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Abstract

With wetlands constituting about 6% of earth’s land surface, aquatic vegetation plays
a significant role in defining mean flow patterns and in the transport of dissolved and
particulate material in the environment. However, the dependence of the hydrody-
namic and transport processes on fundamental properties of an aquatic plant canopy
has not been investigated systematically over the wide range of conditions that are
observed in the field. A laboratory investigation was conducted to describe flow and
solute transport in idealized emergent plant canopies. This thesis presents labora-
tory measurements of the mean drag, turbulence structure and intensity, and lateral
dispersion of passive solute in arrays of randomly-distributed cylinders, a model for
emergent, rigid aquatic plants.

Mean drag per cylinder length normalized by the mean interstitial fluid velocity
and viscosity increases linearly with cylinder Reynolds number. In contrast to the
dependence previously reported for sparse arrays at Reynolds numbers greater than
1000, the drag coefficient increases with increasing cylinder density in intermediate
and high cylinder densities.

In dense arrays, turbulent eddies are constrained by the interstitial pore size such
that the integral length scale is equal to the mean surface-to-surface distance between
a cylinder in the array and its nearest neighbor. The classic scale model for mean
turbulence intensity, which is a function of the inertial contribution to the drag coeffi-
cient, the solid volume fraction, and the integral length scale of turbulence normalized
by d, is then confirmed with our laboratory measurements.

Our laboratory experiments demonstrate that Kyy/(〈u〉d), the asymptotic (Fick-
ian) lateral dispersion coefficient normalized by the mean interstitial fluid velocity,
〈u〉, and d, is independent of Reynolds number at sufficiently high Reynolds num-
ber. Although previous models predict that asymptotic lateral dispersion increases
monotonically with cylinder density, laboratory measurements reveal that lateral dis-
persion at high Reynolds number exhibits three distinct regimes. In particular, an
intermediate regime in which Kyy/(〈u〉d) decreases with increasing cylinder density is
observed. A scale model for turbulent diffusion is developed with the assumption that



only turbulent eddies with integral length scale greater than d contribute significantly
to net lateral dispersion. The observed dependence of asymptotic dispersion on cylin-
der density is accurately described by a linear superposition of this turbulent diffusion
model and existing models for dispersion due to the spatially-heterogeneous velocity
field that arises from the presence of the cylinders. Finally, laboratory measurements
support the conjecture that Kyy/(〈u〉d) is not strongly dependent on Reynolds num-
ber in dense arrays at any Red. However, the distance required to achieve asymptotic
dispersion is shown to depend strongly on the Reynolds number.

Thesis Supervisor: Heidi M. Nepf
Title: Professor of Environmental Fluid Mechanics
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Chapter 1

Introduction

Vegetation in aquatic flows alters its environment in many ways. Most importantly,

plants introduce additional hydraulic resistance to the flow, which may significantly

reduce the volumetric flow rate in channels. Vegetation also influences the transport

of dissolved and particulate material, such as nutrients, pollutants, and sediment, by

creating velocity heterogeneity at the scale of individual stems. For example, plants

force fluid to follow tortuous paths around them (figure 1-1) and introduce no-slip

boundaries and spatial variations in the local interstitial cross-sectional area (because

spacing between plants is not uniform) (e.g., Fried and Combarnous, 1971). Un-

der certain conditions, recirculation zones may develop immediately downstream of

plants. These small-scale heterogeneities in local velocity contribute to longitudinal

and transverse dispersion. In addition, the presence of plants alters the turbulence

structure and intensity. This in turn alters the instantaneous thickness of the bound-

ary layer at the surface of plants and organisms in the water and, in the absence

of other rate-limiting steps, presumably affects the diffusive flux of nutrients across

the boundary layer and their removal from the water. Also, suspended sediment

transport is reduced in channels with submerged vegetation because of the reduction

in bed shear stress (López and Garćıa, 1998). Similarly, treatment wetlands have

been observed to reduce the total suspended solid concentration by as much as 90%

(Knight et al., 1999), demonstrating that vegetation can create conditions favorable

to particle removal.
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cylinders

Figure 1-1: Flow in an array of randomly distributed cylinders, a model for emergent
plants. Fluid is forced to flow around the impermeable cylinders, such that fluid
particles that are close to one another at some instance may be separated laterally
after some period of time. Mean flow is from left to right.

Field conditions in aquatic plant canopies span a wide range. For example, even

within emergent plant canopies, i.e., canopies where plants span the entire water

column and penetrate the free surface, the fraction of the total (plants and fluid)

volume occupied by plants may be as small as φ = 0.1 − 2% (Valiela et al., 1978;

Leonard and Luther, 1995, salt marshes) or as high as 50% (Mazda et al., 1997,

mangroves). In the former, flow around each stem in the canopy resembles flow past

an isolated stem. The latter approaches the limit of packed beds of spheres (φ ≈
0.6− 0.7). Similarly, mean flow velocity varies from 0 to O(10) cm s−1, which spans

the steady laminar, unsteady laminar, and turbulent flow regimes in the presence

of cylindrical plants. In contrast, solid volume fraction and flow conditions in most

other types of obstructed flows, e.g., groundwater and flow through packed beds of

spheres, trees, buildings, and filters, do not vary significantly within each context.

Consequently, previous studies in the literature have generally focused on a narrow

parameter range. In this thesis, I describe the dependence of drag, turbulence, and

solute transport on two key properties of an emergent plant canopy, plant density (φ)

and Reynolds number, over the entire range of conditions relevant to emergent plant

canopies.
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dx

y

〈u〉

snc

sn

Figure 1-2: Key parameters for a two-dimensional array of randomly-distributed
cylinders of uniform diameter d. The center-to-center distance to the nearest neigh-
bor, snc, differs for each cylinder.

1.1 Key parameters in a random cylinder array

In this thesis, a plant canopy is modeled as a homogeneous, two-dimensional array of

rigid, circular cylinders of uniform diameter d distributed randomly with a constant

density m (cylinders per unit horizontal area). The corresponding solid volume frac-

tion is φ = mπd2/4. The center-to-center distance from a particular cylinder to its

nearest neighbor is denoted by snc, as illustrated in figure 1-2 for an arbitrary cylinder.

The corresponding surface-to-surface distance is denoted by sn (= snc−d). The mean

nearest-neighbor separation defined between cylinder surfaces, 〈sn〉A, where 〈 〉A de-

notes an average over many cylinders in the array, can be described analytically as

a function of φ and d (Appendix D). Note that our formulation is only valid where

the large-scale dimensions of the array, e.g., water depth and array width, are much

larger than d and 〈sn〉A.

The Cartesian coordinates x = (x, y, z) = (x1, x2, x3) are defined such that the

x-axis is aligned with the the mean interstitial fluid velocity 〈u〉 (the fluid velocity

averaged over time and the fluid volume). The y-axis is in the horizontal plane and

perpendicular to the x-axis (figure 1-2). The z-axis is vertical and aligned with the

cylinder axes, which are perpendicular to the horizontal bed of the test section. z = 0
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is defined at the bed. In this thesis, the overbar denotes an average over a time interval

much longer than those associated with turbulent fluctuations and vortex shedding.

〈 〉 denotes an average over infinitesimally thin fluid volume that span many cylinders

or, equivalently, an ensemble average, i.e., an average over many arrays with the same

φ, d, and flow conditions, but with different cylinder configurations. In this thesis,

we only consider constant, uniform mean flow, i.e., time-independent 〈u〉.

1.1.1 Reynolds number

The two length scales identified above can be used to define two Reynolds numbers,

Red ≡ 〈u〉d/ν and Re〈sn〉A ≡ 〈u〉〈sn〉A/ν, where ν is the kinematic viscosity. It is well-

established that flow patterns around isolated cylinders are similar at the same Red.

Detailed descriptions of these flows are available in classic papers and in standard

fluid mechanics text books, e.g., Lienhard, 1966; Kundu and Cohen, 2004; Gerrard,

1978, so only the key regimes relevant to this chapter are identified here. As Red

is increased from Stokes flow, flow remains steady and laminar everywhere in the

fluid up to Red ≈ 40. At Red ≈ 40, the isolated cylinder wake begins to oscillate

periodically. At Red ≈ 90, vortices begin to periodically shed from the cylinder. This

unsteady, laminar wake regime continues until Red ≈ 200, beyond which the periodic

motion of the wake gradually breaks down and the wake becomes turbulent as Red is

increased further. The wake becomes fully turbulent at roughly Red ≈ 5000 (Kundu

and Cohen, 2004).

At sufficiently small φ, flow around each cylinder in the array resembles flow past

an isolated cylinder. In this limit, where 〈sn〉A tends to infinity, Red is the relevant

Reynolds number and, for example, transitions between the flow regimes described

above occur at the same Red as in the isolated cylinder wake. At sufficiently large φ,

the array resembles a network of intersecting channels of width 〈sn〉A. Accordingly,

flow in such arrays is expected to be kinematically and dynamically similar at the

same Re〈sn〉A . Arrays considered in this thesis appear to fall between these limits,

and neither Red or Re〈sn〉A alone captures the similarity across flows at different φ

(§ 4.3.1). For simplicity, results will be discussed in terms of Red only. It should be
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noted that in the laboratory experiments reported in this thesis, d was kept constant,

and differences in Red result entirely from differences in 〈u〉/ν, i.e., Red dependence

refers specifically to the dependence on 〈u〉/ν.

However, certain empirical criteria used in Ch. 3 are more conveniently defined

in terms of Re〈sn〉A . Specifically, it will be shown that the lateral variance of a

time-averaged solute plume becomes Red-independent above a critical Red that is,

in general, larger at larger φ (Appendix A). For convenience, we prefer to use a single

criterion for all φ to identify the Red-independent variance measurements. Since 〈sn〉A
decreases with increasing φ, more of our measurements can be correctly classified

as Red-independent by a single value of Re〈sn〉A than a single value of Red and,

accordingly, the latter is used to define the empirical criterion for Red-independent

time-averaged concentration variance.

1.2 Thesis structure

Chapter 2 presents laboratory measurements of cross-sectionally averaged cylinder

drag and its dependence on Red and φ. It is shown that drag per unit cylinder

length, when normalized by 〈u〉 and viscosity, increases linearly with Red, consistent

with the classic dimensional analysis of form/inertial drag of an isolated cylinder. A

single linear function (of Red) is computed for each φ, from which the normalized

drag can be predicted. The material in this chapter has been published as Tanino

and Nepf, 2008b.

Chapter 3 presents scale models and laboratory measurements of (i) the integral

length scale of turbulence, (ii) the mean turbulence intensity, and (iii) the asymptotic

(long-time/long-distance) lateral dispersion coefficient, Kyy, normalized by 〈u〉d at

high Red, where the three properties are found to be independent of Red. The material

in this chapter has been published as Tanino and Nepf, 2008c.

The model for lateral dispersion predicts that Kyy/(〈u〉d) emerges entirely from

the spatially-heterogeneous velocity field in dense arrays. At high φ, the spatially-

averaged velocity field is not expected to depend strongly on Red, so the model
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predictions imply that lateral dispersion will also not depend strongly on Red. The

same argument has been made, but not verified, for packed beds of spheres (Hill

et al., 2001; Mickley et al., 1965). Chapter 4 presents laboratory measurements of

lateral dispersion at transitional Red, i.e., below fully turbulent conditions, to test

this conjecture. The material in this chapter has been submitted to Physics of Fluids

as Tanino and Nepf, 2008a.

For the reader’s convenience, all figures, equations, and tables are referred to by

the corresponding chapter, figure, equation, and table numbers as they appear in this

thesis.
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Chapter 2

Cross-sectionally-averaged drag in

a random array of rigid cylindersa

Abstract

This chapter investigates the drag exerted by randomly distributed, rigid, emergent
circular cylinders of uniform diameter d. Laboratory measurements are presented for
solid volume fraction φ = 0.091, 0.15, 0.20, 0.27, and 0.35 and cylinder Reynolds num-
ber Red = 25 to 690. These ranges coincide with conditions in aquatic plant canopies.
The temporally- and cross-sectionally-averaged drag coefficient, CD, decreased with
increasing Red and increased with increasing φ under the flow conditions investi-
gated. The dimensionless ratio of the mean drag per unit cylinder length,

〈
fD

〉
H

,

to the product of the viscosity, µ, and the mean pore velocity, Up, exhibits a lin-

ear Red dependence of the form
〈
fD

〉
H

/(µUp) = α0 + α1Red, consistent with Ergun

(1952)’s formulation for packed columns. In the range of experimental conditions,
α1 increases monotonically with φ. In contrast, α0 is constant within uncertainty
for 0.15 ≤ φ ≤ 0.35, which suggests that viscous drag per unit cylinder length is
independent of φ in this range.

aThis chapter is Tanino and Nepf, 2008b with minor corrections and modifications. The au-
thors also thank the three anonymous reviewers and the associate editor for their comments on
the manuscript. This material is based on work supported by the National Science Foundation
grants EAR-0509658 and EAR-6895392. Any opinions, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National Sci-
ence Foundation. The authors thank undergraduate students Lucy L. Wu and Sheung Yan Sueann
Lee for their assistance with the experiments and Brian L. White for providing unpublished ADV
measurements from his Master’s thesis (White, 2002).
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2.1 Introduction

In the field, the impact of vegetation is largely determined by the additional drag it

provides, which can be characterized by a temporally- and spatially-averaged drag

coefficient. The drag coefficient is defined here for an array of cylinders of diameter

d as

CD ≡
〈
fD

〉

ρ 〈u〉2 d/2
, (2.1)

where
〈
fD

〉
is the average drag in the direction of the average flow per unit length of

stem and ρ is the fluid density. In addition to describing the mean drag exerted by

the cylinders, CD is also required in models for turbulence intensity (Nepf, 1999) and

longitudinal dispersion (White and Nepf, 2003) in random cylinder arrays.

The drag coefficient of an isolated cylinder is well established. In particular,

CD decreases with increasing Reynolds number up to Red = O(103). CD is also

influenced by the presence and relative position of neighboring cylinders. For example,

a cylinder in the wake of an upstream cylinder experiences a velocity deficit relative

to 〈u〉. Consequently, the downstream cylinder experiences a reduced drag (Blevins,

2005; Zdravkovich and Pridden, 1977; Petryk, 1969). Petryk (1969) investigated the

influence of a neighboring cylinder on the drag measured at a test cylinder. His

data show that, when the cylinders are sufficiently close, the mean drag on the pair

of cylinders could be either smaller or greater than that for an isolated cylinder

depending on the orientation of the cylinders. In a random array, both the distance

between and the relative orientation of each cylinder and its neighbors differ for each

cylinder, and it is not obvious whether the array-averaged CD, as defined by Eq. (2.1),

is enhanced or reduced relative to an isolated cylinder.

CD in a random cylinder array is expected to be a function of φ, d, and Red.

The present chapter considers only the Red and φ dependence. In salt marshes, stem

diameters of 0.2 to 1.2 cm, φ = 0.001 to 0.02, and local flow speeds of the range 0

to 10 cm s−1 have been reported (Valiela et al., 1978; Leonard and Luther, 1995). In

contrast, φ as high as 0.45 and mean trunk diameters of 4 to 9 cm have been reported

in mangroves (Mazda et al., 1997; Furukawa et al., 1997). Local flow speeds of the

24



S
ou

rc
e

A
rr

ay
C

on
fi
gu

ra
ti

on
φ

R
ey

n
ol

d
s

n
u
m

b
er

A
ya

z
an

d
P
ed

le
y
,
19

99
ri

gi
d

cy
li
n
d
er

s
(N

)
sq

u
ar

e

0.
13

≤
40

.0
0/

(1
−

φ
)

0.
35

0.
50

0.
59

K
o
ch

an
d

L
ad

d
,
19

97
ri

gi
d

cy
li
n
d
er

s
(N

)
ra

n
d
om

0.
05

≤
37

0.
10

≤
33

0.
20

≤
10

0
0.

40
≤

67

sq
u
ar

e,
st

ag
ge

re
d

0.
2

57
−

21
0

0.
4

82
−

32
0

L
ee

et
al

.,
20

04
sa

w
gr

as
s

(L
;
F
)

N
/A

N
/A

0
−

20
0

(L
)

70
−

10
4

a
(F

)
M

az
d
a

et
al

.,
19

97
tw

o
ti

d
al

m
an

gr
ov

e
sw

am
p
s

(F
)

N
/A

0.
05
−

0.
45

c
N

/A

N
ep

f,
19

99
ri

gi
d

cy
li
n
d
er

s
(L

)
ra

n
d
om

0.
00

6
40

00
−

10
00

0
0.

02
0.

06

P
et

ry
k
,
19

69
ri

gi
d

cy
li
n
d
er

s
(L

)
ra

n
d
om

0.
01

5
(0

.6
−

5)
×

10
4

0.
02

7
(3
−

9)
×

10
4

S
to

n
e

an
d

S
h
en

,
20

02
ri

gi
d

cy
li
n
d
er

s
(L

)
st

ag
ge

re
d

0.
00

55
O

(2
50
−

80
00

)
0.

02
20

as
su

m
in

g
0.

06
10

ν
=

0.
00

9
cm

2
s−

1

W
u

et
al

.,
19

99
fl
ex

ib
le

h
or

se
h
ai

r
m

at
tr

es
s

(L
)

N
/A

N
/A

20
-

30
00

b

T
ab

le
2.

1:
S
u
m

m
ar

y
of

st
u
d
ie

s
th

at
co

ll
ec

te
d

d
ra

g
d
at

a
in

em
er

ge
n
t

ar
ra

y
s.

In
th

e
se

co
n
d

an
d

fi
ft

h
co

lu
m

n
s,

(N
),

(F
),

an
d

(L
)

in
d
ic

at
e

n
u
m

er
ic

al
,

fi
el

d
,

an
d

la
b
or

at
or

y
re

su
lt

s,
re

sp
ec

ti
ve

ly
.

N
/A

d
en

ot
es

in
fo

rm
at

io
n

n
ot

av
ai

la
b
le

or
n
ot

ap
p
li
ca

b
le

.
C

y
li
n
d
er

s
ar

e
ci

rc
u
la

r.
R

ey
n
ol

d
s

n
u
m

b
er

s
ar

e
b
as

ed
on

th
e

cy
li
n
d
er

d
ia

m
et

er
d

an
d

U
p

u
n
le

ss
ot

h
er

w
is

e
n
ot

ed
.

T
h
e

R
ey

n
ol

d
s

n
u
m

b
er

fo
r

L
ee

et
al

.
(2

00
4)

’s
m

ea
su

re
m

en
ts

is
d
efi

n
ed

u
si

n
g

th
e

d
ep

th
-a

ve
ra

ge
of

th
e

sp
at

ia
ll
y
-a

ve
ra

ge
d

w
id

th
of

al
l
st

em
s

an
d

le
av

es
as

th
e

le
n
gt

h
sc

al
e.

a
B

as
ed

on
de

pt
h.

b
B

as
ed

on
de

pt
h

an
d

U
p
(1
−

φ
).

c
D

ep
th

de
pe

nd
en

t.

25



range 0 to 5 cm s−1 have been observed 15 m (Kobashi and Mazda, 2005) and 120 m

(Mazda et al., 1997) from the interface between the mangrove and a river. Finally,

constructed wetlands may be as dense as φ = 0.65 (Serra et al., 2004). These values

suggest that field conditions span Red = 0 to O(4000) and φ = 0 to 0.65.

Although many recent studies have investigated drag in real and model canopies

(see Table 2.1 for examples), a comprehensive data set is not yet available for the

entire range of conditions expected in emergent aquatic plant canopies. Specifically,

for the simple two-dimensional array of randomly-distributed cylinders, data are not

available at φ > 0.05 at Red > 100 or at φ < 0.05 at Red < 1000. Moreover, previous

studies have reported contradictory φ dependence for CD. Nepf (1999)’s numerical

model, which considers two-cylinder interactions in a random array, predicts a mono-

tonically decreasing CD with increasing φ for 8× 10−4 < φ < 0.24 (Nepf, 1999, figure

6). Nepf (1999) verified this model with laboratory measurements at Red ≥ 1000.

Similarly, Lee et al. (2004, Eq. (18)) proposed that the depth-averaged CD is inversely

proportional to the depth-averaged frontal area per unit volume and characteristic

spacing of all stems and leaves. However, these dependence were not explicitly inves-

tigated in that paper. In contrast, CD increases with φ for Red ≤ O(100) in Koch

and Ladd (1997)’s numerical simulations of random arrays for φ = 0.05 to 0.4.

This chapter presents laboratory measurements of the depth-averaged CD in ran-

dom arrays of rigid emergent cylinders of φ = 0.091 to 0.35 and Red = 25 to 685,

where Red was calculated using the mean pore velocity, Up, which is the cross-sectional

average of 〈u〉. The Red dependence of the depth-averaged
〈
fD

〉
is compared with

Ergun (1952)’s equation, and the coefficients in that equation are determined for each

φ. The results are compared with Koch and Ladd (1997)’s numerical simulations and

Petryk (1969)’s laboratory measurements.

2.2 Theory

Following the standard formulation in terrestrial canopy literature, e.g., Finnigan,

2000, the pressure p (x, t) and velocity v (x, t) ≡ (u, v, w) ≡ (v1, v2, v3) are first de-
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composed into the local time average (vi, p) and instantaneous deviations from it

(v′i, p
′), where v′i, p′ = 0. Then, the temporally-averaged quantities are further decom-

posed into their spatial average (〈vi〉 , 〈p〉) and deviations from that average (vi
′′, p′′),

where 〈vi
′′〉 , 〈p′′〉 = 0. The overbar denotes a temporal average over an interval much

longer than the time scales of vortex shedding and turbulent fluctuations and 〈 〉
denotes a spatial average over an infinitessimally thin volume Vf that spans many

cylinders but excludes all solid volume (see, e.g., Finnigan, 1985, 2000). Recall that

the array is homogeneous. The water depth H (x, t) is also decomposed analogously.
〈
H

〉
À

∣∣∣H ′′∣∣∣ , |H ′| in systems considered in this chapter. Applying the same temporal

and spatial averaging operations to the governing equations yields (i, j = 1, 2, 3)

∂ 〈vi〉
∂t

+ 〈vj〉 ∂ 〈vi〉
∂xj

= gi − 1

ρ

∂ 〈p〉
∂xi

−
∂

〈
v′iv

′
j

〉

∂xj

+ ν
∂

∂xj

∂ 〈vi〉
∂xj

− ∂ 〈vi
′′vj

′′〉
∂xj

− fi, (2.2)

where gi is the ith component of the gravitational acceleration and

fi = − ν

Vf

∫∫

Sc

∂vi

∂n
dS +

1

ρVf

∫∫

Sc

pni dS (2.3)

is the net hydrodynamic force per unit fluid mass exerted on Sc, where Sc denotes

all cylinder surfaces that intersect Vf and n is the unit normal vector on Sc pointing

out of Vf . f1 represents the net cylinder drag per unit fluid mass from which
〈
fD

〉

in Eq. (2.1) can be calculated:
〈
fD

〉
= ρ(1 − φ)f1/m. Recall that m is the cylinder

density in the array (cylinders per unit horizontal area). The third and fifth terms

on the RHS of Eq. (2.2) are the divergence of the spatially-averaged Reynolds stress

and the dispersive stress, respectively. The latter arises from spatial correlations of

the local deviations from the temporally- and spatially-averaged velocity.

The first term in Eq. (2.3) describes the viscous contribution that arises from the

viscous shear stress on the cylinder surface. If we scale −∂u/∂n as 〈u〉 /〈sn〉A, the

corresponding viscous contribution to
〈
fD

〉
scales as

〈fD〉visc

µ〈u〉 ∼ π
d

〈sn〉A . (2.4)
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The second term in Eq. (2.3) describes the inertial contribution arising from the

pressure loss in the cylinder wake. Dimensional analysis yields, for the corresponding

inertial contribution to
〈
fD

〉
,
〈
fD

〉form
= ρd〈u′′2〉 f(Red), where f(Red) is an unknown

function of Red. In dimensionless form,

〈
fD

〉form

µ〈u〉 =
〈u′′2〉
〈u〉2 f(Red) Red. (2.5)

Ergun (1952) proposed an expression for pressure drop in packed columns which,

when rearranged, yields the dimensionless drag parameter

〈
fD

〉

µ 〈u〉 = α0 + α1Red, (2.6)

where µ is the viscosity, α0 is a function of φ, and α1 is a constant. Recently, Koch

and Ladd (1997) demonstrated for arrays of φ = 0.05 to 0.4 that cylinder drag

may also be described by a linear Red dependence of the same form as Eq. (2.6),

but with both α0 and α1 varying with φ. By comparing Eq. (2.6) with Eqs. (2.4)

and (2.5), it can be seen that α0 and α1Red correspond to the viscous and inertial

contributions to
〈
fD

〉
/(µ〈u〉), respectively. Substituting Eq. (2.6) into Eq. (2.1)

yields the corresponding relationship for CD:

CD = 2
(

α0

Red

+ α1

)
. (2.7)

Also, CD of a smooth isolated cylinder is described by the empirical expression (White,

1991, p.183),

CD ≈ 1 + 10.0Re
−2/3

d , 1 < Red < 105, (2.8)

which corresponds to [from Eq. (2.1)]

〈
fD

〉

µ 〈u〉 ≈ 5.00Re
1/3

d +
1

2
Red, 1 < Red < 105. (2.9)

As Red increases, the second term becomes increasingly large relative to the first term
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and Eq. (2.9) approaches a linear Red dependence of the form Eq. (2.6).

In the present laboratory conditions and under certain field conditions, Eq. (2.2)

can be simplified. Here, we consider a two dimensional, homogeneous array and

assume 〈v〉 = 0 and ∂ 〈 〉 /∂y = 0. Accordingly, the depth average is equivalent to a

cross-sectional average. The flow is also steady, ∂/∂t = 0. In the cases analyzed here,

the free surface gradient ranged in magnitude from 4 × 10−4 to 5 × 10−2, indicating

that the vertical length scale
〈
H

〉
was significantly smaller than the horizontal length

scale
〈
H

〉
/(d

〈
H

〉
/dx). Under these conditions, Eq. (2.2) reduces to

〈u〉 ∂ 〈u〉
∂x

+〈w〉 ∂ 〈u〉
∂z

= −1

ρ

∂ 〈p〉
∂x

−

∂

〈
u′u′

〉

∂x
+

∂
〈
u′w′

〉

∂z


+ν

∂2 〈u〉
∂z2

−
(

∂ 〈u′′u′′〉
∂x

+
∂ 〈u′′w′′〉

∂z

)
−f1

(2.10)

in the x-direction. Recall that the bed is horizontal, i.e., g1 = g2 = 0 and g3 = −g. We

also assume that the i = 3 component of Eq. (2.2) reduces to the hydrostatic pressure

balance. White (2002) measured velocity in random arrays of φ = 0.010 − 0.063.

From his measurements closest to the bed, where w′w′ varied most rapidly with

depth, w′2/z ranged from 0.007 to 6.5 cm s−2 (¿ |g3|). These data support the

hydrostatic pressure assumption. u′′ is expected to vary on the scale of the cylinder

spacing and w′′ on the scale of the water depth and, consequently, correlations between

time-averaged spatial deviations are expected to be negligible, i.e., 〈u′′w′′〉 ¿
〈
u′w′

〉

(Kaimal and Finnigan, 1994, p. 85). This was verified experimentally for submerged

periodic arrays at φ = 0.0008 to 0.013 (Poggi et al., 2004). In addition, Tsujimoto

et al. (1992) measured zero u′w′ over the entire water column in an emergent periodic

array of φ = 0.0044 and 0.0079. Following the above discussion, the third and the

sixth terms on the RHS of Eq. (2.10) are neglected.

Next, Eq. (2.10) is averaged over the water depth. Free surface stress is negligible

in the laboratory. Bed shear stress estimated from White (2002)’s measurements in

a random array of φ = 0.010− 0.063 is 0.2 to 13% of the cylinder drag contribution

estimated from the isolated cylinder solution (2.9). Moreover, the drag contribution

from the cylinders is expected to become more dominant as φ increases. It should

be noted that bed and free surface stresses may be significant in the field, where
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Figure 2-1: A section of the cylinder array. Surface displacement gages were placed
a distance L apart longitudinally. In the presence of flow, the free surface (solid line)
is displaced by vertical distance η(x) from the still water level (dashed line) and a
negative free surface gradient develops.

the bed is typically rough and wind may be non-negligible. Finally, we assume that

flow conditions are fully developed, and ∂
〈
H

〉
/∂x is only retained to describe the

pressure gradient. This is consistent with the horizontally homogeneous array. We

thus obtain the balance between the total cylinder drag per unit volume of array and

the longitudinal pressure gradient:

〈
fD

〉
H

m = −(1− φ)ρg
dη

dx
, (2.11)

where η(x) is the temporally- and spatially-averaged displacement of the free surface

from the still water level (figure 2-1) and
〈
fD

〉
H

is the depth-averaged
〈
fD

〉
. Eqs. (2.1)

and (2.11) yield the following expression for the depth-averaged drag coefficient:

CD 〈u〉2H
2

md = −(1− φ)g
dη

dx
, (2.12)

where 〈u〉H is the depth-averaged 〈u〉. By definition, md = φ/(πd/4), and Eq. (2.12)

relates CD with dη/dx for a given φ, d, and 〈u〉H . Where Eq. (2.12) is valid, Manning’s

coefficient nM is related to CD as

nM =
R

2/3
h

(1− φ)3/2

√
CD

2g
md, (2.13)

where Rh is the hydraulic radius.
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Figure 2-2: A section of the φ = 0.27 array in plan view.

2.3 Experimental procedure

Laboratory experiments were performed in two Plexiglas recirculating flumes. Tank

A, with a working section of (x × y × z) = 284 cm × 40 cm × 43 cm, was used for

φ = 0.15, 0.20, 0.27, and 0.35 and tank B, with a working section of (x × y × z) =

670 cm × 20.3 cm × 30.5 cm, was used for φ = 0.091. In each flume, the volumetric

flow rate Q was measured with an in-line flow meter.

Cylindrical maple dowels of diameter d = 0.64 cm (Saunders Brothers, Inc.)

were used as laboratory models for vegetation. The dowels were inserted into four

71.1 cm × 40.0 cm custom-made PVC sheets of either φ = 0.20 or 0.35 hole frac-

tion to create a 284 cm-long array that spanned the flume width. The PVC sheets

were created by generating uniformly-distributed random coordinates for the hole

centers until the desired number of non-overlapping holes were assigned. Here, non-

overlapping holes were defined to not have any other hole center fall within a 2d× 2d

square around its center. The φ = 0.20 and 0.35 arrays were created by completely

filling these sheets, and the φ = 0.091, 0.15, and 0.27 arrays were created by partially
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filling the sheets. For the latter arrays, the holes that were filled were selected by

MATLAB’s random number generator. Figure 2-2 is a plan view of the φ = 0.27

array.

η(x) was measured using two sets of surface displacement gages. The gages were

positioned a longitudinal distance L apart inside the array, with each set attached

to a vertical traverse (figure 2-1). Each set consisted of two or three gages that

were distributed laterally across the width of the flume. Each gage outputs voltage

proportional to its submerged length. The signal was amplified before it was sent

to the computer to be collected with the acoustic Doppler velocimeter (ADV) data

acquisition software ADVA.exe version 4.4 by SonTek, Inc.. Measurements from all

displacement gages were simultaneously recorded and time averaged to yield a mean

voltage value for each gage.

After steady conditions were achieved, voltage measurements were recorded over

five to twenty minutes. The surface displacement from the still water level for the jth

gage was determined from the time average of the voltage record at that gage, Vj:

ηj =
Vj − V0j

(dV/dz)j

. (2.14)

V0j
is the time-averaged voltage reading at the jth gage in still water. (dV/dz)j is the

gradient of the linear regression of the calibration data for the jth gage. The local

time-averaged water depth at each displacement gage was Hj = HSWL + ηj, where

z = HSWL is the still water level. The mean water depth between the displacement

gages,
〈
H

〉
L
, was estimated as the average of the mean Hj at the upstream gages

and the downstream gages. In the present experiments,
〈
H

〉
L

ranged from 10.0 to

21.8 cm. The gradient of the free surface, dη/dx, was estimated by calculating the

mean of ηj measured by the downstream gages and the mean of ηj measured by the

upstream gages, subtracting the latter from the former, and dividing the result by

L. The cross-sectionally averaged pore velocity between the gages was estimated

as Up = Q/
(〈

H
〉

L
W (1− φ)

)
, where W is the width of the flume. In the present

thesis, 〈u〉H is approximated by Up. Similarly, the Reynolds number was calculated
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as Red ≡ Upd/ν. Finally,
〈
fD

〉
H

/(µUp) and CD were determined by substituting the

values for Up and dη/dx into Eqs. (2.11) and (2.12).

For each experiment, the most conservative estimate of the maximum and mini-

mum CD was calculated by considering the maximum and minimum dη/dx and Up

estimates. The other variables in Eq. (2.12) do not contribute significantly to the un-

certainty. The maximum and minimum dη/dx are the gradient of the least-squares

fit to data plus and minus its uncertainty, as defined by Taylor (1997, Ch. 8.4). The

uncertainty in Up reflects that of the flow meter reading. Variations in the tempera-

ture over the duration of each experiment is also included in the uncertainty for Red.

In tank A, a change in temperature was not observed. In tank B, water temperature

increased by as much as 1◦C during one time record.

2.4 Experimental results

At low Red, small φ, or small L, the surface displacement at the gages was very

small, which resulted in large uncertainties or, in some cases, negative CD estimates.

In all subsequent discussion, we exclude all CD measurements with an uncertainty

greater than 25% of the estimated CD and measurements that are negative within

uncertainty. The remaining 120 measurements are discussed below. The range of Red

at each φ is provided in Table 2.2.

The normalized drag,
〈
fD

〉
H

/(µUp), is presented in figure 2-3 as a function of

Red.
〈
fD

〉
H

/(µUp) clearly exhibits a linear dependence on Red for all φ, consistent

with Eq. (2.6). Moreover,
〈
fD

〉
H

/(µUp) at a given Red increases with φ under the

conditions investigated. The figure also includes the least-squares fits to Koch and

Ladd (1997)’s simulation results in random cylinder arrays of φ = 0.05 to 0.4 and

5 < Red < 100 (see Table 2.2 for numerical values of the coefficients). At Red < 100,
〈
fD

〉
H

/(µUp) for φ = 0.15, 0.20, 0.27, and 0.35 fall between Koch and Ladd (1997)’s

φ = 0.2 and 0.4 predictions.

The gradient, α1, and the intercept with the ordinate axis, α0, of the line of

regression of
〈
fD

〉
H

/(µUp) on Red are presented in figure 2-4. To estimate these
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Figure 2-3:
〈
fD

〉
H

/(µUp) at φ = 0.091 (square), 0.15 (/), 0.20 (×), 0.27 (hexagram),

and 0.35 (◦), as defined in Eq. (2.11). Solid line marks the linear regression for each
φ. Grey lines represent Koch and Ladd (1997)’s numerical results at φ = 0.05 (solid),
0.2 (dotted), and 0.4 (dash-dotted), as presented in Table 2.2. The isolated cylinder
solution (2.9) is also presented (grey, dashed). Horizontal and vertical lines on present
data represent the uncertainty in Red and CD, respectively, as described in the text.
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Figure 2-4: The coefficients of Eq. (2.6) estimated from a linear regression on the
present laboratory measurements (solid ◦), on Petryk (1969)’s laboratory measure-
ments (∗), on interpolated values of Eq. (2.9) (open ◦), and on Koch and Ladd (1997)’s
numerical results (+). See Table 2.2 for numerical values. Vertical bars on present
data points and Petryk (1969)’s data points represent the uncertainty estimated from
the regression, as suggested by Taylor (1997, Ch. 8.4). Where the vertical bars are
not visible, they are smaller than the marker size. The dashed and dotted lines are
the line of regression of α1 on φ and the associated uncertainty as suggested by Taylor
(1997, Ch. 8.4), respectively [Eq. (2.15)].
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coefficients for the isolated cylinder, Eq. (2.9) was interpolated over Red = 148 −
678 in increments of 10. A linear regression on these interpolated values yields a

correlation coefficient R = 1.000 (n = 54) and the coefficients α0 = 23.5 ± 0.2 and

α1 = (5318 ± 6) × 10−4. The Red range selected here coincides with that for which

α0 and α1 were determined for φ = 0.091 (Table 2.2). As the Red range over which

the linear regression is applied increases, α0 increases and α1 approaches 0.50. This

sensitivity to Red reflects the deviation of Eq. (2.9) from a linear Red dependence.

Estimated values of the coefficients are included in Table 2.2.

α1 increases monotonically with φ, which implies that the inertial contribution

increases with φ at a given Red. A linear regression on α1 and φ from the present

chapter yields

α1 = (0.46± 0.11) + (3.8± 0.5)φ, (2.15)

with R = 0.98 (n = 5). α1 estimates based on Petryk (1969)’s data and the isolated

cylinder solution agree within uncertainty with Eq. (2.15), suggesting that this em-

pirical expression is valid at φ below those investigated in this thesis. Recall that,

from dimensional analysis, α1 and 〈u′′2〉 / 〈u〉2 are expected to exhibit the same φ

dependence [Eq. (2.5)]. As will be shown in Appendix I, measured 〈u′′2〉 /〈u〉2 does

indeed increase with increasing φ, even though the rate of its increase with φ changes

at φ ≈ 0.1.

α0 measured in the present thesis is not linearly proportional to d/〈sn〉A and is

inconsistent with Eq. (2.4) (figure 2-5, ◦). α0 increases from 25 ± 12 at φ = 0.091

to 84 ± 14 at φ = 0.15, but remains constant within uncertainty for φ = 0.15 to

0.35 at α0 = 83.8, with a standard error of 0.6 (n = 4). It should be noted that α0

is very sensitive to slight changes in the gradient of the line of regression, i.e., α1.

For example, a linear regression on interpolated values for the isolated cylinder yields

α0 = 114.6±0.1 if applied over Red = 104 to 105, instead of α0 = 23.5±0.25 obtained

when the regression is applied over Red = 148 to 678. In contrast, α1 only changes

from 0.5318± 6× 10−4 to 0.5013± 2× 10−6. This may explain the high values of α0

associated with Petryk (1969)’s measurements. Indeed, α0 evaluated from Koch and
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Figure 2-5: α0 estimated from a linear regression on the present laboratory measure-
ments (solid ◦) and on Koch and Ladd (1997)’s numerical results (+). Data are the
same as those in figure 2-4. d/〈sn〉A is predicted from φ by Eq. (D.18) for the present
data and by Eq. (D.10) for all other data. The solid and dotted lines are Eq. (2.16).
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Figure 2-6: CD as a function of Red for φ = 0.091, 0.15, 0.20, 0.27, and 0.35 in the
form of Eq. (2.7) with the fitted coefficients (solid lines) (Table 2.2). For reference,
the fitted lines were extrapolated beyond the Red range of the data set (dotted).
Eq. (2.8) (dashed) is also plotted.

Ladd (1997)’s simulation data exhibits a linear dependence on d/〈sn〉A [figure 2-5,

+], as predicted by Eq. (2.4). Specifically, a linear regression on α0 in the range

φ = 0.05− 0.2 (d/〈sn〉A = 0.84− 3.4) yields

α0 = (0.2± 1.8) + (11.8± 0.8)
d

〈sn〉A , (2.16)

with R = 1.00 (n = 3). The discrepancy between Eq. (2.16) and simulation at

φ = 0.4 (d/〈sn〉A = 17) is attributed in part to the overestimation of d/〈sn〉A by the

theoretical formulation (Appendix D.2). In other words, d/〈sn〉A in the φ = 0.4 array

is expected to have been smaller than that predicted by Eq. (D.10) and assumed in

figure 2-5.
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Figure 2-6 illustrates CD as a function of Red. CD decreases as Red increases for

all φ investigated. The data also demonstrate that CD in a random array is larger

than the isolated cylinder for O(30) ≤ Red ≤ O(700) for φ ≤ 0.35. Results by Koch

and Ladd (1997) and Petryk (1969) suggest that this functionality extends to all

conditions they considered, as summarized in Table 2.2. In contrast, Nepf (1999)’s

measurements suggest that CD is smaller than that of the isolated cylinder at higher

Red.

Finally, note that while the numerical values measured in the present study only

apply to randomly-distributed smooth circular cylinders, the qualitative trends are

expected to extend to plant stems of slightly different morphology and distribution.

Specifically, CD is expected to decrease as Red increases and increase as φ increases.

For example, James et al. (2004)’s laboratory measurements of the depth-integrated

drag exerted by an isolated Phragmites australis reed show that foliage enhances CD in

the range Red = 300−5000, where CD was defined using the depth-integrated frontal

area per unit depth as the characteristic plant width. Note that greater foliage implies

larger φ. Similarly, Ayaz and Pedley (1999) and Stone and Shen (2002, Table 2) report

increasing CD with increasing φ in square and staggered arrays, respectively. Koch

and Ladd (1997) also investigated square arrays at various orientation to the mean

flow. Based on their tabulated results (Koch and Ladd, 1997, Tables 1 and 2), CD is

higher at φ = 0.4 than 0.2 in each configuration for 50 < Red < 350. These results

suggest that the qualitative φ dependence may be independent of configuration.

2.5 Conclusions

Laboratory measurements of array drag were presented in the form of the array-

averaged CD and
〈
fD

〉
H

/(µUp). Both CD and
〈
fD

〉
H

/(µUp) increase with φ. CD

monotonically decreases as Red increases. The Red dependence of
〈
fD

〉
H

/(µUp)

is consistent with Ergun (1952)’s formulation, as was observed by Koch and Ladd

(1997). Therefore,
〈
fD

〉
H

/(µUp) and CD for a given φ can be predicted by interpolat-

ing the values for α0 and α1 from figure 2-4 and Eq. (2.15), respectively, and applying
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them to Eqs. (2.6) and (2.7). However, these predictions are strictly valid only in

the range O(30) ≤ Red ≤ O(700). In particular, it should be noted that Nepf (1999)

reports the opposite φ dependence of CD at Red > 1000. Additional measurements

are required to determine if our results can be extrapolated to higher Red. Similarly,

the Red dependence changes as Red approaches 0. Koch and Ladd (1997) show for

φ = 0.40 that the drag exhibits a quadratic Red dependence at 0 < Red ≤ 5 and that

Eq. (2.6) with coefficients as summarized in Table 2.2 underestimates
〈
fD

〉
H

/(µUp)

at Red < 1 (Koch and Ladd, 1997, figure 23). Because experimental constraints on L

restricted the analysis to high Red (≥ 25), as discussed earlier, we could not capture

the expected change in the Red dependence in the present study.
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Chapter 3

Lateral dispersion at high

Reynolds numbera

Abstract

Laser-induced fluorescence was used to measure the lateral dispersion of passive so-
lute in random arrays of rigid, emergent cylinders of solid volume fraction φ = 0.010
to 0.35. Such densities correspond to those observed in aquatic plant canopies and
complement those in packed beds of spheres, where φ ≥ 0.5. This chapter focuses
on pore Reynolds number greater than Re〈sn〉A = 74, for which our laboratory ex-
periments demonstrate that Kyy/(Upd), the lateral dispersion coefficient normalized
by the mean velocity in the fluid volume, Up, and the cylinder diameter, d, is in-
dependent of cylinder Reynolds number, Red. Kyy/(Upd) increases rapidly with φ
from φ = 0 to 0.031. Then, Kyy/(Upd) decreases from φ = 0.031 to 0.20. Finally,
Kyy/(Upd) increases again, more gradually, from φ = 0.20 to 0.35. These observations
are accurately described by the linear superposition of the proposed model of turbu-
lent diffusion and existing models of dispersion due to the spatially-heterogeneous
velocity field that arises from the presence of the cylinders. The contribution from
turbulent diffusion scales with the spatially-averaged turbulence intensity, the char-
acteristic length scale of turbulent mixing, and the effective porosity. From a balance
between the production of turbulent kinetic energy by the cylinder wakes and its
viscous dissipation, the mean turbulence intensity for a given cylinder diameter and

aThis chapter is Tanino and Nepf, 2008c, with modifications; we thank the three anonymous
reviewers for their comments on the manuscript. Some material in § 3.2.1 has been taken from Tanino
and Nepf, 2008a. This chapter is based on work supported by the National Science Foundation grant
EAR-0309188. Any opinions, conclusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation. The
authors thank Brian L. White for providing unpublished ADV measurements from his Master’s
thesis (White, 2002) and Dr. Urs Neumeier for providing unpublished velocity measurements from
Neumeier and Amos, 2006.
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cylinder density is predicted to be a function of the form drag coefficient and the in-
tegral length scale lt. We propose and experimentally verify that lt = min{d, 〈sn〉A},
where 〈sn〉A is the average surface-to-surface distance between a cylinder in the ar-
ray and its nearest neighbor. We further propose that only turbulent eddies with
mixing length scale greater than d contribute significantly to net lateral dispersion,
and that neighboring cylinder centers must be farther than r∗ from each other for the
pore space between them to contain such eddies. If the integral length scale and the
length scale for mixing are equal, then r∗ = 2d. Our laboratory data agree well with
predictions based on this definition of r∗.

3.1 Introduction

Turbulence and dispersion in obstructed flows have been investigated for decades

because of their relevance to transport in groundwater (e.g., Bear, 1979), to transport

in flow around buildings (e.g., Davidson et al., 1995) and trees (e.g., Kaimal and

Finnigan, 1994, Ch. 3), and to engineering applications such as contaminant transport

and removal in artificial wetlands (Serra et al., 2004). In particular, flow in a packed

bed of spheres has been examined intensively, and analytical descriptions of different

mechanisms that contribute to dispersion in Stokes flow were derived by Koch and

Brady (1985). In packed beds of spheres, the solid volume fraction φ is approximately

constant at φ ≈ 0.6 (e.g., Mickley et al., 1965; Jolls and Hanratty, 1966; Han et al.,

1985; Yevseyev et al., 1991; Dullien, 1979, p. 132). In contrast, previous studies on

emergent (i.e., spanning the water column and penetrating the free surface), rigid

aquatic vegetation have focused on low solid volume fraction arrays (φ = 0.0046

to 0.063, e.g., Nepf et al., 1997; White and Nepf, 2003). Such sparse arrays are

characteristic of salt marshes, for example, where φ = 0.001 − 0.02 (Valiela et al.,

1978; Leonard and Luther, 1995). However, φ in aquatic plant canopies can approach

that of packed beds. In mangroves, for example, φ can reach 0.45 because of the dense

network of roots (Mazda et al., 1997). In constructed wetlands, φ may extend to 0.65

(Serra et al., 2004), and in this context Serra et al. (2004) reported lateral dispersion

measurements at low Reynolds numbers in random arrays of φ = 0.10, 0.20, and 0.35.

In this chapter, turbulence and solute transport in arrays of randomly-distributed,

emergent, rigid cylinders of φ = 0.010 to 0.35 in turbulent flow are investigated.
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Models for turbulence intensity and net lateral dispersion are presented and verified

with laboratory measurements.

In § 3.2, we present a model for the mean turbulence intensity and the lateral dis-

persion coefficient as a function of cylinder distribution and cylinder density. In § 3.3,

the experimental procedure for measuring turbulence, the integral length scale, and

net lateral dispersion is described. In § 3.4, the experimental results are presented

and compared with the theory.

3.2 Background theory

3.2.1 Solute transport in a random array

Species conservation is described by the expression

∂c

∂t
+ v · ∇c = −∇ · (−Dm∇c), (3.1)

where c(x, t) is the solute concentration and Dm is the molecular diffusion coefficient.

In obstructed turbulent flows, it is convenient to first decompose c and v into a

local time average and instantaneous deviations from that average, and to further

decompose the time-averaged parameters into a spatial average and local deviations

from that average (e.g., Raupach and Shaw, 1982; Finnigan, 1985). As in Ch. 2, the

temporal averaging operation, denoted by an overbar, is defined with a time interval

much longer than the time scales of turbulent fluctuations and vortex shedding. The

spatial averaging operation, denoted by 〈 〉, is defined with an infinitesimally thin

volume interval Vf that spans many cylinders. The solid (cylinder) volume is excluded

from Vf . Then, c = 〈c〉(x, t) + c′′(x, t) + c′(x, t) and v = 〈v〉(x, t) + v′′(x, t) +

v′(x, t), where ′̄′ denotes the spatial fluctuations of the temporal average and ′ denotes

the temporal fluctuations. By definition, c′,v′, 〈c̄′′〉, 〈v′′〉 = 0. Also, 〈v〉 = 〈w〉 =

0, by our definition of Cartesian coordinates. Substituting these expressions into

Eq. (3.1), averaging over the same temporal and spatial intervals, and retaining only
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the dominant terms yield [Finnigan, 1985, Eq. (21)]

∂〈c〉
∂t

+ 〈vj〉∂〈c̄〉
∂xj

= − ∂

∂xj

{〈
v′jc′

〉
+

〈
v̄′′j c̄

′′〉−Dm

〈
∂

∂xj

(〈c〉+ c̄′′)

〉}
. (3.2)

In addition to fluxes associated with the local temporal fluctuations,
〈
v′c′

〉
, the av-

eraging scheme introduces dispersive fluxes associated with the time-averaged spatial

fluctuations, 〈v̄′′c̄′′〉.

In uniform, time-independent mean flow through a spatially-homogeneous random

array, long-range velocity correlations are not expected because of the obstructions

(Koch and Brady, 1985; Koch et al., 1998). Accordingly, Fickian dispersion is ex-

pected after sufficiently long time after the solute is introduced to the flow, once the

spatial scale over which the mean concentration gradient varies exceeds the finite

scales of the velocity correlations (Corrsin, 1974). Previous (White and Nepf, 2003;

Acharya et al., 2007) and present (figures 3-13, 4-5, 4-6, H-2, H-3) observations of

dispersion support this conjecture. Then, Eq. (3.2) reduces to

∂〈c〉
∂t

+ 〈vj〉∂〈c〉
∂xj

= − ∂

∂xj

(
−Kjj

∂〈c〉
∂xj

)
= Kjj

∂2〈c〉
∂x 2

j

, (3.3)

where Kjj are the coefficients for asymptotic (long-time/long-distance) net dispersion.

The first equality in Eq. (3.3) states that the sum of the fluxes on the right-hand

side of Eq. (3.2) obeys Fick’s law. The second equality states that Kjj is spatially

homogeneous, which is expected in a homogeneous array.

In this thesis, we are only concerned with the lateral component of the macroscopic

dispersion coefficient, Kyy. Consider an experiment in which solute particles are

released continuously from a point source (x = 0). Then, c(x) is the temporal average

of the solute concentration observed at some point x during a single experiment, and

〈c〉(x) is its ensemble average. If the solute is transported according to Eq. (3.3), the

lateral variance of its distribution is related to Kyy as (Fischer et al., 1979)

Kyy

〈u〉d =
1

2d

d

dx

[〈
σ2

y(x)
〉

+

〈(
m1

m0

(x)
)2

−
〈

m1

m0

(x)
〉2

〉]
, (3.4)
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where σ2
y and m1/m0 are the variance and the center-of-mass, respectively, of the

time-averaged lateral concentration distribution at a given x in a single experiment;

〈m1/m0〉 and the expression inside [ ] are the center-of-mass and variance, re-

spectively, of 〈c〉 at a given x. From Eq. (3.3), it follows that d 〈m1/m0〉 /dx = 0.

Further, since m1/m0 is the mean lateral displacement of many solute particles,

d
〈
(m1/m0)

2
〉

/dx also approaches zero at sufficiently large x. Then, Eq. (3.4) re-

duces to
Kyy

〈u〉d =
1

2d

d

dx

〈
σ2

y(x)
〉

. (3.5)

〈σ2
y〉 at selected φ (= 0.091 and 0.20) and x is found to increase with increasing Red

up to Red ≈ 100 and is constant above Red ≈ 200 (figure A-1). At lower φ, however,

the transition between Red-dependent and Red-independent 〈σ2
y〉 regimes appears to

occur at lower Red (Appendix A). While it is not clear if the transition between the

two regimes can be identified by a single Reynolds number across all φ, measurements

collected at Re〈sn〉A > 74 in the present thesis are independent of Reynolds number

at all φ (Appendix A). In this chapter, we focus on lateral dispersion in this high

Reynolds number regime.b In the next chapter, we will examine dispersion at Red

below this regime for selected φ.

Like molecular diffusion,
〈
v′c′

〉
and 〈v̄′′c̄′′〉 are expected to be individually Fickian

if the spatial scale of the contributing mechanisms are much smaller than the scale

over which the mean concentration gradient varies (Corrsin, 1974; Koch and Brady,

1985; White and Nepf, 2003). The two mechanisms associated with
〈
v′c′

〉
and 〈v′′c̄′′〉,

as identified below, both have characteristic scales of d and 〈sn〉A (§ 3.2.2 and § 3.2.3).

Because these lengths are finite and, by definition, much smaller than the dimensions

of the averaging volume Vf , the solute particles will eventually be dispersed over many

d and 〈sn〉A. At this time, 〈c〉 will also vary slowly at these spatial scales. Therefore,
〈
v′c′

〉
and 〈v′′c̄′′〉 are expected to be Fickian at long times (i.e., at long distances

bThe actual criterion used in Tanino and Nepf, 2008c is Res ≡ 〈u〉s/ν > 250, where 〈u〉 was
defined at the LIF measurement location and s ≡ 1/

√
m − d is the surface-to-surface distance

between aligned cylinders in a square array with the same φ and d; m is the number of cylinders per
unit area [Tanino and Nepf, 2008c, figure 1(b)]. In this chapter, the empirical criterion is expressed
as Re〈sn〉A > 74 for consistency with the rest of this thesis.
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downstream of the solute source). Consequently, Kyy is expected to be the linear sum

of three constant coefficients, one that parameterizes
〈
v′c′

〉
, one that parameterizes

〈v′′c̄′′〉, and the molecular diffusion coefficient. The first two coefficients represent,

respectively, (i) turbulent diffusion and (ii) mechanical dispersion (i.e., independent

of molecular diffusion) due to the spatially-heterogeneous velocity field generated by

the randomly distributed cylinders. In this chapter, the two processes are treated

as independent, and one is not considered in the description of the other. Molecular

diffusion is negligible, as we only consider turbulent flow.

3.2.2 Contribution from turbulence

The classic scaling for turbulent diffusion is Kyy ∼ 〈√kt〉le, where le is the length

scale associated with mixing due to turbulent eddies and kt ≡ (u′2 + v′2 + w′2)/2 is

the turbulent kinetic energy per unit mass. Previously, Nepf (1999) assumed that, in

a cylinder array, le is equal to the integral length scale of the largest turbulent eddies,

lt, and that lt = d when cylinder spacing is smaller than the water depth. Then,

Kyy ∼ 〈√kt〉d. Nepf (1999) fitted this turbulent diffusion scale to experimental

observation at Red = 190 − 790 in a φ = 0.0046, periodic, staggered cylinder array

(Nepf et al., 1997, Table 1; see Zavistoski, 1994 for exact cylinder configuration) to

obtain
Kyy

Upd
= 0.9

〈√
kt

Up

〉
. (3.6)

The mean interstitial pore velocity Up is the average of u over all fluid volume within

the array, and is determined as Up = Q/
[〈

H
〉

W (1− φ)
]
, where Q is the time-

averaged volumetric flow rate,
〈
H

〉
is the mean water depth, and W is the width of

the laboratory flume in which the array was contained. Note that 〈u〉 ≈ Up if the

thickness of the boundary layers at the bed and sidewalls of the flume are negligible

relative to
〈
H

〉
and W . Equation (3.6) is inconsistent with experiment at high φ, as

will be demonstrated in § 3.4.3. Below, we propose a new scale model for turbulent

diffusion, in which le and lt may be constrained by cylinder spacing at high φ.
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Turbulence intensity

The functionality of the mean turbulence intensity, 〈√kt/〈u〉〉, can be predicted from

the temporally- and spatially-averaged mean and turbulent kinetic energy budgets

in the array [see, e.g., Raupach et al., 1991, Eq. (4.3a, b) or Kaimal and Finni-

gan, 1994, Eq. (3.40) for the turbulent kinetic energy budget]. In cylinder arrays,

a wake production term, −
〈
v′iv

′
j

′′
∂vi

′′/∂xj

〉
(≥ 0), accounts for turbulence produc-

tion by the cylinder wakes. Numerical simulation by Burke and Stolzenbach (1983,

figure 5.23) demonstrates for CD〈H〉φ/(πd/4) = 0.01 − 1.0, where CD is the coeffi-

cient of mean cylinder drag, that wake production exceeds production due to shear

within the cylinder array, except near the bed. In fully-developed flow with negligible

shear production, the turbulent kinetic energy budget reduces to a balance between

wake production and viscous dissipation of turbulent kinetic energy (e.g., Burke and

Stolzenbach, 1983; Raupach and Shaw, 1982):

0 ≈ −
〈

v′iv
′
j

′′∂vi
′′

∂xj

〉
− ν

〈
∂vi

∂xj

′ ∂vi

∂xj

′〉
. (3.7)

Similarly, the mean kinetic energy budget reduces to

0 ≈ 〈vi〉f form
i +

〈
v′iv

′
j

′′∂vi
′′

∂xj

〉
+ ν

〈
vi
′′∇2vi

′′〉 , (3.8)

where

f form
i =

1

ρVf

∫∫

Sc

pni dS (≥ 0) (3.9)

is the hydrodynamic force per unit fluid mass exerted on Sc that arises from the

pressure loss in cylinder wakes, where Sc denotes all cylinder surfaces that intersect

Vf , n is the unit normal vector on Sc pointing out of Vf , p(x, t) is the local pressure,

and ρ is the fluid density.

The Kolmogorov microscale η estimated from our laser Doppler velocimetry (LDV)

measurements (see § 3.3) ranged from η/d = 0.0014 to 0.21 and η/〈sn〉A = 0.0036 to

0.83. These O(0.001 − 1) ratios suggest that wake production is a more significant

sink of mean kinetic energy than the viscous term ν 〈vi
′′∇2vi

′′〉 (Raupach and Shaw,
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1982). For simplicity, the latter is neglected in Eq. (3.8), which yields a balance

between rate of work done by form drag and wake production [Raupach and Shaw,

1982, Eq. (17)]:

0 ≈ 〈vi〉f form
i +

〈
v′iv

′
j

′′∂vi
′′

∂xj

〉
. (3.10)

Note that i = 1 is the only non-zero component of 〈vi〉f form
i . Combining Eqs. (3.7)

and (3.10) and replacing the viscous dissipation term with the classic scaling,
√

kt
3
/lt

(Tennekes and Lumley, 1972), yield a model for mean turbulence intensity:

〈√
kt

〈u〉

〉
∼




〈
fD

〉form

ρ〈u〉2d/2

lt
d

md2

2(1− φ)




1/3

, (3.11)

where
〈
fD

〉form ≡ ρ(1−φ)f form
1 /m is the inertial contribution to the mean drag (in the

direction of mean flow) per unit length of cylinder. In Ch. 2, the following empirical

relation for
〈
fD

〉form

H
, the depth average of

〈
fD

〉form
, was determined:

〈
fD

〉form

H

ρU 2
p d/2

= 2 [(0.46± 0.11) + (3.8± 0.5)φ] . (3.12)

For convenience, we define a drag coefficient that represents this contribution:

C form
D ≡

〈
fD

〉form

H

ρU 2
p d/2

. (3.13)

Laboratory measurements suggest that temporally- and spatially-averaged flow prop-

erties in the present thesis were approximately uniform vertically (e.g., figure 3-7;

White and Nepf, 2003) and laterally (e.g., figure 3-6; White and Nepf, 2003). Con-

sequently,
〈
fD

〉form ≈
〈
fD

〉form

H
and 〈u〉 ≈ Up. Then, Eq. (3.11) can be rewritten

as: 〈√
kt

〈u〉

〉
≈

〈√
kt

Up

〉
∼

[
C form

D

lt
d

φ

(1− φ)π/2

]1/3

, (3.14)

where C form
D is described by Eqs. (3.12) and (3.13). Recall that m = φ/(πd2/4).

The choice of lt = d is convention in the literature on flow through vegetation
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Figure 3-1: A section of simulated arrays of (a) φ = 0.010 and (b) φ = 0.20. Circles
represent cylinders, to scale. Turbulent eddies, depicted by the arrows, are O(d) in
sparse arrays, but are constrained by the local cylinder separation where the pore
length scale is smaller than d.

(e.g., Raupach and Shaw, 1982; Raupach et al., 1991) and is reasonable in sparse

arrays [figure 3-1(a)]. In dense arrays, however, the local pore length scale may be

less than O(d). In these regions, physical reasoning suggests that the local cylinder

spacing will constrain the eddies [figure 3-1(b)]. Therefore, lt must be redefined at

high φ. The simplest function consistent with the expected dependence on the local

surface-to-surface distance between cylinders is

lt = min{d, 〈sn〉A}. (3.15)

Turbulent diffusion coefficient

We expect the spatially-heterogeneous velocity field to induce lateral deflections of

O(d) per cylinder in the dispersion mechanism described in § 3.2.3 (e.g., Masuoka and

Takatsu, 1996; Nepf, 1999). Therefore, we propose that only turbulent eddies with

mixing length scale le ≥ d contribute significantly to net lateral dispersion relative to

the spatially-heterogeneous velocity field. Let r∗ be the minimum distance between

cylinder centers that permits the pore space constrained by them to contain such

eddies. Physical reasoning suggests that the mixing length scale associated with
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turbulent eddies is approximately equal to the size of the eddies, i.e., le ≈ lt, which,

together with Eq. (3.15), implies r∗ − d = d. Then, within an infinitesimally thin

section of the array whose total (solid and fluid) volume is denoted by V , the sum

of all volume that contributes to turbulent diffusion, Vm (≤ V ), is a sum of all pore

space with length greater than r∗ − d. Within these pores, le = d. To simplify, we

associate all fluid volume with a cylinder. Further, each cylinder in the array has a

fluid volume around it of characteristic horizontal area s 2
n . Then,

Vm = 〈s 2
n 〉snc>r∗Nsnc>r∗ , (3.16)

where Nsnc>r∗ is the number of cylinders with snc > r∗ in V . Recall that snc = sn +d.

To define Kyy as an average over both fluid and solid volume, local
√

ktle is

integrated over Vm and divided by V . Then, the contribution from turbulent diffusion

is

Kyy

〈u〉d = γ1

〈√
ktle

〉
m

〈u〉d
Vm

V
, (3.17)

where 〈 〉m denotes a spatial average over Vm and γ1 is the scaling constant. Equa-

tion (3.17) is simplified by neglecting the cross-correlations such that
〈√

ktle
〉

m
=

〈√
kt

〉
m
〈le〉m and assuming that

〈√
kt

〉
m

=
〈√

kt

〉
, the average over all fluid volume.

Equation (3.17) then becomes

Kyy

〈u〉d ≈ γ1

〈√
kt

〈u〉

〉 〈s 2
n 〉snc>r∗

d2

φ

π/4
Psnc>r∗ , (3.18)

where Psnc>r∗ ≡ Nsnc>r∗/(mV ) is the fraction of cylinders with a nearest neighbor far-

ther than r∗ (center-to-center) from its center. Recall that
〈√

kt/〈u〉
〉

can be described

by Eqs. (3.14) and (3.15), given d and φ.
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3.2.3 Contribution from the time-averaged, spatially-heterogeneous

velocity field

Two existing models of lateral dispersion due to the spatially-heterogeneous velocity

field are considered in this chapter. The simplest model describes the lateral de-

flection of fluid particles due to the presence of the cylinders as a one-dimensional

random walk (Nepf, 1999). In this model, a fluid particle is considered to undergo

a sequence of independent and discrete lateral displacements of equal length, where

each displacement has equal probability of being in the positive or in the negative y

direction. The long-time lateral dispersion of many such fluid particles is described

by:
Kyy

〈u〉d =
1

2

(
ε

d

)2 φ

π/4
, (3.19)

where ε, the magnitude of each displacement, is a property of the cylinder configu-

ration and Red. Nepf (1999) proposed that ε = d. With this assumption, Eq. (3.19)

becomes a function of φ only.

The second model considered for this mechanism is Koch and Brady (1986)’s an-

alytical solution for mechanical dispersion due to two-cylinder interactions in Stokes

flow, with a modification to only include cylinders with a nearest neighbor sufficiently

close to permit cylinder-cylinder interaction. Analytical solutions for long-time, Fick-

ian dispersion in a homogeneous, sparse, random cylinder array were derived for

Stokes flow by Koch and Brady (1986) by averaging the governing equations over an

ensemble of arrays with different cylinder configurations. Neglecting molecular diffu-

sion, lateral dispersion arises from the velocity disturbances induced by the randomly

distributed cylinders (Koch and Brady, 1986). The authors demonstrate that this

hydrodynamic dispersion consists of a mechanical component and non-mechanical

corrections, but that only the mechanical contribution, associated with the spatially-

heterogeneous velocity field due to the obstacles, has a non-zero lateral component.

Further, the authors showed that, because of their fore-aft symmetry, circular cylin-

ders do not contribute to lateral dispersion unless two-cylinder interactions are consid-

ered. Taking into consideration such interactions, Koch and Brady (1986) determined
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that the mechanical contribution of the cylinder array in Stokes flow is

Kyy

〈u〉d =
π

4096

(
d2

k⊥

)3/2
1− φ

φ2
, (3.20)

where k⊥ is the permeability such that the mean drag (in the direction of mean flow)

per unit length of cylinder is

〈
fD

〉
=

π

4

d2

k⊥
µ〈ū〉1− φ

φ
, (3.21)

where µ is the dynamic viscosity. Numerical simulations show that d2k−1
⊥ increases

monotonically with φ [Koch and Ladd, 1997; figure E-1]. For sparse random arrays, k⊥

is accurately described by Spielman and Goren (1968)’s analytical solution [Eq. (E.1)].

For dense arrays, Koch and Ladd (1997) have shown that a theoretical model based

on the lubrication approximation accurately captures the dependence of k⊥ on the

characteristic distance between neighboring cylinders. k⊥ for arrays of intermediate

density, for which analytical expressions have not been derived, can be described by

an empirical fit to numerical simulation data [Eq. (E.3)]. Models for k⊥ relevant to

our laboratory experiments are discussed in Appendix E.

Equation (3.20), where k⊥ is described by Eq. (E.1), predicts that dispersion due

to two-cylinder interactions will increase as φ decreases below φ = 0.017. Koch and

Brady (1986) attribute this predicted increase to the increase in the average distance

over which velocity disturbances induced by a cylinder decay. This distance, known

as the Brinkman screening length, scales with the square-root of permeability. As

discussed in Appendix E,
√

k⊥ ≈ 〈sn〉A in sparse arrays. However, the fraction of

cylinders with a neighbour close enough to result in cylinder-cylinder interaction de-

creases with decreasing φ, and physical reasoning suggests that the contribution from

this process approaches zero as φ decreases to zero. Therefore, we introduce an ad-

justment to Koch and Brady (1986)’s solution. Previous studies in unsteady and

turbulent flow report interacting wakes between side-by-side cylinders with center-

to-center distance less than 5d (e.g., Zhang and Zhou, 2001; Meneghini et al., 2001).
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Similarly, the drag on a cylinder is influenced by the presence of a neighboring cylin-

der that is within 5d (Petryk, 1969). Following these studies, we assume that only

cylinders whose centers are within 5d of another cylinder center contribute to net dis-

persion through this mechanism. Accordingly, Koch and Brady (1986)’s solution is

multiplied by the fraction of cylinders that have a nearest neighbor within 5d, Psnc<5d.

We assume that this process is otherwise unaffected by inertia. In addition, a scaling

constant γ2 is introduced. After the introduction of these two terms, Koch and Brady

(1986)’s solution becomes

Kyy

〈u〉d = γ2Psnc<5d
π

4096

(
d2

k⊥

)3/2
1− φ

φ2
. (3.22)

3.2.4 Coefficient for net lateral dispersion

Finally, an expression for net lateral dispersion is given by the linear superposition of

the models for turbulent diffusion and dispersion due to the spatially-heterogeneous

velocity field. For example, superposing Eq. (3.18) and the random walk model

[Eq. (3.19)] yields:

Kyy

〈u〉d = γ1
4

π
φ

〈√
kt

〈u〉

〉
Psnc>r∗

〈s 2
n 〉snc>r∗

d2
+

1

2

(
ε

d

)2 φ

π/4
. (3.23)

Similarly, superposing Eq. (3.18) and the proposed modification of Koch and Brady

(1986)’s solution [Eq. (3.22)] yields:

Kyy

〈u〉d = γ1
4

π
φ

〈√
kt

〈u〉

〉
Psnc>r∗

〈s 2
n 〉snc>r∗

d2
+ γ2Psnc<5d

π

4096

(
d2

k⊥

)3/2
1− φ

φ2
. (3.24)

To permit analytical expressions for Eqs. (3.23) and (3.24), Psnc>r∗ and Psnc<5d are

approximated as the probability that a single cylinder in a random array will have a

nearest neighbor farther away than r = r∗ and within r = 5d, respectively, where r

is the radial coordinate defined with the origin at the center of that cylinder. Ana-

lytical expressions for Psnc>r∗ , Psnc<5d, and 〈s 2
n 〉snc>r∗ for the random arrays used in

the present laboratory experiments are derived in Appendix D. Note that Psnc<5d ap-
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proaches one monotonically as φ increases from zero, with Psnc<5d > 0.99 at φ ≥ 0.043.

Expressions for k⊥ are presented in Appendix E.

3.3 Experimental procedure

Laboratory experiments were conducted to verify the definition of lt [Eq. (3.15)]

and the scale model for 〈√kt/〈u〉〉 [Eq. (3.14)] and to document the φ dependence of

Kyy/(〈u〉d). Scaling constants in Eq. (3.14) and the model for Kyy/(〈u〉d) [Eq. (3.24)]

are determined from the experimental data. Recall that this chapter focuses on the

high Red regime in which our measurements of the lateral concentration variance 〈σ2
y〉,

hence Kyy/(〈u〉d), are independent of Red. An empirical criterion of Re〈sn〉A > 74

is used to identify the Red-independent σ2
y measurements [§ 3.2.1; see Table 3.3 for

the exact (Red, Re〈sn〉A) range for each φ]. Similarly, turbulence intensity measure-

ments were independent of Red at Re〈sn〉A > 105 (Table 3.2). Only these velocity

measurements are considered in evaluating the scale models for lt and 〈√kt/〈u〉〉.
The laboratory study consisted of two parts: measuring velocity and imaging the

lateral concentration profile of a passive solute. In both parts, cylindrical maple dow-

els of diameter d = 0.64 cm (Saunders Brothers, Inc.) were used to create arrays

of eight densities: φ = 0.010, 0.020, 0.031, 0.060, 0.091, 0.15, 0.20, and 0.35 for

the velocity measurements and φ = 0.010, 0.031, 0.060, 0.091, 0.15, 0.20, 0.27, and

0.35 for the solute study. All arrays, except for the φ = 0.031 arrays, were created

in custom-made 71.1 cm × 40.0 cm perforated PVC sheets of either 20% or 35%

hole fraction. The location of the holes in these sheets were defined by generating

uniformly-distributed random coordinates for the hole centers until the desired num-

ber of non-overlapping holes was assigned; these non-overlapping holes were drilled

into the sheets. Here, non-overlapping holes were defined to not have any other hole

center fall within a 2d × 2d square around its center. Any directional bias re-

sulting from this definition, instead of defining the overlap over a circle of radius d,

is assumed negligible. The φ = 0.20 and 0.35 arrays were created by filling all of

the holes. The φ = 0.010, 0.020, 0.060, 0.091, 0.15, and 0.27 arrays were created by
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φ array base d/〈sn〉A array length [cm] ∆xgap [cm] n
0.010 PVC 0.28 569.0 0.0 118
0.020 PVC 0.43 497.8 0.0 147
0.031 Plexiglas 0.49 498.8 0.0 261
0.060 PVC 0.93 284.5 0.0 260
0.091 PVC 1.3 284.5 0.7 - 1.3 191
0.15 PVC 2.0 213.4 0.0 195
0.20 PVC 2.7 213.4 0.0, 0.1 136
0.35 PVC 5.9 106.1 0.3, 0.6 116, 22

Table 3.1: Array setup for laser Doppler velocimetry (LDV) measurements. ∆xgap is
the width of the gap that was created in the cylinder array to permit multiple LDV
measurements in each lateral transect. ∆xgap = 0.0 indicates an unmodified array. n
is the total number of time records collected at Re〈sn〉A > 105 (φ = 0.010− 0.20) and
both Re〈sn〉A > 70 and Re〈sn〉A > 105 for φ = 0.35.

selecting the holes to be filled or to be left empty by MATLAB’s random number

generator. The φ = 0.031 array in the solute study was created by partially filling

20% hole fraction PVC sheets with 1/2-inch staggered hole centers (Ametco Manu-

facturing Corporation). The φ = 0.031 array used in the velocity measurements were

created by partially filling Plexiglas boards that were designed by White and Nepf

(2003). Note that White and Nepf (2003) defined non-overlapping holes to not have

any other hole center fall within a concentric circle of diameter 4d. In the solute

study, the dowels were inserted into four PVC sheets placed along the bed of the

working section of the flume. For the velocity measurements, different numbers of

PVC sheets were used (see Table 3.1) because the density of cylinders increases with φ

and a shorter array length is required to achieve fully-developed conditions at higher

φ. The cylinders are perpendicular to the horizontal bed of the working section of

the flume.

As stated previously, velocity measurements taken in emergent cylinder arrays by

White and Nepf (2003) and in the present study (e.g., figures 3-6, 3-7) have shown

that 〈u〉 is approximately constant within the array, except very close to the bed and

the sidewalls. Therefore, 〈u〉 is approximated by Up, measured as the Q divided by

W ,
〈
H

〉
, and 1 − φ. Recall that

〈
H

〉
decreases along the length of the array to
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balance the net drag exerted on the flow (Ch. 2). The maximum decrease in
〈
H

〉

between the solute source and the LIF measurement location is estimated to have

been 31% of the depth at the solute source for experiments reported in this chapter,

and 17% for experiments reported in Ch. 4.
〈
H

〉
was defined at the measurement

location for velocity measurements and at the solute source in solute concentration

measurements. Reynolds numbers were calculated using Up as the velocity scale.

3.3.1 Velocity measurements

Velocity measurements were taken in a 670 cm × 20.3 cm × 30.5 cm recirculating

Plexiglas laboratory flume using two-dimensional laser Doppler velocimetry (LDV)

(Dantec Measurement Technology). The time-averaged water depth at the LDV

sampling volume ranged from
〈
H

〉
= 13.1 cm to 22.1 cm. Flow was generated by a

centrifugal pump and measured with an in-line flow meter. At each φ, time records

of longitudinal and vertical velocity components were collected at positions (s + d)/4

apart along a lateral transect at several streamwise positions within the array for a

range of Red. Recall that s ≡ 1/
√

m − d is the surface-to-surface distance between

aligned cylinders in a square array with the same φ and m is the number of cylinders

per unit area [Tanino and Nepf, 2008c, figure 1(b)]. The lateral transects were at an

elevation of 2
〈
H

〉
/3 from the bed.

In total, 2107 time records were collected. The time average (u, w), the temporal

deviations (u′, w′), and the temporal variance (u′2, w′2) were calculated for each

record as

u =

∑
k uk∆tk∑

k ∆tk
, (3.25)

u′k = uk − u, (3.26)

and

u′2 =

∑
k u

′ 2
k ∆tk∑

k ∆tk
, (3.27)

respectively, where ∆tk is the residence time of the kth seeding particle in the LDV

sampling volume. The vertical components are defined analogously. Note that only
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u(t) and w(t) could be measured. However, previous measurements indicate v′2 ≈ u′2

(figure B-1), and the turbulent kinetic energy per unit mass, kt, was determined as

kt = (2u′2 + w′2)/2.

The integral length scale lt can be estimated from the time record of turbulent

fluctuations. Specifically, the Eulerian integral length scale is approximately equal to

|u|/(2πfpeak,vj
), where fpeak,vj

is the frequency at which the frequency-weighted power

spectral density of v′j peaks (Kaimal and Finnigan, 1994, p. 38) and is one measure

of lt (e.g., Pearson et al., 2002). To determine fpeak,vj
, u′(t) and w′(t) records were

resampled at uniform time intervals by linear interpolation. The shortest interval

between consecutive samples in that time record was used as the interval. The power

spectral densities [cm2 s−2 Hz−1] of the reevaluated u′(t) and w′(t) were determined

using MATLAB’s pwelch.m function. A peak at 120 Hz exists in most records, which

is attributed to background noise. Because this frequency is one order of magnitude

higher than the maximum Up/d in our experiments, which was 15 Hz, it is assumed

that this noise did not interfere with the analysis. Also, the resampled record is accu-

rate only to f = fraw/(2π), where fraw is the mean data rate of the raw time record

(Tummers and Passchier, 2001). Accordingly, frequencies above fraw and 110 Hz

were neglected in the analysis. Finally, lt was estimated from the frequency fpeak,u

corresponding to the peak in the frequency-weighted power spectral density of the

resampled u′(t) as:

lpeak,u ≡ |u|
2πfpeak,u

. (3.28)

The vertical length scale, lpeak,w, was determined from the power spectral density of

w′ analogously. Of a total of 1317 lpeak,u measurements at Re〈sn〉A > 105, ten were

discarded because they differed from the mean lpeak,u for that φ by more than three

standard deviations and three were discarded because a peak could not be identified

in the frequency-weighted spectrum.

Alternatively, lt can be estimated from the autocorrelation function of the local
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velocity fluctuation as:

lcorr, u ≡ |u|
∫ τ0

0

u′(t)u′(t + τ)

u′2
dτ, (3.29)

where τ is the time lag with respect to t and τ0 is τ at the first zero-crossing. MAT-

LAB’s xcov.m function was used to calculate the variance-normalized auto-correlation

function of each resampled u′(t) record, from which the Eulerian integral length scale

lcorr,u [Eq. (3.29)] was calculated. Of a total of 1290 time records at Re〈sn〉A > 105

for which lcorr,u could be computed, 22 were discarded because the calculated lcorr,u

deviated from the mean for that φ by more than three standard deviations.

The spatial heterogeneity of the velocity field is quantified by the spatial variance

of u′′(x, y) = u(x, y, t) − 〈u〉 normalized by 〈u〉2. Time records at a given φ were

divided into five or six subsets based on Q. 〈u′′2〉 /〈u〉2 was then estimated for each

(φ, Q) as the average u′′2/〈u〉2 ≈ (u− Up)
2/U2

p of all time records in that subset.

Except in the sparsest arrays, measurements could not be collected across the

entire width of the flume because cylinders obstructed the LDV laser beams. To

permit sufficient sampling positions along each transect, gaps of normalized width

∆xgap/〈sn〉A = 1.4 to 2.7, 0.0 to 0.4, and 3 to 6 were created in arrays of φ = 0.091,

0.20, and 0.35, respectively (Table 3.1). To determine whether these gaps biased the

results, velocity time records were collected along a lateral transect in a φ = 0.20 array

for a range of ∆xgap, from which lateral averages of u/Up, w/Up, u′2/U 2
p , w′2/U 2

p ,

lpeak,u/d, and lpeak,w/d were calculated for each transect. The lateral averages, with the

exception of 〈w/Up〉 and
〈
w′2/U 2

p

〉
, remained within standard error of their respective

values at ∆xgap/〈sn〉A = 0.2 in the range ∆xgap/〈sn〉A = 0.2 to 8.1± 0.4 (figure 3-2).

The constant values suggest that our results were not biased by the gaps.

The duration of measurement at a single position was determined from the time

taken for the time average and the variance, as defined by Eqs. (3.25) – (3.27), of

preliminary velocity time records to converge to within 5% of their 20-minute average.

This test was performed for each φ for several Red. The duration varied from 60 s to

1000 s, with lower Red generally requiring a longer time to converge.
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Figure 3-2: Sensitivity of (a) 〈u/Up〉, (b) 〈w/Up〉, (c)
〈
u′2/U 2

p

〉
, (d)

〈
w′2/U 2

p

〉
,

(e) 〈lpeak,u〉/d, and (f ) 〈lpeak,w〉/d, as defined by Eqs. (3.25) – (3.28), to ∆xgap, the
width of the gap in the array at the sampling locations. Ten or eleven time records
were collected at lateral intervals of (s + d)/2 along a single lateral transect in a φ =
0.20 array for each ∆xgap. Dots represent the local values and open markers represent

the lateral average over each transect.
(
Red, Re〈sn〉A

)
= (430 − 480, 160 − 180) (◦)

and (470− 540, 170− 200) (square). Vertical bars indicate the standard error of the
mean.
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cylinders

laser beam

cylinderstracer source CCD camera

pixel intensity

y
x

y

Figure 3-3: Side (a) and plan (b) view of the test section of the experimental setup.
Mean flow 〈u〉 is left to right. Pixel intensity was extracted along a lateral transect
from each image [grey · in (c)] as a measure of the instantaneous concentration profile.
The thick line in (c) is the temporally averaged profile.

3.3.2 Laser-induced fluorescence experiments

LIF was used to measure the lateral dispersion coefficient in a recirculating Plexiglas

laboratory flume with a (x× y× z) = 284 cm × 40 cm × 43 cm working section. LIF

measurements could not be collected in the same flume as the LDV measurements

because the seeding material used in the latter would have interfered with the former.

The use of the two flumes is justified because the spatially-averaged turbulence char-

acteristics are determined by the macroscopic array properties and are not specific

to the flume system, as demonstrated by the good agreement in lpeak,u/d and mean

turbulence intensity observed by White (2002) and in the present study (figures 3-9

and 3-12).

Dilute rhodamine WT was injected continuously from a horizontal needle with a

syringe pump (Orion SageTM M362) at a rate that was matched visually with the

local flow. A single horizontal beam of argon ion laser (Coherent INNOVAR 70 ion
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laser) passed laterally through the flume at a single streamwise position x downstream

of the solute source (figure 3-3). A Sony CCD Firewire digital camera XCD-X710

controlled by Unibrain Fire-i 3.0 application captured the line of fluoresced solute

from above the flume in a sequence of 1024 × 48 bitmap images. 530 nm and 515 nm

long-pass filters (Midwest Optical Systems, Inc.) were attached to the camera to

filter out the laser beam. Preliminary measurements confirmed that the recorded

fluorescence intensity was linearly proportional to rhodamine WT concentration; for

simplicity, the former was used in all analyses. The correct spatial scale on the images

were determined from a photo of a ruler submerged horizontally in the position of

the laser beam. The image of the ruler was taken every time the local water depth,

the camera setting, or the position of the laser beam or the camera changed. At high

φ, cylinders were removed to create the 1.3-cm gap in the array necessary to insert

this ruler. This gap also ensured that the laser beam could pass through the entire

width of the flume. The position of the laser beam relative to the solute source, which

was restricted by the distance at which the solute reached the sidewalls, ranged from

x = 5 cm to 143 cm. The time-averaged water depth at the longitudinal position of

the laser beam ranged from 9.1 cm to 18.6 cm.

Instantaneous intensity profiles were extracted from the bitmap images, corrected

for background and anomalous pixel intensities, and averaged over the duration of

the experiment to yield a time-averaged intensity profile, I(y, t). The time-averaged

profile was corrected for noise and background. Then, its variance was calculated as

σ2
y(x) =

m2(x)

m0(x)
−

[
m1(x)

m0(x)

]2

, (3.30)

where mj(x) is the jth moment,

mj(x) =
∫ κ1

κ2

yjI(y, t) dy. (3.31)

The zeroth, first, and second moments and the corresponding σy were calculated by

setting the limits of integration in Eq. (3.31), κ1,2, at the two edges of the images.
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Next, κ1,2 were redefined as κ1,2 = (m1/m0)± 3σy and the calculation was repeated.

These limits were applied to prevent small fluctuations at large distances from the

center of mass from increasing the variance estimate unrealistically.

The net lateral dispersion coefficient normalized by Up and d for each φ was

calculated as
Kyy

Upd
=

1

2d

dσ2
y

dx
, (3.32)

where dσ2
y/dx is the gradient of the line of regression applied to all σ2

y measurements

at Re〈sn〉A > 53 for φ = 0.35 and at Re〈sn〉A > 74 for all other φ. The criterion

for φ = 0.35 is lower because the experimental setup could not accommodate the

large longitudinal free surface gradient that results from the cylinder drag (Ch. 2) at

Re〈sn〉A > 70 (Red > 400).

3.4 Experimental results

3.4.1 Flow visualization

We first consider the qualitative Reynolds number dependence. Figures 3-4 and 3-5

present unprocessed still photos taken in the φ = 0.010 and 0.15 arrays, respectively,

at four different Red. In figure 3-4, fluorescein solution was injected approximately

3.7 cm upstream of cylinder A. The injection point is visible at the top of the images

in figure 3-5. The tracer emerges from the needle as a single distinct filament for all

Red. In figure 3-5(a), the tracer is deflected by the cylinders and is advected through

the array forming a streakline that is stationary in time. The flow is unsteady for all

other conditions presented in figures 3-4 and 3-5 and, consequently, the angle at which

the tracer encounters cylinders A and B in figure 3-4 and cylinder A in figure 3-5 varies

with time. In both arrays, the Red dependence is qualitatively the same. The tracer

forms distinct, thin (¿ d) bands of dyed and undyed fluid at Red ≈ 30 [figures 3-4(a)

and 3-5(a)]. At higher Red, turbulent eddies rapidly mix the fluid within the pores,

resulting in a more spatially-uniform distribution. For example, distinct filaments

cannot be distinguished at the bottom of the image in figures 3-4(d) and 3-5(d).
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A

B

(a) (b)

(c) (d)

Figure 3-4: Flow visualization using fluorescein and blue lighting in a φ = 0.010 array
at Red = (a) 28± 1, (b) 56± 3, (c) 78± 3, and (d) 113± 5. These values correspond
to Re〈sn〉A = 99± 5, 200± 9, 270± 10, and 400± 20, respectively. Mean flow is from
top to bottom. Camera and dye injection position were fixed. The injection point is
approximately 3.7 cm upstream of cylinder A.
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(d)(c)

(b)(a)

A

Figure 3-5: Flow visualization using fluorescein and blue lighting in a φ = 0.15 array
at Red =(a) 32± 2, (b) 73± 3, (c) 108± 4, and (d) 186± 7. These values correspond
to Re〈sn〉A = 16.0 ± 0.8, 36 ± 2, 53 ± 2, and 92 ± 4, respectively. Mean flow is from
top to bottom. Camera and dye injection position were fixed.
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The φ = 0.010 array is sufficiently sparse that individual vortex streets and their

interactions can be identified. A laminar vortex street is seen behind cylinder B at

Red = 28 ± 1 [figure 3-4(a)]. In contrast, a pair of standing eddies are attached to

cylinder A in the same image. Here, tracer emerges O(d) downstream of the cylinder

as a single, straight filament. The difference between the wakes of cylinders A and

B can be attributed to differences in the local flow conditions due to the random

nature of the cylinder distribution. At an isolated cylinder, standing eddies form at

Red ≈ 5 and become unsteady at Red ≈ 40 (Lienhard, 1966). In figure 3-4(a), Red =

28 ± 1, and an isolated wake is expected to be steady. The presence of neighboring

cylinders may have elevated the local Red such that flow around cylinder B enters

the unsteady regime. Figure 3-4(a) also highlights the interaction of the wakes. The

single tracer filament leaving cylinder A is drawn into the vortex street of cylinder B

as it propagates downstream. At Red = 78± 3, cylinders A and B both shed vortices

[figure 3-4(c)]. Moreover, the shedding is in phase, indicating wake interaction. Here,

the center-to-center distance between cylinders A and B is approximately 4d, and the

occurrence of wake interaction is consistent with Eq. (3.22). The vortex street from

the two cylinders appears to merge and form a single turbulent street at approximately

x ≈ 15d. This is consistent with Williamson (1985)’s observations of in-phase vortex

shedding behind a pair of side-by-side cylinders. A similar merging of vortex streets

can be identified downstream of four cylinders in a square configuration at a 45◦ angle

to the flow (Lam et al., 2003, figure 9, Red = 200).

3.4.2 Velocity and turbulence structure

Local velocity varies dramatically in the horizontal plane due to the random con-

figuration of the cylinders. This is highlighted in figure 3-6, in which each subplot

presents lateral transects of time-averaged and turbulent components of velocity, nor-

malized by Up, at a single longitudinal position. For example, the time average of the

longitudinal component of velocity (u) deviates dramatically from its cross-sectional

average (Up) at all φ and Red. Indeed, u is negative at certain positions in the array

because of recirculation zones that develop immediately downstream of a cylinder
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Figure 3-6: Lateral transects of u/Up (solid line) and
√

kt/Up (grey, dashed line) at
(a) φ = 0.010, Red = 81−89 (·), 210−220 (×), 310−330 (∆), 350−370 (square), and
400−420 (+) and at (b) φ = 0.15, Red = 99−110 (·), 310−330 (+), and 400−460 (∗).
These values correspond to Re〈sn〉A = 280− 310, 730− 770, 1100− 1200, 1200− 1300,
and 1400 − 1500 for (a) and Re〈sn〉A = 49 − 55, 150 − 160, and 200 − 230 for (b).
Flume sidewalls were at y = 0 and 32.0d.

0 1 2
0

0.2

0.4

0.6

0.8

1

u/Up, 〈u/Up〉

(a)

z

〈H〉

0 0.25 0.5 0.75
0

0.2

0.4

0.6

0.8

1

√
kt/Up,

〈√
kt/Up

〉

(b)

Figure 3-7: Vertical profiles of (a) u/Up and (b)
√

kt/Up at four positions, 1.0d
apart, along a lateral transect (×). The lateral average of the four profiles is pre-
sented as a thick solid line. Horizontal bars reflect the uncertainty in Up. φ = 0.20,(
Red, Re〈sn〉A

)
= (440− 490, 160− 180),

〈
H

〉
= 17.3− 17.4 cm.
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[figure 3-6(b)]. A comparison of lateral profiles at different Red at the same position

in the array indicates that the shape of the lateral profiles remains constant as Red

varies (figure 3-6), confirming that the spatial variability is largely dictated by the

cylinder configuration. Because the array is vertically uniform, vertical variations in

the time-averaged velocity and turbulence intensity are expected to be smaller than

their lateral heterogeneity. In particular, spatial averages 〈u/Up〉 and 〈√kt/Up〉 are

approximately uniform in depth (solid lines in figure 3-7). Similar observations were

made in random arrays of φ = 0.010, 0.020, and 0.063 by White and Nepf (2003).

Finally, note that the spatial variability is smaller in figure 3-6(a) (φ = 0.010) than

in figure 3-6(b) (φ = 0.15). Indeed, 〈u′′〉2/〈u〉2 increases with increasing φ at a given

Red (Appendix I).

The frequency-weighted power spectral density and the autocorrelation function

of selected u′(t) records are presented in figure 3-8 for reference. Like u and
√

kt, the

power spectrum and the autocorrelation function vary dramatically in the horizontal

plane, and these plots should not be interpreted as typical profiles. Note that the

autocorrelation function in (a) appears oscillatory with a period of about 1 s, which

indicates that this particular u′(t) time record contains a periodic component.

The two methods for estimating the integral length scale yield similar values (fig-

ure C-1). Therefore, only 〈lpeak,u/d〉 (◦) is compared with the scale model Eq. (3.15)

here (figure 3-9). Note that each · in figure 3-9 represents a single time record; the

spread of the data at each φ reflects the spatial heterogeneity of the local velocity. The

measured integral length scale generally decreases with increasing d/〈sn〉A, as demon-

strated by 〈lpeak,u/d〉, where the spatial average was calculated as the mean of all LDV

measurements at Re〈sn〉A > 105 at each φ. Equation (3.15) captures this decrease of

〈lpeak,u/d〉 reasonably well for d/〈sn〉A ≥ 1.3. As expected from Eq. (3.15), the mean

of 〈lpeak,u/d〉 for d/〈sn〉A < 0.5 is 1.0. However, 〈lpeak,u/d〉 decreases with increasing

d/〈sn〉A below d/〈sn〉A = 1 in both the present study and in White (2002)’s experi-

ments. Additional measurements are necessary to verify Eq. (3.15) for d/〈sn〉A < 1.

The mean turbulence intensity at a given φ, 〈√kt/Up〉, is calculated as the gradient

of the line of regression of all LDV measurements of
√

kt on Up for Re〈sn〉A > 105 at
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Figure 3-8: The frequency-weighted power spectral density [cm2 s−2] (left) and
the variance-normalized autocorrelation function (right) of selected u′ time records.
(a) φ = 0.010, u = 3.8 cm s−1, Red = 350, Re〈sn〉A = 1200, (b) φ = 0.20,
u = −1.4 cm s−1, Red = 320, Re〈sn〉A = 120, and (c) φ = 0.35, u = 4.9 cm s−1,
Red = 770, Re〈sn〉A = 130. Arrows (↓) mark the identified peak in the frequency-
weighted power spectral density (left) and τ0 (right). f denotes frequency.
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Figure 3-9: lpeak,u/d as defined by Eq. (3.28) (·) for LDV measurements at Re〈sn〉A >
105. Each · in figure 3-9 represents a single time record. Circles mark the mean and
vertical bars represent the standard error of the data from the present study for each φ.
The solid line is Eq. (3.15). There are data points at (d/〈sn〉A, lpeak,u/d) = (0.49, 5.34)
and (2.0, 13.6) which are not visible in the figure but are included in the calculation
of the mean. White (2002)’s ADV measurements for Re〈sn〉A > 105 are also included
(·) with their mean (×) and standard error (power spectral density data provided by
B. L. White, personal comm.).
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Figure 3-10: All LDV measurements of
√

kt for φ = (a) 0.020 and (b) 0.35. Each ·
represents a single time record at one location within the array and the associated
Up. The solid line in each subplot is the least-squares fit to all data in the range
(a) Re〈sn〉A > 105 and (b) Re〈sn〉A > 70. See Table 3.2 for the equations for the fitted
lines.

φ line of regression of
√

kt on Up R n Red

0.010 (0.07± 0.06) + (0.21± 0.02)Up 0.77 118 57− 380
0.020 (0.06± 0.04) + (0.26± 0.01)Up 0.88 147 61− 380
0.031 (0.02± 0.05) + (0.30± 0.01)Up 0.81 261 67− 430
0.060 (−0.0± 0.1) + (0.38± 0.02)Up 0.73 260 130− 370
0.091 (0.1± 0.1) + (0.37± 0.02)Up 0.80 191 200− 540
0.15 (0.0± 0.3) + (0.43± 0.05)Up 0.53 195 220− 460
0.20 (0.3± 0.5) + (0.47± 0.09)Up 0.43 136 280− 540
0.35 (0.4± 0.7) + (0.52± 0.10)Up 0.44 116 430− 770

Table 3.2: The equation of the least-squares fit to data at mean Re〈sn〉A > 105 (φ =
0.010− 0.20) or at mean Re〈sn〉A > 70 (φ = 0.35). R is the correlation coefficient and
n is the total number of data points included in the regression. See Table 3.1 for the
corresponding d/ 〈sn〉A.
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Figure 3-11: The gradient of the line of regression of
√

kt on Up at Re〈sn〉A > 105 for
φ < 0.35 and Re〈sn〉A > 70 for φ = 0.35 from this thesis only. Vertical bars represent
the uncertainty in the gradient as defined by Eq. (F.1). Solid lines are Eq. (3.33); the
empirical fits are extrapolated over the range of the data set (dashed). Dotted lines
reflect the uncertainty in C form

D : the lines are Eq. (3.14) with the upper and lower
estimates of C form

D in Eq. (3.12) and the corresponding best-fit scaling constants 0.84
and 0.94 for lt = 〈sn〉A and 1.00 and 1.17 for lt = d, respectively.

φ < 0.35 and for Re〈sn〉A > 70 at φ = 0.35. The Re〈sn〉A ranges fall within those for

which Kyy/(Upd) is calculated (§ 3.3.2). The observed correlation is highly significant

for all φ (Table 3.2), indicating that 〈√kt/Up〉 is independent of Red under these

conditions.
√

kt measurements and the corresponding line of best-fit for φ = 0.020 and

0.35 are presented as examples in figure 3-10. Despite the large spatial heterogeneity

in individual (local)
√

kt/Up estimates, their spatial average increases monotonically

with φ, within uncertainty (figure 3-11).

The scaling constants for the turbulence intensity scale Eq. (3.14) were determined

by least-squares fitting Eq. (3.14), with lt defined by Eq. (3.15), to the 〈√kt/Up〉 mea-

surements presented in figure 3-11. The data point at d/〈sn〉A = 0.93 was excluded

from the fitting because it is near the expected transition in lt, i.e., d/〈sn〉A = 1.
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Further, to avoid discontinuities in the model predictions, we will assume that the

transition between the two regimes occurs at d/〈sn〉A = 0.56, where the two functions

intersect, i.e.,

〈√
kt

Up

〉
=





(1.07± 0.09)
[
C form

D
φ

(1−φ)π/2

]1/3
, d/〈sn〉A < 0.56

(0.88± 0.02)
[
C form

D
〈sn〉A

d
φ

(1−φ)π/2

]1/3
, d/〈sn〉A ≥ 0.56

, (3.33)

where C form
D is described by Eq. (3.12). The uncertainty in the scaling constants is

the 95% confidence interval. The theory accurately captures the φ dependence of the

measured 〈√kt/Up〉 for both d/〈sn〉A < 0.49 and ≥ 1.3 (figure 3-11). Note that the

measurement at d/〈sn〉A = 0.93 falls between the extrapolation of the two expressions

in Eq. (3.33), suggesting transition effects.

Field measurements by Neumeier and Amos (2006), Nikora (2000), and Leonard

and Luther (1995), presented in figure 3-12, fall within the range of
√

kt/Up observed

in the present study. To the authors’ knowledge, these are the only field reports in

which both turbulence measurements and stem density are presented for emergent

plant canopies. 〈√kt/Up〉 calculated from White (2002)’s three-dimensional acoustic

Doppler velocimeter (ADV) measurements are also presented in figure 3-12 for com-

parison. The good agreement between Eq. (3.33) and laboratory data suggests that

mean turbulence intensity at high Red can be predicted in random cylinder arrays

from d/〈sn〉A, φ, and C form
D .

3.4.3 Net lateral dispersion

The lateral variance of the time-averaged concentration distribution
(
〈σ2

y〉
)
, hence

d〈σ2
y〉/dx, measured at a fixed longitudinal distance from the source at Re〈sn〉A > 74

is independent of Red (e.g., figure 3-13; Appendix A; see Table 3.3 for exact range

in Red that were considered at a given φ). Such Red independence is expected in

fully turbulent conditions, defined here to refer to high Red flows in which turbulence

properties are Red independent. Following the Red independence of measured lt (at

φ ≥ 0.031) and
〈√

kt/〈u〉
〉

at similar Red, this Red independence of 〈σ2
y〉 is interpreted
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Figure 3-12: 〈√kt/Up〉 calculated from LDV measurements collected in the present
study (◦) and from White (2002)’s measurements at φ = 0.010, 0.020, and 0.063 (×)

(lateral profiles of
√

u′2,
√

v′2,
√

w′2, and u were provided by B. L. White, per-
sonal comm.). Vertical bars represent the uncertainty in the gradient as defined
by Eq. (F.1). Field measurements of

√
kt/Up in emergent plant canopies by Nikora

(2000, 4), Leonard and Luther (1995, +), and Neumeier and Amos (2006, unpub-
lished values and details provided by U. Neumeier, personal comm., rectangle) are

also plotted. U. Neumeier provided eight depth-profiles of (
√

u′2,
√

v′2,
√

w′2) in emer-
gent canopies, but only the profile where the estimated wind-induced horizontal and
vertical wave speeds were less than 50% of the reported r.m.s. speeds (profile H21) is
included here. The vertical range of the box marks the minimum and maximum val-
ues in that profile. The horizontal range in Leonard and Luther (1995) and Neumeier
and Amos (2006)’s data represents that in the mean stem d reported in the studies.
An exactly random distribution was assumed in calculating 〈sn〉A for the field data
from Eq. (D.10). Solid line is Eq. (3.33).
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Figure 3-13: σ2
y(x) for (a) Red = 83− 84 (×), 120− 130 (+), and 180− 190 (∗) in a

φ = 0.010 array and (b) Red = 190− 210 (×) and 340− 370 (+) in a φ = 0.15 array.
These values correspond to Re〈sn〉A = 290−300, 420−450, and 640− 660 for (a) and
Re〈sn〉A = 94 − 100 and 170 − 180 for (b). Solid line represents the linear regression
on all Re〈sn〉A > 74 data; dotted line is its extrapolation to smaller x. Note that the

best-fit lines were not forced through
(
x, σ2

y/d
2
)

= (0, 0).

to be due to fully turbulent conditions.

The assumption that net lateral dispersion becomes Fickian at large x is confirmed

by the linear increase of σ2
y with x observed at all φ (e.g., figure 3-13). At each φ,

the linear correlation coefficient for all (x, σ2
y) measurements at Re〈sn〉A > 74 is highly

significant, suggesting that all measurements at Re〈sn〉A > 74 were collected within the

asymptotic dispersion regime (see Table 3.3 for corresponding range in x). By analogy

with turbulent diffusion, dσ2
y/dx is not expected to reach its asymptotic limit until the

solute particles have dispersed over distances substantially larger than the distance

over which velocity is correlated. Accordingly, close to the solute source, σ2
y(x) is

expected to deviate from the line of regression of σ2
y(x) on x in the asymptotic regime

(e.g., solid line in figure 3-13). However, the extrapolation of the line of regression

coincides with
(
x, σ2

y/d
2
)

= (0, 0) within uncertainty at all φ ≤ 0.27, which suggests

that lateral dispersion in the high Reynolds number regime becomes asymptotic at a

very short advective distance. In Ch. 4, it will be shown that the distance required

to achieve asymptotic dispersion increases as Red decreases below fully turbulent
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conditions in dense (φ = 0.20, 0.35) arrays.

The normalized coefficients for net asymptotic lateral dispersion Kyy/(Upd) are

presented in figures 3-14 and 3-15 and in Table 3.3. The figures include measurements

at φ = 0 reported by Nepf et al. (1997, Table 1). Three distinct regimes can be

identified in the figures. In the sparse array, Kyy/(Upd) increases rapidly as φ and

d/〈sn〉A increase. In the present laboratory study, this regime extends from d/〈sn〉A =

0 to 0.58 (φ = 0 − 0.031). In the intermediate range, Kyy/(Upd) decreases as φ

increases. This regime extends from d/〈sn〉A = 0.58 to 2.7 (φ = 0.031− 0.20) in our

arrays. Finally, in the densest arrays, Kyy/(Upd) again increases with φ, but more

gradually. To the authors’ knowledge, this φ dependence of lateral dispersion over

one order of magnitude range of φ has not been documented previously.

Nepf et al. (1997)’s measurements of Kyy/(Upd) in periodic, staggered cylinder

arrays at Re〈sn〉A > 1700c are included in figure 3-14 (+) for the purpose of qualita-

tive comparison only. Only measurements for which the exact cylinder configuration

is available (see Zavistoski, 1994) are presented. It should be noted that Nepf et al.

(1997)’s measurements do not represent a dispersion phenomenon analogous to the

one investigated in the present study. In their experiments, solute was injected 54 cm

upstream of the array (Sullivan, 1996). It is not obvious how end effects (i.e., the

effects of being transported in non-fully-developed flow) influence the dispersion co-

efficient. Also, the nearest neighbor spacing was anisotropic in Nepf et al. (1997)’s

arrays, and 〈sn〉A may not be the appropriate length scale.

Models proposed by Nepf (1999) and Koch and Brady (1986) are compared with

experiment in figure 3-14. Nepf (1999)’s model for turbulent diffusion [Eq. (3.6)]

is consistent with the qualitative trend observed in the sparse array regime (φ ≤
0.031). However, the model does not capture the decrease in Kyy/(Upd) observed from

d/〈sn〉A = 0.58 to 2.7 and, consequently, overpredicts Kyy/(Upd) above d/〈sn〉A =

0.58. Note that Eq. (3.6) is equivalent to assuming that the product of 〈le〉m/d

and the effective porosity, Vm/V , in Eq. (3.17) is constant for all φ. Consequently,

cIn calculating this value, 〈sn〉A was taken as the minimum distance between cylinders in any
direction.
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Figure 3-14: Comparison of observed Kyy/(Upd) (◦) with Eq. (3.6) (dash-dotted),

Eq. (3.19) (dotted), and Eq. (3.20) (dashed).
〈√

kt/Up

〉
in Eq. (3.6) is predicted

by Eq. (3.33). ε = d in Eq. (3.19), as proposed by Nepf (1999). k⊥ in Eq. (3.20)
is predicted for the arrays used in our experiments as described in Appendix E.
Kyy/(Upd) at φ = 0 is taken from Nepf et al., 1997, Table 1. Also represented are Nepf
et al. (1997)’s measurements in periodic staggered arrays of d = 0.6 cm, φ = 0.0046,
0.014, and 0.055 at Re〈sn〉A > 1700. The marker (+) indicates their mean. For the
periodic array, 〈sn〉A was taken as the minimum distance between cylinders in any
direction. Vertical bars on our data represent uncertainty in the gradient of the linear
regression of the variance data, as defined by Eq. (F.1). Vertical bars on Nepf et al.
(1997)’s data indicate the quadratic sum of the standard error and the mean of the
experimental uncertainty associated with each measurement. Where vertical bars are
not visible, they are smaller than the size of the marker.
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Eq. (3.6) predicts that turbulent diffusion will grow monotonically with d/〈sn〉A. In

contrast, (〈le〉m/d)(Vm/V ) decreases monotonically as φ increases in our formulation

[Eq. (3.18)], which permits a description of turbulent diffusion that decreases with

increasing d/〈sn〉A for d/〈sn〉A > 0.56 (dash-dotted line in figure 3-15).

At high φ (≥ 0.20), where physical reasoning suggests that dispersion due to

the spatially-heterogeneous velocity field is most important, Nepf (1999)’s random

walk model [Eq. (3.19) with ε = d = 0.64 cm] yields good quantitative agreement

with the data. While Koch and Brady (1986)’s Stokes flow solution [Eq. (3.20)]

predicts the correct qualitative trend at φ ≥ 0.20, the quantitative agreement with

the experiment is poor: the solution dramatically overpredicts our measurements at

φ = 0.20, 0.27, and 0.35. Also, Eq. (3.20) predicts a rapidly-increasing contribution

as φ decreases below d/〈sn〉A = 0.44 (figure 3-14). The laboratory data exhibit the

opposite trend, with Kyy/(Upd) decreasing as d/〈sn〉A decreases below 0.58. In the

proposed modification [Eq. (3.22)], Eq. (3.20) is multiplied by Psnc<5d, the probability

that a single cylinder in the array will have a nearest neighbor within r = 5d. Psnc<5d

monotonically decreases to zero as φ decreases to zero, which also allows Eq. (3.22)

to remain finite.

The linear superposition of models describing the contributions of turbulence and

the spatially-heterogeneous velocity field to net dispersion [Eqs. (3.23), (3.24); ε = d,

r∗/d = 2] is compared with experiment in figure 3-15. Recall that r∗ is the min-

imum center-to-center separation between neighboring cylinders necessary for the

fluid between them to contain eddies with mixing length scale le ≥ d. Here, we

anticipated that le = lt and imposed r∗/d = 2. The best-fit scaling constants

γ1 = 4.0 and γ2 = 0.34 were determined by substituting Eq. (3.33) and r∗/d = 2

into Eq. (3.24) and fitting the resulting expression, in the least-squares sense, to the

observed Kyy/(Upd) for φ > 0. Because the two expressions for dispersion due to the

spatially-heterogeneous velocity field [Eqs. (3.19) and (3.22)] have a similar depen-

dence on φ at large φ, Eq. (3.23) yields comparable agreement to data (dotted line).

The corresponding scaling constant for the turbulent diffusion model is γ1 = 4.5.

The proposed model for net dispersion captures the three observed regimes. Some
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Figure 3-15: Comparison of the observed Kyy/(Upd) (◦) with the theory. Kyy/(Upd)
at φ = 0 is taken from Nepf et al., 1997, Table 1. Solid line is Eq. (3.24), with scaling
constants γ1 = 4.0 and γ2 = 0.34, as determined from least-squares fitting to data.
〈√kt/Up〉 in Eq. (3.24) is predicted by Eq. (3.33). The two terms that constitute
Eq. (3.24) – Eq. (3.22) (dashed) and Eq. (3.18) (dashed-dotted) – are also presented.
Dotted line is Eq. (3.23); ε = d was imposed and the scaling constant γ1 = 4.5
was determined from least-squares fitting to data. Vertical bars for φ > 0 represent
uncertainty in the gradient of the linear regression of the variance data, as defined by
Eq. (F.1). The vertical bar on Nepf et al. (1997)’s data point (φ = 0) indicate the
quadratic sum of the standard error and the mean of the experimental uncertainty
associated with each measurement. Where the vertical bars are not visible, they are
smaller than the marker.
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disagreement between theory and experiment occurs at d/〈sn〉A = 2.0 (φ = 0.15), sug-

gesting non-linear interactions between the two components of lateral dispersion at

this d/〈sn〉A. Note that Eq. (3.24) suggests that the contribution from the spatially-

heterogeneous velocity field to net lateral dispersion first exceeds the contribution

from turbulent diffusion around this d/〈sn〉A (= 1.6).

The present model for turbulent diffusion suggests that its contribution increases

rapidly with d/〈sn〉A until d/〈sn〉A = 0.56 and then decays as d/〈sn〉A increases

further. With the best-fit scaling constants determined above, the predicted contri-

bution from turbulence constitutes less than 1% of the predicted net Kyy/(Upd) for

d/〈sn〉A > 3.3, and the theory suggests that dispersion arises predominantly from the

spatial heterogeneity in the velocity field due to the solid obstructions. Note that

Psnc<5d = 1 at d/〈sn〉A > 3.3, and the φ dependence predicted by Eq. (3.24) is cap-

tured entirely by Koch and Brady (1986)’s Stokes flow solution [Eq. (3.20)]. The good

agreement despite the high Red suggests that, at large φ, the time-averaged velocity

field may not be strongly altered by turbulence, whose length scale is constrained

by the cylinder separation. This further suggests that Kyy/(Upd) may not change

significantly from Stokes flow to high Red at high d/〈sn〉A. Additional measurements

are necessary to verify our assumption of Red independence. The same data can be

used to examine whether the choice of ε = d in the random walk model [Eq. (3.19)]

is appropriate at lower Red. As a first step towards understanding lateral dispersion

prior to the onset of full turbulence, additional LIF experiments were conducted at

Red below those considered in the present chapter, i.e., at Re〈sn〉A < 74, at φ = 0.20

and 0.35. These measurements are presented in Ch. 4.

Finally, let us evaluate the assumption r∗/d = 2 that we imposed to determine the

scaling constants γ1 and γ2 in Eq. (3.24). If r∗ is treated as a third fitting parameter,

least-squares fitting Eq. (3.24) to the experimental data at φ > 0 yields r∗/d = 1.6

(γ1 = 3.8 and γ2 = 0.32), which agrees with r∗/d = 2 to within 20%, suggesting that

le = lt is a reasonable approximation.
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3.5 Conclusions

Laboratory measurements of turbulence and lateral dispersion in random arrays of

cylinders of diameter d = 0.64 cm at high Red, at which the lateral variance of the

time-averaged concentration distribution is independent of Red, were presented for

φ = 0.010 − 0.35. In sparse arrays, the characteristic size of the largest turbulent

eddies is lt = d. However, when the mean nearest-neighbor cylinder spacing, 〈sn〉A,

is smaller than d, the turbulence length scale becomes constrained by the pore size

(figure 3-9). Thus, even though mean turbulence intensity increases monotonically

with φ (figure 3-11), its contribution to solute dispersion declines in this regime. Our

experiments verified that mean turbulence intensity can be predicted in terms of the

cylinder density, lt/d, and C form
D only. Further, since C form

D in a random cylinder

array is a function only of φ for a constant d (Ch. 2), mean turbulence intensity in a

random cylinder array can be described as a function of φ and d only.

The normalized coefficient for net asymptotic lateral dispersion Kyy/(Upd) in-

creases, decreases, and then increases again as φ increases. The observed Kyy/(Upd)

is described accurately by a linear superposition of models describing the contributions

of turbulence and the spatially-heterogeneous velocity field. Comparable agreement is

achieved by describing the contribution from the latter by a one-dimensional random

walk model with a step size that is comparable to the cylinder diameter, as proposed

by Nepf (1999), and by a modification of Koch and Brady (1986)’s Stokes flow solu-

tion. The good agreement with the experiment supports the two main assumptions of

our turbulent diffusion model. First, only turbulent eddies with characteristic mixing

length le ≥ d contribute significantly to net lateral dispersion. Second, neighboring

cylinder centers must be farther than r∗ = 2d from each other for the pore space be-

tween them to contain such eddies. The fractional volume of the array that comprises

pores larger than this critical length scale decreases with increasing d/〈sn〉A. Conse-

quently, although 〈√kt/Up〉 increases monotonically with d/〈sn〉A, the contribution

of turbulent diffusion to net lateral dispersion decreases for d/〈sn〉A > 0.56, correctly

capturing the observed decrease in net lateral dispersion at intermediate densities.
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The conceptual framework presented here is not specific to arrays of circular cylin-

ders. Specifically, the results suggest that the integral length scale lt and mean turbu-

lence intensity can be determined simply from the distribution and geometry of the

elements. In addition, the three d/〈sn〉A regimes identified for Kyy/(Upd) are expected

to apply to solute transport in random arrays in general. Furthermore, observations

of transverse dispersion in ceramic foam agree with Koch and Brady (1985)’s the-

ory for packed bed of spheres in Stokes flow [e.g., Pereira et al., 2005, figure 3(d)].

This agreement suggests that, at least in isotropic media of φ = O(0.13), transverse

dispersion is not sensitive to the exact geometry of the individual obstacles (Hackert

et al., 1996). Similarly, Eqs. (3.23) and (3.24), with the scaling constants determined

in this work, may accurately describe transport in plant canopies of slightly different

stem morphology. Finally, the good agreement between the data and the model for

the contribution from the spatially-heterogeneous velocity field based on Koch and

Brady (1986)’s analytical solution at φ ≥ 0.20 suggests that lateral dispersion predic-

tions based on Stokes flow analysis may be applicable at higher Reynolds numbers at

sufficiently high φ once asymptotic (long-time/long-distance) dispersion is achieved.

Indeed, Hackert et al. (1996) and Pereira et al. (2005)’s transverse dispersion measure-

ments, which also agree with a Stokes flow solution (discussed above), were collected

at pore Reynolds numbers of 10− 300, where inertia is clearly non-negligible.
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Chapter 4

Lateral dispersion at transitional

Reynolds number: dense arraysa

Abstract

Lateral dispersion of passive solute was examined in unsteady laminar flows and in tur-
bulent flows prior to the onset of fully turbulent conditions through a two-dimensional
array of randomly distributed circular cylinders of uniform diameter d. These flows,
and the corresponding Reynolds numbers, are referred to as transitional flows and
transitional Red in this thesis. The present chapter focuses on dense arrays, for which
the theory developed in Ch. 3 implies that the asymptotic (long-time/long-distance)
dispersion coefficient, when normalized by the mean interstitial fluid velocity, 〈u〉,
and d, will only exhibit a weak dependence on Red. However, the advective distance
required to reach asymptotic dispersion is expected to be controlled by pore-scale
mixing, which is strongly Red-dependent prior to the onset of full turbulence. Laser-
induced fluorescence was used to measure the time-averaged lateral concentration
profiles of solute released continuously from a point source in arrays of solid volume
fraction φ = 0.20 and 0.35 at Red = 48 to 120. Results are compared with previous
measurements at higher Red. Lateral dispersion reaches the same rate as asymptotic
dispersion in fully turbulent flow at x ≈ 154d at (φ, Red) = (0.20, 110 − 120) and
at x ≈ 87d at (φ,Red) = (0.35, 300 − 390). In contrast, dispersion does not reach
the fully turbulent flow limit at Red < 100 within the range of x considered. Also,
concentration profiles deviate further from a Gaussian distribution at φ = 0.35 than
at 0.20 for similar Red and xφ/d. From these observations, it can be inferred that
the pre-asymptotic regime extends farther downstream, in terms of the number of

aThis chapter was submitted to Physics of Fluids as Tanino and Nepf, 2008a, with minor dif-
ferences. This material is based on work supported by the National Science Foundation grant
EAR−0309188. Any opinions, conclusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.
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cylinders spanned, at lower Red and at larger φ.

4.1 Introduction

Lateral dispersion at sufficiently high Red exhibited two properties over the range

of x considered in Ch. 3 (Red > 67 to 320 and x/d > 7 to 80, depending on φ).

First, d
〈
σ2

y

〉
/dx remained constant in x, consistent with a spatially homogeneous

Kyy/(〈u〉d). Second, d
〈
σ2

y

〉
/dx was independent of Red. As a result, the correspond-

ing Kyy/(〈u〉d) was a function only of φ (d was kept constant). Further, it was shown

that Kyy/(〈u〉d) in this high-Red regime can be described by the linear superposition

of a model for turbulent diffusion and existing models for asymptotic (long-distance)

dispersion associated with the tortuous flow path that fluid is forced to follow around

the cylinders (Ch. 3).

In predicting the contribution from turbulent diffusion, fully turbulent flow, de-

fined here to refer to flow that has achieved the maximum (and therefore Red-

independent) mean turbulence intensity for that φ, was assumed. The model predicts

that turbulent diffusion makes a non-negligible (specifically, ≥ 10%) contribution to

Kyy/(〈u〉d) at d/〈sn〉A ≤ 2.6 (φ ≤ 0.19) in fully turbulent flow [Eq. (3.24), with scal-

ing constants as proposed in § 3.4.3]. Since turbulent diffusion must decrease as Red

decreases below the fully turbulent regime, the theory implies that Kyy/(〈u〉d) will

also decrease as Red decreases in this φ range in turbulent flow. However, in unsteady

laminar flow, periodic wakes may introduce a different mechanism of dispersion. Un-

steady laminar flows at intermediate φ were not explicitly considered in this thesis.

Nevertheless, selected
〈
σ 2

y

〉
measurements at Red prior to the onset of full turbulence

are presented in Appendix H for φ = 0.091 and 0.15.

Conversely, the model predicts that at large φ (> 0.19), turbulence does not con-

tribute significantly to asymptotic dispersion and, consequently, that the contribution

from the tortuous flow path, i.e., the time-averaged, spatially-heterogeneous velocity

field, dominates. In dense arrays, physical reasoning suggests that the time-averaged

velocity field, and therefore its contribution to lateral dispersion, are determined pri-
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marily by the local cylinder configuration and, therefore, do not depend strongly on

Red. This conjecture is supported by figure 3-6, which shows that lateral transects

of turbulence intensity and u/Up remain approximately constant with Red. There-

fore, Kyy/(〈u〉d) at φ > 0.19 is not expected to depend strongly on Red either. To

our knowledge, the Red-dependence of the time-averaged velocity field has not been

investigated directly. Nevertheless, the good agreement between experiment and the

model in Ch. 3, which assumes a Red-independent contribution from the tortuous flow

path, supports this conjecture. Indeed, Hill et al. (2001) made the same conjecture

for dense arrays of randomly distributed spheres, based on their observation that the

spatial variance of the transverse components of velocity normalized by 〈u〉2 differ by

less than 4% between Stokes flow and Red = 113 in their numerical simulations at

φ = 0.588. The same conjecture has also been made for rhombohedrally distributed

spheres (Mickley et al., 1965).

In fully turbulent flow, d
〈
σ2

y

〉
/dx is expected to be independent of Red at all x.

This implies that
〈
σ2

y

〉
(x) is also Red-independent at all x in this flow regime, given

the same initial distribution of the solute
[〈

σ2
y(x = 0)

〉
= 0

]
. Indeed, at φ = 0.20,

〈
σ 2

y

〉
is independent of Red above Red ≈ 200 (figure A-1). However,

〈
σ 2

y

〉
decreases

as Red decreases below Red ≈ 100 (figure A-1). If asymptotic d
〈
σ2

y

〉
/dx does not

depend strongly on Red at this φ (= 0.20), this Red dependence of
〈
σ2

y

〉
at Red < 100

must arise entirely from a Red-dependent pre-asymptotic dispersion.

The objective of the present study is to use laboratory observations to evaluate

two conjectures for lateral dispersion in dense arrays:

(i) asymptotic d
〈
σ2

y

〉
/dx exhibits only a weak dependence on Red and

(ii) the advective distance required for the solute to achieve this asymptotic behavior

is strongly dependent on Red prior to the onset of full turbulence, due to the

Red dependence of pore-scale mixing.

The latter conjecture is explained in detail in § 4.3. To the authors’ knowledge, exper-

imental measurements of lateral dispersion at transitional Red within homogeneous

random cylinder arrays are not currently available in the literature. Shavit and Bran-
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don (2001) report laboratory measurements in a φ = 0.035 array, but illustrations

of their array suggest that the cylinder distribution was in fact not random. More

recently, Serra et al. (2004) measured the lateral dispersion of solute released at the

upstream edge of a random array of φ = 0.10, 0.20, and 0.35 at Red = 11 − 120.

Their estimates of Kyy/(〈u〉d) are independent of Red within experimental uncer-

tainty over 32 < Red < 120, which is consistent with conjecture (i) above. However,

the φ dependence of their reported values disagrees with that reported in Ch. 3 (fig-

ure 3-15). Specifically, Kyy/(〈u〉d) at φ = 0.10 and at φ = 0.20 were the same within

experimental uncertainty, and Kyy/(〈u〉d) was the smallest at φ = 0.35 in Serra et al.

(2004)’s experiments. This disagreement may be due to their flow not being fully de-

veloped at the solute source or measurements being collected at very short distances

(x/d = 8−26). Although Serra et al. (2004) report that their estimates of Kyy did not

vary with x within this range, comparison with experiments reported in the present

chapter suggests that they were sampling in the pre-asymptotic regime (§ 4.3.3).

In this study, a set of LIF experiments were performed in arrays of φ = 0.20

and 0.35 at selected Red in the range Red = 48 to 120, which extends from steady

laminar to turbulent conditions. These experiments were not reported in Ch. 3.

Visualizations of pore-scale mixing are presented, and the observed Red dependence

is discussed qualitatively (§ 4.3.1). Time-averaged concentration profiles are discussed

in § 4.3.2 and § 4.3.3, in terms of their deviation from a Gaussian distribution, their

variance, and the evolution of these two parameters with x. The growth rate of the

variance is also compared with the corresponding Kyy/(〈u〉d) in fully turbulent flow

presented in Ch. 3, and pre-asymptotic and asymptotic regimes are identified.

4.2 Experimental procedure

LIF was used to measure the lateral concentration distribution at (x,Red) selected

systematically between Red = 48 to 120 and x = 38 to 234 cm (x = 0 is the solute

source). The range of experimental conditions examined are summarized in Table 4.1.

The flume setup and procedure used in the laboratory experiments reported in this
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chapter were essentially the same as those described in § 3.3 and § 3.3.2, respectively.

Two changes in the setup are noted. First, a different argon ion laser, Coherent

INNOVAR 70C ion laser, was used for some of the experiments, as the laser used in

Ch. 3 was replaced during the course of the experiments reported in this chapter.

Second, different φ = 0.20 arrays were created by selecting different combinations

of the 20% and 35% hole fraction sheets. In doing so, more array realizations could

be included in the ensemble average. The duration of the experiments in φ = 0.20

ranged from 46 to 213 s (4.5 to 18.9 frames per second). In φ = 0.35, images were

collected over 94 s (10.1 to 10.7 frames per second) in all but six runs; the duration

of the other six runs ranged from 80 to 112 s (9.0 to 12.5 frames per second). The

high frame rate at φ = 0.20 arose because one of the two computers used was able to

record images at a faster frame rate.

In this chapter, two quantitative parameters were considered in describing the

time-averaged intensity profile, I(y, t). First, its variance was calculated as

σ 2
y (x) =

m2(x)

m0(x)
−

[
m1(x)

m0(x)

]2

, (4.1)

where mj(x) is the jth moment,

mj(x) =
∫ κ1

κ2

yjI(y, t) dy. (4.2)

y = 0 is defined at the lateral position of the solute source. The zeroth, first, and

second moments and the corresponding σ2
y were calculated by setting the limits of

integration in Eq. (4.2), κ1,2, at the two edges of the images. Next, κ1,2 were redefined

as κ1,2 = (m1/m0)± 4σy and the calculation was repeated. Second, the deviation of

I(y, t) from a Gaussian distribution was parameterized by

Cms =
1

κ1 − κ2

∫ κ1

κ2

{
I(y, t)/m0 − IG(y)

}2

IG(y)
dy, (4.3)

where κ1,2 = (m1/m0)±3σy and IG(y) is a Gaussian distribution with unit total mass
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and with the same center of mass (m1/m0) and σ2
y as I(y, t). Note that the integral

in Eq. (4.3) is the chi-square statistic.

4.3 Experimental results

Recall from § 3.2.1 that, by analogy with turbulent diffusion, dispersion in a homo-

geneous array is expected to become Fickian once the plume becomes well-mixed

at, and significantly larger than, the spatial scales of all contributing mechanisms

(Corrsin, 1974; Koch and Brady, 1985; White and Nepf, 2003). In steady laminar

flows and turbulent flows through dense arrays, the mechanisms that contribute to

(macroscopic) lateral dispersion are molecular diffusion, turbulent diffusion, and dis-

persion associated with the tortuous flow path. Turbulent eddies are constrained

by the local cylinder spacing, and thus the largest eddies scale with 〈sn〉A in dense

arrays (Ch. 3). Dispersion associated with the tortuous flow path can be modeled

as a series of independent, discrete lateral deflections that fluid particles undergo as

they flow around cylinders; each deflection is expected to scale with d (Nepf, 1999;

Masuoka and Takatsu, 1996). Accordingly, asymptotic dispersion is expected once
〈
σ2

y

〉
À d2, 〈sn〉 2

A .

The initial (small x) growth of the ensemble-averaged variance of the plumes may

be approximated by
〈
σ2

y

〉
= 2Dporet = 2Dporex/〈u〉, where the diffusion coefficient

Dpore characterizes pore-scale mixing. Then, the mean streamwise distance that the

solute is advected before achieving asymptotic behavior, xc, is expected to scale as

xc

d
∼

(
max {d, 〈sn〉A}

d

)2 〈u〉d
Dpore

. (4.4)

In steady laminar flow, Dpore is the molecular diffusion coefficient Dm, and xc/d is

linearly proportional to the Peclet number Pe ≡ 〈u〉d/Dm. This Pe dependence has

been observed in simulations of different types of steady laminar obstructed flows,

e.g., in packed beds of spheres (Stapf et al., 1998; Maier et al., 2000), in periodic

cylinder arrays (Acharya et al., 2007), and in a lattice network (Bijeljic and Blunt,
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2007). In contrast, in turbulent flow, turbulent mixing is the dominant mechanism

for pore-scale mixing. Then, Dpore ∼ 〈√kt〉lt. Recall that d > 〈sn〉A in the arrays

considered in the present chapter (Table 4.1). Under these conditions, Eq. (4.4) yields

xc

d
∼

(〈√
kt

〈u〉

〉
lt
d

)−1

. (4.5)

It was shown in Ch. 3 that the integral length scale of turbulence is accurately de-

scribed by lt/d = min {1, 〈sn〉A/d} in fully turbulent flow. Then, in the arrays con-

sidered in this chapter,
lt
d

=
〈sn〉A

d
, (4.6)

which decreases monotonically as φ increases. Further, Eq. (4.6) is expected to be

valid in transitional turbulent flow as well, because the size of the largest turbulent

eddies is still constrained by the cylinder spacing, which is independent of Red. In

contrast, mean turbulence intensity,
〈√

kt/〈u〉
〉
, is expected to depend strongly on

Red. In fully turbulent flow,
〈√

kt/〈u〉
〉

can be described by Eq. (3.33); at smaller Red,

values for
〈√

kt/〈u〉
〉

are not available, to our knowledge. Nevertheless,
〈√

kt/〈u〉
〉

is expected to increase gradually and monotonically with Red between laminar and

fully turbulent conditions. While we are not aware of any experimental verification

of this expected Red dependence in random arrays of cylinders or spheres, it has

been observed in ceramic foams (Hall and Hiatt, 1996) and in numerical simulations

of a periodic staggered cylinder array (Hill and Koch, 2002, φ = 0.19). With this

assumption, Eq. (4.5) implies that, in transitional turbulent flow, xc decreases as Red

increases until the flow becomes fully turbulent. The appropriate definition for Dpore

and the mechanism that replaces turbulent diffusion in unsteady laminar flow are not

obvious. Nevertheless, xc is expected to be continuous over all Red, which requires

that xc decrease as the flow transitions from the steady laminar flow regime to the

turbulent flow regime.

In summary, dispersion in dense arrays (φ > 0.19) are expected to exhibit three

properties. First, dispersion at large x is expected to be Fickian, i.e., d〈σ2
y〉/dx 6= f(x),

at all Red. Second, d〈σ2
y〉/dx in this asymptotic limit is expected to be approximately
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the same for all Red (§ 4.1). Third, the distance required to reach this limit, xc, is

expected to decrease as Red increases beyond steady laminar flow, until fully turbulent

flow is achieved [Eq. (4.5)]. The simplest dependence of 〈σ2
y(x)〉 on x and Red that

would satisfy these assumptions is depicted in figure 4-1 for a given φ. Note that

this schematic further assumes that d〈σ2
y〉/dx at a given Red increases monotonically

as it approaches its asymptotic (large x) limit. With this pre-asymptotic behavior,

〈σ2
y(x)〉 at a given x necessarily increases with Red until fully turbulent flow is reached

for all x (cf. red line in figure 4-1), consistent with observation (Appendix A). It

should be noted that in flows in which the lateral velocity autocorrelation function

takes on negative values, d〈σ2
y〉/dx will decrease with increasing x at some x < xc

prior to achieving its asymptotic limit, as highlighted in the classic paper by Taylor

(1922). A transient decrease in the (pre-asymptotic) transverse dispersion coefficient

has been observed in numerical simulations of randomly packed bed of spheres (Maier

et al., 2000) and lattice networks (Bijeljic and Blunt, 2007); Maier et al. (2000)

demonstrate that the decrease coincides with a negative autocorrelation function in

their simulations.

4.3.1 Pore-scale mixing and the approach to asymptotic dis-

persion

Pore-scale mixing was visualized using fluorescein for both solid volume fractions

(φ = 0.20 and 0.35) in steady laminar flow and in unsteady flow (figure 4-2). Be-

ginning at the lowest Red, tracer streaklines remained stationary in time, indicating

steady flow, everywhere in figure 4-2(a) and (e) except in the region immediately

downstream of the cylinder marked with an oval in figure 4-2(a). Vortices shed from

the marked cylinder, indicating that flow was unsteady in that region. This simultane-

ous occurrence of both steady and unsteady flow at (φ,Red) = (0.20, 61) is attributed

to the random distribution of the cylinders and the resulting spatial variations in the

local velocity field.

In the absence of turbulence, the tracer is mixed with ambient fluid only through
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Figure 4-1: Anticipated evolution of the variance of the lateral concentration profile
with distance, and its dependence on Red in unsteady laminar and turbulent flows
in dense arrays. The distance required to reach the asymptotic limit at a given Red,
xc (dotted), is described by Eq. (4.4). Red,1 < Red,2 < Red,full turb ≤ Red,3, where
Red,full turb(φ) denotes the Red at which flow becomes fully turbulent. Not to scale.

molecular diffusion, which is a very slow process: Dm ≈ 3 × 10−6 cm2 s−1 for rho-

damine WT (estimated from Schwarzenbach et al., 2003, figure 18.10) and Dm ≈
(3 − 5) × 10−6 cm2 s−1 for fluorescein (Rani et al., 2005; Hodges and La Mer, 1948;

Petrasek and Schwille, 2008). In the time taken for the tracer to advect to the right

edge of the photo in figure 4-2(a) (x ≈ 22d) and figure 4-2(e) (x ≈ 15d), molecular

diffusion can only have mixed the tracer over O(0.01d). Accordingly, thin, distinct

filaments are observed in the photos. In contrast, at Red > 120 in the φ = 0.20

array and at Red = 180 in the φ = 0.35 array, the interface between the tracer and

the ambient fluid was blurred, and the tracer was well-mixed at the pore scale and

distributed over distances larger than d and 〈sn〉A by the time it reached the right

edge of the respective photos [figure 4-2(c), (d), (h)]. The rapid pore-scale mixing

and the absence of any apparent periodicity in the tracer distribution are indicative

of turbulent flow, in which small-scale turbulence provides an additional, much faster

mechanism for mixing within the pores. Recall that the tracer plume must be well-

mixed and much wider than d and 〈sn〉A for its dispersion to be asymptotic. Based
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= 0.20

(b) Re
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= 94, Re<sn>A
= 35

(c) Re
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= 120, Re<sn>A
= 46

(d) Re
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= 190, Re<sn>A
= 70

= 0.35

(e) Re
d

= 35, Re<sn>A
= 5.9
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= 8.3
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= 81, Re<sn>A
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(h) Re
d

= 180, Re<sn>A
= 30

Figure 4-2: Flow visualization by illuminating fluorescein with blue lighting (Current
Inc.) in a φ = 0.20 array at Red = (a) 61, (b) 94, (c) 120, and (d) 190 and in a
φ = 0.35 array at Red = (e) 35, (f) 49, (g) 81, and (h) 180. These values correspond
to Re〈sn〉A = (a) 23, (b) 35, (c) 46, (d) 70, (e) 5.9, (f) 8.3, (g) 14, and (h) 30. Mean
flow was from left to right. The fluorescein injection position was fixed over (a) - (d)
and over (e) - (h). In (a) - (d), fluorescein was injected along the upstream edge of
the cylinder marked with a ×; in (e) - (h), the source is visible in the photo. In (e)
- (h), the distance between the source and the cylinder marked with a white × is
6.0 cm. Vortex shedding can be observed downstream of one of the cylinders in (a)
(dotted oval).
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on the above observations, we expect that beyond the steady laminar flow regime,

the streamwise distance necessary for dispersion to become asymptotic, xc, is smaller

at higher Red.

Although the transition from steady to fully turbulent flow, and its dependence on

φ, have not been systematically investigated in obstructed flows, existing observations

suggest that they are complex. For example, compared to flow past an isolated

cylinder, flow regime transitions appear to occur at a lower Red in sparse arrays and at

a higher Red in dense arrays. Specifically, flow in the φ = 0.20 array became unsteady

at a higher Red (> 60) than the near wake of an isolated cylinder [figure 4-2(a)]. This

apparent delay in the onset of unsteadiness in dense arrays is reminiscent of the delay

in the onset of vortex shedding in uniform shear flow past an isolated cylinder reported

by Kiya et al. (1980). In contrast, in a φ = 0.010 array, a laminar vortex street was

observed, and flow became turbulent, at a lower Red than in an isolated cylinder wake

(figure 3-4). Further, it is unclear whether periodic vortex shedding would even occur

from all cylinders at large φ, given the random distribution of cylinders and their

proximity to each other. Indeed, the absence of vortex shedding has been reported

previously in packed beds of spheres (Mickley et al., 1965, φ = 0.74).

Given the random distribution of the cylinders, detailed velocity measurements are

necessary to describe how flow and turbulence properties vary with φ and Red and to

determine if certain regimes, such as the unsteady laminar flow regime, are suppressed

above a certain φ. It would be interesting to determine if the Reynolds number can be

redefined using a different length scale such that the onset of unsteadiness, turbulence,

and full turbulence occur at the same values at all φ. Although a likely candidate,

the Reynolds number based on the mean distance between nearest cylinders, Re〈sn〉A ,

does not appear to capture the exact φ dependence of these flow regime transitions.

For example, tracer remains in distinct filaments at x/d ≈ 15 at Re〈sn〉A = 23 in the

φ = 0.20 array, but not above Re〈sn〉A ≥ 8.3 in the φ = 0.35 array (figure 4-2).
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Figure 4-3: I(y, t)/m0 [cm−1] (solid) and the corresponding IG(y) [dotted; see
Eq. (4.3)] for selected runs at (φ,Red) = (0.35, 97 − 100). xφ/d increases from left
to right: (a) 21, (b) 42, (c) 58, (d) 87, and (e) 100. Cms values are also in [cm−1].
The growth of σ2

y with x can be discerned from the width of the profiles, which are
truncated at y = m1/m0 ± 3σy.

4.3.2 Deviation of the time-averaged concentration profile

from a Gaussian distribution

Fickian dispersion of solute released from a point source results in a Gaussian con-

centration distribution. Therefore, the deviation of the time-averaged concentration

profile, I(y, t), from a Gaussian distribution is a convenient measure of the proxim-

ity to Fickian behavior. For reference, selected I(y, t) are presented in figure 4-3.

Note that the ensemble average of I(y, t)/m0, where (x, y) = (0, 0) is defined at the

solute source, is equivalent to the probability density function of the solute particle

displacement. The time-averaged profiles gradually approach a Gaussian distribution

as x increases, and this trend is reflected in the corresponding decrease in the mean

normalized squared deviation, Cms [Eq. (4.3)].

The ensemble-averaged Cms are presented in figure 4-4 as a function of xφ/d, which
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Figure 4-4: Ensemble average of Cms [cm−1] as defined by Eq. (4.3) for (a) φ = 0.20
at Red = 58− 61 (·), 84− 89 (◦), 110− 120 (×), and 310− 340 (square; Ch. 3) and
(b) φ = 0.35 at Red = 48−51 (+), 77−82 (◦), and 97−100 (×). Each data point for
these (φ,Red) represents an average of four or more runs: horizontal bars indicate the
range in x and vertical bars indicate the standard error of the mean. (b) also includes
individual Cms at (φ, Red) = (0.35, 300 − 390) (square; Ch. 3). Note that ensemble
averages cannot be computed for this (φ,Red) because replicate measurements were
not collected. Data points in grey correspond to (φ,Red, x) at which dispersion was
observed to have occurred at the same rate as asymptotic dispersion in fully turbulent
flow (figures 4-5 and 4-6). 〈Cms〉 = 2.5×10−3 cm−1 (dashed) is the proposed empirical
boundary between the pre-asymptotic and asymptotic dispersion regimes.
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is the expected number of cylinders in a d× x area (multiplied by π/4). Two salient

trends can be identified at each φ. First, at each Red, 〈Cms〉 decreases as x increases.

This trend is attributed to the plume having had more time to mix over the pore

scale at larger x. Second, for all x considered, 〈Cms〉 decreases as Red increases. This

is attributed to the enhancement of pore-scale mixing that results from the increase

in turbulence intensity with increasing Red. Note that the large reduction in 〈Cms〉
between Red = 58 − 61 and 84 − 89 at φ = 0.20 coincides with the transition from

steady to unsteady flow captured in figure 4-2(a, b). A similar reduction occurred

at φ = 0.35 between Red = 48 − 51 and 77 − 82. Note that the ranges in Red re-

flect unintended, small variations across replicate runs, not measurement uncertainty

(Table 4.1).

At similar xφ/d and Red, 〈Cms〉 was consistently larger at φ = 0.35 than at

φ = 0.20 (figure 4-4). This implies that at larger φ, a longer advective distance in

terms of the number of cylinders per d-width is required for dispersion to become

Fickian for the same Red. This φ dependence is expected in fully turbulent flow, for

which Eq. (4.5) predicts xcφ/d ∼ 4 for φ = 0.35 and ∼ 1 for φ = 0.20 (Table 4.1).

Unfortunately, the φ dependence of xcφ/d at transitional Red cannot be predicted

from Eq. (4.5) because measurements of
〈√

kt/〈u〉
〉

are not available. However, flow

became fully turbulent at smaller 〈u〉/ν in ceramic foams with larger pore diameters in

Hall and Hiatt (1996)’s experiments. Recall that d = 0.64 cm in all of our experiments,

and runs with the same 〈u〉/ν have the same Red. Therefore, the analogous trend

would be for flow to become fully turbulent at smaller Red at smaller φ (larger 〈sn〉A).

This trend would yield a smaller xc/d at smaller φ at Red close to the onset of full

turbulence, consistent with the observed behavior of 〈Cms〉. Such a trend would also

be consistent with the delayed onset of vortex shedding from a cylinder in the presence

of shear (Kiya et al., 1980), since shear is presumably larger at smaller 〈sn〉A (higher

φ) for a given 〈u〉. To the authors’ knowledge, the φ dependence of dispersion or

turbulence at transitional Red has not been explored for other types of homogeneously

obstructed flows, presumably because φ cannot be altered significantly or easily in

other types of real porous media.
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Figure 4-5: Evolution of the ensemble-averaged variance with normalized distance at
φ = 0.20. Markers same as figure 4-4(a). Solid line is the least-squares fit to

〈
σ2

y

〉
(x)

at Red = 310−340: d〈σ2
y〉/dx = 0.17±0.03 cm (R2 = 0.98, n = 3). Dashed line is the

least-squares fit to
〈
σ2

y

〉
(x) at Red = 110−120, xφ/d > 30: d〈σ2

y〉/dx = 0.16±0.01 cm

(R2 = 0.99, n = 3). Also included is
〈
σ2

y

〉
/x = 0.56 cm (dashed-dotted), as measured

by Serra et al. (2004) at 37 < Red ≤ 110.

4.3.3 Variance of the time-averaged concentration profile

The ensemble-averaged variance of the time-averaged lateral concentration profiles
(
〈σ2

y〉
)

are presented in figures 4-5 and 4-6 for φ = 0.20 and 0.35, respectively. A

subset of measurements at high Red that were reported in Ch. 3 are also included

(square). As discussed in § 4.1, 〈σ2
y〉 at a given x becomes Red-independent at Red ≈

200 in a φ = 0.20 array (Appendix A). The high Red (= 310 − 340) data for φ =

0.20 were selected from this regime, i.e., both 〈σ2
y〉 and d〈σ2

y〉/dx are independent of

Red. At φ = 0.35, Red-independent 〈σ2
y〉 could not be confirmed under experimental

conditions considered, i.e., at Red < 400. Therefore, σ2
y(x) at (φ,Red) = (0.35, 300−

390) is expected to be smaller than in fully turbulent flow for all x (cf. figure 4-

1). Unfortunately, the laboratory flume cannot accommodate Red > 400 at this φ

(Ch. 3).

Both 〈σ2
y(x)〉 and d〈σ2

y〉/dx decrease as Red decreases below Red ≈ 100 at both
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Figure 4-6: Evolution of the ensemble-averaged variance with normalized distance
at φ = 0.35: Red = 48 − 51 (+), 77 - 82 (◦), and 97 - 100 (×). Individual σ2

y

measurements from experiments at Red = 300 − 390 (square) reported in Ch. 3
are also included. Each +, ◦, and × represents an average of four or more runs;
horizontal bars indicate the range in x and vertical bars indicate the standard error
of the mean. Solid line depicts d〈σ2

y〉/dx = 0.34 cm, as predicted for fully turbulent
flow by Eq. (3.24), with scaling constants proposed in § 3.4.3. Dashed line is the
least-squares fit to σ2

y (x) for Red = 300− 390, xφ/d > 30: dσ2
y/dx = 0.36± 0.05 cm

(R2 = 0.86, n = 10). Dotted line is its extrapolation to smaller x, for reference. Also

included is
〈
σ2

y

〉
/x = 0.28 cm (dashed-dotted), as measured by Serra et al. (2004) at

46 < Red ≤ 120.
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φ (figures 4-5 and 4-6). As depicted in figure 4-1, this Red dependence of d〈σ2
y〉/dx

at transitional Red is attributed to pre-asymptotic effects, i.e., the plume reached

the measurement location before the solute particles experienced a sufficiently large

subset of velocities in the array or, equivalently, before the solute particles dispersed

over scales much larger than d and 〈sn〉A [Eq. (4.4)]. A qualitatively similar increase

of d〈σ2
y〉/dx with 〈u〉/ν at a fixed x, and subsequent 〈u〉/ν independence at high

〈u〉/ν, have been observed in ceramic foam (Pereira et al., 2005; Hackert et al., 1996).

If the observed Red dependence of d〈σ2
y〉/dx is indeed due to pre-asymptotic ef-

fects, then d〈σ2
y(x)〉/dx is expected to approach its asymptotic value in fully turbu-

lent flow at sufficiently large x (= xc) (figure 4-1). At (φ,Red) = (0.20, 58 − 61),

flow is steady and laminar [figure 4-2(a)], and the predicted xcφ/d [∼ 3 × 104,

Eq. (4.4)] is two orders of magnitude larger than the length of the laboratory ar-

ray (xφ/d = 88). Accordingly, d〈σ2
y〉/dx remains smaller than its asymptotic value

at high Red (= 310 − 340) for all x considered (figure 4-5, ·). In contrast, at

(φ,Red) = (0.20, 110 − 120), d〈σ2
y〉/dx is equal to its asymptotic value at high Red

within uncertainty at xφ/d > 30, but deviates at xφ/d ≤ 20 (figure 4-5, ×). This

trend indicates that asymptotic dispersion is reached in the range 20 < xcφ/d ≤ 30

at this (φ,Red). This distance is larger than xcφ/d ∼ 1 predicted by Eq. (4.5) for

fully turbulent flow, presumably because the flow was not fully turbulent at this

Red (= 110−120) and the weaker turbulence intensity relative to fully turbulent flow

extended xc (cf. figure 4-1).

It is convenient to relate numerical values of Cms to asymptotic/pre-asymptotic

dispersion as interpreted directly from d〈σ2
y〉/dx. A threshold defined at Cms =

2.5×10−3 cm−1 accurately segregates (φ,Red) = (0.20, 110−120) data in the asymp-

totic regime (xφ/d > 30) from those in the pre-asymptotic regime (xφ/d ≤ 20), as

determined above. With this threshold, 〈Cms〉 for (φ,Red) = (0.20, 58 − 61) and

(0.20, 310− 340) are also correctly classified into the pre-asymptotic and asymptotic

dispersion regimes, respectively [figure 4-4(a)].

This criterion can now be applied to classify the remaining measurements, for

which the anticipated transition from pre-asymptotic to asymptotic (large x) disper-
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sion cannot be easily identified by eye (figures 4-5, 4-6). For example, the range

of x over which dσ2
y/dx is constant is not obvious for (φ,Red) = (0.35, 300 − 390).

However, 〈Cms〉 at (φ,Red) = (0.35, 300 − 390) and (0.20, 84 − 89) fall below the

threshold at xφ/d > 30 and ≥ 55, respectively, implying that the asymptotic regime

had been reached at these x. Least-squares fit to data in the former yields dσ2
y/dx =

0.36 ± 0.05 cm (R2 = 0.86, n = 10) (figure 4-6, dashed line). The correlation is

highly significant, confirming that dispersion is indeed Fickian at xφ/d > 30. Fur-

thermore, the best-fit dσ2
y/dx is equal, within uncertainty, to that predicted for fully

turbulent flow by Eq. (3.24), with scaling constants proposed in § 3.4.3 (figure 4-

6, solid line). This agreement supports the conjecture that asymptotic (i.e., x > xc)

d〈σ2
y〉/dx is independent of Red. In contrast, a linear regression at 55 ≤ xφ/d ≤ 72 for

(φ,Red) = (0.20, 84− 89) does not yield a significant correlation (R2 = 0.56, n = 3).

Since 〈σ2
y〉(x) measurements are constant within standard error in this range, the weak

correlation is most likely due to measurements not extending sufficiently far into the

asymptotic regime. Finally, 〈Cms〉 (or Cms) corresponding to (φ,Red, x) at which

measured d〈σ2
y〉/dx (or dσ2

y/dx) was identified above to have occurred at the same

rate as asymptotic dispersion in fully turbulent flow are plotted in grey in figure 4-4.

The empirical boundary 〈Cms〉 = 2.5 × 10−3 cm−1 (dashed) accurately segregates

the ensemble-averaged time-averaged concentration profiles in the asymptotic regime

from those in the pre-asymptotic regime.

The above discussion suggests that dispersion is not likely to reach its asymptotic

limit in dense vegetation in the field. A rough extrapolation of our laboratory data

suggests that, at Red ≤ 60, solute introduced in dense (φ > 0.19) arrays must flow

through a distance larger than xφ/d = 100 before its dispersion becomes asymptotic

(figure 4-4). This value corresponds to x = 30 m, for example, in a random array

with the same d(= 3 cm) and φ(≈ 0.1) as measured by Lightbody et al. (2008)

in a constructed wetland (Red = 30 − 40). This is a non-negligible distance in

many aquatic systems, e.g., constructed wetlands (Kadlec, 1994), mangrove swamps

(Furukawa et al., 1997; Kobashi and Mazda, 2005), and salt marshes (Neumeier and

Amos, 2006), where homogeneous vegetation conditions extend no more than about
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200 m perpendicular to land, and in some systems (Kadlec, 1994; Neumeier and Amos,

2006) much less. In particular, constructed wetlands typically comprise multiple cells

of variable dimensions, and the shortest cell may only extend 30− 300 m streamwise

(Keefe et al., 2004; Hey et al., 1994; Lightbody et al., 2008; Martinez and Wise, 2003).

4.4 Conclusions

The lateral distribution of passive solute released continuously from a point source

was measured at x/d = 59 to 370 and Red = 48 to 120 in random cylinder arrays

of solid volume fraction φ = 0.20 and 0.35, and the results were compared with

measurements at Red = 300 − 390 reported in Ch. 3. Previous predictions for fully

turbulent flow imply that asymptotic (large x) lateral dispersion, Kyy/(〈u〉d), will

not exhibit a strong dependence on Red at these φ (Ch. 3). Measured d
〈
σ2

y

〉
/dx

and dσ2
y/dx reached asymptotic rates predicted for fully turbulent flow at (φ,Red) =

(0.20, 110−120) and (0.35, 300−390) at large x, supporting this conjecture. While the

contribution of turbulent diffusion to lateral dispersion is expected to be negligible at

long distances in dense arrays, it is apparent from flow visualization that turbulence

substantially enhances pore-scale mixing, which in turn accelerates the approach to

asymptotic dispersion. This Red dependence explains why dispersion at lower Red (<

100) did not reach the fully turbulent flow limit within the length and width of the

laboratory array.

Further, results suggest that at the same Red, the pre-asymptotic regime extends

farther downstream at φ = 0.35, in terms of the number of cylinders spanned (xφ/d),

than at φ = 0.20. Concentration profiles within the asymptotic dispersion regime

deviated from a Gaussian distribution by less than 〈Cms〉 = 2.5 × 10−3 cm−1 in

both previous (Ch. 3) and present experiments. Using this as an empirical criterion,

we can evaluate from time-averaged profiles at a single streamwise location whether

dispersion at that distance is pre-asymptotic or asymptotic. This method requires

significantly less effort than obtaining measurements at multiple streamwise positions

to evaluate d〈σ2
y〉/dx.
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Chapter 5

Conclusions

This thesis presented laboratory measurements of mean drag, integral length scale

of turbulence, turbulence intensity, and lateral dispersion in random cylinder arrays

under conditions relevant to aquatic plant canopies. The most important results are

summarized below.

Previously, measurements of drag reported in the literature for a random cylinder

array were limited to 0 ≤ Red ≤ 100 at φ ≥ 0.05 and Red ≥ O(1000) at φ < 0.05.

This thesis provides the first measurements of mean drag at large φ (≥ 0.091) at

O(30) ≤ Red ≤ O(700) that include both laminar and turbulent flows. Drag per

unit cylinder length
〈
fD

〉
, when normalized by the mean interstitial velocity 〈u〉 and

viscosity µ, increases linearly with Red at all φ and Red considered in the present ex-

periments. The same dependence was previously observed in random cylinder arrays

at lower Red (≤ 100) (Koch and Ladd, 1997) and in packed beds of spheres (e.g.,

Kececioglu and Jiang, 1994; Ergun, 1952). The corresponding drag coefficient CD

increases with increasing φ at Red ≤ O(700). Given Nepf (1999)’s report of the oppo-

site φ dependence at Red ≥ O(1000), it can be inferred that the φ dependence of CD

changes at Red ≈ 1000, which coincides with the anticipated transition from laminar

to turbulent cylinder boundary layer [see further discussion below (§ 5.1)]. Finally,

the inertial contribution to the drag coefficient CD is an input parameter in the classic

scaling for turbulence intensity which, with the present drag measurements, could be

verified (see below).
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The integral length scale of turbulence, which has traditionally been regarded to

be of the order of the cylinder diameter d in cylinder arrays (Raupach and Shaw,

1982; Raupach et al., 1991; Nepf, 1999), is constrained by the interstitial pore size

in dense arrays. We proposed and experimentally verified that the spatial average

of the integral length scale in dense random arrays is equal to the average spacing

between nearest-neighboring cylinders. Laboratory measurements confirmed that the

mean turbulence intensity in fully turbulent flow is a function only of the form drag

coefficient, the solid volume fraction, and the ratio of the integral length scale of

the turbulent eddies and the cylinder diameter. These scaling of the integral length

scale and the mean turbulence intensity are expected to apply to random arrays of

cylinders of different geometries, with differences in the geometry manifesting in the

form drag coefficient.

The lateral variance of the concentration of solute at a given distance, x, from

a point source is Red-independent at sufficiently high Red at all φ. The Red above

which variance is Red-independent varies with φ, and is generally higher at larger

φ. This transition to Red independence is attributed to the onset of fully turbulent

conditions. The present study has revealed for the first time that asymptotic dis-

persion in this high-Red regime exhibits three distinct regimes. In particular, the

measurements reveal an intermediate regime in which the dispersion coefficient Kyy

decreases with increasing cylinder density. A scale model was developed for turbu-

lent diffusion which, when superposed with existing models for dispersion due to the

spatially-heterogeneous velocity field that arises from the presence of the cylinders,

accurately captures the observed dependence of dispersion on cylinder density. Model

predictions imply that, in dense (φ > 0.19) arrays where turbulent diffusion is neg-

ligible, Kyy/(〈u〉d) does not depend strongly on Red. This conjecture was confirmed

experimentally for selected φ and Red > 100.

Although turbulent diffusion does not contribute significantly to Kyy/(〈u〉d) in

these dense arrays, turbulence substantially enhances pore-scale mixing. In unsteady

laminar and turbulent flows at φ = 0.20 and 0.35, the pre-asymptotic dispersion

regime extends farther downstream at lower Red, which is attributed to weaker pore-
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scale mixing.

5.1 Directions for future research

During the course of the research reported in this thesis, several questions were raised

that remain open or are currently being investigated by other students. Key topics

are discussed below.

Drag at lower (Red < 100) and higher (Red > 1000) Reynolds numbers Surprisingly,

measured drag
〈
fD

〉
/(µ〈u〉) is accurately described by a single linear regression

over all Red considered at each φ, even though flow visualization and solute con-

centration measurements suggest that experimental conditions coincided with

the transitional flow regime, namely, between steady laminar and fully turbulent

flow regimes. In particular, the data set at φ = 0.20 appears to have extended

from the steady laminar flow regime and into the fully turbulent regime. The

constant linear dependence of drag across the transitional flow regime suggests

that at each φ, a single linear function between drag and Red may be valid over

a Red range wider than those considered in this thesis – specifically, as low as

Red = O(5), below which the Red-dependence is no longer linear (Koch and

Ladd, 1997), and as high as Red = O(1000), above which the cylinder bound-

ary layer is no longer laminar. However, Kececioglu and Jiang (1994) have pro-

posed, specifically for randomly packed beds of spheres for which
〈
fD

〉
/(µ〈u〉)

also varies linearly with Red, that the coefficients of the linear function (α0,

α1) differ between viscous-inertial laminar (Forchheimer) and turbulent flow

regimes. Other authors have observed a similar shift in coefficients at high Red,

but in the absence of turbulence (Soleymani et al., 2007). It would be insightful

to determine experimentally the exact range of Red over which a single linear

function of Red can describe the drag in a random cylinder array (at constant

d, φ).

Data at higher Red > 1000 can also be used to determine if the φ dependence of

CD reverses, i.e., if CD decreases with increasing φ, at Red ≥ O(1000). Recall
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that a decreasing CD was observed by Nepf (1999) for smaller φ = 0.006− 0.06

at all Red (> 1000) considered.

Dispersion in Stokes flow To my knowledge, lateral dispersion in Stokes flow through

random cylinder arrays has not been measured in laboratory experiments or

numerical simulations. Several models have been proposed in the literature

for lateral dispersion in Stokes flow, specifically by Nepf (1999) [Eq. (3.19)],

Koch and Brady (1986) [Eq. (3.20)], and Serra et al. (2004). For completeness,

these models should be compared with experiment. In particular, Koch and

Brady (1986)’s solution is expected to overestimate Kyy/(〈u〉d) in Stokes flow

by a factor of 1/γ2 ≈ 3.0 and to diverge from experiment as φ approaches zero

(Ch. 3). It would be useful to confirm the overestimation and to see at what φ

the divergence occurs, from which we can evaluate the appropriateness of the

adjustment we made to Eq. (3.20) to obtain a finite expression [Eq. (3.22)].

The transition from steady laminar to turbulent flow Very little has been re-

ported about flow in random arrays at transitional Red, i.e., between steady

laminar flow and turbulent flow. Indeed, the classification of a flow as laminar

or turbulent is itself difficult, because the cylinders are distributed randomly

and, consequently, local flow conditions vary spatially. Therefore, the onset of

unsteadiness and turbulence is expected to occur gradually as Red is increased,

with different regions of the array becoming unsteady and turbulent at different

Red. Further, it seems possible at sufficiently high φ for several neighboring

cylinders to be distributed in such a way that a (laminar) recirculation zone is

maintained at all Red, even when the rest of the domain is turbulent. Physical

reasoning and qualitative observations also suggest that certain phenomena ob-

served at low φ may not occur at high φ. For example, as discussed in § 4.3.1,

it seems likely that the close proximity and the random distribution of the

cylinders would suppress periodic oscillation of near wakes and periodic vortex

shedding in sufficiently dense arrays.

Finally, periodic oscillations differ fundamentally from turbulent motion, and it
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would be interesting to investigate how periodic motion of the wake in unsteady

laminar flow, at φ in which such a flow regime occurs, affects microscopic and

macroscopic solute transport. These changes will be reflected in, e.g., xc and

Kyy/(〈u〉d).

Discontinuities in the array Investigation of flow in a discontinuous cylinder ar-

ray is an obvious extension of this thesis. To this end, previous studies (White,

2006; Lightbody, 2007) have already explored different configurations. In the

field, plant canopies are restricted to finite horizontal area and their bound-

aries with open water are non-negligible in modeling the aquatic system. For

example, field studies report that some species predominantly reside near the

boundary between a salt marsh and open water (e.g., Peterson and Turner,

1994). Investigation of the flow near the interface between a confined cylin-

der array and an adjacent unobstructed region may yield important insights

into biological activity in such regions. Also, transverse bands of deep zones,

which are typically sparsely vegetated, are sometimes introduced in artificial

treatment wetlands to promote contaminant removal (see Lightbody, 2007 for a

summary of previous studies). The effects of discontinuity on solute transport

must first be identified before the role of deep zones, which introduce not only

a discontinuity in the array but also depth variation, can be fully understood.

The simplest configuration that can be considered is an “infinite” two-dimensional

cylinder array with a gap in the middle (figure 5-1). Even for this configura-

tion, a systematic investigation of flow and transport has not been undertaken,

to my knowledge. Preliminary LDV measurements of the longitudinal compo-

nent of the laterally-averaged velocity, turbulence intensity, and integral length

scale of turbulence remained unchanged within experimental uncertainty as gap

length was increased from ∆xgap/〈sn〉A = 0.2 to 8.1± 0.4 (figure 3-2, φ = 0.20,

Red = 430 to 540) in a random array. Selected measurements have also been

collected by various authors in the reversed system - where an array of finite

length is placed in an otherwise unobstructed flow (e.g., Finelli, 2000). For
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(b)

(a)

d

xgap

Figure 5-1: (a) Side and (b) plan view of an array of randomly-distributed emergent
cylinders with a gap of width ∆xgap in the middle that spans the width of the array.
Not to scale. The blue arrows indicate the direction of mean flow.

example, Nakajyo et al. (2007, Red = 258) observed that the turbulent kinetic

energy remains relatively constant over the first x = 2d downstream of an array

of spheres, where d is the sphere diameter, then decays smoothly until it reaches

background levels at approximately x = 4d downstream of the array. Pluntke

and Kozerski (2003) report, but do not explain, a distinct peak in bed shear

stress at the downstream edge of an artificial plant canopy.

Research in streamwise-discontinuous arrays will complement research on dis-

crete clusters of cylinders, where the spatial discontinuity is two-dimensional.

Several studies report flow measurements in clusters of various shapes (Bennett,

2004; Ohmoto and Tanaka, 2007; Rominger, 2008, personal comm.).

Field measurements of plant canopy properties In the interest of reducing pa-

rameters, my dissertation research was restricted to flow around randomly-

distributed cylinders. However, model predictions of Kyy/(〈u〉d) is sensitive to

nearest-neighbor separation of the cylinders, 〈sn〉A (cf. Appendix E), which im-

plies that solute transport will differ significantly in two arrays with a different

cylinder configuration, even if φ is the same. To my knowledge, no field study
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has recorded the spatial distribution of plant stems in a natural system; field

reports typically only provide the φ or the leaf area index. This information

will also be invaluable to researchers who conduct laboratory experiments using

live plants, e.g., to measure plant drag, who must decide how to distribute the

plants in their experimental facility to most closely mimic field conditions.

Flow and transport at the stem scale Epiphytic periphyton appears to be ubiq-

uitous in natural aquatic systems (e.g., Neumeier and Ciavola, 2004). Moreover,

Cornelisen and Thomas (2004) report that on average, 72% of the leaf surface in

a seagrass bed was covered by epiphytes. Given such densities, it is reasonable

to assume that the presence of epiphytes on plant stems will influence nutrient

uptake where diffusion across the boundary layer is the rate-determining step in

nutrient uptake (e.g., Thomas et al., 2000). Epiphytes introduce roughness to

the plant surface, which may increase or decrease the thickness of the boundary

layer by, e.g., dissipating ambient turbulence in its vicinity, or by contributing

additional turbulence at the scale of individual epiphyte elements (Koch, 1994).

Also, an isolated protrusion alters the local flow field by deflecting flow both

perpendicular and parallel to the (plant) surface (e.g., Eckman and Nowell,

1984). Above some critical density of protrusions, “skimming flow” develops,

where the ambient current flows over the external envelope of the protrusions

instead of through it. A systematic laboratory investigation of how the force

on and the flow signatures around a cylinder vary with the height, geometry,

and density of attached roughness elements will yield insight into local flow

experienced by plants, as well as the hydrodynamic significance of epiphytes to

canopy-scale properties such as residence time, mean drag, net nutrient uptake,

and net suspended particle removal.

Particle transport in plant canopies While an extensive collection of field stud-

ies that investigate the effect of vegetation on sediment transport exist, many

are inconclusive. For example, Shi et al. (2000) found suspended sediment con-

centration to be lower within a salt marsh than in an adjacent mudflat with
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no vegetation, and conclude that deposition was enhanced within the marsh.

However, Neumeier and Ciavola (2004) report reduced sedimentation to the bed

within a salt marsh compared to unvegetated regions. The apparent contradic-

tion can be explained if the lower concentration is attributed to (i) sediment

removal before the water enters the vegetated region or (ii) incoming flow pref-

erentially flowing over the mudflat instead of through the salt marsh. Indeed,

the latter is consistent with the lower flow velocity measured in the salt marsh.

Therefore, the lower concentration observed by Shi et al. (2000) may merely

have been a manifestation of reduced influx into the canopy, instead of en-

hanced sediment removal rate within the canopy.

The enhancement of suspended particle removal through deposition onto the

exposed plant surface appears to have received little consideration in literature,

despite laboratory (Pluntke and Kozerski, 2003) and field (Stumpf, 1983) mea-

surements that demonstrate its importance. These works suggest that studies

that only consider sedimentation to the bed may significantly underestimate net

particle removal within a plant canopy. In the laboratory, we can prevent flow

diversion and measure suspended sediment flux into and out of a model canopy,

thereby isolating the various mechanisms that occur in real systems. Recently,

López and Garćıa (1998) demonstrated numerically that the depth-integrated

mass flux of suspended sediment is reduced in channels without horizontal flow

diversion with submerged rigid vegetation, which they attribute to a reduction

in bed shear stress.

In particular, predicting the occurrence of flow diversion is critical, as it also

affects mean turbulence intensity. If all flow is forced through the canopy, the

presence of plants will enhance mean turbulence intensity at high Reynolds

number (Ch. 3). However, field studies often report lower turbulence intensity

within a canopy compared to adjacent open water, which may be attributed to

flow diversion and the associated reduction in mean flow velocity. A reduction

in turbulence intensity promotes particulate deposition. Indeed, Gacia et al.
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(1999) report much greater resuspension from a bare sand bed than from an

adjacent seagrass bed.
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Appendix A

Reynolds number-dependence of

the lateral variance of the

concentration distributiona

The variance of the time-averaged concentration profiles, σ2
y, for selected (x, φ) are

plotted against Red and Re〈sn〉A in figures A-1 and A-2, respectively. Ensemble-

averaged variance, 〈σ2
y〉, are presented where more than four measurements were

collected for the same (x,Red, φ). At a given (x, φ), 〈σ2
y〉 increases rapidly with

increasing Red at low Red and subsequently becomes approximately constant above

a certain Red. For example, at φ = 0.20, 〈σ2
y〉 increases rapidly from Red ≈ 30 to

Red ≈ 100 and is constant above Red ≈ 200. At φ = 0.031, the Red-independent

regime appears to start at a lower Red ≈ 110− 120. In contrast, at φ = 0.35, a Red-

independent regime was not observed at conditions considered in the present study

(Red < 400). For example, data at x = 90 − 94 cm (green ×) are clearly smaller at

Red = 180 than at Red = 320. These observations suggest that 〈σ2
y〉 becomes Red-

independent above a critical Red that is, in general, larger at larger φ. Re〈sn〉A > 74 is

a conservative empirical criterion that accurately captures only the Red-independent

measurements across all φ (figure A-2, dashed line).

aA preliminary version of figures A-1 and A-2 appears in Tanino and Nepf, 2007, where a subset
of the data were plotted against Res.
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Figure A-1 (facing page): Red dependence of the lateral variance of the concentration
distribution, σ2

y as defined by Eqs. (4.1) and (4.2), at selected x for φ = (a) 0.031 (.),
0.091 (¦), (b) 0.15 (square), 0.20 (◦), 0.27 (∆), and (c) 0.35 (×). σ2

y is normalized by
the mean of σ2

y measurements at Re〈sn〉A > 74 at that (x, φ). For φ = 0.35, for which
data are not available at Re〈sn〉A > 74, σ2

y is normalized by the product of d〈σ2
y〉/dx

predicted for fully turbulent flow by Eq. (3.24), with scaling constants as proposed
in Ch. 3, and x. For each φ, different marker colors indicate different x: (φ, x [cm])
= (0.091, 30-32) (black ¦); (0.091, 50-53) (blue ¦); (0.091, 59-62) (green ¦); (0.091,
81-85) (red ¦); (0.15, 140-142) (black square); (0.20, 50-53) (black ◦); (0.20, 96-
100) (blue ◦); (0.20, 123-126) (green ◦); (0.20, 140-143) (red ◦); (0.27, 39-41) (black
4); (0.27, 69-71) (blue 4); (0.35, 38-41) (black ×); (0.35, 69-71) (blue ×); (0.35,
90-94) (green ×). There is a σ2

y measurement at (Red, normalized σ2
y) = (239, 1.7)

for (φ, x [cm]) = (0.091, 50 − 53) that is not visible. For readability, where there
are four or more σ2

y measurements at the same (x,Red, φ), the measurements are
represented by their mean. Each marker with a bold outline represents such an
average; the horizontal and vertical bars indicate the range in Red over these replicate
measurements and the standard error of the mean, respectively.
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Figure A-2: Re〈sn〉A dependence of σ2
y, as defined by Eqs. (4.1) and (4.2), at selected

x. Markers denote the same (φ, x) as in figure A-1. Above Re〈sn〉A = 74 (dashed line),
〈σ2

y〉 is approximately Red-independent.
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Appendix B

Comparison of the longitudinal

and lateral velocity fluctuationsa

Three-dimensional ADV (SonTek, Inc.) measurements demonstrate that v′2 ≈ u′2.

Specifically,
√

v′2/
√

u′2 = 0.97 ± 0.14 (s.d.), based on 428 measurements by White

(2002,
√

u′2,
√

v′2 data provided by B. L. White, personal comm.) and 83 preliminary

measurements from the present study (figure B-1).

aThis material has been published in Tanino and Nepf, 2007. This material is based on work
supported by the National Science Foundation grant EAR-0309188. Any opinions, conclusions, or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. The authors thank Brian L. White for providing
unpublished ADV measurements from his Master’s thesis (White, 2002).

119



10
−1

10
0

10
−1

10
0

√

u′2/2 [cm s−1]

√

v
′2

2

1:1

[cm s−1]

Figure B-1: Comparison of
√

u′2/2 and
√

v′2/2 calculated from ADV measurements

by White (2002,
√

u′2,
√

v′2 data provided by B. L. White, personal comm.) at
φ = 0.010 (∗), 0.020 (?), and 0.063 (¦) and in the present study at φ = 0.031 (·),
0.091 (square), and 0.20 (×). This figure is Tanino and Nepf, 2007, figure 3.
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Appendix C

Comparison of the integral length

scale of turbulence estimated from

the power spectral density and

from the autocorrelation functiona

There are several standard techniques for estimating the integral length scale of tur-

bulence from an Eulerian time record of turbulent fluctuations; for a summary, see,

e.g., Barrett and Hollingsworth, 2001; Pearson et al., 2002; Burattini et al., 2005.

One method is to approximate the integral length scale as the length scale associ-

ated with the peak in the frequency-weighted power spectrum [Eq. (3.28)]. A length

scale may also be derived directly from the one-dimensional autocorrelation func-

tion [Eq. (3.29)]. The two definitions yield similar values when applied to our LDV

measurements of u′(t) (figure C-1).

aThis material has been published in Tanino and Nepf, 2008c.
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Figure C-1: Comparison of lpeak,u [Eq. (3.28)] and lcorr,u [Eq. (3.29)] determined from
LDV measurements at Re〈sn〉A > 105 and φ = 0.010 (∗), 0.020 (star), 0.031 (·),
0.060 (♦), 0.091 (+), 0.15 (square), 0.20 (×), and 0.35 (◦).
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Appendix D

Mean Nearest Neighbor Separation

and Related Parameters in a

Random Arraya

Consider an array of N circular holes of diameter d randomly distributed in a board

of horizontal area A, with corresponding hole volume fraction φ = (π/4)d2N/A. This

array is created by generating uniformly distributed random coordinates for the hole

centers. If a random coordinate is sufficiently far from previously assigned holes, that

coordinate is assigned as a hole center and the appropriate area around it is marked

as occupied. The process is repeated until N hole centers are assigned. Let Nc be the

number of random coordinates that has to be generated to assign the N hole centers.

To derive an analytical expression for Nc, consider the generation of the ith ran-

dom coordinate. At this point, (i−1) coordinates have been generated, out of which,

on average, (i − 1)N/Nc would have been assigned as a hole center. Then, the total

area “invalidated” by previously assigned holes is approximately (i − 1)(N/Nc)Ah,

where Ah is the area around a hole center in which another hole center cannot be

assigned (referred to as the “invalid” area around a hole center). Note that this ap-

aA condensed version of this chapter has been published as Appendix A of Tanino and Nepf,
2008c. David Gonzalez-Rodriguez contributed the approach employed in the theoretical analysis
presented in this Appendix.
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proximation assumes that the invalid areas do not overlap, and is only appropriate

at small φ. This approximation tends to overestimate Nc. Then, the probability

that the ith random coordinate is generated in an invalid area is (i− 1)(N/Nc)Ah/A.

Then, the total number of generated random coordinates that must be neglected,

Nc −N(≥ 0), is

Nc −N =
Nc∑

i=1

(i− 1)(N/Nc)Ah

A
. (D.1)

Solving for Nc yields
Nc

N
=

1− (2φ/N)Ah/(πd2)

1− 2φAh/(πd2)
. (D.2)

Note that this solution correctly collapses to unity when Ah = 0, i.e., when the holes

are points. Theoretically, the invalid area around a hole center is a circle of radius d.

Then, Ah = πd2.

The generation of random coordinates within a small region of the array satisfies

the two conditions of a Poisson process.b First, the expected number of random

coordinates generated per unit area is constant at λ > 0, where

λ ≡ Nc

A
=

φ

(π/4)d2

Nc

N
. (D.3)

Second, the number of hole centers in two non-overlapping areas within a small region

of the array can be assumed independent. Then, the number of random coordinates

generated in a circular area a has a Poisson distribution with parameter λa (Devore,

2000, pp. 136–137). Also, the circular area concentric with a random coordinate and

spanning to its nearest random coordinate has an exponential probability distribution

function (p.d.f.) (Bertsekas and Tsitsiklis, 2002; Devore, 2000, pp.174-175):

f0(a; λ) =





λe−λa, a ≥ 0

0, a < 0
. (D.4)

bA Poisson process is commonly associated with the occurrence of a particular event over time.
Here, each random coordinate represents a single event occurring at some particular point in two
dimensional space. Here, instead of time, we consider radial area, a, from an arbitrary origin in the
region. Note that we consider hole center coordinates and not holes, because the events cannot have
a finite volume.
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In the array, each assigned hole occupies a finite circular area of radius d/2, and

the smallest possible distance between non-overlapping hole centers is d. Then, the

p.d.f. of the circular area concentric with a hole center and spanning to its nearest

neighbor hole center, An, is truncated at a = AL:

f(a; λ) =
1

β





λe−λa, a ≥ AL

0, a < AL

, (D.5)

where

β =
∫ ∞

AL

λe−λada = e−λAL (D.6)

and AL = πd2. A change of variables yields the p.d.f. for the center-to-center distance

between nearest neighbors, snc, in terms of the p.d.f. for An(= πs 2
nc ):

f(r; λ) = f(a; λ)
da

dr
= 2πrf(a; λ), (D.7)

where r is the radial distance from a hole center, i.e., a = πr2. Although AL and Ah

are equal here, the two parameters are not interchangeable, as will be shown in §D.1.

AL is, by definition of Eq. (D.5), a circular area that defines the smallest a for which

f(a; λ) is non-zero. In contrast, Ah does not assume a geometry for the invalid area

around an assigned hole.

The above distributions describe the value measured by taking an array of ran-

domly distributed hole centers, selecting one hole center, and finding its nearest neigh-

bor and the corresponding snc and An. Additional values would be measured by

repeating these steps in different, independent arrays. This process is different from

identifying the nearest neighbor of, and measuring the corresponding snc and An for,

each hole center in a single array, where measurements are dependent. This differ-

ence arises because if i is the nearest neighbor of hole j, then i must have a nearest

neighbor no farther than the distance to j. Clearly, a similar dependence does not

exist between measurements taken in different arrays. While the two random vari-

ables have different distributions, their mean is the same. Thus,
∫∞
−∞ rf(r)dr and

∫∞
−∞ af(a)da yield the correct mean distance 〈snc〉A and mean radial area 〈An〉A to
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d

2d

Figure D-1: Definition of invalid area around an assigned hole center. Physically, the
area invalidated by the finite volume of the hole (solid circle) is the dotted circle,
radius d. However, a 2d×2d square around a hole center was defined as invalid space
in the numerical code used to assign the hole coordinates in the PVC sheets used in
the laboratory experiments. The dashed circle marks the circle that circumscribes
this square region.

the nearest neighboring hole center. From Eqs. (D.5), (D.6), and (D.7), the expected

value for snc and s 2
nc are

〈snc〉A
d

=

√
AL

πd2
+

1− erf(
√

λAL)

2
√

λd2e−λAL

(D.8)

and
〈s 2

nc 〉A
d2

≡ 〈An〉A
πd2

=
AL

πd2
+

1

λπd2
. (D.9)

Applying AL, Ah = πd2, Eq. (D.2), and Eq. (D.3) to Eqs. (D.8) and (D.9) yields

〈snc〉A
d

≈ 1 +

√
π

2

√
1− 2φ

4φ

[
1− erf

(√
4φ/(1− 2φ)

)]

e−4φ/(1−2φ)
(D.10)

and
〈s 2

nc 〉A
d2

≈ 1 + 2φ

4φ
. (D.11)

D.1 Invalid area defined as a 2d× 2d square

In creating the PVC sheets used in this study, a 2d × 2d square circumscribing each

assigned hole was invalidated instead of a concentric circle of radius d (figure D-1).
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Here, Ah = (2d)2 instead of Ah = πd2, and Eq. (D.2) yields

Nc

N
=

1− 2d2/A

1− (8/π)φ
≈ 1

1− (8/π)φ
. (D.12)

In the present laboratory experiments, d2/A = 1.4×10−4 and the above approximation

is valid. Note that the restriction to insure a positive Nc/N is φ < π/8. The shape

of the invalidated area is irrelevant to the calculation of Nc/N . The corresponding λ

is determined by substituting Eq. (D.12) into Eq. (D.3).

The p.d.f. is f(a; λ) = 0 in the region r < d and of the same form as a ≥ AL in

Eq. (D.5) in the region r ≥ d
√

2. Between these two concentric circles, i.e. d ≤ r <

d
√

2, f = 0 inside the 2d× 2d square. Accordingly, in this region Eq. (D.5) must be

weighted by the ratio of the area that is outside the invalid square (shaded area in

figure D-1) and the total area. Consider a circle of radius r, such that d ≤ r < d
√

2.

The total perimeter of the circle is 2πr, of which 8(r arccos(d/r)) remains outside

of the square. The ratio, 4 arccos(d/r)/π, correctly becomes zero at r = d and 1 at

r = d
√

2. The p.d.f. is

f(a; λ) =
1

β





λe−λa, a ≥ π(d
√

2)2

λe−λa 4
π

arccos
(
d
√

π
a

)
, πd2 ≤ a < π(d

√
2)2

0, a < πd2

, (D.13)

where

β =
∫ ∞

π(d
√

2)2
λe−λada +

∫ π(d
√

2)2

πd2
λe−λa 4

π
arccos

(
d

√
π

a

)
da. (D.14)

Because the second integral in Eq. (D.14) cannot be solved analytically, an ap-

proximate method is required. One possible approach is to define an equivalent circle

of radius re with the same contribution to 〈snc〉A (figure D-1). re must satisfy:

∫ re

0
rf(a) da =

∫ d

y=−d

∫ d

x=−d

√
x2 + y2f(a) dx dy. (D.15)
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To simplify the computation, we approximate f(a) = 1, which reduces Eq. (D.15) to

re

d
=

{
2

π

[√
2 + ln(1 +

√
2)

]}1/3

. (D.16)

Note that 1 < re/d <
√

2, as expected. Now, the invalid area has been transformed

from a 2d × 2d square to a circle of radius re concentric to a hole center. The

corresponding p.d.f. is the same as Eq. (D.5), but with

AL = πr 2
e = πd2

{
2

π

[√
2 + ln(1 +

√
2)

]}2/3

. (D.17)

Substituting λ and Eq. (D.17) into Eqs. (D.8) and (D.9) yields

〈snc〉A
d

≈
{

2

π

[√
2 + ln(1 +

√
2)

]}1/3

+

1− erf

(√
4φ

1−(8/π)φ

{
2
π

[√
2 + ln(1 +

√
2)

]}2/3
)

2e−4φ/[1−(8/π)φ]{(2/π)[
√

2+ln(1+
√

2)]}2/3

√
π

√
1− (8/π)φ

4φ
(D.18)

and
〈s 2

nc 〉A
d2

≈ 1− (8/π)φ

4φ
+

{
2

π

[√
2 + ln(1 +

√
2)

]}2/3

. (D.19)

For reference, the above solutions for 〈snc〉A/d and 〈s 2
nc 〉A/d2 are plotted in figure D-2.

D.1.1 Other relevant parameters

Previously, the mean of all snc/d and s 2
nc /d2 were determined. Repeating the calcu-

lation with AL = πr∗
2
, where r∗ ≥ re is an arbitrary distance, yields the conditional

mean only of snc > r∗ in the random array. Applying λ and the redefined AL to

Eqs. (D.8) and (D.9) yields

〈snc〉snc>r∗

d
=

r∗

d
+

√
π

4

1− erf
{
2r∗/d

√
φ/[1− (8/π)φ]

}
√

φ/[1− (8/π)φ]e−(r∗/d)24φ/[1−(8/π)φ]
(D.20)
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Figure D-2: 〈snc〉A/d (dotted line), 〈s 2
nc 〉A/d2 (solid line), and 〈s2

n〉A/d2 (dashed line)
as predicted by Eqs. (D.18), (D.19), and (D.22) for the laboratory array (PVC sheets).

and
〈s 2

nc 〉snc>r∗

d2
=

(
r∗

d

)2

+
1− (8/π)φ

4φ
. (D.21)

The hole surface-to-surface spacing is related to the center-to-center spacing as sn =

snc − d. Then, by definition,

〈s 2
nc 〉A
d2

=
〈s 2

n 〉A
d2

+ 2
〈snc〉A

d
− 1, (D.22)

and 〈s 2
n 〉snc>r∗/d

2 can be determined by applying Eqs. (D.20) and (D.21) to Eq. (D.22).

For reference, Eqs. (D.20) and (D.21) are plotted in figure D-3 for r∗ = 2d.

The probability that a cylinder in the random array has its nearest neighbor

farther than r = r∗ is

Psnc>r∗ ≡ P (πr∗
2

< a < ∞) =
∫ ∞

πr∗2
f(a; λ) da =

e−λπr∗
2

e−λAL
, (D.23)

where f(a; λ) is defined by Eq. (D.5). AL is given by Eq. (D.17). Similarly, the

probability that a cylinder has its nearest neighbor within r = 5d is

Psnc<5d ≡ P (0 < a < π(5d)2) = 1− e−25λπd2

e−λAL
. (D.24)
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Figure D-3: 〈snc〉snc>2d/d (dotted line), 〈s 2
nc 〉snc>2d/d

2 (solid line), and 〈s2
n〉snc>2d/d

2

(dashed line) as predicted by Eqs. (D.20), (D.21) and (D.22). r∗ = 2d.

For reference, Eq. (D.23) for r∗ = 2d and Eq. (D.24) are plotted in figure D-4.

D.2 Significance of hole generation order

Finally, note that the above formulation underpredicts the observed An at large φ,

because it does not account for the overlapping of holes other than the reference hole

(hole A in figure D-5). Consider the situation illustrated in figure D-5, where the

random coordinates are generated in the order A, B, and C. Coordinate A is, by

assumption, assigned as a hole center. The coordinate closest to A is coordinate C,

which is at distance r0 from A. It is the distribution of this distance that the theory

Eq. (D.5) describes. However, coordinate B, which is at radial distance r1 from the

test hole center, is generated first. Because coordinates B and C are within d of each

other, coordinate C would be discarded and the closest assigned hole center to A

would be B, at distance r1 (≥ r0).
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Figure D-4: (a) Psnc>2d and (b) Psnc<5d as predicted by Eqs. (D.23) and (D.24),
respectively (solid lines). Each × represents the value that was obtained by counting
the holes with nearest neighbors in the range (a) π(2d)2 < a < ∞ and (b) 0 < a <
π(5d)2 in four simulated 28 in × 15.75 in boards.

r
0

r
1

A

B

C

Figure D-5: Sketch of two random coordinates (B, C) generated near random coor-
dinate A where a hole is already assigned (solid circle).
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Appendix E

Permeability of random cylinder

arraysa

The permeability, k⊥, of sparse arrays can be described by Spielman and Goren

(1968)’s analytical solution:

d2

k⊥
= 8φ


1

4

d2

k⊥
+

d

k
1/2
⊥

K1

{
(d/2)k

−1/2
⊥

}

K0

{
(d/2)k

−1/2
⊥

}

 , (E.1)

where Kj is the modified Bessel function of order j of the second kind. Koch and

Ladd (1997) show that Spielman and Goren (1968)’s solution accurately describes

numerical simulation results at low φ, but rapidly deviates as φ increases beyond

φ ≈ 0.25. Interestingly, k⊥ ≈ 〈sn〉 2
A , where k⊥ is described by Eq. (E.1) and 〈sn〉A is

described by Eq. (D.10) (figure E-1). The difference between (d/〈sn〉A)2 and d2/k⊥

is less than 10% of d2/k⊥ in the range φ > 0.006. Incidentally, Koch and Brady

(1986)’s expression for k⊥ is incorrect. Specifically, their expression does not agree

with Spielman and Goren (1968)’s analytical solution, of which it is supposed to be

an approximation. Moreover, it does not agree with numerical data presented by

Koch and Ladd (1997, figure 21).

To the authors’ knowledge, an analytical solution that describes k⊥ in the range

aThis chapter is Appendix B of Tanino and Nepf, 2008c, with minor modifications and two
additional figures.
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Figure E-1: d2/k⊥ [Eq. (3.21)]: Spielman and Goren (1968)’s analytical solution
[Eq. (E.1); solid line] and numerical simulation results at Red = 0 extracted from
Koch and Ladd, 1997, figure 21 (×). (d/〈sn〉A)2 [Eq. (D.10); dotted line] is also
plotted, but it cannot be distinguished from Eq. (E.1) at this resolution. Dashed line
is Eq. (E.3).

0.3 ≤ φ ≤ 0.4 has not been developed. Least-squares fitting a function of the form

log10

{〈
fD

〉
/(µ〈u〉)

}
= B0 + B1φ to numerical data in the range φ = 0.25 − 0.44 in

Koch and Ladd, 1997, figure 21 yields (R = 0.99, n = 17)

〈
fD

〉

µ〈u〉 = 100.94±0.04+(3.2±0.1)φ. (E.2)

The corresponding expression for k⊥ is, from Eq. (3.21),

d2

k⊥
=

4φ

π(1− φ)
100.94±0.04+(3.2±0.1)φ. (E.3)

Note that Eqs. (E.1) and (E.3) coincide at φ = 0.24 (d/〈sn〉A = 4.4). Following

the above discussion, k⊥ can be predicted from Eq. (E.1) for d/〈sn〉A ≤ 4.4 and from

Eq. (E.3) for d/〈sn〉A > 4.4.

Finally, recall from Appendix D.1 that our arrays are not exactly random. k⊥

in our laboratory experiments are predicted from Eqs. (E.1) and (E.3) by matching
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d/〈sn〉A, i.e., φ in the two expressions is not the actual φ of our array, but φ of an

exactly random array that has the same d/〈sn〉A (figure E-2).

0 0.1 0.2 0.3
0

5

10

φ

d

〈sn〉A

exactly random array

laboratory 
array      

Figure E-2: d/〈sn〉A in the laboratory array constructed in PVC sheets (dash-dotted
line) as predicted by Eq. (D.18) and for an exactly random array (solid line) as
predicted by Eq. (D.10). An exactly random array with the same d/〈sn〉A as a
φ = 0.35 laboratory array has a φ = 0.28 (×).
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Appendix F

Uncertainty of the gradient of a

linear regression

The uncertainty in the gradient of a line of regression is estimated according to Taylor

(1997, Ch. 8). Consider the line y = B0 + B1x that best fits n data points (xk, yk),

k = 1, 2, ..., n in the least-squares sense. The uncertainty in B1 is defined as [Taylor,

1997, Eqs. (8.12), (8.15), (8.17)]

√√√√ 1

n− 2

n∑

k=1

[yk − (B0 + B1xk)]
2

√
n

n
∑n

k=1 x2
k − (

∑n
k=1 xk)

2 . (F.1)

For example, consider the mean turbulence intensity, 〈√kt/Up〉, and the normalized

asymptotic dispersion coefficient, Kyy/(〈u〉d), at each φ, which are calculated as the

gradient of the line of regression of
√

kt on Up and of σ2
y on x normalized by 2d,

respectively. The uncertainty in
〈√

kt/Up

〉
and dσ2

y/dx are calculated as Eq. (F.1).

The uncertainty in Kyy/(〈u〉d) is simply the uncertainty in dσ2
y/dx divided by 2d.
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Appendix G

Cylinder drag: additional

comments

In this appendix, two topics related to cylinder drag are discussed. In §G.1,
〈
fD

〉
in

periodic arrays are compared with
〈
fD

〉
in random arrays. In §G.2, the maximum Red

at which the vertical position of the interface between the two layers of a lock-exchange

flow varies linearly with streamwise distance is predicted from
〈
fD

〉
. The predictions

are compared with the empirical criterion proposed by Tanino et al. (2005).

G.1 Comparison with a periodic cylinder array

In figure G-1,
〈
fD

〉
/(µ〈u〉) in square arrays (Koch and Ladd, 1997) are compared

with
〈
fD

〉
/(µ〈u〉) in random arrays. Because

〈
fD

〉
/(µ〈u〉) varies with array orienta-

tion, only the maximum and minimum
〈
fD

〉
/(µ〈u〉) are represented here for the two

φ = 0.2 and 0.4 that Koch and Ladd (1997) considered.
〈
fD

〉
/(µ〈u〉) at a given Red

is smaller in a square array than in a random array for all orientations, and highlights

the sensitivity of drag, and presumably turbulence intensity [cf. Eq. (3.14)], to the

exact configuration of the cylinders. The sensitivity of these properties imply that

researchers who use real plants in flume experiments should reproduce the config-

uration of the plants, if their intent is to create experimental flow conditions that

resemble those in the field.
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Figure G-1: Selected
〈
fD

〉
/(µ〈u〉) in the form of Eq. (2.6), with fitted coefficients

based on laboratory experiments in Ch. 2 (solid line) and Koch and Ladd (1997)’s
numerical simulations at φ = 0.2 (cyan dotted) and 0.4 (brown dotted) in random
arrays (cf. Table 2.2). The isolated cylinder solution [Eq. (2.9)] is also included

(dashed).
〈
fD

〉
/(µ〈u〉) for a square array was extracted from Koch and Ladd (1997,

figures 11, 16) for φ = 0.2 (solid cyan) and φ = 0.4 (solid brown); different markers
denote different orientations of the drag relative to the principle axes of the array.
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G.2 Criterion for the liner-interface regime of a

lock-exchange flow

The similarity solution for lock-exchange flows propagating through cylinder ar-

rays, for which (i) the Navier-Stokes equation in the streamwise direction [Eq. (2.2)]

can be reduced to a balance between the pressure gradient and drag only and (ii)
〈
fD

〉
/(µ〈u〉) is independent of Red, predicts that the depth of the interface between

the two fluid layers varies linearly with streamwise distance (Tanino et al., 2005).

Note that this second condition is equivalent to the drag coefficient

CD ≡
〈
fD

〉

µ〈u〉
2

Red

(G.1)

being inversely proportional to |〈u〉|. Tanino et al. (2005) observed a linear interface

in lock-exchange flows propagating at Red,toe of up to 60, where Red,toe is the Reynolds

number based on the speed of the toe of the interface. Then, it follows from condition

(ii) above that
〈
fD

〉
/(µ〈u〉) remains independent of Red up to Red ≈ 60.

Where
〈
fD

〉
/(µ〈u〉) takes on the form given by Eq. (2.6),

〈
fD

〉

µ 〈u〉 = α0(φ) + α1(φ)Red, (G.2)

a Red-independent
〈
fD

〉
/(µ〈u〉) requires

Red ¿ α0

α1

. (G.3)

Koch and Ladd (1997)’s numerical simulations and present laboratory experiments

reported in Ch. 2 yield α0/α1 = O(10 − 80) (Table 2.2), and Eq. (G.3) predicts a

threshold one order of magnitude smaller than the Red ≈ 60 threshold identified by

Tanino et al. (2005). The disagreement may be attributed to two factors. First,

cylinders were not randomly-distributed in the lock-exchange experiments. Koch and

Ladd (1997)’s simulations suggest that α0/α1 is larger in a square array than in a
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random arraya (figure G-1), which in turn suggests that deviations from a random

distribution tends to increase the maximum Red for which Eq. (G.3) is satisfied.

Second, the criterion Red,toe = 60 itself is expected to be an overestimate of the

threshold of the linear interface regime. This is because Red,toe is defined at the toe

of the propagating front, where the front speed is highest, but even interfaces that

were classified as linear deviated from a linear profile close to the toe (Tanino et al.,

2005).

From the evolution of lock-exchange flows exhibiting a linear interface (0.034 <

φ < 0.062, Red,toe < 52), Tanino et al. (2005) estimated that CD ≈ 2α0/Red =

(310 ± 90)/Red. It is noted that the corresponding α0 = 160 ± 50 is one order of

magnitude larger than α0 estimated directly from drag measurements (figure 2-5). In

Koch and Ladd (1997)’s simulations, α0 in square arrays are comparable to that in

random arrays (figure G-1), which suggests that differences in cylinder configuration

between Tanino et al., 2005 and the present experiments do not account for the

disagreement. The reason for the disagreement remains an open question.

aα0/α1 for a square array were obtained from Koch and Ladd (1997)’s simulations by performing
a linear regression over 0 < Red < 62 and 0 < Red < 180 for φ = 0.2 and 0.4, respectively. It is
noted that

〈
fD

〉
/(µ〈u〉) is not exactly proportional to Red in square arrays (Koch and Ladd, 1997).

Nevertheless, the linear regressions yield a significant correlation, indicating that over the range
of Red considered,

〈
fD

〉
/(µ〈u〉) can be approximated as increasing linearly with Red. Estimated

α0/α1 for φ = 0.2 and 0.4 varies with the array orientation over the range 31 − 270 and 87 − 450,
respectively, in Koch and Ladd (1997)’s simulations.
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Appendix H

Lateral dispersion at transitional

Reynolds number: intermediate

cylinder densities (φ < 0.19)

In Ch. 4, we considered lateral dispersion at transitional Red, i.e., below fully turbu-

lent conditions, in dense arrays, for which our theory predicts that turbulent diffusion

makes a negligible (specifically, < 10%) contribution to the asymptotic macroscopic

dispersion coefficient Kyy (figure 3-15). In this appendix, we consider arrays of inter-

mediate φ, for which our model predicts that both turbulent diffusion and dispersion

associated with the time-averaged, spatially-heterogeneous velocity field contribute

significantly to Kyy in fully turbulent flow. As discussed in § 4.1, our model predicts

that this regime extends up to φ ≈ 0.19. Also, this intermediate regime only ex-

tends down to a certain φ, below which the flow resembles an open-channel flow and

the spatial heterogeneity in the velocity field no longer contributes significantly to

Kyy/(〈u〉d). Our model predicts that this contribution is less than 10% at φ < 0.035

[Eq. (3.23)] or at φ < 0.0025 [Eq. (3.24)], depending on the model used to describe the

contribution from the time-averaged velocity field. The exact φ at which the lower

limit of this intermediate φ regime occurs is not relevant to the present discussion.

The Red dependence of Kyy/(〈u〉d) in this intermediate φ regime is expected to

be complex. First, the time-averaged velocity field, and therefore its contribution to
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asymptotic dispersion, is expected to depend strongly on Red. For example, Hill et al.

(2001) report that the spatial variance of the transverse components of velocity nor-

malized by 〈u〉2 decreased by 63% between Stokes flow and steady flow at Red = 59.5

in their numerical simulations of an array of randomly-distributed spheres φ = 0.0960.

However, to our knowledge, the Red dependence of the time-averaged velocity field

in unsteady laminar and turbulent flow has not been examined systematically, and it

is unclear how its contribution to Kyy/(〈u〉d) changes with Red. This investigation

is beyond the scope of this project. Second, at intermediate φ, the interstitial pores

may be sufficiently large for cylinder wakes to exhibit an unsteady laminar regime and

oscillate periodically like isolated cylinder wakes. It seems likely that such periodic

oscillations will enhance both pore-scale mixing and macroscopic lateral dispersion of

the time-averaged solute concentration field. To our knowledge, the contribution of

the periodic motion of wakes to net dispersion has not been described in the literature.

Nevertheless, the effect is likely to be complex, since the amplitude and frequency of

the periodic motion presumably varies gradually as Red is increased across the un-

steady laminar regime as in an isolated cylinder wake. Finally, as stated above, the

contribution from the time-averaged velocity field, whose Red dependence is not ob-

vious, remains significant even after the onset of turbulence. Based on the observed

reduction in the normalized spatial variance of the transverse velocity components as

mentioned above, Hill et al. (2001) conjecture that transverse dispersion, expressed in

the form of Kyy/(〈u〉d), will decrease as Red increases beyond Stokes flow. The same

qualitative trend is expected in random cylinder arrays. However, how dispersion

varies as Red is increased beyond steady laminar flow is not obvious.

Below, LIF measurements of the time-averaged lateral concentration distribution

of solute released continuously from a point source in φ = 0.091 and 0.15 are dis-

cussed. For the experimental procedure, refer to § 3.3. σ 2
y and Cms were computed

as Eqs. (4.1) - (4.3).
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Figure H-1: 〈Cms〉 [cm−1] at (a) φ = 0.091, Red = 37−40 (·), 55−59 (◦), 82−85 (×),
300−320 (square), and 430−480 (¦) and at (b) φ = 0.15, Red = 75−79 (·), 110−120
(◦), and 190− 210 (×). Each of these markers represents an average of four or more
runs; horizontal bars indicate the range in x and vertical bars indicate the standard
error of the mean. Markers in grey denote Re〈sn〉A > 74, which corresponds to Red >
96 and > 150 for φ = 0.091 and 0.15, respectively. 〈Cms〉 = 2.5× 10−3 cm−1 (dashed)
is the empirical boundary proposed in Ch. 4 to segregate time-averaged concentration
profiles of plumes undergoing asymptotic dispersion from those that are in the pre-
asymptotic regime.

H.1 Deviation of the time-averaged concentration

distribution from a Gaussian distribution

At each φ, 〈Cms〉 exhibits the same two trends identified in § 4.3.2 for φ = 0.20

and 0.35 (figure H-1). First, 〈Cms〉 decreases as x increases at each Red. Second,

〈Cms〉 decreases as Red increases for all x considered. However, note that the second

trend only holds for moderate Red (≤ 82− 85) at φ = 0.091: 〈Cms〉 at Red = 300−
320 (square) and 430−480 (¦) are constant within standard error of the measurements.

This is consistent with 〈σ2
y〉 being strongly Red-dependent at Red < 100 and being
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approximately constant at Red > 200 (Appendix A). The Red independence of both

〈σ2
y〉 and 〈Cms〉 in the high Red regime suggest that the concentration distribution

itself is Red-independent in that regime.

Recall that a sharp reduction in 〈Cms〉 was observed at φ = 0.20 and 0.35 at a

Red that coincided with the transition from steady to unsteady laminar flow (§ 4.3.2).

A similar sharp reduction is observed at φ = 0.091 between Red = 37 − 40 (·) and

55− 59 (◦), which suggests that the transition from steady laminar to unsteady flow

occurs between the two Red, i.e., 40 < Red < 55, at φ = 0.091. At φ = 0.15, the

onset of unsteadiness occurs below Red ≤ 70 (figure 3-5) and, accordingly, 〈Cms〉
does not dramatically change within the range of Red (≥ 77) considered for φ = 0.15

[figure H-1(b)].

Figure H-1 suggests that at similar xφ/d and Red, 〈Cms〉 is larger at φ = 0.15

than 0.091. Recall that the same trend was observed between φ = 0.20 and 0.35

(figure 4-4). In fully turbulent flow, this trend is anticipated by the scaling Eq. (4.5).

H.2 Variance of the time-averaged concentration

profile

Measurements of the ensemble-averaged variance of time-averaged lateral concentra-

tion profiles
(
〈σ2

y〉
)

are presented in figures H-2 and H-3 for φ = 0.091 and 0.15,

respectively. A subset of measurements at high Red reported in Ch. 3 are also in-

cluded. Also presented are least-squares fit to 〈σ2
y(x)〉 measurements that are classi-

fied as being in the asymptotic (large x) dispersion regime by the empirical criterion

〈Cms〉 = 2.5× 10−3 cm−1 that was proposed in Ch. 4.

The Red dependence of 〈σ2
y(x)〉 is qualitatively similar to other φ (Appendix A):

〈σ2
y(x)〉 at a given x decreases as Red decreases below Red = 82 − 85 at φ = 0.091

and below Red = 190 − 210 at φ = 0.15, and remains approximately constant from

Red = 300 − 320 to 430 − 480 at φ = 0.091. Not enough data are available at high

Red to confirm the Red-independent 〈σ2
y(x)〉 regime for φ = 0.15. Note that the
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Figure H-2: Evolution of the ensemble-averaged variance with streamwise distance at
Red = 37 − 40 (·), 55 - 59 (◦), 82 - 85 (×), 300 - 320 (square), and 430 - 480 (¦) at
φ = 0.091. Each marker represents an average of four or more runs; horizontal bars
indicate the range in x and vertical bars indicate the standard error of the mean.
Grey markers denote Re〈sn〉A > 74. Solid line is the least-squares fit to 〈σ2

y〉 for
Red = 82− 85, xφ/d > 7: d〈σ2

y〉/dx = 0.19± 0.04 cm (R2 = 0.93, n = 4). Dotted line
is the least-squares fit to 〈σ2

y〉 for Red = 300− 320: d〈σ2
y〉/dx = 0.22± 0.02 cm (R2 =

0.98, n = 4). Dash-dotted line is the least-squares fit to 〈σ2
y〉 for Red = 430 − 480:

d〈σ2
y〉/dx = 0.23± 0.03 cm (R2 = 0.98, n = 3).

observed Red dependence is consistent with the proposed threshold, Re〈sn〉A > 74, for

the Red-independent 〈σ2
y(x)〉 regime (Appendix A).

At φ = 0.091, the asymptotic d〈σ2
y〉/dx, hence Kyy/(〈u〉d), is equal within uncer-

tainty for Re〈sn〉A > 74, i.e., at Red = 300−320 (dotted) and 430−480 (dash-dotted).

Asymptotic d〈σ2
y〉/dx at Red = 82 − 85 (solid line), which is below this threshold,

also agrees within uncertainty with the Re〈sn〉A > 74 limit. 〈Cms〉 values suggest that

dispersion remained pre-asymptotic over the range of x that were considered at all

other Red at φ = 0.091 and at all Red except Red = 190 − 210 at φ = 0.15. Addi-

tional measurements at larger x are necessary to quantify asymptotic d〈σ2
y〉/dx, and

to examine its dependence on Red, at transitional flow regimes.
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Figure H-3: Evolution of the ensemble-averaged variance with streamwise distance
at Red = 75 − 79 (·), 110 - 120 (◦), and 190 − 210 (×) at φ = 0.15. Each marker
represents an average of four or more runs; horizontal bars indicate the range in
x and vertical bars indicate the standard error of the mean. Grey markers denote
Re〈sn〉A > 74. Dashed line is the least-squares fit to 〈σ2

y〉 for Red = 190 − 210:
d〈σ2

y〉/dx = 0.22± 0.02 cm (R2 = 0.99, n = 4).
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Appendix I

Spatial variance of the

time-averaged velocity field

In this appendix, we consider the dependence of 〈u′′2〉 /〈u〉2 on φ and Red. The

procedure for computing this value from the velocity time records is described in

§ 3.3.1.

Figure I-1 presents laboratory measurements of 〈u′′2〉/〈u〉2 as a function of Red.

Also presented are 〈u′′2〉/〈u〉2 estimated from lateral transects of u provided by White

(2002, personal comm.).a As Red is increased at φ = 0.010, 0.091, 0.20, and 0.35,

〈u′′2〉/〈u〉2 decreases rapidly at low Red and is constant within experimental uncer-

tainty at Red > 200. At other φ, variations across Red fluctuate and salient trends

cannot be identified.

There is substantial disagreement between measurements by White (2002), which

were collected using ADV, and the present data, with the former generally being

smaller than the latter. The disagreement is largest at the largest φ (= 0.063, ¦)
for which a comparison can be made. A possible explanation for the disagreement

is sampling bias in the ADV measurements. Because ADV probes, which must be

submerged in water, have a substantial horizontal footprint, it is likely that White

(2002) selected the sampling locations to avoid regions of high local cylinder density

aIt is noted that the ordinate axis of White and Nepf, 2003, figure 6 is incorrectly labeled as σ∗2u ,
where it should be σ∗u.
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Figure I-1: The normalized spatial variance of the time-averaged velocity, 〈u′′2〉/〈u〉2,
estimated from LDV measurements at φ = 0.010 (∗), 0.020 (?), 0.031 (·), 0.060 (¦),
0.091 (square), 0.15 (/), 0.20 (×), 0.35 (◦); 〈u〉 was approximated by its cross-sectional
average. Values for high Red were obtained from velocity records analyzed in § 3.4.2.
Also plotted are values estimated from lateral transects of u provided by B. L. White
(personal comm.) at φ = 0.010 (thin ∗), 0.020 (thin ?), 0.063 (thin ¦); Red for these
data were computed by assuming ν = 0.01 cm2 s−1 and approximating 〈u〉 by the
mean of the u measured along a given lateral transect. Vertical bars represent the
standard error of the mean. Horizontal bars reflect the range in Red [or in 〈u〉 for
White (2002)’s data] across all time records that contributed to that data point.
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(b) Red = 140 − 170

Figure I-2: The φ dependence of 〈u′′2〉/〈u〉2. Vertical bars indicate the standard error
of the mean. The range in Red for each subplot represents the range over all time
records that are represented in that plot; it is not an indication of the experimental
uncertainty in Red. The solid line in each subplot is the least-squares fit to data at
φ < 0.1; R = (a) 0.97 (n = 5); (b) 0.96 (n = 4); (c) 0.97 (n = 4); (d) 1.0 (n = 3).
The axes are identical in each subplot.

for the high φ = 0.063 measurements. Since spatial variations in the velocity are due

to the presence of the cylinders, this would have resulted in an underestimation of

〈u′′2〉/〈u〉2.

In figure I-2, 〈u′′2〉/〈u〉2 at selected Red are plotted against φ. Recall that α1 can

be described by a single linear function of φ over the entire range of φ considered,

namely 0.091 ≤ φ ≤ 0.35 [Eq. (2.15)]. Dimensional analysis [Eq. (2.5)] then suggests

that 〈u′′2〉/〈u〉2 ∝ φ. LDV measurements of 〈u′′2〉/〈u〉2 exhibit a linear dependence

on φ at small φ (< 0.1) (figure I-2, solid line). However, 〈u′′2〉/〈u〉2 increases more

slowly with φ at larger φ (> 0.1). It is not clear from figure I-2 if 〈u′′2〉/〈u〉2 (i)
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increases linearly with φ at φ > 0.1, but with a smaller gradient than at φ < 0.1,

or (ii) adopts a weaker, non-linear dependence on φ. The latter is inconsistent with

Eq. (2.15), and would imply that Eq. (2.5) is incorrect. The former is consistent with

the linear φ dependence exhibited by α1. However, it also implies that α1 depends

linearly on φ with a larger gradient at φ < 0.1 than at φ > 0.1. While laboratory

measurements were not collected at φ < 0.1, an inspection of drag measurements in

the literature suggests that a single linear function of φ, namely Eq. (2.15), applies

to all 0 < φ ≤ 0.35 [figure 2-4(a)], suggesting that Eq. (2.5) is incomplete or is only

valid at limited φ.

Previously, White and Nepf (2003) proposed that

〈u′′2〉
〈u〉2 ∼ C

3/2
D

√
φ (I.1)

in sparse arrays, where φ < 0.1, CDφ ¿ π/8. They show that measured 〈u′′2〉/〈u〉2

at φ = 0.063, 60 ≤ Red ≤ 550 decrease with Red, which is consistent with the Red

dependence of CD. However, they did not compare their measurements quantita-

tively, perhaps because values for CD in random arrays had not been experimentally

confirmed in the literature. Following Ch. 2, CD(φ,Red) can now be predicted by

Eq. (2.7), with coefficients α0 and α1 as measured in the present experiments (Ta-

ble 2.2; 0.091 ≤ φ ≤ 0.35). For smaller φ (< 0.091), for which measurements could

not be collected due to experimental constraints, α0 and α1 can be predicted by

Eqs. (2.16) and (2.15), respectively.

〈u′′2〉/〈u〉2 estimated from velocity time records collected in the present study

agree with this proposed dependence at small φ (≤ 0.091) (figure I-3). In contrast,

the dependence of White (2002)’s measurements on C
3/2

D

√
φ is unclear, because most

of the data fall within a small range of 0.1 < C
3/2

D

√
φ < 0.2.

Although Eq. (I.1) was derived for φ < 0.1, the Red dependence of 〈u′′2〉/〈u〉2 at

a given φ at all Red considered at φ = 0.20 (×) and at Red > 150 at φ = 0.35 (◦)
is still accurately described by C

3/2
D , but with a different scaling constant than at
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0.020 ≤ φ ≤ 0.091:

〈u′′2〉
〈u〉2 ∝ C

3/2
D

√
φ





(0.60± 0.04), 0.020 ≤ φ ≤ 0.091

(0.28± 0.02), φ = 0.20

(0.27± 0.02), φ = 0.35

. (I.2)

However, 〈u′′2〉/〈u〉2 at φ = 0.20 and 0.35 are similar in magnitude at different

C
3/2

D

√
φ, which indicates that the φ dependence is no longer captured exactly by

C
3/2

D

√
φ at large φ (≥ 0.20).
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Figure I-3: Comparison of the spatial variance of the time-averaged velocity with the
φ and Red dependence proposed by White and Nepf (2003): 〈u′′2〉/〈u〉2 ∼ C

3/2
D

√
φ.

CD(φ,Red) is given by Eq. (2.7), with coefficients α0 and α1 as determined from
the present experiments (Table 2.2) for φ ≥ 0.091 and as predicted by Eqs. (2.16)
and (2.15) for φ < 0.091. Markers are as defined in figure I-1. Solid lines are the
least-squares fits to present measurements: 〈u′′2〉/〈u〉2 = (−0.0019± 0.017) + (0.60±
0.04)C

3/2
D

√
φ, R = 0.97, n = 21, 0.020 ≤ φ ≤ 0.091; 〈u′′2〉/〈u〉2 = (−0.055± 0.064) +

(0.28±0.02)C
3/2

D

√
φ, R = 0.99, n = 5, φ = 0.20; 〈u′′2〉/〈u〉2 = (−0.64±0.07)+(0.27±

0.02)C
3/2

D

√
φ, R = 1.00, n = 5, φ = 0.35, Red > 150.
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Appendix J

Operation of the laboratory flume

and pump used in the

laser-induced fluorescence

experiments

All LIF measurements and a subset of the mean drag measurements were collected

in a single recirculating Plexiglas flume. Figure J-1 is a schematic of the flume.

The working section is a 284 cm-long, 40 cm-wide, and 43 cm-deep channel with a

rectangular cross-section. The recirculating flow is driven by a pump that is connected

to the two stilling basins via a pipe. A maximum volumetric flow rate of 60 GPM was

achieved in a test run with no obstructions in the working section (
〈
H

〉
= 15 cm). The

pump draws fluid from the downstream stilling basin. The pump outlet is connected

to two pipes, of which one connects directly to the downstream setting basin and

the other to the upstream basin. By adjusting the valves (×) on the two pipes, the

desired portion of the outflow from the pump can be diverted back to the downstream

stilling basin. This setup allows the flow rate through the working section to be

reduced without reducing the pump rate, which is convenient if very low flow rates

are desired. Volumetric flow rates as low as 2.8 GPM were achieved in the LIF
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Figure J-1: The Plexiglas laboratory flume used in all LIF experiments and the mean
drag experiments at φ ≥ 0.15. The valves (×) can be adjusted independently. Arrows
indicate the direction of flow. Not to scale.

experiments with this method. An in-line flow meter measures the volumetric flow

rate of the flow entering the upstream stilling basin, which is exactly the flow rate

through the working section of the flume. The flow enters the upstream stilling basin

through a perforated manifold that extends across most of the width of the flume.

This manifold helps create a uniform flow. Perforated aluminium sheets and coconut

fiber may be positioned immediately downstream of the exit of the upstream stilling

basin to further smoothen the flow before it enters the working section. At the

downstream end, slots are also available to insert weirs or perforated sheets. In the

present experiments, perforated sheets were inserted to prevent objects (e.g., dowels)

from falling or being transported by the flow into the downstream stilling basin.

To operate the pump, turn on the power disconnect switch located immediately

above the controller for the pump, then press the button labeled “FWD” on the

controller for the pump. The rate of the pump is adjusted with the arrow-shaped

buttons. To stop the pump, press the button labeled “STOP”, then turn off the

power disconnect. The screen will display “LOW VOLTAGE” briefly, then fade.
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Water can be added or removed from the flume while the pump is operating.

It is not possible to access the inner walls of the stilling basins, and the flume is not

equipped with an in-line filtration system. Consequently, particulate material should

not be added to the flume if LIF experiments are planned. For example, it is not

practical to alternate between particle image velocimetry, ADV, or LDV experiments

and LIF experiments, because the removal of seeding material from the flume is

very time-consuming (§ 3.3.2). Note also that the wooden dowels used to create the

cylinder array release a lot of fine, opaque particles when they are first introduced

in water. These particles interfere with both LDV and LIF measurements. It is

recommended that the dowels be flushed with water before they are placed in the

flume, where possible.
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