pathmaster(''Input'',''',tmap{1}(1:4),''',[])']});
 Data.(tmap{1}(1:4)) = Data.Callback; %Default not use
existing maps
 if Data.Callback, break, end % On callback only give Obst
box
 chkbx = chkbx-25;
 end

 170

 end
 if Data.hasWP && ~Data.Callback
 Gui = vertcat(Gui,{'na','text',[50 409+chkbx 300 25],...
 'Load existing Waypoints:',1,'left',16,'default','';...
 'hasWPH','check',[330 407+chkbx 25 25],'',0,...
 'left',16,'default','pathmaster(''Input'',''hasWP'',[])'});
 Data.hasWP = false; % Default is to not use existing waypoints
 end
 for n = 1:size(Gui,1) % Create the GUI using the info above
 Data.(Gui{n,1}) = uicontrol('Style',Gui{n,2},...
 'Position',Gui{n,3},...
 'String',Gui{n,4},...
 'Value',Gui{n,5},...
 'HorizontalAlignment',Gui{n,6},...
 'FontSize',Gui{n,7},...
 'BackgroundColor',Gui{n,8},...
 'CallBack',Gui{n,9});
 end
 Data.Do = {}; % Tasks to perform when called from Mission GUI
 if Data.Callback
 set([Data.MaxSlopeH,Data.MaxSlopeH1,Data.MaxSlopeH2,...
 Data.MaxSlopeH3],'Enable','off')
 set(Data.StartH,'String','Continue')
 end
 set(PathIn,'UserData',Data,... % Set GUI to store Data
 'HandleVisibility','callback')
 % GUI controls
 case {1 2 3 4 5 6 7} % Edit data entries
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 Vars = {'MaxSlope', 0, 90;... % {Variable name, min, max}
 'Weight', 1, 999;...
 'Month', 1, 12;...
 'Day', 1, 31;...
 'Year', 2008, 2030;...
 'Hour', 0, 23;...
 'Minute', 0, 59}; % i = Explorer# for Weight, 1 otherwise
 i = (Select==2)*(get(Data.ExpNumH,'Value')-1) + 1;
 Newvalue = sscanf(get(Data.([Vars{Select,1},'H']),'String'),'%f');
 if ~isempty(Newvalue) % If value too small or big, set to min/max
 Newvalue = min(max(Newvalue,Vars{Select,2}),Vars{Select,3});
 Data.(Vars{Select,1})(i) = round(Newvalue);
 if Select == 1
 Data.Do = {Data.Do{:},'ClrPaths','Obs','NewMaps'};
 elseif Select == 2
 Data.Do = {Data.Do{:},i};
 else
 Data.Do = {Data.Do{:},'ClrPaths','Sun'};
 end
 end
 z = zeros(((Select==6 && Data.Hour==0) ||... % Prepends a zero to
 (Select==7 && Data.Minute<10)),1); % Hr/Min when needed
 set(Data.([Vars{Select,1},'H']),'String',...
 sprintf('%d%d',z,Data.(Vars{Select,1})(i)))
 set(PathIn,'UserData',Data)

 case 'Name' % Edit EVA name

 171

 PathIn = gcf;
 Data = get(PathIn,'UserData');
 Newname = get(Data.EVAnameH,'String');
 Newname = strrep(Newname,' ',''); % Eliminate spaces
 if ~isempty(Newname) &&
all(isstrprop(Newname,'alphanum')+(Newname=='_'))
 Data.EVAname = Newname; % Must be alphanumeric or underscore
 Data.Do = {Data.Do{:},'NewFiles'};
 end
 set(Data.EVAnameH,'String',Data.EVAname)
 set(PathIn,'UserData',Data)

 case {'Astronaut' 'Rover' 'Robot'} % Select explorer type
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 en = get(Data.ExpNumH,'Value');
 Data.Explorers{en} = Select;
 set(Data.ExplorerH1,'Value',strcmp(Select,'Astronaut'))
 set(Data.ExplorerH2,'Value',strcmp(Select,'Rover'))
 set(Data.ExplorerH3,'Value',strcmp(Select,'Robot'))
 Data.Do = {Data.Do{:},en};
 set(PathIn,'UserData',Data)

 case {'MxSlp' 'MxSlm'} % Slope increment & decrement buttons
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 if strcmp(Select,'MxSlp')
 Data.MaxSlope = min(Data.MaxSlope+1,90);
 elseif strcmp(Select,'MxSlm')
 Data.MaxSlope = max(Data.MaxSlope-1,0);
 end
 set(Data.MaxSlopeH,'String',Data.MaxSlope)
 Data.Do = {Data.Do{:},'ClrPaths','Obs','NewMaps'};
 set(PathIn,'UserData',Data)

 case {11 12 13} % Planet radio buttons
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 Data.Planet = Select-10;
 set(Data.PlanetH1,'Value',Select==11)
 set(Data.PlanetH2,'Value',Select==12)
 set(Data.PlanetH3,'Value',Select==13)
 Data.Do = {Data.Do{:},'ClrPaths','Planet'};
 set(PathIn,'UserData',Data)

 case 'Tzone' % Select time zone
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 Data.TimeZone = get(Data.TimeZoneH,'Value');
 Data.Do = {Data.Do{:},'ClrPaths'};
 set(PathIn,'UserData',Data)

 case {21 22} % Edit Render directory
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 if Select==21 % Manual edit

 172

 Newdir = get(Data.Render_dirH,'String');
 else % Browse button
 Newdir = uigetdir(Data.Render_dir,['Select directory for',...
 'external renderer data:']);
 end
 if ~isempty(Newdir) && ischar(Newdir)
 if ~exist(Newdir,'file')
 warndlg([Newdir,' is not a valid directory.'],...
 'Edit Render Directory')
 else
 macpc = {'/','\'}; % Append / or \
 Data.Render_dir =
regexprep(Newdir,'\w$',['$0',macpc{1+ispc}]);
 Data.Do = {Data.Do{:},'NewFiles'};
 end
 end
 try set(Data.Render_dirH,'String',Data.Render_dir)
 set(PathIn,'UserData',Data), catch %#ok<CTCH>
 end

 case {'SelExp' 'AddExp'} % Select explorer & Add Explorer button
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 if strcmp(Select,'AddExp') % Add explorer
 Data.NumExp = Data.NumExp+1;
 set(Data.ExpNumH,'String',1:Data.NumExp,'Value',Data.NumExp)
 Data.Explorers{Data.NumExp} = Data.Explorers{Data.NumExp-1};
 Data.Weight(Data.NumExp) = Data.Weight(Data.NumExp-1);
 Data.Do = {Data.Do{:},'AddExp'};
 end
 en = get(Data.ExpNumH,'Value');
 set(Data.ExplorerH1,'Value',strcmp(Data.Explorers{en},'Astronaut'))
 set(Data.ExplorerH2,'Value',strcmp(Data.Explorers{en},'Rover'))
 set(Data.ExplorerH3,'Value',strcmp(Data.Explorers{en},'Robot'))
 set(Data.WeightH,'String',Data.Weight(en))
 set(PathIn,'UserData',Data)

 case {'Obst' 'Soil' 'SciR' 'Othe' 'hasWP'} % Use existing maps toggles
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 Data.(Select) = get(Data.([Select,'H']),'Value');
 if strcmp(Select,'Obst')
 state = {'on','off'};
 set([Data.MaxSlopeH,Data.MaxSlopeH1,Data.MaxSlopeH2,...
 Data.MaxSlopeH3],'Enable',state{1+Data.Obst})
 end
 set(PathIn,'UserData',Data)

 case 'Start' % START button
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 if exist([Data.Render_dir,Data.EVAname,'_Elevations.txt'],'file')
&&...
 ~Data.Callback
 Choice = questdlg(sprintf('%s already exists.\n\nOK to
overwrite?',...

 173

 Data.EVAname),'Overwrite Mission...','Yes','No','No');
 if strcmp(Choice,'No'), return, end
 end
 delete(PathIn)
 Data.UTMzone = Data.UTMzone*(Data.Planet==1); % UTMzone 0 off earth
 if ~Data.Callback
 message = ['Calculating obstacles,\n',...
 ' writing map files,\n',...
 ' preparing surface...'];
 Data.calcmsg = helpdlg(sprintf(message),'Pathmaster');
 pathmaster('CostMaps',[],Data) % Call to 'CostMaps'
 else
 pathmaster('Update',Data.Do,Data) % Call to 'Update'
 end

 case 'Close' % Close GUI, exit pathmaster
 PathIn = gcf;
 Data = get(PathIn,'UserData');
 if ~Data.Callback
 Choice = questdlg(['Close ',Data.EVAname,' without saving?'],...
 'Exit Pathmaster...','Yes','No','No');
 if strcmp(Choice,'Yes')
 delete(PathIn)
 end
 else
 delete(PathIn)
 pathmaster('Update',{},Data) % Call to 'Update'
 end
end

%% ************ SET SLOPES, OBSTACLES, SOIL MECH, SCI RETURN, OTHER *******
case 'CostMaps'
[gx,gy] = gradient(Data.Elevations,Data.Resolution);
Data.Slopes = atan(sqrt(gx.^2+gy.^2))*(180/pi); % Slopes in degrees
Data.Slop = true;
if ~Data.Obst % Find obstacles (not using an existing obstacles map)
 Data.Obstacles = Data.Slopes > Data.MaxSlope; % 1 if obstacle, else 0
end
if all(all(Data.Obstacles)) % Check if entire map is obstacle
 try delete(Data.calcmsg), catch end %#ok<CTCH>
 message = ['The map has no travereable terrain\n',...
 'and is entirely obstacles.\n\n',...
 'Increase the maximum slope.'];
 waitfor(warndlg(sprintf(message),'Pathmaster'))
 pathmaster('Input',0,Data) % Restart back at 'Input'
 return
end
Data.Obst = true;
for tmap = {'SoilMech' 'SciReturn' 'Other'}
 if ~Data.(tmap{1}(1:4)) % If no map loaded, default map all zero
 Data.(tmap{1}) = zeros(Data.Rows,Data.Cols);
 end
end
pathmaster('SaveMaps','',Data) % Call to 'SaveMaps'

%% ************ SAVE MAP FILES **

 174

case 'SaveMaps'
form = [ones(Data.Cols,1)*'%.4f ';' \n'].'; % Write map files
for tmap = {'Elevations' 'Obstacles' 'Slopes' 'SoilMech' 'SciReturn' 'Other'}
 if (Data.(tmap{1}(1:4)) && ~Data.Path) || (Data.Path &&
Data.([tmap{1}(1:4),'Ed']))
 try save([Data.EVAname,'_Data'],'-struct','Data',tmap{1},Select),
catch end %#ok<CTCH>
 cd(Data.Render_dir)
 for Outfile = {Data.EVAname,'Current'}
 mpf = fopen([Outfile{1},'_',tmap{1},'.txt'],'wt');
 fprintf(mpf,['ncols %d\n',...
 'nrows %d\n',...
 'xllcorner %.8f\n',...
 'yllcorner %.8f\n'],...
 Data.Cols,Data.Rows,Data.xllcorner,Data.yllcorner);
 if Data.UTMzone ~= 0
 fprintf(mpf,'UTMzone %d\n',Data.UTMzone);
 end
 fprintf(mpf,['cellsize %.3f\n',...
 'NODATA_value %d\n'],Data.Resolution,Data.NoData);
 fprintf(mpf,form,max(Data.(tmap{1}).',Data.NoData)); %Matrix,
NoData=-9999
 fclose(mpf);
 end
 cd(Data.Work_dir)
 end
 form = [ones(Data.Cols,1)*'%d ';' \n'].';
 Select = '-append';
end
if ~Data.Path
 try save([Data.EVAname,'_Data'],'-
struct','Data','Resolution','xllcorner',...
 'yllcorner','UTMzone','NoData','Explorers','-append'),
catch %#ok<CTCH>
 end
end
if ~Data.Callback
 pathmaster('Mission',0,Data) % Call to 'Mission'
end

%% ************ MISSION PLANNER GUI ***************************************
case 'Mission'
switch Select
 case 0 % Define waypoint, traverse path, and cost cell arrays
 [Data.Waypoints{1:Data.NumExp,1:2}] = deal([]);
 [Data.WayHandles{1:Data.NumExp,1:2}] = deal([]);
 [Data.Pathpoints{1:Data.NumExp,1:2}] = deal([]);
 [Data.PathHandles{1:Data.NumExp,1:2}] = deal([]);
 [Data.Distance{1:Data.NumExp,1:2}] = deal([]);
 [Data.MetCost{1:Data.NumExp,1:2}] = deal([]);
 [Data.Time{1:Data.NumExp,1:2}] = deal([]);
 [Data.ElevEd,Data.SlopEd,Data.ObstEd,... % Info edited booleans
 Data.SoilEd,Data.SciREd,Data.OtheEd,Data.WayPEd] = deal(false);
 Data.R = ''; % Set to 'R' for "return home" path
 Data.TEsize = 1; % Terrain edit size default
 Data.datadisp = 1; % Determines which waypoint data to display
 Data.prevwp = [-1 -1]; % The previously selected waypoint coords

 175

 Data.Callback = true; % Calls to previous sections now "Callback"
 % Develop terrain surface for GUI
 Data.Elmin = min(min(Data.Elevations));
 Data.Eldiff = max(max(Data.Elevations))-Data.Elmin + 10^-3;
 Data.ColorLim = [Data.Elmin, Data.Elmin+Data.Eldiff*64/63;...
 Data.Elmin, Data.Elmin+Data.Eldiff*64/63; 0 2; 0 2; 0 2];
 Data.ColorObsRed = min(Data.Elevations+Data.Obstacles*10^6,...
 Data.Elmin+Data.Eldiff*64/63);
 try delete(Data.calcmsg), catch end %#ok<CTCH>
 % Initialize Mission Planner GUI
 Data.MPfig = figure('Name',['Pathmaster: ',Data.EVAname,' - Mission
Planner'],...
 'Position',[round(Data.Scrsize(3)/32)
round(Data.Scrsize(4)/32),...
 round(Data.Scrsize(3)*15/16)
round(Data.Scrsize(4)*7/8)],...
 'Color',[.92549 .913725 .847059],...
 'IntegerHandle','off',...
 'DockControls','off',...
 'NumberTitle','off',...
 'Renderer','OpenGL',...
 'ResizeFcn','pathmaster(''Mission'',''Resize'',[])',...
 'CloseRequestFcn','pathmaster(''Mission'',''Close'',[])');
 if isempty(strfind(system_dependent('getos'),'Vista'))
 set(Data.MPfig,'Pointer','fullcrosshair')
 end

 Data.MPaxes = axes('Units','pixels'); % Axes for surf plot
 try % Surf plot with obstacles in red
 Data.MPsurf = surf(Data.MPaxes,0:Data.Cols-1,0:Data.Rows-1,...
 Data.Elevations,'CData',Data.ColorObsRed,...
 'FaceColor','interp',...
 'EdgeColor','none',...
 'ButtonDownFcn','pathmaster(''Mission'',''Click'',[])');
 catch %#ok<CTCH>
 delete(Data.MPfig)
 message = ['\n--',...
 '\nMatlab has encountered an error while trying\n',...
 'to create a surface rendering.\n\n',...
 'This is a bug caused by use of the HELP command.\n\n',...
 'Please exit and restart Matlab.\n',...
 '--\n'];
 error('Help:Figure_or_Axes',message)
 end % Axes scaling (initially meters)
 [xsize,ysize] =
deal(Data.Resolution*Data.Cols,Data.Resolution*Data.Rows);
 mapsize = max(xsize,ysize);
 mag = floor(log10(mapsize));
 scale = round(mapsize/10^mag)*10^(mag-1);
 zaspect = Data.Resolution*min(1,10*Data.Eldiff/mapsize);
 zmag = floor(log10(Data.Eldiff));
 zscale = round(Data.Eldiff/10^zmag)*10^(zmag-1)*2;
 set(Data.MPaxes,'YDir','reverse',... % Set plot axes properties
 'View',[0 90],...
 'DataAspectRatio',[1 1 zaspect],...
 'CLim',Data.ColorLim(1,:),...
 'XLim',[0 Data.Cols-1],...

 176

 'YLim',[0 Data.Rows-1],...
 'ZLim',[Data.Elmin-.01*Data.Eldiff,
Data.Elmin+1.25*Data.Eldiff],...
 'XTick',(scale:scale:xsize)/Data.Resolution,...
 'YTick',(mod(ysize-
.001,scale)+.001:scale:ysize)/Data.Resolution,...
 'ZTick',Data.Elmin:zscale:Data.Elmin+1.26*Data.Eldiff,...
 'XTickLabel',scale:scale:xsize,...
 'YTickLabel',ysize-(mod(ysize-.001,scale)+.001):-scale:0,...
 'ZTickLabel',0:zscale:1.25*Data.Eldiff,...
 'TickLength',[0 0],...
 'Color',[.92549 .913725 .847059])
 if isempty(Data.Lite) % This code does not execute in 'lite' mode

set(Data.MPsurf,'FaceLighting','gouraud','BackFaceLighting','lit')
 material([.4 .8 0]) % Set surface reflectance properties
 Data.Sun =
light('Position',[sin((Data.Hour+Data.Minute/60)*pi/12),...
 -cos((Data.Hour+Data.Minute/60)*pi/12),...
 .014+.006*sin((Data.Hour+Data.Minute/60)*pi/24)],...
 'Style','infinite'); % Illumination, varies by time
 end
 if Data.UTMzone~=0 % Display compass when lat/long is active
 y = Data.Rows/20; x = Data.Cols-2-y/10;
 z = max(max(Data.Elevations(1:ceil(y*5/4),floor(end-
y/2):end)))+.05*Data.Eldiff;
 line([x-y*9/32 x-y*9/32 x x],...
 [1+y*17/16 1+y*5/8 1+y*17/16 1+y*5/8],[z z z z],...
 'Color','k','LineWidth',2,'HitTest','off')
 line([x-y*9/32 x-y*9/64 x-y*9/64 x-y*9/64 x],...
 [1+y/4 1+y/16 1+y*9/16 1+y/16 1+y/4],[z z z z z],...
 'Color','k','LineWidth',2,'HitTest','off')
 end
 % Render mode colormaps
 Mcolors = [[0 .3 .15; .9 .7 .4],[.2 .2 .25; .99 .99 1],[.25 .15 .1; 1
.8 .5]];
 colors1 = zeros(63,9); % Terrain cost colormaps
 Tcolors = [[.85 .85 .85; .5 .05 .1],[.85 .85 .85; .25 .1 .6],[.85 .85
.85; 0 0 .8]];
 colors2 = zeros(64,9);
 for i = 1:9
 colors1(:,i) = linspace(Mcolors(1,i),Mcolors(2,i),63);
 colors2(:,i) = linspace(Tcolors(1,i),Tcolors(2,i),64);
 end
 Data.Colors = [[colors1; .95 .02 .15 .95 .02 .15 .95 .02 .15],
colors2];
 colormap(Data.MPaxes,Data.Colors(:,3*Data.Planet-2:3*Data.Planet))
 Data.Ecolors = {[0 0 1],[.9 .9 0],[.5 0 .5],[1 .5 0],[0 1 1],... %
Explorer
 [1 0 1],[.4 .2 0],[.8 .35 .35],[1 1 1],[0 0 0]}; %
colors

 Data.MPmenu = uipanel('Units','pixels'); % Panel for UI controls
 % UIcontrols: {Handle,Style,Position,String,Value,HorizontalAlignment,
 % FontSize,BackgroundColor,Enable,Callback}
 MPui = {'MPhelpH','push',[5 34 60 25],'HELP',0,'center',12,...
 'default','on','pathmaster(''Mission'',''Help'',[])';...

 177

 'MPmapiH','push',[65 34 85 25],'Map Info',0,'center',12,...
 'default','on','pathmaster(''Mission'',''Map'',[])';...
 'MPevaiH','push',[150 34 85 25],'EVA Input',0,'center',12,...
 'default','on','pathmaster(''Mission'',''Input'',[])';...
 'na','text',[240 34 50 22],'Axes: ',1,'right',12,...
 'default','on','';...
 'MPscaleH','popup',[290 60 75
1],{'Meters','Km','Feet','Miles'},...
 1,'left',12,[1 1
1],'on','pathmaster(''Mission'',''Scale'',[])';...
 'na','frame',[370 31 287 32],'',1,'left',12,...
 'default','on','';...
 'MPwpmodeH','toggle',[374 34 90 25],'Waypoints',1,'center',...
 12,'default','on','pathmaster(''Mission'',''WP'',[])';...
 'MPexptxtH','text',[468 34 75 22],'Explorer: ',1,'right',...
 12,'default','on','';...
 'MPexpnumH','popup',[543 60 40 1],1:Data.NumExp,1,...
 'center',12,[1 1
1],'on','pathmaster(''Mission'',''SelExp'',[])';...
 'MPwaytitleH','text',[588 34 64 23],'Start:',1,...
 'center',14,'default','on','';...
 'na','frame',[662 31 358 32],'',1,'left',12,...
 'default','on','';...
 'MPtermodeH','toggle',[666 34 65 25],'Terrain',0,'center',...
 12,'default','on','pathmaster(''Mission'',''TER'',[])';...
 'MPtertypeH','popup',[736 60 100 1],{'Obstacles','Soil
mech','Sci return','Other'},...
 1,'left',12,[1 1
1],'on','pathmaster(''Mission'',''TerON'',[])';...
 'MPtersizetxtH','text',[841 34 45 22],'Size: ',1,'right',...
 12,'default','off','';...
 'MPtersizeH','edit',[886 34 30 25],1,1,'center',12,...
 [1 1 1],'off','';...
 'MPtersizepH','push',[916 47 15 15],'+',0,'right',12,...
 'default','off','pathmaster(''Mission'',''TSp'',[])';...
 'MPtersizemH','push',[916 32 15 15],'-',0,'right',12,...
 'default','off','pathmaster(''Mission'',''TSm'',[])';...
 'MPterOnH','toggle',[936 34 40 25],'ON',1,'center',12,...
 'default','on','pathmaster(''Mission'',''TerON'',[])';...
 'MPterOffH','toggle',[976 34 40 25],'OFF',0,'center',12,...
 'default','on','pathmaster(''Mission'',''TerOFF'',[])';...
 'na','push',[5 1 133 30],'Run PATH',0,'center',14,...
 'default','on','pathmaster(''Mission'',''PATH'',[])';...
 'na','text',[148 1 95 23],'Path :',1,'left',14,...
 'default','on','';...
 'MPpathenH','edit',[195 1 40 25],'',1,'center',14,...
 [1 1 1],'inactive','';...
 'na','text',[250 1 50 23],'Dist: ',1,'right',14,...
 'default','on','';...
 'MPdistNH','edit',[300 1 82 25],'',1,'right',14,...
 [1 1 1],'inactive','';...
 'MPdistUH','edit',[385 1 60 25],'Meters',1,'center',12,...
 [1 1 1],'inactive','';...
 'na','text',[455 1 55 23],'Cost: ',1,'right',14,...
 'default','on','';...
 'MPcostNH','edit',[510 1 87 25],'',1,'right',14,...
 [1 1 1],'inactive','';...

 178

 'MPcostUH','popup',[600 28 60 1],{'Kcal','BTU','KJ'},1,...
 'left',12,[1 1
1],'on','pathmaster(''Mission'',''CostU'',[])';...
 'na','text',[670 1 55 23],'Time: ',1,'right',14,...
 'default','on','';...
 'MPtimeH','edit',[725 1 70 25],'',1,'center',14,...
 [1 1 1],'inactive','';...
 'na','text',[805 1 65 22],'Render: ',1,'right',12,...
 'default','on','';...
 'MPrendmH1','toggle',[870 1 50 25],'Earth',Data.Planet==1,...

'center',12,'default','on','pathmaster(''Mission'',1,[])';...
 'MPrendmH2','toggle',[920 1 50 25],'Moon',Data.Planet==2,...

'center',12,'default','on','pathmaster(''Mission'',2,[])';...
 'MPrendmH3','toggle',[970 1 50 25],'Mars',Data.Planet==3,...

'center',12,'default','on','pathmaster(''Mission'',3,[])'};
 for n = 1:size(MPui,1) % Create the GUI using the info above
 Data.(MPui{n,1}) = uicontrol(Data.MPmenu,'Style',MPui{n,2},...
 'Position',MPui{n,3},...
 'String',MPui{n,4},...
 'Value',MPui{n,5},...
 'HorizontalAlignment',MPui{n,6},...
 'FontSize',MPui{n,7},...
 'FontWeight','bold',...
 'BackgroundColor',MPui{n,8},...
 'Enable',MPui{n,9},...
 'CallBack',MPui{n,10});
 end
 set(Data.MPfig,'UserData',Data,... % Set GUI to store Data
 'HandleVisibility','callback')

 if Data.hasWP % Load existing waypoints
 Data.WayPEd = true;
 hold on
 for en = 1:min(Data.NumExp,size(Data.LoadWaypoints,1))
 if ~isempty(Data.LoadWaypoints{en})
 Data.Waypoints{en} =
[min(max(Data.LoadWaypoints{en}(:,1),0),Data.Cols-1),...

min(max(Data.LoadWaypoints{en}(:,2),0),Data.Rows-1)];
 for i = 1:size(Data.Waypoints{en},1)
 Data.Waypoints{en}(i,3) =
Data.Elevations(Data.Waypoints{en}(i,2)+1,...

Data.Waypoints{en}(i,1)+1);
 end
 Data.WayHandles{en}(1) =
scatter3(Data.MPaxes,Data.Waypoints{en}(:,1),...

Data.Waypoints{en}(:,2),Data.Waypoints{en}(:,3)+.05*Data.Eldiff,...
 120,Data.Ecolors{mod(en-1,10)+1},'filled',...

'ButtonDownFcn',sprintf('pathmaster(''Mission'',''Click'',%d)',en));
 txt = {'H',{'H';num2str((1:i-1).')}};
 WPtxt = text(Data.Waypoints{en}(:,1),...

 179

 Data.Waypoints{en}(:,2)-.007*Data.Rows,...
 Data.Waypoints{en}(:,3)+.07*Data.Eldiff,txt{1+(i>1)},...
 'HorizontalAlignment','center',...
 'VerticalAlignment','bottom',...
 'Color',[1 1 1],'FontWeight','bold','HitTest','off');
 Data.WayHandles{en} = [Data.WayHandles{en}(1);WPtxt];
 end
 end
 hold off
 set(Data.MPfig,'UserData',Data) % Store the Waypoint data
 set(Data.MPexpnumH,'Value',en)
 pathmaster('Mission','SelExp',[]) % Select last explorer loaded
 end
 % GUI Controls
 case 'Help'
 macpc = {'CTRL+','RIGHT-'};
 helpmsg = ['MISSION PLANNER GUI\n','_____________________\n\n',...
 'LEFT-CLICK: Add waypoints or terrain
characteristics\n\n',...
 'SHIFT+CLICK: Clear waypoints or terrain
characteristics\n\n',...
 'SHIFT+CLICK ON PATH: Find return home path\n\n',...
 'DOUBLE-CLICK: Heighten terrain characteristics\n\n',...
 macpc{1+ispc},'CLICK: Display terrain or waypoint data,
select paths\n',...
 '__\n\n',...
 'Map Info & EVA Input buttons: Reopen menus to change
mission data\n\n',...
 'Scale menu: Update axes scaling with selected
units\n\n',...
 'Waypoints & Terrain buttons: Select edit mode\n\n',...
 'Explorer menu: Select the current explorer\n\n',...
 'Terrain menu: Select the terrain characteristic to
display\n\n',...
 'Size Control: Adjust the size of the terrain edit
rectangle\n\n',...
 'Terrain ON & OFF: Turn terrain characteristic display on
& off\n\n',...
 'Run PATH button: Run the PATH-based optimization to find
traverse paths\n\n',...
 'Render buttons: Select the terrain render mode'];
 questdlg(sprintf(helpmsg),'Pathmaster Help','OK','OK');

 case {'Map' 'Input'}
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 set(MPfig,'Visible','off')
 try delete(Data.minfo), catch end %#ok<CTCH> % Clear map data text
if exists
 pathmaster(Select,0,Data) % Call to 'Map' OR 'Input'

 case 'Scale' % Change axes scale
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 distU = get(Data.MPscaleH,'Value');
 distR = {1,'%.0f','Meters'; .001,'%.2f','Km';...

 180

 3.28084,'%.0f','Feet'; .0006213712,'%.2f','Miles'};
 [xsize,ysize] =
deal(Data.Resolution*Data.Cols,Data.Resolution*Data.Rows);
 mapsize = max(xsize,ysize);
 mag = floor(log10(mapsize*distR{distU,1}));
 scale = round(mapsize*distR{distU,1}/10^mag)*10^(mag-1);
 tscale = scale/distR{distU,1}/Data.Resolution;
 zmag = floor(log10(Data.Eldiff*distR{distU,1}));
 zscale = round(Data.Eldiff*distR{distU,1}/10^zmag)*10^(zmag-1)*2;
 set(Data.MPaxes,'XTick',tscale:tscale:Data.Cols,...
 'YTick',mod(Data.Rows-1,tscale)+1:tscale:Data.Rows,...

'ZTick',Data.Elmin:zscale/distR{distU,1}:Data.Elmin+1.25*Data.Eldiff,...
 'XTickLabel',scale:scale:xsize*distR{distU,1},...
 'YTickLabel',ysize*distR{distU,1}-(mod((ysize-
.001)*distR{distU,1},...
 scale)+.001*distR{distU,1}):-
scale:0,...
 'ZTickLabel',0:zscale:1.25*Data.Eldiff*distR{distU,1})
 set(Data.MPdistUH,'String',distR{distU,3})
 if ~isempty(get(Data.MPdistNH,'String'))
 path = get(Data.MPpathenH,'String');
 en = get(Data.MPexpnumH,'Value') + Data.NumExp*(path(end)=='R');
 set(Data.MPdistNH,'String',sprintf(distR{distU,2},...

Data.Distance{en}(end)*distR{distU,1}))
 end

 case {'WP' 'TER'} % Select edit mode
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 set(Data.MPwpmodeH,'Value',strcmp(Select,'WP'))
 set(Data.MPtermodeH,'Value',strcmp(Select,'TER'))
 state = {'off','on','inactive'};
 set([Data.MPexptxtH,Data.MPexpnumH,Data.MPwaytitleH,Data.MPterOnH,...
 Data.MPterOffH],'Enable',state{1+strcmp(Select,'WP')})
 set([Data.MPtersizetxtH,Data.MPtersizepH,Data.MPtersizemH],...
 'Enable',state{1+strcmp(Select,'TER')})
 set(Data.MPtersizeH,'Enable',state{1+2*strcmp(Select,'TER')})
 if strcmp(Select,'TER')
 pathmaster('Mission','TerON',[])
 end

 case 'SelExp' % Select explorer for waypoint edits & data display
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 enR = get(Data.MPexpnumH,'Value');
 ecolors = {Data.Ecolors{1:8},'k','k'};
 set(Data.MPexpnumH,'ForegroundColor',ecolors{mod(enR-1,10)+1})
 txt = {'Start:',sprintf('WP %d:',size(Data.Waypoints{enR},1))};
 title = txt{1 + ~isempty(Data.Waypoints{enR})};
 set(Data.MPwaytitleH,'String',title)
 if ~isempty(Data.Pathpoints{enR}) % Set the cost displays
 en = enR + ~isempty(Data.R)*Data.NumExp;
 set(Data.MPpathenH,'String',sprintf('%d%s',enR,Data.R),...
 'ForegroundColor',ecolors{mod(enR-1,10)+1})

 181

 distU = get(Data.MPscaleH,'Value');
 distR = {1,'%.0f'; .001,'%.2f'; 3.28084,'%.0f';
.0006213712,'%.2f'};
 set(Data.MPdistNH,'String',sprintf(distR{distU,2},...

Data.Distance{en}(end)*distR{distU,1}))
 costR = [.2521644 1 1.055056];
 set(Data.MPcostNH,'String',sprintf('%.1f',...
 Data.MetCost{en}(end)*costR(get(Data.MPcostUH,'Value'))))
 hourmin = [floor(Data.Time{en}(end)/3600),...
 round(rem(Data.Time{en}(end),3600)/60)];
 set(Data.MPtimeH,'String',sprintf('%d:%d%d',...

hourmin(1),zeros(hourmin(2)<10),hourmin(2)))
 else

set([Data.MPpathenH,Data.MPdistNH,Data.MPcostNH,Data.MPtimeH],'String','')
 end

 case {'TerON' 'TerOFF'} % Select terrain map to display
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 set(Data.MPterOnH,'Value',strcmp(Select,'TerON'))
 set(Data.MPterOffH,'Value',strcmp(Select,'TerOFF'))
 state = {'off' 'on'};
 set(Data.MPtertypeH,'Enable',state{1+strcmp(Select,'TerON')})
 ter = get(Data.MPtertypeH,'Value');
 tcm = {'Elevations','ColorObsRed','SoilMech','SciReturn','Other'};
 set(Data.MPaxes,'CLim',Data.ColorLim(1+ter*strcmp(Select,'TerON'),:))
 set(Data.MPsurf,'CData',Data.(tcm{1+ter*strcmp(Select,'TerON')}))
 if strcmp(Select,'TerOFF') || ter==1
 rendm = find([get(Data.MPrendmH1,'Value'),...
 get(Data.MPrendmH2,'Value'),get(Data.MPrendmH3,'Value')]);
 else
 rendm = ter+2;
 end
 colormap(Data.MPaxes,Data.Colors(:,3*rendm-2:3*rendm))

 case {'TSp' 'TSm'} % Change terrain map edit rectangle size
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 sizes = [.1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.5 2 2.5 3 4 5 6 7 8 9 10];
 ces = find(sizes==Data.TEsize);
 if strcmp(Select,'TSp') && ces < 21
 Data.TEsize = sizes(ces+1);
 elseif strcmp(Select,'TSm') && ces > 1
 Data.TEsize = sizes(ces-1);
 end
 set(Data.MPtersizeH,'String',Data.TEsize)
 set(MPfig,'UserData',Data)

 case 'CostU'
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 if ~isempty(get(Data.MPcostNH,'String'))
 costR = [.2521644 1 1.055056]; % Ratios: Kcal, BTU, KJ

 182

 set(Data.MPcostNH,'String',sprintf('%.1f',...
 Data.MetCost{get(Data.MPexpnumH,'Value')}(end) * ...
 costR(get(Data.MPcostUH,'Value'))))
 end

 case {1 2 3} % Change render mode
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 set(Data.MPrendmH1,'Value',Select==1)
 set(Data.MPrendmH2,'Value',Select==2)
 set(Data.MPrendmH3,'Value',Select==3)
 if get(Data.MPterOffH,'Value') || get(Data.MPtertypeH,'Value')==1
 colormap(Data.MPaxes,Data.Colors(:,3*Select-2:3*Select))
 end

 case 'PATH' % Run PATH button or return home path
 paths2do = Data; % For return home path, this is the explorer #
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 set([Data.MPhelpH,Data.MPmapiH,Data.MPevaiH],'enable','off')
 try delete(Data.minfo), catch end %#ok<CTCH>
 if isempty(paths2do) % Nominal case (non return home)
 Data.MPfigH = uisuspend(MPfig);
 [numWP,hasPath] = deal(zeros(Data.NumExp,1));
 for i = 1:Data.NumExp % Find which explorers need paths
 numWP(i) = size(Data.Waypoints{i},1);
 hasPath(i) = ~isempty(Data.Pathpoints{i});
 end
 paths2do = find(numWP>=2 & ~hasPath).'; % Array of explorer #'s
 end
 if ~isempty(paths2do) % Save all edits & calculate the new paths
 Data.Path = true;
 try save([Data.EVAname,'_Data'],'-struct','Data','Waypoints','-
append'), catch end %#ok<CTCH>
 pathmaster('SaveMaps','-append',Data) % Call to 'SaveMaps'
 [Data.ObstEd,Data.SoilEd,Data.SciREd,... % Reset edit booleans
 Data.OtheEd,Data.WayPEd] = deal(false);
 pathmaster('PATH',paths2do,Data) % Call to 'PATH'
 Data = get(MPfig,'UserData'); % Path data saved
 if ~isempty(Data.Newpaths)
 hold on
 for en = Data.Newpaths(end:-1:1) % Plot the new paths
 if isempty(Data.R) % Make waypoints big & green
 set(Data.WayHandles{en}(1),'SizeData',200,'CData',[0
1 0])
 end
 C = Data.Ecolors{mod(mod(en-1,Data.NumExp),10)+1};
 axes(Data.MPaxes) % Make this GUI's axes current
 Data.PathHandles{en}(1) =
line(Data.Pathpoints{en}(:,1),...
 Data.Pathpoints{en}(:,2),...
 Data.Pathpoints{en}(:,3)+.05*Data.Eldiff,...
 'Color',C,'LineWidth',4,'Marker','o',...

'MarkerEdgeColor',C,'MarkerFaceColor',C,'MarkerSize',5,...

 183

'ButtonDownFcn',sprintf('pathmaster(''Mission'',''Click'',%d)',en));
 end
 hold off
 if ~isempty(Data.R) % Set to dotted line for return home
path
 set(Data.PathHandles{en}(1),'LineStyle','--')
 end
 set(Data.MPexpnumH,'Value',mod(Data.Newpaths(1)-
1,Data.NumExp)+1)
 end
 Data.Path = false;
 set(MPfig,'UserData',Data) % Store data
 pathmaster('Mission','SelExp',[]) % Set cost displays
 else
 message = 'There are no new traverse paths to find.';
 if any(numWP==1)
 message = [message,'\n\nA path requires a start and at least
1 waypoint.'];
 end
 Data.minfo = helpdlg(sprintf(message),'Pathmaster');
 set(MPfig,'UserData',Data)
 end
 set([Data.MPhelpH,Data.MPmapiH,Data.MPevaiH],'enable','on')
 uirestore(Data.MPfigH)
 if ~isempty(Data.errpath) % If error on any path
 message = ['An error occured on path%s: ',...
 num2str(Data.errpath,' %d,')];
 message = [message(1:end-1),'%s\n\nMake sure waypoints are
not\n',...
 'enclosed by obstacles.'];
 s = {'','s'};

errordlg(sprintf(message,s{1+(length(Data.errpath)>1)},Data.R),'Path Error');
 end

 case 'Click' % Mouse click: Waypoints, terrain edits, paths, data
display
 ClOnPath = Data; % If a path clicked on, this is the explorer #
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 Task = get(MPfig,'SelectionType'); % Click type
 clpt = get(Data.MPaxes,'CurrentPoint'); % Click location
 clx = max(min(round((clpt(1,1)+clpt(2,1))/2),Data.Cols-1),0);
 cly = max(min(round((clpt(1,2)+clpt(2,2))/2),Data.Rows-1),0);
 try delete(Data.minfo), catch end %#ok<CTCH> % Clear map text
 switch Task
 case {'normal' 'extend' 'open'} % Left-Click,Shift+Click,Double
 if strcmp(Task,'extend') && ~isempty(ClOnPath) &&
numel(ClOnPath)==1 && ...
 ClOnPath<=Data.NumExp &&
~isempty(Data.Pathpoints{ClOnPath}) && ...
 ~Data.Obstacles(cly+1,clx+1) % Shift+Click path:
return home
 en = ClOnPath+Data.NumExp;
 hold on
 Data.WayHandles{en} = scatter3(Data.MPaxes,clx,cly,...

 184

 Data.Elevations(cly+1,clx+1)+.05*Data.Eldiff,300,[0 0
0],'filled');
 hold off
 Data.MPfigH = uisuspend(MPfig);
 Choice = questdlg(sprintf('Calculate return home path for
Explorer %d?',...
 ClOnPath),'Return
Home','Yes','No','Yes');
 if strcmp(Choice,'No')
 delete(Data.WayHandles{en})
 Data.WayHandles{en} = [];
 uirestore(Data.MPfigH)
 else
 delete(Data.PathHandles{en}) %Clear prev return path
 Data.Waypoints{en} = [clx cly
Data.Elevations(cly+1,clx+1);
 Data.Waypoints{ClOnPath}(1,:)];
 Data.PathHandles{en}(2) = Data.WayHandles{en};
 Data.WayHandles{en} = [];
 Data.R = 'R'; % Indicates "return home" path
 set(MPfig,'UserData',Data)
 pathmaster('Mission','PATH',en) % Call to 'PATH'
option
 Data = get(MPfig,'UserData');
 Data.R = '';
 end
 % Waypoint edit mode
 elseif get(Data.MPwpmodeH,'Value') && ~strcmp(Task,'open')
 en = get(Data.MPexpnumH,'Value'); % Explorer #
 if ~isempty(Data.Pathpoints{en}) % Check if path exists
 MPfigH = uisuspend(MPfig);
 Choice = questdlg('Editing waypoints will clear the
traverse path.',...
 sprintf('Edit Explorer
%d',en),'OK','Cancel','OK');
 uirestore(MPfigH)
 if strcmp(Choice,'Cancel'), return, end
 delete(Data.PathHandles{[en,en+Data.NumExp]})
 set(Data.WayHandles{en}(1),'SizeData',120,...
 'CData',Data.Ecolors{mod(en-1,10)+1})
 Data.Waypoints{en+Data.NumExp} = [];
 for vars = {'Pathpoints' 'PathHandles' 'Distance'
'MetCost' 'Time'}
 [Data.(vars{1}){[en,en+Data.NumExp]}] = deal([]);
 end
 set([Data.MPpathenH,Data.MPdistNH,Data.MPcostNH,...
 Data.MPtimeH],'String','')
 set(MPfig,'UserData',Data)
 end
 Data.WayPEd = true;
 if strcmp(Task,'normal') % Left-Click: add waypoint
 if Data.Obstacles(cly+1,clx+1) ||... %Click on obs
 (~isempty(Data.Waypoints{en}) &&... %or prev waypt
 all(Data.Waypoints{en}(end,1:2)==[clx cly]))
 return
 end % Append new waypoint
 Data.Waypoints{en} = [Data.Waypoints{en}; clx cly,...

 185

 Data.Elevations(cly+1,clx+1)];
 else % Shift+Click: erase waypoint
 if isempty(Data.Waypoints{en}), return, end
 Data.Waypoints{en} = Data.Waypoints{en}(1:end-1,:);
 end
 delete(Data.WayHandles{en}) % Clear prev waypoints
 if ~isempty(Data.Waypoints{en}) % Plot waypoints in GUI
 hold on
 Data.WayHandles{en}(1) = scatter3(Data.MPaxes,...

Data.Waypoints{en}(:,1),Data.Waypoints{en}(:,2),...
 Data.Waypoints{en}(:,3)+.05*Data.Eldiff,...
 120,Data.Ecolors{mod(en-1,10)+1},'filled',...

'ButtonDownFcn',sprintf('pathmaster(''Mission'',''Click'',%d)',en));
 txt =
{'H',{'H';num2str((1:size(Data.Waypoints{en},1)-1).')}};
 WPtxt = text(Data.Waypoints{en}(:,1),...
 Data.Waypoints{en}(:,2)-.007*Data.Rows,...
 Data.Waypoints{en}(:,3)+.07*Data.Eldiff,...
 txt{1+(size(Data.Waypoints{en},1)>1)},...
 'HorizontalAlignment','center',...
 'VerticalAlignment','bottom',...
 'Color',[1 1
1],'FontWeight','bold','HitTest','off');
 Data.WayHandles{en} = [Data.WayHandles{en}(1);WPtxt];
 hold off
 set(Data.MPwaytitleH,'String',sprintf('WP %d:',...
 size(Data.Waypoints{en},1)))
 else
 set(Data.MPwaytitleH,'String','Start:')
 Data.WayHandles{en} = [];
 end
 % Terrain edit mode
 elseif get(Data.MPtermodeH,'Value')
 for en = 1:Data.NumExp
 haspaths = ~isempty(Data.Pathpoints{en});
 if haspaths
 MPfigH = uisuspend(MPfig);
 Choice = questdlg(['Editing the terrain will',...
 'clear all traverse
paths.'],...
 'Edit
Terrain','OK','Cancel','OK');
 uirestore(MPfigH)
 if strcmp(Choice,'Cancel'), return, end
 delete(Data.PathHandles{:})
 [Data.Pathpoints{:},Data.PathHandles{:},...

Data.Distance{:},Data.MetCost{:},Data.Time{:},...
 Data.Waypoints{Data.NumExp+1:end}] = deal([]);
 set([Data.MPpathenH,Data.MPdistNH,...
 Data.MPcostNH,Data.MPtimeH],'String','')
 for i = 1:Data.NumExp
 if ~isempty(Data.Waypoints{i})

set(Data.WayHandles{i}(1),'SizeData',120,...

 186

 'CData',Data.Ecolors{mod(i-1,10)+1})
 end
 end
 break
 end
 end
 tmap = {'Obstacles' 'SoilMech' 'SciReturn' 'Other'};
 Terrain = tmap{get(Data.MPtertypeH,'Value')};
 Data.(Terrain(1:4)) = true; % Cost map exists
 Data.([Terrain(1:4),'Ed']) = true; % Map edited, to be
saved
 er = round(Data.Rows*Data.TEsize/200);
 ec = round(Data.Cols*Data.TEsize/200); % Edit rectangle
 [lr,ur,lc,uc] = deal(max(cly+1-
er,1),min(cly+1+er,Data.Rows),...
 max(clx+1-
ec,1),min(clx+1+ec,Data.Cols));
 % Left-Click sets all values in the edit rectangle to 1
 % Double Click sets all values to 2 (besides Obstacles)
 % Shift+Click sets all values to zero
 Data.(Terrain)(lr:ur,lc:uc) = (strcmp(Task,'normal') +
...

(1+~strcmp(Terrain,'Obstacles'))*strcmp(Task,'open'));
 if strcmp(Terrain,'Obstacles')
 Data.ColorObsRed =
min(Data.Elevations+Data.Obstacles*10^6,...
 Data.Elmin+Data.Eldiff*64/63);
 Terrain = 'ColorObsRed';
 end
 set(Data.MPsurf,'CData',Data.(Terrain))
 end

 case 'alt' % Right-Click: data display
 dtext = ''; info = []; en = []; wp = [];
 distU = get(Data.MPscaleH,'Value');
 distR = {1,'%.0f','m'; .001,'%.2f','km';...
 3.28084,'%.0f','ft'; .0006213712,'%.2f','mi'};
 costU = get(Data.MPcostUH,'Value');
 costR = {.2521644,'Kcal'; 1,'BTU'; 1.055056,'KJ'};
 if ~isempty(ClOnPath) % If a path was clicked on
 en = ClOnPath(1); % explorer# or #+Data.NumExp for
return
 enR = mod(en-1,Data.NumExp)+1; % explorer#
 if en~=enR % Return home path clicked on
 Data.R = 'R';
 set(MPfig,'UserData',Data)
 end
 set(Data.MPexpnumH,'Value',enR) % Set overhead path
 pathmaster('Mission','SelExp',[]) % cost displays
 Data.R = '';
 wp = ClOnPath(end); % waypoint # if passed
 if numel(ClOnPath)==1 % If no waypt passed, find nearest
 [D,wp] = min((Data.Waypoints{en}(:,1)-clx).^2+...
%wp=Nearest
 (Data.Waypoints{en}(:,2)-cly).^2); %
waypoint

 187

 end
 clx = Data.Waypoints{en}(wp,1); % Move clx,cly to the
 cly = Data.Waypoints{en}(wp,2); % waypoint coordinates
 if all([clx,cly]==Data.prevwp)
 Data.datadisp = mod(Data.datadisp,5)+1;
 end
 Data.prevwp = [clx,cly];
 numwp = size(Data.Waypoints{en},1);
 if ~isempty(Data.Pathpoints{en})
 pp = find((Data.Pathpoints{en}(:,1)==clx) & ...
%pp=Point along
 (Data.Pathpoints{en}(:,2)==cly),1); %
traverse path
 if isempty(pp), pp=1; end
 else
 Data.datadisp = 5;
 end
 txt = {'Start Point:',sprintf('Waypoint %d:',wp-1)};
 dtext = sprintf([txt{1+(wp>1)},'\n']);
 while Data.datadisp<=4 % Display cost data
 hasdata = true;
 if Data.datadisp==1 && wp>1 % Cost from start
 header = 'Cost from start';
 dist = Data.Distance{en}(pp);
 mcost = Data.MetCost{en}(pp);
 time = Data.Time{en}(pp);
 elseif Data.datadisp==2 && wp>1 && numwp>2
 header = 'Cost from prev WP'; % Cost from prev
waypt
 prevwp = Data.Waypoints{en}(wp-1,1:2);
 prevpp =
find((Data.Pathpoints{en}(:,1)==prevwp(1))&...

(Data.Pathpoints{en}(:,2)==prevwp(2)),1);
 if isempty(prevpp), prevpp=1; end
 dist = Data.Distance{en}(pp)-
Data.Distance{en}(prevpp);
 mcost = Data.MetCost{en}(pp)-
Data.MetCost{en}(prevpp);
 time = Data.Time{en}(pp)-Data.Time{en}(prevpp);
 elseif Data.datadisp==3 && wp<numwp && numwp>2
 header = 'Cost to next WP'; % Cost to next
waypoint
 nextwp = Data.Waypoints{en}(wp+1,1:2);
 nextpp =
find((Data.Pathpoints{en}(:,1)==nextwp(1))&...

(Data.Pathpoints{en}(:,2)==nextwp(2)),1);
 dist = Data.Distance{en}(nextpp)-
Data.Distance{en}(pp);
 mcost = Data.MetCost{en}(nextpp)-
Data.MetCost{en}(pp);
 time = Data.Time{en}(nextpp)-Data.Time{en}(pp);
 elseif Data.datadisp==4 &&
wp<size(Data.Waypoints{en},1)
 header = 'Cost to end'; %Cost to end

 188

 dist = Data.Distance{en}(end)-
Data.Distance{en}(pp);
 mcost = Data.MetCost{en}(end)-
Data.MetCost{en}(pp);
 time = Data.Time{en}(end)-Data.Time{en}(pp);
 else
 Data.datadisp = Data.datadisp+1;
 hasdata = false;
 end
 if hasdata
 dtext = [dtext,header,...
 '\nDist: ',distR{distU,2},'
',distR{distU,3},...
 '\nCost: %.1f',' ',costR{costU,2},...
 '\nTime: %d:%d%d']; %#ok<AGROW>
 hrmin = [floor(time/3600)
round(rem(time,3600)/60)];
 info = [dist*distR{distU,1},
mcost*costR{costU,1},...
 hrmin(1), zeros(hrmin(2)<10), hrmin(2)];
 break
 end
 end
 end
 if isempty(ClOnPath) || Data.datadisp == 5 % Display general
info
 elu = {'m', 'ft', 1, 3.28084};
 dtext = [dtext,'Elev: %.2f',elu{round(distU/2)},...
 '\nSlope: %.2f°']; %#ok<AGROW>
 info =
[Data.Elevations(cly+1,clx+1)*elu{2+round(distU/2)},...
 Data.Slopes(cly+1,clx+1)];
 if Data.UTMzone~=0 % Get Lat/Long
 % Lat/Long: uwgb.edu/dutchs/UsefulData/UTMFormulas.htm
 x = Data.xllcorner+(clx+.5)*Data.Resolution-500000;
 y = Data.yllcorner+(Data.Rows-1-
(cly+.5))*Data.Resolution-...
 10000000*(Data.UTMzone<0);
 e = (1-6356752.314^2/6378137^2)^(1/2);
 mu = y/(.9996*6378137*(1-e^2/4-3/64*e^4-5/256*e^6));
 e1 = (1-(1-e^2)^(1/2))/(1+(1-e^2)^(1/2));
 J = [3/2*e1-27/32*e1^3, 21/16*e1^2-55/32*e1^4,...
 151/96*e1^3, 1097/512*e1^4];
 fp =
mu+J(1)*sin(2*mu)+J(2)*sin(4*mu)+J(3)*sin(6*mu)+J(4)*sin(8*mu);
 e2 = e^2/(1-e^2);
 C = e2*cos(fp)^2;
 T = tan(fp)^2;
 R = 6378137*(1-e^2)/(1-e^2*sin(fp)^2)^(3/2);
 N = 6378137/(1-e^2*sin(fp)^2)^(1/2);
 D = x/(.9996*N);
 Qa = [N*tan(fp)/R, D^2/2, (5+3*T+10*C-4*C^2-
9*e2)*D^4/24,...
 (61+90*T+298*C+45*T^2-3*C^2-252*e2)*D^6/720];
 Qo = [D, (1+2*T+C)*D^3/6, (5-2*C+28*T-
3*C^2+8*e2+24*T^2)*D^5/120];
 lat = (fp-Qa(1)*(Qa(2)-Qa(3)+Qa(4)))*180/pi;

 189

 long = abs(Data.UTMzone)*6-183+((Qo(1)-
Qo(2)+Qo(3))/cos(fp))*180/pi;
 LAT = [fix(lat) fix(rem(lat,1)*60)
rem(rem(lat,1)*60,1)*60];
 LONG = [fix(long) fix(rem(long,1)*60)
rem(rem(long,1)*60,1)*60];
 % ***
 dtext = [dtext,'\nLat: %d° %d'' %.2f"',...
 '\nLong: %d° %d'' %.2f"'];
 info =
[info,LAT(1),abs(LAT(2:3)),LONG(1),abs(LONG(2:3))];
 end
 for tmap = {'SoilMech' 'SciReturn' 'Other'}
 if Data.(tmap{1}(1:4))
 dtext = [dtext,'\n',tmap{1}(1:5),': %d'];
%#ok<AGROW>
 info = [info,Data.(tmap{1})(cly+1,clx+1)];
%#ok<AGROW>
 end
 end
 end
 aln = {'left','right','bottom','top'}; % Text alignments
 hold on
 Data.minfo(1) = scatter3(Data.MPaxes,clx,cly,...
 Data.Elevations(cly+1,clx+1)+.05*Data.Eldiff,60,[0 1
0],'filled');
 Data.minfo(2) = text(clx,cly,...
 Data.Elevations(cly+1,clx+1)+.2*Data.Eldiff,...
 sprintf(dtext,info),...
 'BackgroundColor',[.92 .865 .7],...
 'HorizontalAlignment',aln{1+(clx>.8*Data.Cols)},...
 'VerticalAlignment',aln{3+(cly<.1*Data.Rows)},...

'ButtonDownFcn',sprintf('pathmaster(''Mission'',''Click'',[%d %d])',en,wp));
 hold off
 end
 set(MPfig,'UserData',Data)

 case 'Resize' % Resize GUI window
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 figsize = get(MPfig,'Position');
 set(Data.MPmenu,'Position',[0 figsize(4)-64 figsize(3)+2 66]);
 set(Data.MPaxes,'Position',[50 24 figsize(3)-65 figsize(4)-90]);

 case 'Close' % Close GUI, save edits, exit pathmaster
 MPfig = gcf;
 Data = get(MPfig,'UserData');
 if any([Data.ObstEd,Data.SoilEd,Data.SciREd,Data.OtheEd,Data.WayPEd])
 Choice = questdlg(sprintf([Data.EVAname,' has been
edited\n\n',...
 'Exit without running PATH?']),'Exit
Pathmaster...',...
 'Save edits','Don''t save','Cancel','Cancel');
 else
 Choice = questdlg(['Finished with ',Data.EVAname,'?'],...

 190

 'Exit Pathmaster...','Yes','Cancel','Cancel');
 end
 if ~strcmp(Choice,'Cancel')
 delete(MPfig)
 if strcmp(Choice,'Save edits')
 try save([Data.EVAname,'_Data'],'-
struct','Data','Waypoints','-append'), catch end %#ok<CTCH>
 Data.Path = true;
 pathmaster('SaveMaps','-append',Data) % Call to
'SaveMaps'
 end
 end
end

%% ************ UPDATE DATA & FILES & MISSION GUI *************************
case 'Update' % Runs after callback to Map Info or EVA Data GUI
if ~isempty(Select)
message = '';
header = ['Changing these data values may clear\n',...
 'or re-write the following data:\n\n'];
for task = {{'ClrPaths','All traverse paths'} {'Obs','Obstacles'} ...
 {'NewMaps','Map data files'}}
 if any(strcmp(task{1}{1},Select))
 message = [header,message,'- ',task{1}{2},'\n']; %#ok<AGROW>
 header = '';
 end
end
AddEx = sum(strcmp('AddExp',Select)); % Number of added explorers
NumExp = Data.NumExp-AddEx; % Previous number of explorers
if ~any(strcmp('ClrPaths',Select))
 ClrPath = [];
 for task = Select
 if ~ischar(task{1}) && task{1}<=NumExp && ...
 ~isempty(Data.Pathpoints{task{1}}) && ~any(ClrPath==task{1})
 ClrPath = [ClrPath, task{1}]; %#ok<AGROW>
 end
 end
 if ~isempty(ClrPath)
 message = [header,message,'- Traverse path(s): ',...
 num2str(sort(ClrPath),' %d'),'\n'];
 end
else
 ClrPath = 1:NumExp;
end
if any(strcmp('NewFiles',Select))
 message = [message,'\nOnly paths created after this point will be\n',...
 'written with the new name and/or directories.'];
end
if ~isempty(message) % Asks if it's OK to make applicable changes
 Choice = questdlg(sprintf(message),'Change Data
Values...','OK','Cancel','OK');
 if strcmp(Choice,'Cancel') % Cancel without saving changes
 set(Data.MPfig,'Visible','on')
 return
 end
end
if any(strcmp('Scale',Select)) % Rescale map

 191

 [gx,gy] = gradient(Data.Elevations,Data.Resolution);
 Data.Slopes = atan(sqrt(gx.^2+gy.^2))*(180/pi); % Slopes in degrees
 mapsize = Data.Resolution*max(Data.Rows,Data.Cols);
 zaspect = Data.Resolution*min(1,10*Data.Eldiff/mapsize);
 set(Data.MPaxes,'DataAspectRatio',[1 1 zaspect])
 set(Data.MPfig,'UserData',Data)
 pathmaster('Mission','Scale',[]) % Call scaling routine
end
if ~Data.Obst && any(strcmp('Obs',Select)) %Recalculate obstacles
 Data.Obstacles = Data.Slopes > Data.MaxSlope; % 1 if obstacle, else 0
 Data.Obst = true;
 Data.ColorObsRed = min(Data.Elevations+Data.Obstacles*10^6,...
 Data.Elmin+Data.Eldiff*64/63);
 if get(Data.MPtertypeH,'Value')==1
 set(Data.MPsurf,'CData',Data.ColorObsRed)
 end
end
if any(strcmp('NewMaps',Select)) || any(strcmp('NewFiles',Select)) %New map
files
 pathmaster('SaveMaps','',Data) % Call to 'SaveMaps'
 set(Data.MPfig,'Name',['Pathmaster: ',Data.EVAname,' - Mission
Planner'])
end
for en = ClrPath % Clear paths
 delete(Data.PathHandles{[en,en+NumExp]})
 [Data.Pathpoints{[en,en+NumExp]},Data.PathHandles{[en,en+NumExp]},...
 Data.Distance{[en,en+NumExp]},Data.MetCost{[en,en+NumExp]},...
 Data.Time{[en,en+NumExp]},Data.Waypoints{en+NumExp}] = deal([]);
 if ~isempty(Data.Waypoints{en})

set(Data.WayHandles{en}(1),'SizeData',120,'CData',Data.Ecolors{mod(en-
1,10)+1})
 end
end
if ~isempty(ClrPath)
 try save([Data.EVAname,'_Data'],'-
struct','Data','Pathpoints','Distance',...
 'MetCost','Time','-append'), catch
%#ok<CTCH>
 end
end
if any(ClrPath==get(Data.MPexpnumH,'Value')) % Clear cost displays

set([Data.MPpathenH,Data.MPdistNH,Data.MPcostNH,Data.MPtimeH],'String','')
end
if AddEx % Add explorer
 [newexp{1:AddEx,1:2}] = deal([]);
 for vars = {'Waypoints' 'WayHandles' 'Pathpoints' 'PathHandles',...
 'Distance' 'MetCost' 'Time'}
 Data.(vars{1}) = vertcat(Data.(vars{1}),newexp);
 end
 set(Data.MPexpnumH,'String',1:Data.NumExp)
 try save([Data.EVAname,'_Data'],'-struct','Data','Explorers','-append'),
catch end %#ok<CTCH>
end
if any(strcmp('Planet',Select)) % Change planet
 pathmaster('Mission',Data.Planet,[])

 192

end
if isempty(Data.Lite) && any(strcmp('Sun',Select)) % Move sun
 set(Data.Sun,'Position',[sin((Data.Hour+Data.Minute/60)*pi/12),...
 -cos((Data.Hour+Data.Minute/60)*pi/12),...
 .014+.006*sin((Data.Hour+Data.Minute/60)*pi/24)])
end
set(Data.MPfig,'UserData',Data) % Save Data changes
end
set(Data.MPfig,'Visible','on') % Re-open Mission GUI

%% ************ RUN THE PATH OPTIMIZATION *********************************
case 'PATH'
enR = mod(Select-1,Data.NumExp)+1; % enR is explorer# even for return home
message = ['Running traverse optimization...\n',...
 '\nTraverse path%s: ',num2str(enR,' %d,')];
s = {'','s'};
pathmsg = helpdlg([sprintf(message(1:end-
1),s{1+(length(Select)>1)}),Data.R],'Pathmaster');
 % Make sparse copies of terrain cost maps
[obstacles,soilmech,scireturn,other] = deal(sparse(Data.Obstacles),...
 sparse(Data.SoilMech),sparse(Data.SciReturn),sparse(Data.Other));
%#ok<NASGU>
elevation = Data.Elevations;
resolution = Data.Resolution;
obstacles(isnan(obstacles)) = 1; % Clean up any NaNs in the maps
[elevation(isnan(elevation)),soilmech(isnan(soilmech)),...
 scireturn(isnan(scireturn)),other(isnan(other))] = deal(0); %#ok<NASGU>
grav = [1,1/6,1/3];
gravity = 9.8*grav(Data.Planet); % Set the planet gravity
[dimr,dimc] = deal(Data.Rows,Data.Cols);
E = sparse([5,ones(1,dimc-2),6;4*ones(dimr-2,1),zeros(dimr-2,dimc-
2),2*ones(dimr-2,1);8,3*ones(1,dimc-2),7]);
path_err = false; % Signals an error in finding traverse paths
Data.errpath = [];
for en = Select
 enR = mod(en-1,Data.NumExp)+1;
 mass = Data.Weight(enR);
 waypoints_x_y = Data.Waypoints{en}(:,1:2)+1; %(x,y) coords to matrix
index
 waypoints = Data.Waypoints{en}(:,1)*dimr+Data.Waypoints{en}(:,2)+1;
 % /////// Optimization Routine: Brandon Johnson, August 5, 2008 ///////
 [Distance,Cost,Time] = deal(0);
 smoothed_route = waypoints(1);
 [skipped,skip_waypoint,straight_line] = deal(false);
 altwaypoints = ones(1,length(waypoints));
 altwaypoints(2:2:end) = 0; % Used to alternate which matrices are for
start or finish
 % Waypoint Loop
 for k = 1:(length(waypoints)-1)
 start = waypoints(k);
 finish = waypoints(k+1);
 if skip_waypoint % Used if next waypoint already in visited range
 skip_waypoint = false;
 continue
 end
 % Initialization, matrices have to be alternatively reset after each
waypoint

 193

 if k~=1 && ~altwaypoints(k) && ~skipped
 I = finish;
 previousa = zeros(dimr,dimc);
 testcosta = sparse(dimr,dimc);
 Fcosta = sparse(dimr,dimc);
 costa = zeros(dimr,dimc);
 timea = zeros(dimr,dimc);
 distancea = zeros(dimr,dimc);
 costa(finish) = 0.00001;
 elseif k~=1 && altwaypoints(k) && ~skipped
 J = finish;
 previousb = zeros(dimr,dimc);
 testcostb = sparse(dimr,dimc);
 Fcostb = sparse(dimr,dimc);
 costb = zeros(dimr,dimc);
 timeb = zeros(dimr,dimc);
 distanceb = zeros(dimr,dimc);
 costb(finish) = 0.00001;
 elseif k==1 || skipped
 I = start; J = finish;
 previousa = zeros(dimr,dimc);
 previousb = zeros(dimr,dimc);
 testcosta = sparse(dimr,dimc);
 testcostb = sparse(dimr,dimc);
 Fcosta = sparse(dimr,dimc);
 Fcostb = sparse(dimr,dimc);
 costa = zeros(dimr,dimc);
 costb = zeros(dimr,dimc);
 timea = zeros(dimr,dimc);
 timeb = zeros(dimr,dimc);
 distancea = zeros(dimr,dimc);
 distanceb = zeros(dimr,dimc);
 costa(start) = 0.00001; costb(finish) = 0.00001;
 if skipped
 if ~altwaypoints(k)
 altwaypoints = ~altwaypoints;
 end
 end
 end
 % Main Loop
 while I ~= J
 % Determines neighboring nodes of I
 x = ceil(I/dimr);
 y = mod(I-1,dimr)+1; % Find (x,y) coorinates of I
 if E(I) == 0 % Middle
 II = [I-1 I+dimr I+1 I-dimr I+dimr-1 I+dimr+1 I-dimr+1 I-
dimr-1]; %all
 IIs = [x y-1; x+1 y; x y+1; x-1 y; x+1 y-1; x+1 y+1; x-1 y+1;
x-1 y-1];
 elseif E(I) == 1 % Top edge
 II = [I+dimr I+1 I-dimr I+dimr+1 I-dimr+1]; %right down left
bottomright bottomleft
 IIs = [x+1 y; x y+1; x-1 y; x+1 y+1; x-1 y+1];
 elseif E(I) == 2 % Right edge
 II = [I-1 I+1 I-dimr I-dimr+1 I-dimr-1]; %up down left
bottomleft topleft
 IIs = [x y-1; x y+1; x-1 y; x-1 y+1; x-1 y-1];

 194

 elseif E(I) == 3 % Bottom edge
 II = [I-1 I+dimr I-dimr I+dimr-1 I-dimr-1]; %up right left
topright topleft
 IIs = [x y-1; x+1 y; x-1 y; x+1 y-1; x-1 y-1];
 elseif E(I) == 4 % Left edge
 II = [I-1 I+dimr I+1 I+dimr-1 I+dimr+1]; %up right down
topright bottomright
 IIs = [x y-1; x+1 y; x y+1; x+1 y-1; x+1 y+1];
 elseif E(I) == 5 % Top left corner
 II = [I+dimr I+1 I+dimr+1]; %right down bottomright
 IIs = [x+1 y; x y+1; x+1 y+1];
 elseif E(I) == 6 % Top right corner
 II = [I+1 I-dimr I-dimr+1]; %down left bottomleft
 IIs = [x y+1; x-1 y; x-1 y+1];
 elseif E(I) == 7 % Bottom right corner
 II = [I-1 I-dimr I-dimr-1]; %up left topleft
 IIs = [x y-1; x-1 y; x-1 y-1];
 else % Bottom left corner
 II = [I-1 I+dimr I+dimr-1]; %up right topright
 IIs = [x y-1; x+1 y; x+1 y-1];
 end
 remov_val = ~(~costa(II) & ~obstacles(II));
 II(remov_val) = [];
 IIs(remov_val,:) = [];
 % ******************* COST FUNCTION: METABOLIC ********************
 % Calculate the local costs for I using the Metabolic Cost
function
 % Distance from I to II
 diag = (II==I-dimr-1 | II==I+dimr-1 | II==I+dimr+1 | II==I-
dimr+1); %diagonals
 cart = (II==I-1 | II==I+dimr | II==I+1 | II==I-dimr); %up, right,
down, left
 dist = zeros(1,length(II));
 dist(diag) = resolution*sqrt(2); % Diagonal dist is sqrt(2)
greater
 dist(cart) = resolution;
 % Slope from I to II
 if altwaypoints(k) % Correct direction always applied
 slope = 180/pi*atan((elevation(II)-elevation(I))./dist);
 else
 slope = 180/pi*atan((elevation(I)-elevation(II))./dist);
 end
 % Velocity as a function of slope
 V = zeros(1,length(II));
 a = (slope<=-20 | slope>=15);
 V(a) = 0.05;
 b = (slope>-20 & slope<=-10);
 V(b) = 0.095*slope(b)+1.95;
 c = (slope>-10 & slope<0);
 V(c) = 0.06*slope(c)+1.6;
 d = (slope>=0 & slope<6);
 V(d) = -0.02*slope(d)+1.6;
 e = (slope>=6 & slope<15);
 V(e) = -0.039*slope(e)+0.634;
 % Power
 Rfactor = 0.661*V.*cos(pi*slope/180)+0.115;
 power = zeros(1,length(Rfactor));

 195

 f = (slope<0);
 power(f) =
(2.4*mass*gravity*V(f).*sin(pi*slope(f)/180).*(0.3.^(abs(slope(f))/7.65)))+((
3.28*mass+71.1)*Rfactor(f));
 g = (slope>0);
 power(g) =
(3.5*mass*gravity*V(g).*sin(pi*slope(g)/180))+((3.28*mass+71.1)*Rfactor(g));
 h = (slope==0);
 power(h) = (3.28*mass+71.1)*Rfactor(h);
 % Metabolic Cost
 Metcost = power.*dist./V;
 C = Metcost*0.00094781712; % Metcost converted to BTUs
 % Heuristic Function for A* Algorithm
 % P. Amit, see
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
 H_straight = zeros(1,length(C));
 H_diagonal = zeros(1,length(C));
 for i = 1:size(IIs,1)
 if altwaypoints(k)
 xx = abs(IIs(i,1)-waypoints_x_y(k+1,1));
 yy = abs(IIs(i,2)-waypoints_x_y(k+1,2));
 else
 xx = abs(IIs(i,1)-waypoints_x_y(k,1));
 yy = abs(IIs(i,2)-waypoints_x_y(k,2));
 end
 H_straight(i) = xx+yy;
 if xx > yy
 H_diagonal(i) = yy;
 else
 H_diagonal(i) = xx;
 end
 end
 H = (resolution*544.9/1.6*0.00094781712)*(H_straight-
2*H_diagonal)...
 +(sqrt(2)*resolution*544.9/1.6*0.00094781712)*H_diagonal;
 D = (~testcosta(II) | costa(I)+C<testcosta(II));
 % Store the costs
 testcosta(II(D)) = costa(I)+C(D); % Total metabolic cost
 Fcosta(II(D)) = costa(I)+C(D)+H(D); % Metabolic + Heuristic
estimate
 timea(II(D)) = timea(I)+dist(D)./V(D); % Total time
 distancea(II(D)) = distancea(I)+dist(D); % Total distance
 previousa(II(D)) = I; % Used to back-track for finding the route
 % ********************* END OF COST FUNCTION **********************
 % Determines neighboring nodes of J
 x = ceil(J/dimr);
 y = mod(J-1,dimr)+1;
 if E(J) == 0 % Middle
 JJ = [J-1 J+dimr J+1 J-dimr J+dimr-1 J+dimr+1 J-dimr+1 J-
dimr-1]; %all
 JJs = [x y-1; x+1 y; x y+1; x-1 y; x+1 y-1; x+1 y+1; x-1 y+1;
x-1 y-1];
 elseif E(J) == 1 % Top edge
 JJ = [J+dimr J+1 J-dimr J+dimr+1 J-dimr+1]; %right down left
bottomright bottomleft
 JJs = [x+1 y; x y+1; x-1 y; x+1 y+1; x-1 y+1];
 elseif E(J) == 2 % Right edge

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

 196

 JJ = [J-1 J+1 J-dimr J-dimr+1 J-dimr-1]; %up down left
bottomleft topleft
 JJs = [x y-1; x y+1; x-1 y; x-1 y+1; x-1 y-1];
 elseif E(J) == 3 % Bottom edge
 JJ = [J-1 J+dimr J-dimr J+dimr-1 J-dimr-1]; %up right left
topright topleft
 JJs = [x y-1; x+1 y; x-1 y; x+1 y-1; x-1 y-1];
 elseif E(J) == 4 % Left edge
 JJ = [J-1 J+dimr J+1 J+dimr-1 J+dimr+1]; %up right down
topright bottomright
 JJs = [x y-1; x+1 y; x y+1; x+1 y-1; x+1 y+1];
 elseif E(J) == 5 % Top left corner
 JJ = [J+dimr J+1 J+dimr+1]; %right down bottomright
 JJs = [x+1 y; x y+1; x+1 y+1];
 elseif E(J) == 6 % Top right corner
 JJ = [J+1 J-dimr J-dimr+1]; %down left bottomleft
 JJs = [x y+1; x-1 y; x-1 y+1];
 elseif E(J) == 7 % Bottom right corner
 JJ = [J-1 J-dimr J-dimr-1]; %up left topleft
 JJs = [x y-1; x-1 y; x-1 y-1];
 else % Bottom left corner
 JJ = [J-1 J+dimr J+dimr-1]; %up right topright
 JJs = [x y-1; x+1 y; x+1 y-1];
 end
 remov_val = ~(~costb(JJ) & ~obstacles(JJ));
 JJ(remov_val) = [];
 JJs(remov_val,:) = [];
 % ******************* COST FUNCTION: METABOLIC ********************
 % Calculate the local costs for J using the Metabolic Cost
Function
 % Distance from J to JJ
 diag = (JJ==J-dimr-1 | JJ==J+dimr-1 | JJ==J+dimr+1 | JJ==J-
dimr+1); %diagonals
 cart = (JJ==J-1 | JJ==J+dimr | JJ==J+1 | JJ==J-dimr); %up, right,
down, left
 dist = zeros(1,length(JJ));
 dist(diag) = resolution*sqrt(2); % Diagonal dist is sqrt(2)
greater
 dist(cart) = resolution;
 % Slope from J to JJ
 if ~altwaypoints(k)
 slope = 180/pi*atan((elevation(JJ)-elevation(J))./dist);
 else
 slope = 180/pi*atan((elevation(J)-elevation(JJ))./dist);
 end
 % Velocity as a function of slope
 V = zeros(1,length(JJ));
 a = (slope<=-20 | slope>=15);
 V(a) = 0.05;
 b = (slope>-20 & slope<=-10);
 V(b) = 0.095*slope(b)+1.95;
 c = (slope>-10 & slope<0);
 V(c) = 0.06*slope(c)+1.6;
 d = (slope>=0 & slope<6);
 V(d) = -0.02*slope(d)+1.6;
 e = (slope>=6 & slope<15);
 V(e) = -0.039*slope(e)+0.634;

 197

 % Power
 Rfactor = 0.661*V.*cos(pi*slope/180)+0.115;
 power = zeros(1,length(Rfactor));
 f = (slope<0);
 power(f) =
(2.4*mass*gravity*V(f).*sin(pi*slope(f)/180).*(0.3.^(abs(slope(f))/7.65)))+((
3.28*mass+71.1)*Rfactor(f));
 g = (slope>0);
 power(g) =
(3.5*mass*gravity*V(g).*sin(pi*slope(g)/180))+((3.28*mass+71.1)*Rfactor(g));
 h = (slope==0);
 power(h) = (3.28*mass+71.1)*Rfactor(h);
 % Metabolic Cost
 Metcost = power.*dist./V;
 C = Metcost*0.00094781712; % Metcost converted to BTUs
 H_straight = zeros(1,length(C));
 H_diagonal = zeros(1,length(C));
 for i = 1:size(JJs,1)
 if altwaypoints(k)
 xx = abs(JJs(i,1)-waypoints_x_y(k,1));
 yy = abs(JJs(i,2)-waypoints_x_y(k,2));
 else
 xx = abs(JJs(i,1)-waypoints_x_y(k+1,1));
 yy = abs(JJs(i,2)-waypoints_x_y(k+1,2));
 end
 H_straight(i) = xx+yy;
 if xx > yy
 H_diagonal(i) = yy;
 else
 H_diagonal(i) = xx;
 end
 end
 H = (resolution*544.9/1.6*0.00094781712)*(H_straight-
2*H_diagonal)...
 +(sqrt(2)*resolution*544.9/1.6*0.00094781712)*H_diagonal;
 D = (~testcostb(JJ) | costb(J)+C<testcostb(JJ));
 % Store the costs
 testcostb(JJ(D)) = costb(J)+ C(D); % Total metabolic cost
 Fcostb(JJ(D)) = costb(J)+C(D)+H(D); % Metabolic + Heuristic
estimate
 timeb(JJ(D)) = timeb(J)+dist(D)./V(D); % Total time
 distanceb(JJ(D)) = distanceb(J)+dist(D); % Total distance
 previousb(JJ(D)) = J; % Used to back-track for finding the route
 % ********************* END OF COST FUNCTION **********************
 testcosta(I) = 0;
 testcostb(J) = 0;
 Fcosta(I) = 0;
 Fcostb(J) = 0;
 % Find minimum value in both Fcosts
 K = find(Fcosta);
 L = find(Fcostb);
 [v,N] = min(Fcosta(K));
 [v,M] = min(Fcostb(L));
 I = K(N);
 J = L(M);
 % Update costs & check if paths intersect
 costa(I) = testcosta(I);

 198

 costb(J) = testcostb(J);
 if costb(I); % Tests for intersection of paths
 j = I;
 break;
 end
 if costa(J);
 j = J;
 break;
 end
 end % End of main loop
 % Traverse path is solved! Now find the route
 if ~exist('j','var'), path_err = true; break, end % Signals error,
break
 route = [j,zeros(1,dimr+dimc)];
 count = 1;
 if altwaypoints(k)
 i = previousa(j);
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousa(i);
 end
 route1 = route(find(route,1,'last'):-1:1);
 route = [j,zeros(1,dimr+dimc)];
 count = 1;
 i = previousb(j);
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousb(i);
 end
 route2 = route(1:find(route,1,'last'));
 else
 i = previousb(j);
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousb(i);
 end
 route1 = route(find(route,1,'last'):-1:1);
 route = [j,zeros(1,dimr+dimc)];
 count = 1;
 i = previousa(j);
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousa(i);
 end
 route2 = route(1:find(route,1,'last'));
 end
 testline = Midpoint(route1(1),route2(end)); %Tests if route is
straight to simplify smoothing
 if length(testline)==length([route1(2:end-1) route2]) && all(testline
== [route1(2:end-1) route2])
 new_route = route2(end);
 straight_line = 1;
 else

 199

 new_route = Smooth([route1(1:end-1) route2]); % Call smoothing
function
 new_route = new_route(2:end);
 end
 smoothed_route = [smoothed_route,new_route]; %#ok<AGROW>
 Update_lists % Update stored costs
 straight_line = 0;
 clear j
 % Check if next waypoint has already been visited, and finds path
 if (waypoints(k+1)~=waypoints(end)) && ~altwaypoints(k+1) &&
costb(waypoints(k+2))
 route = [waypoints(k+2),zeros(1,dimr+dimc)];
 i = previousb(waypoints(k+2));
 count = 1;
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousb(i);
 end
 route1 = route(find(route,1,'last'):-1:1);
 route1 = Smooth(route1);
 smoothed_route = [smoothed_route,route1(2:end)]; %#ok<AGROW>
 skipped = true;
 skip_waypoint = true;
 new_route = route1(2:end);
 Update_lists % Update stored costs
 elseif (waypoints(k+1)~=waypoints(end)) && altwaypoints(k+1) &&
costa(waypoints(k+2))
 route = [waypoints(k+2),zeros(1,dimr+dimc)];
 i = previousa(waypoints(k+2));
 count = 1;
 while i ~= 0
 count = count+1;
 route(count) = i;
 i = previousa(i);
 end
 route1 = route(find(route,1,'last'):-1:1);
 route1 = Smooth(route1);
 smoothed_route = [smoothed_route,route1(2:end)]; %#ok<AGROW>
 skipped = true;
 skip_waypoint = true;
 new_route = route1(2:end);
 Update_lists % Update stored costs
 end
 end
 % ////////////////// END OF OPTIMIZATION ROUTINE //////////////////////
 if path_err % Handle any path errors
 Data.errpath = [Data.errpath,enR]; %#ok<AGROW>
 Select = Select(Select~=en); % Purge from new path list
 path_err = false;
 continue
 end
 Data.Pathpoints{en} = [floor((smoothed_route-.5)/dimr);
mod(smoothed_route-1,dimr)].';
 [Data.Distance{en},Data.MetCost{en},Data.Time{en}] =
deal(Distance.',Cost.',Time.');
end

 200

try delete(pathmsg), catch end %#ok<CTCH>

%% ************ STORE PATHS, WRITE RENDER & COORD FILES *******************
for en = Select
 cd(Data.Render_dir)
 enR = mod(en-1,Data.NumExp)+1;
 for Outfile = {Data.EVAname,'Current'} % Write Waypoint render files
 wrf =
fopen(sprintf([Outfile{1},'_Waypoints%d%s.txt'],enR,Data.R),'wt');
 fprintf(wrf,'way%d %d %d\n',[(1:size(Data.Waypoints{en},1)).',...
 Data.Waypoints{en}(:,1),Data.Rows-1-Data.Waypoints{en}(:,2)].');
 fclose(wrf); % Write Traverse render files
 trf =
fopen(sprintf([Outfile{1},'_Traverse%d%s.txt'],enR,Data.R),'wt');
 fprintf(trf,'path%d %d %d\n',[(1:length(Data.Distance{en})).',...
 Data.Pathpoints{en}(:,1),Data.Rows-1-
Data.Pathpoints{en}(:,2)].');
 fclose(trf); % Write Cost render files
 crf = fopen(sprintf([Outfile{1},'_Costs%d%s.txt'],enR,Data.R),'wt');
 fprintf(crf,'cost%d %.2f %.2f
%.2f\n',[(1:length(Data.Distance{en})).',...
 Data.Distance{en},Data.Time{en},Data.MetCost{en}].');
 fclose(crf);
 end
 for i = 1:length(Data.Distance{en}); % Append elevations at path coords
 Data.Pathpoints{en}(i,3) =
Data.Elevations(Data.Pathpoints{en}(i,2)+1,...

Data.Pathpoints{en}(i,1)+1);
 end

 % The following is an example of exporting traverse Lat/Long data in text
files
 % This may be deleted if not desired
 if Data.UTMzone ~= 0
 [LAT,LONG] = deal(zeros(i,3));
 for k = 1:i % Lat/Long at each Pathpoint
 % Lat/Long: uwgb.edu/dutchs/UsefulData/UTMFormulas.htm
 x =
Data.xllcorner+(Data.Pathpoints{en}(k,1)+.5)*Data.Resolution-500000;
 y = Data.yllcorner+(Data.Rows-1-
(Data.Pathpoints{en}(k,2)+.5))*...
 Data.Resolution-10000000*(Data.UTMzone<0);
 e = (1-6356752.314^2/6378137^2)^(1/2);
 mu = y/(.9996*6378137*(1-e^2/4-3/64*e^4-5/256*e^6));
 e1 = (1-(1-e^2)^(1/2))/(1+(1-e^2)^(1/2));
 J = [3/2*e1-27/32*e1^3, 21/16*e1^2-55/32*e1^4,...
 151/96*e1^3, 1097/512*e1^4];
 fp =
mu+J(1)*sin(2*mu)+J(2)*sin(4*mu)+J(3)*sin(6*mu)+J(4)*sin(8*mu);
 e2 = e^2/(1-e^2);
 C = e2*cos(fp)^2;
 T = tan(fp)^2;
 R = 6378137*(1-e^2)/(1-e^2*sin(fp)^2)^(3/2);
 N = 6378137/(1-e^2*sin(fp)^2)^(1/2);
 D = x/(.9996*N);

 201

 Qa = [N*tan(fp)/R, D^2/2, (5+3*T+10*C-4*C^2-9*e2)*D^4/24,...
 (61+90*T+298*C+45*T^2-3*C^2-252*e2)*D^6/720];
 Qo = [D, (1+2*T+C)*D^3/6, (5-2*C+28*T-
3*C^2+8*e2+24*T^2)*D^5/120];
 lat = (fp-Qa(1)*(Qa(2)-Qa(3)+Qa(4)))*180/pi;
 long = abs(Data.UTMzone)*6-183+((Qo(1)-
Qo(2)+Qo(3))/cos(fp))*180/pi;
 LAT(k,:) = [fix(lat) fix(rem(lat,1)*60)
rem(rem(lat,1)*60,1)*60];
 LONG(k,:) = [fix(long) fix(rem(long,1)*60)
rem(rem(long,1)*60,1)*60];
 end
 cd([Data.Work_dir,'Traverse_Coordinates'])
 pcf =
fopen(sprintf([Data.EVAname,'_Coords%d%s.txt'],enR,Data.R),'wt');
 fprintf(pcf,'Explorer %d%s Lat , Long:\n',enR,Data.R);
 fprintf(pcf,'point%d %.0f %.0f %.2f , %.0f %.0f %.2f\n',...

[(1:length(Data.Distance{en})).',LAT(:,1),abs(LAT(:,2:3)),LONG(:,1),abs(LONG(
:,2:3))].');
 fclose(pcf);
 end

end
cd(Data.Work_dir) % Append paths & costs to Matlab data file
try save([Data.EVAname,'_Data'],'-struct','Data','Pathpoints','Distance',...
 'MetCost','Time','-append'), catch %#ok<CTCH>
end
Data.Newpaths = Select; % Note all successful paths
set(Data.MPfig,'UserData',Data) % Store all path and cost data

%% ************ INCORRECT 3 ARGUMENT CALL TO PATHMASTER *******************
otherwise
disp('Error: Incorrect call to pathmaster')

%% End of Progress switch
end

%% ************ PATH OPTIMIZATION SUBFUNCTIONS ****************************
% Update Cost, Distance, & Time lists
function Update_lists
 prev_cost = Cost(end);
 prev_distance = Distance(end);
 prev_time = Time(end);
 if ~straight_line
 if altwaypoints(k)
 for p = new_route
 if ~costb(p) && ~skipped
 Cost(end+1) = prev_cost+costa(p); %#ok<AGROW>
 Distance(end+1) = prev_distance+distancea(p); %#ok<AGROW>
 Time(end+1) = prev_time+timea(p); %#ok<AGROW>
 elseif ~skipped
 Cost(end+1) = prev_cost+((costa(j)+costb(j))-costb(p));
%#ok<AGROW>
 Distance(end+1) =
prev_distance+((distancea(j)+distanceb(j))-distanceb(p)); %#ok<AGROW>

 202

 Time(end+1) = prev_time+((timea(j)+timeb(j))-timeb(p));
%#ok<AGROW>
 else
 Cost(end+1) = prev_cost+costb(p); %#ok<AGROW>
 Distance(end+1) = prev_distance+distanceb(p); %#ok<AGROW>
 Time(end+1) = prev_time+timeb(p); %#ok<AGROW>
 end
 end
 else
 for p = new_route
 if ~costa(p)
 Cost(end+1) = prev_cost+costb(p); %#ok<AGROW>
 Distance(end+1) = prev_distance+distanceb(p); %#ok<AGROW>
 Time(end+1) = prev_time+timeb(p); %#ok<AGROW>
 elseif ~skipped
 Cost(end+1) = prev_cost+((costa(j)+costb(j))-costa(p));
%#ok<AGROW>
 Distance(end+1) =
prev_distance+((distancea(j)+distanceb(j))-distancea(p)); %#ok<AGROW>
 Time(end+1) = prev_time+((timea(j)+timeb(j))-timea(p));
%#ok<AGROW>
 else
 Cost(end+1) = prev_cost+costa(p); %#ok<AGROW>
 Distance(end+1) = prev_distance+distancea(p); %#ok<AGROW>
 Time(end+1) = prev_time+timea(p); %#ok<AGROW>
 end
 end
 end
 else
 Cost(end+1) = prev_cost+costa(j)+costb(j);
 Distance(end+1) = prev_distance+distancea(j)+distanceb(j);
 Time(end+1) = prev_time+timea(j)+timeb(j);
 end
end

% Path Smoothing
function [smooth_route] = Smooth(route)
 smooth_route = route;
 remove_val = zeros(1,length(smooth_route));
 remove_val(1) = 1; %find(remove_val,1,'first') wont give an empty matrix
 p = 1;
 while p < length(route)
 u = route(p);
 for ip = (2+p):length(route)
 v = route(ip);
 line1 = Midpoint(u,v); % Calls Midpoint function
 if length(line1)==length(route(p:ip)) && all(line1==route(p:ip))
%If route(p:ip) is straight, remove points between
 remove_val(find(remove_val,1,'last')+1) = ip-1;
 elseif v==u-dimr-1 || v==u+dimr-1 || v==u+dimr+1 || v==u-dimr+1
 remove_val(find(remove_val,1,'last')+1) = ip-1;
 else
 break;
 end
 end
 p = ip-1;
 end

 203

 remove_val(1) = [];
 remove_val = remove_val(1:find(remove_val,1,'last'));
 smooth_route(remove_val) = [];
end

% Midpoint Algorithm
% Modified from N. Chattrapiban's version of Bresenham's Algorithm
% Used to find the straightest path between two points
function [myline] = Midpoint(a,b)
 x = ceil([a b]/dimr);
 y = mod([a b]-1,dimr)+1;
 XX = x(1);
 YY = y(1);
 steep = (abs(y(2)-y(1)) > abs(x(2)-x(1)));
 if steep
 t = x; x = y; y = t;
 end
 if x(1) > x(2)
 t = x(1); x(1) = x(2); x(2) = t;
 t = y(1); y(1) = y(2); y(2) = t;
 end
 delx = x(2)-x(1);
 dely = abs(y(2)-y(1));
 err = 0;
 x_n = x(1);
 y_n = y(1);
 if y(1) < y(2), ystep = 1; else ystep = -1; end
 myline = zeros(1,delx+1);
 for nn = 1:delx+1
 if steep
 myline(nn) = 1+dimr*(y_n-1)+(x_n-1);
 else
 myline(nn) = 1+dimr*(x_n-1)+(y_n-1);
 end
 x_n = x_n + 1;
 err = err + dely;
 if bitshift(err,1) >= delx, % same as -> if 2*err >= delx,
 y_n = y_n + ystep;
 err = err - delx;
 end
 end
 if myline(1) ~= (XX-1)*dimr+YY
 myline = myline(end:-1:1);
 end
end
% End of pathmaster
end

 204

 205

APPENDIX D: SUPPLEMENTARY INFORMATION FOR

THE EXPLORATION LAB FIELD TEST

2.00AJ/16.00AJ Lab 1: Exploration on the Moon (well, Killian
Court): Mission Planning for EVA and Geology

Background:
 Several days ago, a rover sent through the Killian terrain identified various regions of distinct
geological formations. Within each region, the rover mapped the locations of several sites where
highly interesting geological samples may be collected. In response to this exciting discovery, a
team of astronauts and rovers nearby on the surface has been re-directed to the Killian region in
order to examine and bring back these samples. Nearing the end of their scheduled surface
mission duration, the team has enough resources remaining for roughly 8 hours of work toward
exploring Killian before they must return to the lunar module. In response to this change of
plans, Mission Control must now develop a strategy to maximize the scientific return from
Killian before returning the surface team home safely.

Mission Detail:
 As shown in the map on the next page, Killian has been segmented into three distinct zones.
Within each zone are the marked locations of sites of potential geological interest. Although
various samples are expected to be encountered at each site, geological data will provide the
identity of �samples of interest� that are to be collected by the astronauts. Different zones may

have different �samples of interest�, and not every site is necessarily �interesting�.

Objectives:
 The suited astronauts and rovers will explore the Killian terrain beginning at the starting
base. The mission objectives, listed in order of priority, are as follows:
 1) Safely return all astronauts and rovers to the base
 2) Collect a sample of interest from as many zones as possible
 3) Collect as many samples of interest as possible

Schedule:
2:00 Introduction & choosing team positions
2:20 Mission planning
3:00 Team Shackleton EVA1
3:20 Discussion, team switch, real-time planning for EVA2
3:35 Team EARLE EVA2
3:55 Debrief, demos, cleanup

 206

 207

Resources and Limitations:

General
� The EVA mission will be run on a 1/30 time scale, so every minute in real-time is

weighted as a half-hour.

� The Exploration Surface Team will have a continuous audio link with Mission
Control via the Communicator; however, the Surface Team will have no access
to maps or data and must rely on Mission Control to guide them. Likewise,
Mission Control will not be able to see the Surface Team and must rely upon the
communications link.

Astronauts
� The astronauts have enough oxygen for about 9 hours of light activity. To

conserve oxygen, astronauts should attempt to remain relatively still and should
lope1 or walk and may not run while exploring. Carrying a load also increases
oxygen consumption.

 Monitored by the Medical Officer

� The astronauts are limited to a cumulative traverse distance of 1,000 meters.
 Monitored by the Positioning Officer

� The astronauts must stick together and travel as a group.

� Each astronaut may carry one sample (or rover) at a time.

Rovers
� The rovers have battery power for an expected 5-10 hours of use. This is highly

dependent upon the rover and the level of activity.
 Monitored by the Rover Technician and rover operators

� The rovers may travel independently

� Rovers cannot carry samples

1 Loping (a form of run with increased ariel phase) is more energy efficient than walking, per unit distance and mass, in environments with
gravity reduced more than 50% relative to Earth (<0.5G).
Newman, D.J., Alexander, H.L. and B.W. Webbon, "Energetics and Mechanics for Partial Gravity Locomotion," Aviat Space and
Environ Med, 65: 815-823, 1994; C.E. Carr and D.J. Newman. �When is running in a space suit more efficient than walking in a space
suit?�, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, USA. SAE paper 2005-01-2970, 2005; Carr, C. E., Newman,
D. J., �Space Suit Bioenergetics: Cost of Transport During Walking and Running�, Journal of Aviation, Space Environmental Medicine,
78:1093-1102, 2007.

 208

Team Format:
Lunar Exploration Surface Team
Astronauts (2-4) The astronauts will be physically moving (�loping� is the preferred means of

locomotion by lunar astronauts) about Killian, wearing Apollo �space suits�.

Astronauts must stick together. The lunar astronauts will communicate with
Mission Control via walkie-talkie. Each astronaut will be able to carry one
�sample� at a time.

Rovers (3) The lunar rovers will be three RC robots, and are part of the exploration team
in Killian. Unlike astronauts, rovers do not need to stick together and can
move wherever commanded. The rovers may be equipped with wireless
cameras fed back to Mission Control. RC rover motion will be controlled by
human operators out in the field who will receive commands from Mission
Control. Operators (considered part of Mission Control) should not physically
assist the rovers; however, an astronaut can move or carry a rover should it get
stuck or run out of battery power. Rovers cannot carry �samples.� See rover
detail, page 5

Lunar Exploration Mission Control Team
Director The Director oversees the mission and makes final decisions regarding how to

proceed. All other Mission Control positions report to the Director.

Communicator(s) The Communicator is an astronaut, and the only person who may
communicate with the exploration astronauts via walkie-talkie. The
Communicator is also responsible for sending rover commands.

Positioning (1-2) The Positioning Officer(s) will update and display current astronaut and rover
positioning on a real-time map display. The Positioning Officer will also need
to keep track of distance traveled, inform the Director of astronaut constraints
(i.e. distance to return �home�, etc.), and report if/when the exploration

activity needs to end. See Positioning Officer detail, page 6

Medical The Medical Officer will update and monitor the astronaut heart rate and
oxygen levels and detect any problems. They will inform the Director of the
astronaut status (heart rate & oxygen remaining) and if/when the exploration
activity must end based upon data. See Medical Officer detail, page 7

Rover Tech. (1-2) The Rover Technician(s) will monitor the rover video feed and track battery
life. Rover positioning commands will need to be given to the Communicator,
and visual data provided to the Geologist. They will inform the Director of
rover battery status and if/when the activities must end based upon data. See
Rover Technician detail, page 8

Geologist The Geologist in Mission Control will be provided with data regarding
samples of interest to be collected by the field astronauts. Based upon this
data, the Geologist will advise the Director as to which sites are most valuable
for scientific return.

 209

Rover Detail
Rolling Rover

Crawling Rover

Flying Rover

 210

Positioning Officer Detail

1) Identify the traverse path segment

2) Click �Show obstacles�

3) Click on start then end point on map

4) Click �Start�

5) Record traverse distance data

6) Edit path segment appearance on map

7) Repeat from (1)

Medical Officer Detail

� Point and click to record current astronaut activity

� Monitor astronaut heart rate and Oxygen supply

� Notify team of astronaut status and/or problems

 212

Rover Technician Detail

� Monitor rover video feed

� Inform Geologist of data from sites

� Point and click to record current rover activities

� Monitor rovers� battery power

� Notify team of rover status and/or problems

 213

APPENDIX E: LABVIEW ENERGETICS MODELS

Astronaut energetics model for the Exploration Lab field test:
Front panel:

Block diagram:

 214

Robot energetics model for the Exploration Lab field test:
Front panel:

Block diagram:

 215

Astronaut energetics model for the joint EVA simulations:
Front panel:

Block diagram:

 216

 217

REFERENCES

Acuña, M. H. (2003). The magnetic field of Mars. The Leading Edge, August 2003, 769 � 771.

Arnett, B. (2005). The Moon. The Nine Planets. Retrieved June 23, 2008, from the World Wide

Web: http://www.nineplanets.org/luna.html

Asaravala, A. (2004). A Black Box for Human Health. Wired. Retrieved July 28, 2008, from the

World Wide Web: http://www.wired.com/science/discoveries/news/2004/04/63034

Bagherzadeh, N., Chou, P. H., Kurdahi, F., & Liu, J. (2001). Power-Aware Scheduling Under

Timing Constraints for Mission-Critical Embedded Systems. 38th Conference on Design
Automation, 840 � 845.

BBC. (2008). 1969: Man takes first steps on the Moon. BBC On This Day. Retrieved June 17,

2008, from the World Wide Web:
http://news.bbc.co.uk/onthisday/hi/dates/stories/july/21/newsid_2635000/2635845.stm

Biesiadecki, J. J., Leger, P. C., & Maimone, M. W. (2005). Tradeoffs between directed and

autonomous driving on the Mars Exploration Rovers. Paper presented at the International
Symposium of Robotics Research, San Francisco, CA.

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4(1), 25 � 30.

Bush, G. W. (2004). �The Vision for Space Exploration.� Speech given to NASA Headquarters,

Washington, D.C.

Cabrol, N. A., Kosmo, J. J., Trevino, R. C., Thomas, H., Eppler, D., Bualat, M. G., Baker, K.,

Huber, E., Sierhuis, M., Grin, E. A., Stoker, C. R., Schreiner, J. A., Sims, M. H., Gulick,
V. C., & Cockell, C. S. (1999). Results of the First Astroanut-Rover (ASRO) Field
Experiment: Lessons and Directions for the Human Exploration of Mars. Proceedings of
the 18th Digital Avionics Systems Conference, 2, 7.C.3-1 � 7.C.3-8

Carney, M. D., Willis, B., Marchant, C., Miskin, J., Andersen, B., Schicker, J., & Jolley, P.,

(2005). AEGIS: A Navigation and Communications Infrastructure for the Moon and
Mars. College of Engineering, Utah State University.

Carr, C. E., Newman, D. J., & Hodges, K. V. (2003). Geologic Traverse Planning for Planetary

EVA. Paper presented to the 33rd International Conference on Environmental Systems,
Vancouver, B.C., Canada.

http://www.nineplanets.org/luna.html
http://www.wired.com/science/discoveries/news/2004/04/63034
http://news.bbc.co.uk/onthisday/hi/dates/stories/july/21/newsid_2635000/2635845.stm

 218

Casper, J. & Murphy, R. R. (2003). Human-Robot Interactions During the Robot-Assisted Urban
Search and Rescue Response at the World Trade Center. IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, 33(3), 367 � 385.

Christy, R. (2008). Luna17 � Carrier for Lunokhod 1. Zarya: Soviet, Russian and International

Spaceflight. Retrieved June 23, 2008, from the World Wide Web:
http://www.zarya.info/Diaries/Luna/Luna17.php

Clement, J. L., Boyd, J. E., Kanas, N., Saylor, S. (2007). Leadership challenges in ISS

operations: Lessons learned from junior and senior mission control personnel. Acta
Astronautica, 61(1-6), 2 � 7.

Cooke, D., Yoder, G., Leshin, L., & Gernhardt, M. (2007). Exploration Systems Mission

Directorate Lunar Architecture Update. Presentation at the AIAA Space 2007
Conference & Exposition, Long Beach, CA.

Cummings, M. L. (2006). Human Interaction with Automated Planners. National Science

Foundation Proposal.

Engle, M. (2004). Operational Considerations for Manned Lunar Landing Missions � Lessons

Learned from Apollo. Paper Presented at the AIAA Space 2004 Conference and Exhibit,
San Diego, CA.

Eppler, D. (2004). Conduct of Geologic Field Work During Planetary Exploration: Implications

for EVA and Robotic Systems Interaction. Presentation to SAE.

GM Working on �Smart� Windshields to Guide Drivers. Fox News Press Release. Retrieved July

18, 2008, from the World Wide Web:
http://www.foxnews.com/story/0,2933,385302,00.html

Gorder, P. F. (2008). New Project to Develop GPS-Like System for the Moon. Ohio State

University Press Release. Retrieved July 28, 2008, from the World Wide Web:
http://www.moontoday.net/news/viewpr.html?pid=26025

Hart, P. E., Nilsson, N. J., Raphael, B. (1968). A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems, Science, and Cybernetics SSC4(2),
100 � 107.

Iagnemma, K., Kang, S., Shibly, H., & Dubowsky, S. (2004). Online Terrain Parameter

Estimation for Wheeled Mobile Robots With Application to Planetary Rovers. IEEE
Transactions on Robotics, 20(5), 921 - 927.

Johnson, B. J. (2008). Optimization of a Planning Support System for Planetary Exploration

Extravehicular Activities. Paper presented to the Massachusetts Institute of Technology
Summer Research Program.

http://www.zarya.info/Diaries/Luna/Luna17.php
http://www.foxnews.com/story/0,2933,385302,00.html
http://www.moontoday.net/news/viewpr.html?pid=26025

 219

Jones, E. M. (1995). Apollo Lunar Surface Journal. Retrieved June 21, 2008, from the World
Wide Web: http://www.hq.nasa.gov/alsj/

Jones, E. M. (2006). Apollo 16 Lunar Surface Journal. Retrieved June 21, 2008, from the World

Wide Web: http://history.nasa.gov/alsj/a16/a16.lsp.html

LaPiana, F. (1971). A Summary of the LRV Navigation System. (NASA-CR-121354).

Washington, D.C.

Leger, P. C., Deen, R. G., & Bonitz, R. G. (2005). Remote Image Analysis for Mars Exploration

Rover Mobility and Manipulation Operations. Paper presented at the Systems, Man, and
Cybernetics 2005 IEEE Conference, Big Island, HI.

Lindqvist, L. V. J. (2008). Multidisciplinary Extravehicular Activity Mission Optimization for

Lunar Exploration. Master Thesis, Technishe Universität München.

Márquez, J. J. (2007). Human-Automation Collaboration: Decision Support for Lunar and

Planetary Exploration. Ph.D. Thesis, Massachusetts Institute of Technology.

Muehlberger, W. R. (1981). Apollo 16 Traverse Planning and Field Procedures. In G.E. Ulrich &

C. A. Hodges & W.R. Muehlberger (Eds.), Geological Survey Professional Paper 1048:
Geology of the Apollo 16 Area, Central Lunar Highlands (pp. 10 - 20). Washington,
D.C., US Government Printing Office.

NASA. (1971). Apollo 14 Mission Report (MSC-04112). Houston, TX: Manned Spacecraft

Center.

NASA. (2004). Apollo 11 at 35: Celebrating the Past with a Vision for the Future. NASA.

Retrieved June 15, 2008, from the World Wide Web:
http://www.nasa.gov/vision/space/features/apollo11_35th.html

NASA. (2007). Exploration: NASA�s Plan to Explore the Moon, Mars and Beyond. NASA.

Retrieved July 19, 2008, from the World Wide Web:
http://www.nasa.gov/mission_pages/exploration/mmb/why_moon.html

Ney, Z. A., & Looper, C.A. (2005). Integrated Planning and Logistics of Exploration Initiatives

for Long Term Maintenance EVA/EVR Operations. Paper presented at the AIAA 1st
Space Exploration Conference, Orlando, FL.

Norris, J. S., Powell, M. W., Vona, M. A., Backes, P. G., & Wick, J. V. (2005). Mars

Exploration Rover Operations with the Science Activity Planner. Paper presented at the
IEEE International Conference on Robotics and Automation.

http://www.hq.nasa.gov/alsj/
http://history.nasa.gov/alsj/a16/a16.lsp.html
http://www.nasa.gov/vision/space/features/apollo11_35th.html
http://www.nasa.gov/mission_pages/exploration/mmb/why_moon.html

 220

O�Keefe, K., Lachapelle, G., Skone, S. (2004). GPS goes martian: nav/com for a red planet. GPS
World. Retrieved July 20, 2008, from the World Wide Web:
http://findarticles.com/p/articles/mi_m0BPW/is_6_15/ai_n6175511/pg_1?tag=artBody;co
l1

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of

human interaction with automation. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 30, 286 - 297

Perko, H. A., Nelson, J. D., Green, J. R. (2006). Mars Soil Mechanical Properties and

Sustainability of Mars Soil Simulants. Journal of Aerospace Engineering, 19(3), 169-
176.

Rader, A. A., Newman, D. J., Carr, C. E. (2007). Loping: A Strategy for Reduced Gravity Human

Locomotion? Paper presented at the International Conference On Environmental
Systems, Chicago, IL.

Riesterer, J. (2008). UTM � Universal Transverse Mercator Geographic Coordinate System.

Geospatial Training and Analysis Cooperative Introduction to Topographic Maps.
Retrieved July 19, 2008, from the World Wide Web:
http://geology.isu.edu/geostac/Field_Exercise/topomaps/utm.htm

Santee, W. R., Allison, W. F., Blanchard, L. A., & Small, M. G. (2001). A proposed model for

load carriage on sloped terrain. Aviation, Space, and Environmental Medicine, 72(6).

Sarter, N., & Schroeder, B. (2001). Supporting decision making and action selection under time

pressure and uncertainty: The case of in-flight icing. Human Factors, 43(4), 573 � 583.

Squires, S. (2008). �NASA�s Plans To Return To The Moon In Preparation For A Manned Flight

To Mars.� Interview with 60 Minutes, CBS.

Titterton, D. H., & Weston, J. L. (2004) Strapdown Inertial Navigation Technology. New York:

American Institute of Aeronautics & Astronautics.

UNBC GIS & Remote Sensing Lab. (2008). Geo-Referencing. Lecture notes for Introduction to

Geographic Information System. Retrieved July 20, 2008, from the World Wide Web:
http://www.gis.unbc.ca/courses/geog300/lectures/lect3/index.php

Wade, M. (2008). Apollo LRV. Encyclopedia Astronautica. Retrieved June 20, 2008, from the

World Wide Web: http://www.astronautix.com/craft/apololrv.htm

http://findarticles.com/p/articles/mi_m0BPW/is_6_15/ai_n6175511/pg_1?tag=artBody;co
http://geology.isu.edu/geostac/Field_Exercise/topomaps/utm.htm
http://www.gis.unbc.ca/courses/geog300/lectures/lect3/index.php
http://www.astronautix.com/craft/apololrv.htm

 221

 222

